
Appendix A

A.1 Combinatorics for subunits

Measurements on the IP3 receptor have revealed that a minimum number of

subunits hm needs to be activated for Ca2+ conductance (Bezprozvanny et al.

1991). A single IP3R possesses a non zero open probability only if at least hm
subunits are in the state 10. Consequently the number of open channels and

thus the Ca2+ concentration depends on the arrangement of activable subunits

n10 on the receptors. Activation in the cell occurs of course for a subunit already

associated with a certain receptor. Whereas the mean was used earlier we derive

the distribution of open channels resulting from such a random scattering of

activable subunits. and its properties. To this aim we consider N receptors

with h subunits each. Let ni, i = 1, . . . , h denote the number of receptors with

i activable subunits, then the number of possible configurations for a given set

{ni} := {n1, . . . , nh} that satisfies

n0 + . . .+ nh = N , n1 + 2n2 + . . .+ hnh = n10 (A.1)

is
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. (A.2)

The fraction represents the number of permutations for the set {ni}, whereas the

binomial coefficients take into account the number of ways how to distribute i

activable subunits on a single receptor. Evaluating the total number of configu-

rations yields

Γ =
∑⋆

{ni}

M({ni}) =

(

hN

n10

)

, (A.3)

which complies with the combinatorics of choosing n10 from hN possible subunits.

The asterisk indicates the summation with the restrictions of equation (A.1).

99



100 Appendix A

Knowing the normalization Γ the probability distribution of nj for a fixed value

of j ∈ {0, h} is given by
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(A.4)

Equation (A.4) is most conveniently computed as
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, (A.5)

where we used the generating function

f(z) =
∑′
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(A.6)

Here the prime denotes the restriction

n0 + . . .+ nj−1 + nj+1 + · · · + nh = N − nj =: Ñ . (A.7)

In the case j = 0 the derivatives in equation (A.5) can be performed explicitly,

so that

p(n0) =
1

Γ
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) Ñ
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)(
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)

(−1)Ñ−j . (A.8)

Due to particle hole symmetry we obtain the distribution function for nh by

setting n10 = Nh− n10 and substituting n0 with nh in eq.(A.8):

p(nh) =
1

Γ

(
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) Ñ
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(
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)

(−1)Ñ−j . (A.9)

To gain further insight into the probability distributions we calculate the first

two moments. For the average we start with

〈nj〉 =
1

Γ

∑⋆

{ni}

njM , (A.10)
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because a closed expression for the probability distribution is only available for

the two cases presented above. Defining the corresponding generating function

f(z) :=
∑†

{ni}

njρz
l , l = n1 + . . .+ hnh , (A.11)

where the dagger indicates the restriction n0 + . . .+ nh = N we find
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1
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=
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. (A.12)

In the limit N → ∞, n10 → ∞ we recover the result from (Bär et al. 2000).

Analogously evaluation of the second moments results in
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. (A.13)

Applying these general expressions to IP3Rs requires values for h, hm and N .

The tetrameric structure of the receptor ensues h = 4. However, previous results

by different groups are based on h = 3. We therefore compute the statistics

for both cases. Experiments on a single channel have shown four conductance

levels, each a multiple of 20pS, with a predominance of opening to the third level

(Bezprozvanny et al. 1991, Watras et al. 1991). Thus we set hm = 3. The number

of receptors in a cluster has not been measured yet, but an estimate by Swillens

and Dupont yields N = 25 (Swillens et al. 1999).
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Figure A.1: Probability distribution p(no) for no = n3, h = 3 (full lines) and
no = n3 + n4, h = 4 (dotted lines) for N = 25 and different n10. Values of n10

read 25 (black), 50 (red), 60 (green) and 70 (blue).

The probability distributions p(n3 + n4) with h = 4 and p(n3) with h = 3 are

depicted in figure A.1. They both agree very well. This is also supported by
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their mean and variance as shown in figure A.2. In the left panel we also include

the postition of the maxima of the distributions indicated by dots. They closely

follow the average. Due to the narrowness of the distributions demonstrated by

the small variance as well as the accordance between the mean and the maximum

we calculate the number of open channels nc from the average for a given value

of n10:

n(3)
c =Nr3n10

3N

n10 − 1
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n10 − 2

3N − 2
, (A.14)
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(A.15)

Here r := I/(I + d1) denotes the fraction of subunits in the activable state 10

that are activated (Falcke et al. 2000b). The subscripts (3) and (3, 4) indicate

that we used p(n3), h = 3 and p(n3 + n4), h = 4 for averaging, respectively. Note

that in the limit N → ∞, n10 → ∞ equations (A.14),(A.15) reduce to the well

known expressions of the deterministic description.
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Figure A.2: Mean (left) and variance (right) of no for no = n3, h = 3 (black) and
no = n3 +n4, h = 4 (red). The left panel shows the position of max p(no) as dots.

Studies on puffs indicate that on average 5 channels open (Sun et al. 1998).

In this regime there is no significant difference between p(n3 + n4) and p(n3).

Therefore we consider a channel to be open when 3 out of 3 subunits are in the

activated state. Hence we apply equation (A.14) which can be further simplified

by approximating all the denominators by 3N because of 3N ≫ 1.
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A.2 Proof of equation (4.39)

This section deals with the proof of equation (4.39). It is based on the identity

j
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22j (j!)2

(2j + 1)!
. (A.16)

We transform the left hand side of equation (A.16) according to
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It can be simplified with Euler’s Beta function B(z, w). From its definition

B(z, w) :=

1
∫

0

tz−1(1 − t)w−1dt (A.18)

follows
b
∫

a

(t− a)z−1(b− t)w−1dt = (b− a)z+w−1B(z, w) . (A.19)

Hence we express the integral in equation (A.17) through
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According to (Abramowitz and Stegun 1974) the Beta function is related to the

Gamma function Γ(z) via B(z, w) = Γ(z)Γ(w)/Γ(z + w), so that we find

j
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)
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due to n! = Γ(n+ 1). Expanding the right hand side yields
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This proofs equation (4.39) when we use j! = (1)j.
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A.3 Numerical methods

The geometry of the IP3R cluster imposes considerations on the discretization.

As stated above the radius of the active area measures only tens of nanometers

but the outer boundary is 5-100 µm away. A constant grid size that sufficiently

resolves the dynamics in the cluster would lead to an enormous calculational

effort. To reduce computation time we use a grid with non uniform spacing. The

mesh size is small enough for r ≤ a0 and saturates at a larger value in the bulk.

It entails that the usual discretization of the radial Laplacian
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r2 ∂
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)
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∂2

∂r2
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r

∂
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. (A.23)

cannot be applied. Let {ri} denote the set of grid points, dri := ri − ri−1 the

spacing and ui an approximation to the concentration profile. Then a second

order scheme for equation (A.23) reads
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1

r2
i
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]2
ui+1 − ui
dri+1

−
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2
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. (A.24)

Moreover we adopt a first order scheme for the time integration and 50% of the

stability criterion (Press et al. 2002).


