Chapter 6

Fitting the Counter Examples

We mentioned in Chapter 3 that only questions with the answer "no" remain to be shown. In this
section we show these results by appropriately fitting counter examples. For us this means showing
two things for each of the sets constructed in chapter 4. Firstly, that the sets constructed in Chapter
4 do in fact correspond to the definitions with respect to which they were constructed. Secondly, we
show that the a given constructed set has the property required to make it a counter example (one of
not being j-dimensional, not having locally finite H"™ measure or not being j-dimensional depending
on what a given set is supposed to be a counter example to). As mentioned in the introduction, the
higher dimensional cases will be discussed the following chapter. The reason the general dimension
is not dealt with here is that they in any case reduce to the 1-dimensional case as we shall see.

There is in fact, in terms of completing the classification being presented here, little that remains
to be shown. What remains, however, is technical and involved. So much so that, as mentioned
in Chapter 4, we do not present everything here. We state but do not prove that A. and A, are
not countably j-rectifiable. The proof follows from and is presented after the more general results
presented after all of the necessary preparatory results in Chapters 8 and 9.

Fitting the counter example to (iv) (2) in particular shows that a non-rectifiable set (working on
the later proved understanding that A. is not rectifiable) spiralling at all points and magnifications
does not spiral too tightly around any given point.

The structure of the Chapter is that we show that As, satisfies (vi) which will answer (vi) (2)
in the negative. We do the same with A? for (iii). .A. is then shown to satisfy (iv) (actually via first
showing that A. satisfies (iv)), from which (iv) (2) is answered in the negative, and as a corollary
therefore (iii) (2) is also answered in the negative. I'. is then shown to satisfy (v), from which it
follows from Lemmas 3.3.2 and 6.5.2 that (v) (1) is answered with a no, and therefore as a corollary,
the remaining questions: (v) (2), (ii) (1) and (ii) (2) are also answered with no. We then finally
state formally that A. and A. are not rectifiable. Through Proposition 3.1.1 we can then use A.
and I'; to show that the answers to (i), (ii), (iii), (iv) and (v) (3) are no.

The proofs that the sets satisfy the definitions are mainly geometric and will actually mostly involve
fitting sets in cones and then considering an appropriate neighbourhood of the center point. For this
we need to develop notation to describe the cones we are using. As we will also find sets that should
be covered by two cones meeting at their vertex, notation and theory also need to be developed for
angles between sets. The appropriate definitions will be made as (or shortly before) they are used.
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Definition 6.0.1.
Let A be a 1-dimensional affine subspace of R%, § > 0 and x € R2, then A is said to be a subset of
the §-comne at x, Cs(x), if

Ac{y=(y1,y2) €R?: |ya| < 8lynl} +z =: Cs(x).

More generally, if L is a 1-dimensional affine space in R?, x € AN L and ¢ is the orthogonal
transformation such that
d(L) =R and ¢(x) =0

then we say that A is a subset of the 6-cone around L at z, Cs 1 (x) if

AcC o ({y=(y1,y2) €R": |ya| < 8lan|}) =: Cs.L(2).

6.1 Simple Counter Examples

We now present the classification results that follow from the use of the simpler counter examples.

Proposition 6.1.1.
Let 6 > 0. Then As satisfies the definition (vi) with respect to §, and further does not have weak
locally finite H' measure so that the answer to (vi) (2) (weakly locally finite measure) is no.

Proof:
There are two types of points to consider. If z = (z1,22) € A with = # (0,0), then

sgn(ml)sgn(aig)&x)

n

x € graph (

for some n € N. Then for r, =

n

5
B, (z)NAs C graph (59”(””1)59”(“) m) C G

where Gs,,, , € G(1,2) is the affine space defined by graph((sgn(z1)sgn(z2)dx)/n), for each r €
(0,7¢). Thus, by setting L, = G5/, ., = is an acceptable point with respect to (vi).

If x = (0,0), then by construction, we may choose L, = R and note that Gs/,, C Cs(zx) for
each n € N, so that A5 C Cs(z).

It follows that As C R% = L for each p > 0. Thus choosing an r, > 0 at random we have
As C L2 for each r € (0,7,]. Tt follows that A satisfies (vi).

Note, however, that due to the fact that there are countably infinitely many lines of length 2r
going through any ball of radius r around (0, 0),

H'(As N B.((0,0))) = oo for all 7 > 0
so that As is not weak locally H! finite. It follows that the answer to (vi) (2) is no. &

Remark: It is in fact true that should definition (vi) be made to be a d-approximation for some
d > 0, then Ay, satisfies definition (vi) for all 69 < d. It is, however, not necessary to prove this
generalisation here.
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Proposition 6.1.2.
A? satisfies (ii), and further does mot have weak locally finite H' measure so that the answer to (iii)
(2) is no.

Proof:
There are two types of points to consider. If x = (x1,72) € A2, x # (0,0), then

x € graph <Sgn(x1)59”(932)$2>
n
for some n € N. Then for r, = 4&&‘1),
2
B, ()N A2 C graph <SQH(I1)S;L]TL(I2);L' >

Since also x? is differentiable there is a tangent line L, to sgn(z1)sgn(rs)z?/n at x and a radius

that can be chosen to be smaller than r,, r,, = ry, (§) > 0, such that for all

2

N B, (x)

sgn(xi)sgn(za)x
h
Yy € grap n

I (y) — mpe(2)| <dl|re, (y) — mr, (2)]

so that B,.(x) N A% C L9 for each r € (0,7,,]. Thus x is an acceptable point with respect to (vi).

If x = (0,0), then by construction, we may choose L, = R and note that for |z| < §

2
B2l _ el _

n n

for each n € N. Thus it follows that for each r € (0,7, = §] A2N B,.((0,0)) C L"°. It follows that A2
satisfies (vi).

As in Proposition 6.1.1 the fact that there are countably infinitly many lines in A? of length greater
than or equal to 2r going through any ball of radius r around (0,0), shows that A? is not weak
locally H! finite. It follows that the answer to (vi) (2) is no. &

6.2 Spiralling

For A. and A. we first show that the required measure properties hold. That is that both of the
sets are not weakly locally H!-finite. We then demonstrate that the sets A. and A. indeed satisfy
(iv). We have to work quite hard to get the necessary classification results for I'. and A.. This
arises from the fact, as has been mentioned and as will be shown in the next chapter, that I'. and
A, develop spirals. In order to show the required properties we need to show that these spirals are
not too tight. We now prove a technical lemma showing that we can find a "spiral free" view of our
sets I'; and A.. We can then discuss the measure properties of A. and A..

In order to discuss spiralling, we clearly need to discuss angles. For us, most essential will be
the angle between two sets, particularly the angle between two triangular caps. As what is meant
by simply saying ‘the angle between the sets A and B’ is unclear, we make a definition that will be
sufficient for our needs.
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Definition 6.2.1.
Let A and B be two sets that can be divided by some G € G(1,2) (in a sense that is explained below)
and which have a single common point z. Then the angle between the two sets 14 is defined by

Y = min{f : Cy(z) D G(AU B) for some G € G(1,2) dividing A and B}

where as usual G(1,2) is the Grassman manifold, G(-) denotes the rotation that takes G € G(1,2)
to R, and G divides A and B if for all X € A, 7,(G(X)) <0 and for all Y € B, 7,(G(Y)) > 0.

a0 0=

Figure 6.1: Angle between sets

Remarks: Clearly if A; C A, and By C B are such that A; N B; = AN B = {z} then 1/1}31 < .
Note that the order is important due to the dividing of A and B. The notation 1% will always
denote that A is in the "left cone half" (i.e. m,(G(A)) C R, ) and B is in the "right cone half" (i.e.

7 (G(B)) C R}) for the G giving the minimum. We note that 1/18 is subadditive in the sense that,

if A, B and C are sets for which the definition makes sense for the pairings {A, B} and {B, C} with
z1=ANBand z; € BNC, then

V& _2ynny SUB T YE,
provided that such a value is less than 7/2 (to ensure the dividing of the sets continues to make
sense). Note that wg:; is translation and rotation invariant. We note also particularly that in con-
sidering the angle between sets A and B, if there is an affine space L such that ANL = {z,z,} (i.e.
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contains the point common with B, z, and another point), then 5 < 1/12 otherwise it would be
impossible to contain z, and B in a cone of angle wé around z.

We also need to consider the angles that are actually intrinsic to the triangular caps.

Definition 6.2.2.
Let n e NU{0}, j € {1,2,...,2"} and A be one of T'c, A, or A., then we see from the definition of
triangular caps and Constructions 4.1.1, 4.2.1 and 4.2.2 that the triangular cap T, ; is an isosceles
triangle. We denote the angles of T, ; as 9,’% and T — 29,‘% where
A _ o -1
0, ; = tan™ " (¥(n,e)),

where )
2°7 "¢
b(n:€) = Freemyie
2on+1
and where the ¢ is that associated with the construction of A.. Should the set A be understood we
will simply write 0,, ;. Further, should the 0, ; be independent of j for the understood set A; 0, ;
will be written On, -.

Also, suppose that L is an 1-dimensional affine subspace (i.e. a line) of R? of finite length (so
that it has a middle point 1), then we use Or, to denote the orthogonal transformation such that

Or:L—R

and
OL(l) = (0,0).

Remark: In this chapter the angles 9;;‘7]- are independent of the index j. However, in Chapters 8
and 9 when we look at general forms of the construction of A., the angles will be allowed to vary
in both n and j. For uniformity and simplicity later in the work, we introduce the symbol for the
more general needs immediately.

Note: We are now in a position to comment further on the selection of ¢ < 1/100 in Constructions
4.1.1, 4.2.1 and 4.2.2 (we have previouisly commented on the selection in the remarks following
Constructions 4.1.1 and 4.2.1. The selection of such a small ¢ is actually to ensure that we have
¥(0,¢e) < w/32. To ensure that this requirement on (0, ) is satisfied we need ¢ selected so that

tan™! % < =
(1+ 16e2)1/2 32
(coming from the definition of ¢ (n,e).) That is

8¢
——— < 0.09

(1 + 16e2)1/2
so that taking 0 < & < ﬁ, as we have done, is sufficient. Since we in any case want to look at very
small € and eventually will also be looking at ¢ — 0, this presents us with no problems. We will
therefore henceforth assume the ¢ used to construct I'., A., A. and other similar sets is less than
0.01. The reason for this assumption is that it is required for the spiralling lemmas to work.

Lemma 6.2.1.
Suppose that Ac, A. and T are as defined in Constructions 1,2 and 3. Then
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(1) should two neighbouring trianglular caps, T, and T, ;+1, be contained in another (necessar-
ily earlier) triangular cap T, iy (m < n) then

7 < 20050y < 2001 and

(2) the rectangle

Rni =Tz (OAn,,i (Uj:\i7j|§1An,j)) X [_2H1(An,i); 2H1(An,z)]

)

satisfies
Oy (Rni)nAc ) Tny

Jili—jI<1

for each A € {A., A, T}

OAn,i(A) N Rn,i C U;J;};—lOAn,iw(TnJ)

Figure 6.2: Restricted spiralling

Proof:
We give the proof for A., from which the proofs for A. and T'. follow. This is true for A. since
A C A and it is true for I'; since we make all claims with respect to the triangular caps. The
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only additional tool used is properties of 6, ;. However, since the only property of ¢, ; from the
construction of A. that is used is that 6, ; < 0., ; for m < n and since 0,,; = 6y, for all n € N,
j €{1,...,2"} in the construction of I, all arguments involving 6. . also translate directly to T'..

For (1), let T, ; and T, ;41 be two neighbouring triangular caps with common point z. Then,
by the construction of A., z = z,,41,2i, is the vertex of a triangular cap T},, ;, for some n; < n
and some appropriate i. Further, since z € T, j;) and T, i, Tnjiv1 C To () SO that z & E(Ap, i)
m < n; as otherwise the vertex a,, ;, cannot be in Ton,j(i)-

Then by considering G,,, ;;, € G(1,2) chosen such that G, ;,||An,,;, we see that we can choose
two "halves" (divided at 2y, 41.2i,) of Gn, 4y, G, ;. and G;t . | such that

n1,%1 n1,917

Any+1,2: GM i T

1+1,2i yig

me 'L++Z < 9”11' and /l/}Anl+1’2i171 < 9”17'
18]

n1+1,24q

L . . . . . A
so that, since in both cases in finding the minimum over cones, from which the definition of ¢, 1
ny,i]

G _+4z
and wAnl’ﬁ ,;_, comes, we used the cone with respect to Gy, ;—1, we have
nl EE

w2n1+1,2i1

nq41,2i0—1 — U7

Since then T}, 1,2, —1 and T},, 41,25, are constructed on the interior of T5,, ;, with a base angle of
Onyi+1,., it follows similarly that

G _+z
I N and ¢, " <0, +6
Gn1 4tz = TN ni1+1,- Tnyt+1,2ip-1 — M1y ni+1,-

so that, since we have, as above, in both cases again made the statements about . with respect to
a cone around G, ;,
Thnq+1,2iq -1
Thq+1,2iq
Now, since 0,,.. > 0,,.. for all n < m it follows that 6,,, . < 6,,. < 6p,. and that 0,,, 11,. < ,,,. < (0,¢)
so that

S 9711,‘ + 9n1+1,‘-

Tnyt1,2i0 -1 < 2(m,e) < 2¢(0,¢).

Tnq+1,2iq

Finally, we note that now, by construction (in that A. is defined through intersection of the construct-
ing levels) that T}, ; C T}, ;, and T}, ;41 C Ty, 4, +1 S0 that ’L/J;:’;l < 2¢(m,e) < 2¢(0, ¢) proving (1).

For (2), note that since ¢ < 1/100, ¥(0,¢) < 7/32. We first need to make a subclaim.
The claim is that if T}, ; and T, ; are triangular caps with 2 < |i — j| < 3 then
T [ Oac | U Tug | | N72(On, (Tng) = {zni—2, 2ni41}) = 0.
Jili—jl<2

From this claim we will prove (2). As claimed above, we note that since

U A4w;=4n |J Tu;

Jili—jl<2 Jili—j|<2
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it is sufficient to prove that for any 1), ;, T}, i+1, Th.i+2 We have

AN, OAmHl U Tn,j X [_2H1(An,‘)72H1(An,‘)] - U T
Fili+1—j]<1 Jili+1—51<1

We now consider our claim.

We prove the case for j — i > 0, the other case following symmetrically. Note that we know
from (1) that

Y < 29(0,¢)
and that
Yt < 20(0,e)
so that
Tt < 41h(0,€).

Thn,iv2—(Zn,it1—2n,i) —
Indeed, since
Th,i
an 2 < 2¢(O7E>7

Ji+3 —

Tn,i Tn,i Tn,i Tn,i
= Uy, < P T < 69(0, ).

vit3—(Zn,it2—2n,i41)—(Zn,it1—2n,i) — " In,it1 Tn,it2

Tn,i
Th,it2—(2n,i+2—2n,i)

It thus follows that w?f"i

T am(onira—ns) = 61(0,¢). Since A, ; is a line meeting the center of the
cone

Cop(0,6)(G(2n,i)) D G(Ani U (Tnyiv3 — (Znyit2 — Zn,i)))
it follows that
04, (G™H(Coy(0.6)(G(2n.4)))) C Cray(0.0)((0, H' (Ani)/2))
and thus that
Oa s (Tnits = (zniv2 = 2n4)) C Cf0.0 (0, H (An0)/2))

(where C* denotes the right hand side of the cone), and therefore from the translation invariance
of the cone containing a set
Jr
Ot i(Tnits) C Clapo,e) Ry 2,000 (Fniit2):

This being the worse of the two possible j cases (j =i+ 1 and j = i + 2), an identical proceedure
can be used to show that O, ,(Tn,i+2) C Cgyo ) m. 12, ,,, (Znit1):

We note that 8¢(0,¢) < 12¢(0,¢) < 13,2—; < 5. Thus
WI(OAn,i(Tnyi+2 U Tn,i+3)) - [Wz (OAn,i (Zn,i+1))a OO)
and
T2(Oa, ;(Tnyiv2 UThiv3) — {2n,it1, Zni—2}) C (M2(Oa, (2n,i41)), 00).

We find that a similar argument to the above produces Oa,, ,(Th i+1) C C

41/}(0’8)7&“”,1_(2”71-), so that
since 4¢(0,¢e) < /2 — (0, ¢)

max{ms(y) : y € Oa, ,(Tni+1)} = (04, (2n,i+1))

Ty (OAn,i(Znﬂ:))

= max{m(y) :y € Oa, :(Tni)}

= WI(OAn,i(Zn,ifl)) +H! (An)

> max{m(y):y € Oa, ,(Tni-1)}
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Thus clearly

T | U 0an(Tng) | € (00, ma(Ony, (220))],
jili—j|<2

so that

T U Ox, . (Tnj) | N72(Oa, (T2 UThiv3) — {Zn,it1, 2nji—2}) = 0
Jili—jl<2

proving the claim.

We now prove (2) by induction. We first note that for Ag and A; it is obvious, as there are 1
and 2 triangular caps respectively, meaning that A is clearly a subset of any "triple" (using " " as
it is actually impossible to choose a triple) of the form required. For A, there are four triangular
caps, so that there is something to prove. However, we note that for any chosen i every triangle is
either in the "triple" around ¢ or has an index j such that 2 < |i — j| < 3. Since A is a subset of the
four triangles, the required result follows directly from the above proved claim.

We now prove the inductive step. We suppose that the inductive hypothesis (i.e. (2)) holds for
all triples {7}, i—1,Tp, Tp,i+1} for a given p € N and show that it holds for an arbitrary triple
{Tpt1,i-1, Tpt1,is Tpt1,i4+1}. We set

T =U{Tpt1,i-1,Tpt1,6 Tpt1,i41}-

U Tpt1,5 C U Ty

Jili—gl<2 Jilin—jl<2

Note first that

where i1 = (i/2)"—1 (2" is the smallest integer ¢ > ), so that the triple is in fact a subset of a triple
in the pth construction level. This triple in the pth construction level, by the induction hypothesis
contains exactly 6 trianglular caps in the (p + 1)th construction level, namely {TPHJ}?Q;?_S with

Tpt1.i € {Tp+1,2i1-1, Tp+1,2i, }- We also have by the inductive hypothesis that

21142
ANRyi € | Tpraye

§=2i1—3

It follows that
2i1+2

ANRy1iN Ry € Ty

j=2i1—3

Now, since i € {2i; — 1,2i1} we see that for all j € {2i; — 3,...,2¢1 + 2}, either |i — j| < 2 or
2 < |i — j| < 3. From the above proven claim it follows that for each j such that 2 < |i — j| < 3,
(Terl,j ~ T) n RerlJ‘ = @ Thus

AN Ry, NRyy, C 7.

The induction then follows in the case that R,+1; C R,,i,, as in this case
AN Rp+17i =AnN Rp+17i n Rp,i1 cT.
We therefore prove that this is the case. It is clearly sufficient to show that

OAp,il (R;DJrl,i) - OAp,il (RPJ&)
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as in this case

1
Rp+1,,=0a4,,, 004

Pyt

(Rp-i-l,i) - OAp,n ° 0;11 (Rp,il) =Ry,

p,i1 p,iq

which is what we need.
Without loss of generality we may assume that
O,y (Tpr1) € A((0,0), (=H'(4,/2,0), (0,eH (4,5))))
C A((O’ 0)7 (_Hl(APJ/Qa 0)7 (07 Hl(APa])/loo)))

where A(a,b,c) denotes the triangle in R? with vertices a,b and c. The other cases follow with
symmetric arguments.

We have
ﬂ'oAP,il( U Opril(Tp—i—l,j)) C
Jili—jl<2
Hl(A 14) Hl(A ) 2H1(A 1.5)
—HY(A, ). — P+l 1_ DyJ L)\ 10,17 Y
{t( H ( P,J)? 100 +( t) 2 Y 100 e[ I ] )
so that
OAp,il ( U OAp,il (TP + 1h7)> c {:L’ = y+2’}
Jili—jl<2
where

y € {t (—Hl(Ap,j),—iHl(fggl’j)) +(1—1) (Hl(sz”j), ZHl(ﬁl)’(’)“’j)) :telo, 1]}

and .
z€ {2sH1(Ap+17j) (1—00,2) ts € [—171]}.
That is O, , (Rp:) is a subset of the quadrilateral with vertices
V1= (=154 (Ap), 2H (Aps15)), Vo = (0.96H (Ay5), 2.04H" (Aps1,5))
Va := (104K (A, ), —2H (Aps1 ;) and Vi := (—1.46H (A, ;), —2.04H  (Api15))-
27 < 2(0,¢)

Tp,j+1

Noting then that, due to the fact that ¢(0,e) < 7/32 and the general fact that 1
(from (1)) we get

™
H (12 (O, ., (1)) > cos () H!(4y) > 0.9H' (4,)
for all j such that |j —i1| < 2, and since
1
H (Api15) = 5(1+162%) 21 (A k) < 0.6H (Ap 1)

we have

Ry, = OAp,il (R;DJ&)
O [LIHY(Ap), LIH (Ap )] x [-2H!(Ap,), 2H (A )]
D [=3HY(Apt1,5), 3H (Apt1,5)] X [=3H (Apt1,5), 3H (Aps1,5)]-
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Since clearly
Vi, Vo, Vs, Vi € [=3H' (Api1,5), 3H (Apy )] X [=3H (Apy14), 3H (Apia )]

it follows that O, (Rp+1,:) C Oa, ., (Rp,i,) and thus that R,y1; C R, ;, completing the proof of
(2). %

6.3 Measure Properties of A, and A,

To complete the classification of Definition A we need to establish some measure properties of A,
and A.. The complete proofs of the properties, however, involve further construction and prelimi-
nary results that apply to more general sets than to just A. and A.. So as not to doubly present
material, we provide the necessary proofs for the properties (stated below) that we need for A, and
A in Chapter 8. They will be presented as corollaries to the necessary technical results proven after
all of the necessary definitions estabilshing the generalisations of the set A. have been made.

In essence, we need to show that A. and A. are not weakly locally H!-finite. In particular we
present the following results:

Lemma 6.3.1.
A, is not weakly locally H'-finite.

Corollary 6.3.1.
For each y € A., O (H!, A, y) = oc.

Lemma 6.3.2.
HY(A:) = .

Corollary 6.3.2.
A. and A. are not weakly locally H*-finite.

In order to apply the more general results proved later to the above listed lemmata and corollaries
we do need to prove a technical proposition specifically applicable to A. and A, concerning the
angles 0;}; for A € {A., A}.

Proposition 6.3.1.
For each sequence {i(n)}>2, satisfying i(n) € {1,...,2"} for each n € NU {0}, and for each A €
{Ae, A}

o0

H (00597‘3’1.(”))71 = o0.

n=0

Proof:
Since A. is constructed as simply A. with an open set removed, the construction has not been
altered. Tt follows that 0= = = 97’33(”) for each n € NU {0} and i € {1,...,2"}. For this reason, it

n,i(n)
is sufficient to prove the proposition for A..

From the definitions of cos and 9;3;- (Definition 6.2.2) we see that for any defined choice of n and ¢
'AE
~ MU (AT 0 )

cosh<) 1 =
( n,z) %Hl(A;l;)
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Since Hl(Aff) Hl(AAE for each n € NU {0} and each i,j € {1,...,2"} we have

HY A 5 1) + MY (AL o))
HY(AZS)

(cos@fj )yl =

and thus .
X A M4

YL HM A R4
By using Lemma 4.3.1 and the fact that the ¢ can be arbitrarily chosen, we see that for any sequence

{i(m)} o

(cos@ﬁj )t

ﬁ (cost; )™ ﬁ m“ = Hl(Aas) — H(A%e) = (1 4+ n16£2)V/2,
m= = HI(AD)
Thus .
[T (costie,) ™" = lim (1+n16:%)1/2 = o,
m=0

&

The Proofs to Lemma 6.3.1 and Lemma 6.3.2 will be presented following Proposition 8.4.1 in Chapter
8. However, under the understanding that lemmata 6.3.1 and 6.3.2 hold, we can prove now directly
corollaries 6.3.1 and 6.3.2.

Proof of Corollary 6.3.1

Let y € A. and p > 0, then there is a y1 € A. N B,s(y) such that B,/2(y1) C B,(y). Since
y1 € Ac there is a triangular cap T, ;(n,,) > y for each n € N. Also, there is an ng € N such that
H'(An,i) < p/4 for each n > ng and i € {1,...,2"} so that T}, ;(,,.,,) C B,/2(y1) for each n > nq.

Now, from the symmetry of the construction we see that Tj, i1 i(ng+1,y) iS @ H (A, 41.4) scale
copy of Ay—ny.. However, from Lemma 6.3.1 we know
Hl(A27n0£) == OO, thuS

HI(AE N Bp(y)) 2 Hl(As N Tno+1,i(no+1,y)) = Hl(AnoJrh) ~H1(A27n05) = 00.

It follows that

1
O(As,y) = lim —H (Bp(y) N Ac) =00
p—0 w1p

Proof of Corollary 6.3.2
For A this follows directly from Corollary 6.3.1.

Now, suppose that A. is weakly locally H!-finite. Then for each y € A. there is a radius p, > 0
such that H'(A. N B, (y)) < 00. {B,, (y)}yea. is an open cover of A. so that since A. is compact

there must exist a finite subcover {B,, (yn)}fj:1 of A, and further we know that

M :=max{H' (4. N B,, (yn)):1<n < Q} < .
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It follows that

Q Q
HY(A) < H? (AE n B,,. (yn)> <> HYANB,,, (yn)) < .

n=1

This contradiction implies that there must exist a y € A. such that for each p > 0 H'(A. N B,(y)) =
oo and therefore that A. is not weakly locally H!-finite. %

Remarks:

1) Although having an infinitely dense point is not that uncommon, and in fact having a set of H*
positive measure of points of 7! infinite density is not uncommon, that A, is a set of Hausdorff
dimension 1 of positive 7! measure that has infinite 7' density at all points of its closure is less
common, which makes A, a set of peculiar interest in its own right without association to the prop-
erties that we are currently discussing. This interesting feature is one of the motivations for the
generalisations of A. in the later Chapters of Part I of this Thesis.

2) Althouh we have only shown that one such point exists for 4., we can in fact show (and will
later show) that there is a subset of A. of infinite H! measure for which each element, x satisfies
Ol (H!, A.,x) = o). It may be, but is not necessarily true that the peculiar property of A. (that
each element of A, has infinite density) holds for A..

3) The fact that there are infinite points of density in A. and A. becomes important for a sec-
ond reason (that is, for a reason other than showing non-weak local H!-finality) in showing the
non-rectifiability of A. and A..

6.4 Approximate j-dimensionality of A. and A.

Having discussed the measure theoretic properties of A. and A, that are required for them to be
appropriate counter examples to (iv) (2), we now go on to show that A. and A. actually do satisfy
the requirements of the Definition of (iv).

Lemma 6.4.1.
Ac and A: satisfy property (iv).

Proof:
Since A. C A, proving that A, satisfies (iv) is sufficient to prove the Lemma. We therefore proceed
to prove that A. satisfies (iv).

We first consider an arbitrary triangular cap, 7 ; from somewhere in our construction. From
the construction it is clear that it must be isosceles. From Lemma 6.2.1 and Construction 4.2.1
(particularly the constructed vertical heights, and Lemma 6.2.1 (1)) we see that it must have the
two sorts of angles, ¥)(n,e) and ™ — 2¢(n, ), where, as in Definition 6.2.2

227 "ng
_ -1
(n,e) = tan <_(1+n1652)1/2 )

2n+1

so that we have

227716 227n+n+1€
lim ’l/)(n,E) = lim tan71 m = lim taIfl <—) =0. (61)

n—oo n—oo o n—oo (1 + n16€2)1/2
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We now choose arbitrarily some § > 0 and x € A.. We show that there is a r, such that for each
r € (0,rz] Ac N By(z) C LY.

Since the endpoints of A, ; for each n, ¢ are not in A., z is not an endpoint so that we know
from (6.1) that we can choose an r, > 0 such that B, (z) N A C T,,,j, for some choice of ny € N
and jo € {1,...,2"} and such that for all n > ng

05 := tan~1(8) > 3(n — 1,&) + 2¢(n — 2,€) > ¥ (n,¢).

Since x € Ac N Ty, 4y, for each n > ng, x € T, j(n) for some j(n) € {1,...,2"}. For each r € (0, r,]
we can therefore choose an ny > ng and j; = j(n1) such that H'(A,, ;,) € [r/2,7).

We now consider = as simply being some element of T;,
parallel to A, j, containing x.

and set L,, to be the affine space

1,J1
We now check that 22~ "1¢ > %T. First, we note that
22—mtmitle 8e

§ > tan(y(ny,e)) = (1+nl6c2)172 (1 + ni16e2)1/2

which we get from the selection of n;. Also, from the selection of n; with respect to r that we have

(1+ (n1)162)1/2
2m

r> Hl(Anlajl) =
so that
8e(1 4 (n1)162)1/2
(1 4+ ny16e2)t/22m —

giving the desired inequality. This gives us that the vertical height of T}, j,
diameter of the neighbourhood that we need around L, , (that is Lifx). Thus

3—ny

or >

is less than half the

By(z) N Ty, j, C LK.

It only remains to show that the remainder of A. N B,.(z) is inside of an appropriate cone around
Lﬁfm. Since from the choice of n; with respect to » we have that

By (z) C 7y (Oa,., (Ujimji<14n,)) x [22H' (Any), 2H" (An)]-
Thus from Lemma 6.2.1 (2) it follows that the remainder of A is contained in
U Tn1,i
:0<]i—j|<3

so that it suffices to prove that these four caps are in the appropriate cone around Lffl. We note
that the union of these four caps is the subset of three T;,, _1 ; caps,

Tn11j1—2 N Tn17j1—1 N Tnl,j1+1 N Tn11j1+2 C Tn1—17j1—1 N Tn1—17j1 N Tn1—1,n1+1'

By construction, the maximal angle divergence from Lffx that an edge on a neighbouring triangular
cap of order ny can have is 2¢)(n — 1,¢) and similarly for a triangular cap of order n; — 1, the
maximal angular divergence is 2¢(n — 2,¢). Adding these together (which is actually worse than
could possibly occur) we find that the maximal angle requirement for a cone around Lf;E is
2Y(n—1,e)+2¢¥(n—2,¢) < 3¢Y(n—1¢)+2¢(n—2,¢)
< 0Bs.
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It follows that we now have
B.(z)NACLY,

Since x and § were arbitrary, this shows that A. has the fine weak 1-dimensional e-approximation
property with local r, uniformity, (that is, it satisfies (iv)) and thus completes the proof. O

Corollary 6.3.1 and Lemma 6.4.1 allow us to provide the answer to question (iv) (2). We present
this result formally in the following Theorem.

Theorem 6.4.1.
The answer to (iv) (2) is no.

Proof:

From Lemma 6.4.1 A, is a set that satisfies (iv) (2). Since, from Corollary 6.3.1 we know that A is
not weakly locally H!-finite it follows that A. is a counter example to the answer to (iv) (2) being
yes. &

6.5 Approximate j-dimensionality of I'.

As previously discussed, the remainder of the answers to our definitions are completely dependent
on showing that I'. satisfies (v). We show that this is true, or at least sufficiently true in the
following Lemma. Sufficiently true here means that for any § > 0 we can find an appropriate ¢
such that T’z constructed with this ¢ satisfies (v) for the chosen §. This is sufficient since definition
(v) is dependent on some arbitrary but fixed ¢ unlike (iv) which requires ¢ to be able to be chosen
arbitrarily for any set satisfying (iv). We show first that I'. satisfies (v) and then how the remaining
classification for questions (1) and (2) follows.

Lemma 6.5.1.
For all § > 0 there exists an 5 = £5(0) > 0 such that T, satisfies property (v) with respect to 6.

Proof:

Let 0 < € < 1/100. We show, in fact, that there exists a function
d0(e):R—R

such that
lim d(e) =0
e—0

such that T'. satisfies (v) with respect to d(¢). It then follows that for all § > 0 there is an 5 > 0
such that 0(e5) < J; I'. then satisfies (v) with respect to d(es) and therefore with respect to 9.

Let w € T and p € (0, po](= (0,1]). Then, as in Lemma 6.4.1, we know that there exists an
n € N such that w € T, ; for some i with H*(T}, ;) € [p, 2p).

Now from Lemma 6.2.1 (1) {¢0? H=' < 2(0,¢) < {5 5o that

Tn.jy1dj=i
O (Rui) = 01 (m0(Oa,, (Ujimji<1Ang)) X [=2H! (An), 2H! (A )
> On, ([F(0.5HN(T,) + 0.9HN(T;,.)), 0.5H (Tn,.) + 0.9H! (Tn,.)]

X [—2H (A s), 2H (An)])
041 ([=p, Pl X [-2H (An i), 2H (An0)]).

U
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This implies that
By(w) C O3} (Rni)- (6.2)

From Lemma 6.2.1 (2) it follows that
I'.n Bp(w) C U Tnyj U OZ}”(RnJ)C
Jili—jl<2

Since, from (6.2)

By(w) MOy, (Bni)" =0,

I.NB,w)c |J Tny (6.3)

Jili—jl<2
and more importantly, that
I'.n Bp(w) ~ U ij = 0.
J:li—jl<2

Since
sup{my(x) : ® € Oa, ,(Tni)} < EHl(AW-) <e2p

and since from Lemma 6.2.1 (2)

OAn i U T’”/J - 04710(0,6) ((O’ 0))
gili—jl=2
and hence
sup ¢ |my(2)| : 2 € Oa,, U T ; N By(w) < sin(4¢(0,¢))p
Jili—jl=1

it follows that
sup{|my(2)| : 2 € Oa, ,(Tc N By(w))} < sup{2e, sin(4(0,¢))}p = sin(41(0,€))p
and thus by choosing L., ,||A, ; we have

sup{|ﬂ'i‘w7p(z)| czeTl.NBy(w)} < sin(4(0,¢€))p,

that is T. N B,(w) C Ly ()¢ Thus T, satisfies (v) for § > sin(44(0,¢)). Which, since
lim. ¢ sin(44(0,¢)) = 0, by setting d(¢) = sin(4¢(0,¢)), proves the lemma. O

The dimension of T'. follows from the work of Hutchinson [15]. The proof is quite involved and so we
do not present it here. We will however apply Hutchinsons proof regularly as a fundamental theorem
of dimension to which we can reduce all of our investigations into the dimension of the generalised
Koch Sets considered in Chapters 7 and 8. It is therefore important to state the Theorem and to
show that I'. satisfies the conditions required for the Theorem to be applied.

We first mention a result of Mandelbrot [22] required to make sense of the result in [15] that we use.
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Proposition 6.5.1.
Let {r;}Y| be a sequence of positive real numbers, then there exists a unique D € R such that

With this D we can now consider the appropriate result about dimension from [15].

Theorem 6.5.1.
If

where S; are contraction mappings and if there exists an open set O such that
1040
2. ¥, 8:(0)co
3. S;(0) N S;(0) = 0 whenever i # j.

Then if LipS; =: r; for each 1 <i < N and D is the unique real number for which

N
>
i=1

dimK = D.

We can apply this Theorem directly to our case with I'. by appealing to Proposition 4.1.1 as follows.

Lemma 6.5.2.
For each € > 0, dimI'; > 1.

Proof:
By Proposition 4.1.1 there exist, for each ¢ > 0 contraction maps S7, Se with LipS; = l(¢) > 1/2 for
each i = 1,2 and an open set O such that the requirements of Theorem 6.5.1 are satisfied for K = T'..

It follows that )

3 (Lips;)dimre = 1.

i=1

That is 2/ = 1 or dimI'. = —J82 > 1. &

We now have the tools to, and do in the following Theorem and Corollary, give the answers to (1)
and (2) for our remaining definitions.

Theorem 6.5.2.
The answer to (v) (1) is no.

Proof:
From Lemma 6.5.1 we know that I'. satisfies (v). Lemma 6.5.2 shows that dimI'c > 1 and therefore
that T'. is a counter example to the answer to (v) (1) being yes. O
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Corollary 6.5.1.
The answer to the following definitions is no.

(0)(2), ()(1), and (i7)(2).

Proof:

Since from Lemma 6.5.2 we know that the dimension of I'; is greater than 1, it follows that I'.
cannot be weakly locally H!-finite. Since Lemma 6.5.1 then shows that I'. satisfies (v), it follows
that the answer to (v) (2) must be no.

Since Property (v) is strictly stronger than Property (ii), any set that satisfies (v) must also satisfy
(ii). It then follows that T'. satisfies (ii) and thus in the same way that the answer to (v) (1) and
(2) is no it follows that the answers to (ii) (1) and (2) is no.

6.6 The Non-rectifiability of I'., A. and A.

In this section we complete the classification results by answering question (3) for definitions (i) to
(v). We see below that only two counter examples are necessary to achieve this aim. We first make
the formal statement of the non-rectifiability of A. and A..

Lemma 6.6.1.

The sets A. and A. are not countably 1-rectifiable in the sense of Definition 13.2.1.

Proof:

As in previous comments the proof will be deferred until after the necessary preparation has been
made. The actual proofs can be found in Theorems 9.1.5 and 9.1.6. O

We now complete the classification results by answering question (i)-(v) (3).

Corollary 6.6.1.
The answer to the questions (i) (3), (i) (3), (ii) (3), () (3) and (v) (3) is no.

Proof:

From Definition A, made easire through the observation of Table 3.2 we see that definition (v) is
strictly stronger than definitions (i) and (ii) and that definition (iv) is strictly stronger than definition
(iii). It follows that should there exist a non-rectifiable set satisfying definition (v) then this same
set serves as an example of a non-rectifiable set satisfying definitions (iii) and (iv). Similarly, should
there exist a non-rectifiable set satisfying definition (iv) then there is also one satisfying definition
(iii). Thus it is sufficient to show that there exist non-rectifiable sets satisfying definitions (iv) and

(v).

From Lemma 6.4.1 we know that A. satisfies definition (iv) and from Lemma 6.6.1 we know that
A¢ is not countably 1-rectifiable. Thus the answers to questions (iii) (3) and (iv) (3) are no.

From Lemma 6.5.1 we know that I'. satisfies definition (v). From Lemma 6.5.2 we know that

dimI’c. > 1 and thus from Proposition 3.1.1 that I'. is not countably 1-rectifiable. It follows that
the answers to the questions (i) (3), (ii) (3) and (v) (3) are no. &

This completes the classification results that were the initial motivating aim for this work. We
present here a summary of the classification results:
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Theorem 6.6.1. The classification of the definitions in Definition 1 with respect to the questions
presented in Questions 1 is as follows:

Property Question
(1) (2) (3)
(weak, strong)

(i) No No, No No

(i) No No, No No

(i) Yes No, No No

(iv) Yes No, No No

(v) No No, No No

(vi) Yes No, No Yes

(vii) Yes Yes, No Yes

(viii) Yes Yes, Yes Yes
Proof:
These results are a summary of those stated in Corollaries 3.3.1, 3.3.2, 8.4.1, 6.6.1, Theorems 6.4.1,
6.5.2 and Proposition 6.1.2 &

Having now completed the classification we present the complete classification results (with counter
examples) in a summarising table.

Complete Classification Table

Property Question Counter Example

(1) (2) () () (2) (3)

(weak, strong)

(i) No No, No No T, I.or NV I.
(i) No No, No No T, T, T, (6.4)
(iii) Yes No, No No A2, A, or A. A, or A,
(iv) Yes No, No No A, or A, A, or A,
(v) No No, No No T, r. r.
(vi) Yes No, No Yes As,
(vii) Yes Yes, No Yes N
(viii) Yes Yes, Yes Yes

We next continue with results related to the fitting of the counter examples to the eight prop-
erties. In particular we show that A, does indeed spiral in a sense that will be defined and we show
that the counter examples can be extended to higher dimensions.

We have already seen that a rich tapestry of results follows from these more complicated exam-
ples. In the interest of finding as much interesting mathematics as possible that could arise from
these sets we then in Chapters 7 and 8 allow for generalisation of these sets and show various measure
theoretic properties of the resulting sets.
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6.7 Notes

The cone, Definition 6.0.1, is a standard concept in both geometry and set theory. The definition
given is however, our own. The general result concerning dimension for Fractals, Theorem 6.5.1 is
due to the work of Hutchinson [15] whose work, in this case, depended on the work of Mandelbrot
[22]. The relevant part of Mandelbrots work presented here as Proposition 6.5.1. The remainder of
the results in this chapter are our own.
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