Chapter 13

Singularities, Aims and Assumptions

In this chapter we define our terms in considering singularities. We also describe the assumptions
that lend themselves to usage with as much as possible a description of the reason for their use. We
also show in the case of the ‘boundary approaches boundary assumption’ (which we will define in
due course) that there definitely exists support and initial surfaces satisfying the assumption so that
we do not, in this case, reduce the problem to an empty class of problems.

13.1 Singularities

We begin by defining Singularities. This is done, as in Part I, by way of considering which points
in the limit surface allow the flow to at least locally be extended. First we define what the limit
surface is. As is implied by the term ‘limit surface’ these are the points that can be expressed as a
limit of points in the flow as the time goes to 7.

Definition 13.1.1.

Let (M;) be a one-parameter family of sets in R" 1. We say that the sets (or flow in the case (M) is
a flow) reaches xo € R™*! at time ty if there exists a sequence (x;,t;) with t; / to so that x; € My,
and x; — xo. We denote M = (M) reaching xo at time to by M —, xo.

Remark: Due to the possible misunderstanding that M —, ¢ implies that M degenerates to the
point xp we point out that this is not at all implied. M —, xo simply denotes that x( is one of, in
general, many points that are reached by the flow.

Using this definition of points reached by the flow, we can make a definition of what the limit
surface, M actually is. This needs to be done as a definition of Mt is not included in the definition
of the mean curvature flow with Neumann free boundary conditions, M. We therefore make the
following definition.

Definition 13.1.2.
Let M = (My):ep0,7) be a mean curvature flow supported on the support surface ¥. Then we define
the limit surface My C R*T! by

My = {z ¢ R""' . M —rp 2}

For the boundary we first define
OM := (OMy)ieo,1)
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so that we can define the limit boundary OMp C X by
OMr ={x €% :0M —r1 x0}.

Remark: We make this definition of the limit boundary and don’t try to define OMr by a term
similar to frontier(Mr) as with OM7 we wish to examine the behaviour of the flow on the support
surface 3. It is conceivable that extra frontier is developed at the first singular time away from the
support surface (specifically in the singular set of M at time 7). This extra boundary is not part
of the set that we wish to consider under the term OMr.

We note that we have already, in the form of Definition 11.4.3, made a definition relating to flows
reaching points. Particularly as it becomes important in a proof of Global regularity we show the
relationship between the two definitions. In summary, we show that they are in a sense equiva-
lently describing the same situation, at least under the type I assumption. Independently of interest
and necessary to show the mentioned equivalence, we note the following consequences of the type I
assumption.

Proposition 13.1.1.
Let M = (My);c0,1) be a mean curvature flow with Neumann free boundary conditions that reaches
xo at time T and satisfies the Type I assumption. Then fort < T

|F(p,t) — zo| < 2CH/n(T —1t).

Proof:
We calculate

|F(p, t) - I’0| =

Tar T T Cun
/ %(p,v)dv S/ |H(p,q)ldvy < idy =2Cy+\/n(T —T).
t t _

H
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As a corollary to this proposition, we can state a result on how close a surface is to the point that
it will reach. This result does not need the type I assumption (see Ecker [7] Corollary 3.6 where the
sphere comparison principle is used), however, the proof is quicker using the type I assumption, an
assumption that we will always have when needing this result. We therefore present the proof under
the type I assumption.

Corollary 13.1.1.
Let a mean curvature flow with Neumann free boundary conditions M reach zy at time T and M
satisfy the Type I assumption. Then for t <T

d(xo, M) < 2Cg+/n(T —t)

Proof:
From Proposition 13.1.1 |F(p,t) — xo| < 2Cg+/n(T —t). It follows that

d(xo, My) < |F(p,t) — xo| < 2CH\/n(T —1t).

We are now able to prove the equivalence of our definitions of a flow approaching a point.
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Proposition 13.1.2.

Let M = (M;)icjo,1) be a smooth, properly embedded solution to mean curvature flow with Neumann
free boundary conditions supported on the support surface X. Let (M;) be represented by the family
of transformations F(p,t) for p € M™ (a smooth orientable n-manifold) and t € [0,T) and let M
satisfy the Type I assumption. M then reaches a point xo € R" "1 if and only if there is a p € M"
such that xq is the limit point of p.

Proof:
If ¢ is a limit point of some p € M™ at time T then for any sequence of times ¢t; / T we consider
the sequence z; := F(p,t;) for each j € N. We note F(p,t;) € M;, and
lim z; = lim F(p,t;) = lim F(p,t) = o,
Jj—o0 t,/"o0

j—o0
thus M reaches g at time T'.

Now suppose that M reaches zo at time 7. Consider the time sequence t; such that for each
JEN, 2nCy /T —t; < 27U*Y and define F; := F~1(B 2 (x0) N My;) C M™.

Since M reaches x¢ at time 7', F; # () for all j € N. Further since, from Proposition 13.1.1
|F(p,t;) — limy—7 F(p,t)] <2nCp /T — t; < 57+ we see that for all p € F},

thnjl“ F(p,t) € Bg/gj+1(l‘0) and that if p &€ F}, thn% F(p,t) & By /i1 (x0)

so that (by the above and induction) for all p & Fj, p & Fji, for all n € N. That is, {F}} is a
decreasing sequence of sets. Now, since M is properly embedded and smooth and B /5 (x0) N Mj; is
compact for sufficiently large j it follows that F}; is compact for each sufficiently large j € N. Thus
NjenF} is a closed non-empty set. Take py € NjenFj, then |F(po,t;) — xo| < 3/27F! for each j € N.
Thus

lim F(po,t) = lim F(p,t;) = wo;

and therefore z is a limit point of py at time 7. &

Remark: The py found to reach xg at time 7" following from M reaching z( at time 7" may not be
unique.

Having now explored the concept of reaching we are now in a position to define our singular and
regular sets.

Definition 13.1.3.

Let M = (M) be a smooth, properly embedded solution of mean curvature flow (or a smooth properly
embedded solution of mean curvature flow with Neumann free boundary conditions) in U x [0,T).
We say that xy € U is a singular point of the solution at time T if M reaches x¢ at time T and has
no smooth extension beyond time T in any neighbourhood of xo. All other points (which includes
those not reached by the solution) are called regular points. The singular set at time T is denoted by
singrM and the regular set by regr M.

13.2 Aims and Assumptions

In this section we give a more detailed statement of those results for which we are aiming. Having
now introduced singularities we are able to delineate our aims more formally. After outlining our
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aims, we will describe the assumptions we will make on the surfaces being considered in order to
prove our results.

It has already been mentioned that we are working in this part of the thesis towards local and
global regularity. The local regularity gives conditions that will imply regularity for a given point,
whereas global regularity says something about the total measure and/or dimension of the singular-
ity set.

The quantity we will be looking at for local regularity is Gaussian density. Properly formally
defined in Definition 16.1.2 we simply mention here that we can write the Gaussian density for a
mean curvature flow with Neumann free boundary conditions on the support surface ¥ around the
point (zg,%0) € X x (0,T] as

. 250, _4\6
(9(/\/1,3730,150):th_{lgoec””E (to—t) / o, (20,t0) Nwo,to Prs, (zo,to) At
M,

for any o > 0 where ¢ (4,4, is a localisation function similar to the boundaryless localisation
function defined formally in Definition 14.1.1. As we shall see, in the smooth cases, the Gaussian
density gives us the expected values that correspond exactly to usual measure densities. This fact
brings us to the intent to show that the implication also holds in the other direction. That is, if
the Gaussian density is approximately what one would expect in the smooth case, then the point
in space time around which we took the Gaussian density should be regular. That is we expect a
theorem to the effect of:

Theorem:

Suppose that M = (My)icjo,1) s a mean curvature flow with Newmann free boundary conditions
supported on the support surface .. Then there exists an ¢ > 0 such that if, for any given
(Jﬁo,to) [SDIBY (O,T]

1
6(M5I07t0) S 5 + e

then xq is reqular at time ty.

Although we will need some slightly stronger assumptions, it is exactly this question that is ad-
dressed in the Chapter on Local Regularity.

For global regularity we look to give a result on the measure of the singularity set. It is well
known that under certain additional assumptions the Hausdorff n-measure of the singularity set of
an n-dimensional mean curvature flow without boundary is zero. We will show (under assumptions)
the same result here. That is we show

Theorem:
Suppose that M = (My).c(0,) is an n-dimensional mean curvature flow with Neumann free bound-
ary conditions supported on the support surface ¥ satisfying the technical assumptions made in this
thesis (yet to be described). Then

H"(singrM) = 0.

One immediately asks if anything better holds on the boundary itself, H"~!(singrdM) = 0 per-
haps?. This is, however, unfortunately not to be hoped for as an entire Hausdorff (n— 1)-dimensional
singularity set can occur on the support surface in a very natural example of a mean curvature flow
that we describe below:
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Construction 13.2.1.

We construct 3 as follows: Let B3(0) C ¥ and let ¥ be otherwise smooth and compact in such
a way that B3(0) N {x € R : 23 > 0} C G. We then place M; on X by letting My be half the
torus S} x 511/4 with the S corresponding to OB3(0). We see that the torus flows for t € [0,7T)

for some T < \/(5/4)? — 2n = 25/32n and that M, flows to a circle S} C B3(0). It follows that
singrM 2 S} so that dim(singrM) > 1 =n — 1. We note that in this case singrM is approached
on the boundary. That is for all x € singrM, OM —7 x.

We now move on to the assumptions that we will be making.

Firstly, the proof of regularity relies on being able to compare limits (particularly limit surfaces) to
a smooth regular situation. The smooth situation occurs when we are on a manifold and is thus
everywhere locally ‘plane like’. We clearly do not want to simply assume that the limit surface
is everywhere locally ‘plane like’ as it would then be smooth in some sense and thus everywhere
regular. We therefore only assume the weakest form of being mostly plane like. That is, rectifiable.
The idea of rectifiability was explored in detail in the first part of the thesis. Here however, we only
need a passing acquaintence. To motivate the mostly ‘plane like’ behaviour, we include in this part
of the thesis the following definition.

Definition 13.2.1.
A set M C R"* is said to be countably n-rectifiable if

M C MyuU U F;(R™)

j=1
where F; : R — R are Lipschitz functions and H™ (M) = 0.

In order to be able to compare a limit surface to the limit of the flow in a reasonable way we need to
be sure that there is only one surface and not two or more of them resting on each other (multiple
sheets). For this reason we assume the unit density hypothesis. Although it is not known if we could
flow to such a situation in mean curvature flow with Neumann free boundary conditions, there are
certainly conceivable limit surfaces that we want to avoid. A deeper discussion of this problem can
be found in Brakke [5] or Ecker [7]. In order to place an assumption on the density of a surface we
also need to know what the density is. To this end we make the following definition.

Definition 13.2.2.
Let ;1 be a measure on R"*L. Let M C R"*! and x € R"*!. Then the n-dimensional density of M
with respect to p ot x is defined by

0" (u, M, x) := lim u(M N By (x))

r—0 Wpr™
where wy, is the volume of the n-ball.

We also need to examine the measure of limit surfaces, this clearly cannot be done when the limit
of the measures has nothing to do with the limit measure. We therefore assume area continuity. We
state the above three assumptions formally in the following definition.

Definition 13.2.3.

A smooth, properly embedded solution M = (My)icjo,1) of mean curvature flow with Neumann free
boundary conditions in U x [0,T) (for some open U C R" 1) is said to satisfy the area continuity
and unit density hypothesis at time T if the hypersurfaces M; converge in the sense of measures
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to an H"-measurable, countably n-rectifiable subset Mr C U of R™*! of locally finite H™ — measure.
That is

li dH"™ = dH™ 13.1
ligm /Mt ) . o) (13.1)
for all g € CR(U).

Note that (13.1) implies in particular (see, for e.g. Ecker [7]) that for every zo € U

tli/n% H"™ (M N By(xo)) = H" (M7 N Bp(zo))
for all but countably many p > 0 whenever B,(z¢) C U.

The area continuity and unit density hypothesis is not a new assumption, being also made for
the smooth case in Ecker [7]. A similar assumption is also made in the work of Brakke for the reg-
ularity theorem (Theorem 6.12) in Brakke [5]. We will however need additional assumptions about
what happens on the boundary. These are not restricitions simply to make the proof easier, rather
the desired regularity result is simply not true without some control over the boundary as we see
with the following example:

Construction 13.2.2.
We construct the 2-dimensional support surface ¥ C R? in five pieces. ¥;, i = 1,2,3,4,5.

Y :=0B1(0)N{x € R® : x3 > 1/4},
a piece of a sphere above the 2 plane.
2y = B§1/16(0) ~ B%/Q(O)’

an annulus in the 2-plane.
Y3 := 0By(0) N {x € R® : 3 > 1/8},

an outer piece of sphere. 4 is then a smooth connection between 31 and Yo such that X4 C B1(0)
and X5 is a smooth connection between Yo and X5 such that X5 is a subset of the 1/8 neighbourhood
of {vr € R?: |z| = 2}.

t%?

Figure 13.1: Cross section of Construction 13.2.2

We then set My := 9Bs;2(0) N {x € R® : & > 0}. We see that M, is a homothetically shrink-
ing half sphere for t € [0,5/16). However, M reaches 31 at t = 5/16 (in the sense that for each
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x € X1, M reaches x at time t = 5/16). Since there is no smooth extension of the mean curvature
flow with Neumann free boundary conditions supported on % in any neighbourhood of any x € X1, it
follows that X1 C sings,16M and since dim(¥1) = 2 = n it follows that we can have n-dimensional
singularities of positive H" measure in the Neumann free boundary case.

We address this problem firstly through the boundary approaches boundary assumption which states
that the surface can only reach a point on ¥ if it is reached by the boundary and so cannot collide
with the support surface from the interior as it did in the above construction. This assumption is
stated formally below.

Definition 13.2.4.

A smooth, properly embedded solution, M = (M;)icjo,1), of mean curvature flow with Neumann free
boundary conditions supported on the support surface X is said to satisfy the boundary approaches
boundary assumption if for all zo € ¥ M —71 x¢ implies OM —p .

Remark: Note that the boundary approaches boundary assumption implies that dMr = My N X.

This assumption alone is not sufficient. To make the assumptions sufficient we can take one of
two additional assumptions. The two assumptions are in a way analogies of either the unit density
hypothesis or the area continuity hypothesis. The first, similar to the unit density assumption, as
we see in Chapter 18, leads very quickly to the global regularity theorem. It is due to the apparently
trivialising simplicity that we also address a different additional assumption. This second additional
assumption is weaker in the sense that more work is required to prove the global regularity theorem,
but stronger in the sense that we need to assume type I curvature bounds. We describe the two
assumption frameworks below.

We note firstly, however, that although the boundary approaches boundary assumption does not
appear to be necessary in the global regularity proof under the regularity assumptions I (defined
formally below) it is intrinsically necessary in that it is used in the proof of the Clearing Out Lemma,
which in turn is important for global regularity.

Boundary Assumptions I:

Like the unit density assumption for the boundaryless case where the assumption is in principle
preventing the congregation of multiple sheets, stating that there is in essence only one sheet of
the flow reaching any point. Under the same principle of assuming that only one sheet reaches any
boundary point, we would then be assuming half density, or unit multiplicity on a half plane. We
state this assumption formally as follows.

Definition 13.2.5.

Let M = (My)cjo,1) be a smooth, properly embedded mean curvature flow with Neumann free bound-
ary conditions supported on the support surface . M is then said to satisfy the unit multiplicity
assumption if for H"-almost all x € OMr

1
Gn(Hn7MT5z) S {07 5} .

Remark: Note that the flow in Construction 13.2.2 does not satisfy the unit multiplicity assump-
tion since H"(X1) > 0 and for each x € ¥, O"(H", Mr,z) = 1.

We bring all of our assumptions in the boundary assumptions I framework together in the following
definition:
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Definition 13.2.6. (Regularity Assumptions I)

Let M = (Mi)cpo,r) be a mean curvature flow with Neumann free boundary conditions supported
on a Neumann free boundary support surface 3. Let to € (0,T)]. Then M is then said to satisfy the
regularity assumptions I at time ty if M satisfies the area continuity and unit density hypothesis
at time to as well as the boundary approaches boundary and unit multiplicity assumptions.

Boundary Assumptions II:
In the boundary assumptions I case we actually make two assumptions. The first is an analog of
the area continuity for boundary.

Definition 13.2.7.

A smooth, properly embedded solution, M = (M;)icjo,1), of mean curvature flow with Neumann free
boundary conditions in U x [0,T) (for some open U C R"™1) is said to satisfy the boundary area
continuity hypothesis at time T if the n — 1-dimensional surfaces OM; converge in the sense of
measures to an H"-measurable, countably n-rectifiable subset OMr C U of R"*1. That is

lim pdH™ ! = / pdH" ! 13.2
/T Jom, oMy ( )

for all € CQ(U).

Remark: 1) Note that we do not assume that the boundary stays in its own dimension as we did
for the surface as a whole. We want to prove that this will follow in any case.

2) Note also that the boundary approaches boundary assumption is not a consequence of the bound-
ary area continuity hypothesis, since the boundary area hypothesis allows for sets reaching the
boundary from the interior with dimension no greater than n — 2, whereas the boundary approaches
boundary assumption allows for no set to reach the boundary from the interior at all.

The second additional assumption we make is simply that the flow be a type I flow. A condi-
tion that has already been described in Definition 11.4.2. We bring all of our assumptions in the
boundary assumptions IT framework together in the following definition:

Definition 13.2.8. (Regularity Assumptions IT)

Let M = (My)icjo,) be a mean curvature flow with Neumann free boundary conditions supported on
a Neumann free boundary support surface X2. Letty € (0,T]. M is then said to satisfy the regularity
assumptions II at time ty if M satisfies the area continuity and unit density hypothesis at time tg,
the boundary area continuity hypothesis at time ty, the boundary approaches boundary assumption
at time to and the Type I assumption at time tg.

13.3 A Class of Boundary Approaches Boundary Support Sur-
faces

Although it is fairly clear that there are at least some coincidental examples that happen to satisfy
the boundary approaches boundary assumption, we would like to know that there is at least some
fixed class of mean curvature flows with Neumann free boundary conditions that always satisfies the
boundary approaches boundary assumption. In this way, we are then certain that we are proving
results about some definite existent set of flows.

We prove just such a result by showing that should the support surface ¥ be convex, then the

boundary approaches boundary assumption is satisfied. We define what we mean by the support
surface being convex as follows.
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Definition 13.3.1.
Let ¥ := O0G be a Neumann free boundary support surface. This surface is said to be strictly
convex if for every distinct pair of points x,y € X

{tr+(1—-t)y:te€(0,1)} C G~ IG.

We then show that mean curvature flows with Neumann free boundary conditions supported on such
support surfaces . satisfy the boundary approaches boundary assumption.

Proposition 13.3.1.

Suppose M = (My).c0,1) i a mean curvature flow with Neumann free boundary conditions supported
on the support surface X.. Suppose 3. is strictly convex and that M reaches xg € % at time tog < T.
Then OM reaches xq at time to. That is, we can choose (xj,t;) — (xo0,t0) so that x; € OM;, for
each j.

Proof:
Suppose that it is not possible to reach x¢ on X, then it can be easily checked that there exists a
p > 0and 7 > 0 such that B,(xz¢) NOM,; = 0 for all t € (to — 7, t0).

We choose and fix such a pair p and 7.

We now re-orient our surfaces (which we may do due to the invariance under orthogonal trans-
formations of the relevant quantities) so that o = 0 and T,,,X = R™. By the strict convexity of
¥ we may also choose our orientation so that (zo)n+1 = max{z,+1 : © € ¥}. By our definition of
strictly convex it also follows that z,11 < 0 for all x € M and that there is a by < 0 such that for
alz e X~ Bp(l‘o) Tpt1 < hg.

Since (M) is a properly embedded manifold in G for each ¢ € [0,T) we know supgyy, _, Tnt1 =
maxgnn,, ., Tnt1 for any compact set K C Rn+1

Suppose now that

sup Tp+1 = 0, and thus max Tn+1 = 0.
By, (z0)N My, -+ By (zo)N\ My, -+

Since M; C G for all t € [0,T) and G N B,(z0) N {z : xp41 = 0} = zy it follows that z¢g € My,—,.
As z9 € ¥ N By(xg) this implies OM,—r N By(xg) D {xo} # 0. This condition tells us that

SUPE- oy, -, Tt < 0 and therefore there exists a A1 < 0 such that SUPE oy, -, Tt < hy.

Additionally, since M; C G for each ¢ it follows that for all z € M;, _,

ZTnt1 < max{max{z,41:x € MNB,(x)}, max{znt1: 2 € X ~ By(xo)}} < max{ho,hi} =:h <O0.
Next, we consider u(x,t) := x,+1 so that then

d

Also maxyy, . u < h. By the maximum principle any new maximum must then be reached on the
boundary. That is if maxps, u > maxpy, u for all t € [to — 7,t1) for some t; € (to — 7,t0), then
maxys,, u = maxpy,, u and therefore

sup{u(z,t) : t € [to — 7,t0),x € My} < sup{u(z,t):t € [tg—T,to),x € OM}
< sup{zpi1:2 € X ~ By(zo)}
<

h.
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Should such a t; not exist, then maxys, u < maxyy, _, u < h. It follows that for all ¢ € [to — T, t0),
M; N By(x9) = 0 and therefore that M; does not reach zo. This contradiction proves the result. ¢

13.4 Notes

The definitions, Definition 13.1.1 and Definition 13.1.2, of flows reaching points and limit flows are
extensions of that to be found in Ecker [7]. Of the results showing the consequences of type I with
respect to the limit point function, Proposition 13.1.1 is due to Buckland [6] while Corollary 13.1.1
and Proposition 13.1.2 are our own. The definition, Definition 13.1.3, of singular sets follows Ecker
[7]. Gaussian density will be further discussed in the chapter addressing Gaussian density in more
detail, as will the Theorems for which we are aiming. Constructions 13.2.1 and 13.2.2 are our own.
A good discussion of rectifiability and density can be found in Simon [25] or Evans and Gariepy
[10]. The area continuity and unit density hypothesis is stated as in Ecker [7] and the boundary area
continuity is our extension of this definition. Proposition 13.3.1 is our own which uses the maximum
principle. A good source for information on the maximum principle is Evans [9].
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