Chapter 14

Localised Monotonicity with
Boundary Conditions

Just as Buckland translated Huisken’s Monotonicity Formula to the mean curvature flow with Neu-
mann free boundary conditions case, we find it necessary to translate the boundaryless localisation
function (see Definition 12.0.1) to the Neumann free boundary situation. In this chapter we develop
this analog and prove the monotonicity formulas that we will need.

We begin by defining the localisation function that we need. We prove that it possesses the necessary
properties and then prove the appropriate monotonicity formulas.

14.1 An Additional Localisation Function

Although Bucklands 1 does indeed function as a localisation function, we cannot sufficiently control
how local it is. That is, we cannot make the support arbitrarily small as we can with Ecker’s ¢ by
chossing a smaller o. Ecker’s 1) however, does not allow for the nullification of the boundary terms
of (11.5). We thus combine the properties of the two in our monotonicity formula. We accomplish
this by multiplying a variation of the boundaryless localisation function ¥ by 7 to take the place of
fin (11.5).

Definition 14.1.1.
Let ¥ be a Neumann free boundary support surface, xo € X, to € R and o > 0. We then define the
Localisation function ¢ (4 +,),0(,1t) R xR — R by

3
Tpo — 2NTy
90(10-,150)70('%515) = <1_ = o2 0> )
+

where Ty, :=tg — t. Should (x0,ty) be understood we write simply ..
We prove immediately an important property of this localisation function below.

Lemma 14.1.1.
Let M = (My)icio,r) be a mean curvature flow with Neumann free boundary conditions on the
support surface ¥, let to € R, xo € ¥ and o > 0. Then for any t € [0,to) we have, on spt 1)z, 1),

d
— — Ay <0.
(dt Mt)sO_
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Proof:
We define Z := (r,, — 2n7y, )02 We can then consider ¢ as a function of Z. We note

¢'(Z2)=-3(1-2)2 <0and ¢"(Z)=6(1 — Z)+ > 0. (14.1)
We also note from Proposition 11.3.4 (3) that

20nkx|z|  dnkd|z|? s

divy, Dr — 4n| <
| UM, T n|_ 1 —dksx (lfdlfg)

and that, from Proposition 11.3.6, we have on spt7)(5, ¢,) (1—drs) ™" < 2 and ks|z—x0| < (3/160n)2.
Then using standard differentiation theory, (14.1) and the above three inequalities we calculate

d d
——A = ¢ |—=—An )| Z2-¢"|VZ]?
(dt Mf,)w @ (dt M,,) ©"|VZ|

d
< o ==A Z
= ¥ (dt M‘)
= (=9 )o7%(=2n + divp, Dry,)

_ 20nks|r — zo|  Ankd|z — 20/?

< _ ! 2 _2 _4 )
< (=)o ( T T ) (1 — drw)?
< 0.

O

Together with properties mentioned in Chapter 11 this completes the necessary preparation for our
Monotonicity formulas. We are, however, not finished with the study of the new localisation function.
Although not needed for the monotonicity formulas, we will later need to observe properties of the
rescaled version of (4, 1,),o- We first state the rescaled version of the function.

Proposition 14.1.1.
Let %3 be a Neumann free boundary support surface (zo,t0) € X X R and ¢(4,+,),0 be as defined in
Definition 14.1.1. Then under parabolic rescaling by a factor of \ we get

3
5 27(y) — 2ns|
Yo = (1—)\ - 2 .

where r(y) is the tilde reflection radius function of y with respect to the rescaled support surface Zi‘o.

Proof:
As rescaling is simply a change of variables, one need only carry out the parabolic rescale change of
variables to obtain the identity. &

We also need the following relatively trivial properties of ¢, 10),0c and G(u,10),0-

Proposition 14.1.2.
Let ¥ be a Neumann free boundary support surface, (xo,to) € X xR and @4, +,),0 be the localisation
function as defined in Definition 14.1.1. Then the following properties hold:

~ A22n]s| 3
1. for A>0 and s <0, P(ug,t0),0 < (1 ——=2—) ,
+
2. for \,R, and t € [0,tp)

8t P (a0,t0),0) () € Br(z0) = 8Pt G(z,t0),0 (" )\72(15 —tp)) C Bx-15(0), and
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3. for any fived s <0, P(u4.10),0 — 1 locally uniformly as A\ — 0.

Proof:
That (1) holds follows from the definition of the rescaled test function since for § =y —2(< y, Dd >
—d)Dd (where d(y) =signed dist(y, £5°)) |y|* + |g|* > 0 and therefore

~ 3 3
5 lyl® + 191> — 2n(=s) A22n]s|
Sp(zo,tg),a(% S) = (1 — )\2 02 X S 1— )\2 02 .

from which the result follows.

(2) follows similarly easily from the general principle that the parabolic rescale f of any function
f R x [0,T) satisfies f(y,s) = f(A\y + x0, A%s + tg) as follows:

If y ¢ Byx-15(0) then Ay + 29 & Br(xo) and thus P(z0),0(¥,8) = @(ao,to),0 (MY + T, A\%s +t9) = 0
from which the result follows.

Finally, set any s < 0 and o0 > 0. Then for any compact set K, K C Br(0) for some R > 0
so that using Proposition 11.3.5 r(y) < 10R? for y € K. Thus for any small ¢ > 0 we can take

A o
0=\ 2nfs| + 10R?

so that for each A < \¢ we have, using (2)

(v) +22n|s|>3

12 G = (1- R s et s

+

which clearly suffices to show locally uniform convergence, proving (5). &

Having proven the properties of (., 1,),o necessary for this thesis, we move on to the first application.
That is, the localised monotonicity formula for mean curvature flow with Neumann free boundary
conditions.

14.2 Localised Monotonicity Formulas

We prove two monotonicity formulas in this section. One is a special case of the second. The first
gives us a particular formula that we will be using. The second is the obvious generalised form of
the first. An additional generalisation of the monotonicity formula of Buckland is that we allow the
time centres of the test functions to vary from each other. This is necessary for later ratio bounds.
The spatial centres must, however, remain the same.

Theorem 14.2.1. (Local Monotonicity)

Let M = (My)icio,r) be a mean curvature flow with Neumann free boundary conditions on the
support surface ¥.. Let 0 >0, 6 € (0,2/5], let t1,ta,t3 € (0,7 4 10/2], 20 € ¥ and let @, 1,),0 be
as defined in Definition 14.1.1. Then for any t € [t — 70/2, min{t1,T})

d 265 265
7 <€an T / sﬁanzpizdut) < —erETo / P31y
M, M

where C = 17”; Y3 = w(zo,tg),a; T2 1= Nzxg,tas and p}iz ‘= Prx,xo,t1 -

. DLpl
-2l

%)
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Proof:
By choosing g = p;.. and f = @31, in (11.5) we see that (11.5) reduces to

d

pn Pamapg it < */ w3ne |H
My My

d
+/ e, (% - AMt) w3n2dpL
My

+/ Pry, < Dpsnz,vs > doy,
oM,

dpe + / ©3m2Q (P, )dpie
M,

so that applying Theorem 11.3.1 gives

2
d . Dtpl 17n(k4(t; — t))°
— Qamaprydi < — / @3 |H — —=| dpg + M / P3T2Ppy, dpt
dt Ju, M, P ty —t M,
d
+/ /);1{2 (E - AM) p3n2diit +/ p,{uz < Dpsna, vs > doy,(14.2)
M, OM;

We note that Dys = Dry,(3/02)¢*? so that using < Dr,,,vs >= 0 and thus < Do, vs >= 0
from Proposition 11.3.4 and Proposition 11.3.6 we have

3
< Dpang, vy, >= @3 < Do, vs; > 412 < D3, vs, >= 772;(,03/2 < Dry,,vs >=0.
Thus
/ Pi@z < Dpsna,vs, > doy = 0.
oM,

Secondly we consider (4 — Ay, ) @ane. For @ & sptns, (& — Awr,) @3nz = 0. Otherwise we choose

for x € M; an orthonormal basis 7, ..., 7, for T, M; and calculate using the product rule

d d d
— A = @3— —p3 — 2VMepy . WM
(dt Mt> P3M2 <P3dt772 +772dt<P3 Y3 2
- 4 A (Lo a ) f D,. 03D
= ¥3 p M, | T2 T 712 dt M, | ¥3 ;P37 12-

i=1

Since @3 and 7, are radially symmetric functions monotonically decreasing in = as x moves away
from a common spatial center point x it follows that for any vector 7 € R"*!

Sign(DTSD3) = Sign(D‘ﬂh)

so that

\
)
w

d d -
<—AMt> P32 = <—AM,5) 12 + 12 <EAMt) ‘P3*2ZDri<P3Drj772
=1

d d
= ——A — - A
©3 <dt Mt) N2 + 12 <dt Mt) ©3

—2 Z Sign(DT(PB)Sign(DTn2)|D‘ri(p3| |DT]'772|
=1
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d d
= ——A — - A
©3 <dt Mt) N2 + 12 <dt Mt) ©3

n
—2 " sign(Drps)?| Dy, 3] Dy, o
=1

d d
< 3 (E - A]Mt) N2 + 12 (E - AM,,) P3-

Since from Proposition 11.3.6, (% — AMt) 72 < 0 and Lemma 14.1.1, (% — AMt) w3 < 0 we thus
have (4 — Ay, ) sz < 0. Returning to (14.2) we therefore have

2
d . Dipl 17n(kZ(t; — t))°
— Panaprsdpy < —/ @3na |H — —7= dﬂt‘i‘M/ P3P py, dpit
dt M, M, Prs 11—t M,
d
+/ p}@ (— - AMt) ©3m2diL +/ p}@ < Dypzna,vs > doy
M, dt oM,
2
" DJ‘lp1 17n(k3(t; — 1))°
< f/ @3 |H — ——= duﬂr%/ Pan2ppy -
M, Ks 1—t M,
Introducing the integrating factor eCr¥ " then gives the result. &

We write the generalisation of the above immediately. It follows with the same calculations, since
we take exactly those test functions for which all necessary properties continue to hold.

Theorem 14.2.2. (general local monotonicity)
Let M = (My)c(o,1) be a mean curvature flow with Neumann free boundary condition on the support
surface ¥. Let § € (0,2/5], t1,ta € (0,7 + 10/2], z0 € X. Then for any f such that f € C*>1(U)

d
< >
<dt AMt)f_O,f_O,

f has a single local mazimum (and global mazimum) at xo for allt € [0,T) and < Df,vs > (x,t) =0
for all x € OM,, t € [0,T),

and for any t € [t1 — 1o, min{ty,T})

d 25,8 25,8 — lp1
% (ecﬁz T f,r]2pl1{2 d,LLt) S 760112 T f,r]2pl1{2 H — - Ky d‘LLt
M, My Ks

where C' = 1Tn, 12 := Ngo .ty 0N Pl = Pry w0ty -

Proof:
As in Theorem 14.2.1, we see

11

= Dop,._
1
2>

d
+/ Prs, (E - A]Mt) Jmadp +/ pry, < Dfna,vs > doy,
M, oM,

dpg + Fm2Q(pry, ) dpe
M,
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thus, from the hypothesis that < D f,vs; > (z,¢) = 0 and Proposition 11.3.1 we have

d - Lok 17n(k%(t; —t))°
o feppgp < —/ e |H — —72| dps + tE——t Fneppgdp
M, M, P 1 M,
1 d
+ Prs E - AI\/[t andNt
M,
Using that f and 7» have the same unique spatial maximum so that signD.f = signD,ns we

calculate as in Theorem 14.2.1 for some orthonormal basis for T, M; around an arbitrary point
xr € Mt

d d d 2
2_A — 2_A 2_A —925N" D fD.
(dt Mt) fn2 f (dt Mf,) N2 + 12 (dt Mf,) f ; i f Drm2
= (L a Y (L aw ) £ 2> sign(Dn £1Dr flIDome)
- dt My | 72 72 dt M S1gn\Lr; i i 112

i=1
< 0,

since by hypothesis (£ — Ayy,) f <0, and it is known that (4 — Ay, ) n2 < 0. It follows that

2
d _  Dtpl 17n(k%(t; —t))?
— | fmeprame < */ Se |H — —72| dpy + Ln(es(h — 9 fnepisdp
dt Jar, M, Kx th—t M,
Introducing the integrating factor 60”22676, as in Theorem 14.2.1, completes the proof. O
14.3 Notes

The definition and results presented in this chapter are all original.
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