
7 Tools Supporting Ontology Reuse

Chapter 3: Feasibility study

Chapter 4: Methodology

Chapter 5:

Metadata

Model

Chapter 6:
Metadata-

based methods

Chapter 7: Tools

Chapter 9: Conclusions and Perspectives

Chapter 1: Introduction
Chapter 2: Ontologies and

Ontology Engineering

Chapter 8:

Evaluation

In this chapter we describe tools supporting the sys-
tematic and controlled operation of ontology reuse.
At first we introduce PROMI, a platform for ontol-
ogy reuse which prototypically realizes many of the
theoretical considerations exposed so far in this the-
sis (Section 7.1). Further on, we focus on methods
for metadata creation and management; OntoMeta, a
service for automatic metadata acquisition, is intro-
duced in Section 7.2. The tools are described in terms
of their design, architecture, implementation and uti-
lization. We close the chapter with an overview of its
contents in Section 7.3.

7.1 PROMI

The project PROMI (Platform for the Reuse of Ontologies through Merging and Integration)
was initiated in February 2005 within the working group Network Information Systems at the
Free University of Berlin with the aim to provide a comprehensive, easy-to-use and -adapt
platform for reusing ontologies and ontology-like knowledge sources in Semantic Web appli-
cations.1 The core project team consists of two researchers at the aforementioned institution
(including the author of the thesis), as well as several undergraduate students. The work re-
ported in this section was fundamentally conceived and supervised by the author, but it could
not have been accomplished without the help of the remaining members of the project team.

The first release of the platform in August 2005 was restricted to the field of ontology
merging and integration. Building upon our ontology reuse methodology [168, 170, 172] it
implemented an incremental approach to merging and integration on the basis of elementary
linguistics-oriented matching services. In a second phase, in December 2005, PROMI was
revised towards a context-sensitive behavior w.r.t. the aforementioned tasks. We investigated
how contextual dependencies, as those elaborated in Section 6.2 in the previous chapter,
could be added to the system in order to aid the engineering team in taking the decision upon
the appropriate merging/integration strategy. Finally, in April, 2006, PROMI was extended
with an ontology evaluation component realizing the core ideas of the method introduced in
Section 6.1. Further extensions are planned—beyond the scope of this thesis—in relation to
the MOMA project [148, 150]. Since May 2006 the tool is available as an open source project
at http://sourceforge.net/projects/promi/.

1http://promi.ag-nbi.de last visited in July, 2006

171

7 Tools Supporting Ontology Reuse

7.1.1 Design and Architecture

PROMI is intended to provide ontology engineers and domain experts with methodological
and technological support in carrying out ontology reuse. Accounting for the results of our
feasibility study, the platform was conceived as a dedicated ontology engineering environ-
ment, in which participants at the reuse process are given advice in how to perform the reuse
process or particular phases of it (i.e. methodology), and which methods and tools can be
applied to operationalize it effectively and efficiently (i.e. technologies).

Metadata
repository

Metadata
editor

Metadata
extractor

Semantic
matcher

Ontology
discovery

Ontology
evaluation

Ontology
merging/

integration

Context
manager

Task
processor

Ontology
repository

Process layer

Context layer

Information layer

Context
model Method

repository

Semantic
ranking

Figure 7.1: PROMI Layered Architecture

From a process-oriented perspective the platform builds upon the presented methodology,
which describes in detail the reuse process and its main phases in terms of participants, activ-
ities they perform, and results achieved. Further on, the methodology recommends methods,
techniques, heuristics and tools likely to be helpful to the engineering team during the op-
eration of the process (cf. Chapter 4). Technologically this process-driven description is
augmented by an inventory of self-developed methods and techniques, which can be used to
systematically accomplish specific aspects of the reuse process in an automatized manner (cf.
Chapters 5 and 6). Consequently, PROMI can be divided into three layers, which are depicted
in Figure 7.1:

172

7.1 PROMI

1. Process layer: on this layer the platform controls the execution of the overall reuse
process, in that it guides the user with respect to the activities which are required for
reusing existing ontologies, their order of execution and the results expected from each
activity.

2. Context layer: this layer is responsible for the context-sensitive behavior of the plat-
form. On the basis of a simple, yet powerful context model and rules for selecting
situation-relevant information, it is concerned with the context-dependent execution of
the ontology reuse steps. The layer is further decomposed in three modules:

a) Context manager associates a particular reuse activity to the appropriate reuse
metadata. The selection is realized in form of rules combining pre-defined context
patterns (e.g., specific roles, application types) to particular metadata elements.

b) Task processor guarantees the execution of the reuse process with or without
taking into consideration contextual aspects. In the former case, the additional
information acquired by the context manager induces a selective behavior of the
system with respect to a particular reuse activity. In the latter the reuse process is
performed in a context-independent way, without taking into account the speci-
ficity of the setting at hand.

c) Method repository is a generic collection of methods applied to aid ontology
engineers and domain experts in accomplishing certain tasks. The PROMI sys-
tem currently embeds a prototypical implementation of the methods presented in
Chapters 4 to 6. They were realized in collaboration with undergraduate students
of the Free University of Berlin and members of the working group Networked
Information Systems.

The context layer has access to the

a) Context model which formally defines the structure and the organization of con-
textual aspects within ontology reuse processes by means of a Semantic Web
ontology, and to the

b) Contextual information instantiating this model with concrete examples derived
from the specific design of our solution space. This includes the design of the
metadata model, of the ontology reuse process model and of the associated sup-
port methods. If new methods, or even a different process description, are con-
ceived to be used in relation to the platform, these are required to be described in
terms of the context model in order for PROMI to provide the desired behavior.
Note that the context layer does not directly manage descriptive information about
ontologies or ontology management services. This information is processed and
stored in the layer below. In accordance to the way we understand the notion of
context, the present layer solely defines which aspects of the information globally
available to the platform are context-relevant and how they should be taken into
account for specific purposes.

173

7 Tools Supporting Ontology Reuse

3. Information layer: the third layer is concerned with the acquisition and management
of information describing the ontology reuse process, its main activities, as well as
associated Web resources and services. It includes the ontology reuse metadata model
and metadata instances acquired during ontology engineering empirical studies or using
(semi-)automatic heuristics. Further on, the information layer incorporates information
about the methods to be automatically executed during the operationalization of the
reuse process (i.e. metadata about various matchers and merging techniques, translators
etc.). From a functional point of view, it distinguishes among four modules:

a) Metadata extractor comprises methods to enrich the metadata repository with
automatically acquired metadata information.

b) Metadata editor can be utilized to manually create and revise metadata entries.
c) Semantic matcher provides a set of linguistic, taxonomical and heuristic match-

ing algorithms employed to semantically compare metadata entries and, implic-
itly, the items the metadata describes.

d) Semantic ranking computes relevance scores for particular items such as on-
tologies or ontology reuse methods on the basis of the results delivered by the
semantic matcher.

The information layer makes use of the information stored in a metadata repository and
has access to ontologies described by the metadata:

a) Metadata repository consists of metadata schemas (such as for Semantic Web
resources, merging methods or matching algorithms) and instance data referring
to existing ontologies, documents or services.

b) Ontologies online available and described in terms of the pre-defined metadata
schemas.

As aforementioned the methods and techniques applied to achieve a specific sub-goal
of a reuse endeavor (such as the merging of two ontologies) could be homogeneously
accessed in terms of Web Services and described using WSDL or even semantics-aware
service descriptions [120, 152, 200].

In the following we will give an overview of the three layers.

174

7.1 PROMI

Process Layer

A detailed description of the reuse process is given in Chapter 4. PROMI commits to this
methodology, guiding the user in carrying out the necessary tasks along a pre-defined work-
flow.

Evaluate existing ontologies

Match concepts

Translate to abstract ontology model

Select merging strategy

Separate concepts, properties, axioms and instances

Normalize concept names

Merge concepts

Add more concepts

Add properties and axioms

{Ontology metadata }

{Contextual rules}

{Matcher metadata }

Ontologies (OWL, RDFS,
XSD, DTD, DDL)

Target OWL ontology

Figure 7.2: PROMI Ontology Reuse Process

175

7 Tools Supporting Ontology Reuse

Prior to starting any reuse-relevant activity the user is provided an overview of the sup-
ported process steps—as depicted in Figure 7.2. During the reuse process the tool keeps
track of the tasks currently being performed and guides the engineering team in accomplish-
ing their goals in an optimal order of execution. This behavior is realized at menu level,
while its effects are consolidated through a working progress window, which permanently
highlights the current state of the reuse process and the alternatives to proceed (cf. Figure
7.3, left). The tool is accompanied by a comprehensive help component, which provides an
in-depth description of its methodological background and detailed guidance for a correct
usage of the tool features. A screenshot of the PROMI help facility is depicted in Figure 7.3,
right.

Figure 7.3: PROMI Process Support: Working Progress Window (left) and Help Window
(right)

176

7.1 PROMI

Context Layer

The context layer relies on a suite of methods operationalizing particular steps of the reuse
process. The methods make use of structured metadata capturing reuse-relevant information
about ontologies, as well as about the capabilities of the techniques and tools involved in
specific reuse activities. As derived from the feasibility study, the choice upon a particular
strategy and the results of applying it strongly depend on the context in which the reuse
process is actually being performed: the method applicants, the reuse candidates, as well as
the scope and purpose of the overall ontology engineering project. These dependencies are
made explicit in the architecture of the platform in form of a context model and contextual
dependency rules associated to it.

As already explained in Chapter 6 the context model differentiates among four information
categories:

1. User-related information: in this category the model captures the participants at the
reuse process. The user information is required in order to select and customize a
particular method involved in a reuse task to the level of expertise of its applicant.
Representatives for this category from an implementation point of view are ontology
engineers and domain experts. Conceptually we consider in addition users and pro-
grammers.

2. Task-related information: this information relates to particular steps of the reuse pro-
cess in order to select the appropriate methods. As introduced before, the context layer
contains methods to aid the discovery, the evaluation and the integration of ontologies
and the underlying activities.

3. Environment-related information: this type of information relates to the application
scenario in which the final ontology, which will incorporate the reusable components
at hand, is going to be used. An application scenario is characterized by a minimal set
of information as follows:

• Ontology application system: information about the system the final ontology
will be used in (type of system, industrial sector etc.)

• Ontology task: the task intended to be accomplished by the planned ontology
• Ontology role: the role accomplished by this ontology in the context of this task.

4. Target-related information: information about the ontologies being analyzed during
the reuse process. This information is stored and managed in the information layer.

This context model (Figure 7.4), which has been designed in [166] for the development of
a case-based reasoning system in the medicine domain, is consistent to the broad majority
of research investigations concerning the formal representation and the definition of context
[167]. As aforementioned, the main objective of our work is to show how context issues
affect the success of an ontology reuse endeavor, while the way contextual information is
electronically represented is of secondary importance. Therefore the context ontology com-
mits to an existing proposal in the field, which through its generality and flexibility fits well
to the characteristics of our domain of research.

177

7 Tools Supporting Ontology Reuse

Task

Target

User

ontology
to be reused

reuse
participant

reuse
phase

Environment

application
scenario

Figure 7.4: PROMI Context Model

Provided knowledge about the user involved in a particular task, the context manager an-
alyzes the environment and the target information (available in form of metadata) in order
to select method(s), technique(s) and algorithm(s) adequate to accomplish particular ontol-
ogy reuse tasks. The task processor is responsible for their execution, the generation of the
results and their presentation to the user. Consequently, the PROMI platform is able to pro-
vide methodological and technological support for a wide range of reuse participants, with
or without any experience in ontological engineering. Further on, for the accomplishment of
a particular goal, it takes into consideration solely methods, which are likely to handle the
characteristics of the ontologies to be reused and the target application context successfully.
A description of this selection mechanism for the tasks of ontology evaluation and merging
is provided in Chapters 4 and 6.

Information Layer

The core of the information layer is the metadata model, which captures information about
a particular Web resource, be that an ontology, an ontology fragment or an arbitrary Web
document. This information is likely to enhance reusability, as indicated by the require-
ments analysis and confirmed by our expert-based evaluation (cf. Section 8). The metadata
is represented in a formal and structured way in order to enable the context layer to auto-
matically process it for specific purposes. Metadata and ontologies may be stored in dedi-
cated or general-purpose persistent storage systems, which are accessed by the information
layer, without being a direct part of it. In addition, the information layer includes descrip-
tions of basic services supporting the reuse process, which are located in the context layer.
This information can be expressed in terms of an ontology, similarly to the ontology meta-
data model—such as the one introduced in Section 6.2. However, it can also resort to other
task-specific representations which strongly depend on the way the methods are realized at
implementation level. In the context of the Semantic Web, we might expect these methods to
be available in form of Web Services, whose functionality and characteristics are formalized

178

7.1 PROMI

using (semantic) service-specific description formats [4, 120, 152, 200].2

The information layer comprises modules (or has access to services) for the generation
and management of metadata entries and their matching. The metadata generator OntoMeta
(cf. Section 7.2) applies model-based heuristics in order to automatically derive the values of
specific metadata elements. In doing so, it fundamentally contributes to the usability of the
entire reuse platform, since creating metadata manually is widely recognized as one of the
key obstacles in the real-world dissemination of the Semantic Web. The matching component
includes a basic set of algorithms which allow higher-level methods to compare metadata en-
tries semantically, i.e. using ontology-driven similarity measures. In particular, the semantic
matcher implements the functionality required for the realization of the ontology evaluation
method (cf. Section 6.1), which primarily relies on heuristic and semantic similarities to
assess the application usability of a certain ontology. The semantic ranking is another core
component of the information layer. Its aim is to compute relevance scores for particular
information items such as ontologies, but also matching, merging, integration or evaluation
services—provided the semantic description of their capabilities—on the basis of the similar-
ity values obtained from the semantic matcher.

7.1.2 User Guide

In order to illustrate the way the PROMI platform can be used to enhance ontology reuse
processes, we provide a complete example of its capabilities in terms of the eHealth case
study introduced in Section 3.3. In this scenario, a team of ontology engineers and domain
experts were confronted with the task of building an medical ontology using existing standard
classification systems in the field.

PROMI Ontology Discovery

In order to find potential reuse candidates the engineering team accesses an ontology repos-
itory (such as the Taxonomy Warehouse)3. This repository provides some search facility in
terms of an implicit or explicit metadata model. The criteria which are likely to be useful
during this step are introduced in the ontology reuse methodology. In this case the method-
ology recommends the usage of simple search queries containing the most important con-
cepts which are expected to be covered by the ontology “medicine”, “lung’’, “pathology”,
“anatomy” and synonyms of the term “ontology”. Note that our work addresses the question
of how to find existing ontologies only at process level. PROMI does not provide fully-fledged
ontology discovery support. However, in Chapter 5.3 we introduced applications such as Oys-
ter and Onthology which already use our metadata model in order to operationalize this task.
A collaboration in a similar direction with the operators of the SchemaWeb portal is currently
being finalized.4 Furthermore, the user can refer to the ontology repositories listed in Section
2.2.2.

2This issue is however out of the scope of this thesis.
3http://www.taxonomywarehouse.com last visited in September, 2005
4http://www.schemaweb.info last visited in May, 2006

179

7 Tools Supporting Ontology Reuse

Figure 7.5: PROMI Evaluation Support: Context Specification

PROMI Ontology Evaluation

Once a list of reuse candidates has been established, the engineering team is guided towards
the evaluation of these resources as described in the methodology. The system provides
each of the process participants the task which is foreseen to be accomplished by him in
the adequate terminology. The selection of these tasks and the associated support methods
is performed automatically by triggering matching rules between task, method and ontology
descriptions of the information layer. If no metadata is available for the selected sources,
the metadata extractor can be used to acquire (parts of) this information automatically. This
functionality is provided by the OntoMeta service, which is currently not integrated into the
platform.

Figure 7.5 illustrates the first step of the ontology evaluation method, which requests a
specification of the core contextual aspects of the current scenario. These are situated on the
left side of the window on the top. The right half of the window documents the application
scenarios considered.

Figure 7.6 shows the interfaces generated for domain experts (top) and ontology engineers
(bottom) depending on the context specified by the user in the first step.

For each of the evaluation-relevant ontology criteria the user is requested to choose among
particular values (referring to metadata entries) or to provide free text input. The features are
further weighted using a five point scale. Some of these are depicted in Figure 7.7. Once the
evaluation criteria are selected, the platform detects ontologies which are likely to satisfy the

180

7.1 PROMI

Figure 7.6: PROMI Evaluation Support: Context-sensitive Method Presentation for Domain
Experts (top) and Ontology Engineers (bottom)

181

7 Tools Supporting Ontology Reuse

Figure 7.7: PROMI Evaluation Support: Feature Selection

182

7.1 PROMI

Figure 7.8: PROMI Evaluation Support: Usability Computation and Result Selection

user specification. Figure 7.8 shows the results computed by the PROMI tool in this case and
the corresponding metadata. The heuristics behind this computation was elaborated in the
previous chapter.

PROMI Ontology Merging and Integration

In the third step the selected ontologies need to be customized, which means in this case
translated to a new representation language, and, as they cover overlapping domains, merged
to a single ontology. In order to perform the first task, the context manager acquires informa-
tion about the translation tools and match it against the ontology representation language in
order to detect the most appropriate method/tool to execute the translation.

Once the ontologies have been translated to the common format (cf. Figure 7.9), we need
methods to merge them to a final ontology. Depending on the properties of the two ontologies,
in this case two taxonomies containing concepts in the same natural language, properties, ax-
ioms, and no instance data, the tool decides to suggest a merging method based in hierarchical
structures, string distances or constraints to generate the final ontology. The applicable rules
are displayed in addition to the window in which the user is requested to specify the match-
ing algorithm he will use to compare concept labels and their compounding terms (cf. Figure
7.10).

183

7 Tools Supporting Ontology Reuse

Figure 7.9: PROMI Translation Support

184

7.1 PROMI

Figure 7.10: PROMI Merging Support: Context-based Selection of the Matching Algorithms

The current PROMI implementation includes and actively utilizes a series of linguistic
similarity measures, which are applied incrementally depending on the complexity of the in-
put ontologies. Graph-based matchers are implemented as well, but their integration in the
application logic and the associated user interaction are subject of future development. In the
merging/integration first concepts/classes are compared terminologically. Figure 7.11 shows
the results of this operation for two ontologies modelling core medical terms. Due to the
fact that properties and axioms can not be subject of similar computations in a meaningful
way—the labeling rules do not apply with the same rigor for them in comparison to classes
and instances—the merging of these additional primitives is decided manually by humans (cf.
Figure 7.12). The choice upon the appropriate matching algorithm can be additionally sup-
ported with the help of a diagram displaying the overall distribution of the similarities among
concepts (cf. Figure 7.13). The utilization of graph-based measures will imply a slight mod-
ification of the merging and integration workflow. The process could still be carried out in
an incremental fashion: in a first phase one can compare the involved ontologies using a tax-
onomical matcher, whose results are complemented manually by the user inputs concerning
axioms. A fully-fledged solution for the matcher selection and execution is not subject of
this thesis. In the context of the PROMI framework this issue is approached in more depth in

185

7 Tools Supporting Ontology Reuse

[148].

Figure 7.11: PROMI Merging Support: Concept Similarity Computation

The result of the process is an application ontology which can be stored alternatively as
RDFS or OWL with a user-specified namespace.

7.1.3 Technical Details

The aim of this section is to give a general overview of the core issues of the implementation
of the PROMI framework. This topic is not addressed in detail in the context of this thesis,
as it is described in-depth by the main developers in [38, 126, 189].

External Components

The current release of the PROMI system makes use of several external tools and APIs:

186

7.1 PROMI

Figure 7.12: PROMI Merging Support: Incremental Merging Process

187

7 Tools Supporting Ontology Reuse

Figure 7.13: PROMI Merging Support: Distribution of the Similarity Results

Jena API: is a Java API for Semantic Web applications. It provides a rich suite of methods
to create and manipulate RDF data as well as RDFS and OWL ontologies.5

RDF Validator: is an online tool which carries out syntactic correctness checking as regards
the RDF-XML syntax specification.6

Inference Engines: Pellet and RacerPro are reasoners for RDFS and OWL (Lite and DL).
They can be used to carry out consistency checking and to semantically answer various
queries on ontology or method metadata at both schema and instance level.7 Reason-
ing services are integrated into the PROMI implementation with the help of the DIG
interface which is supported by the Jena API.

JavaNLP: is a Java Library comprising core natural language processing services developed
at the Stanford University.8 The PROMI platform uses the stemming and normalization
features of this library.

SimMetrics: is a library implementing string distance functions. The similarity values are
normalized in order to enhance their alignment.9

Similarity: is a Java implementation of a series of very popular taxonomical similarity mea-
sures for RDFS and OWL ontologies from the Free University of Berlin.10

5http://jena.sourceforge.net last visited in December, 2005
6http://www.w3.org/RDF/Validator/ last visited in May, 2006
7http://www.racer-systems.com/de/index.phtml, http://www.mindswap.org/2003/
pellet/index.shtml last visited in June, 2006

8http://nlp.stanford.edu/javanlp/ last visited in June, 2006
9http://sourceforge.net/projects/simmetrics/ last visited in March, 2006

10http://page.mi.fu-berlin.de/˜grote/swpatho/ last visited in June, 2006

188

7.1 PROMI

JFreeChart: is a free Java chart library which provides easy-to-use means to design and in-
tegrate standard charts into arbitrary applications.11 PROMI needs such functionality
to support the decision of the ontology engineers upon the appropriate means to mea-
sure similarities between ontologies in the context of a merging or integration activity
(cf. Figure 7.13).

JavaHelp: is the standard Java help system that enables developers to incorporate online
help in applets, components, applications, operating systems, and devices. 12 It is used
to generate the documentation of the tool (cf. Figure 7.3).

Packages Overview

Figure 7.14 provides an overview of the most important packages within the Java implemen-
tation of the PROMI platform. In the following we describe their main functionality before
getting into more details of the ontology evaluation and merging components.

1. Package controll: covers the main frame of the platform and the main control
class.

2. Package model: deals with the application logic and is further divided into 5 sub-
packages:

a) Package transformation: is concerned with the classes required to handle
specific input formats for ontologies (RDFS, OWL, XMLS, DTD and DDL).

b) Package matching: deals with matching services at linguistic and taxonomical
level. It is used by both evaluation and merging components and consists of 2
sub-packages:

i. Sub-package stringsimilarity: realizes various methods for com-
puting resemblance between terms. The computation is realized using threads.

ii. Sub-package conceptsimilarity: is used to calculate the similarities
between concept labels of ontologies given a set of basic similarities for their
compounding terms. Again threads are used in order to parallelize these
operations for all ontological sources involved.

c) Package merging: is responsible for aggregating concepts, relations and ax-
ioms to a final ontology based on the results of the concept similarity computa-
tions and of the user input.

d) Package evaluation: implements the metadata-based ontology evaluation
method.

e) Package meta: is concerned with the context-sensitive selection of appropriate
merging methods and the management of the metadata describing services and
information sources these are expected to handle. Its sub-package rules imple-
ments the processing of the contextual dependencies.

3. Package view: contains all GUI classes for PROMI.
11http://www.jfree.org/jfreechart/ last visited in June, 2006
12http://java.sun.com/products/javahelp/ last visited in June, 2006

189

7 Tools Supporting Ontology Reuse

Figure 7.14: Overview of the PROMI packages

190

7.1 PROMI

We now turn to the description of the two main reuse steps, which are supported by
PROMI: ontology evaluation and ontology merging and integration, respectively.

Ontology Evaluation Component

The evaluation component can be functionally divided into (cf. Figure 7.15):

1. Metadata Repository: includes descriptive information about the ontologies, the meta-
data schema and the context model.

2. Semantic Matcher: is responsible for calculating semantic similarities between spe-
cific ontology features.

3. Similarity Repository: persistently stores method-specific similarities between con-
cepts in the metadata ontology (cf. Chapter 6).

4. Semantic Ranking: processes the user-defined queries as described in the previous
chapter and ranks the results according to the set of weights.

Metadata
repository

Jena API

Semantic ranking

Semantic matcher

similarity SimMetrics Ranked list
of usable
ontologies

Similarity
repository

Figure 7.15: High-Level Architecture of the Evaluation Component

The metadata repository currently consists of the metadata schema and the metadata in-
stances, stored separately in two files, which are online available. An alternative persistent
storage system can be easily embedded using the corresponding Jena functionality. The se-
mantic matcher builds upon the two aforementioned external libraries and the heuristic mea-
sures elaborated in the previous chapter, in order to compute the similarities between those
ontology features (represented as ontological primitives in the metadata ontology) which have
been identified as relevant for the ontology evaluation task. The data is stored persistently in
a relational database (here MySQL), because of the resource-intensive nature of the similar-
ity computations, which can not be carried out at run-time without significant performance

191

7 Tools Supporting Ontology Reuse

losses. Once the query vector has been specified and revised on the basis of the method-
internal contextual dependency knowledge, the semantic ranking component uses the results
of the matcher in order to calculate the scores for each of the available ontologies. Alterna-
tively, the user could specify a threshold for the maximal number of hits to be returned. This
is, however, not implemented in PROMI yet, as the number of ontologies covering the same
or related domains, which were available for test purposes and beyond, is still manageable.
Our experiences in the enumerated case studies confirmed this observation.

Packages The ontology evaluation is fundamentally implemented in the package evaluation,
with its two sub-packages:

• Sub-package core: deals with the management of the evaluation criteria/ ontology
features and with the processing of the manually defined similarities.

• Sub-package engine: is concerned with the query execution and results ranking.

New similarity measures on the basis of the proposed metadata model can be easily defined
as a new Metric sub-class in the core package. The context-dependent behavior is realized
generically with the help of a context ontology. Changes at this level can be realized by
revising the latter.

Ontology Merging and Integration Component

The merging/integration component takes as input a list of ontologies (formalized in XML-
Schema, DTDs, DDLs or Semantic Web languages) and assists the user in customizing, merg-
ing and integration them. Accordingly, it can be decomposed into the following modules:

1. Translator: deals with the transformation of the enumerated input languages to an
internal abstract format consisting of concepts, properties and axioms.

2. Matcher selector: aids the ontology reuse participants in selecting the appropriate
matcher services.

3. Matching/merging: detect the commonalities between the source ontologies and inte-
grate them into a target resource.

4. Repositories of ontologies, their metadata and metadata-driven similarity data:
contain the reuse candidates, as well as additional information required to perform
certain reuse activities.

After the application-relevant ontologies have been identified, the reuse process continues
with their transformation to a uniform representation format. In PROMI we implemented a
one-to-many approach to the issue of language heterogeneity: every of the supported input
formats is mapped into a simple ontological language consisting of concepts, properties, ax-
ioms and instances. This intermediary format can be easily transformed to a Semantic Web
language, while avoiding the complexity of powerful formalisms such as OWL, which further
differentiate among a multitude of types of relationships and axioms.

192

7.1 PROMI

Metadata
repository

Jena API

Translator

Matcher
selector

New
ontology

Similarity
repository

Ontology
repository

Matching
Java
NLP

Sim
Metrics

Merging
JFree
Chart

RDF
Validator

Figure 7.16: High-Level Architecture of the Merging and Integration Component

The current release of PROMI supports solely standard input formats for ontological sources:
XML-Schema, DTD, relational databases (expressed using DDL), as well as Semantic Web
languages. We are aware of the fact that this represents a limitation for the usability of the
tool in arbitrary situations, notably in the actual context of the Semantic Web, which is char-
acterized by the availability of high amounts of ontological knowledge in semi-structured and
un-unstructured form. This drawback can be overcome however only partially in an autom-
atized environment. While document-based ontology learning services could definitely be
embedded to the system if available at a feasible quality, the question of how to automatically
create Semantic Web ontologies from arbitrary classification systems can not be answered
rigorously given the heterogeneity of these standards. As demonstrated by our case studies,
each of the existing classifications or taxonomies is available in a proprietary format. Con-
verting from this format, whose semantics is though semi-formal in most of the cases, to more
standardized ontology representation languages typically requires dedicated parsers. This is
the main reason why PROMI does not provide support for this class of problems, while it as-
sumes users to translate their ontologies to one of the widely-used formats before processing
it in the framework of a reuse process.

Further on, the sources need to be integrated into a final application ontology. In order
to optimize this task, the PROMI framework applies contextual dependency rules as those
which have been introduced in the previous chapter in order to select:

• which ontologies should be merged: ontologies covering similar domains (as computed
by the DMOZ-driven similarity measure, cf. Section 6.1) are likely to be merged to a
single model in a meaningful way. The remaining ontologies will be integrated into the
final setting without any attempt to identify commonalities.

193

7 Tools Supporting Ontology Reuse

• how should ontologies be merged: with respect to this issue PROMI currently differ-
entiates between

– ontologies containing labels in the same natural language. These can be mean-
ingfully aligned using natural language processing matchers.

– ontologies which do not contain human-readable labels or which are described us-
ing different natural languages. Under these circumstances only structure-based
matchers can be applied meaningfully.

We do not consider ontologies with instances, as PROMI is targeted at ontology reuse
and not data integration. Such a focus would primarily mean techniques and tools to
merge heterogeneous data repositories instead of their underlying schemas. PROMI
also avoids considering rules regarding ontologies containing axioms, as no match-
ing or merging algorithms taking into account this additional level of complexity are
available at a level of detail which would allow a reliable re-implementation.

The system accesses the metadata entries of the relevant ontologies, which trigger the
generic rules eliminating unappropriate algorithms. Subsequently, PROMI performs the fol-
lowing steps:

• separation of ontological primitives by means of dedicated readers. In this step an
ontology file is parsed, while concepts, instances, properties and axioms are identified.

• the labels denominating concepts (e.g., classes in OWL and RDFS) are prepared for
the linguistic task. For this purpose the tool tries to transform every label (which can
not be by default assumed to be a term listed in a lexicon) in a bag of terms which
can be meaningfully compared. Common naming conventions are used as input for the
completion of this configuration step, which is followed by stemming.

• similarity computation at term level performed using specific algorithms. The current
release supports 12 algorithms, among which we mention Soundex, Hamming, Leven-
stein and QGrams [126].

• similarity computation at concept level followed by the merging of those concepts
which have been accepted by the user. Furthermore, properties and axioms from the
original ontologies can be manually added to the newly created resource.

Packages The merging/integration functionality is covered by the packages
transformation, meta, matching and merging, respectively.

The component can be easily extended in order to support new input types and new element-
based matchers [126]. The integration of schema/structure-based algorithms requires, how-
ever, additional implementation effort, particularly at view level.

To summarize PROMI provides many of the features which have been identified as useful
for the operationalization of the reuse process during our requirements analysis and in the
context of the reuse methodology(cf. Sections 3.5 and 4.5, respectively). The results of
first user tests are very promising and enhance our motivation for further developing the

194

7.2 OntoMeta

framework to improve the efficiency of reuse. The conceptual background is already available
in terms of our methodology and methods and related work in our institute. These issues are
further discussed in relation to the evaluation of our solution and in the discussion of the
planned future work.

7.2 OntoMeta

In this section we provide details on the implementation of a tool for the automatic acquisition
of ontology metadata. Building upon our ideas preliminarily elaborated in Chapter 5, the tool
was conceived in collaboration with students at the Free University of Berlin, which were
mainly responsible for its implementation and testing [38].

7.2.1 Design and Architecture

The primary goal of OntoMeta was to investigate to which extent meta-information about
Web ontologies can be automatically generated. The tool should be easily accessible by on-
tology developers and integrable in metadata-based ontology engineering environments such
as PROMI or ontology repositories such as Onthology. OntoMeta calculates pre-defined syn-
tactic, semantic and pragmatic metadata information given an input in form of an ontology,
and delivers a metadata entry structured according to our metadata schema.

The architecture of OntoMeta is depicted in Figure 7.17. It contains three components
for the acquisition of each of the metadata categories, and uses online services such as those
offered by Google and WordNet in order to gain access to Web knowledge, which can be of
use to derive particular metadata entries as subsequently elaborated.

Figure 7.18 illustrates the start Web site of the tool, in which the user may input the URL
of the ontology he requests the metadata for. Figure 7.19 shows the results of the algorithm,
which can be locally saved as OWL using the button on the bottom of the page.

195

7 Tools Supporting Ontology Reuse

Jena API Google API
WordNet

API

Syntactic
metadata
generator

Semantic
metadata
generator

Pragmatic
metadata
generator

WordNet

Ontology
metadata

Figure 7.17: High-level Architecture of OntoMeta

Figure 7.18: OntoMeta Start Page

196

7.2 OntoMeta

Figure 7.19: OntoMeta Result Page
197

7 Tools Supporting Ontology Reuse

7.2.2 Technical Details

OntoMeta is implemented in Java in two variants: a client which can be installed and lo-
cally executed, and a servlet whose functionality can be exposed online (as illustrated in the
screenshots above). Both accept as input a list of Semantic Web ontologies (i.e. implemented
in RDFS or OWL) and produce an OWL file containing the metadata instances in conformity
with our ontological schema.

External Components

Both implementations use a series of external libraries as follows

Jena API: is a standard Java API for Semantic Web applications. It provides a rich function-
ality to handle RDFS and OWL ontologies.13

RDF Validator: is an online tool which carries out syntactic correctness checking with re-
spect to the RDF-XML syntax specification.14

OWL BBN Validator: is an online tool which checks the syntactic validity of Semantic Web
ontologies with respect to the RDF-XML syntax of the OWL language.15

Inference Engines: Pellet and RacerPro are reasoners for RDFS and OWL (Lite and DL).
They check the consistency of Semantic Web ontologies.16

Google Web API: Google provides a series of Java-based Web Services that allow appli-
cation developers to interface with the Google-relevant Web content. In this thesis we
primarily used two functions of the Google API: the search procedure to systematically
query the Web and to process the obtained results, and the Google directory service.17

JWNL API: JWNL is a Java API for accessing WordNet-style relational dictionaries for the
English language. Besides term look-up, it provides methods for inter-terms relation-
ship discovery and morphological processing.18

Class Overview

Figure 7.20 gives an overview of the most important classes within the implementation of the
OntoMeta, whose functionality will be briefly explained in the following:

1. Classes SyntMeta, SemantMeta and PragMeta: define methods for the acqui-
sition of the syntactic, semantic and pragmatic metadata. Each metadata element is
handled by a Java method. For the syntactic validity OntoMeta uses the BBN OWL

13http://jena.sourceforge.net last visited in December, 2005
14http://www.w3.org/RDF/Validator/ last visited in May, 2006
15http://owl.bbn.com/validator/ last visited in December, 2005
16http://www.racer-systems.com/de/index.phtml, http://www.mindswap.org/2003/

pellet/index.shtml last visited in June, 2006
17http://code.google.com/apis.html last visited in June, 2006
18http://sourceforge.net/projects/jwordnet last visited in June, 2006

198

7.2 OntoMeta

Validator API, while the consistency information is delivered by the reasoners Racer-
Pro and Pellet accessed through the DIG interface within the Jena API. The semantic
metadata generation makes use of the Google directory service and of WordNet knowl-
edge accessed using the JWNL library.

2. Class GoogleStuff: contains methods for performing queries using Google (as
common search engine and as directory service) and for processing the delivered re-
sults.

3. Class JenaLib: extends some specific functions of Jena API in order to maintain a
clear structure of the implementation.

4. Class Main: for a set of ontologies, specified by URIs or local paths, this class triggers
the generation of the metadata information and stores the results as individuals of our
ontology metadata model.

In the remaining of this section we provide some details on the implementation of the most
important metadata elements covered by our schema.

Syntactic Metadata Generator Component

The category of syntactic metadata contains those ontology features which are related to the
implementation of the ontology, (as opposed to its conceptualization). The most representa-
tive syntactic metadata elements are thus quantitative nature, while the information captured
by them is strongly implementation dependent. In its current release OntoMeta covers the
following features:19

• number of classes, instances, properties, axioms, imported ontologies and inheritance
levels

• language, syntax, as well as ratio of used syntax

• ratio of invalid statements.

If the model of an ontology is defined as pure OWL, the number of particular ontolog-
ical primitives is delivered automatically by methods of the Jena API. We consider solely
asserted properties and axioms. Inferred items could also be added to the system, however,
the corresponding figures are highly reasoner-dependent. RDF and RDFS data can be han-
dled similarly, if in addition we apply a reasoning step which maps all the rdfs:Classes
or rdf:classes to owl:Classes. The depth of the inheritance tree is defined as the
maximal generalization/specialization path length in an ontology. It is calculated recursively
starting from the second level classes—since the class owl:Thing is the root class of each
ontology—to the instances [38]. Individuals are considered in this case as there is no differ-
entiation between them and classes at RDF level. As aforementioned the syntactic validation
is performed using an external component. The ratio of the correct statements is the division
of the number of errors returns from a validator (e.g., BBNs OWL validator) and the number
19The exact meaning of these features has been discussed in Section 5.3.

199

7 Tools Supporting Ontology Reuse

Figure 7.20: Overview of the OntoMeta Classes

200

7.2 OntoMeta

of statements of the model as computed by Jena. The result for the ratio of correct statements
is a value of type double. For the acquisition of language and syntax information we can also
rely on dedicated Jena methods. Finally, the ratio of used syntax is implemented by checking
whether a particular ontology model contains particular syntactic constructs and counting the
positive hits.

Semantic Metadata Generator Component

Metadata in this category is related to the meaning of the content of the ontology as compre-
hended and interpreted by humans or by a reasoner. This includes on the one hand the domain
which is modelled by means of the ontology, but also the formal semantics of the language
which is used for the conceptualization. OntoMeta contains heuristics for the acquisition of
the following semantics-driven features:

• readability and unambiguity of the labels used to denominate ontological primitives

• number of comments and definitions

• domain and view upon the modelled domain

• type of ontology

• natural language of the labels.

Label readability and unambiguity An ontology is considered to be readable, if and only
if each concept name defined in this ontology has a meaning as stated by a thesaurus or a lex-
icon. An ontology is unambiguous, if and only if this ontology is readable and each concept
name defined in this ontology has exact only one meaning. In its current implementation On-
toMeta uses the WordNet thesaurus (or its relational variant accessed using the JWNL API)
to derive the value of these metadata elements. WordNet is a comprehensive thesaurus of the
English language, which has become a de facto standard in many natural processing tasks.
Nevertheless, as the issue of multilinguality for WordNet is still subject of research and devel-
opment in the computer linguistics community, the readability and unambiguity processing
is currently restricted to English-labeled resources.

The readability checking algorithm firstly transforms every label in an ontology in a set of
normalized terms taking into account conventional naming conventions. Further on, it looks-
up in WordNet whether these terms are contained in the thesaurus, i.e. whether they have a
meaning and can thus be interpreted by humans. If every of the compounding terms satisfies
this condition, the ontology label is considered “readable”. For example, the meaning of a
concept name such as “UnitedStatesRegion” can be understood by humans, while a concept
such as “XYZTest” will fail this test.

A pre-condition to establish whether an ontology label has an unambiguous meaning is its
readability. Once this holds true, OntoMeta applies ideas elaborated in [108], which proposed
the usage of semantic similarities for sense disambiguation. In this case these are provided
by the length of the paths between synsets in WordNet [147].

201

7 Tools Supporting Ontology Reuse

Ontology type Ontologies can be differentiated by the generality of the modelled domain
into upper-level, core, domain, and application ontologies (cf. Chapter 5.2). While the bound-
aries between core and domain ontologies, on the one hand, and domain and application
ontologies, on the other hand, are known to be blurred, an automatic classification of an on-
tology in upper-level, core and domain can be reliably carried out if we consider the following
distinctive features:

• Upper-level ontologies: Upper-level ontologies have the characteristic that they use
a notably abstract vocabulary. For example terms such as “object”, “unit”, “relation”,
“abstract”, “quantity”, “class”, “attribute”, “process”, “thing” are typical for this cat-
egory. The domain modelled by such ontologies is clearly abstract, thus not being
classifiable (using the heuristics explained below) to a specific DMOZ category.

• Core ontologies: The number of concept names defined in core ontology is lower than
that of domain and application ontologies. Further on, the domain of interest of a core
ontology is usually situated at the root or on the first level of the DMOZ directory (e.g.,
“Science”, “Medicine”, “Computers”).

• Domain ontologies: The size of these ontologies is highly variable, while their domain
of interest is more specific than that of a core ontology. OntoMeta considers for this
purpose the levels of the DMOZ classification lower than 2.

A second classification of ontologies concentrates on the complexity of their internal struc-
ture, which partially correlates with their degree of formality. According to the way this clas-
sification is interpreted in our ontology metadata schema, OntoMeta is able to distinguish be-
tween classifications, vocabularies, and axiomatized ontologies. Vocabularies contain classes
or concepts. Classifications or taxonomies additionally include a type of property (e.g., spe-
cialization/generalization, but also part-of or other types of relationships) by which concepts
are ordered into a hierarchical structure. Axiomatized ontologies usually cover concepts, var-
ious properties and logical axioms or restrictions. The algorithm checks whether these types
of constructs are supported by the ontology and returns the most complex type of ontology
satisfying the tests.

Ontology domain The domain which is modelled by a specific ontology is defined in our
ontology metadata schema by a combination of two inter-related topics in the DMOZ direc-
tory. While the first topic describes what is commonly understood as the “domain of interest”
of an ontology, the contextual approach to ontology reuse described in this thesis employs
an additional content descriptor for this purpose, the view upon the modelled domain. As
explained before, this is intended to decrease the ambiguity with respect to the exact contents
of an ontology, as each domain (such as, for instance, “medicine”) can be modelled from a
variety of perspectives (“science”, “business”, “insurances” etc.). Technically the view of a
domain is defined as an element of the set of DMOZ super-topics of a given topic.

As a human, if we are expected to decide upon the domain described by an ontology, we
typically associate the covered concepts (interpreted through their human-readable labels) to
a broader category subsuming them. In addition, this procedure naturally eliminates potential
naming ambiguities. OntoMeta simulates this line of reasoning in order to determine the

202

7.2 OntoMeta

DMOZ topic which optimally characterizes the domain of interest of an ontology and the
associated view of the ontology developers on this domain. In a first step the algorithm
calculates a weighed vocabulary of the ontology, by splitting concept names according to pre-
defined naming conventions, and weighing the resulting normalized terms by their frequency.
Every term is used as a query for the Google directory service. The algorithm monitors the
categories returned by Google for each query and aggregates the results taking into account
the weights of each search term.20

Natural language of an ontology In absence of a Java-based technology for accessing
available natural language detector tools, OntoMeta uses a Google-supported heuristics for
determining the language used to denominate labels and to formulate comments and defini-
tions within an ontology. It exploits the inherent language dependency of many of the Internet
top-level domains (such as those related to a particular country or to types of organizations).
After a preliminary step in which it computes a weighed vocabulary of the ontology—just
as for the ontology domain feature as previously explained—the algorithm queries the Web
using the terms within the vocabulary and counts the top-level domains taking into account
the frequency of occurrence of each term. Then it maps each top-level domain to a natural
language, thus determining the natural language used in the analyzed ontology. National do-
mains are mapped to the official language of the country, while general ones (.edu, .org, .com
etc.) are ordered for historical reasons to English.

Pragmatic Metadata Generator Component

Pragmatic metadata is used to describe development and deployment aspects of an ontology.
The metadata schema foresees the following elements in this category:

• creation data

• authors and contributors

• versioning information

• engineering method

• engineering tool

• documentation

• application scenarios for which the ontology was developer for or already used in.

By contrast to the previous categories, this information is seldom recorded in any way in
the ontology itself. Hence, and due to its unstructured nature, it can not be generated au-
tomatically (or even manually) in a reliable way. The automatic acquisition of pragmatic
metadata fundamentally depends on the availability of monitoring information produced dur-
ing the creation or usage of the ontology by the tools applied as technological support in these

20Refer to [38] for a more detailed description of the heuristics by which one can select the most representative
DMOZ topics to characterize the two metadata entries.

203

7 Tools Supporting Ontology Reuse

activities. This requirement is not fulfilled by the majority of ontology engineering tools to
a satisfactory extent. Available metadata information is restricted to the creation date, the
author and the tool processing the ontology at most.21

The creation date is usually recorded in an ontology using the Dublin Core metadata ele-
ment dc:date, XML comments such as <!-- Created: Thu Oct 10 15:45:43 2002 -->

or rdfs:comments. Versioning information, though scarcely available, is formulated in
terms of constructs such as owl:priorVersion and owl:versionInfo, as well as
XML comments. Provenance information can be found as the value of the dc:creator
property, while tools are mainly present as comments e.g.,
<!-- Created with Protege (OWL Plugin 1.1 beta, Build 129) --> . These
cases are handled by OntoMeta.

In summary, OntoMeta provides a suite of heuristics to acquire many of the most important
ontology features captured by our ontology reuse metadata schema. While many important
pragmatic metadata can not be generated without human intervention, considerable parts of
the remaining metadata elements proved to be reliably extracted in an automatic manner. The
results of the evaluation of the enumerated algorithms are presented in the next chapter.

7.3 Summary

Chapter 3: Feasibility study

Chapter 4: Methodology

Chapter 5:

Metadata

Model

Chapter 6:
Metadata-

based methods

Chapter 7: Tools

Chapter 9: Conclusions and Perspectives

Chapter 1: Introduction
Chapter 2: Ontologies and

Ontology Engineering

Chapter 8:

Evaluation

This chapter introduced several tools which aim to
support the systematic operation of ontology reuse
processes. We first gave an overview of the PROMI
platform. The tool, realized in collaboration with
members of the working group Network Information
Systems at our university, prototypically implements
many of the core ideas elaborated in this thesis. It
provides methodological and technological support
for two of the three fundamental reuse process steps:
ontology evaluation and merging and integration, re-
spectively. We then addressed the issue of metadata
creation and management, presenting OntoMeta, a
tool which automatically acquires reuse-relevant in-
formation about Web ontologies. The way these these
tools have been tested and the results of this endeavor
are discussed in the next chapter, which is dedicated
to the evaluation of our solution.

21In a study of over 100 ontologies, approximatively 20% contained information on the enumerated topics.

204

