Chapter 18

(Global Regularity

We now finally address global regularity and show that the limit surface is almost everywhere regular
with respect to the induced measure on the limit surface. We show this by considering the points
well behaved with respect to both the flow and with respect to the rectifiable set assumed to be the
limit set. The points well behaved with respect to the flow will be called ‘good points’. We show
that almost all points in R™*! are good points. It is known that almost all points in R™*! are well
behaved points with respect to the rectifiable set, where the well behaved points in this sense are
taken as those that are either measure theoretically not part of the limit surface or those that have
an approximate tangent space with respect to the limit surface.

We will have then proven that almost all points are well behaved both with respect to flow and
structure. We show that such points provide good control over the measure convergence of the sur-
faces. We then use this convergence to show that all well behaved points are regular. The difference
between mean curvature flow without boundary and mean curvature flow with Neumann free bound-
ary conditions cases is that we show that under either of our regularity assumption frameworks the
limit boundary, OMr, is quite simply not there with respect to H™ measure. It then follows that
the singular set on the boundary is also, measure theoretically speaking, not there.

We will now have to be careful about which radius we use around a central point. The radius
around a central point in which all results will hold is dependent on the point itself but always
greater than zero. Presently we can make the following definitions concerning the radius around
which everything holds.

Proposition 18.0.1.

Let xo & . Then there exists a radius I, > 0 around which, when applicable, the interior versions of
the Upper Area Ratio Proposition (Proposition 15.2.1) and the Clearing out Lemma (Lemma 16.2.1)
hold for all radii smaller than or equal to l,,.

Definition 18.0.1.
Let xog € R™t!. We then define for xo € 2

. { 1 70\2
dz, = min § —, (—)
2%2 2

1 .
dyy = 3 min{l,,, ds(xo)},

where 15, is that mentioned in Proposition 18.0.1.

and for xo ¢ %
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Remark: As mentioned in Chapter 12, the results for mean curvature flow without boundary hold
on balls centered at points not on the boundary provided that the radius is small enough to ensure
that the ball does not intersect the support surface. It follows that the boundaryless results can be
taken to hold on Bg, (o) for each xo & X.

18.1 Good Points

We begin by considering the area ratio behaviour of our limit sets, which will lead to the definition
and properties of the ‘good points’.

Lemma 18.1.1. (Finite Total Energy/Uniform Bound on Area Ratio)
Let M = (My)icjo,) be a smooth, properly embedded solution of mean curvature flow with Neuwmann
free boundary conditions supported on the support surface ¥ such that for some xo € ¥ M is a
solution in

Ba,, (o) x (to — d3,, t0)

o)

for somety € [0,T) which satisfies the area continuity and unit density hypothesis at time to. Suppose
also that for some constant Ay < oo the uniform area bound

H"(Mt n Bdmo (,CC())) S AO

holds for all t € [ty — d2 _,to]. Then, there exists co = co(n) > 1 such that

T
to o
(0) / / AP < oo
to—p? J MiNBg(zo)

where d = dy, /co. Furthermore, there exists A = A(n,d,,, ks, Ao) > 0 such that

H™ (M 0 By())
p’ll

<A

(i)
for all x € Ba(zo) NS, p € (0,d] and t € [to — p*, to).

Proof:
Without loss of generality we assume that zo = 0. Then by taking ¢y = 3v128n we see that
d = dy,/co < do/3v/40 and d*> < d2_/(9(128n)). We can therefore apply Lemma 15.1.1 to get

to tO
to—d2 J M,NBy to—d?2 I\/[thdIO/S\/E

16Hn(MtU,d2 n Bdmo )
16 A9

o0

AN IA

7

for any t € [tg — d?,to] in the second term, proving part (i).

For part (ii) we use Proposition 15.2.1 as follows. For x € B4 MY we have for any p € (0, d]

sup MO B@) oy o B Moz 0 Bypiging(@0))

[to—p?,t0) P (V2 +0.4nd)” ’
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where we have used py = du, = /2 + 0.4nd. Now, if d < do(14 2+ 0.4n)~" then B 5 1,4(x0) C

Ba,, for all ¢ € By, so that
"(M; N B HY (M, _q2 N B T
sup R84, 0 By() < C(n,kry) (Mio_a sz (20))
[to—p2,to) p" (V2 + 0.4nd)™

= C(n,/iz;,d)Hn(MtU,/ﬁ n Bdmo (mo))
< C(n,kx,d)Ap.
Thus setting co = 1 4+ /2 + 0.4n gives us

H™ (M N Bp(x))

— < AZA(’I?,,d7 Iiz;,Ao)
p

forallz € B4NY, p € (0,d] and t € [ty — p*, to).

This does not yet give the estimate for t = ¢;. However, for any zy € By and p € (0,d] the
Area continuity hypothesis provides

H" (M, N By(z)) = tli/r?o H"(M; N By(x)) < Ap"

so that the estimate holds for ¢ € [to — p?, to].

We therefore choose

co = max{1 + v/2 + 0.4n, 3v/128n} = 3v/128n
so that both (¢) and (i7) hold simultaneously for the same cg. O

It is the first part of the preceeding lemma that gives the inspiration for the definition of a good
point. The smaller the bounding constant less than infinity, the better the estimate. We therefore
make the following definition of good points.

Definition 18.1.1.
Let M = (My)ept,, ) be a smooth, properly embedded solution of mean curvature flow with Neumann
free boundary conditions and let ©o € R*T1. For a > 0 we define

Gy, = 2 € Ba,, /e, (o) : limsup —/ / |H P dH" < o?
P\0 T—p2 J M,NB, (z0)

In the case of regularity assumptions I we define points x € XN G§; to be good points only if they
also satisfy ©"(H™, My, x) € {0,1/2}. In this case we continue to denote the whole set as Gf. .

As mentioned above, we wish to consider only the behaviour of good points. For this to help with
regularity theory we first need to show that working only with good points is justified which we do
by showing that almost all points are good points. To do this, we mention the interior version of the
Finite Total Energy/Uniform Bound on Area Ratio, Lemma 18.1.1 above, which by the discussion
in Chapter 12 also holds in our setting.

Lemma 18.1.2.

Consider a smooth, properly embedded solution M = (My).c(o,1) of mean curvature flow with Neu-
mann free boundary conditions supported on the support surface ¥ in an open set U C R™T1 which
satisfies the area-continuiuty and unit density hypothesis at time T as well as the boundary approaches
boundary assumption at time T'. Let xo ¢ ¥ and dy, be the radius around xo such that
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1. Bag, (x0) x (T —d3,,T)C U x[0,T), and

2. all of the ‘previous’ non-boundary case results hold inside of Ba, (o) x (T —d2,,T).

Suppose also that for some constant Ay < oo the uniform area bound
H"(Mt M BdIO (ZL'())) S AO

holds for all t € [T — d2_,T]. Then there ezists a co = co(n) such that

T
/ / |H|?dH™ < oo
T—d2? J M;NBg(zo)

for d = dy,/co. Furthermore, there exists a constant A > 0 which depends only on n,d,, and A

such that
H"(Mt n BP(CEO))

p’n/
holds for all x € By(zo), p € (0,d] and t € [T — p*,T).

<A

Remark: By observing the proof from Ecker [7] Lemma 5.10 we see that in the interior case a
sufficient cg is co = (8(1 + 2n))~ /2.

For the sake of uniformity we now choose ¢y so that both the boundary and interior results hold.

Definition 18.1.2.
We define
co := min{3(128n)"1/2 (8(1 + 2n)) "1/} = 3(128n) /2

In order to prove that almost all points are good we will also use the Vitali Covering Theorem, a
standard measure theoretic result which can be stated as follows.

Theorem 18.1.1. (Vitali’s Covering Theorem)
Let F be any collection of non-degenerate closed balls in R™ with

sup{diam(B) : B € F} < 0.

Then there exists a countable family G of disjoint balls in F such that

where B denotes the ball with the same center as B with five times the radius.

We are now able to show that almost all points are good points. We show this in the form of two
results as the proof for the case a > 0 does not work for a = 0. We therefore prove the result first
for the case where o > 0 and then as a corollary show that the result is also true for the case v = 0.

Lemma 18.1.3.

Let M = (My)icjo,) be a smooth, properly embedded solution of mean curvature flow with Neumann
free boundary conditions supported on the support surface X in U X [t1,T) for some open set U C
R, Let o € R™™! and to € (0,T]. Then for every a >0

H"(Ba,, (#0) ~ G3,) = 0.
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Proof:

Regularity assumptions I (Definition 13.2.6) require that the points z € ¥ with ©"(H", Mr,z) ¢
{0,1/2} (which are also in the compliment of G) have H"™ measure zero. Thus they do not affect
the result.

Fix 0 € (0,ds,). By the definition of Gf, for every x € Ba(wo) ~ Gf there exists a radius
€ (0,8/10) such that B, (z) C Bg4(zo) and

T
/ / |H|2dH™ > o?pl.
T—p2 JMNB,, (x)

The Vitali covering Theorem allows us to select a disjoint family of balls {B,, ()} jen with z; €
BdI0 Gto‘ such that

L. pje (07 5/10)7
2. B,,(x;) C Bq,, and
3. Bdmo (mo) ~ Gtoé C Ujoil B5pj (l‘j), and

T
/ / |H|?dH" > o*p].
Tfpf MtﬁBpj(:nj)

By noting that the B, (;)’s are disjoint we can therefore estimate the Hg-measure of By, (z0) ~ Gf,
by

" o . > diam(CH\" o o .
Hg (Ba,, (v0) ~ Gi)) = inf len <#> : Bg,, (w0) ~ Gp, C LJl Cj,diam(C;) <46 5,
j= j=

IN

o
Zw 5p)"

Jj=1
(e o)

= c¢(n)wy Z Py

ol
/

o
3

\ \ nMg HM8

/ |H > dH"dt
M:N B, (z;)

/ |H > dH"dt
M:N B, (z;)

|H|?dH"dt

MNUZ2, By (x5)

/ |H [2dH"dt.

[thda:o :Eo)

(_
( )

IN

We therefore have
Hn (Bdro (350) ~ Gta:)) = hrn H? (de (ZL'()) ~ Gta:))

C

= hm/ / |H|?dH"™dt
@ 0=0J7—s2 JM,NBa,, (x0)

= 0,

IN
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which completes the proof. &

By proving the corollary that the same result also holds for & = 0 we end our discussion on good
points and thus the section. We then consider the properties of good points that lead to important
results for regularity theory; results on the characterisation of the structure of the boundary of the
limit,.

Corollary 18.1.1.
Let M = (My)cjt, 1) be a smooth, properly embedded solution of mean curvature flow with Neuwmann
free boundary conditions supported on the support surface 3. Then

H"(Ba,, ey (x0) ~ G7) = 0.

Proof:
From Lemma 18.1.3 it is known that for each n € N H"(Bq,_/c,(70) ~ GIT/") = 0. We now claim

Ba,, jeo(T0) ~ GF C U2y Ba,, o (T0) ~ GlT/n. Indeed, let = € By, /c,(%0) ~ G, then

T
lim sup p_"/ / |H|?dH" =: 3> 0
AN T—p2 J MyNB,(z0)

(8 = oo is possible). Then there exists N € N such that 1/N < . Thus

T
lim sup p_"/ / |H|?dH" > 1/N
AN T—p2 J M,NB,(z0)

which implies that x ¢ GIT/N and hence x € By, /c,(%0) ~ GlT/N so that

T U Bdro/co (:CO) ~ G;"/n

n=1
from which the claim that
1/n
Bua,, je(x0) ~ G% C | Bua,, jeo(@0) ~ ayf
n=1

follows.

We can now caluculate

H™(Ba,, ey (w0) ~ GF) < H" (U Ba,, Jeo(0) ~ Gyl ) <N TH Y (Ba,, jey(10) ~ G{™) = 0.
n=1

n=1

18.2 Non-existence of Boundary Approximate Tangent Spaces

In this section we prove the final preliminary lemmas for global regularity. Having shown that inside
of appropriate balls, almost all points are good, we now show that under either set of assumptions
almost all good points are regular. In the following final section we then appropriatly assemble
the balls and zero sets to provide the final full global regularity result. As this section is the one
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where the teo forms of regularity assumptions are most vital we recall them by restating them below:

Definition 13.2.6. (Regularity Assumptions I)

Let M = (My)cpo,r) be a mean curvature flow with Neumann free boundary conditions supported
on a Neumann free boundary support surface X. Let to € (0,T]. Then M is then said to satisfy the
regularity assumptions I at time ty if M satisfies the area continuity and unit density hypothesis
at time to as well as the boundary approaches boundary and unit multiplicity assumptions.

Definition 13.2.8. (Regularity Assumptions II)

Let M = (My)cpo,r) be a mean curvature flow with Neumann free boundary conditions supported
on a Neumann free boundary support surface 3. Let tg € (0,T]. M is then said to satisfy the reg-
ularity assumptions II at time to if M satisfies the area continuity and unit density hypothesis
at time to, the boundary area continuity hypothesis at time ty, the boundary approaches boundary
assumption at time to and the Type I assumption at time t.

The main result in this section is that under either set of regularity assumptions we can ensure
that there is H"-almost nowhere an approximate tangent space to the limit surface on the support
surface. Under regularity assumptions I this follows directly from the definition of an approximate
tangent space. Under regularity assumptions IT we need to work harder, first proving another tech-
nical lemma before proving the result. We begin by noting that almost all of R"*! can be separated
into two sets, each satisfying a useful measure theoretic result.

Theorem 18.2.1.
Let A be a measurable countably n-rectifiable subset of R" ! then for H™-almost all xo € R™*! either

H" (ANB, (x0))
wn p™

1. @n(Hn, A,Io) = limp\o = 0, or

2. the approximate tangent space T, A of A at x exists. That is,

lim / PpdH™ = PpdH"™
ANO e (4) T, A

for all ¢ € CY(R™1).
For our purposes, the above theorem can be translated as in the following corollary.

Corollary 18.2.1.

Let M = (M), 7y be a smooth, properly embedded solution of mean curvature flow with Neuwmann
free boundary conditions satisfying the My rectifiability condition. Then for any xo € R*! and any
* € Ba,, (20), either

1. ©"(H", Mr,2) =0, or

2. the approximate tangent space T, Mr of My at x exists. That is,

lim ddH™ = / ddH™
ANO S pgzo> T, Mrp

for all ¢ € CY(R™1).
Here Mo = A=Y (Mg — x0), A > 0.
We show firstly that the above theorem allows us to prove that under regularity assumptions I

O"(H"™, Mr,x) = 0 H™-almost everywhere on X.
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Theorem 18.2.2.
Let M = (M;)icjo,r) be a smooth, properly embedded mean curvature flow with Newmann free

boundary conditions satisfying the reqularity assumptions I, then for H"-almost all z € ¥ we have
O"(H™, Mr,z) = 0.

Proof:

From Corollary 18.2.1 we need only show that for H™ almost all points = € ¥ with @™ (H"™, Mr,xz) #0
there is no approximate tangent space. Regularity assumptions I tells us that for H"-almost all points
x € X, O"(H", Mr,z) € {0,1/2} so that we need only show that O™ (H"™, Mp,x) = 1/2 prevents
the existence of an approximate tangent space. Assume this is not the case, then there is a point x
such that ©"(H", Mp,x) = 1/2 and such that T, M exists.

Take any ¢ € CL(R"T!, R) with XB(g,)l/n(O) < ¢ < B1(0). Since T, M exists
1

3
lim ¢dH" = / OdH™ > —wy,.
2, (M) T.Mr 4

AN
Since also O™ (H", My, z) = 1/2 we have
1 3
— = lim w ']AT"H" (M7 N By(z)) =w ! lim/ dH™ > w ! lim/ dH" > —.
RN (M 0 BA()) = e [ wenaty O "Ny, ) ’ 4
This contradiction proves the result. &

We can now show that for almost all points, that is at least good points in G, we can control the
convergence of the measures to the limit measure in terms of sufficiently small . Since we can allow
« to go to zero, this provides very good, and as we shall see sufficient, control over the convergence
of the measures.

Lemma 18.2.1.

Let M = (M;)¢cjo,1) be a smooth, properly embedded solution of mean curvature flow with Neumann

free boundary conditions satisfying either regularity assumptions I or II supported on the support

surface ¥ and o € (0,1/2]. Then for every xo € G there exists a radius po € (0,dy,/co] such that
sup

ddpi; — / bdp
te[T—p2,T] 1V M, M~

holds for all p € (0, po] and ¢ € C}(B,(x0)).

Proof:
By the definition of good points, we can find, for every zo € G, a po € (0,d] (d = ds,/co) such that

T
/ / |H | dppdt < 402 p™ (18.1)
T—p2 J M,OB, (20)

< 2a(sup|¢| + VApsup | Dg|)p"

for each p € (0, po].
We then note that for any ¢ € Cg(Ba(zo))
0] J¢ 0
il d = —=d —d
3t Ju, Pdpu i, Ot He + /Mt ¢ (81? ,LLt>

o _
D¢ - —z — ¢|H|*du
w0t o

= D¢ - H — ¢|H|*dy, (18.2)

M,
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as (0/0t)x = H for all z € M,. Since M satisfies the area continuity hypothesis we also know that

lim Pdpy = Pdpu, -
M,

t—to I\/[to

Integrating now (18.2) with respect to t over [ta, T| for any t, € [T — p?, T we have

T
d .

/ - / ¢dpy = lim ¢dpy — / Py, = / odpr — / Pd i, .

t, At Jag, t=T [, M, Mr M,

t2 t2

Thus
T d
sdnr ~ [ od| = | [ [ od
Mt My, t2 M,
T — —
= / D¢ - H — ¢|H|*dp,
ta M,
T — —
< [ [ Dol + 16 P
T—p2 J M,
and therefore
T — —
sup i, — [ oaur| = | [ oz~ [ odpa|< [ [ Dol + loll P
te[T—p2,T] |/ My, My Mr My, T—p2 J M,

for all ¢ € C}(B,(z¢)) and p € (0, po]. We rewrite this as

T T T
[ el +ielirand = [ [ ol [ [ ol
T—p2 J M, T—p2 J M, T—p2 J M,
=: 11+IQ.

Using (18.2) it firstly follows that
T —
I :< suplaﬁl/ / |H [*dpdt < sup |pl4a®p™.
T—p2 J M,

Then using the Cauchy-Schwarz inequality, (U fgdu‘Q < [If1Pdp [ |g|2du) , (18.2), and Lemma,

18.1.1 we have
T —
[ wolfidu
T—p2? J M,

T - 1/2
/ / |D¢|2dutdt/ / |H|?dpdt
T—p2 J M, T—p2 J M,
T 1/2
4a2p"/ / | D dpsdt
T—p? J My
- 1/2
2 p"sup|Dq5|2/ / 1dpdt
T—p2 J M,NB, (z0)
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T—p? pr

T H"M,NB v
20 (Pn Sup|D¢|2Pn/ (M p(zo))dt>

. 1/2
< 2a| p"sup |Dq§|2p”/ Adt
T—p?
= 2ap"VApsup|Dg|.
It follows that
T — —
sup odps, ~ [ odur| < [ [ Dol + |61\ Pdps
te[T—p,1] |/ M, My T—p2 J M,
= Li+1
< 40?g" sup|¢| + 209"V Apsup| Do
< 2a(sup |¢| + VApsup | Dg))p"
for all ¢ € CJ(B,(z0)) and all p € (0, po. &

As we have mentioned, the question of whether the points in ¥ M are regular or not can be com-
pletely avoided in proving global regularity results. We show that our results, especially Lemma,
18.2.1 can be combined with the rectifiable limit surface and boundary approaches boundary as-
sumption to show that there will be H" almost no points in > N My at all. In particular we show
that for any € ¥ N My, there cannot exist an approximate tangent space to M at xo. We have
actually already shown that this is the case under regularity assumptions I in Theorem 18.2.2. We
now show in the following Lemma the equivalent result under regularity assumptions II. The proof
is much more involved and depends heavily on the assumptions. The corollary following this lemma,
is the main result of the section that will be used in the next section when assembling the proof of
the global regularity theory.

Lemma 18.2.2.

Let M = (My)ept,, ) be a smooth, properly embedded solution of mean curvature flow with Neumann
free boundary conditions supported on the support surface Y. satisfying the regularity assumptions II.
Then there exists an o > 0 depending only on the type I curvature constant C', n, and the A found
in Lemma 18.1.1 such that if o € GT NY for any a < ag, then either

1. x¢ is not reached by M, or
2. Ty, Mt does not exist.
Proof:
If ¢ is not reached by M then we are done.
Now suppose M —1 xg. We first show that should T, Mt exist then we must have T, , M =T, .

To prove this we can firstly, without loss of generality, assume that zo = 0 and T,,,X(= ToX) = R™.

Since X is smooth and satisfies the rolling ball condition for balls up to a maximum radius of
1/ky we see that for a sufficiently small p < 1/2kx, ¥ can be expressed as the smooth graph of a
function fy, over R" N B} (0) and that ¥ divides B,(0) into two parts expressible as the part ‘above’
>

{z e R"™ i a1 > fu(mr, ., zn)}
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and the part ‘below’ X
{z e R"™ i a1 < fu(@1, .oy 2n)}

and such that one of these parts is empty and M7 N B,(0) is a subset of ¥ in union with the other.
Without loss of generality we will assume that My is contained in the latter. That is

MrNB,(0) C {z € R* 1z < f(a1, .y zn)}

Also, since ¥ is smooth with D fx(0) = 0, for every m € N there exists a A, < p such that for all
A< Ay and x € XN By(0) 241 < A/m and thus

Tn+1 < A/m, for all x € My, N Bx(0) (18.3)
We now choose a sequence of functions {¢, }men C CL(R™™! R) such that
gf)m =1on 31/2(0) n {I’ S RnJrl C Tn+1 Z Z/m}

and
ém = 0 outside of B1(0) N {z € R"™ : 2,1 > 1/m}.

sptom

/ —~ P =T, My
G D My Mr

Figure 18.1: T,, M exists = T, M = T3, %

By (18.3) we see that for each A\ < A\,

AN M7 Nspt ém A (M N spt ém)

= AN MrnBy0)Nn{zx e R" ™ 12,11 > \/m})
-
0.

H(0)

Thus fM% GmdH™ = 0 for all A < A, (where M3 := A\~!M7) and thus

lim dmdH™ = 0 for all m € N.
A—0 Mq):

204



Since also for any hyperplane P # R"(= T,,%) there exists a mp € N such that PN By /5(0) N {r €
R™ 2,0 > 2/mp} # 0, it follows that [}, ¢, dH™ # 0 and thus limy_¢ fM% GmpdH" # [ Omp-

Consequently 17,3 is the only possible approximate tangent space. We complete the proof by show-
ing that T;,,% is also not possible.

Since M —7p x9, by the boundary approaches boundary assumption OM —p xy and thus from
Proposition 13.1.2 (which uses the type I assumption) there exists a p € 9M™ such that lim;_,r F(p,t) =
2. Thus by Lemma 13.1.1 we have

|F(p,t) — x| < 2CuVT —t
and thus under parabolic rescaling
INTITE(0, N2+ T) — 20| <A 1205 VT — X25 — T = X" 'sCpv/|s|\ = 2Cu /5],

Thus for any chosen s and sequence A; \, 0, /\j_lF(p, /\? +T)—xp is an infinite sequence in a compact
set and thus there exists a subsequence \;, which we relabel \; satisfying

Ji X Xs +T) =20 = 1 € By, 17(0).

Further, since [A|?> < C%(T —t)~! we have [y | < ACy(A2[s|)7Y/2 = Cp(|s|)~1/2. We now select
a particular s which we will denote 8. The particular s we choose is § := —16C%. We also select a
sequence A; \, 0. Together these selctions give us |AMAj | <4 forall j € Nand

lim A7 (F(p, Ajs +T) — 0) = 21 € Bscs, (0) N %' = Bgez, (0) N T, X

J—00

We now need to select test functions ¢; € CL(R™™ R). In order to do so we need the following
definitions:
Ty = xj — v, (7))

where vs, (z;) is the vector unit normal to X, = )\;1(2 — o) at x; € ¥y, with base point x;,

A AJ
B_] = 31/2(1‘]) n TIjMA y

S

I; == {2 + sv; : s € [-1,1] and v; = unit normal to TZjM;‘j at ;}
Sj = Bj X Ij

and for S € R*! and r > 0 we define
N7(S) :={z ¢ R"" . d(x,S) < r}.

Before defining the family ¢; we make the following observations. Firstly, for all sufficiently large j,
say j > jo, Ajrx < 1/5 so that for each j > jo

N1/4(Sj> N E,\j = 0.

It then follows from the fact that |[A| ;| < 1/4 for each j € N that

MM NS, #0, MY NS; =0 and
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Figure 18.2: Support of a ¢;

MY 1 ((By x (i + 1) U (Bj x (55 = v))) = 0

and thus indeed that M7 N S; is a boundaryless n-surface transversing the cylinder S;. Thus
MY N S; has measure at least that of an n-disc of radius 1/2. That is

v n\"
H”(M;‘j ns;) > (5) wp, =t ¢, > 0. (18.4)

We now define {¢;}52; C CL(R™1 R) such that for each j € N, ¢; =1 on S; and ¢; = 0 outside
of N1/4(S;). Tt follows from (18.4) that

A.
| i =

for each j > jo.

Since from the Arzela-Ascoli Theorem we know that there is a subsequence of A; which we again
relabel A\; such that M j ’ — M smoothly for some smooth limit surface M}, we see that vz, (z;) —

V'(x1) with v(z1) a unit normal to T, = T,,%’. Define &; = 1 — v/(z1). Also Ting\j — T, an
n-plane with v/(z1) C T’. Define
BI = Bl/Q(fl) n TI and

I'={x =21 + svp/(21) : s € [-1,1] and vy is a unit normal to T"}.

We write S’ = B’ x I'.
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We see that since T, = T,,% is a hyperplane parallel to the axis vy (2;) of the limit cylin-
der S/, and thus
N*(I'YNn¥ =0 for all a € [0,1/2). (18.5)

From the convergence as sets of M j 7 we see that for all sufficiently large j, say j > j1 > Jo,

S; c NYA(I). (18.6)
We now take any ¢ € C}L(R"!, R) satisfying sup || = 1, sup |Dy| < 16, 1) = 1 on N/4(S’) and
spt ¢ C N3/8(S"). From (18.6) it follows that for all j > jy

_dH" > / b;dH™ > ¢y
M7 M

Aj
H ‘{mEW"+1:¢j(m):l)

/T = Ty, X =% =T, %

<l
» Sptl/)
Tog = 0 B
!
By, 0) 3 11 M
~_ !
//’ i \\Mf‘m
\:\_;/
Tm )
1 ':
- 1

Figure 18.3: Support of the limiting test function

Since Ty, My = Ty X = Ty X/ = To, X/ we see from (18.5) that

lim PdH" = / YdH"™ = 0.
M Ty, 3

A—0

It follows that for all sufficiently large j, say j > js > jo

. YdH™ > ¢, and L YdH™ < e /2

M’ My
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so that

YdH™ — / pdH| > /2. (18.7)

]\/IJ

We now note that since xo € G% C G% for all > 0 and in particular for
Cn

2(2(1 + VA192C%)(120%)™)

Lemma 18.2.1 shows that there exists a p, > 0 such that

a< =

sup
€[T—p2,T)

[ o / ¢]<2asup|¢|+f psup | Do|)p"
M

holds for all p € (0, po] and ¢ € CL(B,(xo)). We rescale this to

‘/M; o /Mg‘ ¢

for R € (0,A\"!p,], s € [-R?,0] and ¢ € CL(Br(0)). Choosing R = 12C% we see that § = —16C% €
[—R?,0] and that since z1 € Bgcz, (0)

¥ € C(Bsez, 44(0)) € Co(Br(0)).

Now taking a N > j; > js such that for all j > j; R € (0, /\j_lpa] it follows that for all j > j,

Jus = hp”

This contradiction to (18.7) shows that

< 2a(sup ¢ + VAR sup [D¢|) R

< 2a(sup || + VARsup |Dy|)R" < 2a(1 + VA192C%)(12C%)" < ?”

hm / YdH"™ # YdH"™.
Ty S
Thus T,,% cannot be an approximate tangent space for Mt at zp and consequently there cannot
exist and approximate tangent space for M at z. &

As was mentioned previously we now combine the above lemma, Theorem 18.2.2 and the interior
results of Ecker [7] to give a corollary that holds for all good points which will be the center of
the final global regularity result. The complete proof of the corollary is by no means trivial, but is
already proven in Ecker [7] and will therefore not be presented here.

Corollary 18.2.2.

Let M = (My)epe,, ) be a smooth, properly embedded, solution of mean curvature flow with Neu-
mann free boundary conditions supported on the support surface X satisfying either the regularity
assumptions I or II. Then

(i) For sufficiently small o« = a(n,A) the points xo € GF satisfying 1. in Corollary 18.2.1 can-
not be reached at time T by the solution M. Therefore these points are regular.

(i) If we choose o > 0 with o = a(n, A, ag,€0) sufficiently small then for points in GS possessing

an approrimate tangent space the conditions of the Interior Local Regularity Theorem are satisfied
and thus such points are also regular.
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Proof:

To prove (i), we note firstly that for interior points application of Ecker’s ([7]) Lemma 15.5 gives the
proof. Secondly, we note that for points on ¥ by using Lemma 16.2.1 instead of the Clearing out
Lemma of Ecker [7], the proof of (i) follows exactly as in Ecker’s ([7]) Lemma 5.15.

In case (ii), by taking o < ag for ag as found in Lemma 18.2.2 we know that for each zy € GF,
xo € % as for all ¢ € X points possess no approximate tangent space. For the interior points, by
selecting po sufficiently small to avoid the boundary (which is possible as discussed in Chapter 12) in
the proof of Lemma 5.15 of [7], the proof follows in an otherwise identical manner to that of Lemma
5.15 in [7]. O

18.3 Global Regularity

We now assemble the proof of the global regularity theorem. We will use Corollary 18.2.2 as well
as the fact that almost all points are well behaved to show that around every point there exists
a neighbourhood in which there is at most an H"-zero measure set of singularities. The proof
of the final global regularity theorem is then a question of covering theorems to show that we can
appropriately cover the entire space with such balls, or compact sets covered by such balls to conclude
that the measure of the entire singularity set has zero measure. In assembling this proposed proof
of global regularity the following technical covering result becomes important.

Lemma 18.3.1.
Let U be open in R"*, then there exists a countable collection of compact sets {W;},cn such that

G wW; = U.
j=1

Proof:
Let D; be the set of (n 4 1)-dimensional dyadic rationals of order j. Define

DjU = {93 € Dj : B1/21+1 ($) C U}

and
Wj: U B1/21+1(1‘).

ZED]'U

Let y € U. Then as U is open there exists an » > 0 such that B,.(y) C U and an j € N such
that r > (y/n/4 +2)27~1. Also there must be an = € D; such that |y — z| < /n277~!. For this =
Bijai+1(x) 2y and By jpi41(x) C By(y) C U so that By 541 (z) C W and therefore y € W;.

Thus for all y € U y € W; for some j € N and therefore

vclJw; (18.8)
jEN

Since, by construction, W; C U for each j € N,
Uw,cu.

jJEN
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Combining this with (18.8) gives

U:UWj

JEN
which completes the proof. &

We now show that far each 2o € R™*! there exists a neighbourhood with only a H" neglible set of
singularities and then as the final global regularity theorem show that this is sufficient to prove the
full global regularity theorem.

Theorem 18.3.1.

Let M = (My)ep, 1) be a smooth, properly embedded solution of mean curvature flow with Neu-
mann free boundary conditions supported on the support surface Y. satisfying either the reqularity
assumptions I or II. Suppose that zo € R"*! and that

Hn(Mt n del (ZL'())) < AO

holds for all [T — d2 ,T] for some d,, < d,,. Then

T
H" (singrM N By(xg)) =0
where d = dy, [co and co > 1 is the constant dependent only on n and ks, found in Lemma 18.1.1.

Proof:
By Lemma 18.1.1, the results of Lemma 18.1.1 hold on By(z) and therefore so do Lemmas 18.1.3
and 18.2.1 and thus additionally Lemma 18.2.2 and Corollary 18.2.2.

We now choose an « such that Lemma 18.2.2 holds. Define

Dy := By(zo) N {z € R"™ : @"(Myp, 2, H") = 0}

and
Dy := By(z0) N {x € R"™! . T, M exists}.
Then
Bd(l'()) = (Bd(:L'()) ~ G%) U (G% N D1> U (G% n DQ) U (G% ~ (Dl U DQ))
and thus

singrM N By(zo) = (singrM N Bg(xo) ~ GF) U (singrM NG N Dy)
U(singrM N GT N Dy) U (singrM N GF ~ (D1 U Dy)).

Now, from Lemma 18.1.3
H"(Baq ~ G7) < H"(Ba,, (x1) ~ GT) < H"(Ba,, (o) ~ G7) =0

and thus
H" (singrM N By(xo) ~ GF) = 0.

Similarly it follows from Corollary 18.2.1 that
H"(GF ~ (D1 UD3)) =0
and thus
H" (singrM NGF ~ (D1 U D3)) =0.
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Moreover, it follows from Lemma 18.2.2 that singrM N D; = () for each i € {1,2} and thus
H" (singrMNGTND;) =H" (D) =0 foreach i € {1,2}.
Combining the above shows

H" (singrM N Ba(xo)) = H"(singrM N By(zo) ~ GF) + H" (singrM N GF N Dy)
+H" (singrM N GF N D) + H™ (singrM N GF ~ (D1 U Dy)).
= 0.

%

We now show that we can indeed satisfy the H"(M; N Ba, (70)) < Ao requirement around any
2 € R™*! and then appropriately cover all of R**! in order to infer that the H"-measure of singrM
is zero. This result concludes the main body of Part II of the thesis, and therefore, apart from
appendices, the thesis in general.

Theorem 18.3.2. (Main Regularity Theorem)

Let M = (My)ept,, ) be a smooth, properly embedded solution of mean curvature flow with Newmann
free boundary conditions supported on the support surface ¥ in U X [t1,T), where U is an open subset
of R"1 which satisfies either the regularity assumptions I or II at time T. Then

H"(singrM) = 0.

Proof:
Let 2 € . Then for

pry = pr, (20) = min{dy, (20273>VIEN) =1 YT} < d,
we can apply Corollary 15.1.2 to find
H*(Bp,, (20) N M) < H'(B,, gussmsvimss) 1 (20) N My) < 162732V (B, (20) N Mo)
forallte[0,7)D [T —p2,,T).
By applying Corollary 15.2.1 we therefore have
H"(B,,, (x0) N M) < C(n, Ky, 1130)162T?”'“E‘/@p;c’l =: Az, (20) =t Apy < 0
forall t € [T —p2, ,T).

Similary, for zy ¢ ¥ we can apply Proposition 4.9 in [7] finitely many times as in [7] to show
that there exists a pg, := pu, (x0) < dg, such that

HO (B, (20) N My) < Ay (20) = As,
forallt € [T —p2 ,T).
Thus, for all xo € R"™! there exists a p,, = pz, (7o) and A,, < oo such that

H"(B,,, (x0) N My) < Ay,
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for all t € [T — p2 ,T) and thus by the area continuity hypothesis (Definition 13.2.3)
H" (B, (20) N My) < Agy(30) = Au,
for all t € [T — p2 ,T).

From Theorem 18.3.1 it then follows that for each 2o € R there exists a pu, (20) = pu, (20)/co > 0
such that
H" (singrM N B, (o)) = 0.

Now, let W be a compact subset of U. We see that

wc | B, ().
zeW

Since W is compact it follows that we can take some finite subcover of W, {B,, (351)}?:1, from the
cover {B,, (x)}zew to get

Q
W c (B ()

i=1
with H"(singrM N B, (z;)) = 0 for each i € {1,...,Q}. It follows that

Q
0 < H"(singrMNW) < Z H" (singrM N B, (z;)) = 0.

i=1

Since W was an arbitrary compact subset of U, we see that by taking a countable collection of
compact subsets of U, {W;}$2, with
o0
U=|Jw,
i=1

whose existence is guaranteed by Lemma, 18.3.1, we get

0 < H"(singrMNU) < Z H" (singrMNW,;) =0

i=1

and therefore
H"(singrM) = 0.

18.4 Notes

Proposition 18.0.1 is due to Ecker [7]. The concept of good points was introduced by Ecker [7] and
the idea for Lemma 18.1.1 follows that of Ecker [7], though the adjustments to the Neumann free
boundary conditions case are our own. Lemma 18.1.2 is the interior version, due to Ecker [7] of
Lemma 18.1.1. Vitali’s Covering Theorem, Theorem 18.1.1, is in principle due to Vitali [31] who
proved the first theorem of this type. A good discussion of The Vitali Covering Theorem can be found
in Bartle [4] or Evans and Gariepy [10]. Lemma 18.1.3, showing almost all points are G¢ follows
that of Ecker [7]. The generalisation of Lemma 18.1.3, Corollary 18.1.1 is our own. Theorem 18.2.1
is a standard geometric measure theoretic result, for a good discussion one can see, for example,
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Simon [25]. Lemma 18.2.1 is our own though draws ideas and inspiration from the non-boundary
case due to Ecker [7]. Lemma 18.2.2 is our own original work. Corollary 18.2.2 is our own though,
as obvious from the proof, depends heavily on Ecker’s non boundary version in [7]. We understand
the result of Lemma 18.3.1 to be a standard result and lay no claim to it. We have, however, no
source, and the proof given is our own. The ideas in Theorems 18.3.1 and 18.3.2 are inspired by the
non boundary versions to be found in Ecker [7]. The theorems, as presented here, however, are our
own.
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