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Summary

The project OnSITE (On-line Seismic Imaging System for Tunnel Excavation in Hard

Rock) aims at developing an integrated approach for seismic imaging around the tunnel

and prediction ahead of the tunnel face during construction work. We present the results

of our subproject which is concerned with the determination of the spatial locations of

faults, fractures and heterogeneities by advanced seismic imaging techniques.

We have extended existing 2D imaging techniques to 3D. We have implemented 3D ver-

sions of “Kirchhoff prestack depth migration” (KPSDM), “Fresnel Volume Migration”

(FVM) and “Reflection-Image-Spectroscopy” (RIS). The 3D P- and S-velocity models

required for the calculation of the Green’s functions have been generated by using the

2D first-break tomography velocity models and rotating them around the tunnel axis.

The 3D images were obtained by stacking the migrated data taking into account either

the true phase or the absolute value.

The application of the mentioned imaging techniques to data from the Gotthard Base

Tunnel (Piora adit) show significant improvements compared to standard (KPSDM)

processing. The 3D RIS approach suppresses scattering effects in the low frequency

band and increases resolution in the high frequency band so that some of the geological

structures are much better visible. The 3D FVM technique uses slowness and polariza-

tion based estimates of the emergence angles at the receivers and restricts the imaging

to the region around the actual reflection or diffraction point. We observe less spatial

ambiguity and a higher resolution of most structures.

The integration of both approaches (RIS and FVM) exploits their advantages and

delivers an even more pronounced and clear image of the tunnel environment.
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Zusammenfassung

Das Vorhaben OnSITE (Ein seismisches Abbildungssystem zur geologischen Vo-

rauserkundung beim Tunnelvortrieb in Festgestein) zielt darauf ab, ein ganzheitliches

Konzept zur seismischen Bildgebung um einen Tunnel und eine Prognose im Voraus

der Tunnelortsbrust während der Bauarbeiten zu entwickeln. Wir präsentieren die

Ergebnisse unseres Teilprojekts, das sich mit der Bestimmung der räumlichen Lage von

Störzonen, Brüchen und Heterogenitäten mittels fortgeschrittener seismischer Bildge-

bungstechniken befaßt.

Wir haben existierende 2D Abbildungsverfahren auf 3D erweitert. 3D Versionen

der “Kirchhoff Pre-Stack Tiefen-Migration” (KPSDM), “Fresnel Volumen Migration”

(FVM) und “Reflexionsseismischen Spektroskopie” (RIS) wurden implementiert. Die

3D P- und S-Wellenmodelle, die zur Berechnung der Greens-Funktionen benötigt wur-

den, sind anhand eines um die Tunnelachse rotierten 2D Erst-Einsatz-Tomographie

Geschwindigkeitsmodells erzeugt worden. Die 3D Bilder wurden über eine Stapelung

der migrierten Daten unter Berücksichtigung entweder der Phase oder des Absolutbe-

trags erhalten.

Die Anwendung der erwähnten Abbildungsverfahren auf Daten aus dem Gotthard Basis

Tunnel (Piora Sondierstollen) weisen bedeutende Verbesserungen gegenüber der Stan-

dardprozessierung auf. Die 3D RIS Methode unterdrückt Streueffekte in dem tief-

frequenten Band und erhöht die Auflösung in dem hochfrequenten Band, so daß ein

paar von den geologischen Strukturen besser sichtbar werden. Die 3D FVM Technik

gebraucht Richtungseinschätzungen der Einfallswinkel, die aus der Slowness bzw. Po-

larisation abgeleitet wurden, und bildet nur die Region um den wirklichen Reflexions-

bzw. Diffraktionspunkt ab. Wir beobachten eine geringere räumliche Mehrdeutigkeit

und eine erhöhte Auflösung der meisten Strukturen.

Die Kombination beider Herangehensweisen (RIS und FVM) nutzt ihre Vorteile aus

und liefert ein markanteres und klareres Bild der Tunnelumgebung.
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Chapter 1

Introduction

The high-resolution analysis of the underground space requires the development of

a specialized seismic processing, imaging and interpretation scheme. Processing and

imaging of recorded data must take into account arbitrary distribution and orientation

of reflectors and diffractors including fault systems and fractured zones. Faults and

fractures may be filled with air, gas, fluids or different rocks or minerals. The chal-

lenge of making underground construction safer and more efficient leads to the aim of

improving the localization and petrophysical characterization of faults, fractures and

heterogeneities around and ahead of the tunnel face during drilling. Conventional ap-

proaches use body waves (P- and S-waves) that are reflected or backscattered at geologic

heterogeneities. The spatial distribution of heterogeneities is then examined by different

migration techniques. Kneib et al. (2000) developed a so-called Sonic Softground Prob-

ing (SSP) for tunnel construction in loose rock. This system employs a high-frequency

acoustic vibroseis source and accelerometers on the cutting wheel and acquires the data

in a measurement-while-drilling fashion, while tunneling is taking place. SSP delivers

a refelection seismic image of P-wave reflectors up to 100 m ahead of the tunnel face.

Otto et al. (2002) apply True Reflection Tomography (TRT) seismic imaging at the

Unterwald tunnel for imaging changes in the rock mass conditions ahead of the tunnel

excavation. TRT is a seismic processing technique developed to create a 3D velocity

tomogram of the ground conditions ahead of the tunnel excavation.

We are evaluating different methods of 3D seismic imaging around a tunnel. Tunnel

seismic measurements are characterized by strongly limited spatial coverage so that

special imaging techniques have to be applied. It is desirable to restrict the migration

operator to the region around the point of specular reflection to resolve the spatial

ambiguity stemming from the limited aperture as well as to avoid migration artifacts.
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As long as sufficient spatial coverage is given, slowness analysis of single-component

data can be used to derive the direction of wave-propagation at the receiver and thus

construct the reflecting surface to which imaging is to be restricted (Tillmanns and Ge-

brande 1999, Sun and Schuster 2003). Takahashi (1995) proposes using the polarization

angle from multicomponent data to resolve the spatial ambiguity. Lüth et al. (2005)

extended this strategy by applying the concept of the Fresnel volumes in homogeneous

and smoothly heterogeneous velocity models as an extension of 3D Kirchhoff prestack

depth migration (KPSDM). Buske et al. (2009) formulated this so-called Fresnel Vol-

ume Migration (FVM) approach for single-component seismic data based on slowness

analysis and applied it to standard seismic exploration data sets. In this study we ap-

ply FVM based on 3D slowness information derived by polarization analysis on tunnel

seismic data. It is shown how this procedure increases the visibility of reflectors and

eliminates artifacts in the seismic images.

Another challenge in complicated environments is that it is not possible to deliver a

uniquely valid seismic image. Previous studies carried out at the FU Berlin have shown

that heterogeneities in the underground exist over a wide range of scale lengths so that

an extension of the seismic imaging method to account for the spectral behavior of

reflectivity is necessary. The image will differ significantly when focusing over different

frequency bands. To address this issue we apply another imaging technique based on

KPSDM, the so-called Reflection Image Spectroscopy (RIS) (Yoon 2005 and 2009), to

the tunnel data sets. We processed two reflection seismic data sets recorded in different

adits of the Gotthard Base Tunnel.
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Chapter 2

Theory

2.1 Body waves

Waves traveling in the interior of a medium are called body waves. P-waves are also

known as dilatational, longitudinal, irrotational or compressional waves. They are called

P-waves due to the fact that this type is the first (primary) event on an earthquake

recording. The second type of body waves, the S-wave, is also referred to as shear,

transverse or rotational wave (second event observed on earthquake records). The

velocities of P-waves α and S-waves β can be related to the elastic constants and the

density as follows:

α =

(
λ + 2µ

ρ

)1/2

(2.1)

β =

(
µ

ρ

)1/2

(2.2)

The quantities λ and µ are known as Lamé’s constants. Writing γ for the ratio β/α we

obtain:

γ2 =
β2

α2
=

µ

λ + 2µ
=

1
2
− σ

1− σ
(2.3)

Here σ denotes the Poisson’s ratio. As σ decreases from 0.5 to zero, γ increases from

zero to its maximum value 1/
√

2 hence the velocity of the S-wave ranges from zero up

to 70% of the velocity of the P-wave.

For fluids, µ is zero and therefore β and γ are also zero. Thus S-waves do not propagate

through fluids.
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S-wave motion is usually resolved into components parallel and perpendicular to the

surface of the ground, which are known, as SH and SV waves respectively.

2.2 Surface waves

When the medium does not extend to infinity in all directions, other types of waves can

be generated. These waves are called surface waves because they are confined to the

vicinity of one of the surfaces that bound the medium. Surface waves (called ground roll

as well) are usually present on reflection records. For the most part, these are Rayleigh

waves with velocities ranging from 100 to about 1000 m/s. Ground roll frequencies

usually are lower than those of reflections and refractions, often with the energy con-

centrated below 10 Hz. Ground roll alignments are straight, just as refractions are, but

they represent lower velocities. The envelope of ground roll builds up and decays very

slowly and often includes many cycles. Ground roll energy generally is high enough

even in the reflection band to override all but the strongest reflections. However, be-

cause of the low velocity, different geophone groups are affected at different times so

that only a few groups are affected at any one time. Sometimes there is more than one

ground roll wavetrain, each with different velocities. Occasionally where ground roll is

exceptionally strong, in-line offsets are used so that desired reflections can be recorded

before the surface waves reach the spread.

2.2.1 Rayleigh waves

Rayleigh waves also called ground roll travel along the surface of the earth and involve

a combination of longitudinal and transverse motion with a definite phase relation to

each other. The amplitude of this wave motion decreases exponentially with depth and

depends on the wavelength of the waves. During the passage of the wave, a particle

traverses an elliptical path and the major axis of the ellipse is vertical. The velocity of

Rayleigh waves depends upon the elastic constants near the surface and is always less

than the S-wave velocity β.

2.2.2 Love waves

A Love wave involves transverse motion parallel to the surface of the ground and

sometimes it is called an SH wave. The velocity of Love waves varies between the
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S-wave velocity at the surface and that in deeper layers and it exhibits dispersion.

Energy sources used in seismic work do not generate Love waves to a significant degree

and geophones designed to respond only to vertical motion of the surface would not

detect any Love waves that might exist. Therefore they are unimportant for ordinary

seismic exploration.

2.3 Slowness

The 2D slowness vector ~p = (px, pz) is defined as follows:

px = −sin φ

v
pz = −cos φ

v
(2.4)

Here v denotes the velocity at the receiver. It is easy to see that the absolute value of

~p is equal to the reciprocal velocity:

|~p| = (
p2

x + p2
z

)1/2
=

1

v
(2.5)

Figure 2.1 illustrates the angles α in the x-t diagram and φ in the x-z diagram.

The ”apparent velocity angle” in the seismogram section is (see Figure 2.2):

tan α =
dt

dx
(2.6)

Thus we can derive the relation between φ and α. The horizontal slowness px is equal

to:

px =
dt

dx
(2.7)

Therefore we have:

tan α =
dt

dx
= px = −sin φ

v
(2.8)

Finally we achieve after rearranging:

v tan α = − sin φ (2.9)
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Figure 2.1: 2D slowness, definition of the angle α and φ.

Figure 2.2: ”Apparent velocity angle” α.
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Figure 2.3: Angles of the direction cosines.

In the 3D case we can describe the 3D slowness vector via the direction cosines:

px =
cos φ1

v

py =
cos φ2

v

pz =
cos φ3

v
(2.10)

Figure 2.3 shows the orientation of the angles φ1, φ2 and φ3.

2.4 Ray Theory

In complex environments seismic signals are difficult to describe and it takes a lot of

computational power to simulate realistic wave propagation. The amount of compu-

tational power is strongly reduced by approximating the propagation of body waves

with ray tracing. The books of Červený (2001) and Chapman (2004) offer a complete

description and derivation of ray theory. The approach is based on an asymptotic high

frequency approximation to the wave equation and commonly used for several appli-

cations such as reflection seismics, refraction seismics or seismology. In this case the

wavelength is small compared to the propagation distances and the spatial variations

of the medium. These circumstances may require smoothing of input models but also

allow us to consider the propagating wave locally as a plane wave.
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There are two types of ray tracing: kinematic ray tracing and dynamic ray tracing.

Here only kinematic ray tracing will be discussed since for the location method mainly

the geometry and times of rays are needed. The description of the acoustic kinematic

ray theory starts with the equation of motion

∂v

∂t
= −1

ρ
∇P +

1

ρ
f (2.11)

and the relation for the time derivative of the pressure P

∂P

∂t
= −κ∇ · ~v (2.12)

Here ~v denotes the velocity of the medium (particle velocity), ρ the density, κ the bulk

modulus and t is the time. The symmetry of the equations above implies that velocity

and pressure have similar solutions. The following ansatz is used by Chapman (2004)

to solve the equation:

v(ω, xR) = f(ω)
∑

n

eiωT (xR,`n)

∞∑
m=0

v(m)(xR, `n)

(−iω)m
(2.13)

and

−P (ω, xR) = f(ω)
∑

n

eiωT (xR,`n)

∞∑
m=0

−P (m)(xR, `n)

(−iω)m
(2.14)

The ansatz is written in the frequency domain and f(ω) is an arbitrary spectrum

depending on the source. The notation `n and the corresponding summation over n

is used by Chapman (2004) to indicate that more than one path from a source point

to the point xR may exist. T indicates the travel-time function, and (m) denotes the

index, whereas (...)m refers to the power of m. In homogeneous media acoustic and

elastic waves propagate approximately without dispersion with a frequency-independent

velocity and satisfy Snell’s law at interfaces. In inhomogeneous media similar behavior

can be observed as long as the wavelength is small compared to the spatial variation.

Thus Chapman (2004) writes his ansatz as a series in amplitude coefficients v(m) and

P (m).

Substituting equations (2.13) and (2.14) into equation (2.11) without the body force

term yields:
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f(ω)
∑

n

iω · eiωT (xR,`n)

∞∑
m=0

v(m)(xR, `n)

(−iω)m
=

− 1

ρ
·
(

f(ω)
∑

n

iω · eiωT (xR,`n) · ∇T (xR, `n)
∞∑

m=0

−P (m)(xR, `n)

(−iω)m

)

− 1

ρ
·
(

f(ω)
∑

n

eiωT (xR,`n)

∞∑
m=0

−∇P (m)(xR, `n)

(−iω)m

)
(2.15)

and into equation (2.12):

f(ω)
∑

n

iω · eiωT (xR,`n)

∞∑
m=0

−P (m)(xR, `n)

(−iω)m
=

− κ ·
(

f(ω)
∑

n

iω · eiωT (xR,`n) · ∇T (xR, `n)
∞∑

m=0

v(m)(xR, `n)

(−iω)m

)

− κ ·
(

f(ω)
∑

n

eiωT (xR,`n)

∞∑
m=0

−∇v(m)(xR, `n)

(−iω)m

)
(2.16)

Omitting the argument (xR, `n) and defining boundary conditions, v(−1) = 0 and

P (−1) = 0, equations (2.15) and (2.16) can be written as

ρ

∞∑
m=0

v(m)

(−iω)m
= −∇T

∞∑
m=0

−P (m)

(−iω)m
+

∞∑
m=0

−∇P (m−1)

(−iω)m
(2.17)

∞∑
m=0

P (m)

(−iω)m
= κ ·

(
∇T

∞∑
m=0

v(m)

(−iω)m
−

∞∑
m=0

∇v(m−1)

(−iω)m

)
(2.18)

The coefficients of each power of ω are set to zero and it follows:

−∇P (m−1) = ρv(m) − pP (m) (2.19)

κ∇ · v(m−1) = κp · v(m) − P (m) (2.20)

for m ≥ 0, with the slowness vector

p = ∇T (2.21)

Multiplying equation (2.19) by p and rearranging equation (2.20) yields:
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−p · ∇P (m−1) = ρ p · v(m) − p2P (m) (2.22)

p · v(m) =
1

κ
P (m) +∇ · v(m−1) (2.23)

By substituting equation (2.23) in (2.22) and rearranging once again we obtain:

−p · ∇P (m−1) = ρ

(
1

κ
P (m) +∇ · v(m−1)

)
− p2P (m) (2.24)

(κp2 − ρ)P (m) = κ
(
ρ∇ · v(m−1) + p · ∇P (m−1)

)
(2.25)

For m = 0 and applying again the boundary conditions (v(−1) = 0 and P (−1) = 0) this

equation reduces to:

(
κ

ρ
p2 − 1

)
P (0) = (α2p2 − 1)P (0) = 0 (2.26)

with α =
√

κ
ρ

The series of amplitude coefficients in the ansatz (2.14) can always be defined in a way

that m = 0 holds the first non-zero term and thus the coefficient P (0) can be assumed

to be non-zero. Therefore it is possible to rewrite equation (2.26):

(∇T )2 =
1

α2
(2.27)

Figure 2.4: The ray path must be in the direction of the slowness vector and perpendic-

ular to the wavefronts.
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The equation (2.27) is also known as the eikonal equation. The surfaces where the

travel-time function is T (x) = t are wavefronts. The slowness vector is orthogonal to

the wavefronts (see Figure 2.4). The ray is defined as the trajectory orthogonal to

the wavefronts which can be parameterized in arc length s. Assuming s increases with

increasing T the eikonal equation becomes:

dT

ds
=

1

α
(2.28)

Thus the ray path dx/dT must be parallel to the slowness vector and from equation

(2.28) it follows considering that |dx| = ds

dx

dT
= α2p (2.29)

Using equation (2.28) and (2.21) the change of the slowness vector is

dp

dT
= −∇α

α
(2.30)

Equation (2.29) and (2.30) represent the kinematic ray equations. Since the location

method (ray tracer) applied in this work will use initial conditions for the position x0

and the direction p0 the ray path can be obtained solving these differential equations.

A widely used method to numerically integrate ordinary differential equations is the

fourth-order-Runge-Kutta (RK4) method (Press et al. 1992). This technique evaluates

the derivatives once at the beginning of the interval (initial point) k1, twice at midpoints

k2 and k3, and once at the end of the interval k4.

k1 = ∆tf(xn, yn)

k2 = ∆tf(xn +
1

2
∆t, yn +

1

2
k1)

k3 = ∆tf(xn +
1

2
∆t, yn +

1

2
k2)

k4 = ∆tf(xn + ∆t, yn + k3) (2.31)

The new value y(n+1) is calculated as a weighted average of these estimated increments:

y(n+1) = yn +
1

6
k1 +

2

6
k2 +

2

6
k3 +

1

6
k4 + 0(∆t5) (2.32)

This method is reasonably simple and robust and provides a stable and accurate numer-

ical solution of differential equations as long as the propagation increment - here a ray
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tracing time step ∆t - is sufficiently small compared to the variations in the integration

interval. The RK4 method has an error that is proportional to ∆t5 for an integration

step, while the total accumulated error is proportional to ∆t4.

Therefore the time step for the ray propagation needs to be chosen carefully. On the

other hand, the use of small propagation time steps increases the number of time

steps necessary to trace a ray for a fixed length, which has the consequence of an

unreasonable long computation time. Press et al. (1992) proposes the use of adaptive

step size control to achieve some predetermined accuracy in the solution with minimum

computational effort. In this work the number of rays as well as the considered length

of rays was reasonable small and the adaptive step size was not needed in the ray

tracing method.

2.5 Variable velocity and ray path direction

Changes in the direction of rays at interfaces are determined by Snell’s law:

sin θ1

α1

=
sin δ1

β1

=
sin θ2

α2

=
sin δ2

β2

= p (2.33)

where p is the component of the slowness of each ray in Figure 2.5 parallel to the

interface. A0 denotes the incident wave, A1 and A2 is the reflected and refracted P-

wave while B1 and B2 indicates the reflected and refracted S-wave respectively.

For planar parallel layering, the angle of emergence from a layer equals the angle of entry

into the next layer and the ray path parameter p = (sin i)/v = (sin i0)/v0 = ∆t/∆x

specifies ray direction, that is, p is constant along any ray and is fixed by the direction

in which the ray left the source. Note that 1/v is the slowness and p is the component

of slowness parallel to the interface, hence the component of slowness parallel to the

interface is constant for each ray.

At times, the assumption is made that the velocity varies in a systematic continuous

manner and therefore can be represented by a velocity function. The actual velocity

usually varies extremely rapidly over short intervals; however, if we integrate these

changes over distances of a wavelength, we obtain a function that is generally smooth

except for discontinuities at marked lithological changes. If the velocity discontinuities

are small, we are often able to represent the velocity distribution with sufficient accuracy
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Figure 2.5: Generation of waves at a solid-solid interface by an incident P-wave.

by a smooth velocity function. The path of a wave traveling in such a medium is then

determined by two integral equations.

To derive the equations, we assume that the medium is divided into a large number of

thin beds in each of which the velocity is constant; on letting the number of beds go to

infinity, the thickness of each bed becomes infinitesimal and the velocity distribution

becomes a continuous function of depth. As illustrated in Figure 2.6 we have for the

nth bed:

sin in
vn

=
sin i0
v0

= p

vn = vn(z)

∆xn = ∆zn tan in

∆tn =
∆zn

vn cos in
(2.34)

As n goes to infinity we obtain:

sin i

v
=

sin i0
v0

= p, v = v(z),
dx

dz
= tan i

dt

dz
=

1

v cos i
, x =

∫ z

0

tan i dz, t =

∫ z

0

dz

v cos i
(2.35)
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Figure 2.6: Ray path in a medium where velocity varies with depth.

hence,

x =

∫ z

0

pv dz

[1− (pv)2]1/2
(2.36)

t =

∫ z

0

dz

v[1− (pv)2]1/2
(2.37)

Because v is a function of z, equations (2.36) and (2.37) yield two integral equations

relating x and t to the depth z. These equations can be solved by numerical methods

when we have a table of values of v at various depth.

2.6 Attenuation, Absorption and Noise

The amplitude of events on a seismic record depends on a multitude of factors (see

Figure 2.7). Some of these factors (for example recording, processing) are within our

control. The effects of others can be estimated and then compensated for. Still other

factors affect data with about the same traveltimes in about the same way and thus do

not introduce significant trace-to-trace differences, the main factor on which interpre-

tational decisions are based.

Divergence is usually the major factor causing time-dependent amplitude changes. The

energy spreads out so that the wave decreases in strength but the total energy in the
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wavefield does not change. If the medium were homogeneous, the amplitude weakening

would be inversely proportional to distance, or vt; however, because velocity gener-

ally increases with depth, ray path curvature makes the wave spread out more and

thus makes the decrease in amplitude larger. Newman (1973) showed that, for paral-

lel layering, the amplitude decrease depends approximately on 1/v2
rmst, and Hardage

(1985) showed that this factor is appropriate for observed data. This phenomenon was

compensated by applying an AGC (Automatic Gain Control) on all the data sets we

examined.

Absorption causes wave energy to disappear by converting it to heat. However, like

dispersion, most of the factors affecting the amplitude of waves as they travel through

the earth redistribute the wave energy rather than cause it to disappear. Sometimes

compensation for these various factors is approximated by multiplying by an empirical

exponential factor.

In general, seismic amplitude decreases exponentially with time. Higher frequencies

are attenuated more than lower frequencies so that the spectrum of a seismic wavelet

changes with time. Spencer (1985) concludes that attenuation measurements are not

promising as a diagnostic of lithology because of the intrinsic scatter produced by

peg-leg multiple interference. Peg-leg multiples also called short-path multiples are

successive reflections from the top and base of thin reflectors on their way to or from

the principal reflecting interface with which they are associated. They delay part of the

energy and therefore lengthen the wavelet.
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Figure 2.7: Factors influencing amplitude. Modified after Sheriff and Geldart (1995).

The basic mechanisms by which elastic-wave energy is transformed into heat are not

clearly understood. Toksoz and Johnston (1981) summarized the state of our knowledge

about attenuation and absorption. Various absorption mechanisms have been proposed

(White 1965, 1966) but none appears adequate. Internal friction in the form of sliding

friction (or sticking and sliding) and viscous losses in the interstitial fluids are probably

the most important mechanisms, the latter being more important in high-permeability

rocks. Other effects, probably of minor significance in general, are the loss when part

of the heat generated during the compressive part of the wave is conducted away,

piezoelectric and thermoelectric effects, and the energy used to create new surfaces

which is only important near the source. Many of the postulated mechanisms predict

that, in solids, Q should depend upon frequency; however, Q appears to be independent

of frequency. In liquids, Q is inversely proportional to frequency. The loss mechanism

in rocks must be regarded as an unsolved problem (Aki and Richards 1980).

Often no distinction is made between “attenuation” and “absorption”. Because of

difficulties in measuring absorption and also because the quantity of interest is usually

the net decrease in wave amplitude, measurements are often made of total attenuation
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without regard to its cause and the results used to determine a value of the absorption

coefficient η in equation (2.38):

A = A0e
−ηx (2.38)

Here A and A0 are values of the amplitude of a plane wavefront at two points a distance

x apart. Although this may be a useful method of treating attenuation, it has no proper

mathematical basis because the attenuation due to partitioning, peg-leg multiples, etc.

is not a continuous function of distance, as required by equation (2.38).

In field measurements of absorption, the effects of partitioning and other significant

factors must be allowed for to obtain meaningful absorption values. Difficulties in

achieving this have resulted in wide divergence in absorption measurements.

Experimental evidence suggests that the absorption coefficient η is approximately pro-

portional to frequency, that is ηλ is roughly constant for a particular rock. Such an

increase of absorption with frequency provides one mechanism for the observed loss of

high frequencies and the change of waveshape with distance. Peg-leg multiples and

possibly other phenomena also produce waveshape changes. In interbedded sections,

the loss in amplitude because of peg-leg multiple effects appears to be comparable to

that due to absorption.

The term signal will be used in the following to denote any event on the seismic record

from which we wish to obtain information. Everything else is noise, including coherent

events that interfere with the observation and measurement of signals. The signal-to-

noise ratio, abbreviated S/N , is the ratio of the signal in a specified portion of the record

to the total noise in the same portion. Poor records result whenever the signal-to-noise

ratio is small. When S/N is less than unity, the record quality is usually marginal and

deteriorates rapidly as the ratio decreases further.

Seismic noise may be either coherent or incoherent. Coherent noise can be followed

across at least a few traces; incoherent noise is dissimilar on all traces, and we cannot

predict what a trace will be like from a knowledge of nearby traces. The difference

between coherent and incoherent noise is often a matter of scale and if we had geo-

phones more closely spaced incoherent noise would be seen as coherent. Nevertheless,

incoherent noise is defined with respect to the records being used without regard for

what closer spacing might reveal.

Incoherent noise is often referred to as random noise, which implies not only nonpre-

dictability but also certain statistical properties; more often than not the noise is not
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truly random. Spatial randomness and time randomness may be independent; the usual

seismic trace tends to be random in time because we do not know when a reflection

will occur on the basis of what the trace has shown previously, with the exception of

multiples. Coherent noise is sometimes subdivided into energy that travels essentially

horizontally, and energy that reaches the spread more or less vertically. It is also impor-

tant to distinguish between repeatable noise and non repeatable noise; in other words,

whether the same noise is observed at the same time on the same trace when the source

is repeated. The three properties - coherence, travel direction and repeatability - form

the basis of most methods of improving record quality.

Coherent noise includes surface waves, multiples and so on. Incoherent noise, which

is spatially random and also repeatable, is due to scattering from near-surface irregu-

larities such as boulders and small-scale faulting; such noise sources are so small and

so near the spread that the outputs of two geophones will only be the same when the

geophones are placed almost side by side. Nonrepeatable noise may be due to stones

ejected by a shot and falling back to the earth, a person walking near a geophone etc..

In order to avoid noise frequency filtering as done by the method of Reflection-Image-

Spectroscopy described in the following and Fresnel Volume Migration, which actually

picks the relevant events by tracing them, can be essential.

2.7 Migration

The process of moving data elements from the time domain to subsurface locations is

called migration. It is called imaging as well because its objective is to produce a clear

image of the subsurface.

Migration implies that the seismic data being migrated are either primary reflections or

diffractions. Migration of other types of events as if they were reflections or diffractions

smears them out and creates noise.

Migration to the correct location requires knowledge of the velocity distribution but, in

structurally complex areas where migration is most required, velocity information tends

to have large uncertainty. However, migration is fairly tolerant of errors in vertical

variations in velocity so that migration with the wrong velocity usually helps to clarify

structure even though events are not located correctly. Changes in velocity in the

horizontal direction produce distortions unless they are allowed for correctly. Migration
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that attempts to allow for horizontal velocity changes is called depth migration. If

common shot gathers are first migrated and afterwards stacked, we are talking about

”prestack migration”, on the contrary to the migration of already stacked sections as

for example the common midpoint section which is called ”poststack migration”.

2.7.1 Kirchhoff Migration

The solution of the Kirchhoff integral of the wave equation is the basis of Kirchhoff

Migration and shell be derived in the following chapter (after Müller 1989).

Generalized 2D Kirchhoff formula

Starting from the scalar 2D wave equation for homogeneous media:

4U =
∂2U

∂x2
+

∂2U

∂z2
=

1

v2

∂2U

∂t2
(2.39)

with the Laplace-Operator: 4 = ∂2

∂x2 + ∂2

∂z2

The wave-field-quantity U = U(x, z, t) is a function of position (x,z) and time t. The

Fourier transform U of the wave field U in aspect to the time t is:

U(x, z, ω) =

∫ ∞

−∞
U(x, z, t)e−iωtdt (2.40)

The velocity v of the medium shall be constant. With the relations

∂2U

∂x2

FT−−→ ∂2U

∂x2
(2.41)

∂2U

∂z2

FT−−→ ∂2U

∂z2
(2.42)

∂2U

∂t2
FT−−→ (iω)(iω)U = −ω2U (2.43)

we obtain from the wave equation (2.39) the Helmholtz equation:

∂2U

∂x2
+

∂2U

∂z2
= −ω2

v2
U = −k2U (2.44)
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with ω
v
≡ k = wavenumber

4U + k2U = 0 (2.45)

We are searching for a solution U of the Helmholz-equation (2.45). The solution of the

wave equation U is obtained by applying the inverse Fourier transformation to U . We

restrict our interest in the x-z-plane on a region of the area F, which is confined by the

borderline S (see Figure 2.8).

Figure 2.8: Geometry; P point in area F, Q integrational point on the borderline S

In this region the Green’s Theorem in two dimensions is valid:

∫

F

[A∆B −B∆A]dF =

∫

S

(A∇B −B∇A)d~s (2.46)

Here A and B are two arbitrary, two times continuously differentiable functions. The

vector d~s is perpendicular to the boundary element of the length ds and has the same

orientation as the outer normal ~n of S: d~s = |d~s|~n = ds ~n

A shall be a solution of the Helmholtz-equation and indeed the demanded solution U :

A ≡ U (2.47)

B shall be a solution of the Helmholtz-equation too and indeed a known simple solution,

that we will denote in the following with G (Green’s function):

B ≡ G (2.48)

28



Which function is chosen in particular for G is depending on the problem. The most

used form is the Hankel-function of the second form of the order 0. Its asymptotic form

(kr À 1)

H
(2)
0 (kr) ≈

√
2

πkr
e−i(kr−π

4 ) (2.49)

is describing together with the factor eiωt a from the point P(x,z) at r=0 with the

velocity v expanding cylindrical wave and is suitable for the derivation of equations

that describe the propagation of seismic waves.

For the migration we are only interested in the wave field ”on the reflector”, that means

the continuation of the wave field must occur backwards in time. Therefore we choose

in the following instead of the Hankel function of the second form the one of the first

form: H
(1)
0 (kr). Its asymptotic form reads (kr À 1):

H
(1)
0 (kr) ≈

√
2

πkr
ei(kr−π

4 ) (2.50)

It describes in combination with the factor eiωt a contracting cylindrical wave, which

arrives with the velocity v in the point P(x,z) at r=0.

The Green’s Sentence assumes, that A and B (in this case U and G) do not have a

singularity in F. Because G = H
(1)
0 (kr) is however singular the area F must be reduced

about a small circle around the point P(x,z) with the radius r0. Therefore the boundary

S’ of the circle must be added to the boundary S which limits the area F (see Figure

2.9).

The Green’s Sentence reads now:

∫

F

[U∆G−G∆U ]dF =

∫

S

[U∇G−G∇U ]d~s +

∫

S′
[U∇G−G∇U ]d~s′ (2.51)

Because G and U are solutions of the Helmholtz equation, for both applies:

∆U + k2U = 0 ⇒ ∆U = −k2U (2.52)

∆G + k2G = 0 ⇒ ∆G = −k2G (2.53)
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Figure 2.9: Extended geometry

From equation (2.51) it follows:

∫

F

[U(−k2G)−G(−k2U)]dF =

∫

S

[U∇G−G∇U ]d~s +

∫

S′
[U∇G−G∇U ]d~s′ (2.54)

0 =

∫

S

[U∇G−G∇U ]d~s +

∫

S′
[U∇G−G∇U ]d~s′ (2.55)

In the following the two integrals in (2.55) will be calculated separately.

It applies:

a =

∫

S

[U∇G−G∇U ]d~s =

∫

S

[U∇H
(1)
0 (kr)−H

(1)
0 (kr)∇U ]d~s (2.56)

By multiplying the vector d~s with the gradient of the Hankel function and the gradient

of U on S, we obtain:

[∇...]d~s = [∇...]~n|d~s| = ∂...

∂n
ds (2.57)

a =

∫

S

[
U

∂

∂n
H

(1)
0 (kr)−H

(1)
0 (kr)

∂

∂n
U

]
ds (2.58)

For the derivative of the Hankel function in the point Q on S in the direction of the

external normal ~n it applies:
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∂

∂n
H

(1)
0 (kr) = −kH

(1)
1 (kr) cos φ (2.59)

thus the first integral reads:

a = −
∫

S

[
UkH

(1)
1 (kr) cos φ +

∂U

∂n
H

(1)
0 (kr)

]
ds (2.60)

Taking into account, that for infinitesimal r0 the Fourier transform U and its gradient

∇U on S’ can be regarded as constant, they can be written in front of the integral. It

follows:

b =

∫

S′
U∇Gd~s′ −

∫

S′
G∇Ud~s′ = UP

∫

S′
∇Gd~s′ − (∇U)P

∫

S′
Gd~s′ (2.61)

The vector d~s′ and the normal unity vector ~n′ are perpendicular to the borderline S’

and they are pointing towards the inner circle (see Figure 2.9):

d~s′ = |d~s′|~n′ = ds′~n′ − ~n′ =
~r′

|~r′| (2.62)

The gradient of G points to S’ in the direction of ~r′, therefore it applies:

∇G =
dG

dr

~r′

|~r′| = −dG

dr
~n′ (2.63)

Thus we have:

b = UP

∫

S′

dG

dr
(−~n′) · ~n′ds′ − (∇U)P

∫

S′
Gd~s′ (2.64)

The integral over G is performed on a circle with a radius r0 and G is cylindrically

symmetric with respect to r. Thus the value of G on S’ and the derivative of G with

respect to r can be written in front of the integral.

b = UP
dG

dr

∣∣∣∣
r=r0

∫

S′
ds′ − (∇U)P G|r=r0

∫

S′
d~s′ (2.65)

The integral
∫

S′ d
~s′ vanishes, because the sum of all d~s′ vectors annihilates due to

symmetry reasons to the zero vector. The integral over S’ is nothing else than the

perimeter of the circle with radius r0. It follows:

31



b = −2 π r0 UP
dG

dr

∣∣∣∣
r=r0

(2.66)

For the derivative of the Hankel function H
(1)
0 (kr) at the point Q on S’ with respect to

r it applies:

d

dr
H

(1)
0 (kr) = −kH

(1)
1 (kr) (2.67)

Therefore following value is obtained for the second integral:

b = 2 π UP k r0 H
(1)
1 (kr0) (2.68)

By letting the radius of the circle r0 tend to zero, we obtain:

lim
kr0→0

k r0 H
(1)
1 (kr0) = −2 i

π
(2.69)

Thus the second integral reads:

lim
r0→0

b = −4 i UP (2.70)

All in all equation (2.55) can be written now as:

0 = −
∫

S

[
U k H

(1)
1 (kr) cos φ +

∂U

∂n
H

(1)
0 (kr)

]
ds− 4 i UP (2.71)

respectively

UP =
i

4

∫

S

[
U k H

(1)
1 (kr) cos φ +

∂U

∂n
H

(1)
0 (kr)

]
ds (2.72)

This is the Fourier transform of our requested solution UP , the value of the wavefield at

the point P. In order to perform the backtransformation in the time domain we rewrite

equation (2.72) (wavenumber k = ω/v):

UP =

∫

S

[
[i ω U ]

[
− 1

4v
H

(1)
1

(r

v
ω
)]

cos φ +

[
∂U

∂n

] [
− i

4
H

(1)
0

(r

v
ω
)]]

ds (2.73)

A inverse Fourier transform with the relations
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i ω U
FT−1−−−→ ∂U

∂t

∂U

∂n

FT−1−−−→ ∂U

∂n
(2.74)

− 1

4 v
H

(1)
1

(r

v
ω
)

FT−1−−−→ −t H
(−t− r

v

)

2 π r
√

t2 − r2

v2

(2.75)

− i

4
H

(1)
0

(r

v
ω
)

FT−1−−−→ −H
(−t− r

v

)

2 π
√

t2 − r2

v2

(2.76)

yields:

UP = U(x, z, t) =
1

2 π

∫

S


∂U

∂t
∗ t H

(−t− r
v

)

r
√

t2 − r2

v2

cos φ +
∂U

∂n
∗ H

(−t− r
v

)
√

t2 − r2

v2


 ds (2.77)

Here * is the convolution and H is the step function. This formula is the solution of

the wave equation in the time domain. In order to calculate the wavefield at the point

P(x,z) one has to know the time derivative ∂U
∂t

and the derivative of the outer normal
∂U
∂n

on the borderline S. The time proceeds here backwards. The filtering with

t H
(−t− r

v

)

r
√

t2 − r2

v2

H
(−t− r

v

)
√

t2 − r2

v2

(2.78)

consists of a time shift of r/v that means the travel time of the wave from the inte-

grational point Q to the Point P and additionally of a low pass filtering because the

operators are no delta functions.

3D Kirchhoff formula

In the 3D case the Kirchhoff formula corresponding to (2.77) reads:

UP =
1

4 π

∫

S′

[
∂U

∂t
∗ δ

(
t− r

v

)

r v
cos φ +

∂U

∂n
∗ δ

(
t− r

v

)

r
+ U ∗ δ

(
t− r

v

)

r2
cos φ

]
ds′

(2.79)

Here S’ denotes a surface, on which the marginals of ∂U
∂t

, ∂U
∂n

and U are given. The

filtering of these marginals is a pure retardation.
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In the special case of a half space, that means that S’ denotes the x-y plane combined

with a hemisphere with infinite radius, the 3D Kirchhoff formula is:

UP =
1

2 π

∫ +∞

−∞

∫ +∞

−∞

[
∂U

∂t
∗ δ

(
t− r

v

)

r v
+ U ∗ δ

(
t− r

v

)

r2

]
cos φ dxdy (2.80)

For the migration we want to know the wave field in the depth before reaching the

surface at z=0. This means a continuation of the wave field in the past. The Kirchhoff

formula for the past is given by:

UP =
1

2 π

∫ +∞

−∞

∫ +∞

−∞

[
−∂U

∂t
∗ δ

(
t + r

v

)

r v
+ U ∗ δ

(
t + r

v

)

r2

]
cos φ dxdy (2.81)

By neglecting the 1
r2 term and using cos φ = z

r
we obtain:

UP ≈ 1

2 π

∫ +∞

−∞

∫ +∞

−∞
−∂U

∂t
∗ δ

(
t + r

v

)

r2 v
z dxdy (2.82)

Calculating the convolution

∂U

∂t
∗ δ

(
t +

r

v

)
=

∫ +∞

−∞

∂U(t′)
∂t′

δ
(
t +

r

v
− t′

)
dt′ =

∂U
(
t + r

v

)

∂t
(2.83)

yields:

UP = U(x, y, z, t) ≈
∫ +∞

−∞

∫ +∞

−∞

∂U
(
x′, y′, 0, t + r

v

)

∂t

(
− z

2 π r2 v

)
dx′dy′ (2.84)

Thus we achieve a weighting factor of the value:

W (x′, y′) = − z

2 π r2 v
(2.85)

The formula (2.84) is used in all calculations containing Kirchhoff Prestack Depth

Mirgation (KPSDM).

2.7.2 Fresnel Volume Migration

Homogeneous model

An extension of three component Kirchhoff prestack depth migration will be explained,

where the migration operator is restricted to the Fresnel volume of the specular reflected
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ray path (after Lüth et al. 2004). In homogeneous media, the angle between the

observed and the expected polarization is used to decide whether a certain image point

belongs to the Fresnel volume. In heterogeneous media, the orthogonal distance between

the image point and the paraxial Fresnel-ray traced from the receiver location is used.

For scalar wavefields, a Kirchhoff migration is usually described by means of the diffrac-

tion stack integral (DSI) (see Schleicher et al. 1993):

V (~m) =
−1

2π

∫ ∫

A

∫
w(~x, ~m)u̇f (~x, tS + tR)dx (2.86)

The migrated image V (~m) at a point in the subsurface ~m = (x, y, z) is constructed as

a weighted summation along diffraction surfaces. The diffraction traveltime tS + tR =

tS(~xS, ~m) + tR(~xR, ~m) is the traveltime from the source and the receiver to the image

point, respectively. The aperture A is the region over which the sources and receivers

are distributed. This can be a line (borehole or tunnel), a surface, or a volume. To

account for the most general case, we write the diffraction stack as a volume integral.

The term u̇f denotes the time derivative of the input wavefield which is needed in order

to correctly recover the source pulse (Newman 1975). The weight function w accounts

for the correct treatment of amplitudes during the backpropagation of the wavefield.

For the treatment of elastic wavefields recorded on two or three components, the wave-

field must be projected onto the expected direction of polarization for any given sub-

surface point (Jackson et al. 1991; Takahashi 1995). The diffraction stack can then be

written as:

V (~m) =
−1

2π

∫ ∫

A

∫
w~̇uf (~x, tS + tR)~erdx (2.87)

The vectorial character of the wavefield is taken into account, whereas the property

to be summed over is still a scalar. The image V (~m) consists of the backpropagated

multicomponent wavefield projected onto the expected polarization direction ~er for the

ray code under consideration. In order to restrict the image of a recorded reflection

to that part of the volume which physically contributes to the signal another weight is

introduced. This weight is unrelated to the true-amplitude weight w of equation (2.87)

but it can be applied in addition to it.

For an arbitrary ray representing a seismic wave between two points, the volume of

physical contribution can be described by the Fresnel volume of first order (Kravtsov

and Orlov 1990). The Fresnel volume can be described as follows: Consider a seismic

ray which travels from the source point S to the scattering point M and then to the
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receiver location R. The total length of the ray is l. A point P is located in the vicinity

of M and its distance from the source point S and the receiver R is s and r, respectively

(see Fig. 2.10).

M P

ll s r

RS

Figure 2.10: FVM sketch showing the intersection of the Fresnel Volume and the

isochrone (Buske 2009).

Then, the Fresnel condition states that P is within the Fresnel-volume of nth order if

|s + r − l| ≤ n
λ

2
(2.88)

with n=1,2,... and λ is the wavelength of a monofrequency wave. For the transient

signals used in practice, one has to replace λ by a reasonable estimate of the dominant

wavelength. In the case of a constant velocity medium, simple geometrical consider-

ations are sufficient to decide which part of the isochrone belongs to the nth Fresnel-

volume of the ray SMR. Goertz et al. (2003) derive that, if

cos(γ) ≥ 2r2 + 2rs− n(r + s)λ + n2 λ2

4

2r2 + 2rs− nrλ
= Hn (2.89)

the considered point P is located within the nth Fresnel-volume of SMR. The angle γ

describes the opening angle between RM , the measured polarization on the trace at R,

and RP , the expected polarization for the depth point P under consideration. In order
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to incorporate such a Fresnel zone criterion into the integral formulation of equation

(2.87) an additional weighting factor is defined:

Fc =





1 : cosγ ≥ H1

cosγ−H2

|H1−H2| : H1 > cosγ ≥ H2

0 : cosγ < H2

(2.90)

where H1 is the expression on the right hand side of equation (2.89) for n=1. The image

formula for the Fresnel-volume migration then becomes:

V (~m) =
−1

2π

∫ ∫

A

∫
Fcw~̇uf (~x, tS + tR)~erdx (2.91)

with the Fresnel criterion Fc. As the Fresnel-criterion is zero for all points which are

not located within the first and second Fresnel volumes of the specular ray path, the

image is thus efficiently restricted to the physically relevant part of the volume around

the point of specular reflection. Compared with standard vector Kirchhoff migration

the Fresnel volume migration does not require wide apertures in order to achieve a

sufficient superposition of migration operators. Therefore this method is expected to

be particularly useful for data with limited aperture.

Heterogeneous model

The relatively simple geometrical considerations with respect to the Fresnel volume are

not valid in heterogeneous velocity fields. In such fields the rays are curved and the

Fresnel volume has a more complex shape. The Fresnel volume of a ray describing a

primary reflection from a defined reflector can be constructed using the traveltime fields

of shotpoint S, receiver R and of the reflector (Kvasnicka and Červený 1994). In our

case, the traveltime fields of shot and receiver are available, but the traveltimes from

the reflector are not. Alternatively, the Fresnel volume of a known ray SMR can be

constructed in paraxial approximation (Červený and Soares 1992). For that, we would

not only need to know the ray path between the virtual reflection point and the receiver,

which is easily constructed using the direction of wave propagation at the receiver (see

Sun and Schuster 2003), but also the ray path between the shot point location and the

image point, which would require relatively costly two-point ray tracing. We therefore

propose to replace the Fresnel volume of the ray path SMR by the Fresnel volume of
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the direct ray S ′R, where S ′ denotes the virtual mirror source as seen from R (see Fig.

2.11).

Figure 2.11: Fresnel volume in a heterogeneous model.

The traveltime of the ray equals the traveltime of the ray SMR(t = tSMR). In the

vicinity of the reflection point M the Fresnel volume of the reflected ray SMR is nearly

identical to the Fresnel volume of the direct ray S ′R. The construction of the Fresnel

volume of the ray S ′R follows the procedure of Fresnel volume ray tracing presented by

Cerveny and Soares (1992). It is based on the paraxial ray method and merely consists of

simple algebraic manipulations of the elements of the ray-propagator matrix. Consider

a ray between two points (A and B) in a heterogeneous velocity field v = v(x, y, z).

At any point P along the ray, in paraxial approximation the Fresnel volume can be

described by an ellipse with the half axes oriented along two eigenvectors of 2 × 2

matrices containing the minors of the propagator matrices of the ray computed at the

points P and B. The half axes are given by (Červený and Soares 1992):

r1(P ) =

[
T

M1(P )

]1/2

, r2(P ) =

[
T

M2(P )

]1/2

(2.92)

Here, T is the dominant period of the signal, and M1 and M2 are the two eigenvalues of
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matrix M, which is expressed in terms of the ray propagator matrices of the considered

point P and of the end point B of the ray (Červený and Soares 1992). The ray propagator

matrix is a 4×4 matrix which is part of the dynamic ray tracing system (Červený 2001).

The differential equation for the ray propagator Π reads:

dΠ

dt
=




0 0 v2 0

0 0 0 v2

∂2v
∂q2

1

∂2v
∂q1∂q2

0 0

∂2v
∂q2∂q1

∂2v
∂q2

1
0 0




Π (2.93)

At the starting point A of the ray, Π = I, where I is the 4 × 4 unity matrix. The

ray centered coordinates perpendicular to the ray are q1 and q2. From equation (2.93)

it can be observed that the second spatial derivatives of the velocity field are needed,

which may cause numerical problems in practice. However, usually relatively smooth

velocity models are used for prestack migration, so that we can assume that these

velocity models have a locally constant velocity gradient. We therefore neglect the

terms of the second derivatives for the purpose of approximating the Fresnel volume.

In general, 16 different equations have to be solved for each point along the ray for the

construction of the complete ray propagator matrix. In our simplified approximation,

only one additional equation beside the kinematic ray tracing system must be solved:

dΠ13

dt
= v2 (2.94)

The initial condition for Π13 at the first point of the ray is Π = 0. The simplified ray

propagator implies that the two eigenvalues of M are identical, and the approximate

Fresnel volume has a circular shape perpendicular to the ray. Its radius is:

r(P ) ≈
√

T
1

Π13(P )
− 1

Π13(P )−Π13(B)

, (2.95)

where Π13(B) and Π13(P ) are the elements of the ray propagator at the end of the ray

and at the considered point P on the ray, respectively.

Using the relation described above we now can apply the following procedure to im-

plement 3C Fresnel volume migration in a heterogeneous background velocity model.

Note that the procedure is described for P-waves recorded at the receiver R, and it has

to be carried out within a loop over all traces and for all image points within the trace

loop:
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1. Compute the two-way traveltime of the image point by adding the traveltimes tS

and tR from the source and receiver.

2. Determine the data polarization of the 3C-trace at the computed traveltime.

3. Use the data polarization as the initial condition for a ray from the receiver R

to point S ′, where S ′ is defined by the point of intersection of the ray with the

isochrone t = tS + tR in the traveltime field of receiver R.

4. Construct the ray RS ′ and the Fresnel radii along it using equation (2.95).

5. Determine the orthogonal distance of the image point from the ray, compare it

to the respective Fresnel radius and select according to the Fresnel criterion Fc

(equation (2.90)).

6. The summation is carried out according to equation (2.91).

2.7.3 Reflection-Image-Spectroscopy

This approach was invented to extract structural details from seismic reflection images

of strongly heterogeneous media. It accounts for the frequency dependence of scatter-

ing. The redistribution of seismic energy into reflected (backscattered) and transmitted

(forward scattered) waves is referred to as scattering. The scattered energy and the

wave field fluctuations vary in dependence on the magnitude of the velocity fluctuation

as well as on the ratio between the wavelength and the spatial size of the heterogeneities.

Thus seismic images will significantly differ when migration is performed over different

frequency ranges. Strong scattering in a certain frequency band of the data will lead

to severe amplitude loss and phase fluctuations. The loss of coherency and reflection

strength will affect the image of a deep reflector. The reflector shape will be biased

or the reflector is screened at all. In another frequency band scattering might be less

severe such that reflectors are imaged properly. In the broadband image the fluctua-

tions are superposed, covering the coherent reflections. Besides the extraction of the

undistorted reflectors the method is furthermore applied to gain additional information

on the spatial parameters of the heterogeneities in the medium (Yoon 2005).

Mathematically the method RIS is based on a Fast Fourier Transformation (FFT) from

the time to the frequency domain. In the frequency domain a trapezoidal filter is

applied to the data. Then a reverse FFT is performed with the frequency filtered data.

KPSDM is implemented to the data according to formula (2.84). The obtained images
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are supposed to offer suppressed scattering effects in the low-frequency band, which

improves the visibility, and an increased resolution in the high-frequency band.
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Chapter 3

The Piora data set

3.1 Geological setting and survey layout

We have processed a reflection seismic data set acquired in the Gotthard Base Tunnel

(Piora adit). The Gotthard Base Tunnel is located between the cities Lucerne and

Lugano in Switzerland. It will be the largest traffic tunnel on earth with 57 km length

when completed presumably in 2015. The geographical site of the measurement setup

is shown in Figure 3.1 and a geological cross section is shown in Figure 3.2. The seismic

survey in the Piora adit is situated above the Gotthard Base Tunnel in the Penninic

Gneiss Zone near the Piora Basin.

Figure 3.3 shows the geology at the measurement site. The major geological feature of

the transition between two Gneiss variations (Leventina Gneiss - Lucomagno Gneiss)

slices the tunnel within the extent of the seismic line.

The geology along the tunnel wall at the measurement site is shown in Figure 3.4. The

main geological features are the transition between the Leventina and the Lucomagno

Gneiss at x = 2900 m as mentioned before as well as the fault gouge at x = 3105 m.
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Figure 3.1: Location of the Gotthard Base Tunnel (picture copied from

http://de.wikipedia.org/wiki/Gotthard Basistunnel)

Figure 3.2: Geological setting and location of the Piora adit (Bohlen 2007)
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Figure 3.3: Geological cross section showing the transition between the different Gneiss

variations (Leventina Gneiss - Lucomagno Gneiss) (Schneider 1997).

Figure 3.4: Geological features along the tunnel wall.

We used 147 different source points. The source was a pneumatic hammer moved

along the wall with a motor vehicle. It was triggered every 1 m advancing towards the

tunnel face starting at x = 2882, 5 m and ending at x = 3028, 5 m. 15 three-component

receivers are located at two meters depth in the tunnel wall (see Figure 3.5). Every shot
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was recorded at each receiver. The total amount of 147 shots recorded at one receiver

is called a common receiver gather. The sampling interval was dt = 31 µs and the total

number of time samples per trace was nt = 5120.

Figure 3.5: Acquisition geometry in the Piora adit.

3.2 Velocity model

A 3D Kirchhoff prestack depth migration was applied to the data. In order to do this

a 2D first-break tomography P- and S-velocity model (Giese et al. 2005) was used

and extrapolated to a grid containing 701 × 201 grid points (see Figure 3.6). Slow

velocities are indicated in black and blue while high velocities are designated in red.

We observe a slow velocity zone in close vicinity to the tunnel due to the excavation

damage zone. Changes of the velocity occur at the major geological features as the

gneiss transition and the cataclastic zone (see Figure 3.7). We implemented a 3D P-

and S-velocity model by rotating the extrapolated 2D first-break tomography models

for the Piora adit around the tunnel axis (see Figure 3.8 and 3.9). The 3D model

contains 351 × 206 × 206 grid points. The grid increment is 1 m. The velocity in the

tunnel was assumed to be constant at v = 330 m/s (propagation velocity of sound in

air). In the P-velocity model the velocities range from 3000m/s up to about 6000m/s,

and for the S-velocity model the velocities vary between 1500 m/s and 3900 m/s.
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Figure 3.6: Extrapolated 2D P-velocity model.

Figure 3.7: Comparison of the velocity model to the geology. The white dots are the 147

shotpoints and the black dots correspond to the 15 receivers.
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Figure 3.8: 3D first-break tomography P-velocity model for the Piora adit. Scalars

denote the P-velocities in m/s.

Figure 3.9: 3D first-break tomography S-velocity model for the Piora adit. Scalars denote

the S-velocities in m/s.
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3.3 Kirchhoff prestack depth migration

The data set was preprocessed by muting the first arrivals, then applying an AGC to

the data and afterwards normalizing each trace to its maximum. In Figures 3.10 and

3.11 the receiver gather before and after applying the preprocessing steps is shown. In

the raw data in figure 3.10 we can notice the first break of the P- (red arrow) and

S-wave (green arrow) and a dominant reflection indicated by two black arrows. This

reflection has its minimum travel time at trace #20 at (source position x = 2901, 5 m)

and therefore it can be related to the transition between the two gneiss variations. We

observe that spherical divergence is compensated and that surface waves are suppressed

in the preprocessed data as well.

Figure 3.10: Raw data of field file 8.

48



Figure 3.11: Preprocessed data for field file 8.

A 3D KPSDM was performed with the data. In order to do this we calculated the

two-way travel time for each point of the 3D grid using the finite difference method of

Podvin and Lecomte (1991). This was done for the P-velocity model as well as for the

S-velocity model.

Each receiver gather was migrated separately and the final 3D image was obtained by

stacking the migrated data taking into account either the true phase or the absolute

value (see Figure 3.12 and 3.13). The tunnel is indicated along the x-axis, the y-axis

is horizontal and perpendicular to the tunnel and the z-axis is vertical. Three perpen-

dicular slices through the 3D volume are presented in both images. High amplitudes

have the color red in Figure 3.13 while small amplitudes have the color blue. In Figure

3.12 the absolute value of the amplitudes is high when the color is red or blue and neg-

ligible amplitudes have the color green. The two black arrows in the image 3.13 point

at reflections correlated with the gneiss transition. The inclination of these reflections
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towards the x-axis is 37◦ while the slice through the tunnel wall occurs at 2900 m.

Figure 3.12: KPSDM: Phase-stack. Scalars denote the amplitudes.

Figure 3.13: KPSDM: Absolute-value-stack. Scalars denote the amplitudes.
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Figure 3.14: Isosurface of reflections with high amplitudes in the 3D KPSDM volume

(compressional wave velocity, phase-stack)

Figure 3.15: Isosurface of reflections with high amplitudes in the 3D KPSDM volume

(shear wave velocity, phase-stack). The black arrow signifies the reflector associated

with the transition between Leventina and Lucomagno gneiss.
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As the angle of incidence is not considered by this method, reflectors appear as concen-

tric shells around the tunnel (see Figure 3.14). Using the S-velocity model for Kirchhoff

migration the isosurface indicated by the black arrow corresponds to the transition

between two gneiss variations (Leventina - Lucomagno Gneiss, see Figure 3.15).
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3.4 Reflection-Image-Spectroscopy

We extended 3D KPSDM by performing it over different narrow frequency bands. This

approach is called Reflection-Image-Spectroscopy (RIS). It is a powerful tool in hetero-

geneous media in order to suppress scattering effects in the low frequency band and to

increase the resolution in the high frequency band. The source, a pneumatic hammer,

had a signal spectrum from 0 up to 1000 Hz. This was separated into 11 frequency

bands by trapezoidal filters with a width of 200 Hz. The mean frequency increased

from 100 Hz for the first band to 900 Hz for the last in increments of 80 Hz. Each

band was migrated separately using KPSDM in a 3D model. The low frequency images

(Figures 3.17 and 3.19) show much clearer and more intense reflections generated by the

transition between two present gneiss variations. These are indicated by black arrows

in the figures. Compared to the geological cross section shown in Figure 3.3 the slice

through the tunnel wall of this geological feature is as expected from the geology at

x = 2900 m. The scatterers due to the gneiss crossing are much better visible in the

RIS low-frequency-image (Fig. 3.17) than in the KPSDM image (Fig. 3.16).

Figure 3.16: KPSDM: Cross sections through the phase-stacked 3D migration volume

(shear wave velocity). The black arrow points at the gneiss transition.
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Figure 3.17: RIS (100 Hz): The 2 arrows indicate the scatterers due to the gneiss

crossing.

Figure 3.18: RIS and geological features (Leventina Gneiss - Lucomagno Gneiss)
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Figure 3.19: RIS: Cross sections through the phase-stacked 3D migration volume (com-

pressional wave velocity). Scatterers corresponding to the gneiss transition are indicated

with black arrows. Scalars denote the amplitudes

3.5 Fresnel Volume Migration

Fresnel Volume Migration (FVM) uses the emergence angles of reflections in order to

restrict the smearing of energy to the physical relevant part in the 3D volume, which

is the intersection of the isochrone surface and the first Fresnel Volume (see Figure

2.10). We implemented FVM in the 3D model. The emergence angles of reflections

were calculated by a slowness and polarization analysis of the data. We were able to

reproduce earlier results from FVM in a 2D model. Because of the acquisition geometry

of receiver locations along a line only 2D direction estimates can be extracted out of

the slowness calculation. First we derived these estimates along the tunnel via slowness

calculations using a slant stack method. The 3 dimensional slowness vector is calculated

through polarization analysis. The direction estimate of incoming signals was computed

by the covariance matrix method as well as using averaged direction cosines (Jepsen

and Kennett 1990; Rentsch 2007). The hodogram analysis of the Piora raw data set

shows that using a time window corresponding to the dominant frequency allows a

stable estimation of the polarization.
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The definition of the covariance matrix is:

C =




Cxx Cxy Cxz

Cyx Cyy Cyz

Czx Czy Czz


 (3.1)

with

Cij =
1

N

N∑
t=1

ui(t) · uj(t) (3.2)

N: number of time samples in one dominant time period

uij: displacement in direction i,j

t: index of time sample

Every common receiver gather was migrated separately.

Rectilinearity is a measure of how accurate the direction estimates derived from the

covariance matrix are:

R = 1− λ2 + λ3

2λ1

(3.3)

In the formula (3.3) the intermediate eigenvalue λ2 and smallest eigenvalue λ3 is related

to the largest eigenvalue λ1 of the covariance matrix. For a perfectly linearly polarized

signal the largest eigenvalue λ1 is much larger than the other eigenvalues. Hence the

rectilinearity will have values close to one. For signals with elliptical polarizations the

magnitudes of the eigenvalues will be much more similar and hence the rectilinearity

decreases.

A very good rectilinearity was observed for all 15 common receiver gathers (see Figure

3.20). Other measures as the stability and planarity concerning the reliability of the

direction estimates were computed and underlined the correctness of our results.
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Figure 3.20: Rectilinearity for common receiver gather 1-15 from left to right and from

top to bottom.
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The phase-stack of the 15 receiver gathers compared with the geological structures at the

tunnel wall is shown in Figure 3.21. High absolute values of amplitudes are indicated in

red and blue while negligible amplitudes have the color green. In this image the location

of the fault gouge at x = 3105 m as well as its perpendicular inclination toward the

tunnel is mapped with high accuracy.

Figure 3.21: Fresnel Volume Migration: Phase-stack of the 15 receiver gathers. We

observe intense reflections corresponding to the fault gouge.

The following 3 images illustrate how a reflector becomes visible only after rotating

a horizontal slice in the 3D volume (see Figure 3.22, 3.23 and 3.24). The reflector is

focused in a specific direction. This is a great benefit of FVM which focuses on the

actual region of reflection.
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Figure 3.22: Fresnel Volume Migration: Common receiver gather No. 8, horizontal slice

in the source receiver plane. Scalars denote the amplitudes.

Figure 3.23: Fresnel Volume Migration: Common receiver gather No. 8, 21, 8◦ inclined

plane to the horizontal, the reflector indicated by the black arrow becomes visible. Scalars

denote the amplitudes.
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Figure 3.24: Fresnel Volume Migration: Common receiver gather No. 8, 38, 66◦ in-

clined plane to the horizontal, the reflector indicated by the black arrow has reached the

maximum of his intensity. Scalars denote the amplitudes.

The 2D slice through the source receiver plane of the FVM-volume resolves the gneiss

crossing very precisely. The inclination with respect to the tunnel axis as well as the slice

through the tunnel wall of the geological feature is mapped at α = 36◦ and x = 2900 m

according to the geology as seen in Figure 3.25.
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Figure 3.25: Geological tunnel wall map and FVM: The location and orientation of the

gneiss transition is mapped with high precision.

Now we shall consider the spatial orientation of the gneiss transition in the x-z plane.

From the geology we expect an angle toward the vertical z-axis of βgeo = 20, 96◦ (see

Figure 3.26).

Figure 3.26: Inclination of the gneiss transition toward the z-axis according to the

geology.
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As we take a closer look on three perpendicular planes toward the y-axis, we observe a

good coincidence of the measured angle βmsd with the angle expected from the geology

βgeo (see Figures 3.27, 3.28 and 3.29).

Figure 3.27: Slice at y = 30 m. The measured angle between the gneiss transition and

the vertical is βmsd = 28, 81◦.
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Figure 3.28: Slice at y = 35 m. The measured angle between the gneiss transition and

the vertical is βmsd = 22, 42◦.

Figure 3.29: Slice at y = 45 m. The measured angle between the gneiss transition and

the vertical is βmsd = 19, 29◦.
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According to the relation:

tan βmsd =
∆x

∆z
(3.4)

the following values for βmsd could be obtained (see Table 3.1):

Table 3.1: Measured angle between the gneiss transition and the vertical for different

slices in the x-z plane.

We achieve an average angle of βmsd = 23, 51◦, which coincides with the angle expected

from the geology βgeo = 20, 96◦ quite well.

Figure 3.30 shows a x-y-slice through the 3D migration volume. A much clearer image

of the reflectors related to the gneiss transition designated by 3 black arrows is obtained

compared to the corresponding KPSDM images (see Figure 3.13). The slice in Figure

3.30 is rotated (Figure 3.31). Figure 3.32 shows the continuation of the gneiss crossing

in the x-z plane and that the distribution of reflectors in 3D is no longer symmetrical but

corresponds to the polarization information of the recorded seismic data. The gneiss

transition is marked by two black arrows.
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Figure 3.30: Fresnel Volume Migration: absolute-value-stack of the 15 receiver gathers.

We observe less spatial ambiguity and a higher resolution of most structures compared

to KPSDM. Scalars denote the amplitudes

Figure 3.31: Fresnel Volume Migration: x-y slice. Scalars denote the amplitudes.
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Figure 3.32: Fresnel Volume Migration: x-y, y-z and x-z slices. Scalars denote the

amplitudes.

Another major geological feature can be seen in the geological map of the tunnel wall:

the fault gouge (see Figure 3.4). We can observe that the fault gouge is not only

mapped very well at tunnel meter 3105 in the FVM image but also the nearly symmetric

orientation around the tunnel axis is imaged with high accuracy (see Figure 3.33).

We observe that the localization of reflectors is improved due to the focusing properties

of FVM.
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Figure 3.33: FVM: Two Black arrows indicate the reflections corresponding to the fault

gouge in two perpendicular slices and the drawn isosurface illustrates the possible shape

of the fault gouge in 3D. Scalars denote the amplitudes.
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3.6 Combination of RIS and FVM

Each receiver gather was frequency filtered. For each frequency band polarization infor-

mation was derived by applying the covariance matrix method. Then FVM was applied

and the 15 migrated field files were stacked by taking into account the true phase or

the absolute value of the amplitudes.

The transition between the two gneiss variations was very nicely and continuously

imaged. In Figure 3.34 the correlation between the migration of the low frequency

band and the recorded geology is presented.

Figure 3.34: RIS and FVM at 180 Hz mean frequency: Geology compared to the 2D

slice through source receiver plane. The inclination to the tunnel axis as well as the slice

through the tunnel wall of the gneiss transition is imaged according to the expectations.

High amplitudes are marked in red and negligible amplitudes have the color white. In

the upper right corner the geology between tunnel meter 2880 and 2920 is presented.

The inclined, black, dashed line indicates the reflectors correlated with the gneiss tran-

sition. A strong reflection underneath the cataclastic zone between tunnel meter 2990

and 3000 can be connected to this geological feature. Again the inclination of the cross-

ing of the gneiss types with respect to the tunnel axis and the slice of the transition zone

through the tunnel at 2900 tunnel meters is mapped with high accuracy. Once again the
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correctness of the migration method was confirmed and the reflector was imaged more

continuous compared to the FVM of the whole frequency spectrum. The 3D image,

Figure 3.35, shows a slice through the FVM-volume in the source receiver plane. The

reflector corresponding to the gneiss transition indicated by two black arrows is clearly

visible. Figure 3.36 illustrates the same slice from another perspective combined with an

isosurface of high amplitudes. The most prominent isosurface marked by black arrows

represents the spatial distribution of the gneiss transition in 3D. Another two planes

perpendicular to the source receiver plane are added in Figure 3.37. Again the black

arrows point at the reflector coinciding with the gneiss transition. The continuation of

the reflector in the x-z plane is illustrated.

Figure 3.35: RIS and FVM: Slice through the FVM-volume (source receiver plane).

Scalars denote the amplitudes.
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Figure 3.36: RIS and FVM: One slice through the FVM-volume and isosurface of high

amplitudes. Scalars denote the amplitudes.

Figure 3.37: RIS and FVM: Three slices through the FVM-volume. Scalars denote the

amplitudes.
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3.7 P-S wave separation

A P-S wave separation algorithm was performed on the AGC and normalized data by

taking into account the slowness vector ~pslow and the polarization vector ~ppol derived

from the raw data. The dot product was calculated and if the two vectors happened to

be parallel or nearly parallel (absolute value of angle θ between ~pslow and ~ppol smaller

than 30◦ or greater than 150◦) data corresponding to P-waves was extracted. In the

case that the two vectors happened to be nearly perpendicular (60◦ < |θ| < 120◦) a

accumulation of signals related to S-waves was performed.

cosθ =
~pslow · ~ppol

|~pslow||~ppol| (3.5)

Taking into account only events corresponding to the above mentioned intervals led to

many discontinuities in the separated wavefields. In order to avoid this we introduced a

weighting function for the extracted P- (weighting function: |cos(θ)|) as well as for the

S-wavefield (weighting function: |sin(θ)|). This tapering resulted in two more smooth

wavefields without significant discontinuities (see Figure 3.38).

Figure 3.38: Left: Slowness and polarization vector. Right: Illustration of shear wave

and compressional wave, wave vector is indicated as red arrow and direction of wave

propagation as black arrow.

In Figure 3.39 and 3.40 a Kirchhoff migrated common receiver gather (no. 8) of the

entire data set and only extracted P-wave related events can be observed. It becomes

evident that geological relevant structures are focused (see red arrows pointing at re-

flections related to the gneiss transition) and artifacts are reduced (see green arrows).
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Figure 3.39: P-S wave separation: field file no. 8, Kirchhoff Migration, entire wavefield

Figure 3.40: P-S wave separation: field file no. 8, Kirchhoff Migration, separated P-

waves
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The separation algorithm applied on the FVM images yields a much better mapping of

the cataclastic zone. This is seen in Figure 3.41 especially after zooming in the relevant

region.

Figure 3.41: P-S wave separation: FVM, upper image entire wavefield, lower image

separated P-waves (zoom)
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3.8 Summary and conclusions

KPSDM has proven to be a useful tool for highly complicated environments. We

show that one can further improve seismic images by extending this method. The

frequency dependent images obtained by the RIS technique enable us to detect the

transition between two gneiss variations in close vicinity of the tunnel. Unfortunately

the high frequency images didn’t show an increased resolution because the gneiss is

a strongly diffuse scatterer for high frequencies. In the images obtained by FVM the

spatial ambiguity of reflections is strongly reduced and the resolution is improved.

These benefits are of great importance in a tunnel environment due to the very low

data coverage. The combination of RIS and FVM yields a more continuous and

prominent image of the main reflection. The separation of P- and S-waves offers a

more pronounced image of the cataclastic zone.
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Chapter 4

The Piora gallery data set

The survey layout is shown in Figure 4.1. 148 source points and 17 three-component

receivers were used. The source point interval was 1 m and the receiver interval approx-

imately 10 m. The time sampling was dt = 62 µs and the total amount of time samples

per trace was nt = 3556.

Figure 4.1: Acquisition geometry for the Piora gallery data set.
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The data set was preprocessed by muting the first arrivals, then applying an AGC to the

data and afterwards normalizing each trace to its maximum. The resulting seismic data

before and after implementing the preprocessing steps for field file 9 can be observed in

Figures 4.2 and 4.3.

Figure 4.2: Seismic traces of field file 9, raw data.
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Figure 4.3: Preprocessed seismic traces of field file 9.

4.1 Velocity model

We calculated the first break theoretically by the formula:

T (x) =
2

a
· ln


 ax

2v0

+

√
1 +

(
ax

2v0

)2

 (4.1)

In expression 4.1 a is the velocity gradient and v0 is the velocity on the surface. By

comparing the calculated first break with the seismograms we obtained the best fit

using the parameters a = 15, 38 1/s and v0 = 5000 m/s for the P-velocity model and

a = 20, 51 1/s, v0 = 2000 m/s for the S-velocity model (see Figure 4.4).
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The 3D velocity grid was created using the formula:

v(r) = v0 + a · (r(y, z)− 2, 5) (4.2)

Here r is the radial distance from the tunnel axis and the radius of the tunnel is 2,5 m.

Figures 4.5 and 4.6 show a slice through the 3D grid in the x-y plane for the P- and

S-velocity model respectively.

Figure 4.4: The fit of the first break (red line) regarding P-waves with the above men-

tioned parameters.
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Figure 4.5: P-velocity model for the Piora gallery data set. The velocity in the 3D model

ranges from 5000 m/s (green) to 7137, 25 m/s (red) (z = 0, vmax = 6500 m/s).
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Figure 4.6: S-velocity model for the Piora gallery data set. The velocity in the 3D model

varies between 2000 m/s (blue) and 4849, 67 m/s (yellow) (z = 0, vmax = 4000 m/s).

4.2 Fresnel Volume Migration

The same procedure as in the corresponding previous chapters was performed with the

seismic data set. The results (see Figure 4.7) show strong reflections appearing in 40 m

depth at x = 0 m and about 80 m depth at x = 80 m.

By taking a closer look on a 26, 57◦ (Fig. 4.8) and −26, 57◦ (Fig. 4.9) inclined plane

to the horizontal one can observe that the reflector is not distributed symmetrically to

the x-y plane but the distance to the tunnel axis increases as z increases.

Figure 4.10 illustrates the fault zone in vicinity to the tunnel. The Piora Basin is the

main feature located according to the geological mapping in a depth of y = 78 m.

The following image (Figures 4.11) shows strong reflections near the location of the

Piora Basin indicated by a red line.

Figure 4.12 shows the absolute value stack of 17 common receiver gathers. The outline

of the Piora Basin is represented by a black line.
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Figure 4.7: FVM: true-phase-stack. Scalars denote the amplitudes.

Figure 4.8: FVM: true-phase-stack. 26, 57◦ inclined plane to the horizontal. Scalars

denote the amplitudes.
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Figure 4.9: FVM: true-phase-stack. −26, 57◦ inclined plane to the horizontal. Scalars

denote the amplitudes.

Figure 4.10: The Piora Basin (Pioramulde, dashed line) proceeds in a depth of y = 78

m parallel to the x-axis.
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Figure 4.11: FVM, true-phase-stack: Seismic profile and progress of the Piora Basin in

a depth of y = 78 m parallel to the x-axis. The fault zone is indicated by a red line.

Figure 4.12: FVM, absolute-value-stack: The progress of the Piora Basin is indicated

by a black line.
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4.3 Combination of RIS and FVM

The entire frequency range was separated into 4 frequency bands with a width of 200

Hz each. FVM was applied to the 100 Hz and 300 Hz mean frequency band after the

determination of the polarization by the covariance matrix method. The images show

strong reflections occurring in a depth of approximately 75 m between x = 40 m and

x = 100 m (see Figure 4.13).

The spatial orientation of the reflector shall be illustrated. Considering all reflections

with amplitudes greater than a given absolute value of the amplitude the following

images are obtained (see Figures 4.14 and 4.15).

Figure 4.16 correlates the migration result obtained by RIS in combination with FVM

with the geology in particular with the Piora Basin.

The absolute-value-stack of all common receiver gathers is displayed in Figure 4.17.

Major reflections occur behind a black line indicating the trend of the Piora Basin.

Figure 4.13: RIS + FVM, true-phase-stack. Strong reflections occurring in a depth of

75 m indicated by black arrows. Scalars denote the amplitudes.
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Figure 4.14: RIS + FVM, true-phase-stack. Shape of all reflectors with high amplitudes.

Figure 4.15: RIS + FVM, true-phase-stack. Shape of all reflectors with high amplitudes

in front of the x-y plane. Scalars denote the amplitudes.
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Figure 4.16: RIS + FVM, true-phase-stack: Seismic profile and progress of the Piora

Basin in a depth of y = 78 m parallel to the x-axis. The fault zone is indicated by a red

line.

Figure 4.17: RIS + FVM, absolute-value-stack: Seismic profile and progress of the

Piora Basin in a depth of y = 78 m parallel to the x-axis. The fault zone is indicated

by a black line.
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4.4 Summary and conclusions

The position of the Piora Basin is mirrored in the images achieved by FVM and the

combination of RIS and FVM. The strong reflections occurring in a depth between 70

and 100 meters could be correlated partly with the geology. The images obtained by

applying the shear wave velocity model and performing KPSDM on the whole frequency

range and on the low frequency band showed many artifacts and were not capable for

the interpretation.
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Chapter 5

General summary and conclusions

The application of FVM to the two data sets showed significant results, reduced spatial

ambiguity and improved the resolution in the images. Geologically relevant structures

were focused and imaged more clearly compared to the images obtained by standard

migration techniques as KPSDM. The integration of FVM and RIS yields a more pro-

nounced image of the tunnel environment.

For the Piora data set the gneiss transition could be imaged very precisely using P-

and S-waves. Unfortunately the high frequency images obtained by RIS for this data

set showed no improvements because the gneiss is a very diffuse scatterer at these

frequencies. The separation of P- and S-waves enabled us to detect a geological feature

not observed in the images before the separation of the wave fields.

In the images derived from the Piora gallery data set we were able to correlate the

most prominent reflectors with the Piora Basin. Once again the results obtained by

the andvanced imaging technique FVM showed less artifacts, increased resolution and

reduced spatial ambiguity.

It is possible to use the developed algorithms and programs for any kind of bore hole or

excavation in particular for vertical bore holes. FVM is especially suited for low data

coverage which is often the case in bore holes. The 3D RIS is also very important for

surface measurements of layered media.
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and Aissa Rechlin. Thank you Stine Gutjahr and Nicolas Hummel for proofreading my

dissertation.

Let me thank my family who made my dissertation possible and encouraged me during

the whole three years.

Finally I would like to thank my friends Gudrun Zimmermann, Jörg Wichmann and

Ronald Stitz for their encouragement and for giving me joy during my free time.

89



References

Aki, K. and Richards, P.G. (1980). Quantitative Seismology: Theory and methods,

Vols. I and II, 156-157, 169-170. San Francisco: W.H. Freeman.

Bohlen, T., Giese, R., Jetschny, S., Lorang, U., Rabbel, W., Müller, C. and Lüth, S.
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Červený, V. (2001). Seismic ray theory. Cambridge University Press.

Chapman, C.H. (2004). Fundamentals of Seismic Wave Propagation. Cambridge Uni-

versity Press.

Giese, R., Klose, C. and Borm, G. (2005). In-Situ seismic investigations of fault zones

in the Leventina Gneiss Complex of the Swiss Central Alps. Geological Society Special

Publications 240, 15-24
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