Chapter 9

Dimension, Rectifiability and
Measure of Generalised Koch type
Sets

We now consider the main results for Koch type sets. That is, under what conditions do we have
finite, or weakly locally finite measure. Under what conditions are Koch type sets rectifiable, or not
rectifiable, and under what conditions can we determine the dimension of a set in . The results are
all determined by the construction parameters. All of the relevant parameters can be expressed in
terms of the angles 9;;‘71-. In the case of A. type sets we can exactly categorise the sets with respect
to the above questions, for the Koch type sets it is not possible. The difference being that in the
case of Koch type sets we could be generating measure from a pre-image set of measure zero in
an otherwise well behaved set. The question of whether or not measure can indeed be generated
remains presently unanswered. The important point for us, is that it cannot be ruled out.

For this reason some of the results will continue to be stated separately. In the general case we
find, with respect to rectifiability, that

A € K is countably 1-rectifiable < H!({z : II*(z) = 00}) = 0.

With respect to measure, we find that for each A € K
HY(A) = / TAdH + H' (Ao
Ao~AS

and that H!(AZ!) > 0 = H!(AL) = oo, In general we would also expect H!(A}) = 0= H!(Ax) =
0 (that is the non-generation of measure condition) so that we would then have

HY(A) = / mAdH?.
Ao
While in certain cases (e.g. A7l is countable) it is certainly true, it may not be true in general.
Note that this result holds also for A € K with dimA > 1, in which case we get the uninformative
result H!(A) = oco.
Finally, with respect to dimension we define

A= supfa: H ({2 2 > a}) > 03,
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A _ nA
Y5 = sup 0
rE€Ap

and find
dimI ;. ay = fi(3") < dimA < fi(73) = dimT (4,
where

f(y) = (1/2)(tany)

and therefore
In2

In((1/2)(1 + (tanv)?)'/?)

Again, this simplifies under the hypothesis that for B C Ag H'(B) = 0 = H!(F(B)) = 0 in that we
can then state

fi(y) = -

dimA = f1(7{).

It is in the A, type set case that we can ignore the possibility of generalisation of measure and thus
the "nicer" results can be stated for these sets.

9.1 Lipschitz Representation and Rectifiability

We start by showing that in some cases an A. type set is actually a Lipschitz graph, where F would
pass as a Lipschitz function.

Lemma 9.1.1.
Suppose A € A° (see Definition 8.3.4) and > -
such that ANTA

no,t

neo 0% A < oo. Then for each | > 0 there is an ng € N
can be expressed as the graph of a Lipschitz function with Lipschitz constant less

than or equal to | over Ano ; for each i € {1,...,2™},

Proof:
Let ng be such that

Z 9‘4 tan™ 1([)
n=ngo
Then let 2,y € ANT, , for some i € {1,...,2"} with z # y. We then know that there exists a
n1 > ng such that for each ng < n < ny z,y € TA for some k and that zeTh
for some integer j. Without loss of generality let x € TA and y e T,

jandye uil

nl J+1-
By choice of ng we know that
AR tcwf1 l
’Vlo i
and by Lemma 6.2.1
tan=1(1)
Tt <204 <o
1/] n1 J+1 1. 5
so that when writing X = {z € R?: z =z + ty,t € R}
TA tan=1(1)
X T, J
<290 <4——=.
Q/JA;} % d} T it 5
Thus L .
tan=" (I tan—
PYa an5 ()+4 an5 ©) =tan" (1)
novi



and hence
|7T(A7‘1‘0’i)l(x) — AL .)L(?J)|

|7TA30,1.(3U) — 74 (y)]

nQ,i

< tan(tan™(1)) = 1.

Noting that (z,y) was an arbitrarily chosen pair of distinct points completes the proof. &

Combining this Lipschitz result with Lemma 8.4.1 we are now able to present the rectifiability re-
sults. We first prove, both by Lipschitz graphs and the existence of approximate tangent spaces,
the rectifiability under particular conditions of A. type sets. We present both in concuring with
the philosophy that multiple proof methods allow further insight and understanding of the objects
involved and are in any case interesting in their own right, as well as for comparative purposes.

We first prove the rectifiability using the Lipschitz lemmas to show that certain A. type sets can
then be expressed as H!-almost everywhere subsets of a countable union of Lipschitz graphs.

Theorem 9.1.1.
Whenever A € A° satisfies > o0 02 < co, A is countably 1 rectifiable.

n=0"n

Proof:

Since >0, 04 < oo there is, by Lemma 9.1.1, an ng € N such that for each i € {1,...,2"} ANT,
can be expressed as the graph of a Lipschitz graph over Ano,i. That is there is a Lipschitz function
fi : R? — R? such that ANTz ; C fi(A ;). Then when S ; : R — R? is a transformation
satisfying S4 ([0, H (A2 )]) = A2 we can define F,:R— R? s F; = fio S  to write

n()l n()l n()l

ngz

2m0 2m0 2m0

A= UAm WchZ 2 URM®
=1

Since this is a subset of a form of expression of a set that is defined as being countably 1-rectifiable,
the proof is complete. O

The second proof applies to sets with converging sums of base angles. In this case "potential" approx-
imate tangent spaces eventually stop rotating and we can then use the approximate j-dimensionality
to say that the set will be arbitrarily close to the limit of the rotating bases of the triangular caps
containing a point and will thus have an approximate tangent space there.

Theorem 9.1.2.
Any A € A° satisfying > 0 0% 4 < 0o has an approzimate tangent space with multiplicity one almost
everywhere and is thus countably 1-rectifiable.

Proof:
We first prove that A — E is countably l-rectifiable. Let y € A — E, write H := H'(A) and let
J € C&(R?). It follows in particular that f is Lipschitz with Lipschitz constant F; and that there is
an M such that

sptf C Bp(0).

Let F = max{1, F1}. Since the other case is trivial we assume M > 0.

Let ¢ > 0 and define 6 = ¢/(MF). Since A € A° we know that A — E satisfies property (iv),
we therefore know that there is a p, > 0 such that for all p € (0,p,] there is a L, , such that

ANB,y(y) C LY /? and we know in fact from the proof that A — F satisfies (iv) that we may take
) where AA is taken such that Hl(AfM(y,np)) (p/2,p] and y € TA

A
y*PHAnpﬂ(y n npyi(Y,mp)”

Mp,i(Y,1p)
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. AL . .
Since Yo7 62 < co we know that {¢p """’} is a convergent sequence and thus there is an affine

space L such that

L : Asi(n y)
Yr = lim """,
n—oo

We then choose p; such that p; < py, so that for all p < p; the Aﬁp i(yom,) taken as described above
is such that 5
tan ™ (Yl )< = (9.1)
npyi(y,mp) 2

with n, large enough for Lemma 9.1.1 to gaurantee that AﬂTfp ity

of a Lipschitz function with Lipschitz constant 6, and since Y - 07 < 0o = [[o(cosf2) ™! < oo

we take py such that n,,is such that J]°,, (cosf) ™t < 1+e.

n,) Can be expressed as the graph

Now let A < £, Then we have that AN By (y) C (Aﬁm(y,m))

SAM/2 g6 that by (9.1)

AL 1)
tcm(wL"*’l(y’”)) < 3

so that AN Bya(y) € LM% and thus n, xA N Ba(0) C (L — y)M°.

On this set we also have

MFe

17(@) = Sl @) < Lipf -0M < e

=
for all z € ny \(A— E).

By otherwise considering the positive and negative parts of f we may assume that f > 0. We
then note

/ F)dH(y) < / cdH! + / Flrs () dH ().
Ny A (A—E) Ny A (A—E) Ny A (A—E)

Then by Lemma 9.1.1 and Lemma, 6.3.1 we know that we can apply the area formula with Jacobian
calculated by taking the maximal vertical variation per unit along L as ¢ plus 2(20%). That is, with
the Jacobian factor bounded above by (1 4+ 952)!/2 so that we have

/ fdH'(y) < / 6dH1+(1+952)1/2/f(y)d’Hl(y)
Ny, A (A—E) Ny, A (A—E) L

< M (r(A— )+ (1+92) / F(y)dH ()

A fdH?

= €(1+5)2M+(95)/fd7-{1.
L

which implies

< e(l+e)2M+ (149 —1)

/ fdH' — / fdH?
Ny, A (A—E) L

Since this is true for all € > 0 it follows that

/ fdH! — / fdH*
Wy,A(A_E) L
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so that
lim / fdH! = / fdH? .
A=0 S, A (A-E) L

That is there is an approximate tangent space for y. Since this is true for all y € A — F and
H(E) = 0 we have

lim / fdaH' = lim / faH!
A=0Jp A A=0Jn, \(A—E)

for all y € A — E. That is, A has an approximate tangent space for all y € A — F, and therefore
H!'-almost everywhere y € A which implies that A is countably 1-rectifiable. &

Although these results are not for the entirety of A. type sets, the completion of the proofs of
rectifiability fall under the proof for general I sets. We thus prove the more general result, stating
the cleaner result for A. type sets as a corollary.

Theorem 9.1.3.
Let A € K.
If H*(Aso) = 0 then A is countably 1-rectifiable.

Remark:
It would clearly be desireable to be able to show that

HYAL) =0=H' (Aw)

which would be an a better situation since we have better understanding, perception and control of
sets in Ap than sets in A. It is, however, not necessarily in general true (though it may be). We do
in some limited cases have control from Ag. For example if A! is countable then H! (A ) = 0 and
so the above Theorem would then state that with such a A, A is countably 1-rectifiable.

Proof:
We note that

A=A U G Ap =AU G FAH) =AU [j Fla-1 (AL

m=1 m=1 m=1

Since, from Lemma 8.4.1, we know that F,-: is Lipschitz for each m € N, it follows that A is
countably 1-rectifiable should H!(A) = 0. &

Before stating the corollary of rectifiability for A. sets, we prove the non-rectifiability result. In
this way we will be able to demonstrate necessary and sufficient, that is, an equivalence of condi-
tions for sets in A. to countable 1-rectifiability.

Theorem 9.1.4.
Let A€ K and HY(AZ}) > 0. Then A is not countably 1-rectifiable.

Proof:
Let 0 be any potential multiplicity function for A. Then 6 € L!'(H!, A,R) and thus 6 is H!-
measurable. We then claim that there is an » > 0 such that

HYF'({z e A:0(x) >r})NAL) >0.
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This is true for otherwise H!'({z € Apo : 0 o F(x) = 0}) > 0 and thus H!({x € A: 0(z) = 0}) >0
contradicting 0 being a positive function on A. Set

B:=F '{z e A:0(z) > r}).

Since 6 is measurable, {x € A : §(z) > r} is measurable and thus, since from Proposition 8.4.1 we
know F is measurable, B is H!-measurable in A .

It then follows from Lemma 8.5.2 that there exists a By C B with H!(B;) = H!(B) > 0 such
that ©'(H!, F(B;), F(x)) = oo for each z € Bj.

Consider now f € C2(R? R) such that xp,() < f < XB,(0) Where x is the characteristic func-
tion. Then for any tangent space, P, to A that may exist with respect to 6 at F(x) for some x € By,
it follws, as in Proposition 8.4.3 that

o > B(F(x)) /P f(y)dH (y) = lim / FW)0( + My)dH' (y) = oo.

Thus

i [ S @) £ 0F@) [ o)

Since this is true for any z € F(B;1) and H!(F(B1)) > H'(B;1) > 0 it follows that A does not have
an approximate tangent space with respect to 6 at x on a set of x of positive measure.

Since this holds for any allowed selection of 6 it follows from the definition of rectifiable sets and
Theorem A.0.1 that A is not countably 1-rectifiable. &

We can now state the cleaner result for A, type sets from which the particular results for A. and
A, follow.

Corollary 9.1.1.

For an A, type set A, A is countably 1-rectifiable if and only if
H((AZH?) =0.

Proof:

We note that A being an A. type set implies A € K. Thus from Theorem 9.1.4, if H*((AZ})4) > 0
then A is not countably 1-rectifiable.

Conversely, should H'((AZ})?) = 0 then there must exist at least one point, , for which II# # co.
Since 1:[;4 is constant for all x € A for an A, type set it follows that ﬁ;‘ # oo for each y € Ap o and
thus for each y € A. It follows that A2 = ) and therefore that H'(AZ) = 0. It thus follows from
Theorem 9.1.3 that A is countably 1-rectifiable. &

Theorem 9.1.5.
Let 1/100 > € > 0 and A be constructed as in Construction 4.2.1 with this £. Then

A
IT;) = o0

and thus A is not 1-countably 1-rectifiable.

111



Proof:
From Lemma 8.3.1 we know that for any A. type set Ay,

Hl(/[nA H cos@A1 ﬁ cos@A1

Since from Lemma 4.3.1 Hl(f[nA) = (1 +nl16e2)'/2 it follows that

= lim H (cos02 )~ = Tim H'(A,") = Tim (14 n162)"/2 = cc.

Thus = € (AZ!)# for each x € Ag . This completes the first part of the proof.

It thus follows that H'((AZ!)#) > 0. From Proposition 8.4.1 (3) it then follows that H'(AZ) > 0.
Therefore, from Corollary 9.1.1, A is not countably 1-rectifiable. &

The proof then that A. is not countably rectifiable that we present is an indirect proof, assuming that
A¢ is countably 1-rectifiable, which then implies that A. is countably 1-rectifiable. This contradiction
completes the proof and the rectifiability results.

Theorem 9.1.6.
A. is not countably 1-rectifiable.

Proof:
We prove the Theorem by contradiction. So, suppose that A is countably 1-rectifiable and so can
be written in the form

A C AU | Fu(R)

n=1

where H!(Ag) = 0 and F), : R — R? is a Lipschitz function for each n € N.

We now consider that by the construction of A. we know that A. N T; ; is Asi-:, constructed
on a base of length H!(4;.) (which we note importantly is greater than 2!~% so that should A. be
well defined, then so too is the new A.).

It thus follows that by contracting A. by 2'~% in the vertical direction and by H!(4;.) in the
horizontal direction we have that the result C'(A.) is a copy of any A. N T; ; (where C' is the con-
traction map satisfying the said conditions).

We thus know that there exists contraction maps for each i € N and j € {1,...,2}, O;; : R* — R?,
such that
0ij(As) = A-NT

which implies O;;(A:) C A NT;; and also that O;;(E) = ENT; ;.

Define

i
MAE =A. N U U Oij(Ag

€N j=1
and

5
Ra,i=Ac~ [ AU J0i(Ae) | = Ac ~ M.

€
ieN j=1
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It follows that _
Lijn = 0i(F(z))  ineN,je{l,..,2%}

are Lipschitz functions L;j, : R — R2%. We note that {{Lijn}i7neN}?;1 is countable. Also that R4,
ia a subset of the union of balls (or deformed balls) around points in E. Also that by taking the
further addition to A., O;;(A:), we infinitely reduce this area by continually refining the deformed
ball around each e,,, that is

Ra.c | N 04;(Br,((0,0))).

n€eN {7,5:0;,;((0,0))=en }

With this set up we can then attack the proof.

We first note that

co 2°
MAE = A.U U UO”(A
i=1j=1
oo co 2°
C AUl F.®R UUOU<AOUUF )
n=1 i=17j=1
o oo 2° co 28 oo
= Aul{JE®ulJJos)ulJ U U Lin®)
n=1 i=1j=1 i=1j=1n=1
oo 2° oo co 2
= s UoutnuJmmoUU U L)
i=1j=1 n=1 i=1j=1n=1
where
oo 2° 00
H | Aou | 0i(40) | < H'(Ao) +ZZH 1 (Ao))
i=1j=1 i=1g=1
o 2°
< HY A+ DD MM (Ag)
i=1 j=1
o 2°
= 0+ >0
i=1 j=1
=0
and J,, F,(R)UU;=, U i1 U>2; Lijn(R) is a countable collection of Lipschitz images.

It thus follows that M 4_ is countably 1-rectifiable. That is

My, = MyU | M (R)

n=1

where My = Ag U Ufol UQi 0,;(Ap) is a set of measure zero and {M,}°2; is a reordering of
{Foyos U{Lijn ) . We now show that H!(R4_) = 0.
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Let n > 0. For each i,n € N there exists j, = j,(i,n) € {1,...,2'} such that 0;;((0,0)) =
That is, O;;(Br, ((0,0))) covers the part of R4_ centered on e,, so that since

lim H'(4;.) =0

11— 00

for each n we can choose an i,, € N such that diam(O;; (B, ((0,0)))) < 72~ ". Then, since

Ra. C G Oij, (B, ((0,0)))

n=1

and since diam(0;;(By, ((0,0)))) < n2~™ < nfor each n € N we then have that {O;, ;, (B, ((0,0)))}22,
is an appropriate covering set to estimate H}] and in fact we have

H;(RAE) < H}; (U Oi,;, (B ((0,0)) ) < dem Oi,;, (B ((0,0)) 2772 "=
n=1

n=1

Thus
H'(Ra,) = lim H, (Ra,) < lim 7 = 0.
n—0 n—0

Now since A, = M4, U R4_ we have

A: = Ra, UMy U | Mo (R)

n=1
Since H'(Ra,) =0,
HY(Ra. U M) =0

and it follows that A. is countably 1l-rectifiable. This contradicts Theorem 9.1.5, thus A, is not
countably 1-rectifiable. &

This completes our study of rectifiability, we move on to the measure results before finally considering
the dimension of Koch type sets.

9.2 Measure Formulae for Koch Type Sets

For our measure result we present, as previously seen, a formula that resembles the Area Formula.
We could also have applied the Area Formula (for more information on the Area Formula see for
example Simon [25]) but not without some difficulty. We therefore present a self contained direct
proof of the result.

Theorem 9.2.1.
Let A € K. Then, for all measurable B C Ao the following holds
H(F(B)) = / fldH" + H (F(B) N Au).
B~AZE

Remark:
As with the rectifiability theorem, the statement of this theorem would be simplified should it be
true that

HY (AL ) =0=H' (Ax) =0
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in which case we could write

H' (F(B)) = / TdH!,

B
since, should H'(AZ!) > 0, both sides would then be co so that they could in this case also be

oo
reconciled with one another.

It seems as though an application of the Area Formula for rectifiable sets is all that is necessary,
which is likely to be true, however, since the convergence of II,,(z) is equivalent to the convergence
of 3, 0; ,(x)? and thus not necessarily of 3 6 ;(z), the Jacobian is by no means a trivial quantity

to calculate or show that it is equal to II on Ago ~ AL

Proof:
We note that for any measurable D C Ay

Fo)= ) U T
n=1:€X,

where
X, ={ie{l,..,2"} : i = i(n,z) for some z € D}

and so can be constructed from countable unions and intersections of H!-measurable subsets of R?
and is therefore measurable. Also, since from Lemma 8.4.1 F), is Lipschitz for each n € N these sets
are also measurable.

Further, since F,, is a Lipschitz map for each n € N, if D C Ay so to is F,,(D) for each n € N.

It follows then that
HY(F(B)) = H'(F(B) N As) + H'(F(B) ~ Ax).

We consider the second term.

Let ¢ € N and define

-1 .
Hpq = {xEAO:n <II(z) <
q

< |3

We see

B~AY = G Hy,.
n=1

we now estimate H'(F(B N Hyg)). Firstly Hy,q C A, /4 so that F(B N Hyg) = Fla
Lipschitz graph with LipF|a,,, <n/q and so that H'(F(B N H,,)) < %Hl(an).

(BNH,,)isa

n/q

It is now necessary to establish a lower estimate. To do this we define
Hpgj:={x € Hpq: ﬁ](x) >(n—1)¢g > ﬁj,l(x)}
and note that H,q; N Hy,4; = () whenever i # j. We also define

Jng =1{i€{1,..,27} 1 i =i(n,2) for some = € H,4;}.
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We note that F|s,, , o Fj_1 is a Lipschitz expansion map on Fj(A,,/,). It follows that

H' (F(Hpg)) = H'(FoF; ' oF;(Hngy))

1€Jng

= Hl ( U ‘FlAn/q OFj_l(Fj(anj) ﬁAj,i))

= Y H'Fla,,, o F; (Fi(Hngi) N Aj))

1€Jng
> Y HNF(Hag) N Aj)
1€Jngq
= > T H (Hagy N [(i—2)277,i277))
1€Jng
n—1_, . —§ o—j
> ) - HY (Hpg; N [(i —1)2779,i277])
i€ Jng

n—1
= q Hl(anj)-

Since Hp, is the disjoint union of {H,4;}52, it follows that

n—1

q

n—1
q

H(F (Hag)) = 3 H (F(Hngy)) > == 3 H! (Hugs) = ——H (Hug)-

It then follows that
n—1

q
Correspondingly we have direct from the definition of H,, that

H (Hpg) < HY(F(Hny)) < §H1<an>.

-1 .
r HY (H,g) < / M < EHl(an)
q Hyg q
so that
- 1
/ MdH' — H (F(Hp,))| < aHl(an)
Hpg

and therefore

/ dH* — H*(F(B ~ A;}))‘ =
B~AZY

i/ MdH' — HY(F(Hp,))

< > / ﬁdﬂl—Hl(f(an»‘
n=1 an
o 1 L
< Y “H'(Hpg)
n—lq
= IH(B~AZY
q
1
< -
q
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Since this is true for all ¢ € N it follows that

/ fldH' — H (F(B ~ AZ1)| = 0
B~AL!

and thus that
/ MdH' = HY(F(B ~ ALY).
B~AL!

This gives us

HH(F(B)) HHF(B) N Ase) + H(F(B) ~ Ax)

= / MdH + HY(F(B) N Aw)
B~AZ!

completing the proof. { As we mentioned at the beginning of this
chapter, we present the simplified result for A. type sets. In this case, however, the result does not
simplify. This is because, should Hé) = oo for some A. type set A then it could be this very A that

allows for creation of measure. Then for any set B C Ag,o with H!(B) > 0 we get
/ [dH' = H'(F(B)) = .
B

However, for a measurable set B C Ago with H!(B) = 0 from which measure is created we would
have [, IIdH' = 0 but H'(F(B)) > 0 preventing the simplified version of Theorem 9.2.1

/ dH' = HY(F(B))

holding as desired.

This, therefore, concludes our discussion of measure formulae and we now conclude with the re-
sults on dimension.

9.3 A Full Spectrum of Dimension

We complete Part I with a discussion of the Dimension of A. and Koch type sets. As we discussed
earlier in this Chapter, in order to gather results about dimension we essentially want to place sets
either inside of or around sets that we know the dimension of. Unfortunately, different A. type
sets do not generally stay neatly inside of one another. We therefore need to use our centralisation
results to rearrange each stage of construction to ensure that strict containment is retained by the
necessary sets.

As with the rectifiability results, the A. type sets allow for a more cleanly stated result than the
Koch type sets. Unlike some of the previous result, we shall not prove the aesthetically more pleasing
results for the A type sets as a corollary of the more general Koch type sets but shall rather prove
the result directly. This is mainly because the proof attached to the A. type sets is much cleaner
allowing the essential ingredients to be more clearly seen. The proof associated with the Koch type
sets is then presented afterwards where the difficulties of allowing full variation of base angles require
a much more technical proof.
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As we will see from the results, a complete closed interval in R represents the possible dimen-
sions of sets in K. This shows the rich variation of the sets, which could otherwise perhaps have
been of a dimension from a finite set of values.

Following the proof of the dimension of the A. type sets, we present a Corollary showing how
the dimension of A, (which we directly proved to be 1 in Theorem A.0.1) follows easily from the
more general result.

Theorem 9.3.1.
Forr >0 and A € A” (see Definition 8.3.4)

In2

dimA = 7ln(%(1 + (tan(r))2)1/2)"

Proof:
The proof is dependent on the dimension of I'.. We thererfore first note that for any scaling A € R

dimAly = diml..
We also note that
F1/2(tan7") eA”

and finally, recalling dimI'. = —in2/(Inl) where [ is the shrinking factor associated with approxima-
tion stage, we calculate that [, the approriate [ for I'. € A" is

n2
In(3(1 + (tan(r))?)/2)’

=~

Now, since for A € A” 62\, r we have 61 > r for all n € N. Thus, since 6,,"/*“"” =1 for all n € N
and thus also H%AégT;i”““”” C T} Proposition 8.5.1 then gives us that

Hl (Aél)rl/Q(tanr) —° A.

Since then
co 2" o 27
H' (AT 1 2¢0ans
A= ﬂ U T’réj’ Hl(Aél)F1/2(tanr) = m U Tn,j 0,1)4 1/2(tanr)
n=0j=1 n=0j=1

and [{1,...,2"}| = 2" > 2772 for each ny € NU {0} and each n € NU {0} we can apply Lemma
8.5.2 to get
dimA > dimHl(Aél)Fl/Q(mnr) = dimFl/g(mnr). (92)

Then, for any r; > r there is an ng € N such that for all n > nyg 9;;‘ < 1. It follows that by choosing
arbitrarily and j € {1,...,2"°}
Hl (AA

n0,J

)T§1/2(tanr1) D) TA

ng,j*

Now taking T € A" to be the set generated by starting with 72 . and oL = A

tngs We have by
Proposition 8.5.1 that T —¢ H* (A )T 2(tanr)-

It then follows from Lemma 8.5.2 that

dimT; < dimH (AL, )T 2gtane) = dmL jagane)-
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Taking a finite union of such sets will not alter the dimension, thus

210
In2
dimA =dim | | T; = dimT; < dimI'y/a0anr) = — .
J‘L:J1 J J /2(tanry) ln(%(lJr(mn(r))z)l/z)

Since this is true for all »; > r it follows that

n2

dimA < 7ln(%(1 ¥ (tan(r))2)172)

= dimrl/Q(tunr)'
Combining this with (9.2) gives the result. &

Corollary 9.3.1.
dimA, = 1.

Proof:
Since from Proposition 8.3.1 we know A. € A° for any given ¢, we can directly apply Theorem 9.3.1

to calculate I I3
n n
dimA. = — — ~1.
“" In(E(L+ (tan(0))2)172) —  In(1/2)

&

Our final result is then the characterisation of dimension for the more general Koch type sets. As
we see, the basic principle is the same as that used for A, type sets, the difference being the need
to adjust for individually varying rates of change of base angle in the more general set up. We
slowly eliminate those more rapidly decreasing, leaving those with a base measure enough to make a
difference that reduce base angle slowly and would then, in the sense of Theorem 9.3.1 have higher
dimension. It is these sets that dictate the dimension of the general whole set.

Theorem 9.3.2.

Let A € K and

vt = sup{a: H'({z € Ay : lim 97’?71-(”@) >a}) >0}
and ~

75 = sup 07
xEAQ

Then

diml ) = fi(7) < dimA < f1(3") = dimT ;)
where

f(y) = (1/2)(tany)
and therefore
Ay = — In2
T () (T (tany )7
Should the hypothesis that for B C Ay H(B) = 0 = H'(F(B)) = 0 hold, or should for a given
A € K we have H (T a,) = 0 then

dimA = f1(7{).
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Proof:
We start by proving that dimA < fi(v{'). Let & < ~{*. Then H'(Y¢l) > 0. There is therefore
an ng € N such that H'(T.) > 2. Tt follows that T, N [(i — 1)2 mo j2710] £ () for at least
2n—m e {1,...,2"}. From Wthh we have T, N Fn(ng) # () for at least 2" ¢ € {1,...,2"}. In
particular, this is true for all n > ng. Since 67, is decreasing in the sense that 62, > 6.} 12— for
ke {0,1}

{ n+1,i n+1 i 5} - U{TA,i : 9;‘,1’ > ‘E}

For each T4 .. if there exists an n > ng such that there are less than 2"_2"°T7;‘fi C T;{fm satisfying

no Z7
T3 N F (T EJr) # (), then there is a minimum such n, say no, .

Note that if T}, N F,.(Tc}) =0 for all T,  C T

Thus for all n > ng; there are less than 2"~2" T4, C T/} | satisfying T}, 1 F,.(T¢}) # 0.

Suppose that there exists such an ng, for each i € {1,...,2"°} then let ng,, := max;c(1, . 2m0} N0, -
We then see that for each n > ng,,
2m0
T2 TN Fa(Ye) # 0 < Y WD T T2 5 and T, N F(TE)) # 0}
om0
< Z 2n—2n0
=1
= 2nno,
This contradiction shows that there exists a trianglular cap T;% y such that for all n > ny
{17 T C T and T 0 FL (X)) # 0} > 22727,
Define
Jni={j €{1,...,2"7 T C T and T2 0 R, (YE)) # 0},
N 7’
ﬂ U 7., and I. ﬂ U #4501, 1
n=0j€el, n=0j€el,
where I,, := Ju4n,- We note that since A’ C A dimA’ < dimA. Note also that A; := I. and

Ag := A’ are in the form of A; and Ay in the definition of centralisation (Definition 8.5.1). By
observing that [I,,| > 277" for each n € NU{0} and that ny € N, we see that in order to show that
dimA > dim Ty () it suffices, by Lemma 8.5.2, to show that I'. —¢ A’

Clearly, forany T2 .1, C Aotmgr)s Tre voniri Frotmi1(Tel) # 0, also Tat 0y C T2
so that

no+m,int(i/2)+1
Trjzéngrm int(i/2)+1 N Fno+m+1(Tg_&) 7£ (Z)
and thus
A _
Tn0+m,int(i/2)+1 N F"o-i-m(’rgi) 7é @7

so that 74 (/241 C Az and hence we have Ay, 1) C A2y, for any m € N.

no+m,
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We see that in putting T into the required form for Definition 8.5.1
~ 2TL ~ ~
[=A4y,T) =TV, = Ain. T}, = A1, and ny(m) =2,
i=1

So that A; and A; individually satisfy the requirements of 4; and As. Also, ny(m) = na(m). We
therefore only need to show the existence of the transformations Tn’?;’AZ.
We note that each A, = Tnfw- is a triangular cap of base length

m—1 ~ m4ng—1
2—m (H (cos§)‘1> x (base length Tp ;) = 27"~ H (cos&)™!

=0 =0

and of base angle &.

We also note that for each ¢ € {1,...,n1(m)}, i € {1,...,n2(m)} so that As,,,; exists and is a

triangular cap T, for some k € {1,...,2"0"™} with base angle 2 | > ¢ and base length
27O L ke
Since a sequence {f,, ;(,,)} of angles in the construction of A is decreasing and 6} +mk = § it follows
that
B m+no—1
270 M e 227 [ (cos€) T = H (Av)-
=0

It follows, since A1,,; and As,,; are isosceles triangles where As,,; has a longer base and larger base
angles that Ag,; is strictly larger than A;,,; in the sense that Aj,,; could be placed inside of Ag;

and thus there must exist an orthogonal transformation Tnsjf ? such that
T2 (A1) C Az
Since this is true for any m € N and i € {1,...,n1(m)} it follows that I < Ay = A’.
Since this is true for each ¢ < ¢! it follows that
dimA > dimIp a2y = f1 (vh).
For the < inequalities, we let B C Ao be H“-measurable for each a € R and show that for v :=

A
SUPgzeB 91
dimF(B) < dimI ¢,y = f1(7).

Let ¢ > v and for each n € N define
Xn 1= U{T,’:i : 97’371- > ¢}

Then W,, := T, — x» is the finite union of triangular caps T}, with 0;} ; < ¢. We see that for each
such triangular cap Tﬁj c ®,,

HY AL ) < HY(AG) = HY (A4 [)
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and that for each later triangular cap T;ﬁm k C T;;‘J-

A r
O S 0m < E=0,10) .
It therefore follows from Proposition 8.5.1 that for each T, C W,, T, < T'j(e). Therefore since
AN Tﬁj equals the final set resulting from the Koch set construction starting from 777 ., Lemma

8.5.2 gives

’nj’

dim(ANT;) < dimI pg)

and hence, since this is true for any such triangular cap, that
dim(ANT,) = dim(ANT;;) < dimD ).

Now, suppose that there exists a y € F(B) with

yé |J v
n=1

Then for each n € N 64 > ¢ and therefore 1 = lim,, .o nyi(nyy) > &> .

n,i(n,y)

Since this is impossible it follows that F(B) C U32;(¥,, N A) and therefore that dimF(B) <
dimIf¢). Since this is true for each £ > v we have dimF(B) < dimI'fp) = f1(B).

To finish the proof we note that fi(y) > 1 for each v > 0, and consider firstly that for each
T € Ap, 02 <~4' so that immediately from the above we have

dimaA < diml'y,ay = f1 (v3h).
For the second conclusion we consider B = T;} It follows that

dimY A+<dszf ) = fl(’h)

Should the hypothesis hold that for all D C Ay, H!(D) =0 = H(F(D)) = 0, or should we directly
have H'(T., 4, ) = 0, then we have H'(Y,a,) = 0 and therefore

dimY VAT < dszf ) = fl(’h )-
We therefore have
dimA < maz{dimY a, T a } < dimlp a) = A,

which completes the proof. &

9.4 Notes

All of the results in this chapter are our own. We do however, note that Theorem 9.2.1 is similar
in concept and proof idea to the well known Area Formula. A detailed discussion and proof of the
Area Formula can be found in Simon [25]. Also, Theorem 9.3.1, although completely our own, is
implicitly dependent on the work of Hutchinson [15].
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Symbol/Term Definition/Result Page
‘H" Hausdorff r» measure Definition 3.1.1 12
dimA Hausdorff dimension (of A) Definition 3.1.1 12
©*"(u, A, x) Upper n-dimensional density Definition 3.1.2 12
©7(u, A, x) Lower n-dimensional density ~ Definition 3.1.2 12
©™(u, A, x) n-dimensional density Definition 3.1.2 12
7y,p Blow up function Definition 3.1.4 14
LP neighbourhood of a subspace Definition 3.1.4 14
Multiplicity one class Definition 3.2.1 15
sing M Interior singular set Definition 3.2.2 16
sings, M Singular set Definition 3.2.4 16
regM Interior regular set Definition 3.2.2 16
regs, M Regular set Definition 3.2.4 16
St (2) Lemma 3.2.1 16
Definitions (i) to (viii) Definition A 17
Questions (1) to (3) Questions 3.2.1 19
(weak) locally finite H/ measure Definition 3.2.5 19
N 25
As, 25
A2 25
e-triangular cap Definition 4.1.1 26
L. Construction 4.1.1 27
A j Construction 4.1.1 and 4.2.1 27, 31
T; ; Construction 4.1.1 and 4.2.1 27, 31
re Definition 4.1.3 28
E(") Definition 4.1.2 28
Ae Construction 4.2.1 31
€; Construction 4.2.2 32
A Construction 4.2.2 33
mg Projection onto a set Definition 5.1.1 38
Ty Definition 5.1.1 38
Uy, Uy Definition 5.1.2 38
v, v Definition 5.1.2 38
enter and exit the same side Definition 5.1.2 38
Tuy,p Lemma 5.1.1 39
G(n,m) Grassman manifold Theorem 5.2.1 41
Cs(x) d-cone Definition 6.0.1 46
Cs.1. Definition 6.0.1 46
¥4 angle between A and B Definition 6.2.1 48
0 Definition 6.2.2 49
P(n,e) Definition 6.2.2 49
OL(") Definition 6.2.2 49
R, Lemma 6.2.1 50
01(+) Proposition 7.1.1 65
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Eg.pa
lm,i; Tm,i
Am,i
A. type set
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AA
n

D,, dyadic interval of order n

Dn,i
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i(n, B)

AT

Fn

Bi', By, B

A —¢ B A centered in B

Aim, Aimj
A,B
7.2
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! Aera A;ﬁ%a Aooa Agol
T;17 Ta: T;—il—7 Ta-i—
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