Chapter 5

The Limited Potency of Simple
Examples and Weak Requirements
for Locally Finite Measure

5.1 Limitations on Approximately j-dimensional Sets Enter-
ing and Exiting on the Same Side

As we have already mentioned, several of the questions we are asking must be answered in the neg-
ative. To show this, clearly we need counter examples. Some of the counter examples, such as N,
As and A? are relatively simple in that they are countable collections of graphs of nicely behaved
functions whose relevant properties are clear. I'. is not as transparent as the sets already mentioned.
It is, however, relatively clear that a set of dimension greater than j satisfying a reasonable approx-
imation of a j-dimensional plane (as I'. does) must be complex.

A and A, are the counter examples to (iv) (2) that we will use (4. and A. are shown to sat-
isfy defition (iv) in the next chapter). The obvious question is to ask if it is possible to find a
clever way of assembling graphs of nicely behaved functions to provide a simpler counter example
to (iv) (2). Definition (iv) is important because it is known to be related to singularity sets (see
Lemma 3.2.1). For this reason the question regarding the simplicity of possible counter examples to
definition (iv) becomes important. It is the purpose of this chapter to answer this question.

We answer the question regarding the possibility of simple counter examples to (iv) (2) with "no".
Since it follows that there is no application of simple counter examples to (iv) (2) that the potency of
simple counter examples is limited. The answer "no" to the above outlined question is one that we
find encouraging. It is encouraging because it means that the problem of showing that sets satisfying
(iv) have locally finite H? measure is simplified to showing that certain (yet to be outlined) vaguely
‘nice’ properties are satisfied. The fact that the only known counter examples to (iv) (2), A. and
A., are not countably j-rectifiable (proven Chapter 9) further supports the assertion that such sets
must be poorly behaved.

Mathematically speaking, this chapter is centered around answering the above discussed question in
showing the following;:
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Any counter example, A, to (iv) (2) must have points, y, around which A N B,(y) has infinite
H’ measure for any r. These points, y, are the critical points of the counter example A. In the case
j =1, we show that should there exist some set of points, B, with A D B 3 y (for some critical
point y) such that B can be essentially described as a Lipschitz graph, then A cannot possibly satisfy
definition (iv). That is, if A does satisfy definition (iv), there can be no such set B in A. In other
words, any set that is a counter example to (iv) (2) must have critical points, y, around which A
has infinite density but is a broken ‘non-graph’ in any neighbourhood.

The key idea in the proof is that for a graph of a function to have infinite measure in a small
neighbourhood it must at some point be sharply folded on itself (that is, it must rapidly oscillate)
at all levels of magnification which will prevent the set from satisfying property (iv). Should not all
of the measure be contained in the graph, then there must be a graph with additional points nearby,
which will again prevent the set from satisfying definition (iv).

In this section we make some necessary definitions and then prove a Lemma proving an impor-
tant special case which will be used in the proof of the main Theorem proving our claim which is
presented in the following section.

Definition 5.1.1.

We denote the projection of a space onto a subset, S, whenever the concept of projection makes sense
for S by mg. An exception to this rule is the projection of R™ onto the axis of one of the variables,
in this case the projection onto the axis of the j-th variable will be denoted by 7, (or m, = m,, and
Ty = Tg, i the special case of n =2.)

Definition 5.1.2.
Let u: R — R be a function and let

graph(u) N B,(y) C Lg
for some affine space L, > y and some 6 € (0,1/4). Then u is said to enter and exit the same
side of B,(y) with respect to L‘; if there is a w € L, N 0B,(y) such that
max{|w — x| : x € graph(u) N 0B,(y)} < %

We note that for a ball B,(y) and an affine space L, >y
L) NOB,(y) = T1U Uy
for some arcs ¥y and ¥, in R2. We can therefore make the following definition.

Definition 5.1.3.
Write
LONOB,(y) = T1U Uy

for some arcs Uy and ¥y in R%. Now suppose a function u enters and ewits B, on the same side
with respect to Lg, then graph(u) N'W; # 0 for exactly one i = i(u) € {1,2}. We denote this U, by
W, and the other by ¥™.

Lemma 5.1.1.

Suppose u : R — R is continuous and graph(u) C A C R2. Suppose that A has property (iv) and
that for somey € A and § € (0,1/16) p, is an appropriate radius at y with respect to §. If u enters
and exits B, (y) on the same side, then

max{d(¥,,w) : w € graph(u) N B, (y)} < 4dp,.
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Proof:
We first show that graph(u) N B, (y) C graph(u(ly,y,,,)) where

Luy,p, == igf{ﬂm (graph(u) N 0B, (y))},sup{m.(graphu N 9B, (y))}| .

Suppose that this is not the case, then there is a z € B, (y) C R? with z € graph(u) (and thus
u(m,(2)) = 2z) and such that either

e (2) > sup{m;(graph(u) N 9B, (y))} or m.(z) < inf{n,(graph(u) N 0B, (y))}.

Without loss of generality we consider the case 7, (z) > sup{n.(graphu N 9B, (y))} the other case
follows similarly. Since u is a continuous function graph(u) is connected and by the choice of z

sup{m.(B,, (y))} > max{m,(graph(u) N B, (y)}
Thus the path
P = u([max{m, (graph(u) N 0B, (y))}, sup{mx(By, (4))} + 1])
intersects B, (y) only at its starting point on the boundary of B, (y). That is
PN By, (y) = u(max{m, (graph(u) N 9B, (y)})

(otherwise u(x)NIB,, (y) # 0 for some 2 > max{m,(graph(u)NdB,, (y))} (in order for the connected
path, P, to leave the ball) contradicting the choice of max{n,( graph(u) V9B, (y))}). Thus

7 (2) € [max{m,( graph(u) N OB, (y))},sup{m.(B,, (y))} + 1]

which implies u (7, (2)) € B,, (y). This contradiction means that z ¢ graph(u). Therefore graph(u)n
B,,(y) C graph(u(ly,y,p,))-

For any z € graphun B, (y), let zy := m; *(m,(2)) N ¥, which will be a unique point.

Now assume
sup{d(Vy, z) : z € graph(u) N B, (y)} > 40py,.

Then there is a z € graph(u) N B, (y) such that
|y (2) — my(20)| > d(z, Wu) > 46py.
Since for all a € ¥,,, |a — 25| < 26p, and thus |my(a) — my(25)| < 20py, the above statement implies
inf{|my,(z) — my(a)| : a € ¥y} > 25p,.
Without loss of generality assume that 7, (z) > sup{m,(a) : a € ¥, }.
Then, as w is continuous, there exist two connected paths P;, P> such that
o (P1) < mx(2), 7 (P2) > 7,(2) and Py and P, are connected to U,,.
Thus

PN 7Ty_1(7ry(z) —20py) # 0 and P> N 7Ty_1(7ry(z) —20py) # 0.
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Figure 5.1: Graph entering and exiting the same side

Let
z1 € PN 7Ty_1(7ry(z) —20py) and zo € Po N 7ry_1(7ry(z) — 20py).

Without loss of generality assume |7, (z1) — 7, (2)| < |72 (22) — m.(2)|. This choice implies that
|72 (21) — m2(2)| < 1/2sup{|mg(a1) — mz(a2)] : a1, a2 € Uy} < dpy.
Then notice
Pz = |zo — 21| <sup{|mp(a1) — me(az)| : a1,a2 € ¥y} = 25p, < 1/2p,
so we consider Bs,_/4(21).
Notice also that |7, (z) — 7, (21)| < |7z(22) — 74 (2)| implies
72() = mo(a1)] < 5
Now call the subpath of P; C graph(u) connecting z; to z P,,. Note

T2 (Pzy) C [m2(21), m0(2)] and 2z & B, (21),

which implies
P.,N0B, (21) #0
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and for all w € 0B,_(z1)

1
|7T1(w) - 71-z(zl)| < 5/)2 and d(’w,zl) =p.

which implies |7, (w) — 7y (21)| > @ p.. However, for any choice of Lgffpz we must have

9
sup{[my (1) — my (21)| : 1 € 307, } < 70p-.
Since § < {5 we note @ p. > &> 9542 96p.. Thus it is impossible to choose a L. ,. such that
ANB, (z1) C L‘;{J;z. This would imply A does not have property (iv). This contradiction proves the
Lemma. ¢

5.2 Constraints on Sets both Approximately j-dimensional
and Not of Locally Finite Measure

We now prove the main theorem of this chapter. We show that any set satisfying definition (iv) that

does not have locally finite measure must be poorly behaved. The proof is actually structured as a

proof by contradiction. We take a set, A, not of locally finite measure (we denote the set of points

around which the local finitness of measure of A fails by )). We go on to show that should there

exist any well behaved subset of A (well behaved in the sense of being essentially described by part

of a Lipschitz graph) containing a y € ) then A cannot satisfy definition (iv). In other words, should
A satisfy definition (iv) then around all such y € ) A all subsets of A must be purely poorly behaved.

We prove the theorem by reducing the Theorem to an application of Lemma 5.1.1.

Theorem 5.2.1.
Suppose A C R? and that there exists a y € A such that

HY(ANB,(y)) = oo for all p>0
and for some p1 > 0,

y € G, (graph(u)) N B, (y) and

By, (y) N AN Gy (graph(u)) = G (graph(u)) N By, (y)
where u is Lipschitz, G, € G(1,2) and G,(-) : R> — R? is defined as the rotation such that
Gy(Gy) =R.
Then A does not have property (iv) for j = 1.

Proof:
By the invariance of the relevant quantities under orthogonal transformations we can assume that
y=(0,0) and Gy, =R.

Assume that A does satisfy property (iv).

Then for a given § < 1/8 there is a p, = p,(y) € (0,p1) such that there exists an affine space
L, ,, such that

A N BPy (y) - Ll&lf)gy
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and furthermore, for each x € AN B, (y) and p € (0, p,] there is an affine space L, , such that
ANB,(z) C LY,
Noting that y € graph(u) and that clearly d(y,0B,,(y)) = p, > 40p, it follows that
max{d(¥,,y) : y € graph(u) N B, (y)} < 40p,
and thus by Lemma 5.1.1 u cannot enter and exit B, on the same side with respect to any affine

space. In particular for each w € L, ,,

graph(u) N wgy{py (w) N LY # 0.

Also, if AN B, /2(y) C graph(u) then
HY (AN B,,/2(y)) < %’ w1 -+ Lipu < oo,

a contradiction to our assumptions on the measure of balls around y. It follows that there exists an
r € AN B, 2(y) such that x Zgraphu. Note that ﬂgylp (z)Ngraphu # () which implies
Py

1
d(z, graph(u)) < 26p, < 3Py

Now select z €graph(u) such that

_.9

d(z,x) < ginf{d(w,x) :w € graph(u)} 3

d < py.

By the hypotheses there is an z; € graph(u) N AN B(1/16)a(2). We now consider B, (z1) > x. Note
that for any choice of L., ,,

L=, NOB,, (1) = W1 U Ty,
a union of two arcs as considered in Definition 5.1.3, and that d(z,0B,, (21)) < 1d. This implies
that for some ¢ =i(x) € {1,2}

U C B(1/ayd+26p, (%) = B(1/ayd+26(9/8)d ().
Since 0 was chosen such that 6 < 1/8

1 5 4 5 15
Sd4202d< = 4 2d< 24
14T %6716 16

which implies graph(u)N¥; ) = 0.

This in turn implies that v enters and exits B, (z1) on the same side with respect to any affine
space possibly allowing property (iv) to hold. Since z; € graph(u)

max{d(w,0B,,(z1)) : w € graph(u)}) = py > 40p,.

This implies, by Lemma 5.1.1, that A does not have property (iv). This contradiction completes the
proof of the Theorem. &

In order to more definitely relate what has previously been discussed to this result, I observe the
following immediate corollaries.
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Corollary 5.2.1.
Suppose A C R? and that there exists a y € A such that

H' (AN B,(y)) = oo for all p>0

and for some p; > 0,
Q

ANB,, (y) =G,* (U gmph(%)) N By, (y)
n=1

for some Q € NU{occ} where u,, is Lipschitz for each n, G, € G(1,2) and G,(-) : R? — R? is defined

as the rotation such that G,(G,) = R.

Then A does not have property (iv).

Proof:
Since

Q
y € ANB,, (y) =Gy (U graph(%)) N By, (y)

y € G, " (graph(uy,)) for some 1 < ng < Q. With u = uy, the conditions of Theorem 5.2.1 are then
satisfied from which the conclusion follows. &

Corollary 5.2.2.
N, As and A are not counter examples to (iv) (2).

Proof:
Let = = A or As. Then since Z is a countable union of Lipschitz graphs, any point of infinite density
in = satisfies Theorem 5.2.1.

For A? we note that the only point of infinite density is (0,0). Note that restricted to [—1,1]
the functions making up A%, (u, = x?/n) are Lipschitz. Thus taking p; = 1/2 and y = (0,0) in
Theorem 5.2.1 the conditions of Theorem 5.2.1 are satisfied so that A2 does not satisfy property
(iv). O

Remark:

We note that in Lemma 5.1.1 and Theorem 5.2.1 we only used 6 < 1/8. Thus the full power of
property (iv) has not been used. It is therefore possible and in fact likely that we could force any
potential counter examples to (iv) (2) to be even stranger than what we have forced here. Even
without using the 0-fine property I believe that an improvement to Theorem 5.2.1 could be made in
the form of the following conjecture.

Conjecture 5.2.1.
Suppose A C R? and that there exists a y € A such that

H'(y N B,(A)) = oo for all p> 0
and for some p1 > 0,

y € G (graph(u)) N By, (y) and

AN Gyt (graph(u)) = G, (graph(u)) C A
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where uw € CO(R;R), G, € G(1,2) and Gy(-) : R* — R? is defined as the rotation such that
Gy(Gy) =R.

Then A does not have property (iv).

The difference between Conjecture 5.2.1 and Theorem 5.2.1 is that in Conjecture 5.2.1 the function u
is only continuous and not Lipschitz. For this reason it is possible that the graph of w itself produces
a point of infinite density. Unlike in Theorem 5.2.1 we are therefore unable to insist that there exists
other points from the set A near graph(u) to prevent definition (iv) from being satisfied.

The attack idea for Conjecture 5.2.1 is that either Theorem 5.2.1 does apply or each point of infinite
density in A is completely represented by the graph of a function u in small enough neighbourhoods.
For graph(u) to have so much measure it must oscillate dramatically. We should then be able to find
two ‘almost vertical’ lines in this oscillating graph that are close enough to one another to prevent
definition (iv) from holding.

More quantitatively, we note that there are several methods of attacking the proof and "almost
getting there". One method, using Lemma 5.1.1, reduces the proof to the following conjecture
which also shows the dependence on the high osciallation (or total variation) of the graph u.

Conjecture 5.2.2.
Suppose 11, Iy are compact subintervals of R and

u:l; — Is.
Suppose further that for oll x1,x2 € I such that u(x1) = u(x2)
sup{|u(y) — u(z1)| 1 y € [z1,22]} < |21 — 22].
Then, for any 6 > 0 there exists a partition P = {p1,...,pq} of I\ with
max{|p; —pi-1|:2 <i < Q} <}

and
Q

> Julpi) = ulpi-1)] < C < oc.

i=2
To emphasise what we have shown in this chapter we restate the result reworded. We have shown
that a set A C R? satisfying definition (iv) cannot posses any point that is both an element of an
approximate Lipschitz graph (in the sense of the following definition) and possessing of a neighbour-
hood in which A has infinite measure.

Definition 5.2.1.
A subset A C R"* is said to possess a piece of Lipschitz n-graph at x € A if there exists an r > 0,
G € G(n,n+ k) and a Lipschitz function u : G — G+ such that

x € graph(u) and H"((graph(u) ~ A) N B.(z)) = 0.

In this case x is said to be an element of a Lipschitz graph.

5.3 Notes

The entirety of the material presented here is all original and our own.
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