Chapter 4

Construction of the Counter
Examples

Having answered all the questions that will be answered with yes, we now turn our attention to
providing counter examples for the remaining questions so as to answer no to each of these.

The sets being considered are not all trivial sets to construct or to understand. We therefore
leave the proofs that they actually satisfy the definitions that they are respectively intended to be
counterexamples to until later. For the more complicated sets, particularly A., there is more than
one method to construct the set. Some of these will be discussed further in Chapters 7 and 8. For
now, however, we satisfy ourselves with the definitions most easily used to fit the constructed sets
to the relevant definitions and thus complete the classification.

In this chapter we construct 3 sets and 3 1-parameter families of sets. Of the latter three the
first is our own construction of a known set, the same that appears in Lemma 3, which we provide
since the necessary properties for our purposes are more easily proven with our construction method.
The latter two are then variations of the same set allowing for important extra properties by adding
another point of variation. For the sets with a variable there is a range of values of the parameter
(independent of which set) for which each resultant specific example is appropriate for our purposes.
We will, however, calculate with the parameter left arbitrary since it provides more generality and
makes no difference to the proofs of the results that we want to prove with these sets.

The three simpler sets are of little interest apart from the fact that they are appropriate counter
examples to particular definitions. The other three are of independent interest. As well as allowing
us to show that some good behaviour is ensured by the approximate j-dimensionality of the sets if
not as definite as we had hoped, they provide a range of interesting results on dimension, rectifia-
bility and measure density. General proofs concerning properties of these sets are included in the
discussion of generalised Koch Type sets in Chapters 7 and 8. We include in any case the direct
proofs of the properties that we are interested that are relevant to the classification work.

We construct firstly the three simpler sets. We then construct I'. which will be a counter ex-
ample to (v) (1) followed by a property of I'. important to our study. We then construct the second
more complicated set A. which is a counter example to (iv) (2) and (3). Since A. is not closed and
is therefore not possibly a singularity set we make the third construction A., which is a subset of the
second, constructed to be closed but retain the necessary properties. We then prove some necessary
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proprties of A. and A..

4.1 Simple and Known Sets

The first set has already been defined, and is:
> 1
= R — 7.
v=URe)

Note that we will henceforth identify R™ x [0]¥~" with R” in RY for each choice of n, N € N with

\ \ \ \

Figure 4.1: N/

n < N. The other simple sets, are used in a similar way to N but need differing levels of fineness
approximation with bad properties at one point. Being a collection of flat sheets, N does not have
this property, we therefore define the subset of R? defined for each § > 0 as

o 0 o 1282

n=11i=1

y = dox

Figure 4.2: A,

and the subset of R? defined as

- O 2]

n=11i=1
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Figure 4.3: A?

We now construct the more complicated examples. They are both based on the "Koch Curve"
which was originally constructed as a fractal set being of dimension between 1 and 2. The first we
construct is the set ' given by Simon in [27], on which the remaining sets are based. The second
set, which is actually a function from R* into 28" (that is, the set is constructed with respect to a
variable ¢ € RT) will be denoted A., and is used as a counter example to (iv) (2) and (3). Although
I'" was actually constructed as a fixed set in [27], we will allow the set to be constructed with respect
to a variable e, which will later allow us to find appropriate counter examples with respect to (v)
(1) for any given §. The variable set will then be denoted T'.

These constructions rely heavily on the use of triangles so we first make the following definition.

Definition 4.1.1.

Let L = (a,b) = ((a1,a2), (b1,b2)) be a line in R?. An e-triangular cap or, when the context is
clear, simply a cap will be the isosceles triangle, T, with vertices a,b and ¢+ (a +b)/2 (we write ¢
also as (c1,c2)), where c is chosen such that

le] =¢ and <c,b—a>=0.

The above conditions on c allow for two possible points. Should L be a side edge of a previously
constructed triangular cap, Ty, we choose c from the two possible points so that H*(T N Ty) > 0.
Otherwise we choose c to satisfy c1 > (a1 +b1)/2 and ca > (az + ba2)/2.
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T CTy

Figure 4.4: e-triangular caps

Construction 4.1.1. .
We construct the set I'. as follows.

Let 1/100 > ¢ > 0. We begin with an e-triangular cap, Ty, constructed over the line Ay, :=
((0,0),(1,0)). We then name the two new edges A ;, j = 1,2. We write Ay := Tp. We note that
l:=H'Y(A1;) <H'(Ao1), j =1,2. We then construct le-triangular caps T} ; on A; ;. We name the
four new edges As ;, j € {1,2,3,4}. We write A; := U?:1T1,j- We note that As ;, j =1, ...,4 are the
22 shortest edges of length [2. We note also that A; can also be constructed by the appropriately
rotated and scaled union of two copies of Ag

To,1

A1

Ao

Figure 4.5: Construction of I'.

We now continue inductively. Suppose that we have a set A, consisting of 2" triangular caps,
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T, ; with base length [" and altogether 2"*! "shortest sides", A,41; of length ["*1. On each
Ap41,; we construct an "t le-triangular cap Tht1,5- We set

2n+1

AnJrl = U Tn+1,j-

j=1

This A, 11 will then have all of the same properties as A,, with n replaced by n+1. We note also that
with the numbering of the caps, we always count from "left" to "right" so that 15, 1,2j—1UTh41,25 C
T, ;-

We then define

o0
T, = ﬂ A,
n=0
where the dependence on ¢ comes from the initial choice of ¢. &

Remark: The selection of ¢ < 1/100 is important. For further comment on the reasoning see the
remarks following Construction 4.2.1.

One property of I'. that should be noted now, as it is particularly intrinsic to the construction
is that I'. is essentially the union of two scaled copies of itself. We show this after the following
definitions.

Definition 4.1.2.

We denote the end points of a line of finite length, A, by E(A), and call them the edge points of A.
Let T, ; be a triangular cap. T, ; will then have 3 vertices which will be called the edge points of
T. Let A, be a stage of construction in the construction of T'c (Construction 4.1.1), we then define
the edge points of A, by

and the edge points of I'. are

We see that the edge points are all of the corners that appear in the constructions of I'..

Definition 4.1.3.
We define the edgepointless I'. as

rf.=1.~ ET.).
Proposition 4.1.1.
There are contraction mappings, S1 and Ss, and an open set, O, such that
FEE c O, 51(0) U SQ(O) c O, Sl(FEE) U SQ(FEE) = FEE and 51(0) N SQ(O) = 0.

Further
LipSy = LipSy = 1 := (1/4 + £%)/?
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Proof:
It is not too difficult to check that the contraction mappings with Lipschitz constants [ defined by

) = cos((—l)l:tan_l(a) —m) —sin((— l)ltcm Le) — ) ol
Si(z,y) ( sin((—=1)tan=1(e) — )  cos((—1)tan=1(e) — m) > (2.)

= (((2)- (1)) +(12))

are such that Sl (To) = Tl,g, Sg(To) = T1,1 and thus

where

Sl(Ao) U SQ(A()) =5 (To) U SQ(T()) = T171 U TLQ = A;.

Further, by setting O to be the open quadrilateral with vertices {(0,0), (1/2,3¢/2), (1,0), (1/2, —e/2}
we see
rfcTy=4,co,

that S1(O) is the quadrilateral with vertices

{(1/2,¢),(1,0),1((1,0) = (1/2,3¢/2)) + (1/2,3¢/2),1((1,0) — (1/2,—/2)) + (1/2,—¢/2)}
and S3(0) is the quadrilateral of vertices {(0,0),1(1/2,3¢/2),(1/2,¢),1(1/2,—¢/2)}.

It follows that S1(0) U S2(0O) C O and that S1(0) N S2(0) = 0.

By the procedure P we will mean a procedure of replacing a triangular cap with two smaller tri-
angular caps that are subsets of the first. Indeed, for a triangular cap 7" with base length b and
side length | we apply proceedure P to T to get P(T) = T1 U Ty where T1,T> C T, T7 and T are
triangular caps with base length [b, side length I and base coinciding with one of the sides of T.
Further the side of T" coinciding with the base of T is the side not coinciding with the base of 7.

P(T)

Figure 4.6: The proceedure P

Note that S(T, ;) U S2(Ty;) = P(T),,;) for any T), ; in the construction of I'..

Note that since the proceedure, P, of taking two triangular caps on the shorter sides of a union
of isosceles triangle is clearly invariant under orthogonal transformation (since chosing the new cap
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to be within the previous triangle is independent of orientation) and homothety, that is P(R(T)) =
R(P(T)) where T is an isosceles triangles and R is any orthogonal transformation on R?, and if
leR, P(IT) =1P(T). Since Sy and Sy are indeed just combinations of homothety and orthogonal
transformation we have P(S;(T")) = S;(P(T)) for i = 1,2.

We claim that A, = S1(An—1) U S2(A,—1) for each n € N. We already have a starting point
(n =1). Now, supposing that A, = S1(A,—1) U S3(A,,—1) for some n € N, we then have

Aps1=P(Ay,) = P(S(Ap—1) U S2(An_1)) = S1(PAp_1) US2(PAn_1) = S1(An) U S2(Ay),

completing the inductive sets. Then, since A; C Ag, we have

re ﬁ A, ~E
n=0

= () S1(An-1 ~ E)USa(Ay ~ E)

n=1

— ﬁ S1(A, ~ E)USs(A,, ~ E)

n=0

() o ()

n=1 n=1

= ST~ E)UuS,(TE ~E).

4.2 Pseudo-Fractal Sets

We now construct the "strangest" sets. These are similar to I'; in construction, however, as we noted
in Proposition 4.1.1, the construction for I'c retains the basic shape of the triangular caps. This will
not be sufficient for the cases when we want to prove properties for the case where approximations
should hold for all § > 0. We therefore allow the relative height of the triangular caps to shrink, so
that the "angles" involved in the triangles approach zero as we look at smaller and smaller sections of
the triangles. As we will see later, even this adjustment is not sufficient. We therefore remove all of
the interior at each stage, take, in a sense, a limit and remove the approximating sets and the edges.
We make the specific constructions below in Constructions 4.2.1 and 4.2.2. As has been mentioned,
the third set is then a carefully selected subset of this chosen in such a way as to ensure that it is
closed. Incorporated into the first of the constructions is the definition of edge points relevant to
the construction. The need for the concept of edge points is bypassed in the second construction as
shall be seen.

Construction 4.2.1. .
Let 1/200 > £ > 0. We then construct the set, as previously, as a subset of R2. We start with

AO,l = [(070)7 (170)]'

We then denote by Ty 1 the 2e-triangular cap on Ag ;.

We now set
Ay = (0To,1 ~ Ao,1),
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which is the union of two lines (namely the two shorter edge lines of Tp 1), we name the two lines
A1, 1=1,2. To continue, we denote by 77 ; the e-triangular cap constructed on A; ;, the A; ; being
considered as an edge of Ty ; for each i.

Ay = (a (Q Tl,i> ~ A1>,

which will be a union of 4 lines A;;, ¢ = 1,2, 3,4, each Ay ; being an edge of a triangular cap 77 ;.

We then set

Ao

Figure 4.7: Construction of A,

We continue the construction inductively. Assuming we have A,, a union of 2" lines, {Am}fil
that lie on the boundary of 2"~! triangular caps {T},_1;}2"; , (and A, a union of 2" triangular
caps), we construct 2" (2!7"¢)-triangular caps, {7, ;}?-,, on each of the 2" lines. As previously we

number from "left" to "right" so that T41,2j—1 U Tht1,25 C Ty ;. We then set

5
Apiy = (a (U Tn> ~ An>.
=1

Finally, we define
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E:=JJEMn.),
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and E(A,,;) denotes the endpoints of the line A, ;. As previously, the ¢ refers to the arbitrarily
chosen € > 0 at the beginning of the construction, which may, of course, be chosen, as small as is
necessary. ¢

Remarks:

(1) The removal of the endpoints is very important for the example. Including the endpoints leaves
points in the set that are vertices. It would then follow that the set A. would not be able to be
appropriately approximated by a plane simultaneously for all 6 > 0. By removing the endpoints we
ensure that no element of A, is an endpoint. In this way, for any z € A, and § > 0 we can choose
aradius, r, > 0, such that B, () contains no vertex too sharp for the appropriate d-approximation.

(2) We are asking measure theoretic questions. For this reason it is important to note that the
edgepoints

oo 2"
E=|]JJEAn)
n=0i=1
are countable and therefore are of zero H' measure. E therefore has no effect on any H'-measure
properties that we are looking at.

(3) As stated in the remark following Contruction 4.1.1 the choice of ¢ < 1/100 is important.
The reason that it be so small comes from properties required later on the base angles of the trian-
gular caps. This will be further explained when the requirements on the angles becomes clear. For
now, however, we note that it is important that € < H!(Ap 1) (which for I'. and A. means ¢ < 1/4).
In the constructions of I'. and A. it is important that each stage of triangular caps is a subset of
the previous (that is U;T},; C U;T,,—1,;). It is also important that although clearly one triangular
cap in some stage of construction will have a common point with a neighbouring triangular cap
(that is T, ; and T, ;41 will have a common point) we need the triangular caps of a given stage of
construction to be otherwise disjoint. Despite the construction ensuring that the triangular caps
have non-increasing base angle with increasing stage of approximation (that is (base angle)T,y1,; <
(base angle)T, ;), should the vertical height (that is €) of Ty 1 be greater than the base length, then
T, 1 will not be a subset of Ty 1. Also, we note that if Tj 1 is an equilateral triangle (which would be
the case if € = \/ﬂ) then it is a triangular cap. In this case, however, T}, ; = Ty ; for each n € N
and i € {1,2,...,2"}. It can be calculated that should £ < 1/4 then

1< (Vb2/4+b2/4)*/b=5b/16 < b/2

where [ is the side length of T,, ; (for some n and any ¢) and b is the base length of T},_; ; (for any
7). Taking € < 1/100 clearly satisfies ¢ < 1/4 so that the desired structural properties mentioned
above are indeed satisfied under this assumption on e.

Definition 4.2.1.
For each n € NU{0} and each i € {1, ...,2"} there is a triangular cap T, ; constructed on A,, ;. We
denote the vertiex of T,, ; that is not in A, ; (that is, the new vertiex created) by a, ;.

Construction 4.2.2. .
As previously mentioned we will be looking at a subset of A.. We have already noted that the edge
points of A, are countable, we now give them an ordering. We take

€1 = (070)7 €2 = (1a0)7 €3 = ap,1
and then in general

62+i+2;;01 9 = an,i-
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To give a closed version of A. we define simply
Ae = A, ~ B4

where B¢ is the union of a countable collection of open balls forming an open cover of E(A.) such
that

H (Ww (BAE ) <

N | =

and thus 1
Hl(ﬂ'm (Ag)) > 5

That A, is closed is proven in the following Lemma. Since E(A.) is countable it is clear that
such a cover exists. We need, however, that B-< be chosen to allow A. to satisfy further measure
properties. In particular, we need that H'(A.) = co. This result is claimed in Lemma 6.3.2 and
proven following Proposition 8.4.1. How B“< should be chosen is described in Definition 8.4.2 after
the necessary preliminary concepts have been established. &

Remark: There are four points concerning A, and A. that are important that should be noted.
Firstly, the entire purpose of altering A. to A. was that A. should be closed. We therefore prove
that this important property indeed holds. Secondly, although we will show that A. and A, have
property (iv) with respect to j = 1 and thus have dimension 1, the sets have some interesting
properties in themselves. For this reason and as support for the consistency of the results here we
provide, in Appendix A, a direct proof that the dimension of A, and A. is 1. Thirdly, as we will show
in chapter 5, the exotic counterexamples of A, and A. are necessary. Finally, as a support to the idea
that counter examples to (iv) (2) need necessarily be badly behaved but more importantly to answer
(iii) and (iv) (3), we note that A., A. are not rectifiable. In these first six chapters describing the
classification the result will be formally stated but without proof, the proof is provided later in the
Thesis. This is because the proof of the fact that A. and A. are not rectifiable is very technical and
requires substantial preparation making it much more convenient to prove the result as a corollary
of the same result for the generalised sets later in the Theorem.

Lemma 4.2.1.
A. is closed.

Proof:
We first show that A, U F is closed.

Consider a convergent sequence of points {z,} C A. U E. We must show that

z:= lim z, € A, UE.
n—oo
If z € E we are finished, so assume that this is not the case. We will for each n define an appropriate
sequence, {x,_ ;} converging to x,,. We will then apply a diagonal argument to the resulting sequnce
of converging sequences.

Now, for each x,, either =, € FE or x,, € A..
In the first case z,, = e; € FE for some ¢ and there is an ng € N such that e; € A,, for each
m > ng. It follows that by taking {z, ;}72, such that z,; = z, for each j, we can see that for

each j there is an m > j such that =, ; € A,,. With the sequence ,, ; = z,, for each j we also have
limj o0 Tp,j = Tn-
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In the second case
T, € A; = <U Am> ~ U Am.
m=1 m=1

Thus there exists a sequence z, ; such that |z,; — z,| < 1/j so that lim; ,oc 2, ; = x, and
{zn;}521 € Up—1 Am. We now assume that there is a finite number ¢ such that {z, ;}; C U} _, A,
and show that the assumption leads to a contradiction. Under this assumption, since U? _, A,, is a
finite union of closed lines it is closed so that lim; z,, ; € U? _, A, and thus z,, € U? _, A,,. However,
since x ¢ E and U? _, E(A,,) is finite, d(z,U?, _, E(A,,)) > 0. Thus in this case z,, € U} _ A, ~ E.
It follows then that we would have

xn¢<[j Am>~ [j AnUE=A.UE,
m=1

m=1

giving us the required contradiction. There does not exist, therefore, a ¢ € N such that {z, ;}; C
Ul _Ap,. We can thusly take a subsequence and relabel to assume that x, ; € A,, for some m > j
for each j € N.

Combining the two cases, we now take the sequence {z,,}5°_; given by

Tm = Tm,m,

and note that {z,,,} C |U,—, A, so that lim,, .o z,, € US>, A,. By the condition that |z, ; — z,| <
1/4, this diagonal selection gives us

o0
r= lim z,, € U A,.
m—00
n=1

Since, following from construction 2, for each n € N and each y € A,, ~ FE there is a radius r > 0
such that d(y,Ups_, ;1 Am) > r it follows that for each n € Nz ¢ A, ~ E. Thus

z € <G Am>~ G(AmNE):AEUE.

m=1

We therefore have that A, is closed.

Now since B« is the countable union of open balls it is also open. Since E C B4 we can write
A=A ~ B = A_UE ~ B4

which is a closed set with an open set removed and thus is closed, proving the Lemma. &

4.3 Properties of A, and A.

We now mention two properties of A. and A..
The first is that dimA. = dim.A. = 1, which can be proved directly without too much difficulty. A

direct proof is often mathematically instructive and is therefore given in Appendix A. The reason
that the direct proof is not given here is that the result is a direct consequence of two of the more
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general results presented later. Firstly, since A. and A, satisfy (iv) with j = 1 (proven in Chapter
6) it follows that they both have dimension 1. The second general result from which the dimension
of A. and A. follow is Theorem 9.3.1 which would take too long to introduce and discuss here.

The second property we mention here (which we also prove below) is that the H' measure of the
approximating lines A,, ; (and therefore also the H! measure of the approximating sets A4,,) can be
explicitly calculated. The resulting formula is very important to many results concerning A. and
A. and is regularly applied. We also point out here that the form of the resulting formula already
provides some indication of the motivation to the selection of the p,’s in the construction of A..

Lemma 4.3.1.
For eachn € N and each j € {1,2,...,2"} the base length of a triangular cap T, ; in the construction
of A: has length
1 16 2\1/2
HY (A, ) = %,

and thus
HY(A,) = (14 n16e2)'/?
for each n € N.

Proof:
Clearly H!(Ap) = 1. Then H'(A;) is the sum of two hypothenuses of triangles of (1/2)H!(A) base
length and 2¢ height. That is

1/2

HY(A) =2 ((%)2 + (25)> = (14 16e2)1/2,

Having that it is true for n = 0,1 I now claim that H'(A,) = (1 +n16¢2)'/2. Assuming it is true for
n we note that H'(A4, 1) is the sum of 2" ™! hypothenuses of triangles of base length H!(A,,)/2"+!
and height 22~ "¢. That is

1 2 1/2
H' (Ans1) = 2"“((Hszf‘ )) +<22‘<"+”a)2>

= ((H'(An))? +16¢%)!/2
= (14 (n+1)16e3)Y2,

proving the inductive claim. Finally for each n € N and j € {1,2,...,2"} the base length of a
triangular cap T, i, H'(An ), is one equal 2"-th part of the length of A,, H!(A,,) which completes
the proof. &

To conclude the Chapter, having introduced all of the counter examples, we present a table showing
the questions the constructed sets can be used as counter examples for.
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Couner Examples

Property Counter Example
(1) (2) 3)
@i T, I'. or N I,
(ii) I. I. I.
(iii) A2, A, or A, A, or A, (4.1)
(iv) A or A, A or A,
) I, I, I.
(Vi) A(;O
(vii) N
(viii)

4.4 Notes

The construction of I'; is based on a fractal presented by Koch [18], the general form we use comes
from Simon [27] and the specific example we use is our own. The remaining definitions, constructions
and results in this chapter are our own.
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