Chapter 3

Background, Definition and Existing
Results

3.1 Preliminary Geometric Measure Theory

We start with some relevant measure theoretic background. The standard references are [25] and
[11]. We assume basic familiarity with general measure theory and we use the usual symbol for
r-dimensional Hausdorff measure H” for r € R. Also, we denote the Hausdorff volume of the unit
n-ball by w,.

As mentioned, a major part of our investigation regards dimension. We use and are interested
in dimension in the sense of Hausdorff dimension which we define as follows.

Definition 3.1.1.
Set A C R" for some n € N. Then the Hausdorff dimension of A is defined as
dimA = inf{reR:H"(A) =0}
= sup{r e R: H"(A) = oo}.

Another important quantity that we will be using is density, and indeed n-dimensional density.

Definition 3.1.2.
Let (X, B, 1) be a measure space. Then for any subset A of X, and any point x € X, we define the
n-dimensional upper and lower densities ©*™(u, A, z), O7(u, A, x) respectively by

ANB
0" (11, A, z) = lim sup LA Bol®)

p—>0 wnpn

and .
O%(u, A, x) = lim inf #(AN By(z))

p—0 Wnp”

In the case that the two quantities are equal we call the common quantity the n-dimensional p-density
of A at x denoted by O™ (u, A, x).

Remark:
Depending on which quantities are understood from the context, we will also use the terms density
of A at x or simply the density at x.
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The o-algebra B here is mentioned for formality, we will use the usual o-algebra of all measurable
sets in the ambient space.

Also fundamental to our considerations is the concept of rectifiability. We will need several forms
of the definition of rectifiability. Their equivalences are well presented in [25]. We shall not here
be interested in general rectifiable sets, so we restrict ourselves immediately to countably rectifiable
sets. Firstly and most basically we have the following definition.

Definition 3.1.3.
A set M C R"* is said to be countably n-rectifiable if

M c Myu | F;(R")
j=1
where F; : R — R"** are Lipschitz functions and H™ (M) = 0.
Remark: By standard Lipschitz extension results we know that we can also write
M = Myu | F(4;)
j=1
for subsets A; C R™.

Notice that we have not required that the sets be measurable, which is occasionally required in
definitions of rectifiable sets. It is however not necessary since, as we will see, all of the relevant
sets we will be considering are in any case measurable since they can be shown to be expressable as
countable unions and intersections of Borel sets in the appropriate Euclidean space.

From this basic definition it is known that the following expression for rectifiable sets holds.

Lemma 3.1.1.
M is countably n-rectifiable if and only if

Mc N,
§=0
where HY (No) = 0 and where each N;, j > 1, is an n-dimensional embedded C' submanifold of
RHE,

We will need one more representation of rectifiability, which will be given below. However, we now
present a result concerning rectifiability that, although intuitively clear, needs to be formally stated
for the purposes of our classification.

Proposition 3.1.1.
Let j,n € N satisfy j <n and let A CR"™ satisfy dim(A) > j. Then A is not countably j-rectifiable.

Proof:
Since dimA > j, dimA = j + ¢ for some € > 0 and thus

HITE2(A) = co. (3.1)
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Now, should A be countably j-rectifiable, we could write
A= MyU U F;(R7)
i=1

where H7(My) = 0 (and thus H7t%/2(My) = 0) and F; : R/ — R™ are Lipschitz functions. As
HItTE/2(RI) = 0, HI+e/2(F;(R7)) = 0 for each i € N and thus

Hj+s/2 ([j E(Rj)> < i?—(j+s/2(Fi(Rj>) = 0.

It follows that H/+e/2(A) < HI+e/2(My) + HITe/2(U2, F;(R7)) = 0. This contradiction to (3.1)
proves the result. &

To introduce the final representation of rectifiability that we need we first need the following two
definitions.

Definition 3.1.4.
We let the blow-up function be denoted by n, that is for any subset A C R™

My,p(4) = p~H (A —y).
Let L be a subspace of R™ and p € R, p > 0, then
L ={zeR": |z —y| <p for some y € L}.
Definition 3.1.5.
If M is an H"-measurable subset of R"T* and 0 is a positive locally H™-integrable function on M,

then we say that a given n-dimensional subspace P of R"* is the approximate tangent space for M
with respect to 0 if

lim /an FW)0(z + My)dH" (y)

lim A™" y FOT (2 — 2)0(2)dH"(2)

A—0
e /P Fw)dH"(y)

for all f € CL(R"*). The function 0 is called the multiplicity function of M.

We will in general consider sets with the multiplicity function set to 1.

Our final definition of countably n-rectifiable sets is now stated in the form of the following theorem.

Theorem 3.1.1.

Suppose M is H"-measurable. Then M is countably n-rectifiable if and only if there is a positive
locally H™-integrable function 0 on M with respect to which the approximate tangent space T, M
exists for H"-a.e. x € M.

Remark: We note that, for example in [26], it is often required that the total or H" measure of a
set M be finite or at least that H" (M N K) be finite for each compact set K. We do not, a priori,
make this assumption.

Rectifiability can be seen as the weakest form of structure that a set can possess. However, we

can explore parts of even unrectifiable sets in the case that they contain rectifiable parts. This fact
will be useful to us, particularly in chapter 4. For this reason we also define purely unrectifiable sets.
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Definition 3.1.6.
A set P is said to be purely n-unrectifiable if it contains no countably n-rectifiable subsets of H"
positive measure.

We note to this definition that for any set in R***, A, A can always be decomposed into the disjoint
union of two sets A = RU P where R is countably R rectifiable and P is purely n-unrectifiable.

3.2 Motivation of the Classification

We now give the motivation and construction of the problem at hand, previous results and results
that follow more or less trivially from the literature.

An additional motivation to that mentioned in the introduction to this work was to perhaps uncover
a way to attack the local H/-finality of singularity sets for minimal surfaces or surfaces moving by
their mean curvature. This is supported by the mentioned results in Leon Simon’s [26] paper on
the rectifiability of minimal surfaces, and recent work by Huisken and Sinistrari that shows that
estimates on the shape of singularity sets is heading in the direction of satisfying the properties of
the definitions under consideration. In particular, in Simon [26] a Lemma (the same one as has been
previously discussed) shows that at least parts of the singularity sets of particular types of minimal
surfaces exactly satisfy one of the approximation properties.

We state this Lemma (after appropriate definitions) as a motivational starting point and also as
it highlights some of the interesting points of results. We then state the definitions intended for
classification mentioned in the introduction and provide more fully a discussion of the intended clas-
sification of these definitions. We also provide here a summary of the classification central to our
work.

Definition 3.2.1.

By o multiplicity one class of minimal surfaces, M, we will mean a set of smooth (i.e. infinitely
differentiable) n-dimensional minimal submanifolds. FEach M € M is assumed to be properly em-
bedded in R"* in the sense that for each x € M there is a ¢ > 0 such that M N B, (z) is a compact
connected embedded smooth manifold with boundary contained in OB, (x). We also assume that for
each M € M there is a corresponding open set Uyy D M such that H™(M N K) < oo for each
compact K C Uy, and such that M is stationary in Ups in the sense that

/ divpy@dp = 0,
M

whenever ® = (®1, ..., ®" k) : Uy, — R"* s ¢ C wvector field with compact support in Uy;. Here
we have used . = H"|p. We also require that the multiplicity one class of submanifolds are closed
with respect to sequential compactness, orthogonal transformations and homotheties, that is:

1. MeM= qong,M € M and qong,Uny = Ugon, ,m for each p € (0,1], and for each
orthogonal transformation q of R"+F,

2. If{M;}; C M, U C R"* with U C Uy, for all sufficiently large j, and sup;>q H"(M;NK) <
oo for each compact K C U, then there is a subsequence M and an M € M such that Uy D U
and M; — M in U in the sense that

/ faH™ — / fdH™
My, M

for any f € C2(U,R).
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We assume here that the M € M have no removable singularities: thus if € M NUy and there
is a o > 0 such that M N B,(z) is a smooth connected embedded n -dimensional submanifold with
boundary contained in 9B, (z), then z € M. Subject to this agreement we can make the following
definition:

Definition 3.2.2.
Suppose that M is as above and that M € M, then the (interior) singular set of M (relative to
Uy ) is defined by

singM == Up N M ~ M

and the regular set of M is simply M itself, that is
reghl .= M.
With these definitions we can now state the motivating Lemma due to Simon [26]:

Lemma 3.2.1.
If M is a multiplicity one class of minimal surfaces, M € M,

m = max{dim singM : M € M},

20 € singM

and
Si(z0) :={2€M:0™(M,z) > 0" (M, z)}.

Then for each € > 0 there is a p = p(e, zo, M) > 0 such that Sy (zo) has the following approzimation
property in By(zo):

For each o € (0,p] and z € Sy (20)NBy(z0) there is an m-dimensional affine subspace L , containing
z with
S+ N B,(z) C the (¢0) — nhood of L, .

We note that in the case of Mean Curvature Flows, the singularity set can also be defined as in the
following two definitions:

Definition 3.2.3.
We say that a solution of Mean Curvature Flow (M;)i<i, reaches xo € R at time to if there exists
a sequence (xj,t;) with t; /" to so that xj; € M; and x; — xo.

Definition 3.2.4.

Let M = (M) be a smooth solution of mean curvature flow in U X (t1,t0). We say that zo € U
is a singular point of the solution at time to if M reaches xo at time ty and has no smooth
extension beyond time ty in any neighbourhood of xy. All other points are called regular points.
The singular set at time to will be denoted by sing,,M and the regular set by regy, M.

As singularity sets are the motivation rather than the subject of our investigation, the properties
of singular sets are used very little. However, in determining how applicable our results may be
to singular sets we find that it is important to note that singular sets (from either definintion) are
closed.

Proposition 3.2.1.
Singular sets as defined in either Definition 3.2.2 or Definition 3.2.4 are closed.
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Proof:

Suppose that the statement is not true, then there is a point x € regM such that for all » > 0
B,(x) N singM # 0. In particular since z € regM there is a radius p, > 0 such that M N B,_(z)
is "smooth" (either in the infinitely differentiable in space time sense for mean curvature flow, or
the sense outlined in Definition 3.2.1, depending on whether we are proving the result for Definition
3.2.2 or 3.2.4) and such that B,, N singM # (). Thus there is a z € singM and p. > 0 such that
B,.(2) C B,,(z). It follows that M N B,_(z) is "smooth" and thus z € regM. This contradiction
shows such a point x cannot be found which completes the proof. &

We now construct the properties that we will be investigating. We will always be considering sets
being approximated by j-dimensional affine spaces that are subspaces of R”. We will identify R x {0}
with R and denote the projection onto R by m,. Further, if L is a j-dimensional affine space in R?
we will denote the projection onto L by 7.

Definition A.
Let A C R™ be an arbitrary set and 1 > § > 0; then

(i) A has the weak j-dimensional 6-approximation property if for all y € A there is py > 0 such that
for all p € (0, py], there exists an affine space L, , such that B,(y) N A C Lg’fp EXT

(ii) A has the weak j-dimensional §-approzimation property with local p,-uniformity if for all y € A
there is a p, > 0 such that for all p € (0, p,] and all v € B, (y) N A,there exists an affine space L ,
such that B,(z) N A C Lgf’p > zx.

(i) A is said to have the fine weak j-dimensional approzimation property if A satisfies (i) for
each § > 0.

(iv) A has the fine weak j-dimensional approzimation property with local p,-uniformity if A sat-
isfies (it) for all 6 > 0.

(v) The property (i) is said to be po-uniform, if A is contained in some ball of radius po and if,
for every y € A and every p € (0, po|, there exists an affine space L, , such that B,(y)NA C Lgf’p S y.

(vi) A has the strong j-dimensional 0-approximation property if for each y € A there is a j-
dimensional affine space L, containing y such that definition (i) holds with L, , = L, for every

p € (0, pyl.

(vii) A has the strong j-dimensional d-approximation property with local p,-uniformity if for all
y € A there erists a py, > 0 and an affine space L, such that for all v € B, (y) and all p € (0, p,]
By(x)NAC (Ly+y—x)°° >

(viii) The property in (vi) is said to be po-uniform if A is contained in some ball of radius po
and if for each y € A and rhoin(0, po there is a j-dimensional affine space L, containing y such
that B,(y) N A C Lgp Sy.

Due to the long names of the properties, they will be henceforth referred to only by their number.

Since the definitions are not easy to properly understand or to properly distinguish from one another

at first glance, we present a table below summarising the construction of the definitions. Apart from
the basic approximating principle of fitting a set in a dp neighbourhood of an affine space within a
p-ball, the definitions are all made up of four basic elements.
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Figure 3.1: d-approximation

1. /-approximation type: Each definition will be either of strong or weak J-approximation
type. To be of weak type allows the approximating affine space to alter for each point being
approximated. To be of stong type insists that given a point, y, in the set being approximated,
A, and radius p, there is an affine space that may not be changed when making the subsequent
approximations required by the definition in question after the initial choice of a point and
radius.

2. po-uniformity: Each definition either possesses this property or not. It requires that the
entire set being approximated be contained in a ball of a fixed radius pg > 0. Further, the
set must be appropriately approximated by an affine space around each point in the set in a
neighbourhood of any radius up to and including pqg.

3. Local p,-uniformity: Each definition either possesses this property or not. It requires simply
that for each y in the set being approximated, A, there exists a p, > 0 such that AN B, (y)
have the po uniformity property with pg = py.

4. 0-fine: Each definition either possesses this property or not. It requires that the definitions
other properties hold simultaneously for all 6 > 0 and not just some pre-chosen § > 0.

We can now present the definitions in Definition A in table form showing the elements possessed by
each definition.

Property d-approx. po-uniform p,-uniform J-fine

(i) Weak No No No

(ii) Weak No Yes No

(iii) Weak No No Yes (3.2)
(iv) Weak No Yes Yes '
(v Weak Yes Yes No

(vi) Strong No No No

(vii) Strong No Yes No

(vii) Strong Yes Yes No

The classification we make is to get a simple yes or no answer for each of the eight definitions with
respect to the following three questions.
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Question 3.2.1.
We wish to classify the definitions in Definition 1 with respect to the following questions:

1. If the set will be of dimension j (or rather < j),
2. if the set will have some locally finite Hausdorff measure property and
3. if the set will be countably j-rectifiable.

With these questions in mind we will concern ourselves with asking about the answer to (1), (2) or
(3) with respect to a certain definition. For example, in saying that property (i) does not ensure
that a set have Hausdorff dimension less than or equal to j, we are answering the first question in
the negative for property (i). In this case we say that the answer to (i) (1) is no.

As we are generally probing here for ‘free information’ about singularity sets, and the use of more
than one definition of the terms about which we are asking in the literature we remain open as to
which definition it is that we are making classifications with respect to. We therefore allow for two
strengths of locally finite 7 measure. In only one case do we find that the answer as to possessing
locally finite H/ measure is affected by the choice of strength of definition, that is for (vii) where
the definition ensures satisfaction of the weaker but not the stronger definition. The definitions are:

Definition 3.2.5.
A subset A C R™ is said to have locally finite H’ measure (or local H’-finality) if for all compact
subsets K C R",

HI(KNA) < oo,

or equivalently, if for all y € R™ there exists a radius p, > 0 such that
HI(B,,(y) N A) < .

A subset is said to have weakly locally finite 7/ measure (or weak local H’-finality) if for each
y € A there exists a radius py > 0 such that

HI (B, (y) N A) < cc.

An example of the difference is that
N = [j R x !
- n=1 n

has weak local H/-finality but not local H7-finality. The use of allowing the weak definition is that
in some cases, such as NV, a set without weak local H7-finality will be the finite union of a collection
of sets with local 7/-finality. Which still could be understood as having reasonably behaved local
measure when the structure giving the locally infinite measure is known.

Also, the definition of rectifiability often requires that the set in question be weakly locally fi-
nite in addition to satisfying the structural requirements (see for example [26]). Since the question
of locally finite measure is addressed in question (2) we do not add this consideration. It is for this
reason that we restrict ourselves as much as possible to the structural requirements of rectifiable sets.

The classification we get (which shall be proved in the following chapters) can be tabulated as
follows:
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Classification Table

Property Question

(1) (2) 3)

(weak, strong)

(1) No No, No No
(i) No No, No No (3.3)
(iii) Yes No, No No
(iv) Yes No, No No
(v No No, No No
(vi) Yes No, No Yes
(vii) Yes Yes, No Yes
(viii) Yes Yes, Yes Yes

In answering a "No" we always give a counter example. They have not been given in the above
table as they have not yet been constructed. For reference, a table of counterexamples is given
at the end of Chapter 4 in (??) and a complete table of all classifications with the corresponding
counterexamples is provided at the end of Chapter 6 in (6.4).

As we see, and was hinted at, we do not necessarily get very much information for free. Most
notably we find that it is not true that the definition relating to Simon’s Lemma (property (iv))
does not guarantee locally finite measure or rectifiability. However, as mentioned in the introduction,
in this case we do show that in order for something to go wrong the set does have to be truly badly
behaved which should be helpful. We now note formally that the condition in Simon’s Lemma is
definition (iv).

Proposition 3.2.2.
The S4(zo) sets introduced in Lemma 3.2.1 are (iv).

Proof:
Direct comparison between the property shown in Lemma 3.2.1 and (iv) shows that this is exactly
what is shown in Lemma 3.2.1. &

3.3 Results Following from the Literature

Although the problem we are looking at has not previously been systematically investigated, a few
of the results follow easily from results already in the literature for which proofs can be found,
for example in Simon [27]. The relevant results can be stated in the form of one counter example
(discussed later) and the following lemma (which is a summary of results to be found in Simon [27]):

Lemma 3.3.1.

(i) There is a function B : [0,00) — [0,00) with lims\ o 5(6) = O such that if A C R™ has the
j-dimensional weak 5-approximation property for some given § € (0,1], then HITPC)(A) = 0. (In
particular if A has the j-dimensional weak §- approzimation property for each 6 > 0, then dimA < j.)

(i) If A C R™ has the strong j-dimensional §-approximation property for some 6 € (0,1], then
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A C UGy, where each Gy, is the graph of some Lipschitz function over some j-dimensional sub-
space of R™.

(iii) If A C R™ has the po uniform strong j-dimensional §-approximation property for some § € (0,1],
then A C ngle, where Gy, is the graph of some Lipschitz function over some j-dimensional sub-
space of R, L

We show in the following Corollary that the above Lemma allows us to answer yes to properties (vi)
(1), (viii) (1) and (2), (iii) (1), (iv) (1) and (vii) (1) and (2), although we answer yes to (vii) (2)
only with weak local H’-finality, to local 7’-finality we answer no.

Corollary 3.3.1.

The answer to the following Definitions is yes:
(1): (iii), (i), (vi), (vii) and (viii).

(2): (vii) and (viii).

(3): (vi), (vii) and (viii).

Proof:
(iii) (1) follows from Lemma 3.3.1 (i) since

"In particular if A has the j-dimensional weak O-approximation property for each § > 0, then
dimA < j."

means that should A satisfy (iii), then dimA < j which proves that the answer to (iii) (1) is yes.
Further, since (iv) (1) is a strengthening of (iii), sets satisfying the properties of (iv) must further
satisfy any properties following from sets satisfying (iii), thus the answer to (iv) (1) must also be yes.

Any graph of a Lipschitz function over a j-dimensional affine space clearly has dimension less than
or equal to j. It follows then that any countable union of such graphs will also have dimension
bounded above by j. It thus follows from Lemma 3.3.1 (ii) and (iii) that the answers to (vi) (1) and
(viii) (1) are yes. Similarly to the preceeding paragraph, the fact that (vii) is a strengthening of (vi)
that the answer to (vii) (1) is yes.

Further concerning (viii), suppose that we have a set A satisfying the conditions of property (viii).
Suppose also that z € R™ and p > 0. Then we know that

AN B,( ng T (By(2)))

where L are the j-dimensional affine spaces that Lemma 3.3.1 ensures exist and the g; are the
Lipschitz functions over the L; that combined contain A. Thus

Q
HI(ANB,(x)) <> H (gr(m, (By(x)))).

k=1

Since card({gk},?:l) = () < oo there exists an M = max; Lipg, < co so that by the Area Formula

HI (AN B,(x (1, (By(x))) = QMwjp; < oo.

M@

k=1
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We thus have that property (viii) does ensure locally finite measure, and hence that the answer to
(viii) (2) is yes.

We now note that should we have a set satisfying (vii), then, by definition, for each y € A there is
a py > 0 and an affine space L, such that for all z € B, (y) and all p € (0,p,] B,(z) N A C L.

It follows that B, (y) N A satisfies (viii), thus H’(K N A) < oo for each compact K C R”, that is
H?(B,,(y) N A) < H/(B,,(y) N A) < co.
giving weak local H’-finality, and the answer to (vii) (2) as yes.

For the answers to (3) we observe that Lemma reflem2 (ii) states that any set A satisfying defini-
tion (vi) can be written as a countable union of Lipschitz graphs. By the definition of rectifiability
(Definition ??) we see that the answer to (vi) (3) is yes.

By observing the structure of the definitions (vii) and (vii) (see in particular Table 3.2) we see
that definitions (vii) and (viii) are strictly stronger than (vi). That is, for any set, A, satisfying
either definition (vii) or (viii), A also satisfies definition (vi) and so by the preceeding paragraph is
countably j-rectifiable. This shows that the answers to (vii) (3) and (viii) (3) are both yes and thus
concludes the proof. O

Remark: We note that the proof as written is also optimal in that we cannot get better than
weak local H-finality for (vii) as seen in the already given example of /. For each y € N we can
find a p, > 0 such that B, (y) "N C R x {1/n} for some n € N, and by setting L, as this affine
space for each y it is clear that A satisfies (vil). However, for each r > 0

M (B,((0,0)) NN) = o0
so that A/ does not have locally finite 7’-measure.

Another contribution that comes from Simon [27] is a set that is similar in form to the main and
most interesting counter example that is presented here. Its actual construction and properties will
be discussed in the following section, however, in noting results that have already been essentially
shown, we acknowledge its existence and that it is known to satisfy one of the definitions.

Lemma 3.3.2.
There is a set, T'c, that satisfies (i) for j = 1 that has dimension greater than 1.

In latter chapters the dimension of I'. and related sets will be discussed. The original proofs that
we present will be based on the knowledge of how to calculate the dimension of I'.. The proof of
the relevant formula will, however, not be presented, as it also already exists in the literature. The
proof can be found in [15].

Corollary 3.3.2.
The answers to (i) (1), (2) and (3) are no.

Proof:

The set I'c of Lemma 3 constructed in the following section provides a counter example to the answer
to (i) (1) being yes. It also follows that I'. is not weakly H!-finite. Thus the answer to (i) (2) is also
no. Similarly, Proposition 3.1.1 shows that the fact that dimI'. > 1 prevents ' being countably
1-rectifiable showing that the answer to (i) (3) is no. &
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All of the results following easily from the literature have now been shown. Further all of those
questions in our classification to be answered with yes have now been answered. What has already
been shown can be summarised in the following table:

Property Question Counter Example
(1) (2) 3 (2) (3)
(weak, strong)
(1) No No, No No TI. I, I,
(i) (3.4)
(iii) Yes
(iv) Yes
(v
(vi) Yes Yes
(vii) Yes Yes, No Yes
(viii) Yes Yes, Yes Yes

It remains only to show that the answers to all of the remaining classification questions are no.

3.4 Notes

Definitions 3.1.1, 3.1.2, 13.2.1, 3.1.4, 3.1.5 and 3.1.6 are all standard geometric measure theory as
are the results Lemma 3.1.1 and Theorem 3.1.1. We understand Proposition 3.1.1 to be standard
and lay no claim to it. We have, however, no source and the proof given is our own. Good sources on
geometric measaure theory are Federer [11], Simon [25] or Evans and Gariepy [10]. The motivating
Definitions 3.2.1 and 3.2.2 as well as the motivating Lemma for this work, Lemma 3.2.1, are due
to Simon [26]. Definitions 3.2.3 and 3.2.4 come from Ecker [7]. Although the result proven in
Proposition 3.2.1 is well known, see Simon [27], the proof given is our own. Definition A and
Question 3.2.1 is our own fundamental set up of this research. The two definitions of locally finite
measure in Definition 3.2.5 both occur in the literature, both generally referred to as simply locally
finite measure. Strong locally finite measure can be found in, for example Ecker [7] or Evans and
Gariepy [10]. Weak locally finite measure can be found in, for example, Simon [26], [27] or Brakke
[5]- Proposition 3.2.2 is, as stated in the proof, simply a reforming of the statement of Lemma 3.2.1
which is due to Simon [26]. Lemma 3.3.1 is due to Simon and was the motivation for looking at
variations of definition in Definition A. Corollary 3.3.1 is, however, our own. Lemma, 3.3.2 is proven
later in this thesis and its origin will be discussed in the appropriate chapter. Corollary 3.3.2 is our
own.
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