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  Chapter 3 

 
     RETRIEVAL OF THE PIGMENT CONCENTRATION 

IN CASE I WATERS 
 
3.1. Introduction 

It has been recognised that Artificial Neural Network (ANN) techniques have a good 
potential to derive the water constituents both in Case I and Case II waters [Keiner and Brown, 
1999; Schiller and Doeffer, 1999; Gross et al., 2000]. ANNs have several distinct advantages. 
First, ANNs may be used to approximate the non-linear relationship between observations and 
target parameter(s) without explicitly knowing their direct functional dependence. Second, ANNs 
have the ability to generalise even in the presence of noisy data. Third, once an ANN is created, 
the processing time for parameter retrieval is short as compared to the inverse modelling 
techniques.  

The number of in-situ data sets combining pigment concentration and concomitant 
measurements of the oceanic light field is still rather limited. Besides, the distribution of pigment 
concentrations in the available data sets is rather inhomogenous and thus does not meet the 
requirement for successful training of an ANN. Therefore, the training  data used in this study is 
obtained from simulations of radiative transfer in the atmosphere-ocean system. RT predicts the 
light field based on physical models describing the interaction of matter and light. If all processes 
relevant to the radiative transfer in the atmosphere-ocean system were known, the light field 
could be predicted for arbitrary combinations of water constituents concentrations, sea surface 
state, atmospheric composition and observation geometry. The key problem here is to exactly 
define the inherent optical properties (IOPs) of sea water and to relate these to the parameters of 
interest (such as the pigment concentration). The IOPs of pure sea water are meanwhile well 
known. Well established parameterisations also exist for the absorption coefficient of marine 
particles in Case I waters as function of the pigment concentration and the absorption of coloured 
dissolved organic matter (CDOM). Recently, a new model for the phase function of marine 
particles was derived by optimising the agreement between RT simulations of the remote sensing 
reflectance with the corresponding SeaBAM data [Zhang et al., 2003]. This availability allows to 
simulate the light field in Case I waters as required for this study. 

In the present work, a method is proposed for the retrieval of the pigment concentration in 
Case I waters on a global scale, based on Artificial Neural Network (ANN) techniques. Input to 
the presented method is the spectral remote sensing reflectance just above the sea surface. The 
resistance against atmospheric correction errors which is required for methods working at sea 
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level is assured by adding the previously determined appropriate noise level to the data set used 
for the training of the ANNs.  

 
3.2. Data Sets  

Three different data sets are used in this study, relating remote sensing reflectance 
(SeaBAM) or hemispherical reflectance (COASTLOOC) to the pigment concentration: 

1. a synthetic data set (“training data”) derived from RT simulations to train the different 
ANNs, 

2. the SeaBAM in-situ data (“validation data”) to evaluate the performance of each 
individual ANN and such to identify the most appropriate one with respect to pigment 
retrieval, 

3. the COASTLOOC in-situ data (“test data”) to assess in how far the ANN-based pigment 
retrieval scheme is applicable to data other than those contained in the SeaBAM data set. 

These three data sets are described in more detail in the following subsections. 
 

3.2.1. Training Data  

The synthetic data set used for the training of ANNs was created using the computer code 
MOMO [Fell and Fischer, 2001] which has been described in Section 2.3. In order to speed up 
the radiative transfer simulations and to make it convenient to compare simulations with in-situ 
measurements, a number of assumptions and simplifications were made: 

• atmospheric Rayleigh scattering according to a constant surface air pressure of 1013.25 
hPa, 

• atmospheric scattering by maritime aerosol assuming a constant aerosol optical depth of 
0.1 at 550 nm, 

• no atmospheric absorption, 
• flat air-sea interface, 
• no vertical stratification of the ocean, 
• no inelastic scattering inside the water body (i.e. no Raman scattering, no chlorophyll-a 

fluorescence, no CDOM fluorescence). 
For any study based on RT simulations of the oceanic light field, detailed knowledge on the 

IOPs of the oceanic constituents is required. The IOP models used in this study are summarised 
in Table 3.1. Based on the above assumptions and the selected IOP models, simulations of remote 
sensing reflectance at nadir direction were made for: 

• 18 solar zenith angles between 0° and 87°, 
• 5 wavelengths: 412, 443, 490, 515, and 555 nm, 
• 300 pigment concentrations between 0.025 and 35 mg m-3.  
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In the SeaBAM data set (see below), no information is given on the solar zenith angles at 
which measurements have been taken. Therefore, the simulated remote sensing reflectances were 
averaged over solar zenith angles between 0° and 70° to construct a synthetic data set where the 
relationship between RRS and pigment concentration is independent on the viewing geometry. The 
wavelengths chosen for the simulations correspond to the central wavelengths of spectral 
channels commonly used for space-borne or in-situ ocean colour measurements. The method 
derived herein may therefore be applied to most ocean colour instruments. A logarithmic 
distribution of the pigment concentrations has been selected for the simulations, thus, each order 
of magnitude within the considered pigment concentration range is represented with a similar 
number of cases.  

 
Table 3.1. Parameterisations of inherent optical properties of pure sea water and water 

constituents used of Case I waters. 

Constituents IOP Parameterisation or measurement Reference 

Absorption Directly measured Pope and Fry [1997] 

Total 
scattering 

32.4)
500

(00288.0)( −=
λλwb  

Morel [1974] 

Pure sea 
water 

Phase function )cos835.01(06225.0)( 2 θλ +=wp  Morel [1974] 

Absorption )(])[()( λλλ apB
app ChlAa =  Bricaud et al. [1998] 

Total 
scattering 

bpB
bpp ChlAb ][)( =λ , 

Abp=0.252 and Bbp=0.635 

Loisel and Morel [1998] 

Marine 
particulate 

matter 

Phase function ),( λChlfp p =  Zhang et al. [2003] 

Absorption )443()443()( −−= λλ yS
yy eaa , 

Sy = 0.014 

Bricaud et al. [1981] CDOM 

 )443(*5.000348.0)443( py aa +=  Zhang et al. [2003] 

 
 

3.2.2. Validation Data: the SeaBAM Data Set 

The performance of each individually trained ANN is assessed using the SeaBAM data set. 
The SeaBAM data set is a compilation of measurements and derived parameters taken at 919 
stations on occasion of various oceanographic campaigns. 900 stations are considered as being 
located in Case I waters. The SeaBAM data set covers a pigment range between approx. 0.03 and 
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30.0 mg m-3, and provides remote sensing reflectance values into nadir direction at six 
wavelengths (412, 443, 490, 515, 555, 670 nm). It is considered to contain the most 
comprehensive information on remote sensing reflectance values and concomitant pigment 
concentrations in Case I waters on a global scale. Detailed information on the SeaBAM data set is 
shown in Table 3.2. It is publicly available from the SeaBASS (SeaWiFS Bio-optical Archive 
and Storage System) web site (http://seabass.gsfc.nasa.gov). 

 
Table 3.2. Data sources and characteristics of the SeaBAM data set, reproduced after O’Reilly et 

al. [1998]. 
Campaign 

name 
Provider / 

PI 
Area Time Data sets Water 

type 
BBOP92-93 D. Siegel Sargasso Sea monthly, 1992-

1993 
72 1 

BBOP94-95 D. Siegel Sargasso Sea monthly,1994-
1995 

67 1 

WOCE J. Marra 50°S-13°N,88°-
91°W 
10°S-30°N,18°-
37°W 

March 1993 
April 1993 

70 1 

EQPAC C. Davis 0.140°W March, Sept. 1992 126 1 
NABE C. Davis 46°N, 19°W April 1989 40 1 
NABE C. Trees 46°-59°N, 17°-

20°W 
May 1989 72 1 

CARDER K. Carder North Atlantic 
Pacific 
Gulf of Mexico 
Arabian Sea 

Aug. 1991 
July 1992 
April 1993 
Nov. 1994, June 
1995 

87 1 

CALCOFI G. Mitchell California Current Aug. 1993-July 
1996 

303 1 

MOCE 1 D. Clark Monterey Bay Sept. 1992 8 1 
MOCE 2 D. Clark Gulf of California April 1993 5 1 
North Sea R. Doerffer 55°-52°N, 0°-8°E July 1994 10 2 
Chesapeake 
Bay 

L. Harding ~37°N, 75°W April, July 1995 9 2 

Canadian 
Arctic 

G. Cota ~74.38°N, 95°W Aug. 1996 8 1 

AMT G. Moore 50°N-50°S Sept. 1995,  
April 1996 

42 1 

Total    919  
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3.2.3. Test Data: the COASTLOOC Data Set 

The COASTLOOC (Coastal Surveillance Through Observation of Ocean Colour) data set 
relates the subsurface hemispherical reflectance at 13 wavelengths between 412 and 865 nm to 
concomitantly measured IOPs and water constituents concentrations [Babin, 2000]. Most of the 
424 stations visited during the COASTLOOC campaigns have been gathered in Case II waters in 
different European coastal areas, except for 93 stations located in Case I waters in the Atlantic 
Ocean and Mediterranean Sea. The measurements at 67 of the 93 Case I water stations fulfilled 
the requirements in terms of completeness and accuracy, and were retained for further processing 
in the frame of algorithm development for Case I waters. Table 3.3 provides more information on 
this data set.  
 

Table 3.3. Regional distribution of the COASTLOOC stations located in Case I waters. 

Campaign PI Area Time Case I  
stations 

COASTLOOC 1 M. Babin NE Atlantic Ocean April 1997 34 

COASTLOOC 3 M. Babin Northern  
Adriatic Sea 

July, August 1997 6 

COASTLOOC 4 M. Babin Mediterranean Sea 
(Golfe du Lion) 

October 1997 12 

ALMOFRONT 2 H. Claustre Mediterranean Sea 
(Alboran Sea) 

January 1998 41 

Total    93 

 

3.3. ANN-based Pigment Retrieval in Case I Waters 

In the present study, a three-layer MLPs ANN is used to derive the functional relationship 
between the spectral remote sensing reflectance into the nadir direction and the pigment 
concentration. The architecture of the ANN has been described in Section 2.4. 

 
3.3.1. Parameters affecting the performance of an ANN  

The performance of a trained MLP depends mainly on three limiting factors: information 
content of the offered input, number of the neurons in the hidden layer, noise level added to the 
training data set. This is elucidated in the following subsections. 
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3.3.1.1. Information content of the offered input 

To determine which and how many spectral bands or band ratios are best suited for pigment 
retrieval, nine combinations of input data (listed in Table 3.4) were tested. Of the nine listed 
cases, the first three are combinations of remote sensing reflectances at different wavelengths. 
The other six cases are combinations of remote sensing reflectance ratios. The dimensionality of 
the input data determines the number of neurons in the input layer. 

3.3.1.2. Number of the neurons in the hidden layer 

How many hidden neurons should be used? Generally speaking, if too few hidden neurons 
are used, high training error and high generalisation error may be obtained due to underfitting and 
high statistical bias. If too many hidden neurons are used, low training error may result, but there 
may be high generalisation errors due to overfitting and high variance [Geman et al., 1992]. 
Besides, the training process becomes very slow. In this study, the performance of ANNs with 4, 
9 20, and 30 hidden neurons has been tested. 

3.3.1.3. Noise level added to the training data set 

Through adding noise to synthetic training data, the robustness of the trained ANN with 
respect to noisy input data is increased. However, adding too much noise will obviously lead to a 
high generalisation error [Koistinen and Holmström, 1992]. To determine the appropriate noise 
level, 5 %, 10 %, 20 %, and 30 % noise was added to the synthetic training data used as input to 
the ANNs (RRS or RRS ratios). Since no specific noise model was available, a simple approach was 
chosen: the noise in different samples and in different elements of a sample is assumed to be 
independent, its distribution is assumed to be random and to have zero mean. 

 
3.3.2. ANN Training 

A synthetic data set for ANN training has been generated from the RT simulations outlined 
in Section 3.2. The synthetic data set is composed of 300 remote sensing reflectance spectra, 
corresponding to 300 pigment concentration values. Using a higher number of samples to train 
the ANNs did not significantly improve their performance. The main reason for this is the relative 
simplicity of the IOP models which are all parameterised as function of the pigment 
concentration alone in combination with the constant observation geometry. 

For each of the nine input combinations listed in Table 3.4, training data sets of four 
different noise levels (5%, 10%, 20%, 30%) were used to train ANNs with 4, 9, 20, or 30 neurons 
in the hidden layer. This gives a total of 9×4×4 = 144 combinations, each of which is represented 
by an individually trained ANN. One specific training set has been derived for each combination 
of input parameters and noise level, giving a total of 9×4=36 training data sets. Each training data 
set is then used to train the 4 ANNs characterised by their different number of hidden neurons. 
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Table 3.4. Performance with regard to pigment retrieval of spectral band combinations used as 
input to ANNs. 

Training data 
(synthetic) 

Validation data 
(SeaBAM) 

Case 
No. 

Input Neurons in 
hidden layer 

Noise level (%)

RMSE r2 RMSE r2 

1 RRS412, RRS443, 
RRS490, RRS515, 
RRS555 

4 30 0.156 0.971 0.271 0.835 

2 RRS443, RRS490, 
RRS515 

4 30 0.199 0.953 0.311 0.785 

3 RRS443, RRS490 4 30 0.210 0.948 0.322 0.782 

4 RRS412/RRS555, 
RRS443/RRS555, 
RRS490/RRS555, 
RRS515/RRS555 

20 5 0.0983 0.988 0.159 0.925 

5 RRS443/RRS555, 
RRS490/RRS555, 
RRS515/RRS555 

30 5 0.0787 0.993 0.148 0.934 

6 RRS443/RRS555, 
RRS515/RRS555 

30 5 0.0781 0.993 0.156 0.929 

7 RRS443/RRS555, 
RRS490/RRS555 

4 20 0.127 0.981 0.155 0.930 

8 RRS443/RRS555 9 10 0.0924 0.990 0.156 0.929 

9 RRS490/RRS555 9 5 0.0886 0.982 0.167 0.919 

 
3.3.3. Determining ANN Architecture and Noise Adding for Optimal Pigment 

Retrieval 
In order to find the ANN best suited for pigment retrieval, the ANN pigment forecasts were 

compared to the SeaBAM data by two error measures. First, root mean square error (RMSE) 
defined by: 

∑ =
−=

N

i
M
i

D
i CHLCHL

N
RMSE

1
2

1010 )](log)([log1 ,                       (3.4) 

where CHL represents the pigment concentration, and the superscripts D and M indicate derived 
and measured values. Second, the square of the Pearson’s correlation coefficient r2. The pigment 
concentrations are log-transformed prior to calculating RMSE and correlation coefficients. The 
optimum number of hidden neurons and the appropriate noise level with regard to the above two 
error measures are given in Table 3.4 for each of the nine input combinations. 

Using the remote sensing reflectance at five wavelengths between 412 and 555 nm as input 
to the ANN (case No. 1) results in r2 = 0.835 between the ANN pigment forecast and the 
corresponding SeaBAM values (RMSE = 0.271). Using one or more remote sensing reflectance 
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ratios as input to the ANN (cases No. 4-9), the r2 values are in any case above 0.919, and the 
RMSE values below 0.167. The performance of the ANNs using remote sensing reflectance 
ratios as input is thus considerably higher than that of ANNs using absolute remote sensing 
reflectance values. The explanation for this effect is that spectrally correlated noise is partly 
cancelled out through division of the remote sensing reflectance at two wavelengths.  

Of the six combinations of remote sensing reflectance ratios taken as input to the ANN, the 
best results (lowest RMSE and highest r2) were obtained using the three remote sensing 
reflectance ratios RRS443/RRS555, RRS490/RRS555, and RRS515/RRS555 as input (case No. 5). 
Interestingly, this case is not the one with most spectral ratios as input (case No. 4). Even the 
performance of case No. 8 with only one spectral ratio (RRS443/RRS555) as input is better than 
that of case No. 4 using four spectral ratios, and close to that of case No. 6 using three spectral 
ratios. Generally speaking, the higher the number of the spectral bands, the more information is 
available, and the higher should be the accuracy of the ANN forecast. On the other hand, 
inclusion of noisy data will reduce the ANN forecast performance. 

 
3.3.4. Best ANN for Pigment Retrieval 

From the above results, the following optimum ANN architecture has been selected: three 
layers, three neurons (plus one bias parameter) in the input layer, 30 neurons (plus one bias 
parameter) in the hidden layer, one neuron in the output layer. The appropriate noise level to be 
added to the synthetic data is 5 %. Due to the chosen architecture, the input to the neural network 
is given by the four element vector: 

            I = [R1, R2, R3, B],                                              (3.5) 

where the bias parameter B is always set to one, and the elements R1, R2, and R3 are given by: 
R1 = 0.05 + 0.305 × (ln (RRS443 / RRS555) + 0.829) ,                 (3.6a) 

R2 = 0.05 + 0.411 × (ln (RRS490 / RRS555) + 0.473) ,                 (3.6b) 

R3 = 0.05 + 0.805 × (ln (RRS515 / RRS555) + 0.382) .       (3.6c) 

Appropriate pre-processing is essential for a successful training of ANNs: the 
transformations (3.6a)-(3.6c) have the aim a) to represent the roughly linear dependence of the 
logarithms of colour ratio and pigment concentration and b) to map the input data to an interval 
confined to the range [0.05, 0.95]. Choosing this interval instead of [0.0, 1.0] allows for pigment 
retrieval even if the input values are slightly outside the range of the synthetic training data set. 
However, such extrapolation should be handled with great care. The temperature constant of the 
sigmoid was given a value of ct = 1.0. The elements of the weight matrices 
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and 

( )HOHOHO WWW 31,11,1 ...=  ,       (3.7b) 

the one-element output vector ][ 1OO =
v

 of the ANN is re-transformed into the pigment 
concentration by: 

Chl = exp ((O1 - 0.05) / 0.124 - 3.71) .        (3.8) 

 
3.4. Evaluating the Performance of the ANN-based Pigment 

Retrieval Algorithm 
 
3.4.1. Assessing the Performance of the Trained ANN 

The potential of the selected ANN for pigment retrieval from real measurements is assessed 
in three steps by applying it a) to the synthetic data (“training data”) used for the ANN training, 
b) to the SeaBAM data (“validation data”) used to determine the ANN architecture and noise 
level to be added to the input data, and c) to the COASTLOOC data (“test data”) which have not 
been used for the ANN development.  

3.4.1.1. Performance with respect to the training data 

The ANN pigment concentration forecasts using simulated remote sensing reflectance ratios 
as input data are compared to the pigment concentrations used as input for the corresponding RT 
simulations. As shown in Figure 3.1, the inversion is successful with regard to the synthetic 
training data set (r2 = 0.993, RMSE = 0.0787 for the log-transformed pigment concentration). 
Figure 3.1 also reveals a limitation of the synthetic training data set: For small pigment 
concentrations, the dependence of the simulated remote sensing reflectance on the pigment 
concentration is weak. The ANN may therefore not distinguish between pigment concentrations 
less than approx. 0.06 mg m-3, although the training data comprises pigment concentrations 
between 0.025 and 35 mg m-3. 

3.4.1.2. Performance with respect to the validation data 

In a second step, the ANN is applied to the in-situ measurements of the remote sensing 
reflectance contained in the SeaBAM data set (900 stations in Case I waters, Figure 3.2A). Here 
again, the pigment concentrations derived from the SeaBAM reflectance data agree well (as 
compared to empirical algorithms, see section 3.4.2) with the corresponding in-situ measurements 
(r2 = 0.934, and RMSE = 0.148 for the log-transformed pigment concentration). This is not 
surprising, since the SeaBAM data have a) been used to derive the back scattering model for 
marine particles used for the RT simulations [Zhang et al., 2003], and b) to select the most 
appropriate ANN architecture and noise level. 
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Figure 3.1. Scatter plot showing the performance of the ANN for the synthetic training data set. 
The target pigment concentration designates the pigment concentration used as input to the RT 
simulations. The dashed lines indicate the factor 2 error margin. 

3.4.1.3. Performance with respect to the test data 

In a third step, the ANN is applied to 67 COASTLOOC Case I reflectance spectra (Figure 
3.2B). Here, it is assumed that the ratio of the hemispherical reflectance at two wavelengths is 
identical to the corresponding remote sensing reflectance ratio. Satisfactory (again as compared 
to the empirical algorithms) performance (r2 = 0.892, RMSE = 0.219 for the log-transformed 
pigment concentration) is observed, even though the COASTLOOC data are totally independent 
from the SeaBAM data and have not been used in any respect to derive the ANN. This is a hint 
that the retrieval method presented herein has a potential to be applied on a regional or global 
scale. However, ANN-derived pigment concentrations from the COASTLOOC reflectance data 
seem to be systematically overestimated by about 30 %. Since a similar effect is also observed 
when applying empirical algorithms, the observed behavior appears to be data driven. The 
instrumental problems are mainly suspected to be reason behind these deviations, since the 
radiometer used for all COASTLOOC and ALMOFRONT campaigns showed a significant 
degradation in several spectral channels which might not have fully been compensated by the 
applied correction procedure. Besides, systematic differences between corresponding spectral 
ratios of the remote sensing reflectance and the hemispherical reflectance might also contribute to 
the observed deviations. 
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Figure 3.2. Comparison of ANN-derived pigment concentration to corresponding in-situ 
measurements for the SeaBAM (A) and COASTLOOC (B) data sets. The dashed lines indicate 
the factor 2 error margin. 
 
3.4.2. Comparison with Existing Empirical Algorithms 

In order to further evaluate the performance of the trained ANN, it is compared to the most 
successful empirical algorithms compiled in O'Reilly et al. [1998], listed here in Table 3.5. The 
algorithms to be compared are applied to the reflectance data from 900 SeaBAM Case I stations. 
The performance of the different algorithms is given in Table 3.6 and is depicted in Figure 3.3. 
The ANN has the highest r2 and lowest RMSE of all compared algorithms. The relative success 
of the ANN-based pigment retrieval is partly explained by the fact that the underlying IOP 
models represent the SeaBAM data well. A further reason is that it uses more spectral 
information than do the empirical algorithms. The performance of an ANN using one colour ratio 
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(RRS443/RRS555) slightly drops (r2 = 0.929 instead of r2 = 0.934, RMSE = 0.156 instead of RMSE 
= 0.148); however, it is still above that of the corresponding empirical algorithms (e.g., MOREL-
3: r2 = 0.918, RMSE = 0.175, OC2B: r2 = 0.924, RMSE = 0.156).  

 
Table 3.5. Empirical ocean colour algorithms based on remote sensing reflectance [O'Reilly et al., 1998]. 

Algorithm Functional form Band ratio 

POLDER C=10^(a0 + a1*R + a2*R2 + a3*R3)  
a = [0.438, -2.114, 0.916, -0.851] 

R = log10 (RRS443 / RRS565) 

CalCOFI  
2-band cubic 

C=10^(a0 + a1*R + a2*R2 + a3*R3)  
a= [0.450, -2.860, 0.996, -0.3674] 

R = log10 (RRS490 / RRS555) 

MOREL-3 C=10^(a0 + a1*R + a2*R2 + a3*R3)  
a = [0.20766, -1.82878, 0.75885, -0.73979] 

R = log10 (RRS443 / RRS555) 

MOREL-4 C=exp^(a0 + a1*R + a2*R2 + a3*R3) 
a = [1.03117, -2.40134, 0.3219897, -
0.291066] 

R = ln (RRS490 / RRS555) 

OC2 C=10^(a0 + a1*R + a2*R2 + a3*R3) + a4 
a = [0.3410, -3.001, 2.811, -2.0410, -0.040] 

R = log10 (RRS490 / RRS555) 

OC2B C=10^(a0 + a1*R + a2*R2 + a3*R3) + a4 
a = [0.1909, -1.9961, 1.3020, -0.5091, -
0.0815] 

R = log10 (RRS443 / RRS555) 

OC4 C=10^(a0 + a1*R + a2*R2 + a3*R3) + a4 
a = [0.4708, -3.8469, 4.5338, -2.4434, -
0.0414] 

R = log10 ([RRS443>RRS490>RRS510] / 
RRS555) 

 
Table 3.6. Performance of the ANN-based pigment retrieval scheme as compared to selected empirical 

algorithms when applied to the SeaBAM and COASTLOOC data sets. 

SeaBAM Case I (N = 900) COASTLOOC Case I (N = 67) Algorithm 

RMSE r2 RMSE r2 

ANN 0.148 0.934 0.219 0.892 

POLDER 0.256 0.919 0.423 0.898 

CalCOFI 2 band cubic 0.186 0.918 0.221 0.863 

MOREL-3 0.175 0.918 0.278 0.896 

MOREL-4 0.198 0.906 0.243 0.875 

OC2 0.162 0.918 0.181 0.860 

OC2B 0.156 0.924 0.230 0.893 

OC4 0.151 0.928 0.198 0.873 
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Figure 3.3. Performance of the ANN-based pigment algorithm presented in this study as 
compared to selected empirical algorithms from O'Reilly et al. [1998], using square of correlation 
coefficient r2 (A) and root mean square error RMSE (B) of derived vs. actually measured pigment 
concentration as measure of success. The algorithms were applied to the SeaBAM (×) and 
COASTLOOC (◊)data sets. 
 
3.4.3. Resistance against Noise 

In order to compare the resistance against noise of the trained ANN to that of the empirical 
algorithms, random noise of 0~30 % was added to the SeaBAM remote sensing reflectance ratios 
before offering them as input to the pigment retrieval algorithms. Comparing RMSE and r2 
(Table 3.7), one observes that the ANN-based algorithm has a higher performance against noise 
than do have the empirical algorithms (Figure 3.4). This is a fundamental advantage when 
applying algorithms to real measurements. 
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Table 3.7. Performance against noise of the ANN-based pigment retrieval scheme as compared to 
empirical algorithms. All algorithms were applied to SeaBAM remote sensing reflectance ratios to which 
different levels of noise have been added. The following acronyms are used: POL = POLDER, CCO = 
CalCOFI two-band cubic, MO3 = MOREL-3, MO4 = MOREL-4, OC2, OC2B and OC4 = Ocean 
Chlorophyll algorithms 2, 2B and 4 [O'Reilly et al., 1998]. 

Noise ANN POL CCO MO3 MO4 OC2 OC2B OC4 

RMSE 0.148 0.256 0.186 0.175 0.198 0.162 0.156 0.151 0 % 

 r2 0.934 0.919 0.918 0.918 0.906 0.918 0.924 0.928 

RMSE 0.150 0.258 0.189 0.177 0.203 0.167 0.158 0.154 5 % 

 r2 0.932 0.917 0.915 0.916 0.901 0.913 0.921 0.925 

RMSE 0.155 0.263 0.197 0.181 0.213 0.179 0.164 0.162 10 % 

 r2 0.927 0.912 0.906 0.911 0.890 0.901 0.915 0.918 

RMSE 0.174 0.281 0.227 0.200 0.251 0.226 0.186 0.192 20 % 

 r2 0.910 0.892 0.871 0.891 0.850 0.850 0.893 0.886 

RMSE 0.197 0.310 0.271 0.227 0.304 0.264 0.220 0.225 30 % 

r2 0.888 0.861 0.818 0.859 0.790 0.811 0.856 0.847 

 
3.5. Conclusions 

In this study, a method for pigment retrieval from ocean colour in Case I waters has been 
derived and evaluated. The retrieval method is derived by applying ANN techniques to a set of 
remote sensing reflectance spectra typical of Case I waters, which have been obtained from RT 
simulations and the IOP models compiled in Table 3.1. 

The ANN employed in this study has three layers: one input layer consisting of three 
neurons (plus one bias parameter), one hidden layer consisting of 30 neurons (plus one bias 
parameter), and one output layer consisting of one neuron. The three neurons in the input layer 
correspond to the remote sensing reflectance ratios RRS443/RRS555, RRS490/RRS555, and 
RRS515/RRS555. Applying the trained ANN to the Case I SeaBAM data gives a correlation 
between predicted and measured pigment concentrations of r2 = 0.934 and a root mean square 
error of RMSE = 0.148; applying it to the Case I COASTLOOC data which have not been used to 
derive the phase function model of marine particles used for the RT simulations, results in r2 = 
0.892 and RMSE =  0.219. 

The performance of the ANN-based pigment retrieval scheme is comparable to the most 
successful empirical algorithms: applying e.g., the SeaWiFS algorithm OC4 to the SeaBAM data 
set gives r2 = 0.928, and RMSE = 0.151 as compared to r2 = 0.934 and RMSE = 0.148 for the  
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Figure 3.4. Performance against noise of the ANN-based algorithm presented in this study and 
selected empirical algorithms, using square of correlation coefficient r2 (A) and root mean 
square error RMSE (B) of derived vs. measured pigment concentrations as measure of success. 
 
ANN-based algorithm. The resistance against noise of the ANN-based algorithm is superior as 
compared to the empirical algorithms: adding 20 % random noise to the SeaBAM remote sensing 
reflectance ratios before offering them to the pigment retrieval algorithms, r2 of OC4 drops from 
0.928 to 0.886, while only going down from 0.934 to 0.910 for the ANN-based algorithm. 
Correspondingly, the RMSE of OC4 is increased from 0.151 to 0.192, while only rising from 
0.148 to 0.174 for the ANN-based algorithm. It is this resistance against noisy input data which 
make ANN-based pigment retrieval schemes a very suitable tool for studying the marine 
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environment from space-borne Earth Observation data. This is especially true considering the fact 
that the presented method in principle allows the inclusion of viewing geometry, sun position, 
rough air-sea interface, etc. In fact, all processes may be considered for which a physical or 
statistical model exists that can be integrated into the RT code.  

 

 
 


