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Zusammenfassung

Im Rahmen dieser Arbeit wurde nach γ-Übergängen möglicher Cluster- Struk-

turen in leichten Kernen gesucht. Dazu wurden Experimente mit dem γ- Detek-

torball GASP am Laboratori Nazionali di Legnaro (LNL) in Italien durchgeführt.

Um eine bessere Kannaltrenung und Selektivität zu erreichen wurde zusätzlich

der Detektorball ISIS (zum Nachweiss leichter Teilchen) verwendet. Mit der

Hilfe von γ-Teichen-Koinzidenzen wurden detaillierte Niveau-Schemata für die

Übergänge unter der Teilchenschwelle in 10Be extrahiert. Außerdem wurde die

Bevölkerung der γ-Übergänge durch Direkte- und Compoundkern- Reaktion-

mechanismen für die Neon-Isotope studiert. Das beobachtete γ-Spektrum für

21Ne wurde als starker Hinweis auf eine reflexionsasymetrische Struktur gedeutet.

Neue Spinzuordnungen, die einer DCO (Directional Correlations de-exciting Ori-

ented states) Analyse folgen, sind für einige der Niveaus in 21Ne getrofen wor-

den. Neue Übergänge in 22Ne wurden gefunden. Durch Vergleich der von uns

gemessenen Daten mit theoretischen Vorhersagen konnten zusätzlich vorläufige

Spinzuordnungen für 23Ne extrahiert werden.

Eine quantitative Analyse der Emission von 8Be und 12C∗ wurde durch geführt

und aus den Energiespektren wurden Informationen über das Verhält- nis zwis-

chen den gleichzeitig eintreffenden unkorellierten α-Teilchen sowie die den realen

8Be-Clustern extrahiert. Zusätzlich wurden die Unterschiede zwischen den reg-

istrierten γ-Spektren in Koinzidenz mit zwei α-Teilchen in unterschiedlichen De-

tektoren, und den γ-Spektren in Koinzidenz mit den ‘8Be’ Ereignisse analysiert.

Es wurde experimentell nachgewiesen, daß die Restkerne nach der Cluster-

Emission in einem höheren Anregungszustand sind, als die gleiche Kerne, die aus

der aufeinanderfolgenden Emission der α-Teichen enstanden sind. Deshalb ist bei

Restkerne, die aus der Cluster-Emission herforgeganden sind, die Emission weit-

ere leichte Teilchen bevorzugt. Dieses Phänomen ist diskutiert und eine mögliche

Erklärung wurde gegeben.



Abstract

Gamma-ray decays from possible nuclear cluster structures in light deformed

nuclei have been investigated using the GASP array of high purity germanium

detectors. In order to achieve the required experimental sensitivity, a special

device was used, namely a highly efficient array of silicon-detector telescopes

for the detection of charged particles. Using γ-particle coincidences, a detailed

level scheme for the γ-ray transitions in 10Be beneath the particle threshold was

obtained and new γ-ray transitions identified. Furthermore, the γ-ray populations

in the direct and compound reaction mechanisms were studied for neon-isotopes.

The γ-ray spectra obtained for 21Ne were interpreted as indicating a reflection

asymmetric structure. New spin assignments have been made for some of the

levels in 21Ne following a DCO (Directional Correlations de-exciting Oriented

states) analysis. New transitions in 22Ne were found. In addition, tentative spin

assignments for 23Ne were extracted after comparing the current experimental

data with theoretical predictions.

A quantitative analysis of the emission of 8Be and 12C∗ clusters was made

and information about the ratio between the coincident uncorrelated α-particles

as well as the real cluster events was extracted from the energy spectra. In

addition, the differences between the γ-ray spectra in coincidence with two α-

particles registered in different detectors and the ‘8Be’ events were analysed. The

results show the enhanced sequential emission of α-particles. Here, it has been

experimentally observed that the residual nuclei, after cluster emission, are in

a state of higher excitation energy than the same compound nuclei following

the sequential emission of α-particles. This phenomenon is discussed and an

explanation proposed.
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