Chapter 15

Area and Ratio Estimates

Global regularity is about the measure of the singularity set and thus it makes sense that we wish to
develop area estimates. In particular it will come in useful as one of the problems that ‘could have’
arisen is that the measure in a ball grows uncontrollably quickly thus accumulating very rapidly
in a small space forcing a collapse of the surface’s structure. To show that this can’t happen we
need area bounds. Further, ratio bounds are necessary to establish the characterisation of Gaussian
density, a key tool in our research, which we consider in the next chapter. In this chapter we provide
those area and area ratio bounds that are necessary for the main results.

We begin with both an area bound and a boundary area bound, proving first properties of yet
another test function of the same form as ¢, +,),-, and then directly attacking the area bounds.
We then prove area ratio bounds ending with a result of the form

Hn(Mt n BR/C(mo)) < C(n, Hz)Rn.

15.1 Surface and Boundary Area Estimates
We start with a Corollary of Proposition 11.3.1 that we will use in conjunction with the new test
function in proving the area bounds.

Corollary 15.1.1.

Let M = (My)icjo,) be a smooth, properly embedded solution of mean curvature flow with Neuwmann
free-boundary conditions and U an open subset of R™! containing M. Then, for any function
¢:U x [0,T) — R which satisfies ¢ € C3(U) and %2 € C(U) we have

d d
- Pdpy = / ((— - AMt) ¢— |H|2¢) dpu +/ < Do, vs > doy.
dt Jpm, M, \\dt oM,

Furthermore, if ¢ satisfies (4 — Apg, )¢ < 0 then

d
— ¢dpy < —/ |H |?¢dp +/ < Do, vs > doy.
M, OM;y

dt Jam,
Proof:
From (11.5) we have with f = ¢ and g =1
d - d
- Gdpy = — o|H [P dps +/ <— - AMt) Gdpt
dt Jar, M, M, \dt
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+/ < Do, vy > oy,
OM;

which gives the first part of the result. In the case (% — AMt) ¢ < 0 the second part follows
trivially. ¢

The general form of ¢ in which we are presently interested in association with the above corollary
is a generalised class of functions based on the localisation function ¢, 1)«

Definition 15.1.1.
Let ¥ be a Neumann free boundary support surface, let ¢,co € R and R > 0. We define the class of
boundary localisation functions ¢r .., : R""! x R — R by

Ty + c(t — 02))4
+

¢R,c,cz (:Ea t) = (1 - R2

Remark: We suppress mention of 3 in the definition of ¢ . ., since its use will always be in con-
junction with an understood previously fixed support surface.

We need to show some simple properties of the boundary localisation functions before proving
the first area bound. To do this we state the following general result for mean curvature flows.

Proposition 15.1.1.
Let M; = F(M™,t) be a family of hypersurfaces evolving by mean curvature flow and let f = f(x,t)
for x = F(p,t), p € M"™. Then

d 0

——A == —divy,D ) f.

(o) = (G- oowen)
Proposition 15.1.2.

Let 3 be a Neumann free boundary support surface. Then, for ¢r .., as defined in Definition 15.1.1
for any ¢ € R we have

d 0 .
<E - AMt> PRiccs < PRococo <§ - detD) z,

where z(x,t) = ry, +c(t — c2) and < DPR c.co, vy >=0 on .

Proof:
Since ¢r.c.c,(2,t) = GRocer(2(2,1)) and ¢ . ., (2(x, 1)) = 12R™*(1 — ZR™?)3 it follows, using the
chain rule, that

d d
(E - A]\/It) ¢R70702 — EQﬁR,C,(JZ - AMﬁQﬁR,C,(JZ
_ / d / A // M, |2
- ¢R,C,CQ EZ - (bR,c,cQ M % — (bR,c,cQ'v Z|

d
DRoc.cn <E - AMt> z,

where ¢/R,C,C2 is the first derivative of ¢r .., with respect to z. Applying Proposition 15.1.1 to

(&4 — Aw,) = gives

IN

d 0 )
(E — AM{) ¢R,c,cz = (blR,c,cz (a — d’L’UMtD) z
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as required.

For the second property in the statement of the proposition we calculate, using Proposition 11.3.4,

3/4
¢R,c,cz

RQ

< DQSR,C,CQv Uy >= — < DT’IU, 123 >= 0

%

A particular naturally self selecting member of the class of boundary localisation functions will be
used to prove our fundamental area bound.

Theorem 15.1.1.

Let M = (My)icjo,) be a smooth, properly embedded solution of mean curvature flow with Neuwmann

free boundary conditions supported on the support surface ¥ in By, (xo) for some xo € X, for all
€1[0,T) D [T —d3,T) where dy < R/(3v/128n) and R < 3/(2kx). Then for any to € [t1 + d3,T],

p € (0,do] we have for all t € [tg — p?,to) and i,j,k € {1,2}

0
HY (M0 B, 55, + / / |H|*dpsds
tofpz M me/:}\/T)z

< H" (Mt (Bp/Sm,l U Bp/S\/4_O,2))
/ / |H |*dpsds
to M.N(B, 515198, 5 /55.2)
< 16H™(Mig—p2 N (Bys31 U Byy3.2))
< 16Hn(MtU,p2 n Bp,k)

where Br1 = {x € R""! : |z — 29| < R} and Bry = {x e R"*1: |x/—\_;0| < R}.

Proof:
Let ¢,/3,¢,c, be the test function as defined above with c2 = ¢y and c yet to be chosen. By Proposition
11.3.4 and Proposition 15.1.1 we see (with z(x,t) := 7y, + c(t — to)) that

d d
%/ ¢p/3,c,chMt = / <dt AJ\/ft) ¢p/3,c,chMt +/ < D¢p/3,c,cy vy > doy
M, OM,

t

d
- /M Po/3,6.02 <%ZdetDz) ~ Bzl V2 = [HIP G300, dpte

d .
S /M ¢;/3,c,02 <%Z - d“}I\/[tDZ) - |H|2¢p/370702d,u't

Then, since ¢’ —(4/(p/3)*)(1 —2/(p/3)*)%, 9z/0t = ¢ and using Proposition 11.3.4 we have

p/3,c,co =
0y (62 div Dz) 1 (1 - )3 (diva, Dz — )
ces \ 77 — divn, = s |1 - e M, Dz —

o ot (p/3)? (p/3)%) 4
< 4 (1 - )3 (|divpg, Dr — 4n| + 4n — ¢)
< - ivar, Dr — 4n| +4n — ¢

(p/3)? (p/3)%) 4
4 z 3 20nk|r — xo|  4nk?|x — xo]?

< 1-— 4 —
< g (), (e B )

161



Moreover, since for any ¢t > tg — p?

3
z
ot (1- ) = (0 € R i bt < (3} € o R fo— o] < p3)
W2 ),

with p < R < 3/2k and 29 € ¥ (for which d(z) < |z — 2¢|) we can therefore firstly estimate
de < |z — x|l < (p/3)k < (R/3)x < (3/6Kk)k = 1/2 so that 1 —dk > 1 —1/2 = 1/2 thus
(1 —dr)~! <2 and thusly also

0z 4
’ oz . <
Orfs e (f% detDz) = (p/3)? < p/3

20n/£|o: —mo|  4nk?|z — x0)?
+ —c
1—dk (1 —dr)?

< (p/43)2 ( p/3 ) 4n+40nm\m—xo|+32n,€ |$—$o|2—c)
- (/)/43)2 ( p/3 ) (4n + 40n(2R/3) "' p + 32n(20/3)*(p/3)?
+
4 3
= _(p/3)2 < )+ 32n — C

Therefore, setting ¢ = 32n in ¢, /3 . ., gives us

d 0z )
G | o< [ o (G - divw,Dz) - ol Pl < - / ol [2dp
dt Jp, M; ot M;

where

Two + 32n(t — to)
= Ppi3een = (1 -
ol w32 ),
Integrating this equation in time and adding lim; -, |’ v, @dpe (where we take the limit for the case
to = T since it is not necessarily clear what || Ay PART is) yields

to
/ O H|2dpuedt + lim / o < / b+ lim | odu
to—p? J M t=to Ju, to—p2 dS My t=to J o,
= —|lim dd g —/ dpiyy—p2 | + lim odps
t—to M, ]\/It07p2 t—to M,

where since ¢ < 1 and

sptp(-,0) = {z € R"' v, < (p/3)°} C (B,31UB,32) C By

for i € {1,2} we have

/ Pdpig—p2 < / Ldpiy,—pp < H" (M2 N (Bp/371 U BP/372)) < H"(My,—p2 N Bpi)
M, M,

to—p2 + 7p2ﬁspt¢

for i € {1,2}. For each r,, < p?/36 and t € [ty — p?,to] we have

e (- o) (5.
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So that since, applying Proposition 11.3.5 to give us |z/—\g0| < 3lz — o, |z — x0] < 3|:c/:/x0| and

{x:ry, < p*/36} {2 |o —z0? + |z — z0|* < p?/36}

> {a: 10min{|z — 20|?, |z — z0|?} < p2/36}

= {z:|z—20]? < p%/9-40}U{x : |z — 20| < p?/9- 40}
= Bvaoa Y B,y

2 Bp/?n/@,i

for each i € {1,2}, we have

1 n 1 n
y ¢dpe 2 T H (M0 (B, 5501 YU Byavan)) 2 1M (Me N By a0,

for each i € {1,2} and

t[) 1 t()
/ S| H | dpedt > — / |H|?dpydt
to—p2 J M, 16 to—p? th(Bp/S\/m,IUBp/S\/E,Q)
1 [t
16 tgfpz thBp/S\/m,i

for each i € {1,2} and all t < p*/128n. Multiplying through by 16 we now have for each i,j € {1, 2}
and each ¢ € [ty — p?, to)

to
H (M Bysm5,;) + / 2/ o3[ H [ dpedt
to—p* JMiNB, 5 /15 5
< H"(M:n (Bp/?)\/@,l U Bp/3\/E,2))

to
+/ / Gpy3,c | H > dpdt
to—p? S MB35 /55,,YB, /3 /10,2)

16Hn(Mt0,p2 ﬂ (Bp/311 U Bp/3,2))
16H™(My,_,2 N B, ;).

>

&

In the proof of Global regularity we will need to apply Theorem 15.1.1 finitely many times repeatedly.
In the following Corollary we make the appropriate multiple applications to give a bound on balls
that now have a relationship between their radius and the total time 7. This relationship is made
explicable through the function defined below.

Definition 15.1.2.

Let M = (My)cjo,1) be a smooth, properly embedded mean curvature flow with Neumann free bound-
ary conditions. We define Cr : RT™ — R by

T

=%

We now show the area bound following from multiple applications of Theorem 15.1.1.

Corollary 15.1.2.

Let (My)icjo,1) be a smooth, properly embedded solution of mean curvature flow with Neumann free
boundary conditions in Br(xg), for all t € [0,T) with R < (3kx\/128n)~1. Then for all t € [0,T)

Hn(BR/(roT(R))(.ro) n Mt) < 16CT(R)HH(BR($O) n MO).

Cr(R):
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Proof:
We note that for t; = R/2, t; € [0, R/2kxv/128n) so that Theorem 15.1.1 applies for all ¢ € [0, 2¢;)
and thus for all ¢ € [0, 2t;)

Hn(Mt n BR/QO(:LU)) S 16Hn(M0 N BST\/(;ER(ZL'())) S IGHH(MO N BR(JC()))

In particular this holds for ¢t = ¢;. If T' < t; we are finished. Otherwise, by relabelling the flow as
M} := M,;_, then (M} ),c[o,7—1,) satisfies the requirements to apply Theorem 15.1.1 so that for all
t € [0,2t1), we have, identically to the above,

H™ (M, N BRyao2 (20)) < 16H"™ (Mg N Bpyao(wo))-
Relabelling back to the original gives
H"™(M; N Bryao2 (o)) < 16H™(My, N Bryao(20)) < 16°H"™ (Mo N Br(xo))
for all ¢ € [t1,3t1). In particular this holds for ¢ = 2¢;. Repeating this step inductively gives
H"™ (M 0 Bryaor (20)) < 16H™ (M(p—1)t, N Bryaor-1(20)) < ... < 16"H" (Mo N Br(o))
whenever t € [(p — 1)t1,pt1), 1 < p < Cr(R).

Now, for any ¢ € [0,T) we are able to select a p; € {1,...,Cpr(R)} such that ¢t € [(ps — 1)t1, pet1).
Thus, since By z0cr ) (¥0) C Bry2or: (20) for such a p;

Hn(Mt n BR/(QOCT(R))(IO)) Hn(Mt n BR/QOp (1'0))
16pHn(MO M BR(,Z‘()))

16T H™ (Mo N Br(20)).

INIA A

%

We will, in the next section, further apply Theorem 15.1.1 to get upper area ratio bounds. We
continue, for now by looking at boundary area. In order to examine the boundary area we find it
necessary to apply the well known Divergence Theorem, which we state below.

Theorem 15.1.2.
Let M be a smooth, orientable hypersurface with boundary embedded in R"*'. Then for any X €
CL(M,R™) we have

/ divp XdH™ = —/ < X,HT > dH" +/ < X,vop > dH" (15.1)
M M oM

where H denotes the mean curvature vector of M and vops is the outer unit conormal to OM.

We apply the Divergence Theorem to bound the boundary measure in terms of the area and the
integral of the mean curvature over the surface in some slightly larger ball than that in which we
are estimating the boundary area.

Lemma 15.1.1.

Let M = (My)ejo,1) be a smooth, properly embedded mean curvature flow with Neumann free bound-
ary conditions supported on the support surface 3 and let Ry = ﬁ Then for any t € [0,7T),
R € [0, Rq] and o € R* !

ﬂBR(CEo)

H"~1 (M, N Brya(x0)) < Cln, k) l / |Hldpe +H" (Mq 1 Br(ao))
M
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Proof:
Note that if 2 & Xy /s, then Bg(zo) NOM; C Br(xo) NX = 0, and thus H"~!(Bg(x¢) N M) = 0.
We can therefore assume that zo € X1 /2,, and thus that Br(wo) C Xy /., on which d(-, %) is well
defined.

Choose now any R < R; and define C; = (Rkrx)~! We define two test functions that we will
superimpose on one another in our composition of the vector field that we will choose to apply the
Divergence Theorem to. Choose firstly 1 € Cf(R™) such that x5, ,(20) < #1 < XBr(x,) and
|D¢1| < 2. Then define ¢ € CL(R"H!) by

pa(z) = (1 — Crdrs)?.
We consider now the vector field X € CL(R™"T!,R"™!) defined by
X = ¢192Dd.
We note firstly that [¢1¢2| < 1 and that, on Bg/2(z0) C Bi/20,ky (70)
|X| = |p1¢2Dd| = |(1 — c1Rex)3 | > |(1 — c1|z — zolrs)?| > 272,
We observe that | X| = |¢1]|¢2||Dd| < 1 and that
< X,vom >= ¢p1¢2 < Dd,vprn >= 192 = |X].

Then, using the divergence Theorem we have
H"H(OM; N Bgya(x0)) < 8/ < X,vap, > dH" 1
M,
= 8/ < X,H>dH" + 8/ divag, XdH".
M, M,nSpt X

We observe that spt X C spt ¢1 Nspt ¢2 C Br(xg) and that on spt X C spt ¢o 1 — C1dky > 0 =

drs < C’fl = Rky < % and thus 1_(11@ < 2. Tt follows, using Proposition 11.3.3, that

\divag, Dd) < —22

<2 .
—— nKs (15.2)

on spt X. We now expand divys, X as
divp, X = ¢1¢odivy, Dd + ¢1 < VMg, Dd > +¢o < VM, Dd > .

From (15.2) it follows that |¢1¢2divyy, Dd| < 2nkys and from the properties of |Dgs|, |¢2| and | X it
follows that |¢o < VMt¢y, Dd > | < 2. We can then calculate for some orthonormal basis to T}, M,
{z;}7, for any x that

p1 < VMo, Dd >= ¢ Z 3 $2(Dd)" = —Cirxnd1 (1 — Crdrs); ( ) <0

T
i=1 B i=1

Finally noting that since |X| <1, | < X, H > | < |H| and thus we can calculate

H"_l(ﬁMt mBR/Q(ZL'())) < 8 (/ < X,ﬁ > dH" +/
M

di’UMt XdHn
M,nspt X

NSpt X
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- 8/ < X,H>dH" + 8/ p1padivy, D dH™
Mnspt X M:nspt X
+8 / 1 < VMg, Dd > dH™
M,nspt X

+8 / bo < VMepy, Dd > dH"
M.nsSpt X

< 8/ | < X, H > |dH" + 8/ |p1¢2divag, Dd|dH™
Mnspt X M:nspt X
+/ p2 < VMt ¢y, Dd > [dH"
M.nspt X
< 8 / \H|dH" +/ 2nky, + 2dH"
M:NBr(z0) M;NBRr(zo)
<

16nky l/ |H|dH™ + H" (M, N BR(:EO))l .
MNBr(xo)

15.2 Upper Area Ratio Bounds

In this section instead of considering absolute bounds on measure we look at the measure of the
surface inside of a ball as compared to the usual H™ measure of a ball of the same radius. This then
also acts as a measure of how crumpled up inside the ball the surface could be. In regularity theory
(particularly local regularity) it is then the aim to show that this ratio approaches 1 (or a half on
the boundary) as the radius becomes very small and the time goes to the singular time (in a way
that will be later formalised). Should the ratio approach 1 (or a half on the boundary) then the
surface is approaching a flat (half) hyperplane in a small ball around the point being considered and
would thus be regular. If the ratio is significantly larger than 3/2 then there exists significant non-
flatness arbitrarily close in space and time, which would lead to non-smoothness and thus singularity.

We first present the main technical lemma forming the basis of area ratio bounds. This is followed
by a fixed time ratio bound based on the assumption that (M) is smooth and properly embedded
for t < T. These two results are followed by a subsiduary result making the presentation of the ratio
results neater.

Proposition 15.2.1.

Let M = (M;)icjo,1) be a smooth, properly embedded solution of mean curvature flow with Neumann
free boundary conditions on the support surface . Let po := (10/2)"/?. Then for any xo € ¥ and
any p € (0, (24 0.4n)~/2pg)

. Ho (M mBm(wo))
sup H" (M N By(x0)) < C(nks) T—ordam _

te(T—p2,T) p" P0

where we recall that 7o = (3/160n)%/°/k%,.

Proof:
Let p1 = (2+0.4n)"Y2py. Let p € (0,p1). Set 0 = (20 +4n)p3, t; = T + p?, to = T + p?
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and t3 = T — p?. We can then apply the monotonicity formula, Theorem 14.2.1, to get for each
te(T—p%T)

25 5 28 (4 _42)9
eCrs (=t / @amapL, duy < eCrE (it / P3112Pp i
My M

t3

Clearly, eCr¥ (1=t"=(t1=t2)° < (O(n, ky) so that we can write
Y,

/ @312 Py dpir < C(n, Hz)/ @312 P i (15.3)
M, My,
Next we observe, from Proposition 11.3.6, that 1, < 256. We also calculate directly that ¢5(-,t3) < 1,

that
1 1

< —n
in(T+ g2 — T+ p)® = (dm)e2”t

pllfz('7t3) S (

and that, since |z — 20| < 3|z — 20| and |z — zo| < 3|z — 20|

spt 3(,t3) ={z:1— 7"9260/02 >0} C{z: 10z — :co|2 < (20+4n)p%} = B 5501mpm (x0).
It follows that

256
/M P32y dpe < Wﬁﬁ (M, N B 55010, (20))

t3
H™ (M, N B T
_ C(n) ( t3 \/n2+0.4np1( 0)) . (154)
P1
We then note that for p < p; < po and t € (T — p?,T) C (T — 10/2,T), we have, from Proposition
11.3.6, that 1y > 1/256 on B,,(xo) D B,(zo). Then calculating directly that

oy — (1 T = 2nlts =1 . 1_10p%—2np%)3>(i)3
(20 +4n)p? ), ~ (20+4n)p? ) .~ \12)

_ g 2 _
1 8(16(rg (t1 —1))0 +1)(t1 —t) > 1 710_,5 — € pin
)

1 = 8
Prs (4n(T + p? — t))n/Qe = (87‘(‘/)2)"/26 ’ (87)n/2
so that for all t € (T — p*, T)

and that

10
8

1 1 e % _ H™(M; N B, (o))
1 naym P
dug > — M:NB =C . 15.5
/Mt Papus it 2 g oss a1t (M Bylwo)) = Cln) " (15.5)
Combining (15.3), (15.4), and (15.5) gives
"(M;NB H™(My, N B - (z
sup H™ (M N B,(x0)) < Cln, rs) (M, \/anerl( 0))_
te(T—p2,T) pr P1
Since p1 = (2 + 0.4n)~1/2p, this gives the result. O

We now show that for any given time, we can bound the area in a ball in terms of only the radius for
sufficiently small radii. We will combine a particular choice of time for this lemma with the above
proposition to give us our final upper area ratio result. Although the following result, at first, does
not appear to improve results, we have shown above that we can bound all area ratios up to (but
not yet including) the first singular time by the area ratio of some given time but not that this given
time is appropriately bounded (that is, finite). We show below that the area ratio for any given time
and any small enough (not time dependent) radius is indeed finite.
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Proposition 15.2.2.

Let M = (M;)icjo,1) be a smooth, properly embedded solution of mean curvature flow with Neumann
free boundary conditions supported on the support surface ¥, to € [0,T) and xo € R"*1. Then there
exists a constant depending only on xo, C(xo), such that for all R € [0,1/2k5]

H" (M, N Br(xo))
wpR™

< ¢(xo).

Proof:

Since M is a smooth solution we know at time ¢o that ©"(H", M;,,z¢) =: O} < oo, (and will infact
be smaller than or equal to 1). It follows that there exists an ¢ > 0 such that w,, ' R="H"(Bg(x) N
M;,) <207 forall R <e.

Now suppose that the claim is not true. Then for all m € N with m > 207 there exists
R, € [e,1/2ky] such that H"(Bg,, (xo)NM,) > mw,R}},. Note that lim,, o R, =: Ry € [g,1/2k5]
and that there exists a subsequence (which we continue to label {R,,}) such that either

1) R, /* Ro, or
2) Ry \, Ro.

In either case it is true that (B M
n
f M (B, (20) 0 Myy)
m—o0 wn R

7

but also that since M,, is properly embedded H"(M;, N K) < oo for each compact K C R"*! so

that
H"(BRr, (o) N My,)

wn Ry

< o0
We wish to show that these two facts lead to a contradiction. Note also in particular that Rg # 0.

Suppose first that R,, \, Ry. Then
H" (BRTVL (‘ro) ﬁ Mto)

— i
> mgnoo wnRﬁl
o [P Br0) 0 M) (B (w0) ~ Bry(0)) 0 M)
Mmoo wn R wn R

= H" (Bry (z0) O Mio) lim ﬁ—i— lim

lim H"((Bg,, (z0) ~ Br,(70)) N My,)

wn Ry m—oco R m—oo wy RN, m—oo
Hn(BRo (l‘o) N Mto) 1 ~
wonRE + wnRgH mol( R (%0) ~ Br,(20)) N My,
_ Hn(BRo (l‘o) N Mto) Hn(@)
= +
wn Ry wn Ry
_ Hn(BRo(JSO) tho)
wn RY ’

where the third inequality follows since each part is finite. This contradiction shows that R, \, Ro
is impossible.
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Alternatively, if R,, /' Ro, then

H"™(Br, (z0) 0 My, ) H"((Bry (20) ~ Br,, (z0)) N My,) + H" (B, (z0) N My,)

= lim
UJnRg m— oo wnRg
> lim H (BRm (,@Q’r)} n Mto)
m—oo WnRo
o BBy (o) N M)
m—oo WnR;%
= OQ.

This contradiction shows that R, \, Ry is impossible. Thus there is a N € N such that

Hn(BR(.ro) ﬁMto) <N
wp R™ -
for all R € [¢,1/2k5)].
Defining C(x0) := sup{/N, 207 } completes the proof. &

We conclude the chapter with a final upper area ratio. The final result combines Propositions 15.2.1
and 15.2.2 to be able to state united upper area ratio result which will later prove useful in its
phrasing. In the following chapter we go on to the crucial concept to our research, Gaussian density,
which we also use immediately in the same chapter to consider lower density ratio results.

Corollary 15.2.1.
Let M = (M;)icjo,1) be a smooth, properly embedded solution of mean curvature flow with Neumann
free boundary conditions on the support surface X. Let py = (10/2)'/? and 6 € (1/3,2/5]. Then

for any xo € ¥ there is a constant C(n, ks, zo) depending only on n, kx, and xo such that for all
R € (0,po] and t € (T — R?,T)

H" (M N Br(zg)) < C(n, ks, z0)R".

Proof:

Since Po = (7'0)1/2

we can apply Proposition 15.2.1 to obtain, for all R € (0, po]

H" (M o3 mBPo(z0)>

T 2+40.4n

"(M;NB
sup H(M: 0 By (20)) < C(n,kx) ™
te(T—R2,T) p" Po

We note then that for any § € (1/3,2/5] and any n > 1 (19/2)'/? < 1/2kyx so that we can apply

Proposition 15.2.2 to the right hand side with to = 7' — 5% to get

sup H™( tﬂn p(xo)) < C(n,kx)C(x0)pg = C(n, ks, xo)
te(T—R2,T) P

from which the result follows. &
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15.3 Notes

Corollary 15.1.1 is actually a simpler version of Proposition 11.3.1, for an alternative proof see
Proposition 2.2.1 in Buckland [6]. Proposition 15.1.1 is similarly standard and, again, a proof can
be found in [6]. The definition, Definition 15.1.1, of the class of boundary localisation functions,
as well as their properties, presented in Proposition 15.1.2 are our own. A version of Theorem
15.1.1 was attempted in [6] which in turn was meant as the Neumann free boundary version of an
area bound for boundaryless mean curvature flow presented as Proposition 4.9 in Ecker [7]. The
result presented here is a generalisation and (we believe) correction of the result attempted in [6].
Corollary 15.1.2 is our own. The Divergence Theorem, Theorem 15.1.2, is a standard result. A proof
can be found in Simon [25]. Lemma 15.1.1 as well as Proposition 15.2.2 and Corollary 15.2.1 are
our own. The result Proposition 15.2.1 is also our own though draws inspiration and ideas from the
boundaryless version due to Ecker [7].
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