
Introduction

This work is concerned with homotopy and homology properties of arrangements.
An arrangement in a topological space X is a finite set A of subspaces of X .
One goal in the study of arrangements is the description of the union

⋃
A and

the complement X \
⋃
A. For a linear subspace arrangement in real or projective

space the intersection of the union of the arrangement with the unit sphere is also
of interest. It is called the link of the arrangement. The link can be regarded
as the union of an arrangement of spheres. By Alexander duality, the homology
groups of the link determine the cohomology groups of the complement of the
arrangement. They do not determine the multiplication in the cohomology ring.

Main result

This work treats the general theory of arrangements as well as properties of linear
arrangements. Its main contribution however is the description of the cohomology
ring of the complement of a complex projective arrangement. We will describe
this result here in some detail, which will give us the opportunity to introduce
some terminology.

Let V be a finite dimensional vector space over C and let A be a finite set of
linear subspaces of V . We denote the complex dimension of the projective space
PV by n and set PA := {PA : A ∈ A}. We define Q := {

⋂
M : M ⊂ A} and

order this set by inclusion. The partially ordered set (poset) defined in this way
is called the intersection poset of A. On it the dimension function d is defined
by d(q) := dim Pq . In particular d(>) = d(

⋂
Ø) = d(V ) = n. The result will be

an explicit description of the cohomology ring of the complement of the projective
arrangement PA in terms of the intersection poset and the dimension function.

Additively the cohomology of the complement is given by

H2n−i
(
PV \

⋃
PA

)
∼= Hi

(
PV,

⋃
PA

)
∼=

n⊕
k=0

Hi−2k(∆Q[k,n],∆Q[k,n)). (1)

Here Q[k,n] := {q ∈ Q : k ≤ d(q) ≤ n}, Q[k,n) := {q ∈ Q : k ≤ d(q) < n} and for
a poset P the order complex of P , i.e. the simplicial complex with simplices
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all chains in P , is denoted by ∆P . The first isomorphism above is Poincaré-
Lefschetz-duality, and the second isomorphism will be described explicitly by maps
hk : Hi−2k(∆Q[k,n],∆Q[k,n)) → Hi (PV,

⋃
PA).

On the ordered simplicial chain complex C∗ of ∆Q a product ×̂ is defined as the
composition

×̂ : Cr(∆Q)⊗Cs(∆Q) ×−→ Cr+s(∆Q×∆Q) = Cr+s(∆(Q×Q)) ∧∗−→ Cr+s(∆Q), (2)

where ∧ : Q×Q → Q is the map taking (u, v) to the minimum u∩v . The map ∧ is
order preserving and hence a simplicial map. The product ×̂ induces products in
homology. Denoting the intersection product on the homology of (PV,

⋃
PA) that

corresponds via duality to the cup product on the cohomology of the complement
PV \

⋃
PA by • the cohomology ring will be fully described by (1) together with

the following formula.

Theorem. For c ∈ H∗(∆Q[k,n],∆Q[k,n)) and d ∈ H∗(∆Q[l,n],∆Q[l,n))

hk(c) • hl(d) =

{
hk+l−n(c ×̂ d), k + l ≥ n,

0, k + l < n.
(3)

This will appear as Theorem 2.2.1 in this work. Since the intersection product
is a composition of the cross product and the transfer of the diagonal map, the
connection between it and the product ×̂ seems very natural in the light of (2).

History

We mention parts of the history of this subject that build a suitable context for
the description of the content of this work.

Arnol’d has given a simple presentation in terms of generators and relations for
the cohomology ring of the classifying space of the coloured braid group [Arn69].
This classifying space is the complement of the arrangement {{z : zi = zj} : i 6= j}
in Cn , i.e. it is the complement of a linear complex hyperplane arrangement. This
result has been extended to arbitrary linear complex hyperplane arrangements,
where the cohomology is described by the Orlik-Solomon algebra of the intersection
poset [OS80]. Several generalizations for other classes of complex linear subspace
arrangements have been obtained afterwards.

For an arbitrary complex linear and projective subspace arrangement Goresky and
MacPherson have given descriptions of the cohomology groups of the complement
in terms of the intersection poset and the dimension function as an application
of their stratified Morse theory [GM88]. A formula equivalent to (1) appears in
that work. Ziegler and Živaljević have given a concrete homotopy equivalence
between a space determined by the intersection poset and the dimension function
and the link of a linear arrangement from which the homology formula can be read
of [ZŽ93]. Their approach is to view an arrangement as a diagram of spaces (and
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inclusion maps). They have given an overview of homotopy theoretic tools which
are useful in this setting and further applications to problems in combinatorics
in [WZŽ99].

De Concini and Procesi produced rational models to show that the cohomology
rings with rational coefficients of the complements of complex linear arrangements
are determined by the intersection poset and the dimension function [DCP95].
Yuzvinsky used these models to endow the homology formulas given by Goresky
and MacPherson for these arrangements with a combinatorially defined product
which describes the cohomology ring of the complement of a complex linear ar-
rangement [Yuz02]. This product is equivalent to the product ×̂ defined above
under an isomorphism shifting dimensions by two, although the connection with
the cross product was not made explicit. Starting from this description of the co-
homology ring he was in a position to attack the problem of giving presentations
in terms of generators and relations for special classes of arrangements in a purely
combinatorial way and he generalized previous results [Yuz99]. His results were
however, by the nature of the rational models which were at the foundations of
this, confined to complex arrangements and cohomology with rational coefficients.
The generalization of the product formula to integral coefficients and a class of real
linear arrangements containing all complex linear arrangements was done indepen-
dently by Deligne, Goresky and MacPherson [DGM00] and by de Longueville and
the current author [dLS01]. The latter work uses quite explicit geometrical con-
structions for which it is important that the homology isomorphism are induced
by the topological maps of Ziegler and Živaljević. It also introduces the product ×̂
in the form above.

Leitfaden

In Chapter 1 we deal with general arrangements in topological spaces. We first
give a minimal overview over homotopy properties of diagrams of spaces. We then
develop a corresponding theory of diagrams of chain complexes suitable to the
study of homology properties of arrangements. This section features a spectral
sequence that will be crucial in studying products later on. In the third section
we show how to apply the results presented so far to the study of arrangements.
Possibly new is the proof that a product formula like Yuzvinsky’s holds quite
generally for the cohomology ring of the complement of an almost arbitrary ar-
rangement in a manifold, albeit only in the graded object defined by the filtration
of the cohomology ring induced by the spectral sequence. This graded formula
will be be the basis for proofs of exact formulas in the second chapter. In the case
of projective arrangements discussed above, such a graded formula would describe
hk(c) • hl(d) only up to elements hi(ri) with i > k + l − n.

In Chapter 2 we enter the more concrete realm of linear arrangements. In Sec-
tion 2.1 we prove several homology and also a few homotopy formulas for central
linear, projective and affine arrangements, among them (1). While the isomor-
phisms and homotopy equivalences are constructed in a uniform manner. Still
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some redundancy is to be expected, as the aim is to demonstrate the use of the
tools from Chapter 1 and connections between the different isomorphisms. There is
probably nothing really new in that section, except perhaps that some things may
not have been made quite so explicit before, including the connections between
affine and projective arrangements and the homotopy equivalence for projective
arrangements in Proposition 2.1.17. The topological maps forming this homotopy
equivalance also induce the isomorphisms hk defined above. To have such explicit
descriptions of them makes our approach to the calculations of products possible.

In Section 2.2 we turn to determining the products in the cohomology rings of com-
plements of linear arrangements. We first state the results for affine and projective
arrangements. The product formula in Theorem 2.2.3 is the main result of [dLS01].
The corresponding formula for projective arrangements in Theorem 2.2.1 is the
one discussed above. We then prove graded versions of these formulas by iden-
tifying them as special cases of a result from the first chapter. We show how
the exact formulas can be derived from these by an inductive argument, if the
vanishing of certain products can be guaranteed. An easy geometric argument
then proves this vanishing for affine arrangements. For projective arrangements,
this necessary vanishing is just the case k + l < n in (3) above. Its proof costs
considerably more effort than in the affine case and takes up Section 2.3.

In Section 2.4 we derive from the product formula for projective arrangements thus
proved a presentation of the cohomology ring of a projective c-arrangement. This
is done by methods employed by Yuzvinsky in proving presentations for similar
classes of linear arrangements.
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