Chapter 16

(Gaussian Density and the Clearing
Out Lemma

In this chapter we introduce the theory of Gaussian density for mean curvature flow with Neu-
mann free boundary conditions. Gaussian density has been used to great effect by White (see, for
e.g. [32]) and in Ecker [7] in proving regularity theory for the boundaryless case. Since we are
following, conceptually, the same path to regularity as in [7] we need to have a concept of Gaus-
sian density. As with the monotonicities and area bounds, the boundaryless case does not directly
translate. We show however, that we can define analogies that provide sufficiently functional results.

We first define the usual Gaussian density and state its well known existence. We then define
what we will use as Gaussian density in this Thesis and prove its existence. Following this we prove
the technical crux of the theory, a characterisation of the Gaussian density for times previous to the
first singularity time. To prove this technical proposition we will need the upper area ratio results.
We follow the characterisation result with further technical lemmas leading up to the central theorem
of this chapter; the well known Clearing Out Lemma. We will then be ready to consider regularity
theory directly, which we do in the following two chapters.

16.1 Gaussian Density

The usual Gaussian density is the parabolic limit of the integral of the backward heat kernel. The
increasing concentration over time of the backward heat kernel around its center point shows that
the Gaussian density is somewhat like a time dependent asymptote of the Lebesgue density around
a point. Its usefulness is dependent on the monotonicity with respect to the variable in which we
take the limit. The usual Gaussian density for mean curvature flows is defined formally below.

Definition 16.1.1.

Let M = (My)ejo,ry C U x [0,T) be a smooth, properly embedded solution of mean curvature flow.
Let xo € U and to € (0,T) for U C R, Then the usual Gaussian density at (xo,to), denoted by
0% (M, xg,tg) is defined by

0" (M, xg, tp) := lim pdH"
t—to M,

With respect to the usual Gaussian density for mean curvature flows without boundary we have the
following result. The existence of the usual Gaussian density is guaranteed by Huisken’s monotonicity

171



formula. We state this along with the interior value of the Gaussian density formally in the following
proposition.

Proposition 16.1.1.
Let M = (My)iep,, 7y C U x [0,T) be a smooth properly embedded solution of mean curvature flow.
Then for all zo € R"* and to € (0,7 the usual Gaussian density exists.

Moreover, should xo € My, for some time to € (t1,T) then
@u(/\/l, o, to) =1.

In analogy to the usual Gaussian density we define a Gaussian density for mean curvature flow
with Neumann free boundary conditions that we will call simply the Gaussian density. Due to its
necessity in the local regularity results we define the Gaussian Density in this case by way of the
approximating Gaussian density ratio.

Definition 16.1.2.
Let M = (My)ejo,1) be a smooth, properly embedded mean curvature flow with Neumann free bound-

ary conditions on the support surface Y. Then for any vo € R"*! ty € (0,T] and o € (0,73/2/2)
the Gaussian density ratio at time t € (xo,to) is defined by

s

e} 26
G(Ma Zo, to, t) — eURE Ty / 90(107150)0'77(10,to)pnz,xg,todﬂt-
M,

The Gaussian density at (xo,to) is then defined by

G(va()ato) = th/‘ntl @(M,Io,to,t).

Remark: We note that the appearance of the §(€ (1/3,2/5] does not effect the Gaussian density
ratio or Gaussian density itself. It is only present since it is necessary in the monotonicity formulas
on which the existence of the Gaussian density is dependent. We may take it that for the remainder
of the thesis ¢ is an arbitrary but fixed element of (1/3,2/5].

As in the case of the usual Gaussian density, the existence of the Gaussian density is ensured
by the monotonicity formula associated to the integral defining the density.

Proposition 16.1.2.

Let M = (My)cjo,1) be a smooth, properly embedded mean curvature flow with Neumann free bound-
ary conditions on the support surface X. Then for any xo € ¥ and to € (0,T] the Gaussian density
at (zo,to) exists.

Proof:

By the monotonicity formula in Theorem 14.2.1 we see that

266
e~ o ‘P(zoﬂfo)on(mo,to)pnzyroytodﬂt
M,

is decreasing in time for ¢t < 7. It is also clear that the same expression is non-negative. It follows
that the limit ¢ " to exists for any ¢y € (0,7). o

Before proving the characterisation of Gaussian density we need a standard result concerning blow
up limit surfaces.
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Proposition 16.1.3.

Let M = (My)iejo,1) be a smooth, properly embedded solution of mean curvature flow (with or
without boundary) and vo € My, for some to € (0,7). Then the flow (M;)icjo4,) 5 smooth up to
and including to and therefore has a limiting flow under parabolic rescaling (M.). In this case, for
all s <0, M/ also satisfies

TzoMto Zo g 8Mt0

! N H (Io,tg),)\ —
M = Jim M, {H N Ty My, w0 € OM,,

ANO
where Ty, My, is the tangent plane to M, at xo and IINT,, My, is the half tangent plane corresponding
to the smooth M, at xg € OMy,. (That is, 11 is the n + 1 dimensional half space with boundary
Ty, X for which My, NTIN By.(zo) # 0 for all v > 0.)

Remark: The proof exploits only the uniformly bounded second fundamental form over the entirety
of the flow (My)c(o,4,) S0 that whether or not M has a boundary does not affect the result at all.

We now present the characterisation of Gaussian density central to our discussion of Gaussian
density in general. It says that the value of the Gaussian density for ¢y € [0,T) can be written as
the integral of the usual backward heat kernel over the limiting blowup flow (M}).

Proposition 16.1.4.

Let M = (My);c0,1) be a smooth properly embedded solution to mean curvature flow with Neumann
free boundary conditions on the support surface . Let M reach xo € X at the time to € [0,T).
Then for any s <0 and any ¢ € (1/3,2/5]

O(M.z0.t0) = [ s,
M
Proof:
In the definition of Gaussian density we have implicitly chosen o € (0,79/2). Select and fix any
s < 0. We note firstly that
lim eC(-NREs” — 1
A—0
so that should
li SN 16.1
ALY Jagteortors PoTlpdifLs (16.1)

be finite then

lim (R’ 5, npdfis = li 5o pdj
lim e oo PP = i [ P

and should (16.1) not be finite, then the entire limit is infinite and the proof is complete. We there-
fore concentrate firstly on this quantity and assume the finiteness of (16.1).

We note that since M{™"* — M ! smoothly, for each function ¢ € CL(R"T!, R)

li [hs = .

lim R Pdjis u pdjus
We note also that for Ry = (10/2)"/? < 1/2kyx (since § € (1/3,2/5]) the unscaled flow M =
(My)iejo,) exists on Bg,(xq) for t € [0,T). We then note that for all ¢ € [ty — R}/4n,to) and =
satisfying |z — x| > Ry, rz, > |z — x0|* > RZ and thus

ray — 20(to — ) \° R2 — 2nR2/4n\°
Plentayo (1) = (1 - OT) =\'"Tmp ), 7"

+ +
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s0 that spt ©(z,.t0).0(-,t) C Br,(wo) for each ¢ € [to — R§/4n,to) and thus, by (2) in Proposition
14.1.2 8Dt P(59,40),0 (- ) C Br-15(0) for all s € [\"2(R§/4n),0).

We also note that for any A > 0, M1 i 3 mean curvature flow with Neumann free boundary

conditions on By-1x,(0) x [-T/A?,0) and that k5, = \kx so that

(3/160n)'/°
V2 kg
Since (3/160n)/%/(v/2)ky) is the (15/2)'/?’ of the rescaled flow we can apply Corollary 15.2.1 to

show that there exists a constant depending only on n, kx and xo such that for all R € [0, \"'Ry)
and 7 € [-A"2R%/4n,0) C [-R?,0)

A TRy < AN (10/2)Y?% =

H™ (Mot} A N BR(0)) < C(n, 0, kg )R™.

In particular, we can choose a s such that (\?4n)~'R3 > |s| for all A < s and thus for each such
A we have spt P4, .40),0 C Br-1r,(0) and that for all R € (0, A\"'Ry)

H™ (M=ot} X 1 BR(0)) < C(n, 0, k) R™.

We now choose an R > 1 and take any A < Ao where Ay < A, is chosen such that Aj 'Ry > R. We
now define (why we make this definition will be become apparent shortly)

Q := integer part(In(A\"'Ry — R)) + 1.

Then, using Proposition 14.1.2 (1), we calculate

I = 5o NPrs AL
/Ms(xo’m)’owR(O) PollPrslhs

Sup Yo Sup 1) / Prsdfis
(MO 2spt 5, )~ BR (0)

224 3
< (1+ﬂ) 256/ i dils
g (Mézo,to),AmBA71R0(0))NBR(0)

C(n,s, o) /
(=8)"/2 Juroto 2 g, Ly (0)~Br(0)

IN

2
"y

e 8(1+16(—(Arx)2s)%s dﬂs (y)

< C(n,s,0) / e \cl,ué
]ZZ: (MEOFOXAB, Ly (0)N(B it (0)~Bp; (0))
_ R2%J
= n S, O' 6 8[s| / 1d/jl/5
(MEOCOIAAB, Ly (0)N(B g1 (0)~By; (0))
< Cns.0) Z (MEOA A By (0)) | +H (M 0 By g, (0))
Q . Rr2J
< C(n,S,U)C(n,Hg,xo)ZR”U“)e_W
j=1

= [f(R)
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where (as one can directly calculate) limg—.o f(R) = 0. Although for any given A we cannot let
R — oo this is not necessary since for any R € R the above calculation holds, independently of A
provided A is small enough.

Note that the @) gives an appropriate number of terms in the summation since after j = Q
(Bri+1(0) ~ Bgs(0)) N Bx-1g,(0) =0,

and needed as we cannot apply Corollary 15.2.1 for R > A\ 'R,.

We also need an estimate on the ‘outer integral’ for the limit surface. To do this we apply Propo-
sition 16.1.3. From Proposition 16.1.3 we know that M/ is a subset of a hyperplane through the
origin. It then follows from standard integration theory (or direct calculation) that there exists, for
each € > 0 a radius R° such that for all R > R°

/ pdu, < e.
M/~Br(0)

We now take any small € > 0 and an R° < R. € R so that (for sufficiently small X, say A < Ag.)

[ o it <=
M0 L BR_(0)

noting again that ¢, — 1,7 — 1 and p;, — p locally uniformly as A \, 0. We can thus choose a A,
so that for all A\ < A,

Gollprsdiis < £, / oyl <z,
M

/ M00rA B (0) /~Br. (0)

|$o —1|,[1 —1| <& on Bsg., and |pey — p| < min{e,ep(y)} on Bap,
for any |y| = 2R..

We now also take any test function ¢ € CL(R",R) such that ¢» = 1 on Bg. and ¢ = 0 out-
side of Ba,_.. Then

/ (0. t0)a Ypdjis < 2/ o Bolipasdits < 2¢  and
M0"0 ~ B, (0) MOt B R (0)

R
M!~Br, M~Br,

Since to < T, the flow (M})sc[o,4,) is smooth so that we can use Theorem 11.4.2 to calculate

=l 5o 1 ress A
J ALY Jygteotorn £ 1P its

= 1 5 Abedil- S Ap.dil
= </M5(IU’tU)’)‘~BR (0) PPl /M?“’t““nBR (0) Foliprs Ms)
= O0(e) + li dj XTI
(E) + )\li% </]Ws(m0't0)’>\NBRE (0) 1/1/) fs T /Ms(mo,to),kmBRE 0) PollPrs Ns)

= 1. dAS 1 dAS
O(e) + lim </]Ms(m°’t0)’>‘~BRE(O) bpdjis + ( Jro(s))/M;%vfoMnBRg(O) Ypdin )
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= 0()+(1+0()) lim / YpdH" | 0 000

— 00 +(1+0) / s

= 0(e)+ (1+0(e) (/M’OB - pdH"™ + O(g) — O(e) + /M,NB - den>

= O(e) + / pdH™,
M

/
s

Since this is true for any ¢ > 0 we have

li o Nrs dfls = dH™.
Jim, o PolPrsdfts /Mép H

Thus

t—>t0

O(M,xp,tp) = lim 60”22673/ PoNPrs Afbt
My

. Cl—\)r25 5% A .
= lim €A Bo s dfls
A—0 ]MS(IO,’LU)A

. _ 25 .6 ., N N
= lim ¢V Jim GoNPrgdfts
A—0 A—0 Ms(m()wto))\

= lim 56N Prs, Afbs
X=0 [ pr(@0.t0)x PollPrsCiis

= / pdH™.
Mg
¢

In proving the Clearing Out Lemma we will need an absolute lower bound on the Gaussian density
for points in the flow. The following three technical results are leading up to this result. Following
the lower bound on Gaussian density we can then prove the Clearing out Lemma. The first of these
three results can be seen as corollaries of Proposition 16.1.4.

Corollary 16.1.1.

Let M = (My)cjo,1) be a smooth, properly embedded mean curvature flow with Neumann free bound-
ary conditions on the support surface X. Then O(M,xo,to) exists for each ty € (0,T] and zg € ¥

independently of the o € (0,7‘&/2/2) chosen for v, and for each t € [0, 1)

1)

[J
G(Ma Zo, tO) < QCKZE o / cpgnplizdﬂt-
M,

Proof:
The existence follows directly from Proposition 16.1.2. The fact that it is independent of the choice
of o follows from Proposition 16.1.4. From Theorem 14.2.1 we know that the quantity

25 6

eCKZZ Tt[) / (po_np’i): dut
My

is reducing in ¢ so that

5.5 5.6
60“22 Tto / PollPrs dﬂt > lim GCKZE o / PollPrs dﬂt = ®(M7 20, to).
M, t, 'to My
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Corollary 16.1.2.
Let M = (My)cjo,1) be a smooth, properly embedded mean curvature flow with Neumann free bound-
ary conditions on the support surface . Then for any to € (0,T) and xg € OM;,

1
@(M, aio,to) = 5

Proof:
For any ty < T, the limiting blow up flow (M) exists. Since the surface M;, is a smooth manifold
with smooth boundary we have for all s < 0

M = R™ zg € Mt[) ~ 8Mt0
sT I R*NII xo € OMy,,

where II is an n-dimensional halfspace with boundary intersecting 0, it follows from Proposition
16.1.4 and standard integration results that if o € 9My,

1 1
O(M, xg, to) :/ pdp, = / pdH" = —/ pdH" = =.
R I 2 Jgn 2

M

&

We now wish to show the upper semi continuity of the Gaussian density from which, together
with Corollaries 16.1.1 and 16.1.2 will provide the necessary lower bound to prove the Clearing out
Lemma. To prove the upper semi continuity of the Gaussian Density we will need to apply the
following standard measure theoretic result.

Theorem 16.1.1. (Lebesgue Dominated Convergence Theorem)
Let g be a H"-integrable function on R™! and let f and the sequence of functions {f;}3>, be H"
measurable on R"*1. Suppose |fr| < g and fr — f H"™ almost everywhere as k — co. Then

khm /|f]€ - f|dHn =0.

We can now prove the upper semi continuity of the Gaussian density.

Proposition 16.1.5.
Let M = (My)cjo,1) be a smooth, properly embedded mean curvature flow with Neumann free bound-
ary conditions on support surface ¥ and let (z;,t;) be a sequence in ¥ x (to—7o,to) satisfying x; — xo
and tj / to <T. Then

limsup O(M, z;,t;) < O(M, zg, to).

J—00

Proof:
We take a fixed but arbitrary ¢ € ({9 — 79, to) and take jo € N so that for all j > jo, t; > ¢. Then, for
these j, we have from the Monotonicity Formula, Theorem 14.2.1 applied at the space-time point
(xj ) tj)

256 25 6

eCrE T / (PoNprs )jdps > Tim eCF=T / (PoNprs)idue = O(M, xj,t5),
M, £/t M,
where Tj (t) =1- tj and ((ponpmz )j (xa t) = (p(zj,tj),an(zj,tj)(xv t)pm:,mj,tj (ma t)'

We then want to take the limiting supremum with respect to j of the far left and far right terms.
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On the left hand side we note that we have
limsup eCF8 ™ = ¢ORF (t=t0) < o0,
j—oo
From Proposition 11.3.6, we have 1, ¢,)(2,t)prs z;.¢; (2, 1) < 256(4m(t — tjo))_”/stpm(x_ for

o tio)

each j > jo. Additionally we have ¢, ;.y, < (1 —2n(t —t;,)o~?)? for each j > jo so that

256(1 — 2n(t — tj,)o~?)3
(‘Panpnz )] (1"5t) S (47T(t - tjo))n/Q Xsptn(mm,tm)

for each j < jp, noting also that

256(1 — 2n(t —tj, )0 2)3
s dpe < 00,
/Mt Ar(t — t))n/2  XoPtGaq ) TS OO

and that (©s1pky )i — Po,zo,toNwo,to)Prs,zoto = (PoNPrs ), it follows from the Lebesgue Dominated
Convergence Theorem that
j—o0 j—o0

lim sup / (Ponprs)jdpe = / lim sup(@onprs ) jdie = / (PoNPrs )todie < 00.
M, M M,

We can therefore separate the two multiplying factors of the left limiting supremum into the product
of two limiting suprema as

lim sup e*¥ ™ lim sup / (PonPrs ) jdpu
M,

Jj—oo Jj—oo

. 26,6
lim sup e / (onprs)jdpu
M,

j—o0
CrZ (t—to)
= e’ (PoMPrs )todptt-
M

Thus
60”226(t_t°)/ (PoNPrs; )todite > limsup O(M, x;, ;).
M, ‘7%00

Since this is true for any ¢ € (tg — 70,t0) we have

O(M, 20, t0) = lim ¥ (=10) / (Ponprs)todpe > limsup O(M, z;, ;).
M,

o Jj—o0

16.2 The Clearing Out Lemma

The Clearing Out Lemma is important in regularity theory in deciding when points are not in the
limiting surface where the first singularity occurs at all. It gives a lower ratio bound below which
we know that there is not enough of the surface in the tested ball to retain a presence there. That
is, if the area ratio is too low, we know that a short time later there is no surface at all in a ball half
the size. The first version, applicable to mean curvature flows without boundary is due to Brakke
[5]. The proof however, has been simplified by the emergence of Gaussian density. A proof using
Gaussian density is given in Ecker [7]. Our proof, adjusted for Neumann free boundary conditions
follows the ideas of Ecker.

We first combine the results of the previous section to provide an absolute lower bound for Gaussian
density for points reached by the flow at time ¢y < 7.
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Proposition 16.2.1.

Let M = (My)cjo,1) be a smooth, properly embedded mean curvature flow with Neumann free bound-
ary conditions on the support surface 3 satisfying the boundary approaches boundary assumption,
let to € (0,T] and suppose that M reaches xo € X at time ty. Then

G(Ma antO) >

N~

Proof:

If ty < T then this follows immediately from Corollary 16.1.2. Otherwise, since M reaches z( at
time ¢y, then from the boundary approaches boundary assumption OM reaches xo at time ¢y and
thus there exists a sequence (z;,t;)jen with t; ' to and x; € OM;, for each j € N. From Corollary
16.1.2 it then follows that

G(Maxj’tj) >

N~

for each j € N. From Proposition 16.1.5 we then have

O(M, zg,tg) > limsup O(M, z;,t;) >

Jj—oo

N | —

With this result we are now able to prove the Clearing Out Lemma.

Lemma 16.2.1. (Clearing Out Lemma)

Let M = (My)cjo,1) be a smooth, properly embedded mean curvature flow with Neumann free bound-
ary conditions supported on the support surface X satisfying the boundary approaches boundary as-
sumption. Let po < (10/2)"/%. If M reaches xo € ¥ at time to for some to € (0,T) then for any
B € (0,1/2n) there exists 0 = 0(n, 5) € (0,1/2) such that for all p € (0, po)

p"H" (M, —pgp2 N By(x0)) > 0
Equivalently, if for some p € (0,p0) and 3 € (0,1/2n)
p T H (M, 5,2 0 By (o)) < 0
then there exists € > 0 such that
M;N B.(xo) =0
for allt € (to — €2,ty). That is M does not reach xq at time to.

Proof:

Since M; reaches xy € ¥ at time ¢y we know from Corollary 16.1.1 and Proposition 16.2.1 that the
inequality

25,6

< eCrsT / PonPres At
M,

|~

holds for all t € (ty—70,t0) and o € (0,72/%/2). We can thus, for po < (70/2)!/2, note that the same

inequality holds for all o € (0,p0/v/2) and t € (to — 02, tp). Take o < po(1+2n)~/2, a € (0,1) and
t = tp — ac?. In this case we note that from Proposition 11.3.6 n < 256, that we can calculate

v + 20(tg — ac? — 1o\ ° 2nao?\’
<p,,:(1—r0+ n(o2 ao 0) §(1+ no;a) — (14 2na)
+ g

g
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and
™o
1 8(16(kE )0 +1)7 < 1

dm(ty — to + ao?)n/2 ~ (4ra)n/? 7

—n

Prs =

We now note that for |z — x| > /1 — 2nao, ry, > (1 + 2na)o? so that

| Too 2n(tg — (to — ac?)) < 1 (1+ 2na)o? — 2nac?
a o? = o?
= O’
and thus that sptyo, C B g75,q,- We therefore obtain
1 CKJQ(SG‘JG_‘Z(S
5 S et SUp Qo SUP 1) SUD Prey, dfit
M 2Nsptps

tog—ao
2540470 1+ 2710&)325607” /
(47'('0[)”/2 Mt,o—aaz ﬁBmd

2540470 (1 + 2na)3256
(4ma)n/?

S eCkQ 1dHn

eCka

Uﬁan (Mto—a0'2 N B\/ 1+2na0)'

This implies

25 8§ 26 (47Toz)”/2

—Cr5ya’c n

Hn(Mto—a02 n B\/mg) >e mO’ .
Setting p = /1 + 2nac and ac? = B3p? (which implies 3 € (0,1/2n)), we then have

(47Tﬁ)n/2pno.—n
512(1 4 2nBp2c—2)3
ontnt Ty

n

H"(Myy—pgp2 N Bp(xo) > o= Cr3 (Bp%)°

>
= 512(1 + 2nfB)3
> o= C(3/160n)* (47Tﬁ)n/2pn
= 512(1 + 2nB)
=t 0(n,B)p".
It is then easily checked that 6(n, 3) € (0,1/2). %

Remark: We note that the constant 0(n,3) = 6_0(3/16071)2% can be left as a larger

constant also depending on §. That is, the clearing out lemma also holds for the constant

(4776)"/2

512(1 + 2n0)° (16.2)

0= a(na ﬁ; 6) = 6_066(3/16071)2

16.3 Notes

Gaussian density is a standard tool in the study of mean curvature flows, used to great effect by
White (see, for e.g. [32]) and Ilmanen (see for e.g. [17]) it has also been used by Ecker [7] and
Buckland [6]. The usual Gaussian density, Definition 16.1.1, in particular can be found in Ecker
[7]. Proposition 16.1.2 is our own. Proposition 16.1.3 can be found with further discussion in Ecker
[7]. Proposition 16.1.4 was mentioned in Buckland [6] though the proof is our own. The Neumann
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free boundary versions of Corollaries 16.1.1 and 16.1.2, as well as Propositions 16.1.5 and 16.2.1 are
our own though they follow closely the boundaryless versions which can be found in Ecker [7]. The
Lebesgue Dominated Convergence Theorem, originally due to Lebesgue [21] is a standard measure
theoretic result. A good discussion can be found in Bartle [4] and a good background in the general
measure theory required can be found in Bartle [4], Evans and Gariepy [10] or Rudin [24]. The
first version of the Clearing out Lemma was due to Brakke [5], a proof using Gaussian density can
be found in Ecker [7]. We follow the proof in Ecker [7], though the adjustments for Neumann free
boundary conditions are our own.
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