
Chapter 3

Stability of membrane bound

reactions

3.1 Introduction

A basic task of cells is to respond to inner and outer stimuli which involves

sequences of chemical reactions forming the signaling pathway. Some of these

reactions take place in the cytosol between dissolved partners. Others occur in

the plasma or organellic membranes. A third kind happens between cytosolic

molecules and membrane bound reaction partners. Frequently these reactions in-

volve only a small part of the membrane at a time because a cell does not only in-

terpret the total amount of additional substances, but also the precise location of

its production. A well known example for this is the formation of cyclic adenosine

monophosphate (cAMP). Here dissolved adenosine trisphosphate (ATP) binds to

adenylate cylcase that is fixed in the plasma membrane. Depending on where

cAMP is fabricated it may trigger a break down of glycogen to glycose or the

expression of a gene (Alberts et al. 1994). The initiation of ion fluxes through

ion channels by ligand binding can as well be perceived as a localized reaction.

Generally not all molecules residing in the membrane patch take part in the

reaction, but only those which are activated. Although the activating mechanism

differs among membrane bound processes it is a ubiquitous property. Therefore

we may refer to the molecules in the particular membrane area participating in a

reaction as active elements. A single cluster with a few tens of them is the focus

of this chapter.

The small number of active elements in a cluster entails small cluster areas. This

strong localization of the reactions causes large gradients of produced species. It

imposes limits on the reaction arising from diffusion of dissolved reaction partners
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42 Stability of membrane bound reactions

toward or away from the cluster. Here, we will model the dynamics of an active

cluster taking diffusion of dissolved reaction partners into account.

Ca2+ signaling has a prominent role among the above mentioned signaling tasks

of a cell (Berridge et al. 2000). In the following the IP3 receptor will serve as an

illustrative example. As opposed to chapter 1 more details about the dynamical

behavior of the receptor are required. Especially the impact of the cytosolic Ca2+

concentration on the open probability needs further consideration. A moderate

increase raises the tendency to release calcium, whereas a high Ca2+ concentration

causes inhibition and closes the channel. Thus the channel releases what controls

its state.

The feedback of Ca2+ on the channel dynamics becomes even more relevant when

we take the spatial organization of IP3 receptors into account. Generically they

form clusters that are randomly distributed on the ER membrane. The typical

inter cluster distance is 2-7µm (Marchant and Parker 2001). The number of

IP3Rs within a cluster has not been experimentally established yet. However,

Swillens et. al (Swillens et al. 1999) estimate that a a cluster comprises 5 to 40

channels. As a single IP3R with all four subunits measures 18nm across we arrive

at a cluster diameter of 60-100nm. Therefore IP3 receptors are tightly coupled

by diffusion within a cluster because the Ca2+ concentration does not decay on

this length scale. On the other hand coupling between adjacent clusters is only

weak.

The spatial heterogeneity of Ca2+ release sites leads to huge gradients. The si-

mulations in chapter 1 of Ca2+ liberation close to the experimental situation show

Ca2+ concentrations of 25-170µM at the center of a cluster. That is 3-4 orders

of magnitude larger than the base level. At the same time the concentration in-

creases only 1-2 times base level at neighboring clusters. This wide range of Ca2+

concentrations is naturally reflected in the properties of an IP3R. Experimental

observations like propagating waves and theoretical considerations indicate that

the sensitivity of the activating Ca2+ dependence of the opening probability on

Ca2+ is tuned to concentration levels close to the resting level. On contrast Ca2+

inhibition shows half maximum values of several µM. These responses to different

Ca2+ concentrations have to be dealt with when designing realistic models.

The small number of elements per cluster may necessitate stochastic approaches

which has been carried out for intracellular Ca2+ dynamics (Falcke et al. 2000b,

Falcke 2003b, Bär et al. 2000). They showed spatial and temporal structures

even with parameters providing a non-oscillatory or non-excitable deterministic

regime. The transition from deterministic to stochastic models was accompanied

by a transition from continuous to spatially discrete models. In this chapter we

focus on the deterministic limit of a single cluster to elucidate the loss of the
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oscillatory regime in going from the stochastic to the deterministic approach.

3.2 General Model

The state of active elements can be described as either activated or deactivated.

As their number per cluster is rather small and as they are tightly packed, each

element occupies a non negligible spatial fraction. Therefore the state of a cluster

is well characterized by the area occupied by activated units. We refer to it as

the active area of a cluster. Usually this is not a connected region. Nevertheless

we merge the area of all activated elements to one concentric patch. Its size

equals the sum of the areas of all activated units and its radius is denoted by

a. This can be applied if the diffusion length of the diffusing species is larger

than the cluster size. The procedure follows a result by Swillens and Dupont

(Swillens et al. 1999). They showed that the dynamics of an IP3R cluster does

not change when the spatial arrangement of the receptors is neglected. A change

in the number of activated elements thus implies an alteration of the size of the

active area. If all elements are deactivated a equals zero. The maximum value

a0 is taken when all units are activated.

a0 is the maximal radius of a sphere to which the active elements are restricted

in our model. A typical value for a0 is tens of nanometers. Another sphere with

a radius b = 5 − 100µm surrounds the active region concentrically. It represents

the environment of a cluster.

Throughout the two spherical compartments m chemical species diffuse. They

are described by the concentration fields c(r, t) := {c1(r, t), . . . , cm(r, t)}. Their

dynamics is of the general form as shown in equation (3.1).

ċ = D∇2
rc+ f1(c)Θ (a− r) + f2(c)Θ (r − a) . (3.1)

Here ∇2
r denotes the radial part of the Laplacian in three dimensions. Θ(x) with

Θ(x) = 1 for x ≥ 0, Θ(x) = 0 otherwise is for the Heaviside step function. The

functions f1 and f2 include the details of the dynamics for r ≤ a and r > a

respectively. Most commonly, f1 is dominated by the production of the species,

whereas f2 controlls mere consumption.

These chemical species react with the active elements thus controlling their state.

Usually there are several binding sites per element which implies numerous in-

ternal configurations. We refer to the variables describing the state of the active

elements as gating variables. Let n be the number of states then pi, i = 1, . . . , n

denotes the fraction of elements in the state i. We describe the dynamics of the
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gating variables by the general equation

ṗi = gi(c, p1, . . . , pn) , i = 1, . . . , n . (3.2)

The fraction of activated elements is deduced from the gating variables. Con-

sequently they determine the radius of the active area as in equation (3.3). We

here include a dependence on the chemical species as well to account for the most

general case.

a = f(c(a), p1(a), . . . , pn(a)) . (3.3)

The values of the concentration fields and of the gating variables do not vary

significantly within a cluster because the diffusion lengths are larger than the

radius of the active area. Therefore we can pick a typical value to compute a.

We choose the boundary of the cluster which turns equation (3.3) into an implicit

expression for a.

We start our analysis by calculating the stationary solutions of equations (3.1)

and (3.2):

0 = D∇2
rc+ f1(c)Θ (ā− r) + f2(c)Θ (r − ā)) (3.4a)

0 = gi(c, p1, . . . , pn) , i = 1, . . . , n . (3.4b)

Due to the Heaviside function equation (3.4a) can be treated separately for r < ā

and r > ā. ā denotes the stationary value of the active area. As we demand

the concentration profiles to be C1 functions with respect to r, the matching

conditions for the stationary solutions c̄ are c̄i(ā) = c̄o(ā) and c̄′i(ā) = c̄′o(ā). The

prime denotes the derivative with respect to r, the subscripts i and o indicate

the inner and outer solution, respectively. The values of ā are obtained from

equation (3.3) after inserting the solutions of equation (3.4). In figure 3.5 we

show a graphical method to determine ā. The dotted line indicates the bisection

line whereas the full lines represent the right hand side of equation (3.3) for a

specific model (see below). Upon changing one parameter the curve of f is shifted.

It results in a change of the number of fixed points given by the intersections.

The existence of a saddle node bifurcation is easily deduced from such a plot.

It occurs when f touches the bisection line. This is equivalent to the condition

f ′(a) = 1.

Knowing the stationary points (c̄, ā) we investigate their stability. A linearization

of the reaction diffusion dynamics in (3.1) results in the equation

ẏ = D∇2
ry + {f1(c̄) − f2(c̄)} δD(ā− r)δa (y, z)

+

{

∂f1i

∂cj
(c̄)Θ(ā− r) +

∂f2i

∂cj
(c̄)Θ(r − ā)

}

· y
(3.5)
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We define y := δc and z := δp. With δD we denote Dirac’s delta function. Al-

though a is not a dynamical variable in our model it still changes in time. This is

a consequence of equation (3.3) as a is computed from the evolving concentration

fields and gating variables. a can be written as a = ā+ δa with δa = δa(y, z). To

evaluate δa from equation (3.3) we expand the expression

ā+ δa = f (c̄(r) + y(r), p̄(r) + z(r))
∣

∣

∣

r=ā+δa
(3.6)

to linear order. We find

δa =

m
∑

i=1

∂f
∂ci
y(ā) +

n
∑

i=1

∂f
∂pi
zi(ā)

1 −
m
∑

i=1

∂f
∂ci

∂c̄i
∂r

(ā) −
n
∑

i=1

∂f
∂pi

∂p̄i

∂r
(ā)

. (3.7)

The derivatives of f have to be taken at (c̄(ā), p̄(ā)). The denominator arises

only because of the evaluation of f at r = a.

When we combine y and z to an n + m dimensional vector x the linearized

equations can be cast into a matrix form ẋ = Mx with

x =

(

y

z

)

, M =

(

A1 0

B A2

)

. (3.8)

A1 is an m dimensional quadratic matrix corresponding to equation (3.5). The

quadratic matrix A2 has the dimension dimA2 = n and B ∈ R
n×m. They

refer to the linearization of the gating dynamics. If M can be diagonalized, the

general solution for the equation ẋ = Mx is given by a linear combination of

terms vi exp(wit). vi represents an eigenvector of M and wi the corresponding

eigenvalue. Thus, the linear stability is uniquely determined by the eigenvalues

of M . The computation of the eigenvalues begins with A2. The gating dynamics

of the spatially fixed active elements is described by rate equations, so that the

Frobenius Perron theorem assures that A2 can be diagonalized. Additionally, all

eigenvalues λi of A2 are real with maxλi = 0 (Horn and Johnson 1999). On

the one hand the structure of M entails {λi} ⊂ {wi}, i.e. the eigenvalues of M

include those of A2. On the other hand the eigenvector qi corresponding to the

eigenvalue λi is of the form (0, . . . , 0, q̃i)
t with dim q̃i = n. This has two important

consequences. Due to λi ≤ 0 the gating variables {p} whose linear disturbance

is denoted by z do not contribute to any linear instability. The only mechanism

that can induce an instability comes from the dynamics of the diffusing species

c. The special form of the eigenvectors qi imposes that the dynamics of y does

not depend on the eigenvalues {λi}. All information about the linear stability

of the dynamics of the diffusing species c and the non diffusing active elements
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characterized by the gating variables p is contained in equation (3.5). This is one

of the advantages of the procedure we have chosen. Especially in the case of a

single diffusing species a far reaching analytical treatment is feasible. We show

this in more detail in section 3.4.

As it is for the fixed points, equation (3.5) can be solved separately for r < ā and

r > ā. The matching conditions are slightly different than those for the stationary

profiles. The both share continuity at r = ā. This equals yi(ā) = yo(ā). However,

the first derivate jumps at r = ā according to

[

dyo
dr

− dyi
dr

+
f1(c̄) − f2(c̄)

D
δa (y, z)

]

ā

= 0 . (3.9)

This is a consequence of the δ-function in equation (3.5). Multiplying the lin-

earized equation with r2 and integrating over r yields equation (3.9). Note that

∇2
r = 1/r2drr

2dr in three dimensions.

The continuity at ā and equation (3.9) fix the still undetermined coefficients of y.

By construction the resulting system of equations is homogeneous. Therefore it

has a non trivial solution only if the determinant vanishes. This yields an implicit

equation for the eigenvalues of the concentration fields and thus determines their

linear stability.

3.3 The De Young Keizer model

The general ideas of section 3.2 will be illustrated below with IP3 induced Ca2+

liberation from the ER. This requires a closer look on the IP3 receptor. Measure-

ments on the flux properties have revealed a tetrameric structure (Bezprozvanny

et al. 1991, Watras et al. 1991). This has been confirmed by cryo-electron mi-

croscopy on single IP3Rs (Jiang et al. 2002). The four subunits are clearly de-

picted in figure 3.1.

It is known that a subunit expresses binding sites for Ca2+ and IP3. However, the

exact number of binding sites is still under investigation. Based on the results of

Bezprozvanny et al. (Bezprozvanny et al. 1991) de Young and Keizer proposed

a model for a single subunit (De Young and Keizer 1992). It consists of three

binding sites: an activating and an inhibitory Ca2+ binding site as well as an

activating IP3 binding site. Therefore the state of a subunit can be specified by a

binary triplet ijk. The first index represents the IP3 binding site, the second the

Ca2+ activating and the last the Ca2+ inhibiting binding site. An index equals

1 when a site is occupied and 0 otherwise. Hence the state 110 refers to IP3

and Ca2+ bound to the activating sites, respectively, and no Ca2+ attached to
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Figure 3.1: Cryo-electron microscopic images of purified type I IP3 receptor from
mouse cerebellum. Figure from (Jiang et al. 2002).

the inhibiting binding site. The resulting eight states of a subunit are shown in

figure 3.2. The binding rate constants for IP3 activation are given by a1 and a3,

whereas a2 and a4 refer to Ca2+ inhibition. Ca2+ activation is controlled by a5.

The dissociation rates for the above processes are denoted by b1 through b5.
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Figure 3.2: Transition scheme of the De Young Keizer model

The reactions that occur at a subunit are binding and unbinding of Ca2+ and

IP3. They determine the state of one subunit. In an ensemble of subunits these

processes lead to a fraction pijk of subunits in a state ijk. If the ensemble is large

enough and homogeneous, these fractions can be described by rate equations.
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For instance, the time evolution of p110 is governed by

ṗ110 = − [b5 + a2c+ b1] p110 + a5cp100 + b2p111 + a1Ip010 , (3.10)

with I being the IP3 concentration and c the Ca2+ concentration. The negative

term represents the processes that reduce the value of p110. This can result from

unbinding of IP3 with rate b1, unbinding from the activating Ca2+ site with rate

b5 and binding to the inhibiting Ca2+ binding site with rate a2c. The remaining

three terms controll the increase of p110. This happens for example through

binding with rate a5c to the activating Ca2+ site of a subunit that is in the state

1o0. Together with the remaining seven rate equations the state of the ensemble

is fully characterized. We may discard one of these equations and use instead the

conservation law
∑

{ijk}∈[0,1]3

pijk = 1 . (3.11)

It states that each subunit belongs to one of the fractions pijk and that the number

of subunits is conserved. In general the Ca2+ concentration is not constant in

time, so that a closed solution for the fractions pijk is not accessible. However,

we can compute the stationary values analytically. They read

p̄000 = d1d2d5γ1 , p̄100 = d2d5Iγ1 , (3.12a)

p̄010 = d1d2c̄γ1 , p̄001 = d3d5c̄γ1 , (3.12b)

p̄011 = d3c̄
2γ1 , p̄101 = d5c̄Iγ1 , (3.12c)

p̄110 = d2c̄Iγ1 , p̄111 = c̄2Iγ1 , (3.12d)

with γ−1
1 = (c̄+d5)(d1d2+c̄d3+c̄I+d2I). Here di := bi/ai denotes the dissociation

constants for IP3 activation, Ca2+ activation and inhibition, respectively.

Despite the success that the De Young Keizer (DK) model has earned in the

past, the seven dimensional phase space of the gating variables does not allow a

straightforward study of the dynamics. Besides the stationary states, all results

for the DK model have been obtained by numerical integrations. The ambitions

to gain further insights into intracellular Ca2+ dynamics based on the IP3 re-

ceptor have led to several approximations of the DK model. On the one hand

numerical investigations could be sped up. On the other hand a broader analyt-

ical treatment was feasible. In the remainder of this section we will cover three

simplifications of the DK model. We will show that the stationary values of the

gating variables do not depend on the approximation. Hence all expressions that

include stationary values of the gating variables only do not differ. This will

prove helpful in section 3.4.
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De Young and Keizer assume that the dynamics of IP3 -association and dissocia-

tion is much faster than the dynamics of Ca2+ -binding and unbinding. Therefore

we eliminate the IP3 dynamics by assuming that it is always in its stationary

state. Given a pair of states (1ij, 0ij) the fraction p1ij/p0ij = βij remains con-

stant. This can be visualized by merging the back side of the cube in figure 3.2

with the front panel. The eight states of the DK model are reduced to four lumped

states pij := p0ij + p1ij (Falcke et al. 2000b). The gating scheme is depicted in

figure 3.3.
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Figure 3.3: Transition scheme for the lumped states of the IP3 receptor.

The rate equations of the lumped states follow from those of the DK model.

Alternatively, we may employ figure 3.3 and find for example

ṗ10 = − (a6c+ b5) p10 + b6p11 + a5cp00 . (3.13)

A general solution to the four rate equations cannot be computed analytically

because of the time dependent Ca2+ concentration. Yet, the stationary solutions

are accessible as

p̄00 = d5d6γ2 , p̄01 = d5c̄γ2 , (3.14a)

p̄10 = d6c̄γ2 , p̄11 = c̄2γ2 , (3.14b)

with γ−1
2 = (c̄+ d5)(c̄+ d6) and d6 = d2(I + d1)/(I + d3). Evaluating the βij and

using the lumped state definition entails that equations (3.14) lead to the same

stationary values p̄ijk as the DK model e.g.

p̄lu110 =
I

I + dd
p̄10 = p̄DK110 . (3.15)

The gating dynamics can be even further simplified when we consider Ca2+ ac-

tivation and Ca2+ inhibition more closely. Experiments show that the inhibitory
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processes may be much slower than the activating ones. It is possible to eliminate

Ca2+ activation adiabatically under these circumstances. Then it is characterized

by the stationary states of the Ca2+ activating reactions. The only time depen-

dent variable that remains is the fraction of subunits that are not inhibited yet.

It is denoted by ph with h = 000 + 100 + 010 + 110. h corresponds to the states

in the upper plane of the cube in figure 3.2. In an ostensive way the introduction

of h mimics to subsume the four states in this upper plane to a single state. At

the same time all dynamics linking these states are assumed to have equilibrated.

Li and Rinzel have performed a systematic reduction of the DK model to the

dynamics of ph (Li and Rinzel 1994). They applied a two time scale analysis.

Another approach is to take the pictorial idea of h literally. This leads to

ṗh=− [(m1+m2)a2c+ (m3+m4)a4c] ph + [(m5+m6)b2 + (m7+m8)b5] ph̄

− a6cph + b6ph̄ .
(3.16)

with h̄ := 001 + 011 + 101 + 111, a6 = (d1a4 + a2I)/(I + d1) and b6 = (b4d3 +

b2I)/(I + d3). The mi are given by

m1 =
I

I + d1

c

c+ d5

, m2 =
I

I + d1

d5

c+ d5

(3.17a)

m3 =
d1

I + d1

c

c+ d5

, m4 =
d1

I + d1

d5

c+ d5

(3.17b)

m5 =
I

I + d3

c

c+ d5

, m6 =
I

I + d3

d5

c+ d5

(3.17c)

m7 =
d3

I + d3

c

c+ d5

, m8 =
d3

I + d3

d5

c+ d5

. (3.17d)

The values of the mi mirror the equilibria of the reactions between the states in

the lower and upper plane depicted in figure 3.2, respectively. As illustration we

derive m1. Suppose we start in the upper plane. The Ca2+ activating processes

have equilibrated, so that the probability to be in one of the states at the right

edge, i.e. 110 and 010, is c5/(d5+c). IP3 binding and unbinding between these has

reached its stationary value. The fraction p110/p010 is constant and the probability

to be in 110 is I/(I + d1). The product of the above two probabilities just equals

m1. The other seven constants are calculated in the same fashion.

Sometimes the rates in equation (3.16) are given as a6 = a2 and b6 = b2(I +

d1)/(I + d3). This follows from the above expressions when the detailed balance

condition d4 = d1d2/d3 and the symmetry assumption of the Ca2+ inhibiting

processes, a2 = a4, is applied. The fixed point of equation (3.16) is

p̄h =
d6

d6 + c̄
. (3.18)
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As for the lumped states the stationary values p̄ikj calculated from the Li Rinzel

model equal those of De Young and Keizer. For instance we arrive at

p̄LR110 =
I

I + d1

c̄

c̄+ d5

p̄h = p̄DK110 . (3.19)

Although the Li Rinzel model is often implemented due to its simplicity, averaging

all Ca2+ activating processes can be a too strong approximation. This holds in

particular when fluctuations in the Ca2+ activating processes have to be taken

into account. Averaging destroys the impact of these fluctuations. We will show

in chapter 3 that fluctuations in the Ca2+ activation essentially shape the behavior

of a single IP3R cluster. This leads to the set up of a model that interpolates

between the four lumped states and the Li Rinzel model. Its state scheme is

depicted in figure 3.4. We keep the activation process between the states 00 and

10, but combine the states 11 and 01 into the state h̄.
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Figure 3.4: Transition scheme for a three state model of the IP3 receptor.

The reason for this choice lies in the prominent role that the state 110 plays in the

dynamics of an IP3 receptor. When at least three subunits are in this state the IP3

receptor channel opens and Ca2+ flows from the ER to the cytosol (Bezprozvanny

et al. 1991). Therefore p110 is called the fraction of active subunits. The larger p110

the higher the probability for an IP3R to open. The above model incorporates all

essential transitions that change p110 and hence the Ca2+ concentration. At the

same time it is compact enough for an analytical investigation as demonstrated

in chapter 3. The rate equations associated with the gating scheme in figure 3.4

are

∂p10

∂t
= − p10(a5c+ a6c+ b5) + ph̄

(

b6c

c+ d5

− a5c

)

+ a5c , (3.20a)

∂ph̄
∂t

= − (a6c+ b6)ph̄ + a6c . (3.20b)

For the stationary states we find

p̄10 =
d6c

(c+ d5)(c+ d6)
, p̄h̄ =

c

c+ d6

. (3.21)
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We here recover the stationary value p̄10 for the lumped states. Employing equa-

tion (3.18) we see that p̄h + p̄h̄ = 1. It is consistent with the definition of h and

h̄, because h̄ is the complement of h with respect to the states of the DK model.

We subsume that all gating schemes yield the same fixed points. Thus, as long

as we are interested in quantities that depend on stationary values only, all of

the above models give the same results.

Rate equations like equations (3.10) and (3.20) represent a macroscopic view.

They correspond to averages and only hold in the limit of large numbers of

subunits. However, a cluster of IP3 receptors contains approximately 25 channels

only. Therefore fluctuations must not be neglected any more as with equations

(3.10) and (3.20). The correct description is then given by master equations. For

illustrative purpose we consider the Li-Rinzel model. Let N be the total number

of subunits and P (n, t) the probability to find n subunits in the state h at time

t. Then the probability obeys the differential equation

Ṗ (n, t) =[N − (n− 1)]b6P (n− 1, t) + (n+ 1)a6cP (n+ 1, t)

− [na6c+ (N − n)b6]P (n, t)
(3.22)

The last line represents the loss processes from the state of n subunits that are not

inhibited yet. Either one of them binds a Ca2+ ion to the inhibitory binding site

with rate a6c or a Ca2+ ion dissociates from one of the (N-n) inhibited subunits

with rate b6. When (n+1) subunits are in the state h then binding of Ca2+ to one

of the (n+ 1) inhibition binding sites results in n subunits that are not inhibited

yet. This process happens with the rate a6c(n + 1). The first expression in the

first line is the transition from (n−1) to n subunits. Taking the continuous limit

N → ∞, n → ∞ we obtain the rate equation (3.16) again. This establishes the

connection between the microscopic and macroscopic view.

3.4 Calcium dynamics

We now apply the method of section 3.2 to the dynamics of cytosolic calcium as

a prototypic model system. The cytosolic Ca2+ concentration c is governed by

ċ = D∇2c+ kl(E − c) − kpc+ kc(E − c)Θ(a− r) . (3.23)

The constants D and E denote the diffusion coefficient of Ca2+ in the cytosol and

the Ca2+ concentration in the ER, respectively. The term kl(E − c) refers to a

leak current whereas kpc describes the calcium uptake by the ER through sarco-

endoplasmic reticulum calcium ATPase (SERCA) pumps. Although it would
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be more realistic to model SERCAs by a Hill equation with coefficient 2, we

approximate them by a linear expression for the sake of an analytical treatment.

The last term in equation (3.23) corresponds to the flux of Ca2+ through IP3

receptor channels. They represent the active elements. If not stated otherwise

we employ the lumped states introduced in section 3.3 as a model for a single

subunit of the IP3 receptor. Therefore, we couple equation (3.23) to the dynamics

of the gating variables {p00, p01, p10, p11} via









ṗ00

ṗ01

ṗ10

ṗ11









=









−(a5 + a6)c b6 b5 0

a6c −(a5c+ b6) 0 b5
a5c 0 −(b5 + a6c) b6
0 a5c a6c −(b5 + b6)

















p00

p01

p10

p11









. (3.24)

The form of the four rate equations stems from the structure of the gating dynam-

ics of the lumped states. The latter is depicted in figure 3.3. The interpretation

of equation (3.24) resembles that of equation (3.13).

In this section we will study the linear stability of equations (3.23) and (3.24). The

general discussion in section 3.2 has elucidated that a linear instability can only

occur through the eigenvalues associated with the Ca2+ concentration. Therefore,

we focus on equation (3.23). We will show that the details of the gating dynamics

enter late in the linear stability analysis. Most of the procedure does not depend

on the specific model for an IP3R subunit. This singles out the current method

from previous approaches to IP3 mediated Ca2+ liberation. Moreover, it holds

for any membrane bound reaction that can be cast into the above form.

The transfer of the approach to membrane reactions is straightforward: simply

replace the term describing the release current in (3.23) by an expression for the

production of the diffusing species and the uptake term by their consumption

dynamics. The gating variables of the channel are the variables characterizing

the state of the membrane bound reaction partner.

In the DK model and all its approximations a subunit is activated when IP3 is

bound and the activating Ca2+ site is ligated (see section 3.3). The fraction of

activated subunits is p110. Thus the probability to find a conducting IP3R is given

by 4p3
110−3p4

110 because a channel is open when at least three out of four subunits

are activated. The size of the active area is set to a fraction of its maximal value

corresponding to the above probability. Hence the radius a of the source area is

a = a0p110
3
√

4 − 3p110 . (3.25)

In accordance with equation (3.3) we refer to the right hand side of (3.25) as f

in the following.
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Our investigations of the Ca2+ dynamics start with the stationary solution of

(3.23):

c̄(r)=

{

B̄(a)
exp(−k̄2r)

r
+

klE

kl + kp

}

Θ(r − a)

+

{

Ā(a)
sinh(k̄1r)

r
+

(kl + kc)E

kl + kp + kc

}

Θ(a− r)

(3.26)

with

Ā(a) =
k(k̄2a+ 1)

cosh(k̄1a)k̄1 + sinh(k̄1a)k̄2

,

B̄(a) =
k(sinh(k̄1a) − cosh(k̄1a)k̄1a)

exp(−k̄2a)(cosh(k̄1a)k̄1 + sinh(k̄1a)k̄2)
,

k =
−kckpE

(kl + kp + kc)(kl + kp)

and

k̄1 =

√

kl + kp + kc
D

, k̄2 =

√

kl + kp
D

. (3.27)

We applied c′(r) = 0 and c(b) = klE/(kl + kp) as boundary conditions. The

latter complies with the base level of the system. The only gating variable that

enters the computation of the stationary value c̄ is p110 due to equation (3.25).

According to equation (3.12) p̄110 in dependence on c̄ and the IP3 concentration

I reads

p̄110 =
d2Ic̄(ā)

(c̄(ā) + d5)(d1d2 + c̄(ā)d3 + c̄(ā)I + d2I)
. (3.28)

Inserting p̄110 into equation (3.25) determines the stationary values of a. They

correspond to the intersections of the dotted bisection line and the curve of f

depicted as solid line in figure 3.5. When we increase the IP3 concentration I

the curve of f is shifted upwards. Although ∂f/∂I ≥ 0 always holds, the effect

on the number of stationary points depends on the parameter values. For those

chosen in figure 3.5 there is one fixed point at low I. We find three stationary

values at an intermediate regime and one at high IP3 concentrations. Thus two

saddle node bifurcations occur upon increasing I. As demonstrated below, one

fixed point for the whole range of IP3 concentrations is possible as well as the

existence of a single saddle node bifurcation.

In section 3.3 we have investigated the DK model and several approximations.

Equation (3.15) shows that the value of p̄110 is not changed by this approximation.
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Figure 3.5: Stationary values of a given by the intersections of the bisection line
(dotted) and the curve of f (solid). I increases from bottom to top. Parame-
ter values are d1 = 0.13µM, d2 = 3µM, d3 = 0.9434µM, d4 = 0.4133µM, kp =
80s−1, kl = 0.002s−1, kc = 34500s−1, E = 750µM, a0 = 0.03µm,D = 40µm2s−1

Thus the above analysis remains valid and we proceed to the stability of the fixed

points.

The linearization of equation (3.23) results in

ẏ = D∇2
ry − (kl + kp)y − Θ(ā− r)kcy + fcδD(r − ā) . (3.29)

We define fc := kc(E − c̄)δa. Note that the inner concentration field yi is still

restricted to r ≤ ā. In linear order, the varying value of a is translated into an

extra flux fc at the rim of the stationary active area. Therefore the solution of

(3.29) reads y(r, t) = exp(ωt)u(r) with

u(r) = A
sinh(k1r)

r
Θ(ā− r) +B

exp(−k2r)

r
Θ(r − ā) (3.30)

and

k1 =

√

kl + kp + kc + ω

D
, k2 =

√

kl + kp + ω

D
. (3.31)

We used the boundary conditions u′(0) = 0 and u(b) = 0. The still unknown

coefficients A and B are fixed by the continuity of u and the discontinuity of u′ at

ā. The latter is a direct consequence of the delta function δD(r − ā) in equation

(3.29). The continuity of u demands that

A
sinh(k1ā)

ā
= B

exp(−k2ā)

ā
, (3.32)

whereas the discontinuity of u′ requires

B

[

k2 exp(−k2ā)

ā
+

exp(−k2ā)

ā2

]

+A

[

cosh(k1ā)k1

ā
− sinh(k1ā)

ā2

]

− fc
D

=0 . (3.33)
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At first sight the two equations (3.32) and (3.33) do not represent a homogeneous

system for the constants A and B. We will show that fc ∝ u(r) which establishes

homogeneity at second glance.

We start from equation (3.25). It holds for all models of the IP3 receptor that

we have discussed in section 3.3. For the lumped state model it takes the form

a = a0
I

I + d1

p10
3

√

4 − 3
I

I + d1

p10 . (3.34)

It only depends on one gating variable, viz. p10. Equation (3.7) entails that

δa ∝ z10. Hence, the above statement is proven if z10 ∝ u(r). The solution for

z10 follows from the matrix equation ẋ = Mx with x = (u, z00, z01, z10, z11)
t. The

matrix M has the same form as in equation (3.8). Here, A2 corresponds to the

matrix in equation (3.24). The other two matrices degenerate to a vector and a

differential operator as

B = (−a5p̄00 − a6p̄00 , a6p̄00 − a5p̄01 , a5p̄00 − a6p̄10 , a5p̄01 + a6p̄10)
t , (3.35a)

A1 =D∇2
r − (kl + kp + kc) . (3.35b)

The general discussion in section 3.2 has shown that all eigenvalues belonging to

the gating variables are negative. Indeed, the eigenvalues for A2 read

{0,−b5 − a5c,−b6 − a6c,−b5 − b6 − a5c− a6c} . (3.36)

Consequently, we only have to take into account the mode from the dynamics

of y. We obtain the eigenvector to the eigenvalue ω by solving the equation

Mx = ωx. The ansatz for y entails that A1u = ωu is always true because we

assume that y is a solution to ẏ = A1y. This leads to a vanishing first line in

the equation Mx = ωx. It can be cast into the form A2(z00, z01, z10, z11)
t = Bu,

so that (z00, z01, z10, z11)
t = A−1

2 Bu. This proves z10 ∝ u(r). The inverse of A2

exists because A2 can be diagonalized.

It is convenient to introduce a new variable η by δa =: ηu for further computation.

This leads to fc = kc(E− c̄)ηu, see equation (3.29). Hence, the matrix M for the

homogeneous system of equations for A and B is

M=

(

sinh(k1ā)
ā

− exp(−k2ā)
ā

cosh(k1ā)k1
ā

− sinh(k1ā)
ā2 − kc([E−c̄(ā)]η sinh(k1ā)

Dā
k2 exp(−k2ā)

ā
+ exp(−k2ā)

ā2

)

. (3.37)

The system of equations possesses a non trivial solution only if the determinant

of M equals zero. After multiplying the first line of equation (3.37) with ā and
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the second with ā2 we find

0 = detM = sinh(k1ā)[k2ā+ 1] − [sinh(k1ā) − cosh(k1ā)k1a]

− kc[E − c̄(ā)]āη sinh(k1ā)

D

= k2 + k1 coth(k1ā) −
kc[E − c̄(ā)]

D
η .

(3.38)

η can be computed explicitly for the lumped state model and takes the form

η =
κ(ω)

1 − κ(0) ∂c̄
∂r

(ā)
(3.39)

with

κ(ω) =

[

a0
4(1 − p̄110)

3
√

(4 − 3p̄110)2

p̄110

c̄

{

d5
ω
a5

+ d5 + c̄
− c̄

ω
a6

+ d6 + c̄

}]

ā

. (3.40)

The factor of the curly brackets stems from the derivative ∂f/∂p10. The eigenvec-

tor of ω leads to the expression in the curly brackets. Equations (3.38) to (3.40)

determine the linear stability for the Ca2+ concentration. Thus, the whole stabil-

ity analysis of the five variables {c, p00, p01, p10, p11} could be reduced to a single

algebraic equation. This is one of the great advantages of the model introduced

in section 3.2.

We know from section 3.3 that the stationary value p̄110 does not depend on the

approximation of the DK model. Calculating κ(ω) for the Li Rinzel model yields

κLR(ω) =

[

a0
4(1 − p̄110)

3
√

(4 − 3p̄110)2

p̄110

c̄

{

d5

d5 + c̄
− c̄

ω
a6

+ d6 + c̄

}]

ā

. (3.41)

It is almost identical to equation (3.40). The only difference is the first denom-

inator in the curly brackets. The absence of the term ω/a5 originates from the

adiabatic elimination of Ca2+ activation. The binding to the activating site is

controlled by the rate constant a5. Assuming that it is fast equals a very large

value of a5. Hence the fraction ω/a5 tends to zero in this approximation.

If the system exhibits a zero eigenvalue bifurcation for a given pair (ā, I) then

ω = 0 should solve equation (3.38). Indeed, using the identity

kc
D

E − c̄(ā)

k̄2 + k̄1 coth(k̄1ā)
=
∂Ā

∂a
(ā)

sinh(k̄1ā)

ā
(3.42)

equation (3.38) can be transformed to 1 = f ′(ā). This is one of the conditions

for a saddle node bifurcation.
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3.5 Results

Diffusion of calcium plays a central role for the selection of dynamic regimes

of Ca2+ dynamics besides the dynamics of the IP3 receptor. As Ca2+ binds

to buffer proteins in the cytosol, its diffusion changes. Buffering leads to an

effective diffusion coefficient of 40µm2s−1. However, buffers saturate at Ca2+

concentrations found in the vicinity of an open cluster. Then Ca2+ can diffuse

with its own diffusion coefficient of 220 − 300µm2s−1 (Allbritton et al. 1992).

Since we do not include buffers explicitly in our model we present results for

D = 40µm2s−1 and D = 220µm2s−1.

The original DK model is based on a continuous distribution of IP3 receptors.

The most prominent feature of the Ca2+ dynamics are two Hopf bifurcations

bounding an oscillatory regime. We test whether this property is conserved when

going from the spatially continuous description to a discrete model. To this aim

we rescale the flux density with a typical cluster spacing R and a representative

cluster radius a0 while keeping the total flux constant, i.e. kc = kDKc R3/a3
0. The

resulting kc of 3 105s−1 which agrees well with the realistic values in chapter 1

leads to a loss of the oscillatory regime. We find a single stationary state for all

IP3 concentrations that is linearly stable. Decreasing the flux density by several

orders of magnitude and thus approaching the original value does not restore

oscillations. This holds because gradients still prevail. This is similar to findings

in (Sneyd and Sherrat 1997).

However, transforming a spatially continuous model to a system with discrete

sources requires more than rescaling the flux density. The work by DeYoung and

Keizer describes spatially averaged Ca2+ concentrations. They are much lower

than those experienced by IP3Rs at the mouth of a cluster. Therefore we have to

adapt the constants of Ca2+ binding. For the inhibitory process we use d2 = 3µM

in agreement with recent measurements (Adkins and Taylor 1999) (Mak et. al

found dissociation constants up to 45µM but based on a specific model (Mak

et al. 2003)). According to the experiments in (Adkins and Taylor 1999) the

coefficients for binding to the inhibiting site a2 and a4 are both set to 0.2 (µMs)−1.

The binding rate to the activating site can be evaluated from puff frequencies (Yao

et al. 1996). This implies a5 ≥ 1 (µMs)−1. Assays of the dissociation constant

for Ca2+ activation yield values from 77nM to 309nM (Mak et al. 1998, Mak et

al. 2001, Ramos-Franco et al. 1998). We chose d5 = 0.823µM which is motivated

by the results depicted in figure 3.6. It shows the dynamical regimes of the model

in dependence on d5 and I. Oscillations occur for larger d5 values only. Since we

would like to analyze oscillations and evaluate them in the light of experimental

results, we chose this value.
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Figure 3.6: IP3 concentration of the saddle node bifurcations (solid and chain
dotted) and the Hopf bifurcation (dashed) in dependence on d5. Upper
group D = 220µm2s−1, lower group D = 40µm2s−1 Parameter values are
d1 = 0.13µM, d2 = 3µM, d3 = 0.9434µM, d4 = 0.4133µM, kp = 80s−1, kl =
0.002s−1, kc = 34500s−1, E = 750µM, a0 = 0.03µm, a2 = a4 = 0.2(µMs)−1, a5 =
1(µMs)−1.

There are two saddle node bifurcation lines terminating in a cusp. A Hopf bifur-

cation occurs above the two saddle node bifurcations. Oscillations can be found at

IP3 concentrations bounded by the Hopf bifurcation and a bifurcation occurring

between the Hopf bifurcation and the lower saddle node bifurcation. The type of

this bifurcation is still under investigation but is probably homoclinic. Fig. 3.6

demonstrates that oscillations do not occur at values of d5 suggested by mea-

surements, since the activation process completely saturates at the concentration

values occurring at an open channel. Hence, changing dissociation constants of

the original DK model to larger experimentally supported values did not restore

oscillations. However, even if the cluster dynamics oscillated, these oscillations

would not be the experimentally observed ones. To demonstrate that, we need to

choose parameter values allowing for oscillations. Therefore we use a value of kc
large enough to provide realistic concentration values at the releasing cluster (i.e.

larger than 25µM), if a large fraction of channels is open, but small enough to

still see a variety of dynamic regimes, and a value of d5 allowing for oscillations.

The values of all parameters are given in the caption of Fig. 3.6. Stationary

states with these parameter values are presented in Fig 3.7. There is just a single

stationary state for almost all IP3 concentrations. An oscillatory regime exists

close to the bistable area. We did not find limit cycles where the stationary state

is stable. Hence, the discrete DK model does not have an oscillatory regime of

experimentally relevant extension.
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Figure 3.7: Stationary values of the Ca2+ concentration for D = 40µm2s−1 (left)
andD = 220µm2s−1 (right). Solid lines denote linearly stable fixed points, dotted
linearly unstable points. Parameters as in Fig 3.6 and d5 = 0.8234µM, a2 = a4 =
0.2(µMs)−1, a5 = 1(µMs)−1.

Besides the size of the oscillatory regime, there is another observation suggesting

that these oscillations are not the experimentally observed global oscillations in

cells. Fig.3.8 shows oscillations of the Ca2+ concentration. The initial transient

illustrates that realistic concentration values at the cluster are reached. The am-

plitude of the oscillations at the releasing cluster is much smaller than the initial

peak. It is even more damped down to less than 1nM in a distance of 1.6µm from

the cluster. That bulk amplitude is too small to represent the observed global

oscillations.

The oscillation amplitude at the releasing cluster is in the order of magnitude of

the dissociation constant of the inhibitory process. The latter is in the range of a

few 100nM to several µM. The amplitude of the oscillations had to be expected

for such a sinusoidal oscillation since changes of concentrations far above or below

the dissociation constant do not exert a feedback on the dynamics. The reason

lies in the equations that govern the dynamics: they are Hill equations. A typical

plot is shown in figure 3.9. It depicts the function hi(c) := [c/(c + d2)]
3 for

the inhibitory dissociation constant d2. The term c/(c + d2) is referred to as a

Hill equation with Hill coefficient 1 because c and d2 enter with the exponent 1.

The expression c/(c + d2) describes binding and unbinding of Ca2+ to a single

binding site. The function hi(c) represents the probability that three ions bind

independently to inhibiting binding sites. It is motivated by the assumption that

the four subunits of the IP3 receptor do not interact. Binding at one subunit

does not interfere with other subunits. We see from figure 3.9 that hi saturates

for high concentration values. They are in the order of magnitude that reached

at an open cluster. Therefore, a transient peak as in figures 3.8 and 3.10 leads to

a saturation of the control of the IP3R by Ca2+ and is the reason for the small
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Figure 3.8: Oscillation of the Ca2+ concentration at a distance r = 0µm (left)
and r = 1.588µm (right) from the center. Note the difference in the order of
magnitude for the amplitude and mean. Parameters as in Fig 3.7 and D =
40µm2s−1.

oscillatory regimes and amplitudes.
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Figure 3.9: Typical dependence of a hill equation hi(c) on the concentration c.
Inset shows saturation for large values of c.

That amplitude in the range of dissociation constants - and the small bulk am-

plitudes - will apply to other models than the DK model, too. Hence, not only

is the oscillatory regime too small in parameter space to be the experimentally

observed regime but also is it found at unphysiological values only. Moreover the

bulk amplitudes are too small.

The results presented so far have been obtained for parameters that are specific

for IP3 induced Ca2+ liberation from the ER. In the remainder of this section

we go beyond this range. We investigate the model behavior for different pa-

rameters that might be significant for membrane bound reactions. In a first step

we speed up binding to the activating Ca2+ site by using a ten fold higher value
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for a5. We leave the dissociation constants unchanged, so that the the values

of the stationary states do not change. The oscillations that arise via the Hopf

bifurcation are depicted in figure 3.10. The pattern resembles those of figure 3.8.

Upon increasing IP3, the system responds with a huge spike of release and finally

settles into small amplitude oscillations. The large value of the initial transient

is a direct consequence of the large value of a5. It facilitates channel opening.

Note the logarithmic scale in the left panel of figure 3.10.
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Figure 3.10: Oscillations of the Ca2+ concentration at a distance r = 0µm (left)
and r = 1.588µm (right) from the center. Note the difference in the order of
magnitude for the amplitude. Parameters as in Fig 3.6 and D = 40µm2s−1, a5 =
10(µMs)−1.
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Figure 3.11: Stationary values of the Ca2+ concentration for D = 40µm2s−1 .
Solid lines denote linearly stable fixed points, dotted linearly unstable points.
Parameters as in Fig 3.6 and d5 = 1.6468µM .

Figure 3.11 shows that the structure of the bifurcation diagram does not change

with a higher value of the activating dissociation constant, cp. 3.7. There is a
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single fixed point for almost all IP3 concentrations. Stable limit cycles exist close

to the bistable area. They only extend to IP3 concentration where the upper

branch is unstable. Hence, we can exclude the possibility that oscillations arise

via other bifurcations than the Hopf bifurcation. Thus we again find a very small

band of IP3 concentrations in which the system oscillates. The oscillations behave

in the same way as described above.

Finally we test the influence of the binding rate constant for Ca2+ activation

a5 and of the binding rate for Ca2+ inhibition a2 on the stationary states. The

concentration values of the stationary states are conserved since we do not change

the dissociation constants. Whereas the saddle node bifurcations stay in place

the Hopf bifurcation is shifted. The Hopf bifurcation moves toward the left

saddle node bifurcation, when we increase the rates for the inhibitory processes.

Figure 3.12 displays the difference of the IP3 concentrations values of the Hopf

bifurcation and the left saddle node bifurcation. It monotonically decreases to

zero with higher values of a2. Hence the oscillatory regime shrinks for stronger

inhibition. Measurements by Taylor suggest that inhibition is much fast than

usually assumed in modeling (Adkins and Taylor 1999). That again lends support

to our results that the oscillatory regime is not present in discrete models. The

opposite effect occurs for Ca2+ activation. An increment of a5 (while keeping d5

constant) shifts the Hopf bifurcation to higher IP3 concentration.
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Figure 3.12: Difference between the IP3 concentration of the Hopf bifurcation and
the left saddle node bifurcation in dependence on the binding rate for inhibition
a2. Parameters as in Fig. 3.14 and D = 40µm2s−1, a2 = a4.

Oscillations do not always disappear as simply as in a (putative) homoclinic

bifurcation. The results in figure 3.13 illustrate a period doubling sequence found

while approaching the lower saddle node bifurcation. The left panel shows a

period-2 example and the right one a period-4 example. Higher periods occur,
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too. As in the previous case the system only oscillates when the upper branch

is unstable thus leading to a small oscillatory regime. The oscillations are again

considerably damped at a distance of 1.6µm. Whether this period doubling

sequence leads to chaos is subject of ongoing investigations.
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Figure 3.13: Oscillations of the Ca2+ concentration at r=0µm for different values
of the IP3 concentration. At t = 100s, we decrease I from 0.22µM to 0.218µM
(left panel), whereas I = 0.215µM for all times (right panel). Parameters as in
Fig 3.14 and D = 50µm2s−1.

A different structure of the bifurcation diagram can be found with parameter

values like those used in figure 3.14. For D = 40µm2s−1 we find again two saddle

node bifurcations and a Hopf bifurcation. This is similar to the results above.

However, increasing the diffusion coefficient changes the topology of the bifurca-

tion diagram. A value of D = 220µm2s−1 yields one saddle node bifurcation only.

It creates an area with three stationary states extending infinitely toward high

IP3 concentration values. A transition from the lower branch of stationary points

to the upper one cannot be achieved by increasing IP3 concentration slowly. It

has to be initiated by a perturbation of the system which could as well be a step

increase of IP3 .

These two examples illustrate that for a given set of parameters, diffusion can

essentially influence the dynamic behavior. Generally the impact of diffusion

on the fixed points can be deduced from the derivative of the stationary Ca2+

concentration c̄′. Here the prime refers to the derivative with respect to D. It

can be simplified to

1

ζ
c̄′(a) = k̄′1(k̄2a+ 1)

{

k̄1 −
sinh(2k̄1a)

2a

}

+ k̄′2

{

sinh(2k̄1a)

2
k̄1 −

sinh2(k̄1a)

a

}

(3.43)
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Figure 3.14: Stationary values of the Ca2+ concentration for D = 40µm2s−1 (left)
and D = 220µm2s−1 (right). Solid lines denote linearly stable fixed points, dot-
ted linearly unstable points. Parameter values are d1 = 0.13µM, d2 = 12.588µM ,
d3 = 0.9434µM, d4 = 1.7346µM, d5 = 2.4702µM, kp = 80s−1, kl = 0.002s−1,
kc = 700s−1, E = 750µM, a0 = 0.11µm, a2 = a4 = 0.0167(µMs)−1, a5 =
0.667(µMs)−1.

with

ζ =
k

(

cosh(k̄1a)k̄1 + sinh(k̄1a)k̄2

)2 . (3.44)

As k̄′i = −k̄i/(2D) , i = 1, 2 we immediately arrive at c̄′(a) < 0. This entails

that for any ∆ > 0 there exists an α > 0 so that fD+∆(a + α) = fD(a). That

can be seen as follows. We choose an arbitrary, but fixed value a0 of a and

one curve f(a) in figure 3.5. Upon increasing D from D1 to D2, the value of

the Ca2+ concentration decreases from c1 = c(D1) to c2 = c(D2) at a0. Figure

3.16 shows the stationary value p̄110 in dependence on the Ca2+ concentration

c. Note the biphasic behavior of the probability which agrees with experimental

data (Bezprozvanny et al. 1991). Lowering the Ca2+ concentration from c1 to c2
equals a move toward the left on the abscissa. This amounts to a step from a0

to a smaller value of a in figure 3.5 due to the following reason. The function

x 7→ x 3
√

4 − 3x is strictly increasing. Hence f(c) = f(p(c)) has the same shape

as p̄110(c) in figure 3.16. Using the radius a in f via c = c̄(a) does not change the

form of the curve of f because c̄(a) is strictly increasing with respect to a. These

two one-to-one mappings assure that lowering c corresponds to decreasing a.

Consequently, the value of fD2
at a0 equals a value of fD1

for a smaller value of a.

This proofs the above assertion. The geometric interpretation is a stretching of f

to the right upon increasing the diffusion coefficient. Figure 3.15 clearly illustrates

this behavior. It shows f(a) for the two diffusion constants D = 40µm2s−1 and

D = 220µm2s−1. In the left panel we have chosen I = 0.3µm. There are 3
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stationary values for D = 40µm2s−1 and one for D = 220µm2s−1. This is in

agreement with the bifurcation diagram in figure 3.14. The right panel shows

the stationary values for such a high value of I that all IP3 dependent processes

have saturated. This happens because the IP3 dynamics is controlled by Hill type

expressions. In comparison with the left panel we see the upward shift of f(a) for

a fixed diffusion constant. This coincides with the general discussion in section

3.2. There is only one stationary value for D = 40µm2s−1 as we have moved

beyond the right saddle node bifurcation in figure 3.14. Contrary three fixed

points occur for D = 220µm2s−1. The saturation of the IP3 dynamics induces

that the number of stationary states will not change if I increases. This explains

the bifurcation diagram in figure 3.14.

The exact effect of increasing D on a given stationary point differs. We illustrate

it with the fixed point of high Ca2+ concentration. It corresponds to the right

intersection of f and the bisection line in the right panel of figure 3.15. Elevating

D leads to a higher value of ā for the chosen IP3 concentration. On contrast,

increasing D for I = 0.3µM results in the disappearance of the fixed point. The

system changes from a bistable regime for low D to a monostable regime for

large D. This manifests again that diffusion essentially determines the dynamics

of membrane bound reactions.
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Figure 3.15: Stationary values of a given by the intersection of the bisection line
(red) and the curves of f (black) for D = 40µm2s−1 (solid) and D = 220µm2s−1

(dashed) for different values of I. Left panel I = 0.3µM, right panel I = 200µM.
Parameters as in figure 3.14.
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Figure 3.16: Stationary values of the probability p110 in dependence on c. Note
the biphasic behavior. See text for details.

3.6 Conclusion

We have presented an extended study of a new modeling concept for systems

in which diffusive species react with immobile partners. The immobile reaction

partners are confined to small clusters. Our approach to describe the cluster

dynamics is always applicable when the diffusion length is much larger than

the cluster size. We applied the above method to the dynamics of intracellular

calcium mediated by IP3 receptors. The spatial restriction of the Ca2+ flux

led to the disappearance of Ca2+ oscillations computed in spatially continuous

models. The enlarged values of the Ca2+ concentration at the cluster resulted in a

single linearly stable state. The oscillatory regime was not restored by decreasing

the channel flux constant kc. Hence, the strong impact of spatial gradients on

dynamic regimes will most likely apply as well to localized reactions generating

much smaller gradients than the gradients around a releasing Ca2+ channel.

At dissociation constants d5 suggested by measurements the Ca2+ dynamics is

monostable. But even if Ca2+ oscillates, these are not the oscillations seen in

experiments. Two observations led to this conclusion. Firstly, the range of IP3

concentrations providing oscillations is too small. Secondly, the amplitude as well

as the mean of the oscillations are already considerably damped in a distance of

1.6µm from the cluster. Thus they cannot represent the global Ca2+ oscillations

seen in experiments. The spatial damping of the oscillations applies to each

reaction producing a species consumed or buffered in the cytosol. The damping

will depend on the diffusion length resulting from this reaction diffusion process.

Our results contribute to recent findings in which the stochastic dynamics of

a system differs essentially from the deterministic description. A comparison
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of the bifurcation scheme of the deterministic Li-Rinzel model with simulations

of its stochastic counterpart demonstrated that the deterministic regime cannot

be concluded from the stochastic behavior (Jung and Shuai 2001, Shuai and

Jung 2002b). Another example is array enhanced coherence resonance where

stochasticity can induce global oscillations in non-oscillatory systems (Coombes

and Timofeeva 2003).

The stochasticity of intracellular Ca2+ dynamics is caused by the stochastic bind-

ing and unbinding of IP3 and Ca2+ to the small number of receptor molecules.

Fluctuations cause spontaneous release in a single cluster. That leads to a release

spike like the initial spikes in figures 3.8, 3.10 and 3.13. Such a large amplitude

event can lead to the opening of neighboring clusters and finally via a nucleation

process to a wave traveling through the whole cell. If that occurs repeatedly it

leads to an oscillation-like process (Falcke 2003b). Nucleation may occur at dif-

ferent spots in the cell essentially at the same time, when the IP3 concentration

is high (Falcke 2003b). Thus, the amplitude of the initial spike is responsible for

the amplitude of the oscillations.

Oscillations might as well be introduced by additional feedback, e.g. a Ca2+

feedback on IP3 production or the filling state of the endoplasmic reticulum.

Our findings suggest that the initiation of global Ca2+ release would still occur

by wave nucleation since the subsystem Ca2+ dynamics would not undergo an

instability of the local dynamics. The additional feedbacks would modulate the

nucleation probability periodically.

It will be interesting to learn from future research, whether this pattern of the

interplay between localization and fluctuations can be transferred to other intra-

cellular systems.


