Gamma-ray spectroscopy of deformed states in light nuclei and cluster emission

by
Tzanka Todorova Kokalova

A thesis submitted for the degree of Doctor.
at Fachbereich Physik,
Freie Universität Berlin,

Gutachter:

Prof. Dr. Wolfram von Oertzen
Prof. Dr. William Brewer
Date of defence $9^{\text {th }}$ July 2003

Zusammenfassung

Im Rahmen dieser Arbeit wurde nach γ-Übergängen möglicher Cluster- Strukturen in leichten Kernen gesucht. Dazu wurden Experimente mit dem γ - Detektorball GASP am Laboratori Nazionali di Legnaro (LNL) in Italien durchgeführt. Um eine bessere Kannaltrenung und Selektivität zu erreichen wurde zusätzlich der Detektorball ISIS (zum Nachweiss leichter Teilchen) verwendet. Mit der Hilfe von γ-Teichen-Koinzidenzen wurden detaillierte Niveau-Schemata für die Übergänge unter der Teilchenschwelle in ${ }^{10} \mathrm{Be}$ extrahiert. Außerdem wurde die Bevölkerung der γ-Übergänge durch Direkte- und Compoundkern- Reaktionmechanismen für die Neon-Isotope studiert. Das beobachtete γ-Spektrum für ${ }^{21}$ Ne wurde als starker Hinweis auf eine reflexionsasymetrische Struktur gedeutet. Neue Spinzuordnungen, die einer DCO (Directional Correlations de-exciting Oriented states) Analyse folgen, sind für einige der Niveaus in ${ }^{21}$ Ne getrofen worden. Neue Übergänge in ${ }^{22}$ Ne wurden gefunden. Durch Vergleich der von uns gemessenen Daten mit theoretischen Vorhersagen konnten zusätzlich vorläufige Spinzuordnungen für ${ }^{23} \mathrm{Ne}$ extrahiert werden.

Eine quantitative Analyse der Emission von ${ }^{8} \mathrm{Be}$ und ${ }^{12} \mathrm{C}^{*}$ wurde durch geführt und aus den Energiespektren wurden Informationen über das Verhält- nis zwischen den gleichzeitig eintreffenden unkorellierten α-Teilchen sowie die den realen ${ }^{8}$ Be-Clustern extrahiert. Zusätzlich wurden die Unterschiede zwischen den registrierten γ-Spektren in Koinzidenz mit zwei α-Teilchen in unterschiedlichen Detektoren, und den γ-Spektren in Koinzidenz mit den ${ }^{8}{ }^{8} \mathrm{Be}$ ' Ereignisse analysiert.

Es wurde experimentell nachgewiesen, daß die Restkerne nach der ClusterEmission in einem höheren Anregungszustand sind, als die gleiche Kerne, die aus der aufeinanderfolgenden Emission der α-Teichen enstanden sind. Deshalb ist bei Restkerne, die aus der Cluster-Emission herforgeganden sind, die Emission weitere leichte Teilchen bevorzugt. Dieses Phänomen ist diskutiert und eine mögliche Erklärung wurde gegeben.

Abstract

Gamma-ray decays from possible nuclear cluster structures in light deformed nuclei have been investigated using the GASP array of high purity germanium detectors. In order to achieve the required experimental sensitivity, a special device was used, namely a highly efficient array of silicon-detector telescopes for the detection of charged particles. Using γ-particle coincidences, a detailed level scheme for the γ-ray transitions in ${ }^{10} \mathrm{Be}$ beneath the particle threshold was obtained and new γ-ray transitions identified. Furthermore, the γ-ray populations in the direct and compound reaction mechanisms were studied for neon-isotopes. The γ-ray spectra obtained for ${ }^{21} \mathrm{Ne}$ were interpreted as indicating a reflection asymmetric structure. New spin assignments have been made for some of the levels in ${ }^{21} \mathrm{Ne}$ following a DCO (Directional Correlations de-exciting Oriented states) analysis. New transitions in ${ }^{22} \mathrm{Ne}$ were found. In addition, tentative spin assignments for ${ }^{23} \mathrm{Ne}$ were extracted after comparing the current experimental data with theoretical predictions.

A quantitative analysis of the emission of ${ }^{8} \mathrm{Be}$ and ${ }^{12} \mathrm{C}^{*}$ clusters was made and information about the ratio between the coincident uncorrelated α-particles as well as the real cluster events was extracted from the energy spectra. In addition, the differences between the γ-ray spectra in coincidence with two α particles registered in different detectors and the ${ }^{8} \mathrm{Be}^{\prime}$ events were analysed. The results show the enhanced sequential emission of α-particles. Here, it has been experimentally observed that the residual nuclei, after cluster emission, are in a state of higher excitation energy than the same compound nuclei following the sequential emission of α-particles. This phenomenon is discussed and an explanation proposed.

Acknowledgements

I would like to start by saying that during the time I spent in Berlin so many things happened that I could write a book. I had many very difficult moments (you know what I'm talking about) which I had to go through and without the people mentioned below the happy end of my Ph.D-Odyssey, which was even on time, wouldn't be possible.

First of all I want to thank my supervisor Prof. Wolfram von Oertzen (vOe) for the fruitful (sometimes bananas) physics discussions and for pushing me hard when I needed it, to get me on to the right path. Together with Edda you were looking out for me during my Ph.D. Thank you both very much for your support.

A big THANKS to my 'Small Boss'- Severin. He taught me how to analyse my data and that a LOG.0007-file contains much more information than I had ever realised. Wer lesen kann ist klar im Vorteil! Further information: this man drives crazily, smokes a pipe and knows where one can buy a good wine in Padova.

One person in HMI was always there to listen to me...thank you Chris for being a firm and patient friend. Another thanks to one who is a mine of information (better than the library and the yellow pages put together) and a good friend Thomas. 'Sposibo' to Sergey for not disturbing me too much and for all the useful and not so useful things he left me. 'Grazie' to "Sweetie" (AuRrRrrorrra) for all the great times and all the pasta... Matko: a big man and a big friend with a very sweet small daughter! Thanks to you and your family for your big help! To Konrad, Andreas and Melanie (a slam-dunkin' laser lady) for defence preparation over coffee, to Herr Bohlen and Herr Gebauer for their assistance and to Herr

Prof. Bill Brewer for his help and kindness. 'Mile grazie' to my italian friends in Laboratori Nazionali di Legnaro (Giacomo, Silvia, Daniel, Enrico, Andres, Axiotis, Trino, Kalin, Niko and etc.) who made it possible to collect all these data and have fun in the process. To Rumiana for the initial contact and continued support and Tom for the latest american science fiction. I would also like to acknowledge everyone else, not written here who has helped me on my journey.

Thank you to the DAAD for their financial support without which none of this would be possible.

Lastly special thanks to Carl and my whole family. My darling Carl, for being the most wonderful distraction possible and also for his great spell checking (and many other) abilities. Mumcho, Tatko and Batko thank you for your love and everything you've done for me. Your belief in me has always been an inspiration.

To my family, Grandma and Carl
"The only thing to do with good advice is to pass it on. It is never of any use to oneself"
by Oscar Wilde.

Contents

1 Deformation and clustering in light nuclei 1
1.1 Introduction 1
1.2 Aims and techniques of the experiments 5
1.3 Deformed shell model (Nilsson model) 6
2 Experimental method 11
2.1 Reaction mechanism 11
2.1.1 Compound nuclear reactions 12
2.1.2 Direct reactions 14
2.2 Gamma-ray detectors and charged-particle detectors 17
2.2.1 GASP (GAmma-ray SPectrometer) 17
2.2.2 ISIS (Italian SIlicon Sphere) 18
2.3 Data analysis 20
2.3.1 Structure of the data and channel selection 20
2.3.2 Calibrations 20
2.3.3 Kinematical corrections and Doppler broadening 23
3 Spectroscopy of beryllium isotopes 26
3.1 Theoretical considerations for the Be-isotopes 26
3.1.1 Cluster model 26
3.1.2 Antisymmetrised Molecular Dynamics 27
3.1.3 Electromagnetic transition probabilities 29
3.2 Search for γ-ray decays 33
3.2.1 Expected transitions in ${ }^{10} \mathrm{Be}$ 35
3.2.2 Expected transitions in ${ }^{11} \mathrm{Be}$ 37
3.2.3 Expected transitions in ${ }^{12} \mathrm{Be}$ 38
3.3 The ${ }^{7} \mathrm{Li}+{ }^{10} \mathrm{Be}$ experiment 39
3.4 Results and discussion 40
3.4.1 ${ }^{10} \mathrm{Be}$ 40
3.4.2 ${ }^{11} \mathrm{Be}$ 49
3.4.3 ${ }^{12} \mathrm{Be}$ 49
3.4.4 Gamma-ray coincidence data for the carbon isotopes 50
3.4.5 Summary and outlook 50
4 Spectroscopy of neon isotopes 54
4.1 Theoretical consideration 54
4.1.1 Cluster model 54
4.1.2 Reflection asymmetric shapes 55
4.2 Experiments: ${ }^{18} \mathrm{O}+{ }^{13} \mathrm{C}$ and ${ }^{7} \mathrm{Li}+{ }^{16} \mathrm{O}$ reactions 61
4.3 Results and discussion 63
4.3.1 Octupole bands in ${ }^{21} \mathrm{Ne}$ 63
4.3.2 Angular distributions and DCO ratios 68
4.3.3 The mirror nuclei ${ }^{21} \mathrm{Ne}$ and ${ }^{21} \mathrm{Na}$ 70
4.3.4 Gamma-ray decays and band structure in ${ }^{22,23} \mathrm{Ne}$ 76
4.4 Summary 82
5 Cluster emission 83
5.1 Experimental conditions 85
5.1.1 The ISIS detector and multiple hit events 85
5.2 Results and discussion of cluster emission as a statistical process 92
5.2.1 Discussion of the charged particle spectra 92
5.2.2 Gamma-ray coincidence spectra for different fragments 96
5.2.3 Energy-to-angular momentum balance 106
5.3 Conclusions 109
6 Summary 110

List of Figures

1.1 Ikeda Diagram [Ike68, Hor72] showing cluster states in $N=Z$
nuclei and their thresholds (in MeV) for the decomposition into
clusters. 2
1.2 Extended Ikeda Diagram, which schematically illustrates the molecular shape isomers based on α (green) and ${ }^{16} \mathrm{O}$ (blue) clusters plus some covalently bound neutrons (red) in neutron-rich light nuclei. Numbers under the configurations indicate the thresholds (in MeV) for decaying into the subunits [vO01].
1.3 Correlation diagram for molecular orbitals in a two-centre shellmodel picture. The molecular orbitals are labeled by their quantum numbers (see text). The distance between the two centres is denoted by r.

Currently observed nuclear shapes [Luc01]. The different shapes can be parametrised by spherical harmonic functions, where λ characterises the different orders of the corresponding distributions.7
1.5 Nilsson orbitals for nuclei up to $\mathrm{Z}=\mathrm{N}=50$ taken from [Fir96]. The level ordering is given as a function of the quadrupole deformation parameter, ε_{2}. Dashed lines indicate negative parity and solid lines indicate positive parity. Positive and negative values of ε_{2} correspond to prolate and oblate shapes respectively. See text for more information.
2.1 Diagram of the excitation energy of the compound nucleus, versus spin I. The scheme shows the decay of the compound nucleus via particle and γ-ray emission.
2.2 A schematic representation of a (d, n) stripping reaction.
2.3 A picture of the γ-ray detector array GASP. The second half is moved away. In the centre is the silicon detector ball ISIS18
2.4 Layout of the charged particle detector array ISIS consisting of 40 Δ E-E telescopes.
2.5 Efficiency curve for the Ge-detectors obtained with the standard radioactive sources ${ }^{152} \mathrm{Eu}$ and ${ }^{56} \mathrm{Co}$22
3.1 Excitation energies for the levels of ${ }^{10} \mathrm{Be}$ [KE98b]. The theoretical results of the variational calculations after spin and parity projection (VAP) in the AMD (right) are compared with the experimental data (left) from Ref. [Rag89]. Density distributions of protons (neutrons) for the intrinsic states are also displayed in the left (right) columns of the black panels
3.2 In the upper part of the picture, the density distributions of the valence neutron in the 0_{1}^{+}(top left) and 0_{2}^{+}(top right) states in ${ }^{10} \mathrm{Be}$ [KE98b] are shown. The bottom part shows the corresponding schematic figures of the molecular orbits surrounding two clusters in the π and σ bonds respectively30
3.3 Plot of the excitation energies of known states in ${ }^{9-12} \mathrm{Be}$ grouped into rotational bands where observed γ-ray transitions are shown with blue lines. This compilation is made in order to show the relation of the isomeric (molecular) shapes, expected close to the particle threshold. Possible new γ decays are indicated by red lines. 36
3.4 Decay-scheme for ${ }^{10} \mathrm{Be}$ as observed in this experiment. The widths of the arrows correspond to the relative intensities of the γ-ray
transitions. Energies are in keV .
3.5 The top panel shows the γ-ray spectrum gated by the 3367 keV transition to the ground state in ${ }^{10} \mathrm{Be}$. The lines at the beginning of the spectrum $(\leq 1000 \mathrm{keV})$ are due to reactions on the backing of the target $(\mathrm{Au}$ and Pt$)$ and ${ }^{16} \mathrm{O}$. The bottom panel shows the expanded part of the spectrum, clearly showing the 2590 keV doublet.42
3.6 Gamma-ray spectrum gated by the 219 keV E1 transition from the isomeric 0_{2}^{+}state at an excitation energy of 6.18 MeV in ${ }^{10} \mathrm{Be}$. The sharp components of the subsequent transitions can be clearly seen.
3.7 Top panel: γ-ray spectrum gated by the 2811 keV transition from the isomeric 0_{2}^{+}state. The sharp nature of the 3367 keV transition is clear. Bottom panel: γ-ray spectrum gated by the 2591 keV (doublet) transition in ${ }^{10} \mathrm{Be}$. The 3367 keV transition now appears broadened indicating a short (\sim femtoseconds) lifetime component, perhaps as a result of direct population in the reaction or prompt γ-ray feeding.
3.8 A schematic diagram of the neutron and γ-ray transitions taken from [Mor97]. On the left, the β-decay branching ratios from ${ }^{11} \mathrm{Li}$ to energy levels in ${ }^{11} \mathrm{Be}$. On the far right are the energy levels in the neutron-decay daughter ${ }^{10} \mathrm{Be}$. The energies of the states are given in MeV and their widths are qualitatively indicated by the line thickness.
3.9 The part of the total γ-ray projection spectrum showing where the known transition at 320 keV to the ground state in ${ }^{11} \mathrm{Be}$ should be.
3.10 Decay-scheme for ${ }^{13} \mathrm{C}$ as observed in this experiment. Energies are in keV .
3.11 Decay-scheme for ${ }^{14} \mathrm{C}$ as observed in this experiment. Energies are in keV .
4.1 Plots of the potential energy and the associated energy level spectra for different axially symmetric $(K=0)$ shapes with octupole deformation. The top potential represents a nucleus with reflectionsymmetric ground state shape. The centre potential is an intermediate case between this form and the static octupole-deformed shape, which corresponds to the bottom potential.
4.2 The potential $V\left(\beta_{3}, I\right)$ for fixed angular momentum, I, as a function of β_{3} showing the two symmetric minima in the proposed bands in ${ }^{21} \mathrm{Na}$. For the $K=3 / 2$ bands the lower barrier induces a large energy splitting; for $K=1 / 2$ the higher internal barrier gives degenerate positive and negative parity bands.
4.3 Decay scheme of ${ }^{21} \mathrm{Ne}$ showing the levels not forming rotational structures together with the $K^{\pi}=3 / 2^{+}$ground-state band as observed in the present work. All energies are given in keV. The intensities (widths) of the arrows are not to scale, except for the $K^{\pi}=3 / 2^{+}$band.
4.4 Gamma-ray decay scheme for ${ }^{21} \mathrm{Ne}$ as observed in the ${ }^{18} \mathrm{O}+{ }^{13} \mathrm{C}$ reaction. All energies are given in keV .
4.5 Rotational band structure of ${ }^{21} \mathrm{Ne}$ proposed here, showing the parity doublet structure (based on Fig. 4 of Ref. [vO01]). All energies are given in keV . The parity of the states follow the band assignments.
4.6 Gamma-ray decays observed in the ${ }^{16} \mathrm{O}\left({ }^{7} \mathrm{Li}, \mathrm{np}\right)$ reaction showing the proposed $K=3 / 2$ and $K=1 / 2$ bands of ${ }^{21} \mathrm{Ne}$. All energies are given in keV . The intensities (widths) of arrows to the right side of the ground-state band are not to scale.
4.7 Intensity distributions for a dipole ($\Delta \mathrm{I}=1$) transition (solid line) and a quadrupole ($\Delta \mathrm{I}=2$) transition (dashed line) as a function of the angle θ, with respect to the beam direction. (Zero degrees corresponds to the positive x -axis.)69
4.8 Gamma-ray spectrum obtained by gating on the $351 \mathrm{keV}\left(5 / 2^{+} \rightarrow\right.$ $3 / 2^{+}$) ground-state band transition in ${ }^{21} \mathrm{Ne}$. The labelled peaks are all placed in ${ }^{21} \mathrm{Ne}$.72
4.9 Gamma-ray spectrum obtained by gating on the $332 \mathrm{keV}\left(5 / 2^{+} \rightarrow\right.$ $3 / 2^{+}$) ground-state band transition in ${ }^{21} \mathrm{Na}$. All labelled peaks belong to ${ }^{21} \mathrm{Na}$ and no peaks are observed above 3 MeV 73
4.10 Scheme showing the ground-state band and γ-ray transitions of ${ }^{21} \mathrm{Na}$ as obtained in the present work. All energies are given in keV. 74
4.11 Coulomb Energy Difference (CED) between mirror states for the $K^{\pi}=3 / 2^{+}$band in ${ }^{21} \mathrm{Na}$ and ${ }^{21} \mathrm{Ne}$ (see text for details). 75
4.12 Gamma-decay spectrum gated by the new $4719 \mathrm{keV}\left(8^{+} \rightarrow 6^{+}\right)$ transition in the $K=0^{+}$ground-state band in ${ }^{22} \mathrm{Ne} ~ 77$
4.13 Excitation energy versus $J(J+1)$ plot for the positive parity yrast band in ${ }^{22} \mathrm{Ne}$ as obtained from the current data. 77
4.14 Gamma-ray decay scheme for ${ }^{22} \mathrm{Ne}$ as observed in this experiment. Energies are in keV.78
4.15 Gamma-ray decay scheme for ${ }^{23} \mathrm{Ne}$ as observed in this experiment (middle). On the left side of the picture is shown the previously known information about this nucleus and on the right side the predicted band calculated in Ref. [Roe00]. Energies are in keV. The widths of the arrows are only proportional to the relative intensities for the ground-state band. The widths of the arrows are proportional to the intensities for the current data (middle). . 80
4.16 Gamma-decay spectrum gated by the ground state $1702 \mathrm{keV}\left(7 / 2^{+} \rightarrow\right.$ $5 / 2^{+}$) transition of the $K^{\pi}=5 / 2^{+}, T=3 / 2$ band in ${ }^{23} \mathrm{Ne}$.
4.17 Excitation energy versus $\mathrm{J}(\mathrm{J}+1)$ plot for the positive parity yrast band in ${ }^{23} \mathrm{Ne}$ as obtained from the current data.
5.1 A plot of $\Delta \mathrm{E}$-E signals from the ISIS telescopes obtained in the ${ }^{28} \mathrm{Si}+{ }^{24} \mathrm{Mg}$ experiment.
5.2 A plot of $\Delta \mathrm{E}$-E signals from the ISIS telescopes obtained in the ${ }^{18} \mathrm{O}+{ }^{13} \mathrm{C}$ experiment.
5.3 The probability of a multiple hit for a single segment covering a solid angle of $\Omega=4 \pi$ as a function of the efficiency of the segment, for various values of the emitted particle multiplicity (M) [Far01].
5.4 Schematic illustration of the deviation of the random multiple hit events from the event line of the coincident α-particles from the ${ }^{8}$ Be-emission. Two $\Delta \mathrm{E}$-E-signals for different energies (cases B 1 and B2) and for equal energies (case A), are chosen, as indicated.
5.5 Upper panel: kinematical plots for the angular variation of the energy of 2α 's and of ${ }^{8} \mathrm{Be}$. Lower panel: normalised total energy spectra $\left(E_{\text {sum }}=\Delta E+E\right)$ as observed with the ISIS-charged particle detector system for the emission of single α 's, and of ${ }^{8} \mathrm{Be}$, in the reaction ${ }^{18} \mathrm{O}+{ }^{13} \mathrm{C}$.
5.6 Upper panel: kinematical plots for the angular variation of the energy of 3α 's and of ${ }^{12} \mathrm{C}^{*}\left(0_{2}^{+}\right)$. Lower panel: total energy spectra ($\Delta \mathrm{E}+\mathrm{E}$-signals) as observed with the ISIS-charged particle detector system for the emission of 3 single α 's, and of ${ }^{12} \mathrm{C}^{*}\left(0_{2}^{+}\right)$in the reaction ${ }^{28} \mathrm{Si}+{ }^{24} \mathrm{Mg}$.
5.7 Gamma-ray spectra obtained from the ${ }^{28} \mathrm{Si}+{ }^{24} \mathrm{Mg}$ reaction gated by different charged particle triggers. Upper panel: Doppler corrected γ-ray spectrum gated by the 3α channel. Lower panel: Doppler corrected γ-ray spectrum gated by the ${ }^{12} \mathrm{C}^{*}\left(0_{2}^{+}\right)$channel.
5.8 Gamma spectra from the ${ }^{18} \mathrm{O}+{ }^{13} \mathrm{C}$ reaction gated by different charged particle triggers. Upper panel: Doppler corrected γ-spectrum gated by the 2α channel. Lower panel: Doppler corrected γ-ray spectrum gated by the ${ }^{8}$ Be channel. 99
5.9 Ratio between the populations of the ground state transition in ${ }^{21} \mathrm{Ne}(350 \mathrm{keV})$ and ${ }^{22} \mathrm{Ne}(1274 \mathrm{keV})$ for different energies of the coincident 2α-particles.100
5.10 Upper panel: the normalised total energy spectra $\left(E_{\text {sum }}=\Delta E+\right.$ $E)$ as observed with the ISIS-charged particle detector system for the emission of 2 single α 's, and of ${ }^{8} \mathrm{Be}$, in the reaction ${ }^{18} \mathrm{O}+{ }^{13} \mathrm{C}$. Lower panel: the ratio between these two experimental curves. . . 101
5.11 Upper panel: the total energy spectra $\left(E_{\text {sum }}=\Delta E+E\right)$ as observed with the ISIS-charged particle detector system for the emission of 3 single α 's, and of ${ }^{12} \mathrm{C}$, in the reaction ${ }^{28} \mathrm{Si}+{ }^{24} \mathrm{Mg}$. Lower panel: the ratio between these two normalised curves. 102
5.12 Intensity fractions for γ-ray transitions in residual nuclei gated by the $3 \alpha,\left({ }^{8} \mathrm{Be}+\alpha\right)$ and ${ }^{12} \mathrm{C}^{*}\left(0_{2}^{+}\right)$channels from the ${ }^{28} \mathrm{Si}+{ }^{24} \mathrm{Mg}$ reaction. 104
5.13 Calculations for the energy loss of different charged particles and clusters in the silicon-detector telescopes.106
5.14 Distribution of the populations of the ground-state transitions in ${ }^{21} \mathrm{Ne}(350 \mathrm{keV}),{ }^{22} \mathrm{Ne}(1274 \mathrm{keV})$ and ${ }^{23} \mathrm{Na}(439 \mathrm{keV})$ for different energies of the coincidence gate (${ }^{8} \mathrm{Be}{ }^{\prime}+$ double hit events). 107
5.15 Ratio between the populations of the ground state transitions in ${ }^{21} \mathrm{Ne}(350 \mathrm{keV}),{ }^{22} \mathrm{Ne}(1274 \mathrm{keV})$ and ${ }^{23} \mathrm{Na}(439 \mathrm{keV})$ for different energies of the coincidence 2α-particles registered in the same detector. The curve is expected to give a horizontal line for pure double hit events (corresponding to the ratio between the probability of 1 and 2 neutron emission).

List of Tables

3.1 The Weisskopf estimates for the transition probabilities $T(\lambda L)$ in units of s^{-1}, where λ is E or M and the energy values, E, are in MeV .
3.2 Relation between the transition probability $T(\lambda L)$ and the reduced transition probability $B(\lambda L)$. Here $T(\lambda L)$ are in units of $\mathrm{s}^{-1}, B(E L)$'s in $e^{2} f m^{2 i}$ and $B(M L)$ in $\mu_{N}^{2} f m^{2 i-2}$.
3.3 Branching ratios $\left(\Gamma_{\gamma} / \Gamma_{t o t}\right)$ for γ-ray decays in ${ }^{10,11,12} \mathrm{Be}$. The values are calculated using the formulae for the transition probabilities (see Section 3.1.3) and $\Gamma=\hbar / \tau$, where Γ_{γ} and $\Gamma_{t o t}$ are the γ-ray and total widths of the levels respectively and τ is the mean lifetime. Here, $\mathrm{J} \pi_{i}$ is the spin and parity of the initial state and $\mathrm{J} \pi_{f}$ is the spin and parity of the final state for a transition with multipolarity, λL. Energies marked with '*' correspond to theoretical $B(\lambda L)$ values. A detailed discussion of the transitions is given in Section 3.2.
3.4 Relative intensities of the ${ }^{10} \mathrm{Be}$ transitions as deduced from the ${ }^{7} \mathrm{Li}+{ }^{10} \mathrm{Be}$ reaction, normalised to the $3367 \mathrm{keV}, 2^{+} \rightarrow 0^{+}$transition. The doublet transitions are marked with ' $*$ ' and the possible new 219 keV doublet transition with (a).
4.1 DCO ratios for transitions in ${ }^{21} \mathrm{Ne}$, gated by the $5 / 2^{+} \rightarrow 3 / 2^{+}$ transition at 351 keV
4.2 Newly derived spin assignments obtained from the recent experiment as deduced from the DCO ratios (marked with $\left({ }^{*}\right)$ in Table 4.1). The third column shows the assignments before this work. 71
4.3 Moments of inertia for the rotational bands in the neon isotopes. . 82
5.1 The different Jacobians for both reactions, ' a ' for ${ }^{18} \mathrm{O}+{ }^{13} \mathrm{C}$ and 'b' for ${ }^{28} \mathrm{Si}+{ }^{24} \mathrm{Mg}$. 95

