
Chapter 1

Deformation and clustering in

light nuclei

1.1 Introduction

Questions relating to how states of matter arise and what the building blocks are

from which they are made will never stop to interest people. After the discovery

of the atom and the nucleus physicists started to investigate atomic nuclei and

their properties. During this period many fundamental discoveries were made

such as the observation of new elementary particles involved in radioactive decay.

Today, a large part of the Segré chart of the nuclides is well known. Numerous

theoretical nuclear models have been developed and accepted or rejected based

on experimental work during this period. In addition, modern and more powerful

accelerator facilities have been developed.

One of the interesting problems discussed in the last 30 years is that of cluster

structure in nuclei and the existence of so called ‘nuclear molecules’. Different

projects and people have been involved in these investigations. Now, after twenty

years of scepticism from a large part of the physics community it has been proven

that such structures exist. Still, there is a lot of work which has to be done towards

understanding such structures, especially for light nuclei. This work is a small
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piece from the big puzzle of ‘nuclear structure’, but putting such pieces together

will eventually make it possible to see the whole picture.

In light nuclei, the nucleons have been observed to cluster together forming

sub-structures within the atomic nucleus, for states where the nucleons are only

just bound together. This fact is well expressed in the Ikeda Diagram (see Figs. 1.1

and 1.2). In neutron-rich nuclei low-lying states, close to the threshold for neutron

emission, show a pronounced α-particle cluster structure. These are states with

large prolate deformations. For the neutrons outside the tightly bound core (so

called ‘valence neutrons’) a concept based on molecular orbitals can be used to

describe their behaviour.

Figure 1.1: Ikeda Diagram [Ike68, Hor72] showing cluster states in N = Z nuclei

and their thresholds (in MeV) for the decomposition into clusters.
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Figure 1.2: Extended Ikeda Diagram, which schematically illustrates the molecu-

lar shape isomers based on α (green) and 16O (blue) clusters plus some covalently

bound neutrons (red) in neutron-rich light nuclei. Numbers under the configura-

tions indicate the thresholds (in MeV) for decaying into the subunits [vO01].
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The physics of molecular orbitals for nucleons (mostly neutrons) has been de-

veloped and successfully applied in the last decades for the description of transfer

processes in heavy-ion reactions at low energies [vO70, Ima87, Bis88, vO96b,

Spa00]. In these models weakly bound neutrons and strongly bound cores are

used. The valence neutrons move in the field of two clusters and some aspects

from atomic molecular physics can be applied to such systems.

Thus, conditions for the formation of stable or quasi-stationary molecular

states can be formulated [vO01]:

• strongly bound cores.

• weakly attractive core-core potential which, in addition, becomes repulsive

at small distances.

• weakly bound single-particle orbitals of valence neutrons in order to guar-

antee large amplitudes of the wave functions at larger distances in the overlap

region.

• large transfer probability, which is typically reached if the valence states

are in the resonance or in a quasi-resonance matching condition between the two

states of the separated centres.

Covalent binding between α-particles due to valence neutrons produces partic-

ular structures in light neutron-rich nuclei, like in the beryllium isotopes, namely

long-lived states with a two-centre structure. The long lifetime arises because

of the dramatic change in the shape of the state needed to decay to lower-lying

‘normal’ states. Such unusual arrangements of nucleons also give rise to reflection

asymmetric shapes, like in atomic molecules, a signature of which are deformed

bands as parity doublets. These cases are well known in atomic physics and

discussed by Herzberg [Her50]. For such structures using the two centre shell-

model a correlation diagram for all nucleons (see Fig. 1.3) can be calculated

[vO70, Sch71]. The molecular orbits merge at small distances with the Nilsson

orbits (see Fig. 1.5) of the deformed compound nucleus. The molecular orbitals

are classified according to the well known quantum numbers of molecular valence
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Figure 1.3: Correlation diagram for molecular orbitals in a two-centre shell-model

picture. The molecular orbitals are labeled by their quantum numbers (see text).

The distance between the two centres is denoted by r.

states: the K-quantum number for the projection of the total angular momentum

on the nuclear deformation axis, and the σ and π orbitals for the m=0 and m=1

projections of the orbital angular momentum l respectively. In addition to the

parity, the gerade (even), g, and ungerade (odd), u, symmetry appears for the

case of two molecular cores.

1.2 Aims and techniques of the experiments

Some spectroscopic properties that are important for molecular structures are:

• large transition probabilities for γ-decay or/and a large probability for clus-

ter emission.

• the reaction mechanism in which the nucleus is produced.
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• large moment of inertia.

• rotational bands with intense intra-band γ-ray transitions.

The study of the atomic nucleus using particle and γ-ray spectroscopy and

particle-γ coincidence techniques has several advantages. From one side it gives

the opportunity to investigate the electromagnetic transitions below and across

the particle-emission threshold, and from the other side the study of the γ-ray

decay scheme in these nuclei helps to establish a clear signature of collectivity -

namely rotational structures and in particular parity doublet structures charac-

teristic of reflection asymmetric two-centre structures. Using γ-ray spectroscopy

it is possible to find the connection between previously known states in these

isotopes and furthermore to observe new behaviour.

The main goal of this work is the study of the level schemes of beryllium and

neon isotopes in order to established their structures as related to the molecular

model. The emission of clusters in compound nuclear reactions, observed in these

studies, is another important part of the work presented here.

1.3 Deformed shell model (Nilsson model)

The spherical shell model [May49] can explain many features of spherical nu-

clei, but needs modifying to describe nuclei with many nucleons outside a closed

shell. The residual interaction between these many valence nucleons may be more

simply described by a deformed potential.

For nuclear rotation to be observable, the nuclei have to be non-spherical, so

that they have a preferred axis. For deformed nuclei, assuming a constant nuclear

volume (i.e. incompressibility), the nuclear radius can be described by:

R(θ, φ) = Rav


1 +

∞∑
λ=2

λ∑
µ=−λ

αλµYλµ(θ, φ)


 (1.1)

where αλµ are the coefficients of the spherical harmonics Yλµ(θ, φ) [Eis70]. The

λ=1 terms are normally excluded from the sum as these correspond to a transla-
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tion of the centre of mass. The indices λ and µ, determine the surface coordinates

as a function of θ and φ, respectively. For example,

R(θ, φ) = Rav [1 + β2Y20(θ, φ)] (1.2)

is independent of φ. This means that such nuclei are axially symmetric and can

be either prolate or oblate (see Fig.1.4). The deformation parameter β2 (= α20),

can be related to the axes of the spheroid by:

β2 =
4

3

√
π

5

∆R

Rav
(1.3)

in which the average radius is, Rav = R0A
1/3, and ∆R is the difference between

the semi-major and semi-minor axes.

Figure 1.4: Currently observed nuclear shapes [Luc01]. The different shapes

can be parametrised by spherical harmonic functions, where λ characterises the

different orders of the corresponding distributions.

The larger the value of β2 the more deformed the nucleus. Positive and

negative β2 values correspond to prolate and oblate shapes respectively.

In some circumstances the quadrupole deformation parameters ε2 and δ are

used. These are related to β2 by the Equations (1.4), taken from [Fir96].

δ =
∆R

Rr.m.s.
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ε2 = δ +
1

6
δ2 +

5

18
δ3 +

37

216
δ4...

β2 =

√
π

5

[
4

3
ε2 +

4

9
ε2
2 +

4

27
ε3
2 +

4

81
ε4
2...

]
(1.4)

Higher order axially symmetric effects have also been observed in nuclei, such

as hexadecapole deformation quantified by β4 (or ε4).

The shape parameters introduced so far all describe axially symmetric nuclear

shapes, but quadrupole (λ=2) deformations can give rise to asymmetric shapes.

These triaxial distortions are governed by the γ shape degree of freedom, and this

describes a stretching/squashing effect at right angles to the major nuclear axis.

Gamma is measured in degrees, where γ=0◦ and γ=60◦ correspond to prolate

and oblate shapes respectively. Completely triaxial shapes have γ=30◦.

The model that describes axially symmetric nuclei is called the Deformed Shell

Model. In this model the Schrödinger equation is solved using the potential that

describes, as closely as possible, the actual shape of the nucleus. Another result of

the deformation is that the orbital angular momentum, l, and the intrinsic spin, s,

are no longer good quantum numbers and thus, states with different l-values, but

the same parity can mix. The energy of the states now depends on the component

of the single-particle angular momentum (j) along the symmetry axis, which is

denoted by Ω. For each orbital with angular momentum j, there are 2j+1 values

of Ω (=mj in the absence of other couplings). However, levels with +Ω and −Ω

have the same energy due to the reflection symmetry of axially symmetric nuclei,

so that each state is now doubly degenerate, i.e. two particles can be placed in

each state. For example the f7/2 orbital can have |Ω| equal to 7/2, 5/2, 3/2 and

1/2. The ordering of these Ω levels depends on the particular shape of the nucleus

since the lowest in energy is the orbital which interacts (overlaps) the most with

the nuclear core. For prolate shaped nuclei the states with the lowest Ω values

are the most tightly bound, whereas for oblate shaped nuclei, the states with

the highest Ω occur lowest in energy. Such deformed shell model calculations

were first performed in 1955 by Nilsson [Nil55] with an anisotropic harmonic
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Figure 1.5: Nilsson orbitals for nuclei up to Z=N=50 taken from [Fir96]. The

level ordering is given as a function of the quadrupole deformation parameter,

ε2. Dashed lines indicate negative parity and solid lines indicate positive par-

ity. Positive and negative values of ε2 correspond to prolate and oblate shapes

respectively. See text for more information.
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oscillator potential and the calculated states (called Nilsson orbitals) are labelled

by Ω[NnzΛ] (see Fig.1.5), where N is the total oscillator shell quantum number

and determines the parity, given by (-1)N . Lambda (Λ) is the projection of the

particle orbital angular momentum, l, on the nuclear symmetry axis, and nz is

the number of oscillator shell quanta along the direction of the symmetry axis.


