
Chapter 7

Optimisation

The possibility of fast and practically arbitrary laser pulse modification with pulse shaping

techniques described in Sec. 5.6 provides a very effective tool for an active control of molecular

processes. This control can be obtained through the interaction of shaped laser pulses with a

molecular system, where a closed loop between the pulse shaper and the resulting response of

the molecular system is utilised together with a self-learning algorithm [JRa92]. Such scheme

of an adaptive closed loop allows one to control different photoinduced processes such as

bond dissociation and rearrangement [LMR01], selective fragmentation [ABB98], laser induced

fluorescence [BYW97], or high harmonic generation [BBZ00].

This chapter presents concepts of adaptive closed loop optimisation. It begins with a

general overview of excising optimisation methods. Then methods based on stochastic search

are described in detail. Finally, the practical implementation of the optimisation algorithm

employed in the present work is described.

7.1 Introduction to Mathematical Optimisation

The aim of an optimisation is to maximise or minimise some quantity by systematically

modifying the values of parameters within an allowed range of variation. The quantity which

has to be optimised is called an objective or cost function. A set of parameters (unknowns

or variables) constitutes the optimisation variable. An ensemble of optimisation variables

constitutes the search space. The restrictions on allowed parameter values are known as

“constraints”. The constraints allow the unknowns to have only certain values and exclude

others. Generally speaking, constraints are not essential.

95

96 CHAPTER 7. OPTIMISATION

Mathematically, the optimisation problem is formulated as

maximise f(x), subject to ci(x) ≤ bi, i = 1, ...,m , (7.1)

where the vector x = (x1, ..., xn) ∈ Rn is the optimisation vector of n independent variables,

f(x) : Rn → R is the objective or cost function, ci(x) : Rn → R are the constraint functions,

and bi are the bounding conditions. The constraints in the form of ci(x) = bi are termed

equality constraint functions, while those in the form of ci(x) < bi are inequality constraint

functions. Generally, a minimisation of a function f(x) can be regarded as a maximisation of

−f(x). The purpose of an optimisation is to find the global maximum – i.e. a vector xG that

maximises the objective function f(x) over all possible vectors x

f(xG) > f(x) ∀x ∈ D(x), x 6= xG , (7.2)

where D(x) is set of feasible values of the vector x. Obviously, for an unconstrained problem

D(x) is infinitely large.

In the general case several local maxima can exist in the search space. A local maximum

is defined as a vector xL which satisfies the following condition

f(xL) > f(x) ∀x ∈ N(xL, δ), x 6= xL , (7.3)

where N(xL, δ) is defined as the set of vectors x contained in the neighbourhood of xL (within

some arbitrarily small distance δ of xL).

A large variety of mathematical methods was developed to solve optimisation problems.

Many methods are suitable only for certain types of problems. Therefore, it is important to

recognise the problem type and find an appropriate solution technique. Complexity of an op-

timisation problem depends on relationships between the objective and constraint functions.

The simplest class comprises linear optimisation problems. An optimisation problem is linear if

the objective and all constraints are linear functions of the decision variables. If the objective

or at least one of the constraints is a smooth nonlinear function, the corresponding optimi-

sation problem is called a smooth nonlinear optimisation problem. The most general class of

optimisation problems is a non-smooth optimisation problem.

Linear optimisation problems can be solved using the simplex method [CLR01]. Alterna-

tively, the interior point method (also referred to as barrier method) was developed to solve

this type of optimisation problem [Wri97]. There is no single method which is the best for all

7.2. METHODS OF STOCHASTIC OPTIMISATION 97

smooth nonlinear optimisation problems. The most widely used and effective methods are the

gradient projection and reduced gradient methods [WXi00]. Non-smooth optimisation prob-

lems can have multiple locally optimal points. Therefore, since gradient information can not

be used to determine the direction in which the function is increasing (or decreasing), methods

based on either the systematic or random search are preferable for the solution of such type

of optimisation problems. The classical group of methods based on the systematic search is

called branch and bound methods [Moo91]. These methods are methods for global optimi-

sation. Their efficiency depends critically on the effectiveness of the branching and bounding

algorithms used. There is no universal bounding algorithm that works for all problems. Wrong

choices can lead to a slowdown of the method. In the worst case the computation time

grows exponentially with the problem size. Random search methods are non-deterministic

and stochastic. Therefore, they can provide different solutions on different runs, even when

starting from the same point on the same model. Generally, these methods are not able to

prove that the solution obtained is the optimal solution. However, these stochastic optimisa-

tion methods are very fast. The application area for these methods comprises tasks, where

systematic search methods fail. Many problems of practical interest fall into this category, for

example, those where the search space is too large or the underlying mathematical model is

not known exactly. The next section describes several examples of optimisation methods from

this group in detail.

7.2 Methods of Stochastic Optimisation

7.2.1 Simulated Annealing

A very popular stochastic algorithm which can be used efficiently for a wide range of

optimisation problems is simulated annealing (SA) [KGV83]. The original motivation of this

method comes from the statistical physics by an analogy with the cooling of fluids into a

crystalline structure of minimal energy.

The SA is just an iterative improvement [DFF63] incorporating with the Metropolis criterion

[MRR53] for accepting or rejecting of a randomly generated trial move. The main advantages

of SA over simple iterative improvement lies in the ability to avoid trapping into locally optimal

98 CHAPTER 7. OPTIMISATION

set initial temperature T

define primary state Ci

evaluate this state f(Ci)

generate new state Cj

evaluate new state f(Cj)

f(Cj) > f(Ci)

change temperature T

stop optimisation

no

yes

yes
replace Cj → Ci

final state

no
no

yes

replace Cj → Ci

p ≤ exp(δf/T)

Figure 7.1: Diagram of the simulated annealing algorithm. For details see text.

points.

The structure of the SA algorithm for maximisation is depicted in Fig. 7.1. It starts with

setting an initial system temperature T and the definition of a primary (initial) system config-

uration Ci. It is important to mention that the temperature here is not a real temperature but

a control parameter which is called temperature by analogy with statistical physics. Then the

primary system configuration is evaluated resulting in a number of a scalar objective function

f(Ci). After that, a new system configuration Cj is generated by random changes of the old

configuration. The changes have to be rather small, but at the same time they must allow to

7.2. METHODS OF STOCHASTIC OPTIMISATION 99

reach any possible configuration of the system within a finite number of iterations. Then the

new configuration is evaluated by calculating f(Cj). After that, the temperature of the system

is changed. Now, if the value of the objective function for the new system configuration is

larger than for the primary configuration (f(Cj) > f(Ci)), the old configuration is replaced

by the new one (Cj → Ci). Otherwise the replacement can occur with some probability p

depending on the temperature

p = exp

(
δf

T

)
, (7.4)

where δf = f(Cj) − f(Ci) is the increase of the objective function and T is a current

temperature. This “temperature” is a control parameter measured in the same units as the

objective function. The procedure is repeated in the loop until stopping conditions or a final

temperature is reached. The SA algorithm for minimisation has only insignificant differences.

Namely, the old configuration is replaced by the new one (Cj → Ci) if f(Cj) < f(Ci),

otherwise the replacement probability is given by Eq. (7.4) with δf = f(Ci)− f(Cj). For fast

and successful performance of the algorithm, it is very important to judiciously set the initial

temperature and the rules for reducing it. An appropriate initial temperature can be found using

the following procedure [Kir84]. The SA algorithm is started a few hundred times with some

arbitrary temperature to determine a fraction of accepted system configurations according

to Eq. (7.4). If this fraction is less than 80 %, the initial temperature has to be doubled.

This process is repeated until the fraction overcomes this threshold. During optimisation the

temperature can be decreased either in an exponential cooling scheme

Tj = αTi (7.5)

with α < 1 or in a linear cooling scheme

Tj = Ti −∆T (7.6)

with a small ∆T . The final temperature is either predetermined by setting the total number

of iterations or, alternatively, the optimisation can be interrupted if no further progress is

observed.

SA has advantages and disadvantages compared to other global optimisation techniques.

Among its advantages are the relative ease of implementation and the ability to provide rea-

sonably good solutions for many combinatorial problems. Its drawbacks include the need for a

great deal of computer time for many runs and carefully chosen tunable parameters [ECF98].

100 CHAPTER 7. OPTIMISATION

7.2.2 Evolutionary Algorithms

The next group of optimisation algorithms (genetic algorithm [Hol73], evolution strat-

egy [Rec73], and genetic programming [Koz92]) attempts to simulate principles of biological

evolution processes. These are so-called evolutionary algorithms.

The genetic algorithm (GA) is based on the phenomena of natural evolution and survival

of the fittest. Its terminology is drawn from the evolution theory of Darwin [Dar01]. The

main difference between GA and SA is that the SA works with one solution, while the GA

operates with a set of solutions (a population of individuals in the evolution terminology).

The process of transforming one population to another is described by the term “generation”

or “iteration”. The construction of a new generation involves specific operators of selection,

crossover, and mutation. Usually, an objective function for maximisation with GA is referred

to as “fitness function” to accentuate the evolutionary nature of this algorithm.

The basic structure of the GA algorithm is presented in Fig. 7.2. The optimisation begins

with building of an initial population of N individuals. This can be done either by a random

generator or by some problem specified guess if possible. The GA employs a binary repre-

sentation of individuals, where each individual is encoded by a bit string (chromosome). The

chromosome length determines the accuracy with which an individual can be encoded.

Then all individuals are evaluated by applying the fitness function. This function returns

a scalar number (fitness) depending on the fitness of the individual which is taken as the

function input. Assuming that the aim of the optimisation is maximisation, higher values of

the fitness function correspond to more successful individuals.

After this evaluation some individuals have to be selected according to their fitness and

used for reproduction to create a new generation of individuals. There are several methods of

selection. All methods imply that the individuals with a higher fitness have a larger probability

to be chosen for the reproduction. One of the commonly used and most simple among them

is the roulette wheel selection (proportional selection) method [Bak87]. The probability of any

individual to be selected for reproduction in this method is proportional to its fitness value.

Unfortunately, the roulette wheel selection method is affected by a scaling problem when

the selection probabilities become strongly dependent on the scaling of the fitness function

[BHo91]. Another popular selection method is called tournament selection [GDe91]. Here the

best individual according to the fitness chosen from two randomly taken individuals is used

7.2. METHODS OF STOCHASTIC OPTIMISATION 101

initial population

evaluation

elitism

stop optimisation

no

yes

yes

optimal solution

no

crossover

mutation

Figure 7.2: Basic scheme of the genetic algorithm. For details see text.

for reproduction. This method can be generalised involving a larger number of the individuals

to pick up the best one. The selection method, when some fraction of the individuals with

the highest fitness are selected and then these individuals utilised for the reproduction with

the same probability, is known as the “truncation selection” [BTh95]. Usually, the truncation

threshold is set to select between 10% and 50% of the population for the reproduction. For

the ranking selection the individuals are ranked according to their fitness values. The highest

rank corresponds to the best individual. Then the individuals are selected for the reproduction

with the probability proportional to the their rank. The case of the probability linearly assigned

to the rank corresponds to the linear ranking selection [BTh95]. For the exponential ranking

selection [BTh95] the probability has to be exponentially weighted with the rank. Sometimes

an individual is characterised not only with a single value of the fitness function, but additional

criteria are involved in order to evaluate the quality of the individual. Then, the “multi-objective

fitness assignment” has to be applied [Fon95].

A new generation of individuals is created by crossover and mutation using individuals

selected with one of the above described methods. In the simplest form of the one point

102 CHAPTER 7. OPTIMISATION

crossover a chromosome part of one individual is exchanged with a chromosome part of another

individual producing an offspring. The split point of both chromosomes is defined randomly.

Generally, up to n − 1 points crossover can be performed (n is a chromosome length) but

the optimisation performance is degraded when many points are employed for the crossover

[Jon75]. The idea of the multi-point crossover is that parts of the chromosome that contribute

most to the fitness of a particular individual may not necessarily be contained in adjacent

substrings [Boo87]. The next type of crossover is the so-called “uniform crossover” operator

which creates offsprings by picking each bit from either of the two parent chromosomes [Sys89].

The uniform crossover operator produces on the average n/2 crossings of a chromosome. The

“shuffle crossover” is similar to the uniform crossover [CES89]. The variables are randomly

shuffled in both parents before the exchange. After one point crossover, the variables in the

offsprings are unshuffled in reverse. Then new individuals created by the crossover undergo

the mutation. Each bit of the chromosome can be flipped from 0 to 1 or from 1 to 0 with

some probability. Since the initial population of individuals may not contain enough variability

to reach the optimal solution via the crossover alone, the mutation is used to introduce extra

variability. There are several modifications of the GA with respect to the crossover and the

mutation. For example, the crossover can be applied with some probability and then the

mutation takes place only for individuals for which the crossover fails. Sometimes a number

of possible mutations is restricted to only one per an individual. Commonly, a probability of

the mutation is very low, while the crossover is applied with a high probability.

If all individuals of a new generation are created by crossover and mutation, such process

is called the “total replacement”. Every individual lives one generation only. But it can lead to

the situation when the best individuals are replaced with worse offspring, and therefore good

information is lost. To avoid this, a number Ne of the best individuals can be transferred

into a new generation without any modifications. This is so-called “elitism replacement”.

The rest N −Ne individuals are created by the crossover and the mutation. Assuredly, these

Ne of the best individuals in the original population are also available for the crossover and

the mutation. The elitism guarantees that the best chromosomes will be always presented in

succeeding generations. The proper rate of the individuals Ne/N involved in the elitism affects

the success of an optimisation. If the output of the fitness function is noise free, it is enough

to send only one individual to the next generation. But, if the fitness function contains also

7.2. METHODS OF STOCHASTIC OPTIMISATION 103

an experimental noise, at least several individuals have to be used to be sure that the best

individual is selected among them. A too large rate can create a predominance of particular

type of chromosomes in a population. This reduces the diversity of individuals required for an

adequate search and even can be a reason of the premature convergence to a local optimum.

The high selection probability exclusively given during the selection procedure to the individuals

with large fitness values especially at the initial stage of the optimisation process can again

be a reason of the premature convergence to a local optimum. Sometimes, the “fitness based

replacement” is applied. In this case the new generation is built from individuals with the

highest fitness taken from both offspring and the old generation.

Then a new generation is evaluated again and the optimisation loop is run until stop

conditions, such as a preselected number of generations or some desired fitness value, are

reached. Alternatively, a stop point can be determined according to the evaluation of the

fitness function. For example, if the difference between the best fitness value and the average

fitness value over the same generation is rather small.

The “evolution strategy” (ES) is similar to GA [Rec73]. In the general case λ offspring

individuals are created from µ parent individuals. Then the offspring individuals are mod-

ified by a mutation operator. Usually, µ and λ are small integers. As with the GA, an

individual represents a possible solution of an optimisation problem. But the ES uses the

parameter representation in a forms of vectors of integer or real numbers. This vector is called

“object-parameter”. This vector together with another vector of real numbers (the “strategy-

parameter”) defines the data-structure for a single individual. The data-structure is usually

referred to an ES-chromosome. The object-parameters contain the variables which have to be

optimised, while the strategy parameters control the mutation of the object-parameters .

The “genetic programming” (GP) brings the idea of the GA one step further and evolves

computer programs [Koz94]. Not only parameters of a problem but also the algorithm for

the problem solving itself is subject of evolutionary changes. Most of the theory behind GP

is the same as that behind the GA. The main difference between GP and the GA lies in the

representation of a solution. The GA operates on a string of bits that represents the solution.

While GP creates computer programs as the solution. The main disadvantage of GP is the

huge computing resources required to solve any real world problem.

For the optimisation of complex systems the combination of several optimisation methods

104 CHAPTER 7. OPTIMISATION

can be a promising approach. If several different evolutionary algorithms are combined, it

is called the “application of different strategies”. The “competing subpopulations” involves

simultaneous using of different optimisation strategies. Both methods open new dimensions

to the application of evolutionary algorithms and make one step towards the development of

powerful tools for the solution of complex problems.

7.3 Practical Implementation of Optimisation

This section describes the optimisation program which was developed by the author of this

thesis to perform experiments presented in this work.

A schematic of the adaptive closed loop setup is depicted in Fig. 7.3. It consists of three

main parts: a reflectron time of flight (Re-TOF) mass spectrometer, a pulse shaper, and an

evolutionary algorithm. The pulse shaper is controlled by the evolutionary algorithm and cre-

ates pulses with a temporal structure depending on the applied phase mask. The shaped laser

pulses are focused with a mirror onto a molecular beam inside an interaction region of the Re-

TOF mass spectrometer which detects produced ions. The response of the molecular system

is used as feedback signal for the evolutionary algorithm. The algorithm adapts the temporal

structure of the shaped pulses in a loop to optimise a specified process. The optimisation is

carried out until the desired experimental output is received.

A genetic algorithm implemented with LabVIEW is used in the present work. This algo-

rithm was chosen because it outperforms other evolutionary algorithms in noisy environments

[TLo94].

A population of individuals is realised as an array of structures consisting of two elements.

A first element of the structure is a vector of integer numbers for the encoding of an individual

(the phase mask used in the shaper), while a second element presented by a single real

number characterises a fitness value of the corresponding individual (an expression derived

from a combination of measured experimental signals).

The vector of 10 bits integer numbers (optimisation parameters) represents a spectral

phase distribution (phase mask). Of course, the integer numbers have to be rescaled to the

interval between 0 and 2π before be applied to the shaper. The maximal length of this vector

is 640 and is limited by the numbers of pixels constituting the LCM. The vector length and

7.3. PRACTICAL IMPLEMENTATION OF OPTIMISATION 105

evolutionary
algorithm

Re-TOF

feedback signal

pulse shaper

Figure 7.3: Scheme of the adaptive closed loop setup.

the maximal value of each parameter determine a size of the search space which in this case

is 1024640. This number is extremely huge. Therefore, to obtain reasonable convergence

times the size of the search space must be limited. For that purpose the range of possible

values of the optimisation parameters (often referred to as the resolution r) can be restricted

to some number below 1024. Moreover, the vector length can also be reduced either by

grouping of pixels or by parametrisation. In the first case a whole phase mask is reconstructed

by using one parameter for a group of several pixels or by interpolation (linear or spline) of

parameters to get a phase mask. In the second case a phase mask is described by some

mathematical function and parameters of this function are optimisation parameters. The first

case of optimisation is called “free optimisation”, while the second case is corresponded to the

parameterised optimisation. In the program used in this work, the genetic algorithm operates

on 32 parameters only with 100 possible values of each parameter during a free optimisation.

These two restrictions allow one to reduce a size of the search space down to 10032. Taking

into account that only the central fraction of the LCM is effective due to the narrow laser

106 CHAPTER 7. OPTIMISATION

bandwidth the real size of the search space is even smaller. But this is still a gigantic number.

Thus, only random search methods, which are non-deterministic and stochastic, can effectively

handle such large search space.

The number of individuals in the population has a great influence on the efficiency of the

optimisation. The large number provides many degrees of freedom to explore the search space

and minimise the risk of being trapped in a local maximum. This is especially important in

the case of the complex search space with multimodal topology, such as encountered in the

present work when e.g. optimising the fragmentation of model peptides. But the convergence

time increases with growing population size as well. Generally, a larger population size is

required if the optimisation problem has a high complexity. In this work, the population

size of 20 individuals is determined from the condition that one optimisation run must not

exceed two hours. This limitation mainly comes from the maximal time during which a stable

laboratory environment can be maintained. Approximately the same size of the population is

successfully used in many applications of pulse shaping even with a much larger search space

[BER07, Mer07]. The two best individuals (survivors) are transferred into the next generation

without any modifications (elitism). Generally, the population of individuals are initialised with

random numbers. But the optimisation programm provides the possibility to include one or

more preselected individuals in the initial population. Alternatively, the programm can try to

build the initial population out the individuals which exhibit a fitness above some threshold.

This strategy can be useful when, for example, an average fitness of a random phase mask is

comparable with a noise level.

As described above, there are several methods to select individuals for the crossover. These

selection schemes have various characteristics and therefore can influence the optimisation effi-

ciency differently. For example, the proportional selection is not translation invariant [BHo91]

and therefore the selection probabilities strongly depend on the scaling of the fitness function.

The truncate selection excludes some number of individuals from selection. Moreover, the

efficiency of a selection method can depend on the type of an optimisation problem. Here

the ranking selection is employed as the main method because it behaves in a more robust

manner [Why89]. After evaluation of the whole population of N individuals they are ranked

according their fitness values starting from the best individual. A special parameter ν (nonlin-

earity) allows one to change the “nonlinearity” of this selection method and thus to regulate

7.3. PRACTICAL IMPLEMENTATION OF OPTIMISATION 107

the probability of better individuals being selected compared to the average probability of se-

lection for all individuals. The probability of a m-th individual to be selected for the crossover

is given by

pm =
1

K
(N −m)[1−lg ν]; m ∈ [0, N − 1] , (7.7)

where K is a normalisation coefficient which is determined from the condition of
∑N−1

m=0 pm = 1.

The parameter ν can be altered from 0 to 1. ν = 1 corresponds to the situation of the linear

ranking selection scheme. The reduction of ν shifts the selection probability to the direction

of the individuals with the higher fitness. Finally, only one best individual is selected at ν = 0.

The crossover probability pc itself is defined as

pc =
n− 1

n+ 1
, (7.8)

were n is a chromosome length. This manner of the crossover probability determination leads

to very large values of the probability. For example, the crossover probability of ≈ 94%

corresponds to chromosome length of 32.

The non-binary representation of individuals is a key difference of this algorithm over the

GA described in Sec. 7.2. Mainly, this difference effects on the implementation of the mutation.

The mutation, which is applied with some probability pm to each optimisation parameter of a

chromosome, can modify a value of a parameter x according to the following expression

x± xmaxP [1−lg σ] , (7.9)

where P ∈ (0, 1) is a uniform distributed random number, xmax is a maximal possible value of

x, and σ is a parameter which characterises the mutation step size. If the value of x obtained

after the mutation is larger than xmax (or less than 0), it has to be rescaled to the range

between 0 and xmax by the subtracting (or adding) xmax. The case of σ = 0 corresponds to

the absence of mutation. The mutation variability increases with larger σ and it reaches the

maximum at σ = 1 when any x is simply replaced with a random number.

The fitness function f is determined by the response of the molecular system upon exci-

tation with shaped laser pulses. Depending on the aim of an experiment in the simplest case

the fitness function can be equal to an integrated yield of some particular ion. Generally, the

fitness is a function of several parameters. For example, if the yield of one particular ion a

must be maximised, while at the same time the yield of different ion b must be suppressed, it

108 CHAPTER 7. OPTIMISATION

was found that an appropriate fitness function is

f = [a− a0]× [b0 − b] , (7.10)

where a0 and b0 are the respective ion yields obtained with an unshaped laser pulse. Such

definition of the fitness function allows one to maximise the formation of a particular ion and

to minimise the formation of a different one simultaneously. After the evaluation of the current

generation the best fitness fbest and the worst one fworst in the generation can be found. The

fitness averaging over the whole generation gives a mean fitness fmean. An optimisation is run

while fbest still increases. If no further growth of fbest is observed at least during 5 generations,

the optimisation can be terminated. Usually, only a small number (between 20 and 30) of

generations are required to find an optimal solution.

The choice of the parameters used in the optimisation program has a significant impact

on its performance. Hence, it is very important to find a proper set of these parameters. The

best way of doing so is to perform optimisations of real physical systems and investigate the

influence of the parameters on the optimisation results. Since this requires a lot of time, a set

of test optimisations was made instead. The main idea of the test optimisation is to imitate the

pulse shaper by applying the Fourier transformation to a Gaussian spectrum (45 nm FWHM)

modulated with a phase mask defined by the program. The goal of the test optimisation

is to find a phase mask which minimises the deviation between the calculated shaped pulse

and some predefined shaped pulse with a complex temporal structure. The pulse shown in

Fig. 9.12d was chosen as a target. The fitness function f in this test optimisation is defined

as

f =

∫ ∞
−∞
|Itarget(t)− Icalc(t)| dt , (7.11)

where Itarget(t) is the temporal structure of the target pulse and Icalc(t) is the the temporal

structure of the calculated pulse. The test optimisation was repeated 100 times for each set of

the parameters to find the average values of the best fitness fbest, the mean fitness fmean, and

the worst fitness fworst. The mutation probability pm, the nonlinearity ν, and the mutation

step size parameter σ were tested very carefully. First, the influence of pm on the final fitness

was investigated in a range of pm between 0.001 and 0.9 with two kind of optimisations: a

long and a short one. The long optimisation was performed with 1000 generations to see the

maximal fitness achievable in such kind of experiment, while the short optimisation was done

7.3. PRACTICAL IMPLEMENTATION OF OPTIMISATION 109

1 E - 3 0 . 0 1 0 . 1 1
0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

1 E - 3 0 . 0 1 0 . 1 1
0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

(d)

ν [a r b . u n i t s]
1 E - 7 1 E - 5 1 E - 3 0 . 1

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5 (c)

σ [a r b . u n i t s]

fit
ne

ss
 [a

rb
. u

ni
ts

]

(b)

p
m
 [a r b . u n i t s]

1 E - 3 0 . 0 1 0 . 1 1
0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

 f b e s t f m e a n f w o r s t

(a)

p
m
 [a r b . u n i t s]

Figure 7.4: Results of the test to determine optimal values of the parameters used in the
optimisation program: (a) test of the mutation probability pm within 1000 generations;
(b) test of the mutation probability pm within 30 generations; (c) test of the mutation step
size parameter σ within 30 generations; (d) test of the selection nonlinearity parameter ν
within 30 generations. The best fitness fbest, the mean fitness fmean, and the worst fitness
fworst are represented by red squares, green circles, and blue triangles, respectively. For
details see text.

with 30 generations only to get the feeling about the fitness which can be received within a

time limited real optimisation experiment. The results of these two optimisations are presented

in Fig. 7.4a and Fig. 7.4b, respectively. The two important conclusions originates from these

test optimisations. First, fbest, fmean, and fworst exhibit a strong dependence on pm. fbest

growths with increasing of pm from 0.001 to ∼ 0.3. At the same time the spread between

fbest, fmean, and fworst is dramatically increased. fbest has a maximum around 0.3 ± 0.1

and drops sharply for larger values of pm. Second, the difference between fbest obtained

within 1000 and 30 generations is negligible small. Therefore, 30 generations are enough

for the algorithm convergence. There is a recommendation to employ only one mutation

110 CHAPTER 7. OPTIMISATION

Table 7.1: Standard parameters for a free optimisation with the genetic algorithm.

Parameter Value

Population size, N 20

Number of survivors, Ne 2

Number of optimisation parameters, n 32

Resolution, r 100

Selection nonlinearity, ν 1

Crossover probability, pc 0.94

Mutation probability, pm 0.2

Mutation step size parameter, σ 0.0001

per an individual [Bae93]. In case of 32 optimisation parameters the corresponding mutation

probability is ≈ 0.03 only. Therefore, the mutation probability of 0.2, which is slightly less than

the value from the test optimisations, is utilised in real optimisations. Then the mutation step

size parameter σ and the selection nonlinearity parameter ν were tested within 30 generations.

These results are shown in Fig. 7.4c and Fig. 7.4d, respectively. The influence of σ is very weak

on the best fitness. The optimal value of σ can be seen around 0.0001. The effect of ν is not

visible in the test optimisation. For the real optimisation this parameter is set to 1. Finally, the

values of the parameters found with the test optimisations were verified experimentally with

the optimisation of the second harmonic yield [Boy00]. Table 7.1 summarises all parameters

used in the present work for a free optimisation with the algorithm described above.

In this chapter different optimisation methods were described. The practical implementa-

tion of the genetic algorithm used in the present work was given. Proper values of the most

important parameters involved in the optimisation algorithm (namely, the mutation probability

7.3. PRACTICAL IMPLEMENTATION OF OPTIMISATION 111

pm, the nonlinearity ν, and the mutation step size parameter σ) were determined using the

test optimisation and summarised together with other parameters in Table 7.1.

112 CHAPTER 7. OPTIMISATION

