
5 Ontology Reuse Metadata Model

Chapter 3: Feasibility study

Chapter 4: Methodology

Chapter 5: 

Metadata 

Model

Chapter 6: 
Metadata-

based methods

Chapter 7: Tools

Chapter 9: Conclusions and Perspectives

Chapter 1: Introduction
Chapter 2: Ontologies and 

Ontology Engineering

Chapter 8: 

Evaluation

In this chapter we concentrate on the description of
the conceptual model used to represent contextual in-
formation about Web ontologies and about the pro-
cess of reusing them in new application scenarios.
Section 5.1 describes the methodology we applied to
create the model. Section 5.2 presents its main com-
ponents from a conceptual and an implementation
point of view. The second part of the chapter is ded-
icated to the design of methods enabling the deploy-
ment of the proposed metadata model within various
activities of an ontology reuse process. Section 5.3
briefly approaches how this reuse-related information
can be created and managed automatically and man-
ually. Some of these ideas are prototypically imple-
mented within the PROMI framework (Chapter 7). We
conclude with a short summarization of the contents
of the chapter in Section 5.4.
References: This chapter is based on the publications
[94, 168, 170].

5.1 Model Engineering

In order to ensure a rich, but formal representation of the ambiguous semantics of the ontol-
ogy metadata information and to enable the integration and exchange of contextual behavior
within and across Semantic Web applications we represented this information in form of a
Semantic Web ontology.

The ontology was developed in accordance with established ontology engineering method-
ologies [80], while the empirical findings acquired during the feasibility study (cf. Chapter
3) were the main input for the elaboration of the competency questions underlying the con-
ceptual model.

Building an ontology is realized according to a pre-defined workflow (which is similar to
that depicted in Figure 2.2 in Chapter 2). A team consisting of experts in the domain of
interest and ontology engineers come together to design, implement and evaluate an ontol-
ogy. After specifying the requirements and designing the conceptual model, this model is
implemented in a specific representation language fitting the application requirements and
the expressivity constraints induced by the conceptualization. The preliminary ontology is
evaluated against the specified requirements and evolves in conformity with the needs of its

97



5 Ontology Reuse Metadata Model

users. Optionally, the ontology might be instantiated/populated, which means that application
data is introduced to the ontology in form of instances. We describe each of these process
step for the particular case of developing an ontology to capture reuse-relevant information
about Semantic Web ontologies (i.e. a meta-ontology).1

5.1.1 Requirements Analysis

In this step we elaborated an inventory of requirements for the metadata model as a result of a
systematic survey of the state of the art in the area of ontology reuse with the purpose to iden-
tify the real-world needs of the ontology engineering community with respect to a descriptive
metadata format for ontologies. Further on, the domain analysis phase was complemented by
a comparative study of existing (ontology-independent) metadata models and of tools such
as ontology repositories and libraries making use of alike information (cf. Sections 1.4.2 and
2.2.2). A third source of information was the requirements specification associated with our
ontology reuse methodology (cf. Chapter 4.5).

The domain analysis phase consisted of the following activities:

1. Analysis of the domain to be modelled: the meta-ontology should allow a general-
purpose and in the same time comprehensive description of Semantic Web ontologies.
It should notably cover information which is required as input in the activities recorded
by our ontology reuse methodology:

a) Ontology discovery: in this step the engineering team uses core metadata infor-
mation related to the domain of the ontology, its availability or its creation date.

b) Ontology evaluation: the evaluation of the content makes use of information re-
lated to the domain, the main concepts modelled within an ontology or the num-
ber of ontological primitives. Further on, the technical evaluation benefits from
the availability of information related to the size, the structure and the develop-
ment of the ontology. The knowledge representation evaluation concentrates on
the language in which the ontology is formalized and its semantics. The appli-
cation evaluation relates to more pragmatic aspects such as the settings in which
the ontology was deployed before or the scope it was originally built for. Finally,
the availability dimension is interested in information about the costs, the licence
policies, the development status and the maintenance of the ontology.

c) Ontology merging and integration: this technological step foresees the usage
of diverse syntactic and semantic information about ontologies to optimize the se-
lection of appropriate tools and methods. Graph-oriented metrics such as the total
size of the ontology, the number of classes, properties, axioms and instances are
correlated with the performance and scalability of the merging process. Further
on, some tools are explicitly targeted at a restricted set of ontological primitives
or at a particular input language.

2. Identification of knowledge sources: as knowledge sources relevant for the realiza-
tion of the ontology we identified previous context and metadata models described in

1The evaluation step is briefly mentioned in this chapter for the sake of completeness. It will be thoroughly
addressed in Chapter 8.

98



5.1 Model Engineering

various literature studies (cf. Section 1.4). The Dublin Core metadata can be utilized
for the description of facts which are not ontology-specific, such as the name of the on-
tology document or authorship information.2 In the same time the FOAF model could
form the basis for the description of persons and organizations involved in ontology
engineering tasks.3 A general-purpose taxonomy of topics such as the Open Directory
can be re-used to provide a detailed, and in the same standardized inventory of ontology
domains and their modeler’s views. For the elaboration of a taxonomy of scopes and
purposes and for the classification of typical ontology based applications we used avail-
able studies in the literature [115, 215], as well as the application scenarios accounted
by our methodology. Classifications such as the North American Industry Classifica-
tion System NAICS4 or software taxonomies like the TROVE Software Map5 might be
useful if a more detailed description of ontology applications in terms of economical
areas and functionality is required.

3. Specification of domain and usability requirements: The prospected model should
capture ontology-related information which has been specified during the requirements
analysis operated in relation to our methodology (cf. Section 4.5). Beyond this context,
our focus was on the wide scale usability of the outcomes. This requirement states for
the necessity of building a metadata model which allows proprietary extensions and
refinements for particular application scenarios. From a content perspective, usability
can be maximized by taking into account multiple metadata types, which correspond
to specific viewpoints on the ontological resources, and are applied in various applica-
tion tasks. Despite the broad understanding of the metadata concept and the use cases
associated to each definition, several key aspects of metadata information are already
established across computer science disciplines [153]:

Structural metadata relates to statistical measures on the (graph) structure underly-
ing an ontology.

Descriptive metadata relates to the domain modelled in the ontology in form of key-
words, topic classifications, textual descriptions of the ontology contents etc.

Administrative metadata provides information to help managing ontologies, such as
when and how it was created, rights management, file format and other technical
information.

Complementary to this metadata-specific classification, the features resulting from the
cases study analysis as influencing the reusability of current Semantic Web ontologies
can be classified from a content-oriented perspective in syntactic, semantic and prag-
matic as follows [168, 170]:

Syntactic features offer quantitative and qualitative information about the external
form/syntax of the ontology and its underlying (graph) topology [39, 127]. Ex-
amples of syntactic features include the number of concepts and properties for

2http://dublincore.org/ last visited in December, 2005
3http://xmlns.com/foaf/0.1/ last visited in May, 2006
4www.census.gov/epcd/www/naics.html last visited in September, 2005
5http://sf.hti.bfh.ch/softwaremap/trove_list.php last visited in May, 2006

99



5 Ontology Reuse Metadata Model

each class, the depth of an inheritance tree, the number of incoming properties,
the number of concept instances, the average path length, the number of con-
nected components. Since ontologies are published in an open network like the
Semantic Web, it is also important to consider the links a particular ontology
has to other networked information sources [155]. Finally, there is qualitative,
representation language-dependent information like the representation language
itself, the number and the type of syntax constructs used and syntactic correctness
(validity).

Semantic features are related to the formal semantics of the representation language
and the meaning of the ontology content:
• consistency (i.e. as measured by a reasoner),
• correctness (i.e. whether the asserted information is true as measured by

human judgement),
• readability (i.e. the non-ambiguous interpretation of the meaning of the con-

cept names with respect to a lexicon, the usage of human-readable concept
names)

• level of formality (e.g., highly informal, semi-informal, semi-formal, rigor-
ously formal as classified by [223]).

• type of model regarding the generality of the ontological content or the level
of formality of the ontology.

• ontology domain (i.e. the domain modelled by the ontology, e.g., biology)
• view upon the modelled domain (i.e. medicine from the point of view of

health insurances vs. medicine from an academic perspective)
• ontology representation paradigm (i.e. the class of representation languages

with respect to expressivity e.g., a specific Description Logic)
• ontology representation language (i.e. the language in which an ontology is

implemented)
• ontology natural language (i.e. the natural language used in denominating

ontological primitives and for articulating comments and definitions e.g.,
Italian)

Pragmatic features are useful for managing or deploying the ontology. They refer to
information about the history of the ontology, for example when, by whom and to
which purpose it was developed, whether multiple versions are available or about
the engineering process the ontology originally resulted from. The latter topic is
relevant for ontology engineers intending to (partially) re-use the ontology within
an information system: the original engineering methodology, tools used during
the development process and the input information sources. As input information
sources one can mention extern ontologies which are, partially or in a modified
form, included to the current ontology. Another example is a domain-relevant
document corpus used by ontology learning programs to generate the ontology.

The two classifications are complementary. The first one highlights the metadata char-
acter of the proposed model, while the semiotic classification accounts for the particu-
lar nature of the described objects i.e. Semantic Web ontologies which are intended to
behave as meaning mediators between interacting agents.

100



5.1 Model Engineering

5.1.2 Conceptualization

On the basis of the aforementioned analysis we designed the core structure of the metadata
model in terms of classes and properties/attributes of these classes. Starting from the main
class Ontology, the majority of its syntactic properties are conceptualized as attributes
pointing to numerical values, while the remaining categories are modelled by means of aux-
iliary classes and pre-defined instances. Different types of ontologies as differentiated in var-
ious classifications in the ontology engineering literature (see for example the one in [138])
are introduced as sub-classes of the class Ontology, while their particularities are defined
explicitly by means of property constraints.

The list of features capturing reuse-relevant information about Semantic Web ontologies
can be ontologically conceptualized in at least two different ways. Following the tradition of
metadata models, these features can be modelled as attribute-value pairs: the attributes are
labeled by the names of the features and reference to numerical, boolean or string values:

• Numerical values: capture syntactic features of Semantic Web ontologies (e.g., the
number of classes)

• Boolean values: can be used to capture qualitative syntactic and semantic features
(e.g., the syntactic validity or the semantic consistency)

• String values: can be used to represent information about the remaining dimensions of
the model (e.g., the formality level, the generality of the domain, the type of the ontol-
ogy). In order to increase interoperability the usage of the values might be controlled
by means of pre-defined vocabularies for each of the ontology features represented in
this way.

However, the predominance of string-based metadata representation would contradict with
the initial decision of modelling this type of information in ontological form, as the se-
mantics of the corresponding concepts (i.e. the features of the described ontologies) is
represented implicitly in the model and can be deduced only by humans interpreting the
labels of the attributes and their values. By contrast, the usage of classes and instances
for capturing ontology-related information provides the fundamental advantage of machine-
understandability. The meaning of the metadata is represented explicitly in the model, which
can be therefore used to compare and exchange ontologies with reduced semantic loss. As a
consequence, the majority of ontological features introduced above were modelled as classes
in the meta-ontology, while some of them were associated to a (closed) set of pre-defined
instances.

Further on, every metadata entity was labeled in accordance to a pre-defined naming
schema and carefully documented.

In order to increase the usability of the model with respect to its extendability we assigned
the metadata entities to three usage categories (in the style of XML Schema):

• Required: These metadata facts are mandatory. Missing elements lead to incomplete
metadata descriptions of ontologies and are handled accordingly by metadata manage-
ment tools.

101



5 Ontology Reuse Metadata Model

• Optional: The specification of optional metadata elements, though not mandatory,
increases the reusability of the corresponding ontology.

• Extensional: This class of metadata elements is not represented in detail in the core
model, but can be further elaborated in extension modules.

This distinction was only partially taken into consideration at conceptual level and is ex-
pected to be taken into account by metadata management tools in order to ensure the acqui-
sition of a minimal set of metadata entries for Semantic Web ontologies. Whether a given
metadata entry is mandatory or optional is explicitly represented by means of constraints on
the corresponding ontological classes or properties.

5.1.3 Implementation

Due to the high accessibility and interoperability requirements, as well as the nature of the
metadata—intended to describe Semantic Web ontologies—the conceptual model designed
in the previous step was implemented in the OWL language. An implementation as XML-
Schema or DTD was estimated to restrict the functionality of the ontology management tools
using the metadata information (mainly in terms of retrieval capabilities) and to impede meta-
data exchange at semantic level. Further on, a language such as RDFS does not provide a
means to distinguish between required and optional metadata properties. The implementa-
tion was performed manually by means of a common ontology editor.

Implementing the meta-ontology by means of the OWL language induced problematic
modelling decision with respect to the separation/distinction between classes and instances.
Due to limitations of OWL DL and to the character of the domain to be modelled (i.e. meta-
data on ontologies) the implementation is required to differentiate between two class-instance
levels:

• the meta level which describes ontologies and their features. At this level the ma-
jority of the metadata entities can be interpreted as instances of a particular class.
For example, when modelling ontology tasks, one can distinguish between the class
OntologyTask and one of its instances (ontology-driven) SemanticMatching.

• the data level which describes concrete ontologies in terms of the schema. At this
level, one creates an instance of the class Ontology and specifies the values of its
slots, which are (at least in OWL DL) instances.

This distinction has proven to be non-trivial to follow within the implementation process,
as some of the class instance separations were not intuitive. Further on, the lack of means to
constrain datatype properties in OWL DL should be compensated by type checking routines
at metadata management tool level.

5.1.4 Evaluation

The metadata model was evaluated by conducting structured interviews with a group of six
experts from industry and academia. The evaluation framework complied to [79], who pro-
posed a set of four general-purpose criteria for estimating the quality of ontological struc-
tures: consistency, completeness, conciseness and extendability. We added a fifth dimension,

102



5.2 Metadata Ontology

readability, accounting for the usage of intuitive labels to denominate metadata entities. We
provide more details on the evaluation procedure, its outcomes and implications in Chapter
8.

5.1.5 Evolution

The real added value of the proposed metadata vocabulary is fundamentally determined by
the representativeness of its content and its dissemination across the Semantic Web commu-
nity. This aspect is addressed in our work in the context of the OMV (Ontology Metadata
Vocabulary) project.

Within OMV the participant institutions initiated DEMO (Design Environment for Metadata
about Ontologies), whose main objective is the provision of an organizational and method-
ological setting for the evolution of the metadata ontology towards standardization [94]. For
the realization of this goal DEMO takes advantage of the results already available in the
ontology engineering community w.r.t collaboratively building ontologies in distributed en-
vironments. Based on the long-standing tradition of argumentation and conflict mediation
research in knowledge management, agent-based computing or linguistics, approaches such
as [26, 116, 181] provide a deep analysis of the challenges of such engineering settings, and
means to operationalize it. For the collaborative refinement of the current release of the meta-
data ontology, the OMV consortium decided to apply the DILIGENT methodology [181],
because, compared to alternative approaches, it provides a more fine-grained description of
the underlying process model, whose validity has been tested in several case studies. The
tools supporting the evolution activity are provided by the OntoWare platform.6

5.2 Metadata Ontology

In the following we present the core conceptual model and its realization in OWL in detail.
For each of the main classes we give an overview of its properties, sub-classes and instances.
We further exemplify the cases in which the mapping from the conceptual model to OWL
(DL) was not straight forward. The implementation is available at http://swpatho.
ag-nbi.de/context/meta.owl.

The first 3 levels of the is-a hierarchy underlying the metadata model contains the following
classes:

• owl:Thing

– wikipedia:Application

∗ OntologyApplication

– dmoz:Topic

– FormalityLevel

– naics:IndustrialSector

– MethodsMethodologiesTools

∗ EngineeringMethodology

6http://omv.ontoware.org last visited in May, 2006

103



5 Ontology Reuse Metadata Model

∗ Method
· ConsistencyCheckingMethod
· OntologyLearningMethod
· OntologyMergingMethod
· SyntacticalValidationMethod
· KnowledgeRepresentationTranslationMethod
· NaturalLanguageTranslationMethod

∗ Tool
· OntologyDevelopmentTool
· ReasoningTool
· ValidationTool

– OntologyType

– Person

– RepresentationLanguage

– RepresentationParadigm

∗ DescriptionLogics
∗ FrameLogics

– Role

∗ PersonRole
· DomainExpertRole
· OntologyEngineerRole
· OntologyUserRole

∗ OntologyRole
· VocabularyRole
· IndexRole
· ModelRole
· FilterRole

– SemanticWebResource

∗ GroupOfOntologicalPrimitives
· ABox
· TBox

∗ OntologicalPrimitive
· Concept
· Instance
· Property
· Relation
· Restriction

∗ Ontology
· Catalog
· Classification
· Glossary
· SemanticWebOntology
· Taxonomy
· Thesaurus
· ControlledVocabulary

∗ WebDocument

– Task

∗ OntologyDevelopment
∗ OntologyLearning
∗ OntologyMerging
∗ OntologyTask

· AnnotationTask
· ConfigurationTask

104



5.2 Metadata Ontology

· FilteringTask
· IndexingTask
· IntegrationTask
· MatchingTask
· MediationTask
· PersonalizationTask
· QueryFormulationTask
· QueryRewritingTask
· SearchTask

The implementation is divided into four modules, with the central module meta importing
the remaining ones:

• meta: the core module of the ontology comprising the metadata entries.

• wikipedia: this module contains a classification of software applications as pro-
vided by the English Wikipedia in May, 2006. The classification does not claim for
completeness or correctness, its main goal being to define a controlled framework in
which these kind of items are described and to which metadata entries can uniformly
refer.

• dmoz: the Open Directory topic hierarchy modelled as an OWL ontology. This is
used for specifying the domain of the ontology and the view of the modelers upon this
domain in a controlled manner.

• naics: self-developed OWL version of the NAICS standard on industrial sectors,
which is used to describe application scenarios ontologies might be employed in.

In the following we describe the scope and the properties associated with each class. Every
class is summarized using the subsequent documentation pattern (Figure 5.1).7

On the top the pattern we capture information about class at hand and its position in the
specialization/generalization hierarchy. If no instances or sub-classes are available, the cor-
responding entries are missing. Per default the super-class of each domain-specific class is
defined in OWL to be owl:Thing. The second half of the pattern is concerned with the
datatype and object properties defined at the class. These are described in a 5-column table
as follows:

• property name: the local name of a datatype or object property.

• type: the type of range defined. As per the syntax of the OWL language, object
properties can be ranged at instances or classes. In the first case the values of a property
are located at the set of instances of a given class. In the second class the value of the
property is the class itself. The latter is not allowed in OWL DL, which differentiates
between classes and instances. Datatype properties can be valued at common data
types, as those specified by XML Schema. The example above includes strings, floats
or integers, but other types are allowed as well.

7The documentation has been generated using the Protégé ontology engineering environment. For a given
ontology it is possible to generate a class-centered Javadoc-style documentation which comprises basic in-
formation about the position of the class in the hierarchy and its main properties and their features. Refer to
http://protege.stanford.edu last visited in August, 2006.

105



5 Ontology Reuse Metadata Model

Figure 5.1: Documentation Pattern for Ontology Classes

• allowed classes/values: in the column one specifies the concrete range class
of an object property, no matter what the type of range is (i.e. class or instance).

• cardinality: the cardinality restrictions as allowed in OWL DL. The decision upon
a particular restriction is reflected by the quality of a metadata entry of being “required”
or “optional”.

• default: default values for datatype or object properties.

A comprehensive example for the usage of the meta-ontology is provided in Appendix A.

5.2.1 Class SemanticWebResource

SemanticWebResource is the class representing all types of resources available on the
Semantic Web, such as ontologies of various kinds, but also Web documents or fragments
of ontologies. Ontologies and their parts (e.g., single ontological primitives and groups of
primitives) are characterized by a set of features which are modelled by the remaining classes
of the hierarchy. The associated properties are listed in Figure 5.2 and defined as follows:

• hasName: an informal name under which the resource is known.

• hasURI: the identifier of this Web resource.

106



5.2 Metadata Ontology

Figure 5.2: Overview of the Class SemanticWebResource

• hasDocumentation: a link to additional Semantic Web resources describing the
actual resource.

• hasPart: generic property capturing information about the structure (as opposed to
content) of the Semantic Web resource. Parts could be for instance sections of a Web
document, or sub-graphs of a Semantic Web ontology.

• isCreatedUsingTool: the software used to generate the Semantic Web resource
(e.g., text editors, ontology editors, translators etc.)

107



5 Ontology Reuse Metadata Model

• isCreatedBy: authoring information. Authors are defined as roles referring to per-
sons or organizations.

• hasCreationDate: the date when the resource has been created.

• isPreviousVersionOf: versioning information. The distinction between individ-
ual versions is not further specified and should be clarified at application level.

• hasVersionNumber: the number of the actual version of the resource, as specified
by its authors.

• hasStatus: a string denoting the status of development of the current release of the
resource.

• usesSource: external sources used as input for the generation of the Semantic Web
resource at hand. For example a Web service might use an ontology to describe its
contents, while an ontology might use various text files to extract domain-relevant on-
tological primitives.

• isCompatibleWith: those sources the ontology officially commits to. This ap-
plies in particular for standardized inputs. For example a business ontology might be
compliant with the UNSPSC product classification.

• describesDomain: the topic of a Semantic Web resource in terms of a DMOZ
category (see below).

• usedInApplication: instances of application systems using the Semantic Web
resource for specific purposes. In case of ontologies this is further detailed within the
dedicated class Ontology.

• hasNaturalLanguage: if the resource covers human-readable content, the natural
language used for this purpose.

Except the describesDomain property referring to the subject addressed by a resource,
the remaining properties capture pragmatic features of Semantic Web resources, which can
be easily mapped to general-purpose metadata standards such as Dublin Core.

5.2.2 Class Ontology

Ontology is the class representing various types of ontologies currently available on the
Web. Accounting for the ambiguous nature of the ontology concept the class unifies the
various perspectives encountered in the ontology engineering literature of the last decades
when defining this concept (see Chapter 2 for a discussion of this issue).

The subsequent datatype and object properties are defined for the class Ontology:

• numberOf<*>: this group of single-valued datatype properties capture graph-related
metrics. The meaning of terms such as “class”, “instance” or “property” is defined
through the OWL language.

108



5.2 Metadata Ontology

Figure 5.3: Overview of the Class Ontology

109



5 Ontology Reuse Metadata Model

• describesDomainFromView: this property complements the more generic
describesDomain property defined at a higher level in the hierarchy with addi-
tional contextual information about the perspective of the modeler upon the topic of
the ontology. For example, if the declared domain of an ontology is “cars” one can
imagine different models covering different concepts for views such as “insurances”,
“supply industry” or “car drivers”.

• hasReadable/AmbiguousLabels these dichotomous properties have the value 1
in case the natural language denominators of ontological primitives are human-readable
(as stated by a lexicon, cf. Section 5.3) or have an unique meaning, respectively.

• ratioOfUsedSyntax: is a float value indicating how many syntactic constructs
have been used in the implementation.

• isImplementedUsingLanguage: the language used for representing the knowl-
edge, independently on any level of machine-understandable formality.

• isCreatedUsingMethod/Methodology: accounts for the various ways of cre-
ating ontologies (cf. class MethodsMethodologiesAndTools below).

• hasType: refers to a type of ontology, as described by the class OntologyType.
Well-known types of ontologies are also pre-defined as sub-classes of the main class,
while their meaning is refined using constraints. For example an informal taxonomy
hasPart concepts and is-a relationships and hasFormalityLevel informal.

• hasFormalityLevel: refers to pre-defined formality levels explained below.

• usedForTask: the tasks an ontology is designed to be used for in a particular context.

More general-purpose properties are inherited from the class SemanticWebResource.

5.2.3 Class OntologyType

This class models a classification of Semantic Web ontologies with respect to the type of the
represented domain and its generality and application-independence. As mentioned in Chap-
ter 2 various, though overlapping classifications of ontologies w.r.t this dimension emerged in
the last years in the literature. In this ontology we adopted the classification of [86] due to its
popularity and compatibility with the majority of remaining proposals and modelled the four
ontology types as instances of the class OntologyType: application, task, domain
and upperlevel. Further intermediary types are core and
knowledgerepresentation [80]. The meaning of the types employed has been intro-
duced in Chapter 2:

• upperlevel ontologies describe general-purpose domains of interest, which can be
roughly ordered to the discipline of philosophy.

• domain ontologies are used to model specific domains of reality.

110



5.2 Metadata Ontology

• core ontologies are those ontologies which model the most important concepts within
a concrete domain. These concepts are likely to be relevant for any application in that
domain using ontologies.

• task ontologies focus on domain-specific processes, tasks or activities which take
place in a particular domain of interest, be that abstract or concrete.

• application ontologies reflect, as the name says, the view of a particular applica-
tion scenario upon the domain being modelled. This leads to specific modelling deci-
sions, which are not directly related with the facts which hold true within the domain,
but with the requirements of the application setting in which the ontology is used.

• knowledgerepresentation ontologies describe the core concepts of a formal
representation paradigm and their properties.

5.2.4 Class FormalityLevel

This class states for a classification of levels of formality compiled from the current state
of the art in the area of Semantic Web ontologies. The metadata model resorts to the 4-
level classification of [223]. The four formality levels are modelled as instances of the class
FormalityLevel, which in turn is described extensively by this classification:
highly-informal, semi-informal, semi-formal and rigorously-formal.
Again, these formality levels have been previously defined in Chapter 2:

• an ontology can be considered highly-informal if it describes the domain of in-
terest in a loose form in natural language, whose precise semantics can be captured by
humans, at most.

• in semi-informal ontologies the meaning of the modelled entities is less ambigu-
ous by the usage of a restricted language, which is still human-readable.

• by contrast, semi-formal ontologies make use of a formal knowledge representa-
tion language.

• in rigorously-formal ontologies the meaning of the representation language is
defined in detail, with theorems and proofs for soundness or completeness, while the
domain of interest is modelled precisely using properties and axioms.

5.2.5 Class RepresentationLanguage

Information about the language in which an ontology is implemented is captured by the class
RepresentationLanguage (Figure 5.4). Every representation language is character-
ized by several syntactic alternatives (i.e. the class Syntax) and by a particular
RepresentationParadigm. Expressivity relationships between languages are mod-
elled in terms of properties such as isLessExpressiveThan and its counterpart
isMoreExpressiveThan. Further on, one can provide detailed information about the
constructors in knowledge representation language by indicating which
OntologicalPrimitives are supported.

111



5 Ontology Reuse Metadata Model

Figure 5.4: Overview of the Class RepresentationLanguage

5.2.6 Class RepresentationParadigm

Different knowledge representation language may share a common knowledge representation
paradigm. This can be formally defined as a class of representation languages with similar
properties. Prominent examples are Description Logics languages or Frames. The distinc-
tion between representation paradigms is important as ontologies implemented in languages
belonging to different paradigms can not be directly translated from one language to another
without semantic loss.

112



5.2 Metadata Ontology

5.2.7 Class dmoz:Topic

The class dmoz:Topic relates to a standard taxonomy of general-purpose subjects, which
can be used to specify the domain and the view upon this domain of an ontology. As classi-
fication structure we re-used the DMOZ taxonomy, which was customized and translated to
OWL for this purpose.8

DMOZ is the most prominent human-edited directory of the Web. It is constructed and
maintained by a vast community of volunteer editors within the scope of the Open Direc-
tory project and employed by a variety of search engines and other applications. The topics
are organized in 14 content categories and two geographic ones, while individual terms may
occur at several nodes in the taxonomical tree (cf. Figure 5.5). For example, the topic “Soft-
ware” is listed under “Business/Information technology” and “Computers”. Linguistically
this multiple inheritance structure provides a simple means to identify linguistically pluriva-
lent topic labels. From a conceptual point of view the meaning of the topics multiply ordered
in the taxonomy can be interpreted in a context-sensitive manner. Going back to the previous
example, if an ontology is declared to model the domain “Software”, it might be useful to
add context-related information to this entry in order to disambiguate its meaning. Accord-
ing to the DMOZ taxonomy “Software” can be interpreted in the context of “Business” or
“Computers”. This additional information allows humans, but also machines using ontology
metadata, to have a more clear understanding on the contents of the underlying ontology. An
ontology modelling software-related concepts in business context is likely to contain con-
cepts like “Price” or “Licence”, while the same domain in technical context will focus on
concepts related to software components and functionality.

In our ontology metadata the core of the topic classification is the class Topic and the
associated transitive property hasSubTopic, which is used to express taxonomical rela-
tionships. Individual nodes of the DMOZ tree are mapped to OWL instances in order to
avoid the definition of a describesDomain property with a Class range (i.e. instead of
an Instance range), which would imply a complexity at the level of OWL Full in the ontol-
ogy. For the purpose of our metadata model, we re-used the first 5 levels of DMOZ, resulting
in over 3,000 individual topics. The path information corresponding to each topic instance
can be computed as the transitive closure of the hasSubTopic relationship. The context
information is per default assigned to the direct super-topics of a certain topic. This means
that for an instance x, all instances ywhich are connected to x by means of a hasSubTopic
relationship (〈y hasSubTopic x〉) can be interpreted as context information.

5.2.8 Class wikipedia:Application

The class wikipedia:Application is targeted at providing a classification of the most
popular contemporary software applications. Due to the lack of representative software
taxonomies freely available, we decided to prototypically re-use the one emerging in the
Wikipedia collection, which is depicted below. We do not claim for the completeness or the
unconfined correctness of the re-used classification. Its goals in relation to our work are two
fold: firstly, it defines a vocabulary which can be used to control the metadata creation task;

8http://dmoz.org/about.html last visited in May, 2006

113



5 Ontology Reuse Metadata Model

Figure 5.5: Overview of the Top Categories of DMOZ Taxonomy

secondly, though still necessitating revisions especially with respect to the taxonomical struc-
ture, the classification has emerged as a collaborative effort and is representative for a wide
community of Web users. This is an important feature given the absence of a standardized
and thoroughly built taxonomy of software.

• SoftwareApplication

– AnalyticsSoftware

∗ DataMiningSoftware
∗ DecisionSupportSoftware

– BankingSoftware

∗ CreditCardsSoftware
· AutomaticTellerMachines
· ChequeProcessingSoftware

– BusinessSoftware

∗ AccountingSoftware

– CommerceSoftware

∗ AuctionsSoftware
∗ BarCodeScanningSoftware

114



5.2 Metadata Ontology

∗ ReverseAuctionsSoftware
∗ TradeSoftware

– CommunicationSoftware

∗ CalendarSoftware
∗ ContactManagerSoftware
∗ EmailSoftware
∗ InstantMessagingSoftware
∗ VOIPSoftware

– CompilerSoftware

∗ CompilerOptimizationSoftware
∗ InterpreterSoftware
∗ LinkerSoftware
∗ LoaderSoftware
∗ ParserSoftware

– ComputerGraphicsSoftware

∗ AnimationSoftware
∗ GraphicsEditorSoftware
∗ GraphicsPostprocessingSoftware
∗ SpecialEffectsSoftware

– CryptographySoftware

– DatabaseSoftware

– EmbeddedSystems

∗ AutomotiveSoftware
∗ AvionicsSoftware
∗ HVACSoftware
∗ MedicalDeviceSoftware
∗ TelemetrySoftware
∗ TelephonySoftware

– EngineeringSoftware

∗ CADSoftware
∗ EDASoftware
∗ NumericalAnalysisSoftware
∗ SimulationSoftware

– FileManagementSoftware

∗ FileSharingSoftware
∗ FTPSoftware

– FinanceSoftware

∗ BondMarketSoftware
∗ FuturesMarketSoftware
∗ StockMarketSoftware

– GamesSoftware

– InformationManagementSoftware

∗ LISSoftware
∗ MiSSoftware

– LogisticsSoftware

∗ SuplyChainManagementSoftware

– ManufacturingSoftware

∗ CAMSoftware
∗ DCSSoftware

– MusicSoftware

∗ MusicSequencerSoftware

115



5 Ontology Reuse Metadata Model

∗ SoundEffectsSoftware
∗ SynthetizerSoftware

– NetworkSoftware

∗ DNSSoftware
∗ ProtocolSoftware
∗ RoutingSoftware

– OfficeSoftware

∗ PresentationSoftware
∗ TableCalculationSoftware
∗ TextProcessingSoftware

– RoboticsSoftware

– SignalAnalysisSoftware

∗ HandwritingRecognitionSoftware
∗ ImageProcessingSoftware
∗ SignalProcessingSoftware
∗ SpeechProcessingSoftware
∗ TextRecognitionSoftware

– TrafficControlSoftware

– TrainingSoftware

– VizualizationSoftware

– VotingSoftware

– WWWSoftware

∗ BrowserSoftware
∗ WebServerSoftware

An individual software application is characterized by an IndustrialSector and ad-
ditional documentation and authoring information.

5.2.9 Class naics:IndustrialSector

The main goal of this class is to complement the description of ontology-specific software ap-
plications with information about sectors and industries. Our intention was to re-use existing
classification systems for this field in order to increase the usability and interoperability of the
meta-ontology. By contrast to the software area, interoperable classifications of industries are
available from prestigious European and international standardizations organizations. For our
purpose we customized the NAICS system, as the most popular industrial sector classification
currently available. The most important categories are subsequently listed:

• AgricultureForestryFishingAndHunting

• ArtsEntertainmentAndRecreation

• AccomodationAndFoodServices

• EducationalServices

• HealthCareAndSocialAssistance

• Information

• AdministrativeAndSupportAndWasteManagementAndRemediationServices

• FinanceAndInsurance

• ManagementOfCompaniesAndEnterprises

• ProfessionalScientificAndTechnicalServices

116



5.2 Metadata Ontology

• RealEstateAndRentalAndLeasing

• Manufacturing

• Construction

• Mining

• Utilities

• Services

• PublicAdministration

• WholesaleTrade

• RetailTrade

• TransportationAndWarehousing

The ontology was generated programmatically from textual description of the NAICS clas-
sification, followed by minor re-naming of categories repeatedly used. This occurs because of
the particular structure of the NAICS hierarchy, which foresees a fixed number of inheritance
levels. If an inheritance path does not contain a sufficient number of distinct entries, the one
situated at the lowest level is replicated on the remaining hierarchy levels.

5.2.10 Class ApplicationScenario

The class ApplicationScenario is motivated by the lack of n-ary properties in OWL.
In order to establish a link between an ontology, the application system it is integrated into,
and the particular task the ontology is used for, we introduced a separate class modelling
the relationship between the three, as recommended by the W3C Working Group on Best
Practices and Deployment.9

Figure 5.6: Overview of the Class ApplicationScenario

The class possesses two important properties referring to the class Task and
wikipedia:Application, respectively.

9http://www.w3.org/2001/sw/BestPractices/ last visited in May, 2006

117



5 Ontology Reuse Metadata Model

5.2.11 Class OntologyTask

The class of OntologyTask is targeted at providing a (basic) representation of the most
common activities ontologies have been used for in the Semantic Web community. Far from
pretending to realize a fully-fledged task or process modelling in the sense of problem solving
methods or more recently Semantic Web Services, the task-oriented ontology sub-fragment
can be used to capture usage-related information about ontologies. The concrete tasks were
compiled as a result of an extensive literature research process, in which we analyzed some
of the most comprehensive surveys regarding ontology applications in the last decades.

The different purposes of an ontology are classified by [223] in 3 high-level categories:

1. Communication: ontologies are built to reduce conceptual and terminological ambi-
guity between interacting agents, be that humans of machines.

2. Interoperability: similar to the previous context, ontologies are designed to provide a
common basis for tool interaction.

3. System engineering: the ontology is used as a means to unambiguously represent
diverse specifications for a software system.

The classification of Uschold and Grüninger was not used in our metadata model due to
its poor applicability to the Semantic Web context, and because of the coarse granularity
level. More fine-grained classifications have resulted from several recent European projects
in the area of Semantic Web. For the realization of the metadata model we merged the most
recent ones: a classification of ontology-based applications provided by the European project
SWAD (Semantic Web Applications and Development) [215] and a taxonomy of knowledge
processing tasks emerged in the European network of excellence KnowledgeWeb [115]. The
result was a list of 11 ontology tasks (see Figure 5.7), which are defined as follows:

• AnnotationTask: the ontology is used as a controlled vocabulary to annotate Se-
mantic Web resources. This task includes the usage of a semantically rich ontology
for representing arbitrarily complex annotation statements on these resources. The task
can be performed manually or (semi-)automatically.

• ConfigurationTask: the ontology is designed to provide a controlled and unam-
biguous means to represent valid configuration profiles in application systems. As the
aim of the ontology is to support the operationalization of particular system-related
processes; this task is performed automatically in that the ontology is processed in an
automatic manner by means of reasoners or APIs.

• FilteringTask: the task describes at a very general level how ontologies are ap-
plied to refine the solution space of a certain problem, such as information retrieval or
personalization. The task is targeted at being performed semi-automatically or auto-
matically.

• IndexingTask: in this scenario, the goal of the ontology is to provide a clearly
defined classification and browsing structure for the information items in a repository.
Again, the task can be performed manually by domain experts or as part of an applica-
tion in an automatic or semi-automatic way.

118



5.2 Metadata Ontology

Figure 5.7: Overview of the Class OntologyTask

• IntegrationTask: the task characterizes how ontologies provide an integrating
environment, an inter-lingua, for information repositories or software tools. In this
scenario the ontology is applied (semi-)automatically to merge between heterogeneous
data pools in the same or in adjacent domains.

• MatchingTask: the goal of matching is to establish links between semantically sim-
ilar data items in information repositories. In contrast to the previous task, matching
does not include the production of a shared final schema/ontology as a result of aggre-
gating the matched source elements to common elements. With respect to the automa-
tization level the range varies from manual to fully-automatical execution.

• MediationTask: the ontology is built to reduce the ambiguities between communi-
cating human or machine agents. It can act as a normative model which formally and
clearly defines the meaning of the terms employed in agent interactions. In the context
of programmed agents, the task is envisioned to be performed automatically.

119



5 Ontology Reuse Metadata Model

• QueryFormulationTask: the ontology is used in information retrieval settings as
a controlled vocabulary for representing user queries. Usually the task is performed
automatically in that the concepts of the ontology is are listed in a query formulation
front-end in order to allow users to specifies their queries.

• QueryRewritingTask: complementary to the query formulation dimension, this
task applies ontologies to semantically optimize query expressions by means of the do-
main knowledge (constraints, subsumption relations etc.) The task can be interpreted as
a particular art of filtering information. The task is performed automatically; however,
it assumes the availability of patterns describing the transformations at query level.

• PersonalizationTask: the ontology is used mainly for providing personalized
access to information resources. Individual user preferences with respect to particular
application settings are formally specified by means of an ontology, which, in conjunc-
tion with appropriate reasoning services, can be directly integrated into a personaliza-
tion component for filtering purposes. The usage of ontologies in personalization tasks
might be carried out in various forms, from a direct involvement of the user who man-
ually specifies ontological concepts which optimally describe his preferences, to the
ontological modelling of user profiles.

• SearchTask: the task characterizes how ontologies are used to refine common keyword-
based search algorithms using domain knowledge in form of subsumption relations.
Ontology-driven search is usually performed automatically by means of reasoning ser-
vices handling particular aspects of an ontology representation language.

In achieving these tasks Semantic Web ontologies may play various roles, which are also
modelled as classes:

• VocabularyRole: ontologies provide a controlled means to describe and commu-
nicate about a specific domain. This role is characteristic to tasks such as annotation,
configuration, mediation, query formulation and rewriting. It assumes a very simple
ontological structure i.e. a list of pre-defined domain- or application-relevant terms
modelled as concepts, relationships or instances.

• IndexRole: the ontology is used as a classification structure e.g., for indexing or
query rewriting tasks. With respect to the richness of the domain representation, index-
ing implies the availability of a taxonomical structure.

• ModelRole: the ontology is used as a formal or at least semi-formal representation
of the application domain, specifying the meaning of the domain concepts by means
of properties, attributes and logical constraints. The role can be associated with tasks
which imply ontology-based reasoning services, such as search/retrieval, annotation,
configuration, personalization, indexing, query rewriting, mediation, matching and in-
tegration.

• FilterRole: in this role the ontology is applied to refine the results of a specific
algorithm, usually in scenarios like information retrieval or personalization.

120



5.2 Metadata Ontology

The correspondences between certain types of roles and ontology-related tasks are rep-
resented at implementation level using owl:allValuesFrom range restrictions on the
property hasAssociatedRole at the class OntologyTask. They are summarized in
Table 5.1.

Vo
ca

bu
la

ry

Fo
rm

al
m

od
el

In
de

x

Fi
lte

r

Annotation X X X -
Configuration X X - X
Filtering - - - X
Indexing X X X -
Integration X X - -
Matching X X - X
Mediation X X - -
Query formulation X - - X
Query rewriting X X X X
Personalization - X - X
Search X X X X

Table 5.1: Alignment of Ontology Roles to Ontology Tasks

121



5 Ontology Reuse Metadata Model

5.2.12 Class MethodsMethodologiesAndTools

The aim of the class MethodsMethodologiesAndTools is to capture pragmatic infor-
mation about the engineering process an ontology resulted from. We distinguish between
three sub-classes of this class in accordance with the IEEE Standard Glossary of Software
Engineering Terminology [103]:

• EngineeringMethodology: a methodology describes an inventory of methods
and techniques to create a general system theory on how a particular class of challeng-
ing tasks should be performed.

• Method: a method describes the procedure necessary to be carried out when engi-
neering a product or performing. The terms “method” and “technique” are often used
alternatively, while the latter focuses rather on technical aspects.

• Tool: a tool is a piece of software which provides means for tool users to apply
methods and methodologies in practice.

Authoring and documentary information about these ontology engineering aspects can be
specified in terms of the properties hasName, isCreatedBy and hasDocumentation,
whose meaning is self-explanatory. Every method, methodology or tool may be used to sup-
port or control the execution and results of a particular Task, such as
OntologyDevelopment or, more relevant for the ontology reuse context,
OntologyIntegration, OntologyMerging and OntologyEvaluation. The method-
ological and technical support in the area of reuse is represented explicitly in the ontology,
while general-purpose engineering issues can be easily added to the model. Particular pro-
posals in one of these areas are modelled as instances.

5.3 Methods for Metadata Creation and Management

In addition to metadata representation, the issue of creating, maintaining and using ontology
metadata is equally important for providing real added value to current ontology reuse pro-
cesses. Once the valid form and correct usage of the metadata entities has been established
(e.g., by means of an ontology) existing and newly built Semantic Web ontologies should
be uniformly described by metadata records in order to foster their reusability. This can be
ensured by making ontology development and management tools such as ontology editors or
ontology repositories aware of the ontology metadata model in that they provide means to
capture, store and update this additional information. Independently of the environment in
which a metadata-driven behavior is integrated into, this environment should incorporate a
series of functional components as depicted in Figure 5.9 [135].

Orthogonal to the core services for creating, revising, storing and proving the quality of
the metadata records, the system should also take into account issues related to metadata
authoring, providing an access policy mechanism which specifies the roles of the metadata
providers and the way they interact with the metadata repository.

This thesis discusses how the enumerated core metadata services (cf. Figure 5.9) could
be realized in the current technological landscape. A comprehensive design or an imple-
mentation of a complete metadata management system are out of the scope of this work,

122



5.3 Methods for Metadata Creation and Management

Figure 5.8: Overview of the Class MethodsMethodologiesAndTools

which, however, focuses on one of the most challenging questions regarding metadata provi-
sion, i.e. on methods to automatically generate specific fragments of the proposed metadata
model. The remaining services (i.e. human-driven metadata provision, quality checking,
metadata updating and persistent storage) are briefly addressed, as they are currently under
development in external projects such as Onthology and Oyster with our collaboration.10

The compatibility between the schemas underlying these ontology management tools and our
metadata ontology is ensured as part of the ontology evolution strategy presented in Section
5.1. An integration of the technologies presented here with these environments is planned for
the near future.

10http://www.onthology.org:8080/index.jsp, http://oyster.ontoware.org/
oyster/oyster.html last visited in May, 2006

123



5 Ontology Reuse Metadata Model

Create metadata
•Metadata editor
•Submit metadata 
file

Metadata
repository

Ontology
repository

Metadata
services

Update metadata
•Automatic updates
•Edit metadata

Test metadata
•Schema validity
•Logical inconsistencies

Metadata Management System

Access management (roles, policies)

Figure 5.9: Core Metadata Services

5.3.1 Metadata Creation

Creating new metadata entries can be realized in various ways: firstly, ontology development
tools, as well as ontology repositories can be extended with components allowing humans
to manually annotate ontologies with metadata information. Secondly, these platforms can
be enhanced with methods to automatically acquire (at least a fragment of) the metadata at
run-time, during the implementation of the ontology, or at post-implementation time. The
human-driven metadata creation is directly related to the benefits induced by the availability
of this information for the metadata authors, be that ontology developers or users, as this task
naturally implies resources to understand the metadata schema and to provide the required
information. The computer-aided metadata acquisition tries to explicitly cope with this cost
benefit ratio by generating parts of the metadata entries automatically on the basis of user
profile information or special heuristics (see below), thus decreasing the amount of effort
invested by humans for this purpose. The process of metadata provision is reduced to the
human-driven quality assurance, which has the aim of testing the accuracy of results of the
automatic metadata acquisition. An operationalization of the automatic acquisition task is,
however, directly related to the Semantic Web setting and the semantic conceptualization
of the metadata information. Under these circumstances, it is possible to access publicly
available information sources in order to derive specific metadata entries, and to adjust the
results of this discovery by means of ontological background knowledge.

Automatic Metadata Creation

Following the classification of the metadata entries in terms of the semiotic framework by
[206], we discuss possible methods to automatically acquire syntactic, semantic and prag-
matic metadata, which is represented using the ontology introduced in the previous sections.
This theoretical analysis forms the basis for the realization of the OntoMeta tool introduced
in Chapter 7.

124



5.3 Methods for Metadata Creation and Management

Automatic Generation of Syntactic Metadata The syntactic metadata captures informa-
tion about the extrinsic properties of a Semantic Web ontology: its underlying graph structure
and the syntax of the implementation language. The metadata elements listed in this category
can be derived programmatically for every ontology represented in a (semi-)formal represen-
tation language:

Number of classes/instances : this can be computed by means of an API which is able to
map the syntactic representation of the ontology into a graph structure. The number of
classes is the number of labeled class nodes in the graph, while the number of instances
are calculated as the number of labeled instance nodes.

Number of properties : this entry can be calculated similarly to the number of classes and
instances. Provided an API which maps properties between concepts and concepts and
literals, respectively to edges in a graph, the number of properties is computed as the
number of labeled edges between labeled class nodes.

Number of axioms : the algorithm for the calculation of this metric strongly depends on the
representation of the axioms in the ontology implementation language and on the way
the ontology management API is handling these axioms. In OWL, for instance, ontolo-
gies axioms are represented as sub-classes of a generic class owl:Restriction.
Ontologies implemented using the Frames formalism represent axioms in form of spe-
cially designed rule constructs. Independently of the implementation language, the
number of axioms is calculated as the number of occurrences of these elements in the
ontology.

Number of imported ontologies : this metadata element returns the number of directly
imported ontological sources. The granularity of the imported sources is considered at
file level.

Syntax : this entry captures the particular syntax of the implementation language used in the
ontology. It can be derived using specific methods of the ontology management API.

Ratio of used syntax : this metric aims at capturing information about the degree of lan-
guage usage covered by a particular ontology. It is calculated as the ratio between
the number of distinct syntactic constructs used in the ontology and the total number
of syntactic constructs contained by the vocabulary of the knowledge representation
language.

RUS =
numberofusedconstructs

totalnumberofconstructsinthelanguage

Used syntax : this element contains a list of the syntactic language constructs concretely
used in the ontology. The list can be derived in parallel to the computation of the used
syntax ratio.

125



5 Ontology Reuse Metadata Model

Ratio of invalid constructs : the value of this metadata entry is computed in conjunction
with a particular validation tool. The value is set by the result of the validation proce-
dure, while a null value indicates syntactic validity.

RInvC =
numberofinvalidstatements

totalnumberofstatementsintheontology

Acquisition of Semantic Metadata Semantic metadata elements provide descriptive in-
formation about the (formal) meaning of the contents of the ontology. They can be divided
into two sub-categories: metadata related to the ontology domain, and metadata related to the
formal semantics of the ontology representation language.

By contrast to the syntactic metadata, parts of this information are often considered of sub-
jective nature, and can not be automatically captured by means of standard calculations or
tools. The majority of the elements contained in this category (in particular the ones related
to the modelled domain) can, however, be computed using specific heuristics and methods
targeted at mapping the contents of the ontology to pre-defined values of the metadata ele-
ments:

Readability : the readability element indicates whether the ontological primitives (espe-
cially concepts and relationships) are denominated by human-readable unambiguous
labels. This metadata element can be quantified only in relation to a reference source
for human readability such as a dictionary or a thesaurus. Further on, the ambiguity
of the labels can be detected using word disambiguation heuristics as those emerged in
the last 20 years in the Natural Language Processing field [24, 70, 102, 230]. Deriv-
ing readability information on ontologies is, however, a non-trivial task. Certain types
of ontologies, in particular those aimed at human consumption and at linguistic pro-
cessing (e.g., glossaries, catalogues, vocabularies, classifications, thesauri) can be per
default considered to be human-understandable. Highly-formal ontologies do not nec-
essarily denominate ontological primitives by natural language labels, as the meaning
of the conceptualization is specified using the model-theoretic semantics of the knowl-
edge representation language. In this case ontologies usually provide concept labels
in form of (abbreviated) word expressions potentially constrained by (implicit) nam-
ing conventions. Heuristics aiming at extracting readability and ambiguity information
from this type of ontologies should be able to handle composed concept labels, naming
conventions and abbreviations.

Number of comments and definitions : this element is adjacent to the readability dimen-
sion, as the availability of documented conceptualizations considerably eases the in-
teraction between human users and the ontology. As comments and definitions are
usually uniquely labeled at syntax level, their number can be easily calculated in the
same manner as the syntactic metadata entries.

Ontology domain : this metadata element aims at providing information about the topics
or subjects covered by an ontology in terms of a specific classification or a controlled
vocabulary. As the range of the metadata element is pre-defined by the metadata ontol-
ogy (i.e. the class dmoz:Topic), acquiring the domain(s) modelled by an ontology

126



5.3 Methods for Metadata Creation and Management

results in finding a method to map the contents of the ontology to one or more top-
ics in the Open Directory taxonomy. However, this information can be automatically
captured only if we assume the usage of human-readable labels and the availability of
a correspondence between the semantics implicitly carried by the assigned primitives’
names and the real-world meaning of the modelled domain.

View of the conceptualization upon the domain : this metadata element offers comple-
mentary information to the previous one. Based on the empirical finding that the re-
usability of the domain-overlapping Semantic Web ontologies is significantly depen-
dent on the context the ontologies originally emerged from, the metadata describes the
general point of view of the engineering team. Technically, the view is represented as a
topic in the Open Directory taxonomy as well. In fact, it is calculated as the most rep-
resentative super-class of the topic representing the domain of the ontology, as foreseen
by the DMOZ hierarchy (cf. Chapter 7).

Type of ontology : in order to automatically acquire information about the type of an ex-
isting ontology (i.e. whether we are dealing with a domain, upper-level, application or
knowledge representation ontology, see Section 5.2) the metadata management compo-
nent requires classification heuristics, which are able to order an ontological source in
(at least) one of the mentioned classes of ontologies on the basis of a pre-defined set of
characteristic features and rules. Theoretical approaches, as well as feasible practical
implementations for the realization of this task are available in the artificial intelligence
(clustering, classification) field.

Formality level : an automatic generation of the value of this metadata element results in
assigning one of the four pre-defined formality levels ranging from highly informal to
highly formal to existing ontologies. Similarly to the automatic typing of ontologies,
one needs characteristic features and heuristic rules to apply them in order to perform
the desired classification task.

Natural language : this element aims at providing information about the natural language
used in the ontology vocabulary. The automatic generation of its value requires tech-
niques like language guessing, which have been developed for some time in the area of
computer linguistics.

Metadata describing the knowledge representation language underlying the ontology can
be automatically acquired, similarly to the syntactic elements in the previous category:

Knowledge representation language : information about the knowledge representation
language is usually provided by the language parser. For Semantic Web languages it is
furthermore important to derive not only the representation language, but also the ex-
act sub-fragment of the language, as this has implications on the applicable reasoning
services and further on the complexity of particular computations. Due to the onto-
logical representation of the metadata schema, this information can be automatically
inferred by a reasoner, provided that a complete description of the features supported
by particular fragments of ontology representation languages are defined explicitly.

127



5 Ontology Reuse Metadata Model

Knowledge representation paradigm : this information can be automatically extracted if
the metadata acquisition component can resort to knowledge about the relationship
between languages and knowledge representation paradigms. For example, the infor-
mation that OWL belongs to the class of Description Logics is explicitly encoded in
the metadata ontology and can be used to acquire this missing link if the language is
known in advance to the system.

Ratio of inconsistent constructs : the value of this metadata entry is computed using par-
ticular reasoning tool. The value is set by the result of the consistency checking pro-
cedure, while a null value indicates semantic consistency. Consistency checking could
theoretically be carried out by humans as well. Nevertheless, it is a time-consuming
and error-prone activity, which requires deep knowledge of the language employed and
its model-theoretic semantics.

RIncC =
numberofreportedinconsistencies

totalnumberofontologicalprimitives

Acquisition of Pragmatic Metadata Without any human intervention the extraction of
pragmatic metadata information from existing ontological sources can be performed with
limited success. Given its intrinsic irregular nature the automatic acquisition of pragmatic
metadata fundamentally depends on the availability of monitoring information produced dur-
ing the creation or usage of the ontology by the tools applied as technological support in these
activities. This requirement is not fulfilled by the majority of ontology engineering tools to a
satisfactory extent so far. In consequence, available metadata information is restricted to the
following entries at most:

Ontology engineering tool : the name of the tool used to perform a particular ontology
engineering task or activity.

Authoring and provenance information : the name of the authors and contributors. Usu-
ally this information is located in the header of the ontological resource and can be
directly captured.

Versioning information : this metadata element aims at providing information about the
current version of a particular ontology. Just as in the previous case versioning metadata
is located in the header of the ontology file(s) and can be (if available) easily extracted
using automatic methods.

Documentation : the documentation metadata is conceived as a list of textual resources
describing the content, the application scenario, the engineering process of a specific
ontology. Due to the lack of standardized documentation templates in the new field
of ontology engineering, these resources—which are, moreover, not directly linked to
the actual ontological content—can not be discovered solely by means of Web-based
search heuristics, which aim at identifying relevant documents from the list of results
returned by pre-defined queries.

The remaining elements can not be acquired in an automatic manner without considerable
pre- and post-processing efforts which might under circumstances outweigh the benefits of

128



5.3 Methods for Metadata Creation and Management

an operationalized approach to metadata creation. They are expected to be generated with
the help of humans, provided an increasing awareness of the Semantic Web community with
respect to the importance of metadata for feasibly reusing ontologies.

The enumerated considerations have been prototypically implemented for Semantic Web
ontologies represented in the RDFS and OWL languages. Details on the implementation and
the evaluation of its results are presented in Chapters 7 and 8, respectively.

User-driven Metadata Creation

A definitely more trustworthy, but in the same time more resource-intensive alternative to
create metadata about ontologies is the manual one. In this case ontology developers, re-
viewers or users are provided with a pre-defined framework to capture the ontology-related
information and to manage and use it systematically for reuse purposes.

The manual metadata creation can be operated at development time with the help of on-
tology management tools recording metadata about the engineering process and the intrinsic
properties of the ontology being built. Ontology evaluation tools can embed metadata com-
ponents which allow the creation of entries related to the results of a particular evaluation
procedure (e.g., the name of the reviewers, the methods employed, links to the documenta-
tion).

Technologically this task can be easily supported by simple questionnaires structuring this
task and providing default or permitted values and value ranges for the entries defined by the
metadata ontology. The Oyster system, primarily developed at the Universidad Politecnica
de Madrid, offers such functionality in the context of a distributed ontology development
scenario, in which ontology engineers create and exchange ontology metadata information,
thus facilitating reuse (cf. Figure 5.10). Oyster uses the OMV vocabulary to manage ontology
metadata information.11 Each peer-developed ontology is accompanied by ontology metadata
information which can be created and revised by ontology authors. It can be exported to RDF
as instance data of the OMV schema and forms the basis for structured distributed search
techniques, which have the aim to discover remotely developed ontologies fulfilling certain
criteria.

A second example is the Onthology project from the University of Karlsruhe which man-
ages a centralized ontology repository and the associated metadata. Similarly to Oyster it
integrates basic metadata editing functionality, as illustrated in Figure 5.11. In addition to
manual metadata creation Onthology provides a prototypical metadata update service, which
will be described in the next section, and an ontology rating component.

5.3.2 Metadata Management

The metadata creation is only the first step in a fully-fledged metadata-based ontology reuse
environment. Prior to submitting the new entries to the system the metadata might be subject
to a quality assurance procedure whose aim is to identify potential errors, inconsistencies or
missing mandatory information. As the metadata is conceptualized by means of an ontology,
the validity of the provided information w.r.t. the schema is easily ensured. Further logical
inconsistencies can be detected if the system has access to deep background knowledge on

11http://oyster.ontoware.org/ last visited in May, 2006

129



5 Ontology Reuse Metadata Model

Figure 5.10: Metadata Creation Support in Oyster

130



5.3 Methods for Metadata Creation and Management

Figure 5.11: Metadata Creation Support in Onthology

ontologies and ontology engineering. This implies a fundamental refinement of the core
metadata model in terms of a more detailed representation of the ontology engineering field
and in terms of a deep axiomatization of the underlying knowledge. By the knowledge of
the author there is currently no tool supporting this type of quality assurance behavior. The
aforementioned systems implement schema validity checking in a superficial manner, at most.

Updating metadata entries is directly related to the technical realization of the metadata
management environment [18]. In our case, the metadata is modelled as an OWL ontology;
every metadata entry corresponds to a (particular version or fragment) of an URI-identified
Semantic Web ontology. Tools managing the metadata (e.g., an ontology repository) can pro-
vide techniques to detect changes at the corresponding locations and to subsequently trigger
metadata actualization procedures. If the metadata component is embedded in an ontology
development tool, the update procedure is triggered by the completion of a new version of
the same ontology (e.g., when the ontology file is saved). Updates should, however, take into
consideration a series of aspects related to the semantics of the ontology metadata model and
to the particularities of ontology development and management:

• Resource identification: creating and maintaining a link between data and metadata
and the platforms managing these types of information is a non-trivial problem across

131



5 Ontology Reuse Metadata Model

various fields of research in computer science. While each metadata record needs to
refer to the described resource by means of an identifier, its uniqueness and consistency
require a reliable synchronization mechanism.

• Metadata record granularity: in our case metadata applies to both ontologies, but
also fragments or groups of them. The model assumes the creation of a new metadata
record (for ontologies or groups of ontological primitives) for each new version of an
ontology, denominated by a new URI. Consecutive versions are interrelated by means
of a dedicated relationship isPreviousVersionOf. Its range could be automati-
cally set to the corresponding resource once a new version of the ontology is available.

• Volatility of metadata elements: the range of the update activities also depends on the
volatility of the metadata entries in relation to particular ontology modifications. A new
version of an ontology causes the creation of a new metadata record, which, however,
shares metadata entries with the ones associated to previous versions of the same on-
tological resources. Further more, within the same release of an ontology, a significant
contingent of metadata does not change: the domain and the view upon the domain, the
authors and contributors, as well as the original scope and purpose, the implementation
language and the knowledge representation paradigm. By contrast, numerical entries
like the number of ontological primitives and their labels are continuously changing;
these values can, however, be computed automatically. If an ontology is utilized in a
new application setting, information regarding this setting are recorded in addition to
the existing metadata.

Current ontology repositories provide solely primitive means to address the metadata up-
date problem. The majority of them (such as the DAML Ontology Library or SchemaWeb)
rely on the vigilance of the metadata providers or ontology developers to maintain the records
consistently. Onthology implements a simple update mechanism which relies on internal
identifiers for ontologies (cf. Figure 5.11 top). Once the information about an ontology has
been inserted to the system, it can be stored persistently, and can be revised and modified
if new facts related to the ontology become available. The storage of the metadata informa-
tion can be handled in the same way as every Semantic Web ontology, by using relational
databases or native RDF stores such as Sesame [23] or 3store [93].

132



5.4 Summary

5.4 Summary

Chapter 3: Feasibility study

Chapter 4: Methodology

Chapter 5: 

Metadata 

Model

Chapter 6: 
Metadata-

based methods

Chapter 7: Tools

Chapter 9: Conclusions and Perspectives

Chapter 1: Introduction
Chapter 2: Ontologies and 

Ontology Engineering

Chapter 8: 

Evaluation

This chapter was dedicated to the metadata model
capturing information about the context in which on-
tology reuse processes are performed. The model in-
cludes entries associated with intrinsic properties of
ontologies, but also process-driven information which
might enable its reusability in concrete settings. The
second part of the chapter approached methods to
create and manage ontology metadata. In partic-
ular we addressed the topic of automatic metadata
generation, which is vital for the real added value
and the impact of metadata in general. Aspects of
metadata management and manual metadata provi-
sion were briefly exemplified by means of two appli-
cations already making use of our metadata model,
which have been implemented by external parties.

133



5 Ontology Reuse Metadata Model

134


