
Chapter 4

Fokker-Planck equations for IP3
mediated Ca2+ dynamics

4.1 Introduction

Modeling the dynamics of intracellular calcium released through IP3 receptor

channels has proceeded along two roads in the past: deterministic approaches

(De Young and Keizer 1992, Li and Rinzel 1994, Sneyd and Tsaneva-Atanasova

2003) and stochastic methods (Falcke et al. 2000b, Falcke 2003b, Shuai and Jung

2002b, Meinhold and Schimansky-Geier 2002). Deterministic models have been

successfully applied to study intracellular wave phenomena such as fertilization

waves or the impact of mitochondria on waves. For a recent review see (Falcke

2004). However, stochastic simulations have revealed that fluctuations originating

from the binding and unbinding of molecules to the IP3 receptor have to be taken

into account. That was again demonstrated by the results of chapter 2. We here

propose a master equation and corresponding Fokker-Planck equations to further

clarify the effects of fluctuations on intracellular Ca2+ dynamics.

The reason why fluctuations must not be neglected for IP3 induced Ca2+ dynam-

ics lies in their ability to induce oscillations of the Ca2+ concentration. Deter-

ministic models with realistic m parameters are either monostable or possess an

oscillatory regime that is too small to be of experimental importance (Thul and

Falcke 2005, Thul and Falcke 2004b). Hence, noise can lead to dynamical regimes

that are absent without it. Such a behavior has been already observed in different

fields. Fronts that are stable without fluctuations undergo a diffusive instability

(Kessler and Levine 1998), or patterns emerge that do not occur without fluc-

tuations (Vilar and Rub́ı 1997, Zaikin et al. 2002, Togashi and Kaneko 2004).

Consequently, fluctuations essentially shape the dynamics of a system.
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70 Fokker-Planck equations

In the case of intracellular Ca2+, the role of oscillations is pivotal to a cell. It is

one of the means with which it controlls metabolism or gene expression. Under-

standing the mechanisms that lead to these oscillations is therefore of significant

interest. For the time being no final consensus has been achieved about these

processes. One way to envisage Ca2+ oscillations is as follows. We start with

a group of IP3 receptor clusters. In the course of time a puff raises the Ca2+

concentration at a single cluster. It causes an elevation of the Ca2+ concentra-

tion at neighboring clusters. The open probability at these clusters grows. This

may induce channel opening, but it does not have to. If none of the surrounding

clusters open, the puff remains an isolated event. A completely different scenario

occurs as soon as more clusters open. The Ca2+ concentration increases to such

an extent at the neighboring clusters that it is very likely for them to open as

well. It causes a further elevation of the Ca2+ concentration which can lead to

additional open clusters. This is the beginning of one Ca2+ oscillation. Continu-

ing this process leads to a Ca2+ wave which travels through a cell or only through

parts of it.

The quantity that decides whether a Ca2+ liberation stays localized or spreads

through a larger area is the number of clusters that open in a small region within

a short time. If too little clusters are involved, the Ca2+ concentration does

not grow sufficiently enough at the adjacent clusters to induce a high opening

probability. A minimal number of open clusters is required for this. Picturing

them as a group they represent a nucleus from which a Ca2+ wave starts. Hence,

there exists a critical nucleus for Ca2+ oscillations.

The period of these oscillations may be decomposed into a stochastic and a de-

terministic part. Stochasticity enters via the time to form the critical nucleus.

There is only a certain probability that a puff opens neighboring clusters. Once

the clusters are open, the high Ca2+ concentration inhibits all channels. Inhi-

bition and recovery from it constitute the deterministic fraction of the period.

Stochastic simulations have shown that long period oscillations are controlled by

the nucleation probability, whereas short periods can be explained by the time

scale of inhibition and recovery (Falcke 2003b).

The above separation of the period does not only hold for Ca2+ oscillations, but

also for the localized Ca2+ puffs. The deterministic part corresponds again to

inhibition and recovery from it. The interpretation of the stochastic fraction

changes. In this chapter we will address it more closely. We will provide tools to

estimate the stochastic part of the puff period because puffs are the basic building

blocks of intracellular Ca2+ dynamics.
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4.2 The master equation

We saw in section 3.3 that the state of an IP3 receptor is determined by the state

of its subunits. Therefore a single subunit acts as the basic building block of the

receptor’s dynamics. Considering a cluster of IP3Rs this picture remains valid.

Let ni denote the number of subunits in the state i. Then the dynamics of the

cluster is governed by the time evolution of each ni. The discussion in section

3.3 already suggests that this process is most conveniently described by a master

equation. Hence we study the probability P ({ni}) for a given configuration {ni}.
The precise form of the master equation depends on the state scheme for the IP3

receptor. We here apply the state scheme depicted in figure 3.4. Consequently,

we characterize the cluster by the number of activable subunits n10, the number

of inhibited subunits nh̄ and the number of subunits with no Ca2+ bound n00.

We will study a cluster consisting of N channels with h subunits each. Hence,

the total number of subunits is fixed to Nh = n10 + nh̄ + n00. This relation

allows to concentrate on the two variables n10 and nh̄ only. The value of n00 is

uniquely determined by the above sum. Consequently, the probability to find a

configuration (n10, nh̄, n00) is identical to the probability P (n10, nh̄) for the set

(n10, nh̄). Its time evolution is governed by the master equation

Ṗ (n10, nh̄) = − [n10(b5 + a6c(n10)) + nh̄b6]P (n10, nh̄)

− [hN − n10 − nh̄][a5c(n10) + a6c(n10)]P (n10, nh̄)

+ [hN − nh̄ − (n10 − 1)]a5c(n10 − 1)P (n10 − 1, nh̄)

+ [hN − nh̄ − (n10 − 1)]a6c(n10)P (n10, nh̄ − 1)

+ [n10 + 1]a6c(n10 + 1)P (n10 + 1, nh̄ − 1)

+ [n10 + 1]b5P (n10 + 1, nh̄)

+
b6c(n10 − 1)

c(n10 − 1) + d5

(nh̄ + 1)P (n10 − 1, nh̄ + 1)

+
b6d5

c(n10) + d5

(nh̄ + 1)P (n10, nh̄ + 1) .

(4.1)

The first two lines describe the loss processes from the state (n10, nh̄). Being in

(n10, nh̄) the terms n10b5 and n10a6c(n10) denote the transitions from 10 to 00 and

to h̄, respectively. Hence n10 changes to n10 − 1 and n00 as well as nh̄ to n00 + 1

and nh̄+1, respectively. Although the probability in equation (4.1) only takes n10

and nh̄ as arguments, we still have to include the transitions involving n00. The
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rate nh̄b6 subsumes the transitions from h̄ to 10 and 00, whereas the second line

governs the transitions from 00. The remaining lines control the gain processes

into the state (n10, nh̄). For instance (n10 + 1)b5 is the rate for going from the

state (n10 + 1, nh̄) into (n10, nh̄). We explicitly include the dependence of the

Ca2+ concentration on n10. The reason is that the number of activable subunits

determines the number of open channels nc and hence c. However, the mere value

of n10 does not uniquely fix nc. It is the distribution of the n10 subunits on the

N receptors that defines nc. This follows from the minimal number of activated

subunits for channel opening. For example 9 activable subunits in a group of 6

IP3Rs can lead to 3 open or 6 closed channels because a channel may open when

at least 3 subunits are in the state 10. It turns out that the distribution of nc
for a given value of n10 is sharply peaked. This is explained in detail in appendix

A.1. Hence we will use the mean of that distribution to compute the number of

open channels from n10.

Having fixed nc we now relate it to the Ca2+ concentration. The basic idea is to

conceive a cluster as a tightly packed array of a small number of channels. Several

aspects of it have already been mentioned in section 3.4. We will demonstrate

here how this deterministic description is motivated by the stochastic dynamics

of N IP3Rs . Consider nc ≤ N channels in the open state. Then Ca2+ flows from

the ER to the cytosol through a fraction nc/N of the whole cluster area. As the

spatial arrangement of the IP3 channels does not influence the dynamics of the

concentration (Swillens et al. 1999), the flux is uniquely determined by the ratio

nc/N . In the case of a spherical cluster - merely for simplifying the calculation

we assume it to be a sphere rather than a membrane patch - we map the nc open

channels to a concentrical sphere that occupies the (nc/N)th part of the whole

sphere, i.e the total cluster. Hence any number of open channels 0 ≤ nc ≤ N

corresponds to a concentrical region whose volume is given by a fraction nc/N of

the maximal value. Identifying a given nc with the radius a of the corresponding

sphere we arrive at

a = a0
3

√

nc
N

= a0
I

I + d1

3

√

n10

3N

n10 − 1

3N − 1

n10 − 2

3N − 2
, (4.2)

where we inserted equation (A.14) for nc. Equation (4.2) naturally incorporates

the lower and upper bound of a cluster. If nc = 0, then a = 0 and no Ca2+

is liberated from the ER. On the other hand if all channels are open, a takes

its maximal value a0. In the limit n10 → ∞, N → ∞ we recover equation

(3.26) if we apply equation (A.15) in equation (4.2). In this respect the above

discussion justifies a posteriori the approach we have chosen in chapter 2. On

the basis of a discrete number of IP3Rs, we realize that the radius of the source

area is directly determined by the number of open channels. There is no need
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for solving an implicit equation. It only arises in the continuous limit. Therefore

taking the small number of receptors per cluster seriously provides us with an

intuitive picture of the cluster dynamics. For further calculations we simplify

equation (4.2) due to 3N ≫ 1, so that the final form is

a = a0
I

I + d1

3

√

n10

3N

n10 − 1

3N

n10 − 2

3N
. (4.3)

Equipped with equation (4.3) we return to the Ca2+ profiles of section . 3.4. The

formalism developed there remains valid, although a is not a smoothly varying

function any more. The general notion foots on calculating the Ca2+ profiles for

each n10. Then the radius a = a(n10) is constant in these computations. The

time evolution of a cluster for which the radius takes on only discrete values

can be imagined as follows. Suppose that at time t the radius changes from a

value a1 to a value a2. Although this is a discontinuous step in the radius the

Ca2+ concentration is to change continuously in time for every spatial coordinate.

Therefore we set the initial conditions for the profile with a = a2 such that they

correspond to the final values for the profile with a = a1. The above procedure

allows us to use time dependent Ca2+ profiles in equation (4.1). However, the

results of chapter 1 indicate that employing stationary solutions is a reasonable

approximation. The flux simulations have shown that the Ca2+ concentration at a

single channel responds within microseconds upon opening and closing, whereas

typical dwell times are in the range of a few milliseconds. Hence, the Ca2+

concentration at a cluster almost immediately follows a change in the number

of open channels and then stays constant. Neglecting that fast initial transient,

we express the Ca2+ concentration in equation (4.1) by the fixed point solution

(3.26) . It is uniquely determined by the value of a = a(n10), so that equation

(4.1) is eventually closed.

4.3 Fokker-Planck equations

Although master equations represent the most accurate description of microscopic

dynamics, only a few exact solutions exist at the moment. Especially nonlinear

equations like (4.1) often resist to a direct treatment. In this case several appro-

ximations have been put forward (Van Kampen 2001, Moyal 1949, Kramers 1940,

Grabert et al. 1983, Hänggi et al. 1984). Despite the plethora of methods there

still is no consensus which approximation is the best (Gitterman and Weiss 1991).

Each of them possesses advantages and drawbacks, so that the problem at hand

finally decides which procedure to use. In this section we will apply the Fokker-

Planck equations to estimate the mean first passage time in a bistable potential,
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see section 4.4. Hence, the results depend on the way the different Fokker-Planck

equations treat the fluctuations because noise drives the escape process. We will

concentrate on van Kampen’s Ω expansion and a method that is similar to that of

a Kramers-Moyal expansion. Whereas the latter keeps the nonlinearities of the

master equation in the fluctuations, the former approximates them in a linear

fashion. Therefore, they represent antipodes in treating the noise which is the

reason for studying both of them.

The Ω expansion is based on the observation that a fluctuating quantity n can

be characterized by a macroscopic variable φ and the fluctuations ξ. This leads

to the ansatz n = Ωφ + Ω1/2ξ. Thinking of Ω as the volume of a system, it

corresponds to relating an intensive variable φ to an extensive variable n with

some noise ξ. Moreover, we see that the fluctuations are of order Ω−1/2 with

respect to the intensive variable as is to be expected. Note that the volume is

not a necessary interpretation of Ω. It suffices that some small parameter exists

in the master equation that can be identified with Ω−1.

For the master equation (4.1) the number of subunits hN will serve as the expan-

sion parameter. On the one hand hN ≫ 1 for a realistic cluster of IP3 receptors,

on the other hand the limit hN → ∞ produces the macroscopic equations. This

is in agreement with the above ansatz for n, because in the deterministic limit

fluctuations vanish and the system is correctly described by φ alone. For the two

dimensional master equation, the preceding discussion leads to the definitions

n10 = Ωφ(t) + Ω
1

2 ξ , nh̄ = Ωψ(t) + Ω
1

2η , (4.4a)

P (n10, nh̄, t) = Π(ξ, η, t) . (4.4b)

Equations (4.4a) can be understood as transformations of the variables n10 and

nh̄ to the new variables ξ and η with still unknown time dependent functions φ(t)

and ψ(t). The goal of van Kampen’s Ω expansion is to derive equations for φ(t)

and ψ(t) as well as for the new probability Π(ξ, η, t). To this aim we start with

the left hand side of the master equation. Using equations (4.4) we find

∂Π

∂t
=
∂P

∂t
+

∂P

∂n10

∂n10

∂t
+
∂P

∂nh̄

∂nh̄
∂t

=
∂P

∂t
+ Ω

1

2

∂Π

∂ξ

∂φ

∂t
+ Ω

1

2

∂Π

∂η

∂ψ

∂t
. (4.5)

The right hand side requires more considerations. For the probability P a term
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like P (n10 ± 1, nh̄) is transformed to the new variables according to

P (n10 ± 1, nh̄) =P (Ωφ(t) + Ω
1

2 ξ ± 1,Ωψ(t) + Ω
1

2η)

=P (Ωφ(t) + Ω
1

2 (ξ ± Ω− 1

2 ),Ωψ(t) + Ω
1

2η)

=Π(ξ ± Ω− 1

2 , η)

=Π(ξ, η) ± Ω− 1

2

∂Π

∂ξ
+

1

2
Ω−1∂

2Π

∂ξ2
+ O(Ω− 3

2 )

(4.6)

All other expressions of P are handled analogously. For the transition rates w

we firstly show that they obey the usual scaling w(n10, nh̄) = Ωw̃(n10/Ω, nh̄/Ω).

Expanding (4.3) results in

a = aI
3

√

(n10

Ω

)3

− 1

N

(n10

Ω

)2

+
2

Ω

(n10

Ω

)

=
aIn10

Ω
− aI

Ω
+ O(Ω−2) (4.7)

with aI := a0I/(I + d1). Hence, the Ca2+ concentration reads

c(n10) = c̃
(aIn10

Ω

)

− dc̃

da

(aIn10

Ω

) aI
Ω

+ O(Ω−2) . (4.8)

This establishes the above scaling because all rates posses the form w(n10, nh̄) =

g(n10, nh̄)f(c(n10)) with a linear function g and some function f . For instance

consider the expression [hN − n10 − nh̄]a5c(n10). Then

g(n10, nh̄) = hN − n10 − nh̄ = Ω
[

1 − n10

Ω
− nh̄

Ω

]

, (4.9a)

f(c(n10)) = a5c(n10) = a5

[

c̃
(aIn10

Ω

)

− dc̃

da

(aIn10

Ω

) aI
Ω

+ O(Ω−2)

]

. (4.9b)

Note that the term c(n10) only emphasizes the dependence of the Ca2+ concen-

tration on n10, but that the function c̃ denotes the Ca2+ profiles of section 3.4.

In the remainder we will drop the swung dash to ease the notation. The specific

scaling of the rates allows an expansion in analogy to equation (4.6). Employing

the rate w(n10+1, nh̄) as an representative example, we find with (x, y) 7→ w̃(x, y)

up to second order

w = Ωw̃
(

φ+ Ω− 1

2 (ξ + Ω− 1

2 ), ψ + Ω− 1

2η
)

= Ωw̃
(

φ+ Ω− 1

2 ξ, ψ + Ω− 1

2η
)

+ Ω
1

2

∂w̃

∂ξ

(

φ+ Ω− 1

2 ξ, ψ + Ω− 1

2η
) ∣

∣

∣

ξ

= Ωw̃ (φ, ψ) + Ω
1

2

(

w̃

∂x

∣

∣

∣

φ,ψ
ξ +

w̃

∂y

∣

∣

∣

φ,ψ
η

)

+
∂

∂ξ

(

w̃

∂x

∣

∣

∣

φ,ψ
ξ +

w̃

∂y

∣

∣

∣

φ,ψ
η

)

∣

∣

∣

ξ

(4.10)
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Equations like (4.6) and (4.10) serve as the building blocks for the Ω expansion.

Rewriting all the terms of the master equation (4.1) in the new variables, we find

that the lowest non vanishing order is O(Ω
1

2 ). It leads to the equation

∂Π

∂ξ

∂φ

∂t
+
∂Π

∂η

∂ψ

∂t
=
∂Π

∂ξ
f1 +

∂Π

∂η
f2 , (4.11)

with

f1 := − φ(a5c+ a6c+ b5) + ψ

(

b6c

c+ d5

− a5c

)

+ a5c , (4.12a)

f2 := − (a6c+ b6)ψ + a6c . (4.12b)

and c := c(aIφ). It is a necessary condition for the validity of the Ω expansion

that equation (4.11) is always fulfilled. Otherwise, the expansion would include

terms that diverge in the limit Ω → ∞ and therefore would not be mathematically

sound. Fortunately, equation (4.11) always holds due to

∂φ

∂t
= f1 ,

∂ψ

∂t
= f2 . (4.13)

They constitute the macroscopic equations of the underlying microscopic pro-

cess, see equation (3.20). The solutions of (4.13) represent the time dependent

transformations in equation (4.4). They tend to the fixed points

φ̄ =
d6c

(c+ d5)(c+ d6)
, ψ̄ =

c

c+ d6

, (4.14)

which are in agreement with the results of section 3.3. Note that φ̄ is computed

from an implicit equation due to c = c(aI φ̄). This may result in multiple fixed

points as depicted in figure 4.1. It shows the nullclines of the macroscopic equa-

tions.

For the parameters chosen we find a region of bistability as in the previous chap-

ter. Increasing the IP3 concentration shifts the curve for φ̇ = 0 upwards. It gives

rise to a saddle node bifurcation. The second saddle node bifurcation occurs

when lowering I. Hence figure 4.1 is equivalent to figure 3.5.

Proceeding to the next order O(1) in the Ω expansion we find

∂Π

∂t
=−

[

g11
∂

∂ξ
+ g21

∂

∂η

]

(ξΠ) −
[

g12
∂

∂ξ
+ g22

∂

∂η

]

(ηΠ)

+
1

2

(

h11
∂2

∂ξ2
+ 2h12

∂2

∂η∂ξ
+ h22

∂2

∂η2

)

Π .

(4.15)
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Figure 4.1: Nullclines of equation (4.13) for d1 = 0.13µM, d2 = 12.588µM, d3 =
0.9434µM, d4 = 1.73462µM, d5 = 2.4702µM, kp = 80s−1, kl = 0.002s−1, kc =
700s−1, E = 750µM, a0 = 0.11µm,D = 40µm2s−1, I = 0.3µM .

The matrices (gij) and (hij) with h12 = h21 are defined as

g11 := b6d5ψc
1/(c+ d5)

2−a6 (c+ φc)−b5−a5

(

c− (1 − φ− ψ)c1
)

, (4.16a)

g21 := a6c
1 − a6ψc

1 , (4.16b)

g12 := b6c/(c+ d5) − a5c , (4.16c)

g22 := − (a6c+ b6) , (4.16d)

and

h11 := a5(1 − ψ − φ)c+ b6ψc/(c+ d5) + a6φc , (4.17a)

h21 := b6ψc/(c+ d5) + a6φc , (4.17b)

h22 := a6(1 − ψ − φ)c+ b6ψc/(c+ d5) + a6φc . (4.17c)

with c1 := dc/da(aIφ)aI . For the symmetric matrix (hij) the Hurwitz criterion as-

sures that it is positive semi-definite. This ensues that equation (4.15) represents

a linear multivariate Fokker-Planck equation. From a technical point of view,

this is clearly an advantage of the Ω expansion, because linear Fokker-Planck

equations can be solved analytically. If −∞ < ξ, η < ∞ a solution of equation

(4.15) is a Gaussian. Therefore it suffices to calculate the two first moments. The

averages are governed by the equations

∂t 〈ξ〉 = g11 〈ξ〉 + g12 〈η〉 , (4.18a)

∂t 〈η〉 = g21 〈ξ〉 + g22 〈η〉 . (4.18b)
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They are the same as the variational equations associated with the macroscopic

laws. This can be seen by linearizing equation (4.13) and substituting the linear

perturbations with the corresponding averages. The three second moments obey

the equations

∂t
〈

ξ2
〉

= 2g11

〈

ξ2
〉

+ 2g12 〈ξη〉 + h11 , (4.19a)

∂t
〈

η2
〉

= 2g21 〈ξη〉 + 2g22

〈

η2
〉

+ h22 , (4.19b)

∂t 〈ξη〉 = g11 〈ξη〉 + g12

〈

η2
〉

+ g21

〈

ξ2
〉

+ g22 〈ηξ〉 + h21 . (4.19c)

For a finite range of ξ and η the solution of equation (4.15) cannot be expressed

as a Gaussian anymore. We provide a corresponding example in section 4.4.1.

However, the Ω expansion is mostly applied to unrestricted noise so that solving

equations 4.18 and 4.19 is usually enough.

The linear character of the noise has cast some doubts about the validity of

the Ω expansion in the past. It has been criticized that in nonlinear systems

a linear description as equation (4.15) would not capture the correct nature of

the fluctuations. To estimate the differences between a linear and a nonlinear

delineation of the noise we now derive a nonlinear Fokker-Planck equation for

the probability P .

The basic concept of this approximation is that we can deal with the shifts

n10 ± 1, nh̄ ± 1 of n10 and nh̄ in equation (4.1) by means of a Taylor expansion.

This yields up to second order

∂P

∂t
=

∂

∂n10

[n10a6c(n10) + n10b5 − (hN − nh̄ − n10)a5c(n10)]P

− ∂

∂n10

[

b6c(n10)

c(n10) + d5

nh̄

]

P +
∂

∂nh̄

[

b6 − (Nh− nh̄)a6c(n10)
]

P

+
∂2

2∂n2
10

[n10a6c(n10) + n10b5 + (hN − nh̄ − n10)a5c(n10)]P

+
∂2

2∂n2
10

[

b6c(n10)

c(n10) + d5

nh̄

]

P +
∂2

2∂n2
h̄

[

b6 + (Nh− nh̄)a6c(n10)
]

P

− ∂

∂nh̄∂n10

[

n10a6c(n10) +
b6c(n10)

c(n10) + d5

]

P .

(4.20)

The scaling of the transition rates (ref. equation (4.7)) motivates the introduction

of new variables φ := n10/Ω and ψ := nh̄/Ω with Ω = hN . Note that they are
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different from those for the Ω expansion. Then, the new probability p(φ, ψ, t) :=

P (n10/Ω, nh̄/Ω) is governed by

∂p

∂t
=
∂

∂φ

[

φa6c+ φb5 − (1 − ψ − φ)a5c−
b6c

c+ d5

ψ

]

p

+
∂2

2Ω∂φ2

[

φa6c+ φb5 + (1 − ψ − φ)a5c+
b6c

c+ d5

ψ

]

p

+
∂

∂ψ

[

b6 − (1 − ψ)a6c
]

p+
∂2

2Ω∂ψ2

[

b6 + (1 − ψ)a6c
]

p

− ∂

Ω∂ψ∂φ

[

φa6c+
b6c

c+ d5

]

p .

(4.21)

with the former notation c = c(aIφ). A comparison of equation (4.21) to equa-

tions (4.13) and (4.15) elucidates the formal differences between the two ap-

proaches. Whereas the first keeps all the nonlinearities of the original master

equation, the second only includes them in the macroscopic equation. Such a

difference is the more striking as both approximations stem from the same mas-

ter equation. However, this result may be attributed to the assumptions they

are based upon. Whereas van Kampen’s approach is guided by the picture of

a macroscopic variable whose state space is diffusively broadened by the noise,

equation (4.21) only supposes that the jumps between adjacent configurations

are small. To decide from scratch which of the two Fokker-Planck equations ap-

proximates the master equation best, is a difficult task and essentially depends

on the question under investigation (Gitterman and Weiss 1991). In the sub-

sequent section we will apply both methods to compute the mean first passage

time for a bistable system. It is a quantity that only exists in noisy systems and

demonstrates the role of fluctuations.

4.4 Waiting time distribution

4.4.1 General framework

A deterministic system which has reached equilibrium never leaves this state.

However, as soon as fluctuations have to be taken into account, the life time in

this state may become finite. That holds in particular in the bistable regime. A

system that shows such a dynamical behavior can be described by a double well

potential U as depicted in figure 4.2. Here the states A and C are stable, whereas

B is unstable. This means that the system spends most of the time in A or C. It
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can leave one of these stable states by fluctuations carrying it across the barrier B

and eventually reaches the other state. The frequency of these transitions depend

on the shape of the potential. In figure 4.2 it is easier to go from A to C than in

the opposite direction. Firstly, the potential difference between A and B is much

lower than between C and B, and secondly the states A and B are closer together

in the x direction than C and B.

x

U
(x

)

A

B

C

bd a
0

Figure 4.2: Bistable potential U(x). The states A and C are stable whereas B is
unstable.

In the remainder of the section we will concentrate on the escape from state A.

This corresponds to the process when a system prepared in state A reaches state

B for the first time. The time that the reaching of B takes is a stochastic variable

because the motion is governed by the fluctuations. Therefore, we compute the

probability density ρ(a0, t) that a system which starts out at x = a0 at t = 0

reaches x = b for the first time in the interval t and t+ dt.

The calculation of ρ requires a more precise formulation of the escape process.

The notion of counting a system’s arrival at B only for the first time means

that it must not leave b once it has got there. Otherwise, it would possess the

opportunity to reach B for more than one time. Mathematically, such a condition

is implemented by an absorbing boundary at b. Hence, b represents the upper

bound for the system’s dynamics. It remains the question for the lower bound.

Here, we set d to some finite value. Such a lower bound occurs frequently for

stochastic variables. For instance, the number of particles should always be

positive, or the price of a share should not drop below a lower limit. In contrast

to the upper bound, we establish a reflecting boundary condition at x = d. Thus,

as soon as the system reaches d, it proceeds to states x > d. This is motivated

by the behavior of the master equation. When the systems reaches the state

(n10, nh̄) = (0, 0) it can only evolve toward positive values of (n10, nh̄). For our
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further analysis, we will refer to the interval [d, b] as the left well of the bistable

potential.

The density ρ may be obtained from a master equation as well as from a Fokker-

Planck equation. For the latter it is convenient to introduce a new quantity

G(a0, t). It represents for the probability that a system is still inside the left well

at time t when it has been prepared at x = a0 at t = 0. Let L denote the Fokker-

Planck operator, then the time evolution of G is governed by the adjoint operator

L̃. Up to now no general solution has been worked out for an arbitrary L. Yet,

an analytic expression for G is available for a linear Fokker-Planck operator. It

is given by the solution of (Gardiner 1985)

∂G(x, t)

∂t
= −vx∂G(x, t)

∂x
+
w

2

∂2G(x, t)

∂x2
, v, w > 0 , (4.22)

where v, w are arbitrary constants. The initial and boundary conditions for equa-

tion (4.22) are

G(x, 0) =

{

1, d ≤ x ≤ b

0, else
,

∂G(d, t)

∂x
= 0 ∀t , G(b, t) = 0 ∀t . (4.23)

The initial condition states that at t = 0 the system is still in the left well with

probability one. The reflecting boundary condition at x = d is expressed by a

no-flux boundary condition. This is equal to a vanishing derivative at x = d

because we investigate the adjoint Fokker-Planck equation. Setting G ≡ 0 at the

right boundary corresponds to instantly removing the system from the well as

soon as it reaches b. This is the descriptive meaning of an absorbing boundary.

We solve equation (4.22) with the ansatz G(x, t) = exp(−λt)u(x), λ ≥ 0 so that

it reduces to the ordinary differential equation

d2u

dx2
− 2vx

w

du

dx
+

2λ

w
u = 0 . (4.24)

Applying the transformation z := x2/4 we find for ū(z) := u(x)

z
d2ū

dz2
+

(

1

2
− 4vz

w

)

dū

dz
+

2λ

w
ū = 0 . (4.25)

It equals Kummer’s equation for ũ(z̃) := ū(z) by setting z̃ := 4vz/w

z̃
d2ũ

dz̃2
+

(

1

2
− z̃

)

dũ

dz̃
+

λ

2v
ũ = 0 . (4.26)

Hence two independent solutions of equation (4.24) read (Abramowitz and Stegun

1974)

u1(x) := M

(

− λ

2v
,
1

2
,
vx2

w

)

, u2(x) := xM

(

1

2
− λ

2v
,
3

2
,
vx2

w

)

. (4.27)



82 Fokker-Planck equations

M designates the confluent hypergeometric function

M(p, q, x) :=
∞
∑

k=0

(p)k
(q)k

xk

k!
, (4.28)

where (p)0 := 1 and (p)k := p(p + 1) . . . (p + k − 1). The boundary condition at

x = b entails that a solution of equation (4.24) is

u(x) := C1

[

u1(x) −
u1(b)

u2(b)
u2(x)

]

= u1(x) −
u1(b)

u2(b)
u2(x) . (4.29)

Without loss of generality we set C1 = 1 as it merely serves as normalization. The

second boundary condition fixes the still unknown eigenvalues λ. They constitute

an infinite countable set {λn} due to the finiteness of a and b. Therefore the

general solution of equation (4.22) can be expressed as

G(x, t) =
∞
∑

n=0

an exp(−λnt)un(x) . (4.30)

The subscript of un(x) indicates that equation (4.29) has to be evaluated at

λ = λn. The coefficients an are determined by the initial condition g(x, 0) which

results in

an =

b
∫

d

r(x)un(x)dx

/ b
∫

d

r(x)u2
n(x)dx , r(x) :=

2

w
exp

(

− v

w
x2
)

. (4.31)

Here we used the orthogonality relation of the eigenfunctions un(x):

b
∫

d

un(x)um(x)r(x)dx = δm,n

b
∫

d

u2
n(x)r(x)dx . (4.32)

The probability ρ(x, t) that a particle leaves the well between t and t + dt is

readily computed from G(x, t) as ρ = −∂tG(x, t). Hence the mean first passage

time T (x) equals

T (x) := 〈t(x)〉 =

∞
∫

0

tρ(x, t)dt = −
∞
∫

0

t∂tG(x, t)dt . (4.33)

Note that ρ is already normalized to 1 due to the initial condition G(x, 0).

An alternative approach to the mean first passage time follows from the differen-

tial equation (Gardiner 1985)

−vxdT (x)

dx
+
w

2

d2T (x)

dx2
= −1 , (4.34)
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with the solution

T (x) =
2

w

b
∫

x

dy

h(y)

y
∫

d

h(z)dz , h(x) := exp
{

− v

w
(x2 − d2)

}

. (4.35)

Performing the z integration we find

T (x) =

√

π

vw

b
∫

x

dy exp
(

− v

w
y2
)

erf

(
√

v

w
y

)

+
π

2v
erf

(
√

v

w
d

){

erfi

(
√

v

w
x

)

− erfi

(
√

v

w
b

)}

.

(4.36)

The functions erf(x) and erfi(x) = erf(ix)/i stand for for the Gaussian error

function and the imaginary Gaussian error function, respectively. The remaining

integral can be solved by series expansion so that the final expression for the

mean first passage takes the form

T (x) =
b2

w
F2;2

(

1, 1;
3

2
, 2;

w

v
b2
)

− x2

w
F2;2

(

1, 1;
3

2
, 2;

w

v
x2

)

+
π

2v
erf

(
√

v

w
d

){

erfi

(
√

v

w
x

)

− erfi

(
√

v

w
b

)}

.

(4.37)

We employed the generalized hypergeometric function

Fp;q(a1, . . . , ap; b1, . . . , bq;x) =
∞
∑

l=0

(a1)l · · · (ap)l
(b1)l · · · (bq)l

xl

l!
, (4.38)

and used the identiy

j!

2j + 2

j
∑

l=0

(−1)l

(2l + 1)(j − l)!l!
=

1

2

(1)j(1)j
(

3
2

)

j
(2)j

. (4.39)

We defer the proof of it to the appendix A.2. The reason for presenting two

methods for evaluating the mean first passage time is based on their different

scopes of applicability. If we were only interested in T , then equation (4.37) would

be preferable because it requires less computation. However, we are limited to

the first moment. Differential equations for higher moments couple to the lower

ones leading to a system of ODEs (Gardiner 1985). This is the advantage of the

first approach. We obtain any moment by one integration. Moreover, we have

access to the time evolution of the escape process which allows for a more detailed

analysis.
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The above results could only be obtained analytically because the corresponding

Fokker-Planck equation was linear. In the case of a nonlinear Fokker-Planck

equation, all quantities have to be computed numerically. The mean first passage

time is evaluated best from a generalization of equation (4.35). For L = ∂xA(x)+

∂2
xB(x)/2 we find (Gardiner 1985)

T (x) = 2

b
∫

x

dy

h(y)

y
∫

a

h(z)

B(z)
dz , h(x) := exp

{

x
∫

a

2A(y)

B(y)
dy
}

. (4.40)

The study of Fokker-Planck equations instead of master equations is often mo-

tivated by the easier treatment of the former. It holds in particular in higher

dimensions, because a broader spectrum of tools is available for Fokker-Planck

equations than for master equations (Risken 1984). This constitutes one of the

reasons for the derivations in section 4.3. However, Fokker-Planck equations al-

ways represent approximations. The only way to test their quality is a comparison

with results obtained from a master equation. In general they stem from numer-

ical integrations. Yet, the mean first passage time can be computed analytically

in one dimension.

We consider a one step process that starts at a site m at t = 0. Being at site

n the particle hops to the right with a rate gn and to the left with a rate rn,

respectively. When it reaches the left boundary L, it is reflected. Then, the

mean first passage time to arrive at a site R > m reads (Van Kampen 2001)

TR,m =
R−1
∑

i=m

(

1

gi
+

i
∑

l=L+1

riri−1 · · · rl
gigi−1 · · · gl

1

gl−1

)

. (4.41)

This allows us to estimate the validity of the preceding approximations. Although

escape problems in higher dimensions behave differently than in one dimension - a

system possesses additional paths out of a stable fixed point - the above discussion

provides a starting point for reasonably choosing a Fokker-Planck equation in

higher dimensions.

4.4.2 Ca2+ dynamics

We now apply the results of section 4.4.1 to the dynamics of an IP3R cluster.

The behavior that is most frequently found for a single cluster is a Ca2+ puff. It

is the concerted opening of approximately five channels (Sun et al. 1998). The

small number of channels per cluster induces large fluctuations in the number

of open channels. A possible mechanism how this noise leads to a puff can be
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conceived as follows. Suppose that the state of a cluster after recovery from

inhibition resembles state A of figure 4.2. Whenever the fluctuations carry it

over the barrier a new puff starts. Thus we may estimate the stochastic fraction

of the puff period from the mean first passage time for a process as described

in the previous section. Note that the mean first passage time is always smaller

than the puff period measured in experiments.

The master equation (4.1) describes the stochastic dynamics of one IP3R cluster.

It yields the probability for a configuration (n10, nh̄) of activable and inhibited

subunits. They determine the number of open channels. Consequently, all infor-

mation for the initiation of a puff is included in the master equation. However,

no general solution for a two dimensional escape problem has been found by now.

Only a few results exist. See (Henry and Levine 2003) for a recent contribution.

Therefore we approximate equation (4.1) by a one dimensional expression. It

allows to use all methods presented in the section 4.4.1.

The reduction of equation (4.1) to one dimension is achieved by keeping nh̄ con-

stant. The reason lies in the different time scales for the dynamics of n10 and

nh̄. The latter is controlled by Ca2+ inhibition which is much slower than Ca2+

activation. When n10 changes, the value of nh̄ remains almost constant. This

leads to the one dimensional master equation

Ṗ (n10) = − b6c(n10)

c(n10) + d5

nh̄P (n10) +
b6c(n10 − 1)

c(n10 − 1) + d5

nh̄P (n10 − 1)

− (hN − n10 − nh̄)a5c(n10)P (n10) + b5(n10 + 1)P (n10 + 1)

− b5n10P (n10) + (hN − n10 − nh̄ + 1)a5c(n10 − 1)P (n10 − 1)

− a6c(n10)n10P (n10) + a6(n10 + 1)c(n10 + 1)P (n10 + 1) .

(4.42)

The Fokker-Planck equations for equation (4.42) that correspond to equations

(4.15) and (4.21) can be directly deduced from them. It suffices to set all deriva-

tives with respect to η and nh̄ equal to zero, respectively. This holds because of

nh̄ = const. It results in a linear Fokker-Planck equation for ξ with the same sign

convention as equation (4.22) due to g11 < 0 and h11 > 0. For full compliance

with section 4.4.1, we have to consider the macroscopic equation. It follows from

equation (4.13) as

φ̇ = −φ(a5c+ a6c+ b5) + ψ̄

(

b6c

c+ d5

− a5c

)

+ a5c , (4.43)

with the constant ψ̄ given by equation (4.14). We obtain the potential for the

motion of φ by integrating the right hand side of equation (4.43) with respect to
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φ. It corresponds to a horizontal line at a value ψ = ψ̄ in figure 4.1. Taking for ψ̄

a value in between the two extrema of the curve φ̇ = 0, we find that φ possesses

three stationary solutions. This is depicted in figure 4.3 for two values of the

IP3 concentration. It shows the typical shape of a bistable potential. Thus, all

conditions of the previous section are fulfilled.
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Figure 4.3: Potential U(φ) for I = 0.0225µM (left) and I = 0.032µM (right).
The left panel shows the potential just before the second saddle node bifurcation.
The insets depict an enlarged view for U(φ) ≈ 0. Note the difference in scale for
the axis. Parameters as in figure 3.6, d5 = 0.832µM and ψ = ψ̄.

To compute the mean first passage time the values of a and b as well as for the

stable fixed point A are needed. In analogy with figure 4.2 we identify A with the

left stationary state (φ̄, ψ̄) in figure 4.1. It complies with the stationary state of

low Ca2+ concentration to which the IP3 receptors return in between oscillations

(Marchant and Parker 2001). The boundary values are obtained differently for

the two Fokker-Planck equations. For the nonlinear Fokker-Planck equation they

follow from the fixed points of the macroscopic equations. We set a = 0 and b

to the value φ̄u of the instable stationary state. In the case of the linear Fokker-

Planck equation for the noise, we go back to equation (4.4a). The requirement

n10 ≥ 0 leads to a = −Ω1/2φ̄. For the right boundary we find b = (φ̄u− φ̄)Ω1/2. It

reflects that the noise can carry the system only to the barrier at φ̄u and not any

further. The discrete nature of the master equation demands a mapping of the

real boundary values to integer ones. We use the results of the nonlinear Fokker-

Planck equation for n10, so that we set L = 0 and R = [φ̄uΩ]. The notation [x]

refers to the integer that is closest to x. Moreover, we assign m = [φ̄Ω].

We now calculate the mean first passage time according to equation (4.41) with

gi =
b6c(i)

c(i) + d5

q̄ + (hN − i− q̄)a5c(i) , ri = b5i+ a6ic(i) , (4.44)
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Figure 4.4: Mean first passage time in dependence on I for the Ω expansion
(solid), the nonlinear Fokker-Planck equation (dashed) and the master equation
(dots). Diamonds represent the variance for the Ω expansion. Parameters as in
figure 3.6 and d5 = 0.843µM,N = 25.

and q̄ := [ψ̄Ω]. Figure 4.4 shows the results in dependence on the IP3 concen-

tration together with those for the Fokker-Plan equations. For the Ω expansion

we apply equations (4.33) and (4.37). The data of the two approaches are in-

distinguishable. For equation (4.33) we only need the four leading eigenvalues

of the expansion (4.30) to achieve this agreement. Whereas solutions of the

Fokker-Planck equation are continuous, the master equation possesses discontin-

uous solutions. This arises from the discreteness of the hopping process. The

jumps in the mean first passage time are dominated by the value of the right

boundary. Whereas changing the starting point m shows only small effects, in-

creasing the right boundary b induces large jumps in the mean first passage time.

In comparison with the master equation the nonlinear Fokker-Planck equation

underestimates the mean first passage time, wheres Van Kampen’s Ω expansion

overestimates it. The nonlinear Fokker-Planck equation proofs as a better ap-

proximation. The overrating of the Ω expansion can be attributed to its parabolic

character. It describes the noise as a parabola around the stable fixed point. In

contrast to the macroscopic potential that possess an inflection point and a max-

imum for φ > φ̄, the noise ξ is governed by a strictly increasing function. It is

still convex when the macroscopic potential is already concave. This can result

in a value too large for the barrier.

Nevertheless the Ω expansion possesses a range where it reasonably approximates

the master equation. This is illustrated in figure 4.5. It depicts the mean first

passage time for the same parameters as figure 4.4, but with N = 15. The

inset shows that for some values of the IP3 concentration the Ω expansion even

interpolates the master equation. Yet, with decreasing I, we recover the same
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Figure 4.5: Mean first passage time in dependence on I for the Ω expansion
(solid), the nonlinear Fokker-Planck equation (dashed) and the master equation
(dots). Parameters as in figure 3.6 and d5 = 0.843µM,N = 15.
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Figure 4.6: Mean first passage time in dependence on I for the master equation
for N = 15 (solid), N = 25 (dotted) and N = 40 (dashed). Parameters as in
figure 3.6 and d5 = 0.843µM .

trends as in figure 4.4. The mean first passage time grows much faster with

decreasing I for the Ω expansion than for the two other methods. Therefore,

we present data for the master equation and for the nonlinear Fokker-Planck

equation in the main plot of figure 4.5 only. The values of T are comparable

to frequencies reported earlier for Ca2+ puff (Marchant et al. 1999). However,

they do not equal the mean first passage time because that latter describes the

stochastic part of the puff period only.

The strong increase in the mean first passage time for small IP3 concentrations

originates from the response of the bistable potential U(φ) to a change in I as

figure 4.3 shows. When we lower I, the right minimum moves upward. For

concentrations I > Ic the potential at the right minimum is higher than at the
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Figure 4.7: Escape probability ρ(0, t) for van Kampen’s Ω expansion. Parameters
as in figure 4.4 with I = 0.035µM (left panel) and I = 0.038µM (right panel).

left minimum. Thus, the barrier grows for smaller IP3 concentrations. Moreover,

the φ value for the local maximum is shifted to the right which results in a broader

left well. This all leads to longer mean first passage times. The left boundary

for the IP3 concentration in figure 4.5 is given by Im. It is the lowest value of

I for which φ still possesses a bistable potential. On lowering I the nullcline of

φ is shifted downward in figure 4.1. Consequently, for all I < Im the value of

the local maximum is smaller than ψ̄ so that the bistable regime vanishes via a

saddle node bifurcation.

A comparison of figure 4.4 and figure 4.5 brings the dependence of the mean first

passage time on the number of channels per cluster forward. A more detailed view

is provided in figure 4.6. It shows the mean first passage time computed from the

master equation for N=40, 25 and 15. It grows with increasing N . This is readily

understood by the role that N plays. When we change N , we keep the maximal

radius of the source area fixed. Consequently, each channel occupies less space

of the cluster when we increase N . A change in the number of open channels

then leads to a smaller variation in the conducting area. This entails smaller

fluctuations. As the mean first passage time is driven by fluctuations, it grows

with increasing N . Formally, the influence of N can be deduced from equation

(4.21). The second derivatives determine the strength of the fluctuations. They

scale like 1/N , so that they become less important for large N . Eventually, the

mean first passage time diverges in the limit N → ∞, because a deterministic

system never leaves a fixed point. This role of N explains why it is possible for the

Ω expansion to give reasonable results for the mean first passage time, although

it overestimates the barrier. When fluctuations grow as for N = 15 compared to

N = 25, the overrating of the barrier becomes less important. This can be seen

as follows. Suppose the height of barrier is written as h + δh, where δh is the
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error induced by the Ω expansion. The escape time scales as exp(h/ǫ + δh/ǫ),

where ǫ denotes the strength of the noise. The larger ǫ, the smaller is δh/ǫ and

consequently the influence of the error in the barrier on the escape time.

As a last step we apply equation (4.30) to calculate the probability density ρ(0, t),

i.e. ρ(0, t)dt is the probability that the system reaches the barrier in the interval

t and t + dt. Note that the starting point for the escape process is x = 0. In

the Ω expansion, the Fokker-Planck equation describes the noise only. At t = 0

the system is exactly in the macroscopic state A. Hence the noise vanishes at

t = 0. The results are depicted in figure 4.7. The smooth shape of the curves

requires less than 10 eigenvalues. The plots show the well known rising phase of

ρ and then the exponential decay. We find a maximal probability ρm which is

shifted toward shorter times for higher IP3 concentrations. The same tendency is

observed for the mean first passage time in figures 4.4, 4.5 and 4.6. This agrees

with the effect of IP3 on the IP3 receptors. The higher I, the more excitable they

are. Hence the Ca2+ concentration grows which entails higher transition rates

and shorter mean first passage times.

The probability density ρ allows a direct computation of the variance for the

escape process. Whereas the mean first passage time T = 〈t(x)〉 represents the

first moment, the variance σ is obtained from σ2 = 〈t(x)2〉−T 2. The calculation

of the variance is computationally cheap, because only one additional integration

is needed once the first moment is known. This is a general strength of the Ω

expansion. We find any moment of the time with one integration. Moreover, a

good convergence of the moments can be obtained with a few eigenvalues only.

Six eigenvalues are enough for the variance in this case. The results are shown

in figure 4.4. The variance and the mean are almost identical. This hints at the

Poissonian character of the escape process.

4.5 Discussion

We have derived a master equation and two Fokker-Planck equations to describe

the dynamics of IP3 mediated Ca2+ dynamics. Among the different approaches

to approximate a master equation by a Fokker-Planck equation we have chosen

van Kampen’s Ω expansion and an ansatz based on the Kramers-Moyal expan-

sion. Master equations and corresponding Fokker-Planck equations for intracel-

lular Ca2+ have been investigated in the past (Shuai and Jung 2002a, Shuai and

Jung 2002b, Meinhold and Schimansky-Geier 2002), but the study at hand is

founded on different ideas. Most of the previous works use the Li-Rinzel model

(Li and Rinzel 1994) for the dynamics of a single subunit of an IP3 receptor. It

describes the time evolution of the fraction of subunits that are not inhibited
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yet, taking advantage of the time scale separation between IP3 activation, Ca2+

activation and Ca2+ inhibition. We employ a state scheme for one subunit that

only eliminates the IP3 dynamics adiabatically. We keep the activating Ca2+ and

inhibiting Ca2+ dynamics. From the resulting 4 states we lump the inhibited

states to a single state. It results in a three state model for one subunit. This

state scheme allows to track the transition 110 ↔ 100. It is essential for the

number of activated subunits and therefore the Ca2+ concentration. Moreover,

the separation of time scales between Ca2+ activation and Ca2+ inhibition does

not necessarily always hold.

All master equations that have been studied by now describe the number of active

subunits of the IP3 receptors. However, the mere number of active subunits

does not uniquely determine the number of open channels and thus the Ca2+

concentration. The latter is necessary for the transition rates. A given number of

active subunits leads to a varying number of open channels as figure A.1 shows.

We have therefore computed the distribution function of open channels when the

number of active subunits is known. It turns out that it is sharply peaked and

that the number of open channels is well characterized by the average. We use

it in the model of section 3.4 to compute the Ca2+ concentration profiles. We

set the radius of the source area proportional to the fraction of open channels

determined by this average. For the Fokker-Planck equations the fraction of open

channels is determined by the macroscopic fraction of open subunits p110. Taking

the continuous limit of the averages in equation (A.15) and (A.14) reproduces

these fractions. Thus we see how the macroscopic equations consistently evolve

from the microscopic view of the master equations.

In a second step we used the master equation and the Fokker-Planck equations

to compute the mean first passage time from the stationary state of low Ca2+

concentration. To this aim we reduced the two dimensional equations to one

variable. In contrast to the equations in (Shuai and Jung 2002a, Shuai and

Jung 2002b, Meinhold and Schimansky-Geier 2002) we keep the fast variable. On

the time scale on which the number of activable subunits n10 changes, the number

of inhibited subunits nh̄ remains constant. Another difference to the above models

lies in the applied Ca2+ concentrations. The above authors employ the parameters

of the original DK model. It was set up for averaged Ca2+ concentrations which

are much smaller than those at an open cluster. The binding rate constant

for Ca2+ activation and Ca2+ inhibition are therefore overestimated in the DK

model, whereas the dissociation constants are too small. We used the parameters

of chapter 2 which reflect the large Ca2+ concentrations at an open cluster.

The discreteness of the master equation admits to follow the number of open

channels during the escape process. For the chosen parameters we find that not
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a single channel opens during this time. The Ca2+ concentration stays just above

base level. If one channel had opened the Ca2+ concentration would have risen up

to more than 20µM at the cluster. This result sheds new light on the stochastic

fraction of the puff period. It seems that the nucleation of open channels is not

the determining factor. On the contrary the stochastic contribution happens

before the first channel opens. Even if we set the Ca2+ concentration to base

level for the whole escape process the system still reaches the barrier. It only

takes longer. The reason why the Ca2+ concentration is not identical to the base

level although no channel is open stems from the average in equation (A.14). We

will investigate this phenomenon more closely in the future.

For the master equation as well as for the Ω expansion the mean first passage

time can be computed analytically. A comparison of the Fokker-Planck equations

with the master equation reveals that the Ω expansion overestimates it and the

nonlinear Fokker-Planck equation underestimates it. Yet, the latter represents

a better approximation to the master equation, although for some values of the

IP3 concentration, the Ω expansion approaches the master equation very well.

From a computational point of view the Ω expansion possesses some advantages.

Any moment of t is obtained from one integration which is easily performed. The

nonlinear Fokker-Planck equation requires the solution of a set of differential

equations. To calculate the nth moment, n equations must be solved.

Figure 4.8: Frequencies of puffs from focal sites (filled bars) and from non-focal
sites (empty bars). A focal site corresponds to an area of increased cluster density
compared to non-focal sites. The inter cluster distance is smaller in a focal site
than in a non-focal site. Figure from (Marchant and Parker 2001).



4.5 Discussion 93

These mean first passage times can be associated with experimentally observed

puff frequencies. The results in figure 4.5 are close to measured values as shown

in figure 4.8. However, the puff frequencies do not correspond to the mean first

passage times. The latter represent only a part of the periods because they

describe the processes after recovery from inhibition.

The drawback of the above method is the limitation to one variable. To tap

the full potential of equation (4.1) different methods are needed. An interesting

approach in this direction has been proposed by Henry et al., (Henry and Levine

2003). They use a path integral formalism coupled to a minimization procedure.

It will be interesting to see what the influence of a second dimension in the

escape process is. A thorough study of these different approaches can therefore

be a forward step in understanding the fundamental processes of intracellular

Ca2+ dynamics.


