Chapter 17

Local Regularity

In this chapter we show local regularity, which, as mentioned in the introduction(s), is understood
here to be referring to conditions by which we can determine whether or not a point is regular. The
condition that we will use to determine the regularity of a point is the boundedness of the difference
between the Gaussian density ratio and its expected value in a neighbourhood of the point.

In order to prove local regularity we will show that having a Gaussian density ratio close enough
to the value of the Gaussian density for a point around which the flow is smoothly expressible as
a graph, implies that the second fundamental form of the surface is bounded from above, in some
small ball, for all small enough ¢. This then leads to x being a regular point.

17.1 Bounding the Second Fundamental Form

We show in this section that the appropriately bounded Gaussian density ratio inside of a neigh-
bourhood around the observed point leads to a uniform bound on the second fundamental form for
all times up to the observed time in some neighbourhood of the observed point. Before attacking
that proof directly we find the following technical lemma useful.

Lemma 17.1.1.

Suppose a sequence of smooth subsets of space-time {(M?)s<o}jen converges smoothly to a limit-
ing family (M!) and that {p;};en and {f;};en are sequences of positive functions in C*(R"*1 x
(—00,0],R) such that p; — p and f; — 1 uniformly on compact subsets of R"*1 x (—o0,0] where p
is as defined in Definition 11.3.4. Suppose also that there exists a constant C > 0 such that

1
CS/ fipjdH" < C+ =
M7 J
for all j € N. Then

/ pdH" =C
M

for all s < 0.
Proof:
We recall that (M?) — (M!) smoothly implies

lim [ dH" = / YdH™
J—oo Sl M!
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for each ¢ € CL(R"™,R). For each § > 0 and k € N we see, by considering ¢ € CL(R" ™! R)
with x5, < ¥ < xB,,,, so that ¥p € CL(R™1 R) and using that the f; and p; converge locally
uniformly, that

oo j—o0 j=oo Sl

1imsup/ fipjdH"™ > limsup/ fipjdH™ > (1 —9) limsup/ pdus > (1 — 5)/ pdyd,
M2 MINBy i1 M? M/NBy,

for all s < 0 and similarly that

Jj—00 j—o00

liminf/ - fipjdH™T < (149) li_minf/ pdH™ = (1+ 5)/ pdps.
MINBy, M} M

/
s

for all s <0.

Since this is true for all £ € N we see

(1- 5)/ pdH"™ = (1 — 5)/ pdps = liminf(1 — 6)/ pdps < liminf fip;idH"
M Uken(M!NBy) k—oo M!NBj /

’ J—0o0 M?
s s

for all s <0, and
1imsup/ fipidH"
MInB;

j—oo

is an increasing sequence in k bounded above by (1+6) [ A PAH™ so that

limsup/ fipidH" = limsup/ ‘ fipidH™ < (1+ 6)/ pdH"™
MINB, Uren(MZNBy)

Jj—00 Jj—00 M;

for all s < 0. Therefore
(1- 5)/ pdps < liminf [ fip;dH" <limsup [ fjp;dH" < (1+ 5)/ pdps
M J—oe Jm? j—oo  JM? M

/ ’
s s

for all s <0.

Since this is true for each § > 0 it follows that

_lim fjpjdHn :/ den
J=00 J M M

for all s < 0 and thus, since
1
CS/ fipjdH™ < C + -,
M J

we have .
lim C < lim fipidH" < lim C + =
M J—00 J

jmoo T j—oo
/ pdps = C
M

’
s

for all s <0. &

for all s <0, and thus

In the main technical lemma of the local regularity result we will find it necessary to directly
use Huisken’s [14] monotonicity results for boundaryless flow and thus state his result directly for
reference.
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Theorem 17.1.1. (Huisken’s Monotonicity Formula)
Let M = (My)icr be a mean curvature flow (without boundary) over the time interval I. Let p
denote the usual backward heat kernel as defined in Definition 11.3.4. Then

i (o)==,

We can now prove the main technical lemma, bounds on the second fundamental form, which we
then use in the next section to prove the main local regularity theorem.

iR 2

. D
q— 2P| du,.
p

Lemma 17.1.2.

Let M = (My)y, ) be a smooth, properly embedded mean curvature flow with Neumann free boundary
conditions supported on the support surface ¥ with M —r zg. Let py € (0,(2r5x)71), p2 > 0. Then
there exist constants 1/2 > g > 0 and co > 0 such that whenever

G(May77-7 t) S E(®7y77-) + €o
for all (y,7) € B, (z0) x (T — p?,T) and t € [T — p3,7] then
p
Az, 8) < cop™?

for some p > 0 and for all x € M; N B,(x¢) and t € (T — p*,T). Here

3

OM.gor.1) i eCr (1—1)° fMt oy My, rPrsyrdiie Y € X,
f]\/jt wa(y),y,'rp(t,r)d,u/t Y ¢ by

where o € (0,78/2/2), o(y) == %\/d(y,Z)Q +8n, Vo(y),y,+ 15 as defined in Definition 12.0.1 and

1 yeM, ~%
E(@,y,T) = { % (TS M, NXY

0 otherwise
Proof:
We prove firstly that the result holds with ¢¢ only being required to be greater than zero. Since
making e¢ smaller only improves the behaviour of ©(M, y, 7,t) it follows that should the result hold
for some £y > 1/2 then it also holds for £; := 1/4 in the place of (. In this case, by redefining ¢ to
equal e = 1/4 the result holds for an g9 < 1/2 as required. Thus proving the result with the only
requirement on gg being strict positivity is sufficient.

We first claim that we can assume without loss of generality that M = (M;)seps, 4, is smooth
up to and including time ;. We can do this as otherwise we would apply the following proof to the
flow up to time ¢ty — & for some § > 0. By considering M as the images of the one-parameter family
of functions F; there is a p,, € My such that F},(p.,) = xo, we then see that

[A(@)* < cop™

for some p > 0 and for all z € M; N B, (Fyy—s(ps,) and t € (tg — 6 — p?,to — &). Since this is true for
each § > 0 (co, p not being dependent on ¢ or x() we see that for all z € B,(z¢) and t € (to — p?, o)
there exists a 8y > 0 such that (x,t) € B,(Fi,—5(pz,)) X (to — 8 — p?,to — 6) for all § < §p and thus
|A(z)]? < cop™2 for all (z,t) € B,(xo) X (to — p%, to)-

We further assume without loss of generality (since it is just a reorientation of coordinates) that
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(zo,t0) = (0,0).

We next claim that by the hypotheses, and by scaling the solution if necessary, that it is suffi-
cient to prove the following statement (Statement A):

There exists constants g and ¢y such that whenever a smooth, properly embedded solution M =
(My) of mean curvature flow with Neumann free boundary conditions supported on a support surface
¥ with ks; < 1 reaches 0 € R**!' N XY at time 0 and satisfies

6(M5y77—7 t) < E(G’yaT) +€o
for all (y,7) € By x (—1,0) and t € [ — 1, 7] then

o?  sup sup |A]* < ¢
(—(1—02),0) MiNB1_,

for some o € (0,1). We now show that we can make this assertion. From the hypotheses we have
O(M,y,7,t) <E(0,y,7) + 0

for all (y,7) € By, (wo) x (T — p3,T) and t € [T — pa,7]. If p1,p2 > 1 and Ky < 1 we are done,
otherwise rescaling by a factor of A = min{py, p2, k5;'} with the change of variables y = Az + g
and 7 = A\25 4+ T gives ¥’ = \7'¥ and Ky = Akxg < kx. Also kx < 1. Notationally, after rescaling,
we write My — M, dus = A\"dps, and p1,p2 > 1. In the case y € X we also have 0y — 7 s,
Coyir = Plas) A-1os Prsyysr — Plo,s)ns aNd eCRE (=D, ¢COwx)*(=9)" a5 described in previous
chapters. We see in this case that then

26, \6 B L _
E(@,:L’, S) < BCO\NE) (=s) / (p)\7107l7s77m75pA,{27I75d/,L5 < :(@,:ZJ, S) + €0
M

for all (z,s) € By x[~1,0)and t € [s—1, s]. Similarly, in case y ¢ ¥ we have V() ,.r — ¥r-1
and in this case

o(y),x,s

E(Ga z, S) < / Z/}k*la(y),z,spI,Sd,L”S < E(Ga z, 5) +¢€o
M

for all (x,s) € By x [-1

,0) and t € [s — 1,s]. That is, in all cases after rescaling we have
E(@,l’, S) S 6((MS)7I757t) S

E(0,z,5) +¢p for all (z,s) € By x [-1,0) and t € [s — 1, s].

Should this then imply that there exists a o € (0, 1) such that

o? sup sup  |A|* < co

te(—(1-0)2,0) M.NB1_,
then if 0 > 1/2, then 1 — 0 < o giving

(1-0)>  sup sup  [A* < ¢
te(—(1-0)2,0) MoNB1_,

and thus

o2 sup  sup A < co,

te(—(0’)2,0) MsNB,/
where 0/ :=1— 0 and if 0 <1/2 then ¢ < 1 — ¢ so that

o? sup sup |A|* <cp.

te(—02,0) MNB,
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That is, there exists a o € (0,1) such that

o sup sup |A|* <cop.

te(—o02,0) MsNB,
Rescaling back to the flow (M;) supported on ¥ gives

sup  sup |A]® <cop?
T€(—p2,0) MyNB,

as required.

Suppose now that Statement A is not correct. Then for every j € N one can find a smooth, properly
embedded solution to mean curvature flow with Neumann free boundary conditions supported on a
support surface X7 with ky; <1, M7 = (M} ),c[_1,0), which reaches 0 € R"*' N X at time 0, and
such that for some p; > 1 and all (y,7) € By x [-1,0) and ¢t € [t — 1, 7]

, 1
(M, y,7,t) <E(O,y,7) + 7

holds, but that

lim %2 = sup [o? sup sup |AP | = cc.
e o€(0,1) (=(1=02),0) M/NB;_,

(Note that since M7 is smooth up to and including ¢ = 0 by assumption we have 7? < oo for each
jeN)

Then since [0, 1] is compact and +7 is continuous in o there is a o; € [0,1] for each j € N such
that
%2» = O‘JQ» sup sup |A%.

(~(1-02),0) M{nB; .,

Since for o; € {0,1}, 77 = 0 and in general 77 > 0, it follows that in this case 77 is constantly 0 and

we hence we can choose o; € (0,1). Thus there exists, for each j € N, a ¢; € (0,1) such that

2_ 2 2
vj =0j  sup sup  |A]"
(=(1=0%),0) M{NB1 o,

Further, it similarly follows that for each j € N there exists 7; € [—(1—0;)%,0] and y; € MZJ, NBi_q,
so that
;= o3| Aly;) .

Since
75\? 2 2
- sup sup |A]* <75,
27 (—(0-(2/2).0) MJB;_ s, 12
sup sup  |A]? < dvjof = 4|A(y;)*.

(~(1=(53/2).0) M{ "By (s, /2,

Also, since 0/2 < 1/2,1—(0;/2) > 0;/2 and thus B, /5 C B1_g, /2-
As7; <0, 7 € [-(1—0;)?,0] and 0; < 1 imply

(1—(05/2))* = =1+ 0; — (0;/2)* < =14 20, — 0] — (0,/2)* = —(1 — 0;)* — (0;/2)* < 75 — (0;/2)?,
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we have
sup sup  |A]? < 47]2-.
(‘Fj*(Uj/?)Zv‘Fj)MghB,,j/2

We now want to rescale this sequence. Rescaling each term differently to give an appropriately
convergent sequence. How we do so, however, is dependent on the sequence that we already have.
We need to consider two cases:

1. There exists a subsequence {ji} of {j} such that
d(yjk ) Ejk)|A(yjk ) Tk >| <C
for some fixed C' < co.

2. There exists a subsequence {j;} of {j} such that

Jh/rgo d(yjk ) Ejk)|A(yjk ’ Tjk)| = 0.

We first consider case 1. We note that in this case, since |A(y;, , 75, )| — oo we must have d(y;, , ¥7¢) —
0. We relabel the subsequence {j.} as simply {j} and assume without loss of generality that
d(yj,¥7) < 1/2 for each j € N. We then define \; = |A(y;,7;)|”! and take parabolic blow-ups
around (Ps; (y;),7;). (Where we recall that Py denotes the perpendicular projection onto the sup-
port surface X.)

Note that since y; € By/2(0) C Z{/“z:" Ps; (y;) is well defined. We see that Pg;(y;) € B1(0) NX7
and thus
O(M, Pxi(y;), 7, 1) <

+ (17.1)

|
(-

for all t € (1; — 1,7;] for each j € N.

Under the parabolic rescaling by a factor of A\; for each j we get a sequence of mean curvature
flow with Neumann free boundary conditions,

Mj = )\._I(Mj _PEj(yj))7

s J )‘§5+7j
supported on the Neumann free boundary support surface
25 = A7 (S~ Prilyy))
for s € [-A307/4,0] which is a rescaling with the change of variables © = \jy + Pg;(y;) and

t= /\?erTj.

Mi = (M 7) is a smooth, properly embedded solution of mean curvature flow with Neumann free
boundary conditions satisfying .
0e M}, |A(z;,0)|=1

and
wp s AP <4
(—A252/4,0) (I\?IgmBk;%j/z(Zj)
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where z; = )\j_l(yj — Pyi(y;)) € Be(0) (since 1. holds).

Further 0 € ¥; and xx; = Ajky;. Also, from (17.1) we see

O(M7,0,0,5) < = +

1
2

S =

for each j € N.

Since {z;}jen C Bc(0) there exists a convergent subsequence of {z;} converging to some z € Bo(0)
which we relabel as simply {z;} again. We note that since \; 202 = % — oo we can conclude that
for every R > 0 and for all sufficiently large j dependent on R We have

sup sup |A|2 <4
(=(R+20)2,0) NI NBpry2c(z;)

and thus
sup sup |A]* <4.
(=R2,0) MINBr(0)

Also kx; = Ajky; < Aj — 0 as j — oo. Moreover by the interior estimates of Theorem 11.2.2

sup sup |VFAIZ < Cy
(=R2,0) MINBRr(0)

for each k € N for all sufficiently large j € N depending on R. We can therefore apply the Arzela-
Ascoli Theorem to take a subsequence of { M7}, which we immediately relabel { M7}, which converges
locally smoothly to a smooth, properly embedded solution of mean curvature flow with Neumann
free boundary conditions, M’ = (M!)s<o, supported on the support surface ¥’. Passing to the limit
for j — oo we get

0,z € M), |A(2,0)]=1 and |A(y,s)]* <4 forallye M., s<0

and ksy = 0. From ks = 0 it follows that ¥’ is a hyperplane and since 0 € 3; for all j € N we also
have 0 € 3.

We now note that {M 7} is a smoothly convergent sequence of subsets of space-time, that

OO R2)* (= 5)6%\ 1000 = 1 locally uniformly, that px;x_; 0,0 — p locally uniformly and that

for any R > 0

O(M?,0,0,s) < = +

N =
S| =

for s € (—R2,0] for sufficiently large j. It therefore follows from Lemma 17.1.1 that

/ pdp <
M!

for all s < 0. Since also M7 — 0 it follows from Proposition 16.2.1 and the monotonicity formula,
since M7 is smooth up to and including time 0 and 0 € ¥/, that

N~
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for all s < 0. It therefore also follows that

1
' =
/M/pu 5

s

for all s <0.

We can therefore, since ¥’ is a hyperplane, reflect M. across ¥’ in the usual way (as opposed
to the tilde reflection function of Definition 11.3.2) to obtain a solution of mean curvature flow
without boundary M*. By then taking M := M!* — z we obtain a mean curvature flow satisfying
0€ M/, |A(0,0)] =1, and |A(y,s)|* <4 for all y € M{ and s <0, and

/ pdps =1
MY

We now consider case 2. In this case we take a subsequence of {M]} which we relabel {M]}
such that

for all s <0.

Jim d(y;,37)|A(y;, 75)| = 0.

We then define \; := |A(y;, ;)| ~! and rescale parabolically around (y;, 7;). Since d(y;, )| A(y;, ;)| —
oo we can assume y; € ¥ for each j € N. Thus

1

for all t € (1; — 1,7;) for each j € N.

Under the parabolic rescaling by a factor of A\; for each j we get a sequence of mean curvature

flows with Neumann free boundary conditions ]\ng = )\]-_1(M i?s by T y;) supported on the support

surface X, := )\]._1(2]._1 —y;) for s € [-\}07/4,0] which is a rescaling with the change of variables
r=XNy+y; and t = /\?s + 7j. Mi = (MSJ) is a smooth, properly embedded solution of mean
curvature flow with Neumann free boundary conditions satisfying

0e M}, |A(0,0))=1and  sup sup |A]? < 4.

—A\252 Vil
(=A202/4,0) MSﬁBkj,laj/z(O)

Further d(0,%;) = A; 'd(y;, %7) = [A(y;, 7;)|d(y;, £7) — oo Also

- 1
O(M7,0,0,s) <1+ -

2 _

We note that since )\;2% =

7? — oo we conclude that for every R > 0 and for all sufficiently large j

sup  sup |A]? <4
(=R2,0) NIinBr

and similarly since d(0,3;) — oo we see that for any R > 0 we have B N X; = () for sufficiently
large j dependent on R. Moreover, by the interior estimates of Theorem 11.2.2 of the thesis

sup sup |VFAP <Oy
(=R?,0) MiNBr
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for each k € N and for all sufficiently large j € N depending on R.

We can therefore apply the Arzela-Ascoli Theorem and take a subsequence of {MJ}, which we
immediately relabel {MSJ }, which converges smoothly to a smooth, properly embedded solution
M’ = (M])s<o of mean curvature flow with Neumann free boundary conditions supported on some
support surface X'.

Passing to the limit for j — co we get
0 € M, |A(0,0)] =1 and |A(y,s)|*> <4

for all y € M. and s < 0. Also ¥’ N Br = 0 for all R > 0 and thus ¥’ = () so that M’ is actually a
mean curvature flow without boundary. We then note that

3 _ (1 4 A(y;, )1

3
o) W:8) = (1= Ajo(y;) " (jy|* — 2ns)) ", ORI e 2n5))
7

+

which, since d(y;, X7)|A(y;, 7;)| — oo, we see converges locally uniformly to 1 on compact sets. Since
also M7 is a smoothly convergent sequence in space-time, for each s <0

~ . 1
@(MJ,O,O,S)Sl—‘r;

for sufficiently large j and clearly p — p we can therefore apply Lemma 17.1.1 to get
/ pdH™ <1
M
for all s < 0. Using then Corollary 4.20 from [7] in place of Proposition 16.2.1 (Noting that we can
use the result as justified in Chapter 12) we see that in the same way as in case 1 it follows that

/ pdH™ =1
M

It follows that in either case we come to a smooth limit mean curvature flow N = (N;):<o with

for all s <0.

0 € N,
[A(0,0)] =1, (17.2)
Ay, 1) < 4 (17.3)
for each y € Ny, t <0 and
/ pdH™ =1 (17.4)
N

for all ¢ < 0.

These conditions are the same as those found in the Local Regularity Theorem of Ecker in [7].
As in [7] it then follows from (17.4) and Huisken’s Monotonicity Formula that N; is a homothetic
solution to mean curvature flow with |H ()| = D+ p(y)/p(y) for each y € N; and each ¢ < 0. It then
follows as in [7], that NV is a cone with vertex at 0. Again, as in [7], it then follows by using (17.3)
as in [7] that the cone is smooth, is thus a plane and therefore satisfies |A(y,t)| = 0 for all y € NV,
and ¢t < 0. This contradiction to (17.2) proves the Lemma. O
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17.2 Local Regularity

We are now able to prove the full local regularity theorem.

Theorem 17.2.1.

Suppose M = (My)icjo,1) is a smooth, properly embedded mean curvature flow with Neumann free
boundary conditions satisfying supported on the support surface > satisfying the conditions of Lemma
17.1.2 at a point xo € . Then xq is a reqular point.

Proof:
From Lemma 17.1.2 we know that under the given conditions there exists ¢g > 0 and p > 0 such
that c

|A(z)2 < =2 (17.5)

=2

for all x € My N B,(xo) and ¢t € (T — p*,T). The interior estimates of Stahl (see [29]) then imply
that for each k € N

IVFA(@)? < —

for all x € M; N B,/2(1+0))(20) and t € (T — p?/4,T) where C is a constant depending only on ¢g
and p.

The estimates (17.5) and (17.6) imply that there exists a p1 < p/2(1 + C) such that M, N B,, (xo)
can be described locally graphically. This graphical representation may be multilayered.

Should there be at least two sheets, say M} and M?, converging to xo at time 7', then by the
estimates (17.5) and (17.6) each sheet can be described locally graphicaly with bounded derivatives
so that we can apply the Arzela-Ascoli Theorem to give smooth limit surfaces M} and M?% sup-
ported on the support surface ¥ 3 zy so that from Proposition 16.1.4 it follows that by denoting
(M N By, (x0))¢eir—p2,1) by M’ for each i = 1,2 we have

. 1
@(MZ,.’L'O,T) - / den == 5
Ty—o M,

and hence
2

O(M,z0,T) > > O(M*, 20, T) = 1.
i=1
Since this contradicts the hypothesis that O(M, z¢,T) < 1/2+¢ < 1 it follows that there is at most
one sheet converging to z.

It thus follows that our local graphical representation of M; N B, (z¢) x (T'— p3,T) is single valued
and since it is a mean curvature flow with Neumann free boundary conditions satisfies

F{(OM™) N By, (w0) = XN By, (o) N M, for all t € [T —pi,T), and

<uvs,v>(Fi(p)) =0 forall (p,t)cdM" x (T —p3,T)

for some choice of unit normal v of M;. We can therefore apply the Arzela-Ascoli Theorem to give
us a limit surface My that is smooth in B, (zo) for some ps < p1/2 satisfying the same curvature
bounds as in (17.5) and (17.6) that is

|A(z, T)|* < = (17.7)



for all z € My N B,,(zo) and for each k € N

C1

[VFA(, T)? < e (17.8)
for all x € My N B, (zo). Also, in passing to the limit we have
Fr(OM™) N B,,(xz0) C ¥ N B,, (x0) N M; and
<wvs,v> (Fr(p)) =0forall pe {pec dM": Fr(p) € Bp,(x0))} (17.9)
and choice of unit normal v of Mr. In particular
<wvs,v>(x9)=0. (17.10)

We now need to show that Fr(OM™) = XN B, (zo) N Mr.

Note that since ¥ satisfies the rolling ball condition there exists some radius p3 < min{ps,1/kx}
such that My is a single continuous surface. (That is we rule out the possibility of some part of
M7 being relatively disconnected to zo in B, (zo) that would then be supported on a part of ¥
relatively disconnected to zg in B, (zo).)

Now, the curvature bounds (17.7) and (17.8) together with (17.10) imply that there exists a ps < p3
such that we can describe M7 N B, (zo) as a subset of a graph over some hyperplane which satisfies
the following conditions: for each « € My N B,,(zo) and 7 € T, My

1

| <Tvs >|< 3 (17.11)
and for each y € ¥ N B, (z0) and each n € )X
1
| <nvs >|> 7 (17.12)

Now, should there exist p € M™ ~ OM™ with Fr(p) € ¥NB,, (zo) then, as Fr is a smooth embedding
Fr(p) ¢ OFr(M™) and thus Tp.)Y = Tr,(p)Mr. Using (17.11) and (17.12) this implies that for
each unit vector 7 € T, ) M7

| <7 >|€1[0,1/2)N(1/2,1] = 0.
This contradiction shows that Fp(M™ ~ dM™)N'Y = () and thus using 17.9
Fr(OM™)N B, (z0) = MrNXNB,,(x9) and <wvs,v> (Fr(p)) =0
for any choice v of unit normal to Frr and all p € {p € OM™ : Fr(p) € B,,(x0)}.

Thus the smooth, orientable n-dimensional manifold with smooth compact boundary M3 := {p €
M™ : Fy (p) € By, (x0)} is a Neumann free boundary conditions initial surface supported on the
support surface .. We can therefore apply Theorem 11.2.1 to deduce the existence of a 77 > 0 for
which there is a unique solution to mean curvature flow with Neumann free boundary conditions
(M{)telto,to+11)- This is a smooth extension of M in a neighbourhood of x¢. Thus, by definition, zo
is a regular point. &
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17.3 Notes

The results presented here are analogous to those presented without boundary in Ecker [7] which in
turn draw from the results of White [32]. However, the proofs here have needed to be significantly
altered from those in Ecker and White to allow for the boundary conditions. The proofs given here

are our own.
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