Chapter 7

Miscellaneous Results

In this section we present some further interesting and relevant results found in association with the
study leading to the classification that we have presented, but that were not directly necessary in
the classification. In particular we show that our present counter examples would not be sufficient
for a -fine version of property (v) and that A. does not satisfy (vii), showing that there is no direct
strength ranking of the 8 definitions in Definition 3.2 since A5 which satisfies (vii) does not satisfy
(iii) which is satisfied by A.. Further, in the proof that A. does not satisfy (vii) we see that the sets
Ae do infact spiral infinitely finely in a sense that will become clearer.

We also discuss how to extend the presented counter examples into higher dimensional counter
examples. We show one such extension since the process of extending to higher dimensions remains
the same for each of the sets.

7.1 The Existence of Spiralling

We start by showing that A. does not satisfy (v) for each § > 0. Similarly, but oppositely to Lemma,
6.5.1 we show that there is also a function ¢; : R — R such that for each € > 0, for each § < d1(¢),
Ac does not satisfy (v) for §. Thus, although for each § there is an A, that fits, there is no e such
that A. satisfies (v) for every 4, thus showing that A. and indeed T'. are not sufficient as counter
examples to any d-fine version of (v).

Proposition 7.1.1.
There is a function
51 :R—>RT

with 61(z) > 0 for all & > 0 such that for each € > 0 and all § < 6(¢) A does not satisfy (v) with
respect to 0.

Proof:
First, we take

1
yGAgﬁBﬁ <(§,25>)

and p > 2, say p=po =3 (po = 5 as Bi,2((1/2,0)) D A. It is not hard to see that we then have

OB, (y) Nint(T5,1) # 0 and 9B,(y) Nint(T3,4) # 0
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so that, more particularly
B,(y) NT51NA: # 0 and B,(y) N T34 N A # 0.

We now note that sup,cp, . 7,(z) < € for i = 1,4 and that clearly inf 5. ((2,20)) my(x) > 63%5. It
) 39 ?

follows that a vertical gap between y and points in AN B,(y) of at least % exists both "to the left"
of y (that is points z € T3 1 where we must have 7,(z) < 7m,(y)) and "to the right" of y (similarly
to above, that is points z € T5 4 where we must have 7,(z) > 7, (v)).

Similarly clearly, we know that 7,(z) > 0 for all © € T3; (and also in fact T3 4) and conversely
we have 7, (z) < 1for all z € T5 4 (and in fact, but unimportantly 74 4). Also we have, since ¢ < 1/4

me (oS i g) (8 6B
=Y 27 32'2 " 32 1287 128

This means that in the best case any cone has less than a horizontal length of % to spread out to
meet a set of vertical distance % away from its center.
Supposing, to begin with, that L, ,||R, (that is L, , is parallel to the horizontal axis) then the

cone angle must be, to cover the "best case mentioned above" at least

o (12)

Now, should L, , not be horizontal, we have that it is either positively or negatively sloped, but in
either case, it continues to go through y. In the former case, we have that the cone angle estimate
is improved for points in T3 1, however, continuing to observe the y = (63/128,63¢/32) case with a
z € T34, it is clear that the resulting required cone angle for this z can be no better than the cone
angle required to include z = (1,e). We must therefore have that the minimum cone angle is no

better than
o1 () L ((55)
0 = tan o H1(Ly,p —y) — Rella,2) > tan YERY

1
(125) (1)

where || - ||¢(1,2) denotes the norm on the grassman manifold of 1-planes in R?. A similar argument

works considering points in 73 ; in the case that L, , is negatively sloped possibly improving the es-

(%)

timate for points in T3 4. We therefore have that the cone angle tan =" ( (6_0)) cannot be improved
128

5

31e
on, so that for any ¢ < E 32 g Ae cannot satisfy (v) with respect to §.
128
Thus the function §; defined by
(%)
51 (l‘) = 3
(13%)

satisfies the requirements for the Proposition. O

[

To prove that A. (and indeed I'.) cannot satisfy (vii) irrespective of §, we have to show that although
no spiralling occurs in the vicinity of any given point in A, at a given approximation level, spiralling
does indeed occur.

This means that for any point € A., any radius » > 0 and any potential approximating affine
space, there exists a (smaller) triangular cap in B,.(z) whose base is arbitrarily close to perpendicular
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to the approximating affine space.

It then follows that an appropriate choice of testing points and testing radius smaller than or equal
to r in such a triangular cap will allow us to show that for any § < 1 A. and indeed T'. cannot
possibly satisfy (vii).

Proposition 7.1.2.
For each 0 < ¢ < 1, A, does not satisfy Property (vii) with respect to 0.

Proof:
Let 6 € (0,1), ¢ > 0 and y € A.; then should A, satisfy the definition then for each p, > 0 there
would exist an affine space L, ,, such that for all z € A-NB,, (y) and all p < p, B,(x)NA. C LY, +.

Now, since we are assuming that A. satisfies the definition there must be a function,
¢:(0,1) — (0,2m)

dependent only on § which describes the cone outside of which no boundary points of a ball around
a point x € B, (y) are in A.. Specifically, by defining

[reominn (22255) 20)
E4pz =42 €0B,(x):tan Fiy > ¢(9)

AN E¢(§),p,az = @7

for all z € AN B,,(y) and also that there is a 7(d) > 0 such that for all z € AN B, (y), p € (0, po]
andall z € B, -4 o,z
2 PRI

we have

BPU(‘D (Z) NA= (D (71)

That is, around points in the central part of Fy ,, we can put a ball depending only on p and ¢
that will be completely empty of A..

We observe that y must be in some triangular cap of the construction of A, T}, ;, for some n
and 4, also such that 7}, ; C B,,(y). We make the nomenclatorial choice to call the vertices of the
triangular cap T, i @m.i, lm,i, and 7y, ; chosen such that

e ©04,, (am,i) =0, T 004, (Im:) <0, and 7, 004, ,(rm,i) > 0.

That is a denotes the "top" vertex as we have previously defined, and [ and r denote the identical
"eft" and "right" base angles.

We now note that for each k£ € N we have

T n+k
n+k,2ki4ak—142 .
T, i+2(ik) =Y ¥(ie)
i=n
for some appropriate point z(i, k) € R2.

We now need some properties of the sequence {(i,¢)}32,. First of all we recall that

lim 4(i,e) = 0. (7.2)

— 00
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and that we can specifically write

8¢
-1
¥(n,e) = tan ((1 n 16n52)1/2)
so that using the facts that 492 (z) > 0, and %% (z)|,_o = 1 (and hence for sufficiently large n,
tan=1(1/en) > 1/(2en)), we get for any ng € N
8e = 8e
= )\ > =
> 9= Y o () 2 2 e =
n=n n=n n=no

where E denotes the smallest integer greater than or equal to 1/¢2. Tt follows that there exists a
sequence, {ny} , such that for each k € N

nE—1 ne+1

szs szs

So that there is a triangular cap T),, ;) (for the appropriate i depending on k) such that

TrJ_ (7’" i(k) — ln i(k ) 2km —
tan~t [ —weo et B I EIT I —1,6) + (s )
T Ly po (Tri(k) = bng,i(h)) 2

Thus, by (7.2) there exists a k € N such that

WL (7’" i(k 7ln ik) 2km — T _ 1)
mn-1<Lwo with) T i) ) 2RI 1 o) e e) < 290

TLy po (i) = bng i) 2

That is the triangular cap, T),, i) has the property that

T itk) € F =il
1,1 (k) $(8)+2-22 F=00) ,\rnk i) =g i) blng iy

The endpoints themselves are not in A, however, we can choose z;, z, € A such that

N0y itk) = L ih) |
2

N7y itk) = Lngik) |
2

|:L'l — rnk,i(k)| < and |ZT — lnk,i(k)| <

so that there is a zr € B, 1., .4 |(€1) such that z. € Bys)pr, . —l,, il (Zr)- Since, by our
choice of triangular cap, Ty, i, 21 € By, (y) and |ry,, (k) = In,,i(k)| < po this contradicts (7.1), proving

the proposition since € and § were chosen arbitrarily. &

7.2 Higher Dimensional Analogies of I'., A. and A.

We now come to the higher dimensional generalisations of the counter examples.

It is unfortunately straightforward - unfortunate from the view of finding interesting mathemat-
ics - to generalise our counter examples to higher dimensions so that we obtain no further insight
into how the structures of sets work. In each case we simply cross each set with either an interval
or simply the plane of the required dimension, depending on whether or not we need the set to be
bounded (as we do for py uniformity properties). We show, as an example, how A. is extended, and
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demonstrate how it continues to satisfy Property (iii).

Suppose that we are taking j-dimensional approximations in R/, We take
S.=A. xRITL =Cc Ry x RI7! x RA¢,

where Ry = R4, = R but have been given names for notational convenience. R4 and R4, are
identified with R and R?/R as we have been considering in the preceeding sections so that A. C
R4 x Ry, . Further S. is constructed inside of

RITF =Ry x RITE x Ry x RF7L
We can thus see S, as

SE = {y = (y1,$2, ...,xn_l,yg,o, ,O) : (yl,yg) S AE C R4 X RAc,mi S R}
C RaxRITUx Ry, x REL

where RJ~! = R/~! and R¥~! = R*~! are again notational conveniences denoting the dimensions
along which the extension of A. into S. exist (RJ~!), and the additional codimensions (R¥~1).

Proposition 7.2.1.
Se shows that the answer to (iii) (2) is no for arbitrary j.

Proof:
There are two properties that we need to show that S. has. That it has the fine weak j-dimensional
d-approximation property, and that for each z € S; and R > 0, B?k(z) = +o00.

First, to show that S. has property (iii). We take arbitrary y € Sc and § > 0. We now need only
show that there exists a j-dimensional affine space, L, , for each p > 0, such that S. N B,(y) C L%,.
We note that since A. has property (iii), there exists for the chosen § and y a 1-dimensional affine

space Ly, ,),, such that A. N Bﬁ(yl,yg) C L?S Lya)p” It is therefore reasonable to take and test

Lyp = Ly, y),p X R, as our affine space. Clearly

o s o
SeN By(y) = (AN TRAXRA, (Bp(y))) x R}, 'c L(511y2)1p X Ry t= Lg’fp,

which gives us that S. has the appropriate property.

To show that there is infinite measure in each ball By, (y) we take an Ry > 0 and a y € S..
Let R = min{R, d(y,dS:)}. We then get that

H' (SN Br,(y)) > H(S:N Br(y))
> HI(S.N([-R/4, R/4J7T* + (41,0, ..., 2,0, ...,0)))
= HYAN([-R/4,R/4* + (yr,y2))H " (m 1)
R\’
= AN RARAE ) ()
= 4»007
showing that S. is not weak locally H/-finite. %

7.3 Notes

The results presented in this chapter are all our own.
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