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CHAPTER 1

INTRODUCTION

1.1 Background

Flood is a natural phenomenon with a prompt increase of water volumes from the drainage

system, ponds or reservoirs. Anomaly weather situations, underlying surface conditions and

human activities are the primary reasons for flood’s generation. In urban catchments, flood

usually occurs following the instantaneous rainfall events with high intensity. Rapid response

of the stream flows in drainage networks can reach to peak level in a few minutes which

leaves a short warning time for prevention operated. Main features of urban catchment’s

flood are concluded by Georgakakos (1986) and listed as follows :

• Heavy precipitation that persists over an area from minutes to few hours;

• Rapid runoff generating because of the steep slope in catchment;

• Impervious surface and saturated soil conditions limit streams infiltrate into subsurface;

• Sudden release of impounded water from sewer systems because of the fast increased

water level which exceeds the warning line rapidly.

Urban regions with a density population and buildings have only a size within few

hundreds of square kilometers or even smaller. Being compared to the rural ones, stream

flows are more regularly in urban catchments because of more artificial channels, which also

can lead the runoff to the peak value rapidly after one or a series of continuous and intensive

rain events. Simultaneously, owed to steep slopes and saturated soil conditions in catchment,

more streams spill over river channels and submerge facilities with more economic and

social damages.

In the region of Europe, flood events occur more frequently and intensively in recent

years , and these events show obviously seasonal and regional variations (Marchi et al.,
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2010):

• Floods occurred in the Mediterranean and Alpine-Mediterranean region implode in

autumn season and in inner Europe (Central Europe and Eastern Europe), floods are

prone to occur in summer season;

• Consistently with the seasonality effect, spatial extent and duration of the flood events

is generally smaller for the continental events with respect to those occurring in the

Mediterranean region.

Extreme Meterological 
Conditions Urbanization

More Convective 
Rainfall Events

Imprevious Places 
Increased

Runoff Volume Increased 
Rapidly and  Peaks Got Higher

More Possibilities for 
Flood Generation

Figure 1.1 Main factors for leading to flood in urban catchment.

Reasons for resulting in more flood events occurred in urban regions are that more

convective rainfall events happen as a result of local extreme meteorological phenomenons

and catchment’s hydrology factors changing which is affected by the increasing urbanization

in recent years. Figure 1.1 presented the flood impacts from interactions among the extreme

meteorological conditions, hydrology factors and urbanization.

Runoff generation in urban catchments is a complex process, which involves not only
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hydro-meteorological interaction but also hydro-hydraulic process and human effects. For

the purpose of credible urban runoff simulation and flood forecasting, it is essential to

provide a confidential approach for spatial and temporal precipitation estimation and forecast

(e.g. Bruni et al., 2015; Gires et al., 2012; Wright et al., 2013). Considering the key factors

for flood events generation in urban region, quantitatively estimating and forecasting of

precipitation is the main researching direction of this thesis.

1.2 Precipitation - One Driving Phenomenon of Urban Hydrological Mechanisms

Among all the elements which can trigger urban floods, rainfall is the most direct and

important one. As a driving phenomenon of runoff mechanisms, variability of rainfall

constitutes a significant source of uncertainty in hydrological applications. Rainfall events

can be described as a set of rain fields (or named as cell in convective conditions) that are

organized by some spatial - temporal characteristics (e.g. shape, area, rain rate, movements).

Singh (1997) observed that the effect of convective rain field’s movements are significant

for urban catchments, runoff can reach to a higher peak value if such rain fields move along

the same direction with the stream flows and if the rain field’s moving speed is the same

with flow velocity, the discharge is more affected. Yakir and Morin (2011) investigated the

hydrological response to the characteristics of convective rain fields in a small semi-arid

watershed, the rain fields observed from weather radar was modeled for reproducing the

spatial - temporal rainfall characteristics, and then were invited to a hydrological model

for testing the runoff response to the inner structures of convective rainfall events. The

authors found that the hydrological response in semi-arid catchment is mainly sensitive to

the location and moving speed of convective rain fields which can produce higher runoff

peaks.

For credible runoff modeling purpose, spatial - temporal precipitation information

should be available to the hydrological model. These information needs to be quantified

at various resolutions to be compatible with the model resolution. Mácaa and Torfs (2009)

analyzed two flood events happened in a small catchment (less than 50 km2) by a method

which coupled a deterministic event based runoff model with a stochastic rainfall disaggrega-

tion model and proved that the runoffs in such a catchment is very sensitive to the temporal

variability of precipitation. Liang et al. (2004) tested the effect of the spatial resolution

of precipitation to the qualities of model calibration in a meso-scale watershed and found

that a better calibration can be obtained with a critical spatial scale of 14 km, the modeling

uncertainties start to be significant when this resolution is lower than 14 km. Vischel and

Lebel (2007) compared the effects of different spatial resolutions of precipitation to the
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runoff response and found that the higher resolution scale for precipitation information can

bring better predicting results for peak runoff.

For credible flood forecasting purpose, the runoff prediction by the hydrological model

is a key. However, uncertainties from the rainfall inputs limit our abilities to extend the

runoff’s forecast leading time despite a good calibration for model itself (Singh and Wool-

hiser, 2002). Availability of rainfall forces at small scales as a requirement for runoff

forecast is restricted by the limits of precipitation’s forecasting ability. The most common

and convenient way to obtain rainfall information is from gage observations. For many

floods warning operations in meso-scale to macro-scale basins, a flood forecasting system

based only on observed precipitation data might be all that is needed. For flood warnings

in urban catchments, however, this may not give a sufficient leading time for operational

warnings so that some prediction of future rainfalls will be required (e.g. Rossa et al., 2011;

Zappa et al., 2010). Bárdossy and Das (2008) suggested that using too coarsely gage net-

works for estimating precipitation can lead to a poor simulating result and the hydrological

model needs recalibration when different rain gage networks are used. Cooper and Fernando

(2009) discussed that, if the rain gage’s density is too low, confidence in the accuracy and

ability of the model as a tool to predict peak runoff is diminished in the urban catchment.

Decreased rain gage’s density has a detrimental effect on the ability of a hydrological model

for predicting the peak runoff as well as the shape of the runoff hydro-graph. Mishra (2013)

tested the density effects of gages to the accuracies of rainfall estimating results and the

author concluded that when the gage spacing intervals increased, errors of rainfall estimation

were also obvious, and homogeneous distribution of rain gages which contain the sufficient

number of equally spaced gages form a perfect network can monitor the rainfall more

accurately over one region.

Another approach is the application of weather radar, which can acquire rainfall data at

high spatial and temporal resolutions in hydro-meteorological applications. Rainfall inputs

derived from weather radar can improve the accuracy of modeled peak runoff efficiently (e.g.

Lopez et al., 2005; Méndez-Antonio et al., 2013). However, uncertainties from radar based

rainfall estimation and forecast also exists, and most of these uncertainties are still unknown

which are needed deeply investigated (Germann et al., 2009). Providing superior quality’s

spatial - temporal rainfall inputs is the key for improving the quality of runoff modeling and

forecast in urban catchments.
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1.3 Variability of Rainfall Events

Acquiring explicit knowledges about spatial - temporal characteristics of precipitation object

is critical to assisting people to understand the inner behaviors of rainfall events and their

interactions with the catchment’s hydrological responses. Here, the precipitation object

is presented as a connected cluster with intensity exceeding a given threshold. In hydro-

meteorological applications (e.g. precipitation forecast, rainfall-runoff analysis and flood

forecast), spatial rainfall inputs are generally calculated by applying some spatial interpo-

lation methods (e.g. Krigin, Thiessen polygon, Co-Krigin and Inverse-Distance-Weight

method) and are commonly treated as a uniform distribution. However, the precipitation

object always varies over its life cycle (e.g. their size, integral rainfall volume or shape).

Particularly, for those larger watersheds (e.g. above hundreds km2), these variations are

more obvious. Modeling precipitation object for getting the detail information of rainfall

event’s inner structure is necessary.

Importance of analyzing spatial - temporal characteristics of precipitation object for

enhancing the quality of hydrological applications has been highlighted in some studies.

Smith et al. (2004) used two spatial indexes of precipitation objects for testing the runoff’s

response to a trivial filtering watershed. Morin et al. (2006) applied a conceptual precipitation

object tracking algorithm for representing spatial and temporal patterns of precipitation

objects in thunderstorm events and used their characteristics as the input for runoff simulation,

they also investigated that the high-peak runoff occurred in a semi-arid watershed is very

sensitivity to the small changes of precipitation object’s characteristics.

An essential problem cannot be ignored, as a micro physical phenomena, the circum-

stance of the cloud and its form of precipitation is still not fully understood, which makes it

hard for an accurate description of precipitation objects. The common idea for precipitation

object’s spatial and temporal analysis can go back to the early algorithm which is proposed

by Byers and Braham Jr (1948) who followed the ’Thunderstorm Project’ in the late 1940s.

They defined three stages for thunderstorm’s cell over its life cycle: a towering cumulus

stage, a mature stage, and a dissipating stage as in Figure 1.2.
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Figure 1.2 Life stages of convective cells, image is from Weather in National Weather Service (NWS)
(2014).

The authors also recognized the formation of individual convective precipitation objects

in the meso-scale system. Although not explicitly dealt with at that time, it is lately shown that

this implied interactions among discrete precipitation objects that may have consequences

for the convective evolution. Bluestein (1992) gave a historical overview of field programs

dedicated to the study of severe convective storms. With the help of such field measurements

and numerical modeling, the internal structures as well as the evolution of convective clouds

and precipitation systems have been widely investigated over the past fifty years. Three

stages of thunderstorm’s cells over its life cycle are briefly introduced:

Cumulus stages: Characterized by vertical updraft within a precipitation object. The

development of each cluster begins from the cumulus cloud stage. Cumulus cloud is a puffy

cloud that can be readily recognized (left part of Figure 1.2). In this stage, the temperature

inside the precipitation object is higher than in the external environment guaranteeing the

uplifting of air. The greatest buoyancy forces are formed at upper levels of it, where

the greatest temperature differences also occur. This is naturally since the buoyancy is

proportional to the density differences in the fluid and thereby proportional to temperature

differences.Precipitation can be observed inside the precipitation object, especially above

the freezing level, which may happen in liquid, solid or both. However, as the updraft is

carrying precipitation upwind, rain is not complied with on the ground at this stage.
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Mature stage: Both updrafts and downdrafts exist. While the air inside the convective

precipitation object contains ascending, more and moister condensates forming visible water

particles. This is followed by rain particles and above the freezing level snow and hail.

Finally, the size of the mass and gravitation of particles exceeds the forces of flow dragging

particles up, and these particles start falling down relative to the earth: the cell has reached

the mature stage as illustrated in middle part of Figure 1.2. Strong updraft and hails amplifies

the electrification of the convective precipitation object and therefore lighting is intense in

the mature phase.

Dissipating stage: Precipitation object is featured by down-drafts. Finally causing the

cluster to die out. In the dissipating stage, the ground precipitation diminishes until the

final residual drops have fallen into the ground. Falling rain and evaporation cool air inside

the precipitation objects and contributes to the dissipation. Finally, the vanishing updraft

turns into a downdraft (right part of Figure 1.2), which spreads throughout the precipitation

object’s body. Since no updrafts occur in the dissipating phase, storm electrification and

lighting decrease and disappear consequently. At the end, all that is left is an anvil-shaped

cloud in the upper atmosphere consisting of crystallized ice.

1.4 Radar Fundamentals

Radar, the abbreviation of ’Radio Detection And Ranging’, is a kind of active remote sensing

equipment that is able to detect, track and imaging objectives in the atmosphere. It generates

electromagnetic signals and emits them into the atmosphere in the form of beam, then

receives the echoes from objects, after software’s processing, users can get information such

as distance between objects and signal emitting point, radial velocity, position and altitude.

Electromagnetic signals are emitted in the form of beam by antenna which is usually

wrapped in a radome. Beam transfers along different directions with azimuth and vertical

rotation of radar antenna. Three common scanning ways are used in weather radar system.

Figure 1.3 presented two of them.
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(a) PPI (b) RHI

Figure 1.3 Two scanning strategies of weather radar, image source:http://ww2010.atmos.uiuc.edu/.

• PPI (Plan Position Indicator), when elevation angle of antenna is constant, radar

rotates at azimuth direction, it can rotate through 360o (surveillance scan) or less than

360o (sector scan). A conical area is presented by this scanning way, and is projected

into a horizontal plane at specified elevation angle.

• RHI (Range Height Indicator), reversely to PPI, when the azimuth direction is constant,

radar moves along vertical axis and then forms a vertical profile on screen at a specified

horizontal position;

• CAPPI (Constant Altitude Plan Position Indicator) is a horizontal cut through the

atmosphere objects, a PPI volume scans at multiple angles is required to produce it.

This is achieved by scanning the atmosphere objects from the lowest elevation up to

cloud top. The CAPPI algorithm constructs CAPPI by interpolating in height and

range to the selected CAPPI surface.

Band selection is a function of the trade offs between the range of reflectivity and its

cost which vary as a function of the physics of rain attenuations. Three types radar with

different wavelength and frequency are commonly applied for rainfall observation:

• S band weather radar operates on a wavelength of 8 - 15 cm and a frequency of 2 -

4 GHz. Because of its long ranging wavelength and frequency, S-band radar is not

easily attenuated. This makes it useful for near and far range’s weather parameter’s

observation. The disadvantage of S-band weather radar is that it requires a large

antenna dish and a large motor to power it.

http://ww2010.atmos.uiuc.edu/
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• C band radar operates on a wavelength of 4 - 8 cm and a frequency of 4 - 8 GHz.

Because of its wavelength and frequency, the dish size of it does not need to be

very large. This makes C-band radar affordable for installation, but is more easily

attenuated for the emitted signals, so it is commonly used for short range (up to 200

km) weather parameter’s observation. Proper frequency of C-band radar allows it to

create a smaller beam width using a smaller dish.

• X band weather radar operates on a wavelength of 2.5 - 4 cm and a frequency of 8 - 12

GHz. Because of the smaller wavelength, the X-band radar is more sensitive and can

detect smaller particles. It is usually deployed for researching the cloud development

of atmosphere because of their good performance in tiny water particle’s detection and

it is also used to detect strati-form precipitation. X-band weather radar also attenuates

very easily, so it is used only in very short-range (less than 100 km). Due to the small

size of it, X-band weather radar can be easily carried by mobile structures.

Apart from these commonly applied types, other kinds of weather radar with different

frequency and wavelength were summarized by Rinehart (1990) as in Table 1.1.

Table 1.1 Performing parameters of weather radar with dfferent bands.

Band Frequency [GHz] Wavelength [cm]

L 1 - 2 30 - 15

Ku 12 - 1 2.5 - 1.7

K 18 - 27 1.7 - 1.2

Ka 27 - 40 1.2 - 0.75

W 40 - 300 0.75 - 0.01

Radar was early used in the military field for monitoring enemies situations in the last

30s. After the World War II, because of the excellence in long distance detecting, large

area covering, strongly penetrating and less affection from weather elements (e.g. fog and

rain), radar has been broadly applied in meteorological scope for detecting atmospheric

objects that cannot be easily done by the traditional monitoring tools. Particularly, because
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radar can obtain rain fields at high temporal resolution and finer reflection for its distribution

of horizontal and vertical direction, scientists have applied radar for QPE and QPF at

different temporal and spatial scales since the last 50s. Experienced over half century’s

development, nowadays, radar can provide superior resolution’s rainfall data to satisfy

various meteorological and hydrological requirements.

1.5 Radar Based Precipitation Estimation and Forecast

Quantitative Precipitation Estimation (QPE) is a procedure for acquiring rain amounts that

have fallen at a location or across a region. Correspondingly, Quantitative Precipitation

Forecast (QPF) is a procedure for assessing the amounts of precipitation accumulated at

a future time in a specified area. Accurate QPE and QPF can improve the knowledge of

people in understanding the principle of rainfall event’s occurrence, and their relations with

catchment’s response in the past and future. Even more, they can provide satisfactory rainfall

inputs in hydrological model for flood warning and hazard’s mitigation. During the last

decades, as an efficient tool, weather radar has provided useful rainfall information for

promoting the accuracy of QPE and QPF. Numerous researches have been done with the

aim of improving QPE and QPF qualities by using weather radar.

1.5.1 Radar Based Precipitation Estimation

The direct way for rainfall estimation is using ground observing data. However, rainfall is

not continuous in space and time as we expected. Gauge depended rainfall estimating results

can arouse high bias. Radar has advantage of wide observing range and short scanning time,

so combing it with gage observations can efficiently reduce such bias. Common procedures

for radar based quantitative precipitation estimation go on as follows:

Reflectivity factor is sampled for an unlocked volume in space by scanning at selected

elevation angles. The small fraction of short pulse emitted from the antenna by a predefined

scanning strategy is scattered and reflected when it hits the targets, then reflecting pulse

is captured by radar receiving equipment. Returning mean power pr received by radar is

transformed into the reflectivity Z proportionally, equation (1.1) describes this transformation:

Z = Pr2

C |k|2
(1.1)
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whereas C is a constant value which can be presented as in equation (1.2):

C =
π3

1024 ln2
PrhG2 θ∅

λ2

∣∣∣∣m2 −1
m2 +1

∣∣∣∣ (1.2)

where λ is the wavelength of radar, m is the complex fraction index, θ and ∅ is

the horizontal and vertical width of radar beam, r is the distance from radar to the targets

(meteorological or non-meteorological objects), while k is the imaginary part of the refraction

index which depends on target surface: |k|2 is about 0.93 for rainfall drops at 0o c and 0.176

for ice particles.

Ground clutter contamination is identified. Ground clutter is a form of contamination

for radar reflectivity, when unexpected objects such as trees, high buildings or hills are close

to radar transmitter, this interfere normal propagation and returning of radar beams.

A relationship for translating measured reflectivity to rain rate is applied. For building

the relationship between the radar measured reflectivity and rain rate, a hypothesis is

proposed that targets from radar detection are rain drops in the atmosphere. Based on this

assumption, the relation between reflectivity and raindrop size distribution is presented as in

equation (1.3):

Z =
∫ ∞

0
D6 N(D)dD (1.3)

whereas Z (unit: mm6mm3) is the reflectivity factor, N(D)dD is the average numbers of

raindrops with spherical diameters are between D and D + dD (unit: mm) in per unit of

air. For smoothing the wide range variations of reflectivity, the reflectivity factor is usually

presented in a logarithmic scale which is called effective reflectivity (unit: dBZ) whereas

1dBZ = 10log10Z. Neglecting other meteorological parameter’s impact, the relationship

between rain rate R (unit: mm.hr−1) and raindrop size distribution is also presented as in

equation (1.4):

R = 6π ×10−4
∫ ∞

0
D3 V(D)N(D)dD (1.4)

whereas V (D) is the terminal falling speed of raindrop from cloud top to ground that is

associated with raindrop’s diameter. Combing equation (1.3) and (1.4), relationship between

reflectivity and rain rate is given as in equation (1.5):

Z = aRb (1.5)
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Correcting procedures are used for bias reducing combined with the measurements

from ground gages. Rainfall measuring bias from weather radar are mainly caused by:

• Hardware errors. Radar equipment exists some instability after long working time

(e.g. emitting components and receiving components). According to Collier and

Hardaker (1996), when the error from radar receiver reaches to ±1dBZ, the bias of

estimated rainfall can increases 16 %.

• Attenuation of radar electromagnetic signal. In equation (1.1), Pr is associated

with the wavelength of radar, antenna gain and beam width. When the antenna size is

fixed, Pr is inversely to the 4th wavelength, the shorter of the wavelength, the larger

of Pr and the more powerful detecting capability of radar. But the power of radar

electromagnetic signal is attenuated by air and precipitation. The attenuation of radar

signal is related to rainfall intensity R (unit: mm.hr−1) and the radar wavelength λ

(unit: cm) which can be presented by attenuation coefficient µ (unit: dB.km−1) and

their relationship can be presented as in equation (1.6):

µ = cRd (1.6)

and default values for parameters in this equation were presented in Table 1.2 (Olsen

et al., 1978).

Table 1.2 Default parameter values for equation (1.6).

λ c d

3.2 cm 0.01 1.21

5 cm 0.001 1.05

10 cm 0.000343 0.97

• Radar reflectivity changes at vertical direction. Owing to the evaporation of rain

droplets, atmospheric motion and phase changing effects, radar reflectivity exists obvi-

ous variation at the vertical direction. Deviation between radar and gage observation

is more obvious as horizontal propagating path extending, and the space scattering of

radar beam is enlarged as the extension of range.
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• Rain drops changing and parameter variation of reflectivity and rain rate equa-
tion. According to equation (1.2) and (1.3), radar reflectivity and rain rate have strong

connection with rain drop size. Reflectivity of convective rainfall and warm cloud

precipitation is different because of different rain drop size for these two types of

precipitation, this results in hard decision for selecting right parameter a and b for

converting reflectivity to rain rate in different types of rainfall events, even in the

same one. Einfalt et al. (2004) presented an simple illustration for the influence from

different a and b selection in resulting rain rate’s variation as in Figure 1.4.

In the figure, Z = 200R1.6 is the Marshall–Palmer relation which is suitable for

general strati-form events, Z = 250R1.2 is adopted to tropical convective systems and

Z = 300R1.4 is recommended for summer deep convective rainfall events or other

non-tropical convections.
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Figure 1.4 Influence from the different Z-R relationship selection to the rain rate estimation, after
Einfalt et al. (2004).
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• Density of rain gages for radar-gage adjustment. Fuyou et al. (2010) tested the

effect of density of rain gages to the accuracy of radar-gage adjusting results. Authors

applied the data from S-band radar observations and rain gage data in two meso-scale

catchments located in An Hui province, China, the testing procedure was performed

by reducing number of rain gages. They concluded that when using single rain gage

for radar rainfall correcting, the results presented high bias as a result of rain field

location, as increasing number of rain gage involved in the correcting procedure, the

bias between true value and adjusted results was decreased and the mean squared error

became more smoothly when the number of rain gages for adjustment was greater

than or equal to 2.

1.5.2 Radar Based Precipitation Forecast

Radar based Quantitative Precipitation Forecast (RQPF) is one type of precipitation forecast-

ing methods using weather radar with the benefits of high temporal and spatial resolution

(’Quantitative precipitation forecasts based on radar data for hydrological models’). They are

commonly applied in short-term precipitation for hydrological applications and thunderstorm

and hail warnings. Grecu and Krajewski (2000) concluded that most RQPF methods can be

statistically described as in equation (1.7):

∆Zt

∆t
+Ux

∆Zt

∆x
+Vy

∆Zt

∆y
= f(Zt, ...,Zt−k∆t,a)+w (1.7)

where Zt is the radar measured reflectivity or translated rain rate which is estimated

at time t. ∆Zt is the reflectivity (rain rate)’s diversification from time t−∆t to time t. ∆t

is the time lag between two radar image scanning moments. Ux and Vy are the horizontal

and vertical velocity components separately. ∆x and ∆y are the horizontal and vertical

velocity’s variation from time t−∆t to t, respectively. f is the function of parameter which

is needed to be determined from radar observations at current time Zt and previous times

(, ...,Zt −k∆t). w is the noise element. According to the variation of advectiing fields is

persistence or dynamic, equation (1.7) can be described as:

Eulerian persistent process: The Eulerian persistent process is consisted by a simple

equation that the forecasted reflectivity (rain rates) equals to ones at previous time. This kind

of process neglects the advection, reflectivity (rain rate)’s variability and noise components

which reduces to:

∆Zt

∆t
= 0 (1.8)
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that is, the advectiing field is assumed to be stable in space and time. This forecasting method

is simple but roughly and is surely not expected to give the satisfied forecasting results. In

some actual applications, it is selected as the reference for evaluating the performance of

other QPF methods.

Lagrangian persistent process: Austin and Bellon (1974) pointed out that in applica-

tion of radar based rainfall forecast, advection of precipitation plays a fundamental role. The

Lagrangian persistent process is a kind of process that takes rainfall advection into account,

but this process still neglects the Lagrangian dynamic component and reputes that velocity

fields is persistence. Therefore, it can be presented as:

∆Zt

∆t
+ux

∆Zt

∆x
+uy

∆Zt

∆y
= 0 (1.9)

In detail, this process requires the estimation of the velocity fields before the forecast

starts. Subsequently, the forecasted reflectivity (or rain rate) is acquired by re-positioning

downwind the current radar image accordingly to the storm shifts which occur at the next

time steps, under this assumption, the estimated velocity fields remain unchanged during the

forecasting process. common steps for operational application of RQPF are presented as

follows:

• Quality control for the observed radar data;

• Estimating horizontal and vertical components Ux and Vy of identified reflectivity or

transformed rain rate zt from radar image;

• Estimation of parameters a in function f. The function f is usually treated as linearly

with a being 0. When considering the growth or decay of the precipitation, f is a

non-linearly process with a ̸= 0;

• Forecasting future reflectivity (or rain rate) using equation (1.7);

1.6 Motivations and Objectives

From the year 2005 to 2008, the project ’Forecast and Management of Flash floods in Urban

Areas’ (URBAS) which aimed at presenting a better understanding of physical processes

during urban flash floods was operated (Einfalt et al., 2009). Its main objectives included:

• Investigating the meteorological parameters, runoff and damage of urban floods in

Germany.
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• Advanced equipment and methods such as the German Radar Network from DWD

and rainfall-runoff simulation models are applied to analyze rainfall and runoffs in

urban catchments.

• Upgrading forecasting tools for improving flood early warning level, losing mitigation

measures and disaster controlling.

After three year’s efforts, databases for recording historical flood events occurred in

Germany since last 90s have been established (Einfalt et al., 2009). Scientists concluded

that most of the historical urban flood events were flashing ones generated by heavy rainfall

events from these databases, and they were highly distributed in urban areas of west Germany.

Figure 1.5 presented the spatial distribution of flash flood events occurred in Germany since

the last 90s.
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1.1 Motivation 
Recent studies about climate change indicate a growing frequency and intensity of 
flash flood events in Western Europe. Flash floods are caused by extreme local 
precipitation and are accompanied by thunderstorms.  
Precipitation of these events exceeds the values of design storms used for design of 
the drainage systems and surface hydraulic structures in towns. These  events may 
cause an overflow of domestic drainage, sewage systems, storm water systems and 
small urban rivers and may trigger flooding in urban areas. 
The URBAS project is concentrating on the urban occurrence of flash floods and 
being supported by the German Ministry of Research in the framework of the RIMAX 
project cluster. RIMAX is grouping together more than 30 projects which are all 
investigating aspects of extreme floods in Germany. 
URBAS has as a main objective to increase the preparedness  and the range of 
possible actions of urban actors (e.g. communities, public enterprises) before and 
during rare small scale flood events. 

 
Figure 1: Spatial distribution of urban flash floods in Germany since 1990 

1.2 Urban Flash Floods – significance of the phenomenon 
Urban flash floods are flood events which cause damages in small catchment areas 
of less than 100 km² (and even less than 10 km²) and are caused by small scale rain 
events with volumes far above design rainfall for the concerned hydrological 
structures. 

Figure 1.5 Spatial distribution of urban flash floods in Germany since 1990, after Einfalt et al. (2009).

Since the year of 2007, there has been a cooperation between German Weather Service
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(DWD) and water associations for the state of North Rhine Westphalia (NRW) which were

based on the exchange of data and experience, aiming at using radar data to optimize flood

hazards protection. This included not only the management of historical events, but also

good preventions for future events. Under this cooperation, facing to the small urban regions

with sparse or no gage network distribution in the Wupper area of North Rhine Westphalia,

historical heavy rain and flood events occurred in this region were analyzed by combing

qualified rainfall data produced from weather radar and distributed hydrological model.

Valuable information was also provided for aiding participants doing flood modeling in

urban places (Einfalt et al., 2008). However, some weaknesses should not be hidden:

• Rainfall measurements produced from weather radar have been used for analyzing

those historical events. Nevertheless, through the radar based rainfall analysis, inner

structures of these historical events are still not fully understood. Quantitative estima-

tion of their inner structures is essential for improving our understands for the origin

of high peak runoff generation in this region.

• Radar based precipitation forecast for potential flood warning has been done in the

earlier decades and indeed demonstrated its advantage. However, the uncertainties

still exist. Finding the factors resulting those uncertainties are important for improving

the quality of precipitation and flood forecasting.

Objects of this thesis were listed as follows:

• Developing a radar based precipitation objects identification and tracking algorithm

for investigating the inner structures of rainfall events occurred in the state of North

Rhine Westphalia, Germany.

• Developing the radar based short-term precipitation forecasting methods and evaluat-

ing their forecasting qualities by object based verification approaches.

Considering the researching objects of this thesis, following questions will be answered

in this study:

• How are the inner structures of rain events occurred in North Rhine Westphalia?

• Can we find some simple mathematical functions to quantify the spatial - temporal

variations for the characteristics of rainfall patterns in this region?

• Which is the most factor that affects the performance of the developed precipitation

objects identification and tracking algorithm and the quality of precipitation forecasting
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methods?

1.7 Outlines

This thesis is organized as follows:

• In Chapter 2, a literature review which is related to the radar based quantitative

precipitation estimation and forecasting was presented.

• In Chapter 3, a introduction for the study area of this thesis was presented.

• In Chapter 4, a precipitation objects identification and tracking algorithm was devel-

oped. The Semi-Lagrange based advection field tracking method was introduced for

short-term rainfall forecasting; a position tracking and predicting algorithm: Kalman

Filter was introduced for extrapolation center of mass of precipitation object; a charac-

teristic predicting method was proposed; two object-based spatial rainfall verification

methods (SAL method and Geometric index method) were also introduced in this

chapter.

• In Chapter 5, results were presented, and they were organized as: statistical descrip-

tion for the characteristics of modeled precipitation objects; mathematical relations

among their characteristics; spatial-temporal analyzing for the modeled precipitation

objects; verifications for the developed algorithm; uncertainties analyzing for the QPF

results.

• In Chapter 6, discussions and outlooks of this thesis were presented, questions

proposed in this study were also answered in this chapter.

• In Chapter 7, summary of this thesis were presented.



CHAPTER 2

LITERATURE REVIEW

Considering application requirements for radar based QPE and QPF, methods based on multi

approaches have been proposed and developed during past two decades. Nakakita et al.

(1996) concluded these methods into two main categories:

• Extrapolating advection fields based on the estimated motion vectors from radar or

satellite images (e.g. advection field tracking approach, cell tracking approach).

• Using numerical models (conceptual or physical) or numerical weather prediction

models for doing QPE and QPF at a high spatial resolution (e.g. spectral approach,

numerical weather prediction model approach, artificial neural network approach).

A review for the related works about researching developments for QPE and QPF are

presented according to their designing approaches.

2.1 Advection Field Tracking Approach

The advection field tracking is a kind of pattern matching approach for extracting background

moving fields by searching the maximum correlation coefficient of reflectivity/intensity fields

between two consecutive radar images. Radar images are first divided into a collection of

boxes that can cover the whole echo fields, then the motion vectors of the echo fields are

determined by the maximum correlation coefficient of two boxes which are from the current

radar image and the previous one. Procedure of this approach is illustrated by Mecklenburg

et al. (2000) as in Figure 2.1.
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Time t Time t + delta t

Radar Echo

Searchong Area

Initial 
searching area

Figure 2.1 An illustration of advection field tracking approach, after Mecklenburg et al. (2000).

Rinehart and Garvey (1978) developed a radar based QPF algorithm named with

Tracking Radar Echo by Correlation (TREC) which tries to find the best fits between arrays

of reflectivity in two consecutive radar images by optimizing their correlation coefficients.

The first radar image is subdivided into sets of regular boxes, which is used in determining

the spatial resolution of motion vectors. An initial tracking area of a specified box size is

defined around each grid point. The initial tracking area is compared to similar sized boxes

within a searching range of the second radar-scanning image. The size of the searching range

r is defined according to equation (2.1):

r = vmax ×∆t (2.1)

where vmax is the maximum velocity with its value obtained from atmospheric condition.

∆t is the time interval between two successive radar scanning moments. For each box pair,

in the first and second radar images, the correlation coefficient is computed and the best fit is

found by choosing the pair of boxes with maximum computing result. Distance between

the boxes and scanning time lag determines the motion vector of the tracking area. The

correlation coefficient R for box pairs between two radar images is described in equation

(2.2):

R =
∑

(Zt−1(k)×Zt(k))− 1
N
∑

Zt−1(k)
∑

Zt(k)√
(
∑

Zt−12(k)−NµZt−12)×
√

(
∑

Zt2(k)−NµZt2)
(2.2)

where Zt−1 and Zt are the pixel’s reflectivity in the defined box at time t−1 and t, respec-

tively. N is the pixel number inner the box, k is the id of the box.
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Dixon and Wiener (1993) added a geometry algorithm based on TREC for providing a

possibility to detect merging and splitting of rain cells and the forecast was carried out by

using a weighted linear regressive fitting methods from the historical storms for both position

and size which is called Thunderstorm Identification, Tracking, Analysis and Nowcasting

(TITAN). Li et al. (1995) applied the two-dimensional continuity equation to eliminate

divergent components of extracted velocity fields which are called COTREC. Li et al. (2014)

implemented TREC algorithm into Short range Warning of Intense Rainstorms in Localized

Systems’ (SWIRLS) for monitoring and extrapolating the motion vectors of radar echo

right across the meso-scale spectrum and forecasting precipitation with leading time from

zero to three hours. Liang et al. (2010) combined TREC algorithm with predicted winds

from CHAF model for providing long term’s precipitation forecast in Guang Dong province,

China. Zahraei et al. (2012) developed a pixel based precipitation forecasting method which

implemented a quadrilateral mesh based template-matching algorithm for tracking advection

field at high resolution, the method proposed by the author was robust for sparse rain fields.

2.2 Cell Tracking Approach

Different with the advection field tracking approach, the cell tracking (or centroid tracking)

methods include a detecting algorithm for identifying discrete cell’s characteristics (e.g.

centroid, area, echo-tops, vertical integrated liquid) in consecutive radar images and a

matching algorithm for tracking cell’s motion and shape changes (e.g. merging and splitting).

Advantage of cell tracking methods is the fact that it can estimate cell’s characteristics

feasibly from cell trackers. Because of its superior performance in reflecting convective

cell’s dynamic, this approach is more suitable for convective rainfall events.

Einfalt et al. (1990) proposed a structured approach to determine the cell motion

which contains cell’s definition, characterization, matching and forecast which has been

implemented into SCOUT rainfall processing system (Lempio et al., 2012). This algorithm

tries to identify and recognize distinctive features of a cell in consecutive radar images.

Rainfall event’s characteristics derived by SCOUT include not only the size and centroid

but also the orientation, elongation, intensity distribution, previous size, moment vectors

and their root mean square variation and previous recognition of the cell. Johnson et al.

(1998) developed Storm Cell Identification and tracking (SCIT) algorithm, in which the

cell identification is done by predefined reflectivity thresholds (30, 35, 40, 45, 50, 55, 60

dBZ), and cell tracking is done through a combination optimization, which is solely upon

a distance criterion. A concept called the cell based VIL was also present for considering

storm volume titled in vertical direction. The SCIT algorithm performs well for convective
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rainfall events, but it fails in forecasting larger scale strati-form rainfall events. Handwerker

(2002) invented an automated cell tracking algorithm - Trace3D by assembling the adjacent

reflectivity regions which exceed some thresholds. The cell is identified and based on the

cell’s position in the radar image at previous time. The new position for the next time is

tracked by an extrapolation procedure. Splitting and merging of rain cell is also dealt in

Trace3D algorithm. Han et al. (2009) enhanced TITAN algorithm by combining TREC

algorithm for tracking identified cell. Zahraei et al. (2013) built an object based storm cell

tracking model called PERsiann-ForeCAST. Storm is identified from cloud and temperature

data in this model, then an object-based tracking algorithm is done for tracking storm’s

motion in two or three consecutive rainfall images (PERSIANN-CCS data sets). Cell’s

growth and decay are also taken into consideration in this model.

2.3 Spectral Approach

Spectral based QPF methods can be described by equation (2.3), a radar image with L×L

pixels is spatially decomposed into an additive cascade of n levels. Xk represents the kth

scale of the decomposition.

dBZi,j =
∑n

k=1 Xk,i,j(t) (2.3)

where dBZi,j(t) is the pixel’s reflectivity in horizontal position i and vertical position j at

time t. The translated rainfall intensity R has a multiplicative structure, for example, rain

fields can be approximated by multiplying the independent component processes at different

scale. This multiplicative structure converts into a summation when taking the logarithm

transformation, which is the reason why dBZ is taken for the decomposition, not Z or R.

Xk in the cascade represents the variability of the original field with structures of scales

between 2−(k+1)L and 2−kL pixels.

Seed (2003) developed S-Prog algorithm which is based on this approach. In this

algorithm, original reflectivity fields from radar images are decomposed, then the evolution

of theses levels is considered separately: a measure for the lifetime of a certain level is

obtained by studying the correlation of that level at time t1 and at time t2 = (t1 +∆t). The

forecasted image is then composed by the summation of the different levels, taking into

account their predicted lifetime as weight. The levels with the larger structures will have

high correlation values with previous levels, and thus these levels will dominate for long

leading times.
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2.4 Numerical Approach

Numeric approach is a combination of advantages from weather radar and numerical weather

prediction model (NWP) for providing high resolution and long leading time rainfall esti-

mation and forecast. Usually, methods based on area tracking or cell tracking approach can

only give a confidence rainfall forecast at short leading time, but NWP model is more skillful

for providing longer leading time’s forecast. However, the NWP model may perform well

for med or large scale convective events. Purely application of NWP model may increase

the precipitation forecasting uncertainties for the local area because of the coarse resolution

of initial boundary conditions. QPE/QPF combined with NWP model can build a bridge

for filling gaps between requirements of high resolution precipitation forecast and longer

forecast leading time. The key point in doing QPF coupling NWP model is that how to assim-

ilate radar observed data into numerical weather predicting model. According to Schlatter

(2000), data assimilation can be traded as a process of estimating weather conditions on a

regular grid from two main sources of information: Observations of atmospheric indices

(e.g. wind, pressure, temperature, perceptible water) from different sources, whenever and

wherever taken, and a numerical weather model, which couples through a series empirical

mathematical equation about the atmosphere.

Assimilating radar data with NWP model can construct the best set of initial conditions

for providing better rainfall forecasting results in local scale. Golding (1998) introduced

nowcasting system called ’Nowcasting and Initialization for Modeling using Regional

Observation Data Rainfall’ (NIMROD), which is distributed at the Met Office headquarters

in Britain since 1995. The system is intended to generate analysis and short-range forecasts

of various meteorological variables especially precipitation. Bowler et al. (2006) developed

a probabilistic precipitation forecasting scheme that blends an advection field extrapolation

with a down scaled NWP forecast, known as STEPS. Performance evaluations showed that

this scheme had a credible predictive skill at leading time over six hours. Sokol (2006)

did one hour ahead precipitation forecasting combined with C-band weather radar and

ALADIN/LACE model data in Czech Republic, the spatial resolution is 9×9 km. Milan et al.

(2009) implemented a initial physical method in COSMO model of the German Weather

Service for improving the precipitation forecasting quality. Liu et al. (2013) used five data

assimilation modes in WRF model and concluded that when the radar data is combined with

the numerical weather model, a good precipitation forecast exists.
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2.5 Neural Network Approach

Artificial Neural Networks (ANN) is a technology by imitating how does the human brain

process the real world objects for solving complex problems that can’t be solved by simple

mathematical methods. Thinking system of the human brain is a complicated network. This

network is linked by numerous neurons, and information from the outside world is processed

based on the strengths of connection between neurons. It is more simply comparing the real

human neural system for structure of ANN, usually, ANN is constructed by an input layer

with multi-parameters, hidden layer with some neurons and output layer with results.

Input(1)

Input(2)

Input(n)

......

Neuron

Neuron

Neuron

Output(1)

Output(2)

Output(n)

b1

b2

bn

...... ...... ......

Figure 2.2 Structure of a three layer ANN. The blue, gray and cyan nodes presented input layer,
hidden layer and output layer, respectively.

Figure 2.2 presented the structure of a three layer ANN. Neuron is the basic information

process unit in ANN that is composed by weights, bias and exciting function. The ANN is

trained by continuously changing weights and bias of neuron for having capability such as

predicting and pattern recognition, then the trained ANN is used to predict future state of the

system.

Denoeux and Rizand (1995) used consecutive radar images as input data for ANN

training, then used the trained ANN for forecasting precipitation. Chiang et al. (2007)

applied the dynamic ANN approach for doing QPF with a leading time from 0 to 1 hour
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in Taiwan province, China. Li et al. (2013) used ANN for doing one hour ahead rainfall

forecasting in British based on NIMORD radar data, the input of ANN is pixel’s reflectivity

and its four neighbor’s values.





CHAPTER 3

STUDY AREA

The study area is the Federal State of North Rhine Westphalia (NRW) which is situated in

north-west of Germany and is with nearly 18 million inhabitants on an area approximately

34,000 km2, thus 524 inhabitants per km2. It is the most highly and most densely populated

state in Germany.

Figure 3.1 The study area North Rhine Westphalia and its location in Germany (inner plot). Main
administrative cities are marked with red dots.
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The state’s area covers a maximum distance of 291 km from north to south, and 266 km

from east to west and borders on the German states Lower Saxony, Hessen and Rhineland

Palatinate as well as the countries Belgium and the Netherlands. The North Rhine Westphalia

includes the upland regions of North Eifel in the southern part of the state and the mountains

of the Sauer Land in the southeast. The most important rivers that run at least partially

through North Rhine Westphalia include: Rhine, Ruhr, Ems, Lippe and Weser as in Figure

3.1.

The circulation pattern of North Rhine Westphalia is mainly affected by the air mass

from Atlantic along the direction to south-west. When arriving to the southern high mountain

regions, the air mass stops and arises. This leads at these places to a stronger cloudiness by

which more precipitation falls. In the eastern sides of the mountains, there are more drier air

dropping which result less cloudiness and precipitations.

3.1 Climate Background

North Rhine Westphalia belongs to the warm temperate rain climate, in which the mean

temperature of the warmest month is below 22oC and the coldest month above −3oC (Kropp

et al., 2006). North Rhine Westphalia is thus in a predominantly maritime sector, which is

characterized in general with cool summers and mild winters. In the summer season (may -

September), this region is influenced by longer periods of high air pressure, as a result, the

weather in North Rhine Westphalia is hot and dry. Synoptic conditions in the winter season

are often characterized with cold continental climate type. However, the forced lifting by

the overflow of the mountain, results in a large-scale rainfall increase in precipitation at

the windward side of the mountains (upwind) and over the mountains. In summer seasons,

it comes through the different heating different inclined slopes on the mountain countries

earlier and more often to convection, so that increasingly form of showers and thunderstorms

occur. There is an increase trend for rainfall following altitude’s shift, but only regionally

valid and no longer affects smaller-scale structures below 1 to 2 km height.

3.1.1 Temperature Variation in NRW

The distribution air temperatures over the North Rhine Westphalia are strongly dependent

on the height of the terrain as shown in Figure 3.2. In the southern mountain regions (Eifel,

Weserberg Land, Bergisches Land, Sauer and Sieger Land), its value is approximate to 0.7oC

per 100 m height. The yearly averaged temperature value is shifted following the altitude of

the terrain.
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Through the figure 3.2, the northern low land areas such as the Rhine and Westphalian

bay as well as other areas below 150 m, the yearly averaged air temperatures are about 9oC.

The highest mean annual temperature is up to 11.2oC along the Rhine valley in the Rhine

bay. In the region of Eifel, Sauer and Siger Land, yearly averaged temperatures are between

5 and 8oC.

Figure 3.2 Yearly mean value of air temperature in North Rhine Westphalia during the period
from 1981 to 2010, the unit of is displayed as fahrenheit. Data sources are from Climate Data
Center (German weather service (DWD) (2014)) of DWD, ftp://ftp-cdc.dwd.de/pub/CDC/grids_
germany/multi_annual/.

Multi-years particularly warm or cold periods are characterized by the days in which

the temperature is above some given threshold. The characteristic days are the sum of all the

days in a year which exceed a defined maximum temperature or a predetermined minimum

temperature threshold, which are defined as follows:

• Ice day: A day on which the maximum air temperature is below 0oC.

• Frost Day: A day on which the minimum of the air temperature is below the freezing

ftp://ftp-cdc.dwd.de/pub/CDC/grids_germany/multi_annual/
ftp://ftp-cdc.dwd.de/pub/CDC/grids_germany/multi_annual/
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point.

• Summer Day: A day when the air temperature reaches 25oC or above.

• Hot Day: A day on which the air temperature reaches 30oC or above.

Figure 3.3 Distribution of identical day with different temperature threshold in North Rhine West-
phalia during the period from 1981 to 2010, data sources are from Climate Data Center (German
weather service (DWD) (2014)) of DWD, ftp://ftp-cdc.dwd.de/pub/CDC/grids_germany/multi_
annual/. (a) for ice day; (b)for frost day; (c) for summer day; (d) for hot day.

Figure 3.3 showed the distribution of identical days with different temperature threshold

over the state of North Rhine Westphalia. In the southern highlands of the Sauer and Sieger

Land region, frost days occur almost a third of all days in the year. There is more in the

long-term average for more than 40 ice days per year (figure 3.3a). Much of the northern

low land areas such as Lower Rhine Basin, the Lower Rhine lowlands and the Westphalian

bay are from frost least affected with less than 60 days of frost per year (figure 3.3b). The

Rhine valley is particularly warm in the summer season with more than 33 summer days per

year (figure 3.3c). The increasing height of the terrain reduces the number to a few summer

ftp://ftp-cdc.dwd.de/pub/CDC/grids_germany/multi_annual/
ftp://ftp-cdc.dwd.de/pub/CDC/grids_germany/multi_annual/
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days in the high altitudes of the Eifel, Sauer and Sieger Land. Most hot days are analogous

to the summer days which can also be found in the Rhine Valley (figure 3.3d). The heights

of the Sauer and Sieger Land have long-term average on any hot day.
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Figure 3.4 Multi-years averaged temperature over North Rhine Westphalia during the period from
1881 to 2010. Data sources are from Climate Data Center (German weather service (DWD) (2014)) of
DWD, ftp://ftp-cdc.dwd.de/pub/CDC/regional_averages_DE/annual/air_temperature_mean/.

During the period from 1881 to 2010, the yearly averaged temperature over the North

Rhine Westphalia is 8.9oC (standard deviation is 0.7oC). The lowest yearly averaged temper-

ature occurred in 1888 (7.4oC) and 1940 (7.5oC) and 10.5oC in 2000 and 2007. Generally, a

highly significant increase in temperature was recorded in North Rhine Westphalia in the

130 -year period. In this period, the temperature is increased by 1.3oC (from 8.3oC to 9.6oC,

the difference between the beginning and end of the red trend line in figure 3.4).

3.1.2 Precipitation Variation in NRW

The yearly precipitation over the North Rhine Westphalia is 918 mm during the period 1981

to 2010. Figure 3.5 presented the spatial distribution of yearly precipitation in that region.

Through the figure, it is seemed that precipitations of this region are also affected by the

ftp://ftp-cdc.dwd.de/pub/CDC/regional_averages_DE/annual/air_temperature_mean/
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height of Teriann which is similar to the spatial distribution of yearly averaged temperature

as shown in figure 3.2. However, considering the amount of precipitation in all sub-regions

with different altitudes, clear differences still appear between the wind-turned mountain

situations (Luv) and the leeward sector (Lee).

Figure 3.5 Multi-years precipitation distribution in North Rhine Westphalia during the period from
1981 to 2010. Data sources are from Climate Data Center (German weather service (DWD) (2014))
of DWD, ftp://ftp-cdc.dwd.de/pub/CDC/grids_germany/multi_annual/.

Through the figure 3.5, in the northern lowland regions such as Westphalian Bay and

Lower Rhine lowlands, yearly precipitation is between 600 to 900 mm. In the southern

mountain regions of Bergisches Land, Sauer and Sieger Land, the yearly total precipitation

can reach to 1700 mm. It is particularly strong in the Bergisches Land region. Here, the

effect of windward increases precipitation noticeable up to the Rhine area. In the region

of Wuppertal/Remscheid in surroundings at about 250 m, a yearly precipitation of more

than 1300 mm is observed. Yearly precipitation with value between 1400 to 1450 mm is

observed in the Olpe district (460 m), as much as for Kahlen Asten (839 m). .The yearly

ftp://ftp-cdc.dwd.de/pub/CDC/grids_germany/multi_annual/
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precipitation is just over 600 mm between north-east perimeter of the Eifel and Ville. In

the northern lowland region, strong sunlight causes frequently showers and thunderstorms

which take more precipitations in its most part. However, In the central mountain region,

large amount precipitations are observed when stronger westerlies introduce Atlantic air

masses to frequent rainfall in the winter months.

The yearly averaged precipitation is 849 mm in North Rhine Westphalia during the

period 1881 - 2010. Compared to the temperature, there is a stronger annual fluctuation as in

figure 3.6.
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Figure 3.6 Average annual precipitation of North Rhine Westphalia during the period from 1881 to
2010. Data sources are from Climate Data Center (German weather service (DWD) (2014)) of DWD,
ftp://ftp-cdc.dwd.de/pub/CDC/regional_averages_DE/annual/precipitation/.

To determine statistically significant trends which are suitable for long time series, the

’dry’ 1970s Decade in the North Rhine Westphalia are taken into considerations. This is

recognizable by means of decade moving average. The reason for such dry decades existed

may be that the Atlantic climate anomaly with significantly cooler surface temperatures in

the precipitation measurements resist because the weather patterns is often characterized by

synoptic conditions with influx of Atlantic air masses in this region.

ftp://ftp-cdc.dwd.de/pub/CDC/regional_averages_DE/annual/precipitation/
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During the period from 1881 to 2010, an increasing trend was presented for yearly

total precipitation as well as for the air temperature. During this period, the yearly averaged

rainfall over North Rhine Westphalia rose by almost 130 mm (difference between start and

end of the 110-year trend line in figure 3.6). This corresponds to about 10 mm per decade.

Thus, the precipitation in 130 years has increased by 15 % over the long-term average.

3.1.3 Extreme rainfall events

The intensity change of rainfall may be a direct or indirect result of global warming. The

temperature increasing affects, among others, directly on the water vapor content of the

air and indirectly on the circulation systems of the earth. As a result, rainfall patterns can

change regionally.
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Figure 3.7 Averaged number of heavy rainfall events (threshold > 40 mm/day) per year for duration
of 60 min (1950 - 2008). Image is from State Office for Nature, Environment and Consumer
Protection of North Rhine Westphalia (2010), http://www.lanuv.nrw.de/kfm-indikatoren/index.
php?indikator=6&mode=indi&aufzu=1.

The detection of these climate-induced changes is very difficult. The evaluation shows

http://www.lanuv.nrw.de/kfm-indikatoren/index.php?indikator=6&mode=indi&aufzu=1
http://www.lanuv.nrw.de/kfm-indikatoren/index.php?indikator=6&mode=indi&aufzu=1
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that for North Rhine Westphalia, a slight increase in the average number of heavy rainfall

events per year existed during the period from 1950 to 2008. In the 2000s, short term local

heavy rain events have multiplied, which took lots of damage in urban areas. Figure 3.7 gave

the additional peaks of heavy rainfall with duration of 60 min between 1950 - 2008. The

trend line presented in the figure is not statistically significant.

According to Quirmbach et al. (2012), during the past hydrological years (1950 - 2008),

in many urban areas of North Rhine Westphalia, the number of dry days (daily precipitation

less than 0.1 mm) had increased while at the same time this number had decreased in some

mountainous areas. For winter periods, there had been a clear uniform reduction of dry days

up to 20 days in the last 58 years, whereas they had increased only half number (10 days)

in summer months. The number of days with daily precipitation above 10 or 20 mm had

significantly increased with an average of 3.5 days in the last 58 years, which were observed

for the whole state, and it was more clearly for winter months than for summer months.

Period = May – September
Period = January – December
Duration = 60 min
Return period = 10 a

Lower than 22 mm

22 to 24 mm
24 to 26 mm
26 to 30 mm
30 to 34 mm
34 to 38 mm
38 to 42 mm

42 to 46 mm
46 to 50 mm

50 to 54 mm
upper than 54 mm

Period = May – September
Period = January – December
Duration = 60 min
Return period = 100 a

Lower than 22 mm

22 to 24 mm
24 to 26 mm
26 to 30 mm
30 to 34 mm
34 to 38 mm
38 to 42 mm

42 to 46 mm
46 to 50 mm

50 to 54 mm
upper than 54 mm

(a) (b)

Figure 3.8 Spatial distribution of rainfall events with duration of 60 min of Germany with different
recurrent intervals in summer season during the period from 1951 - 2000. (a) for return period of 10
year; (b) for return period of 100 year. Images are from German weather service (DWD) (2006).
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Figure 3.8 showed the spatial distribution of rainfall events with duration of 60 min of

Germany with different recurrent intervals in summer season during the period from 1951 to

2000, which is followed the DWD project KOSTRA-2000 (Bartels et al., 2005).

Through the Figure 3.8a, during the climate period 1951 - 2000, comparing to the

reference period (January - December), rain events with duration of 60 min occurred in

summer season (May - September) were more frequently distributed in southern Germany

at the recurrent interval of 10a. For the range of North Rhine Westphalia, rain events with

rainfall volume above 30 mm occurred more frequently in the southern mountain regions. In

the northern low land region, rainfall volume of rain events were less than what occurred in

the southern part, the value was between 22 to 30 mm.

Through the Figure 3.8b, spatial distribution of rain events with duration of 60 min at

recurrent interval of 100a were more similar to what were presented in figure 3.8a but their

rainfall volume were higher, and for North Rhine Westphalia, event’s distribution at this

recurrent interval was also consistent. It is suggested that the heavy rain events are more

vulnerable to occur in the southern mountain region of North Rhine Westphalia compared to

the northern low land region during the climate period 1950 - 2000, and the event’s volume

at recurrent interval of 100 years was higher than at recurrent interval of 10 years.

3.2 Geomorphology

There are two main types of landscapes in North Rhine Westphalia, one is the North German

Lowlands with elevations a few meters above sea level. Another one is the North German

Low Mountain Range with elevations of up to 850 m above sea level. Detailed landscape

types are presented as in Figure 3.9.

The Sauer and Sieger Land is a rural, hilly region which spreads across most of the

south-east part of North Rhine Westphalia and parts of federal state Hessen. The Sauer

and Sieger Land is a heavily forested region with sparse inhabitation. It connects with the

Bergisches Land to the West, and with the Sieger Land to the South, and continues into the

Teutoburg Forest to the North-east. The major rivers running through the Sauer and Sieger

Land region are the Ruhr and its tribute - Lenne. Several artificial lakes were created on

the smaller rivers by building dams to store water for the adjacent area of Ruhr. The region

includes several sub Mountains with highest elevations of 843 m above sea level in Rothaar

mountain.

The Lower Rhine is a region around the Lower Rhine section of the river Rhine which
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locates in North Rhine Westphalia between approximately Oberhausen and Krefeld in the

East and the Dutch border around Kleve in the West. The Lower Rhine region basically

covers the districts of Cleves, Wesel, Viersen and Neuss as well as the independent cities of

Duisburg, Mönchengladbach and Krefeld. On its disputed parts of Oberhausen as well as

Düsseldorf can be seen as part of the Lower Rhine.The Lower Rhine region’s landscape is

mostly flat green grass land with wide views of the horizon.

Figure 3.9 Main landscape types in North Rhine Westphalia. Data sources are from State Office
for Nature, Environment and Consumer Protection of North Rhine Westphalia (2015), http://www.
naturschutz-fachinformationssysteme-nrw.de/natura2000-meldedok/de/downloads.

The Eifel is a low mountain region which spreads across western Germany and eastern

Belgium. It occupies parts of southwestern North Rhine Westphalia, northwestern Rhineland

Palatinate and the south of Belgium. The Eifel region is bordered by the river Moselle

in the South and the Rhine in the East. In the North, it is limited by the landscape of

Jülich-Zülpicher Börde, and by the Ardennes of Belgium and Luxembourg in the West.

The northern parts of Eifel include Rur Eifel, High Fens and the Limestone Eifel. The

http://www.naturschutz-fachinformationssysteme-nrw.de/natura2000-meldedok/de/downloads
http://www.naturschutz-fachinformationssysteme-nrw.de/natura2000-meldedok/de/downloads
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northeastern part of this region is called Ahr Hills. In the West, on the Belgian border, the

hills of Eifel are known as Schneifel with a elevation of 698 m above sea level. The southern

half of the Eifel is lower. It is cut by several rivers running from north to south direction

towards the Moselle.

The Cologne Bay is a region with high densely population lying between the city of

Bonn, Aachen, and Düsseldorf. The Cologne Bay is surrounded on the left bank of the Rhine

by the High Fens and the Eifel, as well as by the Bergisches Land on the Rhine’s right bank.

In the South and Southeast, the rising Rhine Massif is visible from far off by the silhouette

of the Siebengebirge, form the conclusion of the bay at city Königswinter. In the Northwest,

the Cologne Bay opens out into the valleys of the Rhine and the Meuse. In the Northeast, it

is bounded by the Münster Chalk Basin of the Westphalian Bay.

The Weserberger Land is a hill region along the Weser river. It spreads across federal

states Lower Saxony, Hesse and North Rhine Westphalia, the elevation of this region is up

to 527.8 m above sea level. Important cities within Weserberger Land region include Bad

Karlshafen, Holzminden, Höxter, Bodenwerder, Hameln, Rinteln, and Vlotho. In addition

to the whole of the Weser Valley between Hann. Münden und Porta Westfalica, several

geologically associated, but clearly separate chains of uplands, ridges and individual hills

are considered part of the Weserberger Land. This region roughly coincides with the natural

region of the Lower Saxon Hills. The largest contiguous area of forest in the Weserberger

Land lies on the Solling in the Solling-Vogler Nature Park.

The Bergisches Land is a low mountain range region within the North Rhine Westphalia

with the highest elevation of 519.2 m above sea level.It lies in the east of Rhine river and

south of city Ruhr. The landscape of this region is shaped by woods, meadows, rivers and

creeks and 20 artificial lakes are contained. The biggest city in this region is Wuppertal,

which is also the capital of this region.

The Westphalian Bay is a flat landscape whose most parts locating in Westphalia with

only small southwestern parts in North Rhine and small northern parts in Lower Saxony.

Together with its neighbor Lower Rhine Plain to the west, it represents the second most

southerly region of the North German Plain after the Cologne Bay. The Westphalian Bay

consists of the individual regions of Münster Land, the Emscher Land in the west and

south, and regions even further south that flank the Sauer Land around the Hellweg. The

Westphalian Bay is bounded by ridges of the Lower Saxon Hills from the northeast to east

and by the northern part of the Süder berger Land to the south. These hills rise to heights of

several hundred meters above the basin floor.
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3.3 Land Covers

The land cover distribution of North Rhine Westphalia is presented as in Figure 3.10.

Through the figure, about 50 % area of North Rhine Westphalia is identified as agricultural

area which densely locate in the northern low land region, and 26 % area is forest region

which distributes in southern Sauer and Sieger Land Region as well as Eifel region, and the

others are artificial region (e.g. settlements, industrial area, traffic area) which distributes

along the Rhine valley.

Figure 3.10 Land Cover types over the North Rhine Westphalia. Data sources are from Eu-
ropean Environment Agency (EFA) (2015). http://www.eea.europa.eu/data-and-maps/data/
nationally-designated-areas-national-cdda-10/.

Heavy industry is the main source of income of the state’s economy. The relatively

high costs and decreasing competitiveness of many of the Ruhr’s heavy industries, however,

including coal mining and metallurgy, have led to a concerted effort by the region to change

both its economic structure and its image. By the early 21st century the state had succeeded

in establishing itself as one of Germany’s most important high-technology centers. The

state’s service industries are also increasingly highly developed.

http://www.eea.europa.eu/data-and-maps/data/nationally-designated-areas-national-cdda-10/
http://www.eea.europa.eu/data-and-maps/data/nationally-designated-areas-national-cdda-10/


40 Study Area

Many commercial enterprises, trading houses, loan societies, and banks contribute to

the state’s economy. Outside of the Ruhr, much of the state’s land is devoted to commercial

farms, gardens, or orchards. Wheat and sugar beets are grown in the southern lowlands. In

the north, fruits and vegetables are cultivated. In Münsterland and in the regions of the lower

Rhine, cattle raising and pig breeding play considerable roles.



CHAPTER 4

METHODS

In this chapter, a precipitation object identification and tracking algorithm-RCIT was de-

veloped. The Semi-Lagrange based advection scheme was introduced which considers the

diversity of velocity fields and then applied for doing radar based QPF. The position tracking

and predicting algorithm- Kalman Filter was introduced and applied for the prediction of rain

cluster’s center of mass. Additionally, a characteristic predicting method which takes into

account the growth & decay stages of precipitation objects over its life cycle was proposed.

Two object based spatial rainfall verification methods- ’SAL’ and ’Geometric Index’ methods

were introduced for evaluating the performance of RCIT algorithm and of QPF methods.

4.1 Data Sources

Radar images from three rainy days were employed in this study which were produced from

the C-band operational Essen radar belonged the DWD radar network. The Essen radar

works with a beam width approximate 1o by precipitation scanning way with a range of 128

km and elevation angle of 0.8o in five minute frequency. Radar reflectivity are indicated

by Z(r,θ) where r is the radar covering range and θ is the azimuth. Their resolution are 1

km and 1o separately. Figure 4.1 presented the daily accumulative rainfall over the NRW

calculated from radar images sorted by rainy days (26-May-2007, 19-Jul-2008 and 26-Jul-

2008). Then, a radar data process package - Wradlib developed by Heistermann et al. (2013)

was applied, by which the radar images with polar coordinate are projected into a 256×256

km2 Cartesian grid map with 1 km spatial resolution. The output of this procedure has

been the reflectivity Z(i,j) in Cartesian map, whereas i and j are the horizontal and vertical

coordinates, respectively. Finally, the power law relationship between radar reflectivity and

rainfall intensity is used to transfer radar pixel’s reflectivity to the rainfall intensity, the

coefficients a and b are set to 256 and 1.42 defined by German Weather Service (DWD).
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Figure 4.1 Calculated daily accumulated rainfall over the NRW. The upper left is for rainy day
26-May-2007 and the upper right is for rainy day 19-Jul-2008, the bottom is for rainy day 26-Jul-2008

4.2 Precipitation Object Identification and Tracking Algorithm - RCIT

Precise identification and tracking of precipitation object are the key requirement in radar

based precipitation applications. Existed tracking algorithms are mainly developed for deep

convective systems, primarily for purposes of extreme events’ monitoring, nowcasting and

warning. Examples of such algorithms include the KONRAD (Lang, 2001), the GANDOLF

(Bowler et al., 2004) as well as the TITAN and the TREC. A broad overview has been put

forward by researchers concerning various methods about storm tracking and nowcasting

using radar, satellite or lighting data. Some of these methods use two dimensional radar

images for pattern recognition (Bellon and Austin, 1984) or cross-correlation techniques

(Tuttle and Foote, 1990). Others consider three-dimensional storm entities, for example

to perform a so-called centroid tracking algorithm (Austin and Bellon, 1982). Within
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the researching range of ’World Weather Research Programmed Forecast Demonstration

Project’ (Sydney 2000), Pierce et al. (2004) performed a statistical and studied-oriented

comparison of four different radar based precipitation forecasting schemes. They concluded

that the centroid tracking and pattern-matching based extrapolation techniques are the most

reliable in convective scenarios. Old techniques use a simple extrapolation to determine the

new object position, recent techniques more concentrate on dealing with storm’s initiation,

growth and dissipation (e.g. Germann et al., 2006; Radhakrishna et al., 2012; Ruzanski and

Chandrasekar, 2012). Some of these studies also consider the merging or splitting of rain

clusters over their life cycles, which are critical for rain cluster’s analysis (e.g. Moseley et al.,

2013; Shimizu and Uyeda, 2012).

Under convective conditions, individual rain clusters are organized into meso-scale

convective system(MCS) that are associated with severe precipitation, and exhibit organized

structures. Under this knowledge, rain clusters can be modeled according to the known

shape (e.g. circle or ellipse), and their characters can also be easily derived.

In this chapter, a precipitation object identification and tracking algorithm- RCIT (Rain

Cluster Identification and Tracking) was proposed to accommodate the needs of radar based

QPE and QPF. Processes for constructing the proposed algorithm were described in section

4.3 and 4.4 respectively.

4.3 Rain Cluster Identification Module

The objective of rain cluster identification is to identify and group connected rainy pixels

from radar images, then to extract the physical and geometry characteristics of them. This

procedure is not a simple task. The reason is that a rain cluster can be divided into a single

group at various scales or embedded in a larger strati-form region. Commonly, identification

of rain cluster can be done by two or three dimension radar data set.

In this study, the image processing techniques are applied for operating rain cluster’s

identification and their characteristic’s extraction from radar images. Firstly, a median filter

algorithm was employed for reducing noisy pixels containing in the radar image (subsection

4.3.1); secondly, a segmenting algorithm for identifying connected rainy pixels in radar

image was developed, physical and geometric characteristics were derived from the identified

rain clusters by ellipse fitting (subsection 4.3.2); finally, these characteristics were stored in

a relation database for further analysis. Figure 4.2 presented an illustration for rain cluster

identification module.
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Figure 4.2 The illustration of a rain cluster identification module for radar image at 16:55:00 on
19-July-2008. (a) the rainy pixels were segmented and labeled with different colors; (b) an ellipse
shape was fitted to each segment; (c) the properties of the identified rain clusters were extracted; (d)
the properties were stored in a relational database.

4.3.1 Median Filtering for Noise Smoothing

Through the observations from radar images, there were a number of isolated pixels existed

with over high or low reflectivity. These pixels are far away from the connected pixel’s

center and a large blank area will present when grouping them into any connected pixels.

For solving this problem, a median filter algorithm was applied. The median filtering is a

nonlinear process which is useful in reducing impulsive, or salt and pepper noise (Ekstrom,

1984). For the median filter algorithm, a predefined size window slides along the image, and

the median intensity value of the pixels within the window becomes the output intensity of

the pixel being dealt with. Unlike low-pass filtering algorithm, the median filtering algorithm

can preserve discontinuities in a step function and can smooth limited pixels whose value is

modified significantly from their surroundings without affecting the true value of neighboring

pixels.
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Median Filter algorithm is operated on two dimensional radar images with Cartesian

coordinates. Median Filter algorithm replaced each grid’s value by a grid in its neighborhood

that has the median total intensity, averaged over all channels, then the median value in

r×r blocks centered on each pixel are found (in this study, r is chosen to 3 for convenient

of calculation) and smaller neighborhoods are used at the edges of an image. Figure 4.3

presented error distributions between original radar images and filtered ones.

Figure 4.3 Averaged error distributions of filtered radar images, sorted by three rainy day. (a) for
radar images from 26-May-2007, (b) for ones from 19-Jul-2008, (c) for ones from 26-Jul-2008.

4.3.2 Extracting Characteristics of Rain Cluster

Connected rainy pixels were determined from the filtered radar images, this was done by

image segmenting method by which all the rainy pixels with same reflectivity are assembled

to a cluster. In detail, rainy pixels sharing the same reflectivity value were labeled and

clustered, then the contour of the cluster was extracted by Edge detection method (Figure

4.2a). Selection of the rainy pixels with same reflectivity obeyed the following rules:

• If the reflectivity of rainy pixel is lower than a given threshold then it is set to null.

• For each rainy pixel and its eight neighbors, if there are more than five ones are null,

then it is set to null.

• If the pixel is ’spur’, then the pixel is set to null. Here, the ’spur’ pixels are those small,

extraneous lines left after the skeletonization process for a binary image (Chanda and

Majumder, 2004).

• If the area of identified segment is smaller than 9 km2, then it is ignored.

Reflectivity threshold’s selection for segmentation process was based on the radar
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reflectivity threshold level from Kronenberg et al. (2012) as in Figure 4.4. Through the

figure, different radar reflectivity threshold level was marked with color, and each level was

corresponded to different rainfall types. Here, 19 and 37 dBZ were chosen as the light and

convective rain clusters, respectively. By this selection, rain clusters in rainfall events could

be categorized as light and convective types which contained more rainfall information.

1.0 dBZ 19 dBZ 28 dBZ 37 dBZ 46 dBZ 55 dBZ

very light light moderate convective hail extreme

Figure 4.4 Radar reflectivity threshold level and corresponding rainfall types.

Then, an ellipse shape was fitted to the labeled segments (Figure 4.2b) and the physi-

cal&geometry characteristics were extracted (Figure 4.2c). The selected characteristics of

identified rain cluster were defined as follows:

• Area [km2]: number of pixels for identified rain cluster;

• Cumulative rainfall [mm]: areal total rainfall of the identified rain cluster per 5 min-

utes. For each rainy pixel contained in the identified rain cluster, the Z-R relationship-

Z = 256R1.42 is applied for converting reflectivity value into rain rate (in mm/5min),

then the total rainfall of identified rain cluster is achieved by summing up rain rates of

these pixels.

• Max rain rate per 5 minutes [mm]: peak rain rate of rainy pixel contained in

identified rain cluster;

• Mean rain rate per 5 minutes [mm/km2]: areal averaged precipitation of identified

rain cluster, it is the ratio of rain cluster’s cumulative rainfall and area as in equation

(4.1):

Rmean = Rtotal
A

(4.1)

where Rmean is the mean rain rate of the identified rain cluster, Rtotal and A represents

the cumulative rainfall and area of rain cluster, respectively;

• Number of convective pixels: it is defined for reflecting internal growth or decay of

rain cluster at different threshold levels. Here, according to the reflectivity threshold
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definition presented in Figure 4.4, 37 dBZ is used as the threshold for calculating

number of convective pixels of light rain clusters while 46 dBZ is used to confirm the

number of convective pixels for convective rain cluster.

• Eccentricity: the ratio of minor axis length (lminor) and major axis length (lmajor) of

identified rain cluster as in equation (4.2), it is used to describe how much the rain

cluster shape approximates to a circular with a value range between 0 and 1. The

greater of the value, the more ellipse shape that rain cluster looks like. Here, lminor

and lmajor is calculated from the fitted ellipse shape of identified rain cluster.

Eccentricity =

√
1− lminor2

lmajor2 (4.2)

• Center of mass [km]: the center position of identified rain cluster which is weighted

by rainy pixel’s reflectivity contained in the identifed rain cluster as in equation (4.3).

C(X,Y) =

n∑
i=1

m∑
j=1

P(xi,yi)R(xi,yi)

n∑
i=1

m∑
j=1

R(xi,yi)
(4.3)

where C(X,Y) is the center of mass for the identified rain cluster, P(xi, yi) is the

position of pixel contained in the identified rain cluster and R(xi, yi) is the pixel’s

reflectivity.

For all the extracted characteristics, they were finally stored in a relational database. In

this study, an open source database processing system -PostgreSQL (Momjian, 2001) was

applied for storing these characteristics (Figure 4.2d).

4.4 Rain Cluster Tracking Module

The aim of rain cluster tracking module is to connect rain clusters at different moments to

ensure that they are into a series of consecutive time chains, and furthermore, to evaluate the

spatial - temporal variability of their characteristics. As mentioned at the beginning of this

chapter, most cell based tracking algorithms are developed for compatible with convective

scenarios, or combined with other resources such as cloud-top, wind or temperature from

numeric model output or satellite observations (e.g. Meyer et al., 2013; Nisi et al., 2014;

Tüchler and Meyer, 2013; Wood-Bradley et al., 2012). Research domains where those

algorithms applied are usually in a large spatial scale.
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Another aspect which is merely considered for those algorithms is that how to cope with

splitting and merging scenarios and how to evaluate growth and decay of rain clusters over

their life cycles. Merging is one of the important phenomena for convective precipitating

system development (Westcott, 1994). A merged rain cluster grows larger in shape and

produces more precipitation than single ones. Some studies addressed the merging effect on

super cells, squall lines and meso-scale convective systems (e.g. Lee et al., 2006a,b; Meixner,

2002). Compared to the merging phenomenon, fewer studies have investigated splitting

of rain cluster. Bluestein et al. (1990) documented the initiation and behavior of splitting

convective clouds, and concluded that this split is the result dynamic forcing effects rather

than to rain water loading. Jewett and Wilhelmson (2006) investigated the role of splitting

rain cells within squall lines using numerical simulations.

The tracking procedure of rain cluster can be categorized as pixel and object based

types. For pixel based tracking approach, atmospheric conditions are based on Eulerian,

pixel-based perspective. Here, the pixel size is set to be the radar’s spatial resolution. An

object based approach usually includes three general steps: storm identification; storm

tracking and storm projection. For storm tracking step, rain clusters at former and next

moment are connected with some matching rules (e.g. overlaps between rain clusters, area

difference and distance between their center of mass).

PIV process moving fields

Rain Cluster 
Identification Module

......

......

Radar images in 
Cartesian coordinates

Identified rain clusters at time t

Identified rain clusters at time t+5min

Child Rain Cluster 
Matching Rule

Trajectories of 
rain clusters

Figure 4.5 An processing illustration of rain cluster tracking module.

In this study, an object-based rain cluster tracking algorithm was developed (Figure

4.5). Firstly, the Particle Image Velocimetry was applied for deriving global motion vectors
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of two consecutive raw radar images (raw radar images are the ones without Median filtering

process and no reflectivity threshold is set); secondly, at each time interval, rain clusters were

identified and their characteristics were extracted; then, a sequence of rain cluster matching

rules were implemented for identifying the most matched child rain clusters at the next

time interval; finally, the rain clusters identified at two successive moments were connected

according to their parent-children relationship as a time chain and stored into the relational

database.

4.4.1 Particle Image Velocimetry

The Particle Image Velocimetry (PIV) is an optical method of flow visualization which is

used to obtain instantaneous velocity measurements and related properties in fluids. The fluid

is seeded with tracer particles which, for small particles which are enough sufficiently are

assumed to faithfully follow the flow dynamics (the degree to which the particles faithfully

follow the flow is represented by the Stokes number). The fluid with entrained particles is

illuminated so that particles can be visible. The motion of the seeding particles is used to

calculate speed and direction (the velocity field) of the flow being studied. The PIV method

comprises a class of flow measuring techniques that are characterized by the recording of

the displacement of small particles embedded in a region of fluid (Jahanmiri, 2011).

The PIV method can also be said as a consequence of the development in flow visu-

alization techniques, which have contributed so importantly to the understanding of fluid

flow phenomena. Similar with what have been introduced in Chapter 2 (see section 2.1 in

Chapter 2), the PIV method can be selected as a kind of advection field tracking method

for advection field’s estimation at various spatial scale. In this study, the PIV method is

implemented for simulating global motion vectors of consequent radar images, Figure 4.6

presented an simple illustration of the process for generating the global motion vectors by

the PIV method.
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Figure 4.6 An simple illustration of the application of PIV method in global motion vector identifica-
tion for radar images at 00:00:00 and 00:05:00 on 26-May-2007. (a) window boxes with the area of
r × r are defined (rectangular with red color); (b) for any grid point in the window box at previous
time (blue block), the MQD algorithm is applied for deducing its minimum reflectivity differences
with grid points within any window box at next time (red blocks), the results are reversed and the
solitary peak locations - ∆x and ∆y are corrected, the value of corrected ∆x and ∆y are 22.0056
and 23.0056 respectively, locations of the optimal grid point at time 00:05:00 on 26-May-2007 are
calculated; (c) the global motion vectors are extracted and smoothed by median filter method.

It was similar to the TREC tracking algorithm and its improved form - COTREC, an

interrogation box was defined firstly when applying the PIV. The interrogation box can be

selected at various size, but default setting was 32×32 km2 in this study. At each time

interval, two consequent radar images f1 and f2 were selected, then the interrogation boxes

with a size of R×R km2 were defined which divide these radar images into a series of

sub-regions. Here, the interrogation box with a size of 32×32 km2 was confirmed which

means that the whole radar image can be divided into 64 sub-regions (figure 4.6a).

In Figure 4.6b-c, a Minimum Quadric Differences (MQD) method was employed for
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extracting the optimal grid points at next time as in equation 4.4:

MQD(∆X,∆Y) =
N∑

i=1

N∑
j=1

∣∣R1(Xi,Yj)−R2(Xi +∆X,Yj +∆Y)
∣∣ (4.4)

where R1(Xi,Yj) and R2(Xi,Yj) are the reflectivity of grid points contained within the

interrogation boxes of radar images at time t and t + ∆t, respectively; ∆x and ∆y are the

locations of minimum reflectivity difference at horizontal and vertical directions, respectively.

When applying the MQD algorithm, firstly, a searching distance - d = 2×vmax +1 was

defined where vmax is the pre-set maximum velocity; then, the equation 4.4 was used for

deducing the minimum reflectivity values of grid points, and ∆x and ∆y were calculated

(∆x,∆y ∈ d). For simplified calculation, the reflectivity differences of grid points within

window box were reversed. For guaranteeing the solitary peak locations could be calculated,

∆x and ∆y were corrected separately for the horizontal and vertical directions by fitting a

second-order polynomial to the logarithm of the maximum reflectivity of the grid point and

its three direct neighbors. By this way, the optimal grid points at time t + ∆t were identified

whose locations could be presented as - (x+∆x− d+1
2 ,y +∆y − d+1

2 ). Finally, calculated

global motion vectors were smoothed by the median filter algorithm.

Comparing to advection field tracking algorithms which are based on the maximum

cross-correlation approach. The extracted global motion vectors based on the PIV method

was more continuous and consistent. Through the practical applications, the cross-correlation

based tracking algorithms do not work well for radar images which contain no rainy pixels

(speckle images). Under such conditions, no global motion vectors will be generated.

However, the calculating costs for tracking method proposed in this study was higher than

those classical algorithms.

4.4.2 Rain Cluster Matching Rule

Before the introduction of rain cluster matching rule, some definitions were given firstly:

For two radar images at two successive moments, rain clusters identified from previous

moment’s radar image are called parent clusters; rain clusters from next moment’s radar

image are called child clusters. For each identified parent cluster, rain cluster matching rule

is employed to finding its most matched child clusters. Figure 4.7 illustrated the child rain

cluster matching rule applied in this study. Here, the time lag of two moments is five minutes

which is also the time interval of radar scanning. Main steps are listed as follows (more

detailed information can be found in Appendix A):
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(1) A boundary box is defined for each parent cluster; the range of the box should be

larger than the size of the parent cluster. Here, the horizontal length of the box is the

maximum horizontal length of the parent cluster plus 20 kilometers as well as the

vertical length of the box.

(2) Number of child clusters falling into the box is counted. For each child rain cluster

falling into the box, four characteristics are selected: area, cumulative rainfall, max

and mean rain rate per 5 minutes. Another important characteristic in this step should

be considered is the center of mass. By deriving center of mass for each child rain

cluster, motion difference between child rain clusters and parent cluster could be

obtained easily. Some additional characteristics, such as number of convective pixels

and eccentricity are not considered because they are not obvious effects on the tracking

results.

(3) For each child cluster falling into the box, there are two scenarios for finding the most

matched child cluster: if there is only one child cluster falling into the box, and if it

overlaps with the parent cluster, then it is the most matched child cluster; otherwise,

following conditions are considered: firstly, distance and angle difference of center of

mass between it and parent cluster is less than a given threshold when comparing to

the mean value of derived global motion vector, then it is also the most matched child

cluster; secondly, if there are two or more child clusters falling into the box which

are not overlapped with the parent cluster, the matched rules are same with the first

scenario, but one extra condition is included: calculating area differences between

these child clusters and their parent, child clusters with the minimum area difference

are the most matched ones.

Taking an example, for any two consequent radar images, in Figure 4.7a, A was the

parent cluster which is identified at previous time step, dashed box was the defined boundary

box of A, and A
′
, B

′
,C

′
, D

′
were child clusters which falling into the boundary box of A.

Overlaps, speed and direction differences between A and A
′
, B

′
, C

′
, D

′
were calculated

and the results were presented as in Figure 4.7b, according to the defined matching rule, A
′

should be the most likely child rain cluster for A (red row in Figure 4.7b).
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Figure 4.7 A simply illustration for most matched rain cluster matching rule, the red solid arrow in
(a) is the motion vector between the parent cluster A and its most likely child cluster A

′

4.4.3 Life Stages Identification

During the life cycle of one rainfall event, physical and geometry features of rain cluster

always varies, as mentioned in Chapter 1 (see section 1.3 in Chapter 1), three common stages

can reflect these variations. As a matter of fact, rain cluster’s variation is not only associated

with its internal growth and decay, but also connected with outer clusters (e.g. merging or

splitting). In this study, stages of rain cluster were extended, and five stages of rain clusters

were identified during their life cycles, and their identification rules were listed as follows

(Figure 4.8):

(a) Initial: If there is at least one child cluster but no parent cluster existed, it is a new

generated rain cluster.

(b) Tracking: If there is only one child cluster and only one parent cluster existed, and

this rain cluster passed over its whole life cycle without merging or splitting.

(c) Merge: If there are at least two parent clusters but only one child cluster existed, it

could be said that it is a merged rain cluster.

(d) Split: Contrary to the definition for merge, for one rain cluster, if it has only one

parent cluster but at least two child clusters, it could be said that this rain cluster is

split.
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(e) Dissipate: For one rain cluster, if it contained at least one parent cluster, but no child

cluster existed, it could be said that this rain cluster is dissipated.

(f) 5 minutes life cycle: Apart from five stages mentioned above, there are also some

rain clusters with life cycle of only 5 minutes which are only observed in one radar

image.

(a)

(b)

(c)

(d)

(e)

t t+delta t

Figure 4.8 Life stages illustration of rain clusters during their life cycle. The transparent and grey
parts in the figure presented parent and child rain clusters, respectively. (a) ’initial’ stage; (b) ’tracking’
stage; (c) ’Merge’ stage; (d) ’split’ stage; (e) ’dissipate’ stage.
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4.5 Semi-Lagrange Based Advection Scheme

For simply introduction of the Semi-Lagrange based advection scheme, one dimensional

linear advection equation was presented firstly as in equation (4.5):

∂z
∂t

+u
∂z
∂x

= 0 (4.5)

where u is the constant coefficient parameter and z is the state of the system with its initial

form presented as z0(x), x∈R. So the equation (4.5) can also be presented as:

z(x,t) = z0(x −ut) (4.6)

Considering the discretization of equation (4.5) on a uniform one dimensional mesh

grid with a spatial scale of ∆x and a temporal scale of ∆t. When the nodes in the mesh grid

is presented by i and time intervals are presented by n, then the space-time locations of the

node can be presented by xi = i∆x, tn = n∆t with their approximate values computed by

a numerical solution are presented as zn
i ≈ z(xi, t

n). The selected numerical solution is a

standard finite difference methods based on approximation of differential operators by finite

difference quotients.

Lagrange and Semi-Lagrange based advection scheme exploit instead the special feature

of the advection equation, that is the representation of the exact solution in terms of the

initial state. Particularly, it can be observed that the following equations hold considering

without loss of generality the case of u > 0:

z(xi,tn) = z0(xi −un∆t) = z0(xi +u∆t−u(n +1)∆t) = z(xi +u∆t,tn+1) (4.7)

with a constant coefficient parameter u and with a initial state z0(x), x ∈ R. The system state

at next time interval can be presented as:

z(xi,tn+1) = z0(xi −u(n +1)∆t) = z0(xi −u∆t−un∆t) = z(xi −u∆t,tn) (4.8)

Equation (4.8) provided the basis of Lagrange based advection scheme which is similar

with what has been introduced in Chapter 1 (see equation (1.9) in Chapter 1). The special

nature of the solution for equation (4.5) allows to use the knowledge of the solution in a

mesh grid point at time n to derive the value of the solution at time n+1 at points of a mesh

grid that has moved with the flow. Due to the fact that the mesh grid must be changed at

each time interval, practical application of Lagrange based advection scheme is not very

straightforward.
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Equation (4.9) provided the basis of Semi-Lagrange based advection scheme. Cor-

respondingly, the special nature of the solution for equation (4.5) is used to express the

value of the solution at time n+1 at the mesh grid points in terms of the solution values at

time n at points of a mesh grid that within a single time interval will be transported by the

flow onto the computational mesh grid. This has the practical advantage that the mesh grid

does not change in time, which is the one of the fundamental reasons for the much more

wide-spread use of Semi-Lagrange based advection scheme rather than Lagrange based.

Discrete definition of the Semi-Lagrange based advection scheme also can be obtained from

equation (4.9).

zn+1
i = zn

i−u ∆t
∆x

= zn
i−k−α

u ∆t
∆x = k +α

k =
[
u ∆t

∆x

]
(4.9)

In equation (4.9), k and α are called the integral and fractional courant numbers,

respectively. The expression zn
i−k−α is to be interpreted as the value obtained from the

approximate zn values at the point i∆x−u∆t by some interpolation procedure.

The earliest works which are concerned with methods for the advection equation by

applying the propagation along characteristics may be presented by Courant et al. (1952),

whose aim was on the numerical solution of the hyperbolic systems. In the meteorological

application via Semi-Lagrange based advection scheme, a graphic integration technique was

presented by FjØrtoft (1952). Wiin-Nielsen (1959) gave a more detailed analysis. Various

scientific contributions have been established which presented the role of methods based on

Semi-Lagrange based advection scheme from past decades. Applying the Semi-Lagrange

based advection scheme for numerical precipitation forecasting has been developed since

2000’s (e.g. Berenguer et al., 2011; Germann and Zawadzki, 2002; Mandapaka et al., 2012;

Wang et al., 2013).

In scientific practices of radar based rainfall estimation and forecast, movements of

advection fields are not always linearly. A rotating velocity field exists In some cases (e.g.

storm events occurred in the tropical region), and the traditional velocity fields extrapolating

method like Eulerian and Lagrange based advection scheme will not work so well. Semi-

Lagrange based scheme can be solution. Considering equation (4.9), mathematical function
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of Semi-Lagrangian for radar based rainfall forecasting can be written:

z(X,t0 +τ) = z(X−α,t0) (4.10)

where z is the pixel’s reflectivity or rain rate in position X at time t0. The extrapolated pixel’s

reflectivity of rain rate in position X after τ leading time is equal to the pixel’s reflectivity

or rain rate in position X − α at time t0. The extrapolated motion vector α is calculated

according to the equation (4.11):

α = ∆tu(t0,x − α

2
) (4.11)

where u(t0,x− α
2 ) is the pixel’s velocity in position x− α

2 . When the extrapolation starts, α

= 0, the extrapolated motion vector is accumulated by N time intervals where the number N

is divided by the extrapolating length τ .

4.6 Center of Mass’s Extrapolating Method

According to the introduction in Chapter 2 (see section 2.2 in Chapter 2), center of mess’s

extrapolation is a kind of cell based QPF approach by which the rain cluster’s center of

mass at future time is extrapolated according to its locations at previous time intervals (e.g.

TITAN and SCOUT system). The premise of most center of mess’s extrapolating methods

is the assumption that the extrapolated rain cluster at future time moves with a constant

speed. Armed with this assumption, the linear extrapolation method is commonly applied.

Nevertheless, measured moving speed for rain cluster is not constant in some cases and the

extrapolated center of mass at future time exists high bias.

Figure 4.9 illustrated the linear or non-linear trajectories and the linear extrapolating

results for their center of masses. Through the Figure 4.9a, for a measured relative linear

trajectory, the linear extrapolated results presented high bias (the root mean squared error

was [6.5, 13.3] km). It was the same with the non-linear trajectory (Figure 4.9b), and the

root mean squared error for the extrapolated rain cluster’s center of mass was [10.2, 4.3] km.

In this study, a position tracking and predicting algorithm- Kalman filter was applied

and attempted to predict the rain cluster’s center of mass taking into account the non-constant

moving speeds of identified rain clusters.
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Figure 4.9 An illustration of measured linear (non-linear) rain cluster’s trajectories and the linear
extrapolating results for their center of masses, the trajectories were extracted from the developed
precipitation objects identification and tracking algorithm. (a) for a measured relatively linear
trajectory, (b) for a measured non-linear trajectory.

4.6.1 Basic Concepts for Kalman Filter

The concepts of probabilistic analysis in radar based rain cluster tracking is rarely applied.

Conversely, it has been widely employed in other scientific domains for a long time (Bar-

Shalom et al., 2004). The Kalman filter algorithm can be regarded as a statistical inversion

method for solving linear filter of discrete data, in which an unknown state x of the system is

estimated combining with some noisy measurements (Figure 4.10).

When applying the Kalman filter algorithm to predict rain cluster’s center of mass, each

rain cluster’s position is treated as a discrete system. The unknown states x can be regarded

as an assembly of characteristics (e.g. center of mass, moving speed, area, cumulative

rainfall). The goal of kalman filter algorithm is to provide an optimal estimation for x at

the next time interval by the noise measurements at the previous time step and a dynamic

process for the temporal development of state parameters. In the practical application, the

measurements can be acquired from the outputs of precipitation objects identification and

tracking algorithm.
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Figure 4.10 An illustration of kalman filter algorithm.

The principle of Kalman filter is that the system states can be presented as a linear

stochastic state-space model with Gaussian noises which can be described as:

Xk = Fk Xk−1 +Wk−1

Yk = Hk Xk +vk

(4.12)

where Fk is the state transition matrix, Hk is the measurement matrix. wk−1 and vk are

the noisy state and measurement variables, respectively. Fk defines how the state evolves

between successive time steps which can describe a system perfectly comparing to the

deterministic model. The noisy variable wk is added to describe the uncertainties of the

system. Thus, wk−1 is also called as the processing noise and it assumed to follow the

Gaussian distribution with the form of wk−1 ∼ N(0,Qk−1). The measurement matrix Hk

defines how the model state is mapped from the defined state variables to the observations.

The observation model Hk, in turn, defines how the model state is mapped from the state

variables to the measurements. The noisy vector vk−1 is the measurement noise, which

relates to the uncertainty or bias of the measurements yk. Same with the process noise, it

is also assumed to follow the Gaussian distribution with the form of vk−1 ∼ N(0,Rk−1).
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In most cases, both vk and wk−1 are both assumed to follow the Gaussian distribution and

independent on the initial state x0.

The kalman filter estimates mk and its covariance Pk for the unknown state xk at kth

time step are estimated recursively with the following two phases algorithm:

Prediction step:

m−
k = Fk−1 mk−1

P−
k = Fk−1 Pk−1 FT

k−1 +Qk−1

(4.13)

Update step:

Kk = P−
k HT

k (Hk P−
k HT

k +Rk)−1

mk = m−
k +Kk(yk −Hk m−

k )

Pk = (I−Kk Hk)P−
k

(4.14)

The variables m−
k and P

−
k in equation (4.13) denote the predicted state estimate and

the corresponding covariance, which are updated with a given measurement yk. In equation

(4.14), Kk is the Kalman gain, which defines the system state with the initial state of m0 and

covariance of P0. From Bayesian point of view, the estimates mk and Pk can be regarded

as the mean and covariance of the posterior distribution of the state xk by a given noisy

measurement yk, the prior mean value - m−
k and covariance - P

−
k .

4.6.2 Application of Kalman Filter Algorithm

In this study, the Kalman filter algorithm was applied for doing one hour ahead center of mass

extrapolation for the identified rain cluster. The state variables were the rain cluster’s center

of mass with Cartesian coordinates which were marked as (x,y) including the corresponding

velocity and accelerate elements which were marked as (vx,vy) and (ax,ay) separately, then

the state matrix of kalman filter model could be written as [x,vx,ax,y,vy,ay]T . The mea-

surement variable was the rain cluster’s center of mass, therefore the elements corresponding

to the velocity and accelerate variables in the measurement matrix Hk were set to zeros. The



4.6 Center of Mass’s Extrapolating Method 61

velocity and accelerate was calculated based on the center of masses at previous time steps.

Measurement matrix Hk could be presented as:

Hk =


1 0 0 0 0 0

0 0 0 1 0 0

 (4.15)

and the measurement noise vk was assumed to be a zero mean Gaussian distribution in this

study with the covariance of:

Rk =


r2 0

0 r2

 (4.16)

In equation (4.16), the parameter r describes the noise intensity of the measured

elements (center of mass). The state transition model Fk and the process noise covariance

Qk of the discretized acceleration model whose noise was also assumed to follow a zero

mean Gaussian distribution are listed in equation (4.17) and equation (4.18)

Fk =



1 dt dt2 0 0 0

0 1 dt 0 0 0

0 0 1 0 0 0

0 0 0 1 dt dt2

0 0 0 0 1 dt

0 0 0 0 0 1



(4.17)
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Qk = q



1
3 dt3 1

2 dt2 0 0

1
2 dt2 dt 0 0

0 0 1
3 dt3 1

2 dt2

0 0 1
2 dt2 dt



(4.18)

where dt is the time interval and q defined the processing noise intensity which could help

to choose a reasonable parameter for the processing noise. Similar with the measurement

noise, the value of q can be chosen subjectively.

4.7 Rain Cluster’s Characteristics Predicting Method

At the beginning of Chapter 1, three stages of rain cluster over its life cycle were illustrated

and they can be displayed as cumulus, mature and dissipation (see section 1.3 in Chapter 1).

During rainfall events, one rain cluster is generated and then grows with its size enlarged and

rain rate increased. When the inner structures become saturated, the growth of rain cluster

slows and keeps stable, then it is in the mature stage. At the end of the rainfall events, the

size and rain rate of rain cluster decrease till it disappears and this is known as the dissipation

stage.

Figure 4.11 presented a conceptual illustration of three stages of rain cluster over its

life cycle where the vertical axis was the mean value of rain cluster’s characteristics and the

horizontal axis was the duration of rain cluster.

Through the Figure 4.11, if we normalize all the rain cluster’s trajectories, then a

summary of stage variability of rain cluster’s characteristics following the normalized

durations. For example, if the rain cluster’s trajectories with different durations are extracted,

then the ’Normalized Duration Lines’ of their characteristics can be calculated where the

range of normalized duration is set from 0 to 1 and we can give a heuristic summary that the

growth stage of a rain cluster is between 0 and 0.4, the mature stage is between 0.4 to 0.6

and the dissipation stage occurs between 0.6 to 1.
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Figure 4.11 An conceptual illustration of three stages of rain cluster over its life cycle.

Trajectories with multi durations can be normalized into one standard time axis by

the ’Normalized duration lines’ method and the temporal developments for rain cluster’s

characteristics can be presented. By applying regressive fitting method, the fitted curve can

be calculated and presented as a parabola function, the coefficient parameters a and b of the

parabola function can also be confirmed as in equation (4.19):

Vcharacters = at2
normal +btnormal (4.19)

where Vcharacters is the normalized mean value of rain cluster’s characteristics, a and b are the

coefficient parameters of the fitted parabola function, respectively. tnormal is the normalized

duration of rain cluster. According to the equation (4.19), predicting characteristics of rain

cluster can be operated by equation (4.20):

Vforecast = aVnow (tnormal +
tforecast

T
)((tnormal + tforecast

T
)− b

a
) (4.20)

where Vforecast is the predicted value at leading time tforecast, tnormal is the median value

of the normalized duration for three stages which are presented in Figure 4.11 (growth

stage: 0.2, mature stage: 0.5 and dissipation stage: 0.6). Vnow is the mean value of rain

cluster’s characteristics at previous time intervals. T = tnow

tnormal
is the ratio of current time

tnow and median value of the normalized duration. As for the practical application, the Vnow

is averaged by the previous time interval’s characteristic’s values before the forecast starts.

At each forecasting step, a new Vforecast is generated and is combined with the former time
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step’s value for updating Vnow, then the updated Vnow is inputted to the equation (4.20) and

the new Vforecast at next forecasting time is calculated. The rain cluster’s characteristics

which the proposed predicting method applied are: ’area’, ’cumulative rainfall’, ’max rain

rate per 5 minute’ and ’mean rain rate per 5 minute’.

4.8 Spatial Rainfall Verification Methods

The grid-point related error measuring is a problematic for the precipitation estimation

and forecast. A classic example illustrating the flaw of grid-point based verification scores

is the well-known ’Double Penalty’ problem, which can be described as: prediction of

a precipitation object with a correct size and structure might yield very poor verification

scores. For example, a precipitation object is displaced slightly in space but the categorical

verification scores penalize such a situation heavily. From a point of view of traditional

verification methods, a displacement simply leads to a false alarm and it is also very poorly

rated by a large root mean squared error (RMSE). Through these points of view, a forecast

with a misplaced precipitation object is just as bad as a forecast that totally misses an event.

Davis et al. (2006) illustrated some of the difficulties associated with diagnosing forecast

errors using traditional verification approaches as in Figure 4.12.

Figure 4.12a illustrated a good forecast which the forecasted precipitation object (F)

and observed one (O) were well matched; Figure 4.12b was a poor forecast which the

forecasted and observed precipitation objects had large location deviations; in Figure 4.12c,

the forecasted precipitation object had larger area and was offset to the observed one; in

Figure 4.12d, the forecasted precipitation object was deviated to the observed one both in

location and shape. Among the four examples illustrated in Figure 4.12, it appeared that

case a was the best forecast.

Given the perceived differences in the performance, it was dismaying to note that all of

the first four examples have identical basic verification statistics: Probability of Detection

(POD), False Alarm Rate (FAR), Critical Success Index (CSI), and POD = 0, FAR = 1, CSI

= 0. Thus, the verification technique is insensitive to the difference in location and shape

errors. Similar insensitivity could be shown to be associated with timing errors. Figure 4.12e

illustrated a very poor forecast from a variety of points of view with some skill (POD, CSI

> 0; FAR < 1), suggesting it is a better forecast than the one depicted in Figure 4.12a.
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Figure 4.12 A schematic example of various forecasted and observed precipitation objects combina-
tions.

However, a very fact that an event is somehow predicted should be positively evaluated

because from a physical point of view, it is clearly a better forecast may totally miss an event.

This issue becomes increasingly clear as the forecasting model’s resolution increases. These

high-resolution forecasting models can produce precipitation objects that are comparable to

the radar information at various resolutions. Thus, complexity and a variety of structures

generated by such models must be objectively scrutinized. High-resolution precipitation
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forecasts from numerical models may look quite realistic visually, and it may provide useful

guidance for modelers and forecasters. However, usefulness of such high-resolute forecasts

must be objectively quantified. Unfortunately, traditional verification scores are not much

adapted for this purpose as already emphasized.

Despite substantial progress in observing precipitation patterns, characterization of

their spatial patterns is always a challenge. While a great deal of effort has been put to

statistical validation of grid based precipitation estimating results, uncertainties associated

with geometry patterns of forecasted precipitation objects are not well researched.

Basic principles of spatial rainfall verification methods consist of relaxing an exact

match to the observation at the fine scales. The spatially-based techniques stress the useful-

ness of the forecasts in analogy with the visual verification (’verification by eye’) and focus

on the verification of gridded forecasted data with the observations that is on the same grid

as for radar based QPE. Such gridded observations have greater uncertainty at the higher

resolutions than at the lower resolutions. Point-wise precipitation measurements, which

are another source of verification, may suffer from an issue of representatives, particularly

for precipitation objects existing highly variability. As a result, an estimated forecasting

error is further biased by an observational uncertainty. In other words, a formally-obtained

forecast error should be considered as practically meaningful. Spatially-based methods

are built upon an idea of identifying weather events as ’objects’ or ’features’. Under this

perspective, the forecasted and observed rainfall values are not compared directly at the

same locations (identical or near-by grids) but instead, the objects of interests are extracted

from forecasted-observed data and then compared together so that verification statistics are

obtained. A number of spatial verification methods have been proposed. Comparative review

studies can be found in Ebert (2008) and Gilleland et al. (2009).

4.8.1 SAL Spatial Rainfall Verification Method

The SAL (Structure-Amplitude-Location) method is an object-based spatial rainfall verifica-

tion approach for judging whether a QPF is good or not (Wernli et al., 2008). It aims at to

address the following issues :

• It measures quantitatively three distinct aspects of the quality of a precipitation forecast

in a previously specified area, integrated over time periods ranging from 1 to 24 hours.

• It takes into account the structure of the precipitation event (e.g., scattered convective

cells, convective complex, frontal rain system), which is regarded as a direct fingerprint
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of the physical nature of the event.

• It does not require a one-to-one matching between the identified objects and simulated

ones in the forecast.

• It is close to a subjective visual judgment of the accuracy of a regional QPF.

The SAL methods is a three-component’s feature based forecasting quality measure-

ments, in which a forecast is treated in terms of Structure (S), Amplitude (A) and Location

(L).The calculation of the three components of the SAL is outlined briefly in the following:

• A component corresponds to the normalized difference of the domain-averaged pre-

cipitation values of the modeled/forecasted objects - Rmod and the observed ones -

Robs:

A = D(Rmod)−D(Robs)
0.5 [D(Rmod)+D(Robs)] (4.21)

where:

D(R) = 1
N

∑
i,j∈D

Ri, j (4.22)

Here, D(R) denotes the domain average of the rain cluster R. The values of A are

ranged from -2 to 2 and 0 denotes a perfect forecast in terms of amplitudes.

• L component of the SAL is consisted by two parts, L = L1 + L2 whereas the first term

measures the normalized distance between the centers of mass of the modeled/fore-

casted and observed objects:

L1 = |x(Rmod)−x(Robs)|
d

(4.23)

where d denotes the largest distance between two boundary points of the considered

domain and x(R) denotes the location for object R in this domain. Values of L1 =

0 indicates that the centers of mass of the predicted and observed rain clusters are

identical. The second part L2 measures the averaged distance between the center

of mass of the total objects and the individual. The L2 can only differ from zero if

either the observations or the forecast (or both) contain more than one object in the

considered domain. The scaling of the L2 is such that it has the same range as L1, and

hence the total location component L values vary between 0 and 2.

• S component is to compare the normalized volume for modeled/forecasted and ob-

served objects. Such a measure captures information about the size and shape of
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objects. For each object Rn a scaled volume Vn is calculated as the following sum

over all grid point values R(i, j):

Vn =
∑

(i,j)∈Vn
R(i, j)
Rnmax (4.24)

where Rmax
n denotes the maximum rain rate within the object. The volume Vn is

calculated separately for all objects in the observational and forecast data sets. Then,

the weighted mean of all objects’ scaled rainfall volume, referred to as V, is determined

for both data sets. Then, the S is defined as the normalized difference in V, analogously

to the A component:

S = V(Rmod)−V(Robs)
0.5 [V(Rmod)+V(Robs)] (4.25)

The scaling is again such that the possible range of values extends from -2 to 2. Positive

values of S indicate that the predicted precipitation objects are too large and/or too

flat; in contrast, negative values occur for too small and (or) too peaked objects.

4.8.2 Geometric Index Method

Geometric Index is a geometric framework for assessing spatial patterns of rain cluster,

which is proposed by Aghakouchak et al. (2011). It constructed by some geometric concepts

(e.g. minimum theoretical perimeter, convex hull and actual perimeter), three criteria indexes

are defined for this method:

• Connectivity index: it is calculated based on the number of rain clusters (NC) and

the total number of non zeros pixels or pixels above a given threshold (NP).

Cindex = 1− NC−1√
NP+NC

(4.26)

where Cindex is the connectivity index, NP is the number of (nonzero) pixels, and NC

is the number of rain clusters. The Connectivity index is defined to compare multiple

fields with respect to a reference image (e.g. simulated versus observed) and is not

designed to compare patterns with significantly different spatial scales and/or number

of pixels.

• Shape index:

Sindex = Pmin
P

(4.27)

Shape index is used to distinguish rain clusters with different shapes. In this equation,
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Sindex is the single index, Pmin is the theoretical minimum perimeter, and P is the

actual perimeter of the rain cluster.

• Area index:

Aindex = A
AConvex

(4.28)

Area index is defined based on the concept of convex hull (the boundary of the minimal

convex set containing a finite set of points in space). It is the ratio of the area for

rain cluster and area of its convex hull. In this equation, A is area of the pattern, and

Aconvex is the area of the convex hull.





CHAPTER 5

RESULTS

In this chapter, three day’s radar images (26-May-2007, 19-Jul-2008 and 26-Jul-2008) were

acquired for developing RCIT algorithm which was proposed in Chapter 4. Totally 9991 light

rain clusters (reflectivity > 19 dBZ) and 3988 convective ones (reflectivity > 37 dBZ) were

generated. Totally 1153 trajectories for light rain clusters and 508 ones for convective rain

types were also extracted. Statistical analysis was applied for investigating spatial-temporal

characteristics of identified rain clusters, and forecasting methods mentioned in Chapter 4

were also applied. Results were given in the following sections: In section 5.1, statistical

descriptions for rain cluster’s characteristics were presented. In section 5.2, mathematical

functions for describing relations of rain cluster’s characteristics were given. Section 5.3

presented the spatio-temporal analyzing results for identified rain clusters. Section 5.4

presented temporal developments of identified rain cluster’s characteristics and ’Normalized

Duration Lines’ for rain cluster’s characteristics were measured by regressive fitting method.

In Section 5.5, verifying results of RCIT algorithm were presented by SAL and Geometry

Index methods mentioned in Chapter 4. In Section 5.6, radar based precipitation forecasts for

a leading time up to 2 hours were operated. Four forecasting methods based on the advection

field tracking approach were implemented: the first one was the ’PIV_Semi-Lagrangian’

wherein the motion vectors of advection field at previous time steps were generated by Parti-

cle Image Velocimetry method (see section 4.4.1 in Chapter 4), the future advection field was

extrapolated by the Semi-Lagrangian scheme. The second method was similar to the first one

but the advection field at the next time steps was extrapolated by the Lagrangian-Persistence

scheme which was named as ’PIV_Lagrangian-Persistence’. The third and forth methods

were based on TREC approach by which the motion vectors of advection field at previous

time steps were generated by maximum cross-correlation way and the future advection field

was extrapolated by Semi-Lagrangian and Lagrangian-Persistence schemes separately which

were named as ’TREC_Semi-Lagrangian’ and ’TREC_Lagrangian-Persistence’, respectively.

Additionally, predictions for the characteristics of rain clusters with a leading time up to
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one hour were also done by the methods proposed in Chapter 4. Verification results of

forecasting and predicting methods were also presented in this section.

5.1 Descriptive Statistics of Rain Cluster’s Characteristics

Descriptive statistics for rain cluster’s characteristics included their minimum and maximum

values, median value and the standard deviation as presented in Table 5.1. Empirical

distributions of identified rain cluster’s characteristics were presented in Figure 5.1 - 5.5

and some theoretical distributions were selected to fit their empirical distributions. Here, a

multi-goodness of fit testing approach was proposed for the best theoretical distribution’s

searching, detailed description about this approach and its application was presented in

Appendix B.

Table 5.1 Descriptive statistics of identified rain cluster’s characteristics.

Characteristics
min max Standard deviation Median value

>19dBZ >37dBZ >19dBZ >37dBZ >19dBZ >37dBZ >19dBZ >37dBZ

Area [km2] 10 10 18376 2855 1421.6 196.03 40 28

Cumulative rainfall [mm] 0.4 7.34 8851 4266.8 571.1 388.29 4.91 43.35

Max rain rate per 5 minutes [mm] 0.04 0.73 33.16 33.16 2.87 3.73 0.24 2.91

Mean rain rate per 5 minutes [mm/km2] 0.04 0.73 6.19 8.39 0.31 0.88 0.1 1.5

Eccentricity 0 0 0.99 0.995 0.14 0.14 0.84 0.85

A high standard deviation existed for characteristic area, not only for identified light

rain clusters but also for those convective ones. The value range of light rain cluster’s area

was between 10 and 18376 km2, but most values were less than 40 km2 (last column in

Table 5.1). It was the same with area of convective rain clusters with a value range between

10 and 2855 km2 and most of them were less than 28 km2. A Generalized Pareto distribution

(GPD) was found to fit the empirical distribution of log10 transformed area for both light and

convective rain clusters (red lines in Figure 5.1). Equation (5.1) showed the density function

of Generalized Pareto distribution:

f(x |k,α,θ ) = (1
α

)(1+k
(x − θ)

α
)
−1− 1

k
(5.1)
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where k is the shape parameter, θ and α are the location and scale parameters, respec-

tively. For θ < 0, k > 0 and for θ < x < α
k , k < 0. In the limit for k = 0, the GPD is an

Exponential distribution. The GPD function assumes that all of the samples exceed a certain

threshold. In this study, the threshold value (θ) for rain cluster’s area was set to 10 km2 due

to the fact that the minimum value of 9 km2 had been imposed in rain cluster identification

procedure.

Figure 5.1 Empirical distribution of log10 transformed area fitted with its best matched theoretical
distributions which were marked by red line. (a) for identified light rain clusters, (b) identified
convective rain clusters.

For characteristic cumulative rainfall, high standard deviation also existed through

the statistical descriptions (the forth column in Table 5.1). Its value range for identified

light/convective rain clusters was obviously (0.4 to 8851 mm for light rain clusters and 7.34

to 4266.8 mm for convective rain clusters). Two theoretical distributions were found to fit the

empirical distributions of their log10 transformed cumulative rainfall, respectively (Figure

5.2). For light rain clusters, distribution of their log10 transformed cumulative rainfall could

be fitted with the Generalized Pareto distribution and for the convective ones, the Inverse

Gaussian distribution (INV_Gauss) was the best theoretical distribution for fitting their log10

transformed cumulative rainfall.
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Figure 5.2 Same with Figure 5.1, but for log10 transformed cumulative rainfall.

Equation (5.2) presented the density function of Inverse Gaussian distribution. The

higher median value of convective rain cluster’s cumulative rainfall (43.35 mm) reflected

that the identified convective rain clusters contained more rainy pixels with higher intensity

compared to the light ones.

f(x |µ,λ) =
[

λ

2π x3

]1
2

e
−λ(x−µ)2

2µ2 x (5.2)

for x > 0, µ > 0 is the mean parameter and λ > 0 is the shape parameter. As λ tends to

infinity, the Inverse Gaussian distribution is more like a normal distribution. In such case,

the distribution for value of log10 transformed cumulative rainfall of convective rain clusters

will present a symmetry trend.

For characteristic max rain rate per 5 minutes, its standard deviation was properly

(2.87 mm for light rain clusters and 3.73 mm for convective ones) but their value range

were also obviously (0.04 to 33.16 mm for light rain clusters and 0.73 to 33.16 mm for

convective ones). Most rain cluster’s max rain rate were small through their median value

(0.24 mm for light rain clusters and 2.91 mm for convective ones). The Generalized Pareto

distribution was selected as the best theoretical distribution for fitting empirical distribution

of log10 transformed max rain rate of light rain clusters and the Generalized Extreme Value

distribution (GEV) was the best for fitting the empirical distribution of log10 transformed

convective rain cluster’s max rain rate (Figure 5.3).
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Figure 5.3 Same with Figure 5.1, but for log10 transformed max rain rate per 5 minutes.

Equation (5.3) presented the density function of GEV distribution:

f(x |k,µ,α) =
(

1
α

)
e(−(1+k (x−µ)

α )
− 1

k )(1+k (x−µ)
α )

−1− 1
k

(5.3)

for 1+k (x−µ)
α , k > 0, the GEV distribution is the Fréchet distribution, while k < 0, it

corresponds to Weibull distribution. In the limit for k = 0, the GEV distribution is Gumbel

distribution, in that case, the density function is:

f(x |0,µ,α) =
(

1
α

)
e(−e(− (x−µ)

α ) − (x−µ)
α ) (5.4)

The value range of characteristic mean rain rate per 5 minutes was more similar to

characteristic max rain rate with 0.04 to 6.14 mm/km2 and 0.73 to 8.3 mm/km2 for light

and convective rain clusters, respectively. Its High median value for identified convective

rain clusters (1.5 mm/km2) reflected that the areal averaged precipitation of convective

precipitation objects obviously exceeded the light ones though their area were small than the

light ones. Same theoretical distributions were found for fitting the empirical distributions of

log10 transformed light/convective rain cluster’s mean rain rate compared to the characteristic

max rain rate (Figure 5.4).
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Figure 5.4 Same with Figure 5.1, but for log10 transformed mean rain rate per 5 minutes.

Value of characteristic eccentricity for identified light/convective rain clusters ranged

from 0 to 1, and most of them were over 0.5 (median value was 0.84 for light rain clusters

and 0.85 for convective ones) which reflected that the identified rain clusters, not only light

ones but also the convective ones were more fitted to an ellipse shape. The Generalized

Extreme Value distribution was found for fitting empirical distributions of their eccentricity

(Figure 5.5).

Figure 5.5 Same with Figure 5.1, but for characteristic eccentricity.
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5.2 Mathematical Relations of Rain Cluster’s Characteristics

The aim of the mathematical description for relations of rain cluster’s characteristics is to

quantify the inner structures of rainfall events by some simple mathematic functions. It

is not an easy task. According to Waymire and Gupta (1981a,b), there is still no uniform

mathematic way for describing their inner structure’s relations because of different precipi-

tating scenes and modeling tools based on these scenes. In this study, mathematic relations

for describing the relationships of identified rain cluster’s characteristics were investigated.

Considering the aim of this section, these relationships included:

(a) ’Area - Cumulative rainfall’, reflects the variability of integral rainfall volume following

the variability of size for the identified rain clusters.

(b) ’Area - Number of convective pixels’, reflects the variability of size following the

internal rain rate’s growth/decay for the identified rain clusters.

(c) ’Cumulative rainfall - Number of convective pixels’, reflects the variability of integral

rainfall volume following the internal rain rate’s growth/decay for the identified rain

clusters.

(d) ’Max rain rate per 5 minutes - Number of convective pixels’, reflects the variability

of peak rain rate following the internal rain rate’s growth/decay for the identified rain

clusters.

(e) ’Mean rain rate per 5 minutes - Number of convective pixels’, reflects the variability

of areal averaged precipitation following the internal rain rate’s growth/decay for the

identified rain clusters.

Figure 5.6-5.10 presented the scatter plots of log10 transformed characteristics of rain

clusters and their fitting results (red curves in the figures).



78 Results

Figure 5.6 Scatter plots for log10 transformed area and cumulative rainfall and their linear fitting
curve. (a) for identified light rain clusters, (b) for identified convective rain clusters

Through the Figure 5.6, the relation for log10 transformed area and cumulative rainfall

presented a strongly linear trend, not only for the identified light rain clusters (the goodness

fitting test results was 0.87), but also for the identified convective ones (the goodness of fit

testing result was 0.89) which indicated that the cumulative rainfall of identified rain clusters

presented a exponential growth, when the size of rain clusters touched to some threshold,

the growth of their cumulative rainfall slowed down.

Number of convective pixels, one of the rain cluster’s characteristic which is defined

for reflecting the internal rain rate’s growth/decay for identified rain clusters, was applied for

investigating its relations to other physical and geometry characteristics of identified rain

clusters. By doing this investigation, such question will be answered: Are the variability of

value for rain cluster’s physical and geometry characteristics from its internal intensity’s

growth/decay directly?

Figure 5.7-5.10 presented the relations between the number of convective pixels for

light/convective rain clusters and log10 transformed characteristics: area, cumulative rainfall,

max and mean rain rate per 5 minutes. Through their fitted curves, these relations followed

an power-law function as in equation (5.5):

log10(Characteristics) = a (Np)b (5.5)

where Np represented the number of convective pixels for identified rain clusters, a and b

are the coefficient parameters of power-law function.
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Figure 5.7 Scatter plots for log10 transformed area and number of convective pixels with their
power-law fitting results. (a) for identified light rain clusters, (b) for identified convective rain clusters

Figure 5.8 Same with Figure 5.7, but for log10 transformed cumulative rainfall.

Coefficient of determination for their regressive results reflected that: variability of

identified rain cluster’s area and integral rainfall volume had robust connections with its

internal rain rate’s growth/decay (goodness of fit testing was 0.74/0.69 for log10 transformed

area and 0.87/0.82 for log10 cumulative rainfall). The goodness of fit testing results for

relations between number of convective pixels and log10 transformed max and mean rain

rate per 5 minutes were weak (0.52/0.42 for log10 transformed max rain rate per 5 minutes,

0.18/0.2 log10 transformed mean rain rate per 5 minutes). The question was answered: for
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identified light rain clusters, their size and integral rainfall volume’s variability were strongly

affected by their internal intensity’s growth/decay, but whether the strong connections can

be found for max/mean rain rates was blur.

Figure 5.9 Same with Figure 5.7, but for log10 transformed max rain rate per 5 minutes.

Figure 5.10 Same with Figure 5.7, but for log10 transformed mean rain rate per 5 minutes.

5.3 Spatial and Temporal Correlation Analyzing Results

The spatial and temporal correlation function for identified rain clusters was borrowed from

Krajewski et al. (2000) as in equation (5.6) , and it was used for defining the precipitating

process at the horizontal plane. In detail, spatial correlation is the cross-correlation of rain
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rate at two grids separated by a given spatial distance within the size of rain clusters (e.g.,

1 km), which is aimed at studying the variability of rain rate as a function of space and its

curve describes the decay of correlation index of rain rates following the different spatial

scales and can be used for characterizing the spatial variability of precipitation objects.

Correspondingly, the temporal correlation is the cross-correlation of rain rates at the same

grid which is separated by a given time interval within the life cycle of identified rain

clusters and curves of its correlation index describe the decay of rain rate’s correlation index

follows different temporal scales which is used to characterize the temporal variability of

precipitation objects.

Corr(∆s,∆t) =
Cov((Is,t −µ),(Is+∆s,t+∆t −µ))

α2 (5.6)

where s and t represent the location and moment of rainy pixel in the identified rain clusters.

∆s and ∆t are the spatial and temporal scales. Cov is the covariance value for rain cluster’s

pixels at specified spatial and temporal scale. α is the sample variance of rain cluster’s pixels.

The spatial scale along the prevailing directions of trajectories calculated from RCIT

algorithm was selected for spatial correlation’s calculation. For example, for rainy day 26-

Jul-2008, the prevailing direction of calculated trajectories was from south-east to north-east.

It was identified at the fourth quadrant in the Cartesian coordinate system with a negative

value at the horizontal direction and a positive value at the vertical direction. Value of the

spatial scale should be like [−x,+y].

More details about the selection of spatial scale was presented in Appendix D. In this

study, the correlation index for identified light/convective rain clusters in three selected rainy

days were calculated as in Figure 5.11 with spatial scales from 1 to 10 km and temporal

scales from 5 to 100 min.

Through the Figure 5.11, the correlation coefficients of rain rates for identified rain

clusters got high values at small spatial or temporal scales, and decreased as the scale

extending. The correlating index of identified rain clusters which followed the spatial and

temporal scales could be fitted with a exponential function by applying the regressive method

in which the spatial correlations of identified rain clusters were more fitted through the

goodness of fit testing results, not only for light rain clusters (Figure 5.11a and c), but also

for those convective ones (Figure 5.11b and d).
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Figure 5.11 Spatial and temporal correlating curves for identified rain clusters, which is sorted by
median values of their areas and duration of 60 min. (a) spatial correlation of identified light rain
clusters, (b) same with (a), but for identified convective rain clusters, (c) temporal correlation of
identified light rain clusters, (d) same with (c), but for identified convective rain clusters.

For identified light rain clusters with area above 40 km2 (Figure 5.11a), their calculated

spatial correlations got a higher value compared to those with their area less than 40 km2,

which indicated that the most identified light rain clusters with their area under 50th percentile

level were more smoothly than those with area above the same percentile level and this

difference was more obviously when the spatial scale was less than 5 km. For the identified

convective rain clusters with area above 28 km2 (Figure 5.11b), their calculated spatial

correlations also got higher values compared to those with area less than 28 km2, but the

correlation coefficients for the same spatial scale were smaller than those calculated for light

rain clusters, which indicated that the most identified convective rain clusters with area under

50 % percentile level were smoother than those with area above at the same percentile level.
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Identified convective rain clusters were more smoothly when they were compared to the

identified light ones at the same spatial scale.

For identified light rain clusters with duration over 60 min (Figure 5.11c), their temporal

correlation coefficients were higher than those with duration less than 60 min and the

difference of their correlation coefficients was obviously within a temporal scale of 20 min,

which indicated that the variability of identified light rain clusters with a shorter duration

were more obviously than those with longer duration. Structures of these rain clusters might

be more stable within a short temporal scale of 20 min. It was almost the same with what

were calculated for the identified convective rain clusters (Figure 5.11d) excepted that the

correlation coefficients were slightly higher than the light ones at the same temporal scale,

which means a more stable inner structures of identified convective rain clusters than the

identified light ones.

5.4 Temporal Developments for Identified Rain Clusters

5.4.1 Trajectory Analyzing Results

Trajectories for identified rain clusters were calculated and extracted by RCIT algorithm,

which included spatial and temporal information about characteristics of identified rain

clusters. According to the life stage’s definition for rain clusters (see section 4.4.3 in Chapter

4), the calculated trajectories can be categorized in two types:

(a) Single-tracks. There is no rain cluster which merges or splits, and the calculated motion

vectors for rain cluster’s trajectory are properly without much deviation from the mean

value of calculated global motion vectors.

(b) Multi-tracks. Rain clusters merge or split frequently with others, and the calculated

motion vectors of trajectory show the obvious value deviation compared to the mean

value of calculated global motion vectors. This scene is more complicated compared to

’single-tracks’ type.

Totally 1153 trajectories for identified light rain clusters including 1043 ones of ’Single-

tracks’ type, and totally 508 trajectories including 478 ones of ’Single-tracks’ type for

identified convective rain clusters were calculated and extracted. Figure 5.12 presented

the histograms of two type’s trajectories for identified light and convective rain clusters,

respectively.
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Figure 5.12 Histograms of calculated trajectory’s durations. (a) all trajectories for identified light rain
clusters, (b) same with (a), but for identified convective rain clusters, (c) ’Single-tracks’ trajectories
for identified light rain clusters, (d) same with (c), but for identified convective rain clusters.

Considering the durations of all trajectories for identified light rain clusters. Their

mean value was 44.9 min with the maximum value of 655 min. Durations of ’Single-tracks’

trajectories for identified light rain clusters were lower whose mean value was 24.5 min with

the maximum value of 280 min. For identified convective rain clusters, mean value for their

’Single-tracks’ trajectories was 22.1 min with a maximum value of 150 min.

Through the Figure 5.12, histograms of durations for calculated trajectories seemed to

follow an exponential distribution which held a sharply decreasing trend, not only for the

identified light rain clusters, but also for those convective ones. Most calculated trajectories

hold a short duration, and the ’Single-tracks’ ones were more. Trajectories with duration

above 2 hours sparingly occurred.

Number of rain clusters with different stages over their life cycles was also summarized.
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Table 5.2 presented these results, through the table, the identified rain clusters with ’track’

stage were in dominant, ’merging’ and ’splitting’ ones occurred solely which indicated a

stable inner structures for the identified rain clusters.

Table 5.2 Number of identified rain clusters with different stages, sorted by rain day.

stage
Light rain clusters (ref > 19dBZ) Convective rain clusters (ref > 37dBZ)

26-May-2007 19-Jul-2008 26-Jul-2008 26-May-2007 19-Jul-2008 26-Jul-2008

Initial 166 462 471 81 133 277

Tracking 662 1889 1931 169 274 1019

Merging 14 59 52 1 2 30

Splitting 0 20 8 0 4 10

Dissipate 157 423 424 79 134 255

5 minute life cycle 481 2075 695 268 780 472

On rainy day 19-Jul-2008 and 26-Jul-2008, the number of identified rain clusters with

’5 minute life cycle’ was more than those from 26-May-2007, which means that the identified

rain clusters from 26-May-2007 were more presented with the form of ’Single-tracks’ type

and persisted with long durations. Number of identified convective rain clusters for all

stages was smaller than the light ones which means that the convective situation did not

occur frequently in three rainy days. Particularly, for identified convective rain clusters, few

splitting or merging scenes occurred compared to the identified light ones. The reasons

might be that some convective rain clusters were only observed in one radar image, and most

of them were embedded into the light ones which could split or merge easily.

Motion vectors of identified rain clusters over their life cycles were calculated based

on the characteristics center of mass which was deduced by weighting the summarized

coordinates of pixels in Cartesian coordinates at horizontal and vertical direction respectively

and were presented as speed (unit: m/s) and direction (unit: degree) which were calculated
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according to the equation (5.7).

speed =
√

(xt −xt+∆t)2 +(yt −yt+∆t)2

direction = arctan(yt −yt+∆t
xt −xt+∆t

)

(5.7)

where xt and xt+∆t are the Cartesian coordinates of center of mass for identified rain clusters

at previous and next time, respectively. yt and yt+∆t are the Cartesian coordinates of center

of mass for identified parent/child rain clusters at vertical direction. Figure 5.13 presented

the empirical distributions of mean values of calculated motion vectors for identified rain

clusters over their life cycles.

(a) For rainy day 27-May-2007 (the daily averaged motion vector was 2.11 m/s which was

calculated from RCIT algorithm), the identified light rain clusters moved ahead the

North-East direction with a mean speed of 11.1 m/s and the standard deviation of 4.79

m/s. The ’Single - tracks’ ones hold a mean speed of 10.4 m/s with a standard deviation

of 4.56 m/s. Identified convective rain clusters moved along the same direction but with

a higher mean speed (12.8 m/s and standard deviation (7.46 m/s). The calculated ’Single

- tracks’ trajectories for identified convective rain clusters hold a mean speed of 12.4 m/s

with the standard deviation of 6.88 m/s.

(b) For rainy day 19-Jul-2008 (the calculated daily averaged motion vector was 3.91 m/s),

the identified light rain clusters moved ahead the East direction with a mean speed of 15.5

m/s and a standard deviation of 4.71 m/s. The calculated ’Single - tracks’ trajectories

hold a mean speed of 14.6 m/s with the standard deviation of 5.22 m/s. For identified

convective rain clusters from this day, they had the same moving direction but with a

lower mean speed (13.8 m/s) and a lower standard deviation (4.67 m/s), there was a

mean speed was 13.7 m/s with the standard deviation of 4.88 m/s for their calculated

’Single - tracks’ trajectories.

(c) For rainy day 26-Jul-2008 (the calculated daily averaged motion vector was 1.8 m/s),

the identified light rain clusters moved ahead the North-West direction with a mean

speed of 9.1 m/s and a standard deviation of 4.76 m/s. The calculated ’Single - tracks’

trajectories hold a mean speed of 8.1 m/s with the standard deviation of 4.98 m/s.

Identified convective rain clusters moved along South-East to North-West direction with

a lower mean speed of 8.74 m/s and a lower standard deviation of 4.19 m/s. A mean

speed of 7.74 m/s was deduced for their ’Single - tracks’ trajectories with the standard
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Figure 5.13 Empirical distributions of mean values of calculated motion vectors for identified rain
clusters over their life cycles, sorted by three rainy day. (a) for all trajectories of identified light
rain clusters, (b) same with (a), but for identified convective rain clusters, (c) for ’Single-tracks’
trajectories of identified light rain clusters, (d) same with (c), but for identified convective rain
clusters.
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deviation of 3.47 m/s.

Results from the identified rain cluster’s life cycle analysis indicated that the precipita-

tion objects with low intensity hold longer durations compared to the identified convective

ones, and their calculated trajectories without merging and splitting had shorter durations.

The movements of precipitation objects in three rainy days also presented diversity: for rainy

day 27-May- 2007 and 19-Jul-2008, mean value of motion vectors for identified light rain

clusters was higher than the convective ones. Moving directions of identified rain clusters

were along east which were conversely to those identified from rainy day of 26-Jul-2008.

Moving directions of the identified rain clusters were same with what were observed from

radar images.

5.4.2 Temporal Variability of Rain Cluster’s Characteristics
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Figure 5.14 Box plots for median values of identified light rain cluster’s characteristics, sorted by their
durations. (a) for characteristic area, (b) for characteristic cumulative rainfall, (c) for characteristic
max rain rate per 5 minutes, (d) for characteristic mean rain rate per 5 minutes.
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Characteristics of identified rain clusters with same durations were sampled and grouped,

then their median values were deduced. Figure 5.14 and Figure 5.15 presented the box plots

of the median value for identified light/convective rain cluster’s characteristics sorted by

durations, respectively. Outliers (above 95% or under 5% quantile levels) in each class of

box plot were removed.

Median value of characteristic area for identified light rain clusters with durations

around 30 to 60 min was higher than others (Figure 5.14a), and decreased following the

extended durations. Median value of cumulative rainfall presented a increasing trend for

identified light rain clusters within a duration of 60 min and a maximum value was found

around 60 tp 120 min (Figure 5.14b), then it decreased when identified rain cluster’s duration

over 120 min. Median value of characteristic max rain rate per five minute was higher for

identified light rain clusters with durations less than 30 min or over 120 min and was lower

for those with duration around 30 to 120 min (Figure 5.14c). An increasing trend was found

for the median value of characteristic mean rain rate per 5 minutes (Figure 5.14d).
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Figure 5.15 Same with Figure 5.14, but for characteristics of identified convective rain clusters.

For identified convective rain clusters, decreasing trend was found for median values of
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their characteristics area (Figure 5.15a), cumulative rainfall (Figure 5.15b) and max rain rate

per 5 minutes (Figure 5.15c) when rain cluster’s durations extended except that the median

value of characteristic mean rate presented a slightly increasing trend.

5.4.3 Analyzing Results of Normalized Duration Lines

Figure 5.16 ’Normalized Duration Lines’ for characteristics of identified light rain clusters. (a) for
characteristic area, (b) for characteristics cumulative rainfall, (c) for characteristic max rain rate per 5
minutes, (d) for characteristic mean rain rate per 5 minutes.

In this study, the ’Normalized Duration Lines’ was calculated for reflecting the temporal

variability of identified rain cluster’s characteristics with different durations and was further

applied for doing short term characteristic’s prediction (see section 4.7 in Chapter 4). Based

on the fitted parabola functions, prediction for the identified rain cluster’s characteristics was

possible. The calculating procedure for ’Normalized-Duration-Lines’ were listed:

(a) Characteristics were derived from RCIT algorithm for rain clusters with ’Single - tracks’
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type, they were grouped and classified by the length of identified rain cluster’s durations.

(b) For each trajectory in each group with the same duration, identified rain cluster’s

characteristics were calculated and normalized by their mean values. Meanwhile, the

trajectory’s duration belonging to this group was also normalized by the max duration

length of this group.

(c) A robust regressive fitting method was applied and the parabola function was found for

fitting characteristic’s ’Normalized Duration Lines’, and the coefficient parameters a

and b for parabola function were determined.

More detail information about the method for calculating ’Normalized Duration Lines’

of identified rain cluster’s characteristics was presented in Appendix C.

Figure 5.17 Same with Figure 5.16, but for characteristics of identified convective rain clusters.

Figure 5.16 and 5.17 gave the ’Normalized Duration Lines’ for characteristics of

identified light and convective rain clusters, gray lines in the figure were normalized value of
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identified rain cluster’s characteristics which followed the normalized durations, red lines in

the figure were the fitted curves with parabola functions. Table 5.3 presented the goodness

of fit testing results for the ’Normalized Duration Lines’ of rain cluster’s characteristics by

robust regressive method.

Through the goodness of fit testing results presented in Table 5.3, it was found that

the parabola function was more robustly fitted to the characteristic’s ’Normalized duration

lines’ for identified convective rain clusters compared to the light ones, and the best fits were

for the characteristics area and cumulative rainfall. The goodness of fit testing results for

parabola fitting of the identified rain cluster’s characteristics indicated that the life stages of

identified convective rain clusters more followed the ’Initial - Growing - Dissipating’ order

during their life cycles compared to the light ones.

Table 5.3 Goodness of fit testing results for the ’Normalized Duration Lines’ of the rain cluster’s
characteristics.

Characteristics Reflectivity threshold

Parameters of parabola function Goodness of fit testing results

Parameter a Parameter b R-square RMSE

Area [km2]
> 19dBZ -6.568 6.625 0.78 0.38

> 37dBZ -6.831 6.855 0.84 0.34

Cumulative rainfall [mm]
> 19dBZ -6.582 6.584 0.72 0.49

> 37dBZ -6.837 6.827 0.83 0.36

Max rain rate per 5 minutes [mm]
> 19dBZ -6.551 6.548 0.7 0.49

> 37dBZ -6.819 6.827 0.79 0.38

Mean rain rate per 5 minutes [mm/km2]
> 19dBZ -6.732 6.752 0.74 0.41

> 37dBZ -6.894 6.924 0.79 0.35

5.5 Verification Results for RCIT Algorithm

In this section, two object based spatial rainfall verification methods: ’SAL’ (Structure-

Amplitude-Location) and ’Geometric index’ (Area-Connectivity-Shape) were implemented

for evaluating the performance of developed RCIT algorithm. The modeled rain clusters

were compared to those which were manually labeled from radar images.
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5.5.1 SAL Verification Results

Considering the question: ’How similar are the modeled/forecasted objects to the observed

ones according to a variety of descriptive criteria?’. The answer for this question is to extract

several attributes (volume, intensity, shape) for modeled/forecast objects and observed

objects separately and compare the similarity of these attributes,then the results are combined

to give a synthesized summary for describing how well the modeled/forecast objects match

the observed ones. This answer is also the principle of SAL method.

Taking precipitation objects as an example: Several characteristics of identified rain

clusters are extracted. They are cumulative rainfall, mean rain rate per 5 minutes and center

of mass. Correspondingly, same characteristics of rain cluster manually labeled from radar

images are also extracted. For each identified/observed rain cluster pair, The normalized

value of cumulative rainfall, mean rain rate per 5 minutes and center of mass is separately

compared, the comparing results represent as the terms of Structure (S), Amplitude (A) and

Location (L) respectively wherein the ’Structure’ denotes how similar are the shape of the

modeled precipitation objects to the observed ones, the ’Amplitude’ denotes how similar is

the averaged precipitation of the modeled precipitation objects to the observed ones and the

’Location’ denotes how similar are the center of mass of the modeled precipitation objects

to the observed ones. Then the performance of RCIT algorithm can be evaluated from the

results of S, A and L components.

Figure 5.18 presented the SAL verification results for RCIT algorithm. Results were

sorted by three rainy day. For each SAL plot in the Figure 5.18, the vertical axis denoted

the A component, the horizontal axis denoted the S component, while the dots represented

the value distribution for S and A components, the color scale for the dots denoted the L

component. Each SAL plot in the figure was divided into four quadrants, the top-right part

was the first quadrant, and following a counter clock- wise order, the top-left part was the

second quadrant and the bottom-left, the bottom-right parts were the third and the forth

quadrants, respectively. Each quadrant introduced the different descriptive criteria. Dots

falling into the first quadrant indicated an over-estimation for both S and A components;

dots falling into the second quadrant indicated an over-estimation for A component and

an under-estimation for the S component; for dots falling into the third quadrant means

an under-estimation for both S and A components; if the dots were falling into the fourth

quadrant, this meant an over-estimation for the S component and an under-estimation for

the A component. When the dots were falling on the zero point with a zero value of the L

component, this meant a perfect match between modeled rain clusters and observed ones.
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Figure 5.18 SAL verification results for RCIT algorithm, sorted by three rainy day. (a) for identified
light rain clusters from 26-May-2007, (b) for identified light rain clusters from 19-Jul-2008, (c)
for identified light rain clusters from 26-Jul-2008, (d) same with (a), but for identified convective
rain clusters, (e) same with (b), but for identified convective rain clusters, (f) same with (c), but for
identified convective rain clusters.

Through the Figure 5.18, most dots falling into the fourth quadrant, which meant an

over-estimation for the S component and an under-estimation for the A component. Little

dots falling into the third quadrant meant an over-estimation for the A component and an

under-estimation for the S component. Through the value distribution of the L component,

most modeled rain clusters were slightly miss matched to the observed ones.

For more quantitatively presenting the performance of the RCIT algorithm, the median

value of three SAL components was calculated and the results were presented in Table 5.4.

Through the Table 5.4, the RCIT algorithm produced more ’flat’ rain clusters with fewer rain

rates compared to the observed ones according to the positive median value of S component

and the negative median value of A component, not only for identified light rain clusters but

also for the convective ones. Through comparisons among three day’s identified/observed

rain clusters, identified rain clusters from 19-Jul-2008 were obviously miss matched to

the observed ones. The median value of the L component indicated that a more or less
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deviation existed for weighted center’s of all three day’s identified rain clusters compared to

the observed ones.

Table 5.4 Median value of three SAL components from verification results for RCIT algorithm,
sorted by selected rainy days.

Rain days
S component A component L component

> 19dBZ > 37dBZ > 19dBZ > 37dBZ > 19dBZ > 37dBZ

26-May-2007 0.272 0.327 -0.226 -0.288 0.0376 0.0423

19-Jul-2008 0.424 0.348 -0.352 -0.832 0.0544 0.104

26-Jul-2008 0.328 0.324 -0.301 -0.471 0.0504 0.0849

5.5.2 Geometric Index Verification Results

Geometric index method was used for the verification of RCIT algorithm by providing three

geometry descriptive criteria: Area, Connectivity and Shape (see section 4.8.2 in Chapter

4). In this study, three geometry components were calculated and the results were shown as

in Table 5.5. In the table, the label ’obs’ represented the rain clusters which were manually

labeled from radar images and the label ’sim’ stranded for the identified rain clusters. Values

of three components were divided into three quantile levels (25%, 50% and 75%).

Three geometry components calculated from the identified rain clusters were higher

than those which were labeled from radar observations. For Connectivity component, the

identified rain clusters were more closer to those from the manually labeled ones compared

to the Area and Shape components at three percentile levels. Values of three components

were more agreement between the identified and manually labeled light rain clusters than

those calculated from identified convective ones. Agreements for identified and labeled rain

clusters from rainy day 26-May-2007 was the best, and then were those from 26-Jul-2008

and the worst agreements for identified and labeled rain clusters were form 19-Jul-2008 at

three percentile levels, this might be that most identified rain clusters from 19-Jul-2008 were

smaller but contained more convective pixels. Through the summaries of the Geometric

Index verification results which were presented in Table 5.5, the RCIT algorithm could well

reflect the true geometry patterns (shape, inner connectivity and area) for light precipitation

objects, but for the convective precipitation objects, other elements should be taken into the

consideration.
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Table 5.5 Three Geometric Index components at three quantile levels from the Geometric Index
verification results for the RCIT algorithm, sorted by three rainy day.

Rainy day

25% quantile 50% quantile 75% quantile

> 19dBZ > 37dBZ > 19dBZ > 37dBZ > 19dBZ > 37dBZ

obs sim obs sim obs sim obs sim obs sim obs sim

area

26-May-2007 0.06 0.16 0.07 0.2 0.11 0.28 0.14 0.3 0.34 0.55 0.2 0.4

19-Jul-2008 0.03 0.05 0.01 0.02 0.06 0.09 0.02 0.03 0.11 0.14 0.03 0.25

26-Jul-2008 0.03 0.09 0.02 0.04 0.08 0.17 0.04 0.06 0.19 0.32 0.06 0.13

connectivity

26-May-2007 0.85 0.97 0.84 0.97 0.89 0.98 0.9 0.98 0.93 0.99 0.94 1

19-Jul-2008 0.72 0.91 0.81 0.94 0.75 0.95 0.87 0.98 0.83 0.97 0.96 1

26-Jul-2008 0.8 0.94 0.84 0.95 0.83 0.97 0.88 0.97 0.86 0.98 0.94 0.99

shape

26-May-2007 0.19 0.29 0.19 0.31 0.27 0.39 0.27 0.36 0.46 0.58 0.32 0.47

19-Jul-2008 0.15 0.16 0.09 0.12 0.21 0.24 0.11 0.14 0.29 0.31 0.13 0.37

26-Jul-2008 0.14 0.21 0.1 0.14 0.23 0.32 0.15 0.18 0.37 0.43 0.19 0.26

5.6 Verification Results for Forecasting Methods

In this section, two newly radar-based short term precipitation forecasting methods: ’PIV_Semi-

Lagrangian’ and ’PIV_Lagrangian-Persistence’ were developed and used to QPF with a

leading time up to two hours. Their principles were described as follows:

(a) motion vectors at previous time interval was generated by the PIV algorithm, then it was

interpolated into the grid with a size of 1×1 km2.

(b) when forecasts started, the interpolated velocity fields were extrapolated in time and the

advection fields were extrapolated by Semi-Lagrangian or Lagrangian persistence way.

Another two QPF methods: ’TREC_Semi-Lagrangian’ and ’TREC_Lagrangian-Persistence’

based on the TREC approach were also constructed as the comparisons. Proposed rain clus-

ter’s characteristics predicting method was also developed and applied for doing one hour

ahead prediction. Additionally, the Kalman filter algorithm was applied for extrapolating the

rain cluster’s center of mass.

In order to evaluate the quality of developed forecasting methods in this study, three

traditional verification parameters: Probability of Detection (POD), False Alarm Rate (FAR)

and Critical Success Index (CSI) which were derived from the contingency table (Tessendorf

and Einfalt, 2012) and the object-based spatial rainfall verification method - SAL were
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implemented, and the verification parameter - Root Mean Squared Error (RMSE) was also

implemented for testing the performance of proposed rain cluster’s predicting method.

Three traditional verifying parameters were introduced briefly. Being dependent on the

comparison with an observed rain event, a forecast event can be categorized as happened

(Yes) or non-happened (No). This categorization is non-probabilistic and discrete which can

be presented by a 2×2 contingency table (Table 5.6)

Table 5.6 Contingency table for representing categorical precipitation forecasting results.

Observations

Yes No

Forecasted

Yes a c

No b d

In the table, a presents that an rain event is forecasted and this event occurs, b presents

that an rain event is forecasted and this event does not occur, c presents that an rain event

is not forecasted and this event occurs, d presents that an rain event is not forecasted and

this event does not occur. Then, the three verification parameters can be presented in

equation(4.8).

POD = a
(a+b)

FAR = c
(a+c)

CSI = a
(a+b+c)

(5.8)

5.6.1 Forecasts Setting Up

Eight periods with rainfall events occurred which were observed from Essen radar were

selected for doing precipitation forecasting. Eight ’Single - tracks’ trajectories calculated
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from RCIT algorithm were selected and eight ones for convective rain clusters were selected

for doing characteristics prediction with a lead time up to one hour.

Figure 5.19 Cumulative rainfall for eight selected rainy periods, which were calculated from radar
images.

Figure 5.19 and Figure 5.20 showed cumulative rainfall of eight rainy periods which

were calculated from radar images and positions of selected ’Single - tracks’ trajectories.

Table 5.7 presented the time periods of selected rainy periods for QPF and ’Single-tracks’

trajectories for characteristic predicting.
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Figure 5.20 Locations of selected ’Single-tracks’ trajectories.

Table 5.7 Selected rainy periods and trajectories for operating radar based QPF and rain cluster’s
characteristic prediction.

For QPF
For rain cluster’s characteristic prediction

For light rain clusters For convective rain cluster

26-May-2007 00:00-02:10 track1 19-Jul-2008 01:45-02:55 track9 26-May-2007 00:00-01:10

26-May-2007 19:00-21:10 track2 19-Jul-2008 06:30-07:40 track10 19-Jul-2008 11:55-13:05

19-Jul-2008 02:00-04:10 track3 19-Jul-2008 10:30-11:40 track11 19-Jul-2008 14:50-16:00

19-Jul-2008 13:00-15:10 track4 19-Jul-2008 10:55-12:05 track12 19-Jul-2008 14:55-16:05

19-Jul-2008 16:00-18:10 track5 19-Jul-2008 11:40-12:50 track13 26-Jul-2008 06:20-07:30

26-Jul-2008 00:00-02:10 track6 19-Jul-2008 12:10-13:20 track14 26-Jul-2008 13:15-14:25

26-Jul-2008 13:00-15:10 track7 19-Jul-2008 13:50-15:00 track15 26-Jul-2008 16:20-17:30

26-Jul-2008 16:00-18:10 track8 26-Jul-2008 13:00-14:10 track16 26-Jul-2008 15:00-21:25
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5.6.2 Results From Traditional Verification Method

Figure 5.21 showed the averaged value of three traditional verification parameters for four

forecasting methods. Forecasted results by ’PIV_Semi-Lagrangian’ and ’PIV_Lagrangian-

Persistence’ were better than those from ’TREC_Semi-Lagrangian’ and ’TREC_Lagrangian-

Persistence’ within a forecasting length of 100 min. The verification differences for four QPF

methods were not obviously when the forecasting length exceeded 100 min. Forecasting

results within a lead time of 60 min were credibly but more for the results from ’PIV_Semi-

Lagrangian’ method. Forecasting results from ’PIV_Lagrangian-Persistence’ method were

more credible when the lead time was over 60 min. Convective QPF results (reflectivity > 37

dBZ, figure 5.21d-f) were more credible which indicated that newly developed forecasting

methods applied in this study were more adopted to the convective QPF.
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Figure 5.21 Averaged value of three traditional verification parameters for verfication results of four
QPF methods. (a) for CSI score (ref > 19 dBZ), (b) for POD score (ref > 19 dBZ) (c) for FAR score
(ref > 19 dBZ), (d) same with (a), but for convective forecasts (ref > 37 dBZ), (e) same with (b), but
for convective forecasts (ref > 37 dBZ), (f) same with (c), but for convective forecasts (ref > 37 dBZ).

5.6.3 Results From SAL Verification Method

Figure 5.22 showed SAL verification results of four QPF methods respectively. In Figure

5.22a-d, most dots were scattered around the first, second and third quadrants with little
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ones falling into the fourth quadrant. Value distributions of three verification components

indicated that the forecasted light rain clusters were more peaked with higher mean rain

rates compared to the observed ones and their center of masses were miss matched to the

observed rain cluster.

Figure 5.22 SAL verification results of four QPF methods. (a) for ’PIV_Semi-Lagrangian’ method
(ref > 19 dBZ), (b) for ’PIV_Lagrangian-Persistence’ method (ref > 19 dBZ), (c) for ’TREC_Semi-
Lagrangian’ method (ref > 19 dBZ), (d) for ’TREC_Lagrangian-Persistence’ method (ref > 19 dBZ),
(e) same with (a), but for QPF with reflectivity > 37 dBZ, (f) same with (b), but for QPF with
reflectivity > 37 dBZ, (g) same with (c), but for QPF with reflectivity > 37 dBZ, (h) same with (d),
but for QPF with reflectivity > 37 dBZ.

In Figure 5.22e-h, value distributions of three SAL verification components were more

around the zero points for forecasted convective rain clusters compared to the forecasted

light ones which indicated that the forecasted convective rain clusters by four methods were

more credible compared to the forecasted light ones by the same methods.

Table 5.8 presented the median value of three SAL components for four QPF methods.

Forecasted light rain clusters (reflectivity > 19 dBZ) by ’PIV_Semi-Lagrangian’ method

were more consist with the observed ones which the median value of S, A and L components

were -0.057, -0.352 and 0.234, respectively and worst was from ’TREC_Lagrangian- Persis-
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tence’ method with median values of three SAL components were -0.353, 0.135 and 0.186,

receptively. For forecasted convective rain clusters (reflectivity > 37 dBZ), performances of

four forecasting methods were almost same, but the best one was for the ’PIV_Lagrangian-

Persistence’ method for which median values of three SAL components were -0.085, 0.121

and 0.24, respectively. The worst forecasted results were from the ’PIV_Semi-Lagrangian’

with median values of S, A and L components being -0.145, 0.125 and 0.251 respectively.

Table 5.8 Median value of three SAL components from SAL verifying results for four QPF methods.

PIV_Semi-Lagrangian PIV_Lagrangian-Persistence TREC_Semi-Lagrangian TREC_Lagrangian-Persistence

> 19dBZ > 37dBZ > 19dBZ > 37dBZ > 19dBZ > 37dBZ > 19dBZ > 37dBZ

S component -0.352 -0.145 -0.361 -0.085 -0.366 -0.09 -0.353 -0.074

A component 0.057 0.125 0.075 0.121 0.103 0.154 0.135 0.17

L component 0.234 0.251 0.259 0.24 0.195 0.23 0.186 0.231

Figure 5.23 presented the variability of median values of SAL components for four

QPF methods at the different lead times. For light rainfall forecasts (threshold > 19 dBZ),

all of the forecasting methods produced small and peak rainfall fields (Fig 5.23a), for which

the PIV_Semi-Lagrangian was worse when the lead time was between 35 and 60 min. At

long lead time, the shape of the forecasted rainfall fields was still small and peak but for

which the PIV_Lagrangian-persistence method was more worse. The precipitation of the

forecasted rain clusters using the four methods was somewhat more overestimated with the

lead time less than 60 min (Fig 5.23b), for which the amplitude value of developed methods

(PIV_Semi-Lagrangian and PIV_Lagrangian-persistence) were more to the zero. However

the amplitude value for method PIV_Lagrangian-persistence were more deviated to the zero

level when the lead time was over 65 minutes. The center of mass of the forecasted rain

clusters using developed methods were more displaced in comparison with those produced

by the reference methods (Fig 5.23c).

For the convective forecasts (threshold > 37 dBZ), the shape of forecasted rain clusters

by the method - PIV_Semi-Lagrangian was more small and peak compared with the results
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of other three methods (Fig 5.23d). The precipitation of the forecasted rain clusters using

the developed methods was also overestimated and the developed methods got the amplitude

value which was more close to zero except for the forecasted rain clusters at lead time

between 65 and 90 minutes (Fig 5.23e). It was, similarly, for forecasts of a threshold above

19 dBZ that the center of mass of the forecasted rain clusters using the four methods were

more deviated when the lead times extended and there were no obvious value difference for

location component between the developed methods and reference ones (Fig 5.23f).
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Figure 5.23 Variability of the median values of three SAL components for four QPF methods at
different lead times. (a) for S component (reflectivity > 19 dBZ), (b) for A component (reflectivity >
19 dBZ), (c) for L component (reflectivity > 19 dBZ), (d) same with (a), but for QPF results with
reflectivity > 37 dBZ, (e) same with (b), but for QPF results with reflectivity > 37 dBZ, (f) same with
(c), but for QPF results with reflectivity > 37 dBZ

5.6.4 Verification Results for Characteristics Predicting Method

The proposed characteristic predicting method was applied for predicting rain cluster’s

characteristics with one hour ahead. The predicted characteristics were: Area, Cumulative

rainfall, Max and Mean rain rate per 5 minutes. For this purpose, their mean values at three

previous time intervals were calculated as the inputs of equation (4.20) and the forecast length

(60 minutes by 5 minute intervals) was normalized and inputted as the time parameters of

the prediction equation. At each forecast length, the forecasted characteristic was calculated

and its mean value was updated by combing with the current forecasted value, then the new
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forecasted value at the next time interval was generated.

Figure 5.24 - 5.27 presented the predicted results for light rain cluster’s characteristics

which were compared to the selected trajectories. Figure 5.28 presented the extrapolated

results for weighted center of light rain clusters by Kalman filter method (the vertical dashed

line was the starting point of prediction). Table 5.9 presented the RMSE verification results

of the predicting results for light rain clusters.

• Figure 5.24, for predicting results of characteristic area, high RMSE existed for track 1

track 4 and track 8 with values of 62.67, 99.422 and 150.633 km2, respectively. From

the comparison between forecasted/observed values, reason for resulting in such high

errors was that characteristic values for these trajectories presented growing trends in

their dissipation stages.

• Figure 5.25, for predicting results of characteristic cumulative rainfall, track 7 and

track 8 presented the high bias, and their RMSE values were 63.75 and 241.884 mm,

respectively. The high biases also occurred at the dissipation stage for their trajectories.

• Figure 5.26, Max rain rate predicting results for selected tracks showed the same

biasing situation compared to the predicting results of characteristic of cumulative

rainfall, higher RMSE values also existed for track 7 (5.258 mm) and track 8 (5.947

mm).

• Figure 5.27, for characteristic mean rain rate per 5 minutes, its predicting results for

track 4, track 5, track 7 and track 8 existed high RMSE value (0.243, 0.221, 1.075

and 1.196 mm/km2, respectively), and the predicting results for these trajectories at

dissipation stage were lower than the observed ones.

• Figure 5.28, the center of mass extrapolating results for the eight selected trajectories

showed no distinct bias (six and seven column in table 5.9), and their RMSE values

floated at 1 km level.
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Figure 5.24 Predicting results for rain cluster’s area (reflectivity > 19 dBZ).
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Figure 5.25 Same with Figure 5.24, but for characteristic cumulative rainfall.
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Figure 5.26 Same with Figure 5.24, but for characteristic max rain rate per 5 minutes.
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Figure 5.27 Same with Figure 5.24, but for characteristic mean rain rate per 5 minutes.



5.6 Verification Results for Forecasting Methods 109

2500 2510 2520 2530 2540 2550 2560 2570
Longtitude (km)

5621

5628

5635

5642
La

tit
ud

e (
km

)
track1

2490 2500 2510 2520 2530 2540 2550 2560
Lontitude (km)

5660

5670

5680

5690

La
tit

ud
e (

km
)

track2

2500 2510 2520 2530 2540 2550
Longtitude (km)

5720

5730

5740

5750

La
tit

ud
e (

km
)

track3

2550 2560 2570 2580 2590 2600 2610 2620 2630
Longtitude (km)

5730

5736

5742

5748

5754

5760

5766

5772

La
tit

ud
e (

km
)

track4

2460 2470 2480 2490 2500 2510 2520 2530
Longtitude (km)

5748

5754

5760

5766

5772

5778

La
tit

ud
e (

km
)

track5

2440 2448 2456 2464 2472 2480 2488 2496 2504 2512
Longtitude (km)

5694

5700

5706

5712

5718

5724

La
tit

ud
e (

km
)

track6

2510 2520 2530 2540 2550 2560 2570 2580
Longtitude (km)

5710

5715

5720

5725

5730

5735

5740

La
tit

ud
e (

km
)

track7

2475 2478 2481 2484 2487
Longtitude (km)

5756

5760

5764

5768

La
tit

ud
e (

km
)

Observed forecasted

track8

Figure 5.28 Predicting results for center of masses of rain clusters (reflectivity > 19 dBZ).
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Table 5.9 RMSE verification results of proposed predicting method for light rain clusters (reflectivity
> 19dBZ).

track id Area Cumulative rainfall Max rain rate Mean rain rate

Center of mass

x_coords y_coords

track1 62.67 8.016 0.114 0.058 1.096 3.36

track2 14.503 2.237 0.237 0.067 0.525 0.58

track3 34.234 7.124 0.509 0.083 2.247 3.37

track4 99.422 21.346 0.827 0.243 1.527 0.66

track5 31.593 13.527 1.385 0.221 1.905 1.616

track6 19.79 7.257 0.788 0.111 1.202 1.469

track7 33.343 63.785 5.258 1.075 1.043 1.479

track8 150.663 241.884 5.947 1.196 1.617 2.349

Characteristics predicting results for convective rain clusters were presented in Figure

5.29 - 5.32 and the prediction results for their center of masses were presented in Figure 5.33.

Table 5.10 summarized the RMSE verification results of the predicting results for convective

rain clusters.
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Figure 5.29 Predicting results for rain cluster’s area (reflectivity > 37 dBZ).
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Figure 5.30 Same with Figure 5.29, but for characteristic cumulative rainfall.
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Figure 5.31 Same with Figure 5.29, but for characteristic max rain rate per 5 minutes.
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Figure 5.32 Same with Figure 5.29, but for characteristic mean rain rate per 5 minutes.
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Figure 5.33 Predicting results for center of mass of rain clusters (reflectivity > 37 dBZ).
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Table 5.10 RMSE verification results of proposed predicting method for convective rain clusters
(reflectivity > 37dBZ).

track id Area Cumulative rainfall Max rain rate Mean rain rate

Center of mass

x_coords y_coords

track9 54.96 59.333 3.068 1.335 0.832 1.544

track10 41.15 109.288 1.885 0.866 1.283 0.802

track11 102.261 189.869 5.791 2.559 1.989 2.23

track12 20.192 42.298 3.094 2.552 2.05 0.334

track13 54.663 75.861 3.872 1.541 0.536 1.091

track14 49.215 157.259 9.554 5.736 1.774 0.924

track15 88.292 397.172 8.214 4.289 1.074 0.96

track16 40.405 181.629 3.499 2.103 0.212 0.263

• In Figure 5.29, for the characteristic area, high RMSE value existed for track 11, the

value was 102.61 km2) and track 15 with the value of 88.292 km2, through their

predicting/observed comparison(the third column in figure 5.28), bias occurred at

mutate and dissipation stage of their trajectories with a low predicting value.

• In Figure 5.30, for predicting results of the characteristic cumulative rainfall, their

RMSE values for track 10, track 11, track 14, track 15 and track16 were higher

than others obviously. For track 15, the RMSE value reached 397.172 mm. From

predicted/observed comparisons, there were low predicting results existed for these

trajectories except the track 15.

• In Figure 5.31, for max rain rate predicting results, high RMSE value existed for track

11, 14 and 15, and the RMSE values were 5.791, 9.554 and 8.214 mm, respectively.

Through the comparison between the predicting and observed values, there were high

predicted values existed for these trajectories.

• In Figure 5.32, over-high predicted results for characteristic mean rain rate per 5
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minutes existed for all the selected trajectories, and through the comparison for their

RMSE values, track 14 and track 15 were the highest ones with RMSE value of 5.736

and 4.289 mm/km2, respectively.

• In Figure 5.33, for center of mass extrapolating results, their RMSE values were less

than those from light rain clusters and floated around 1 km.





CHAPTER 6

DISCUSSION

Rainfall is one of the key factors in catchment’s hydrological process whose variability

on the modeling of a catchment response to rainfall forcing has long been a concern for

hydrologists (Schoorens et al., 2014). As one type of rainfall measuring equipment, weather

radar provides more useful information at high sptial-temporal resolution. Main objects of

this study are the analysis of spatial and temporal characteristics of rain events observed

from weather radar images and short-term quantitative precipitation forecasting as well as

their verification.

A purely radar based precipitation object identification and tracking algorithm: RCIT

was developed and applied for extracting characteristics of precipitation objects (rain clus-

ters). The main advantage of RCIT algorithm is that it can produce more ’realistic’ precipita-

tion objects and reflect life stages of them (e.g. merging, splitting and internal growth&decay)

by combing advection field and cell tracking approaches. Unlike the TREC (Rinehart and

Garvey, 1978) and CO-TREC (Li et al., 1995) algorithm, but more similar with MTREC

algorithm (Wang et al., 2007), estimating motion vectors by RCIT algorithm was based on

Partial Image velocimetry (PIV) way, by which the extracted motion vectors were more

robust and consisted, especially for radar images with speckle echo.

For assessing the efficiency of RCIT algorithm, radar images from Essen radar deployed

in North Rhine Westphalia (NRW) were used as input, the object-oriented spatial rainfall

verification methods: SAL and Geometric Index were implemented for evaluating the

produced precipitation objects. As a weather variable, rainfall is often predicted as fields

defined over a spatial domains (Casati et al., 2008). Spatial fields are characterized by a

coherent structures which contain some physical/geometry features. Traditional verification

methods (e.g. Critical Successor Index, Root Mean Squared Error) which are based on point

by point comparison don’t account for the intrinsic spatial correlation existing in them, while

object based verification methods provides more diagnostic components which give more
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feedbacks on the physical nature of forecast error generated by forecasting methods (e.g.

Gilleland, 2013; Schneider et al., 2014; Zacharov et al., 2013; Zimmer and Wernli, 2011).

To the author’s knowledge, It is the first time that applying objective verification methods

for evaluating the performance of rain cell tracking algorithm.

Two novel advection field based forecasting methods: ’PIV_Semi-Lagrangian’ and

’PIV_Lagrangian-Persistence’ were developed for the aim of improving the capability of

short-term quantitative precipitation forecasting. The developed QPF methods were also

based on the PIV scheme and advection fields were extrapolated by Semi-lagrangian and

Lagrangian-Persistence approach, respectively.

Moreover, precipitation objects (rain cluster) were identified by applying the RCIT

algorithm and their properties were extracted. Questions proposed in this study (see section

1.6 in Chapter 1) were answered and discussed.

6.1 Inner Structures of Rain Events

Two types rain clusters were produced from the RCIT algorithm. For simulated light rain

clusters (reflectivity > 19 dBZ), their area and cumulative rainfall showed a high value range,

but most were under 40 km2 with the cumulative rainfall under 4.91 mm. Their peak and

averaged rain rates were under 0.24 mm and 0.1 mm, respectively, and their shapes were

more elliptical. Considering simulated convective rain clusters (reflectivity > 37 dBZ), high

value range also existed for their area and cumulative rainfall, and most were smaller than

the light ones with the area under 28 km2 but contained more precipitations (the median

value was 43.35 mm). Their peak and average rain rates were higher than the light ones with

the peak rain rate under 2.91 mm and the average rain rate under 1.5 mm. It was found that

the simulated convective rain clusters were more elliptical (the median value was 0.85).

Distributions of the log10transformed characteristics for simulated light rain clusters

showed obvious diversity. For their area, cumulative rainfall, max and mean rain rate per

5 minutes, a Generalized Pareto distribution (GPD) could fit their empirical distributions,

and for characteristic eccentricity, a Generalized Extreme Value distribution (GEV) was the

best fit. Similar to the simulated light rain clusters, a Generalized Pareto distribution could

also fit to the log10 transformed area of simulated convective rain clusters. Different from

the simulated light rain clusters, the Inverse Gaussian distribution (Inv_Gauss) was found

to fit log10transformed cumulative rainfall of convective ones. For the log10 transformed

max and mean rain rate of simulated convective rain clusters, a Generalized Extreme Value

distribution (GEV) could fit. Similar to the light rain clusters, characteristics eccentricity of



6.2 Relations of Precipitation Object’s Characteristics 121

convective rain cluster also could be fitted with the GEV distribution. Distribution fitting

results for characteristic area and eccentricity of simulated light&convective rain clusters

were more agreement with Barnolas et al. (2010) which their study area were located in

Catalonia region, but were different to the Log-Normal distribution from Karklinsky and

Morin (2006) in southern Israel and Capsoni et al. (2008) in Padana Valley, Italy. Apart

from the characteristic area, distribution diversity for other characteristics of simulated rain

clusters were also investigated and could be described by their fitted theoretical distributions,

which might be useful for further research (e.g. probabilistic precipitation estimation and

forecast). Value distributions for characteristics of simulated rain clusters also suggested

that the inner structures of rain events occurred in the NRW showed extremely unbalance:

most light events were small in size and contained few precipitations, and it was more for

convective events.

6.2 Relations of Precipitation Object’s Characteristics

Relations for simulated rain cluster’s characteristics were also investigated and quantified

by some simple mathematic functions. It was found that the log10 transformed cumulative

rainfall could be a linear function of log10 transformed area, not only for the simulated

light rain clusters, but also for the convective ones, which indicated that the integral rainfall

volumes of simulated precipitation objects presented a power-low increasing trend following

the variability of their area.

Relations for log10 transformed characteristics (area, cumulative rainfall, max and mean

rain rate) and characteristic number of convective pixels were also investigated. By this

novel approach, connections between physical and geometric properties of precipitation

objects and their internal growing&decaying trend could be established. It was found that the

log10 transformed area, cumulative rainfall for the simulated light&convective rain clusters

were found to be the power-law function of the character number of convective pixels,

which indicated that the increase of size and integral rainfall volume for simulated rain

clusters were directly affected by their internal growth, this increasing trend would retard

when rain cluster’s inner structure got stable. Through the goodness of fit testing results

for relations between log10 transformed max&mean rain rate and the number of convective

pixels, whether the variability of peak and average rain rate of simulated rain clusters were

also directly affected by their internal growth&decay was still blur.
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6.3 Spatio-Temporal Variability of Precipitation Objects

Spatio-temporal correlations of simulated rain clusters presented an exponential decreasing

trend following the spatial and temporal scales, which was more similar to the results from

Luini and Capsoni (2012) and Peleg et al. (2013). Generally speaking, the higher spatial

correlation coefficient existed for those simulated rain clusters with big size, which indicated

that those rain clusters were more smoothly than ones with small size at minor spatial scales,

and all the rain clusters got smoothly when the spatial scale extended. Highly temporal

correlation coefficients of simulated rain clusters with long durations at minor temporal scales

indicated the stable structures for them compared to those with short durations. Through

the goodness of fit testing results, spatial or temporal correlations of identified rain clusters

could be fitted with an Exponential function as in equation (6.1).

Corr(∆s,∆t) = aeb(∆s,∆t) (6.1)

where ∆s, ∆t represent the spatial and temporal scale, respectively. a and b are the coefficient

parameters of Exponential function. These results were similar with (Ciach and Krajewski,

2006; Haile et al., 2009) in which the spatial and temporal variations of rainfall obtained by

rain gauges or radar were also described by the Exponential function.

6.3.1 Life Cycles of Precipitation Objects

Durations of simulated rain clusters presented some extreme value distributions which

indicated that most rain events had short durations less than one hour. Events with very

long durations (e.g. above 2 hours) rarely existed. It should be noted that the simulated

rain clusters in this study were from rain events which occurred in summer season (May to

September), affecting by the warm air mass from Atlantic Ocean and terrain, convective rain

events occurs frequently in North Rhine Westphalia in such season, rain fields identified

from such events usually live in a short life cycle (e.g. Berg et al., 2013; Feng et al., 2012).

Averaged moving speed of the simulated light rain clusters were higher than the calculated

daily averaged moving speed, which was similar to the simulated convective ones.

6.3.2 Variability for Characteristics of Precipitation Objects

Results from temporal analysis of simulated rain cluster’s characteristics indicated that

the size and integral rain volumes of light rain clusters presented an increasing trend as

their durations extended, which was conversely for the convective cases. Areal averaged

precipitation of the simulated light&convective rain clusters also presented increasing trend
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as durations extended, but their peak rain rates varied not so obviously. In this study, stages

of precipitation object were simulated by applying the ’Normalized-Duration-Line’ method

which was based on the assumption of classical life stages of thunder storms, unlike the

results from Weusthoff and Hauf (2008a), it was found that the normalized duration lines

of simulated rain cluster’s characteristics were found to be fitted by the parabola function,

and stages of convective rainfall events followed more with ’Growth - Decay - Dissipation’

compared to the light cases through the goodness of fit testing results.

6.4 Discussion of Verification Results

6.4.1 Performance of RCIT Algorithm

As mentioned at the beginning of this chapter, two object-oriented spatial rainfall verification

methods: SAL and Geometric Index were applied for testing the performance of developed

precipitation identification and tracking algorithm. Through the verification results, the

RCIT algorithm produced more ’flat’ light rain clusters (reflectivity > 19 dBZ) with fewer

precipitations compared to those which were manually labeled from radar images. Center of

masses for simulated light rain clusters were more or less miss matched to those manually

labeled ones. It was the same to the simulated convective rain clusters (reflectivity > 37

dBZ) which had much fewer precipitations and more deviated center of masses.

It could be demonstrated that the developed algorithm performed well for representing

the geometry properties of precipitation objects by comparing to those manually labeled

from radar images, not only for the modeled light precipitation objects but also for the

convective ones.

Through the median value of three SAL components (see table 5.4 in Chapter 5), the

A component got the lowest value, which indicated that the precipitation for the simulated

light&convective rain clusters were obviously under-estimated. The reason might be due to

the applied median filtering algorithm that not only reduced the noisy pixels contained in

radar images but also filtered some pixels with normal reflectivity.

6.4.2 Performance of QPF Methods

According to the traditional verification results (Critical Success Index, CSI), developed

QPF methods - ’PIV_Semi-Lagrangian’ and ’PIV_Lagrangian-Persistence’ got high score

rates in comparison to the reference methods, not only for the forecasts with low intensity,

but also for the convective cases. It seemed that the developed QPF methods improved the
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forecasting quality of the study area.

Was it true as we expected? Through the object-oriented verification results, forecasted

light rain clusters were more ’peaked’ by four QPF methods in this study, and precipitations

of forecasted light rain clusters were more close to those manually labeled from radar images.

Center of masses of the forecasted light rain clusters were more or less miss matched to

the labeled ones. It was the same to forecasted convective rain clusters but they were more

’peaked’ with higher precipitations and obviously miss matched center of masses. When

taking rainfall fields as the verification descriptors, performance of developed forecasting

methods were not so outstanding compared to the referenced methods.

Median value of three SAL components for the forecasted precipitation objects (see

table 5.8 in Chapter 5) indicated that the structure of the forecasted rain clusters from four

forecasting methods were mostly deviated to the manually labeled ones in light rainfall

forecasting cases, then was the center of mass, the best was the precipitation. In connection

with such cases, center of masses of rain clusters forecasted by the developed forecasting

methods were more miss matched to the labeled ones in comparison to the reference methods.

For convective rainfall forecasting cases, center of masses of the forecasted rain clusters

from four QPF methods were mostly miss matched to the manually labeled ones, and the

forecasted rain clusters produced from developed forecasting methods were more ’peaked’

and their center of masses were more miss matched compared to the reference methods.

Variability of SAL components following different lead times (see figure 5.23 in Chapter

5) indicated that:

(a) For the short-term rainfall forecasts with low intensity, the shape and center of mass

of the precipitation objects might be the key factors affecting the predictability of

developed methods (PIV_Semi-Lagrangian and PIV_Lagrangian-persistence) according

to the scores of three SAL components.

(b) While considering the convective rainfall forecasts, precipitation and center of mass of

the precipitation objects were the main constraints for the performance of developed

methods.

Additionally, through the practical application in this study, it was found that the

objective verification method provided a more detail approach for analyzing the uncertainties

of radar based QPF, which might provide another view for the purpose of improving the

quality in short-term QPF.
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6.4.3 Performance of Characteristic Predicting Methods

The proposed predicting method in this study gave a possibility for forecasting the diversity

of rain event’s features as Area, Cumulative rainfall, Max and Mean rain rate. The rain

cluster’s center of mass predicted results indicated that the Kalman filter algorithm was

suitable which provided another possibility of extrapolating the center of mass of rain field

(Rossi et al., 2015). However, it is emphasized that the kalman filter algorithm used in

this study was only suitable for those rain cluster’s trajectories which were more linearly,

for complete non-linear trajectories, more measuring elements should be added into the

algorithm (e.g. Abrecht et al., 2015; Jatoth et al., 2015).

6.5 Limitations and Outlooks

It was undeniable that limitations still existed in this study which can be concluded as

follows:

• The RCIT algorithm developed in this study is purely depended on radar images.

Sources of uncertainty based on radar rainfall estimation include spurious echoes,

attenuation of the radar signal, beam blockage, anomalous propagation, variations in

the vertical profile of reflectivity (VPR), conversion of radar reflectivity to precipitation

rate through empirically or statistically derived Z–R relationships (where Z is the

reflectivity and R is the rainfall intensity) which may not be representative for different

rainfall intensities and precipitation processes (Liguori and Rico-Ramirez, 2014).

Therefore, a rainfall adjustment procedure based on radar and rain gauge should be

operated in the future work for improving the accuracy of rainfall estimation (Einfalt

and Lobbrecht, 2012).

• For the RCIT algorithm and rainfall forecasting methods applied in this study, motion

vectors of advection fields are estimated based on Particle Image velocimetry method,

which is belong to a statistical approach. How reality of the estimated motion vectors

are? In future work, other methods should be applied for reproducing more realistic

motion vectors (e.g. Bowman et al., 2013; Korsholm et al., 2015).

• As already introduced in Chapter 1, radar based precipitation estimation and forecast-

ing is the main purpose of this study, moreover, how to applied the results of this study

into catchment rainfall-runoff simulation and flood protection is another important

researching aspect which is put forward at the end of this thesis. In detail, precipitation

objects have been modeled and analyzed which gave us a possibility to acquire more
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knowledges of inner behavior of rain events, and are the urban flood’s generation

directly affected by the variability of rainfall event’s properties in state of North Rhine

Westphalia? Factors which influenced precipitation forecast’s quality have been inves-

tigated and identified, and can the forecast’s quality be improved when these factors

are taken into account? These are what should be careful thought in future work.

Here, this thesis gave a general outlook:(a) Examinations for runoff’s sensitivity to

the characteristics of precipitation objects which are separately modeled from weather

radar and rain gauges need to be done. (b) Uncertainties of radar based precipitation

forecast needs to be modeled (e.g. Berenguer and Zawadzki, 2008; Vincendon et al.,

2011), and implemented to the existing forecasting methods for improving the forecast

quality.



CHAPTER 7

SUMMARY

Rainfall is not only one of the most natural processes on the earth, but also an important

factor of flood generation. Quantitative precipitation estimation (QPE) and forecast (QPF)

can improve our understandings about this process and its interaction with local hydrological

elements, and more, give an effective warning before hazards occur. The aim of this study is

the investigation of spatial-temporal variability of characteristics for rainfall events occurred

in state of North Rhine Westphalia (NRW), Germany and the evaluation of radar based short

term precipitation forecasting methods. For such purpose, high-resolution rainfall data sets

are acquired from C-band Essen radar station belonging German Weather Service (DWD).

A precipitation objects identification and tracking algorithm- RCIT (Rain Cluster Identi

cation and Tracking) is proposed and developed for fulfilling requirements of QPE. Spatial

and temporal characteristics of rainfall events are extracted and analyzed by the proposed

method. In another aspect, for the requirements of short term QPF, two advection field

tracking based QPF methods: ’PIV_Semi-Lagrangian’ and ’PIV_Lagrangian-Persistence’

are developed wherein the past velocity fields are estimated by ’Particle Image Velocimetry’

(PIV) method and the advection fields are extrapolated by Semi-Lagrange and Lagrange-

Persistence schemes separately. Additionally, a predicting method for event’s characteristics

is proposed and a Kalman filter algorithm is also implemented for event’s location forecasting.

Two object-oriented spatial rainfall verification methods: SAL and Geometric Index are

employed for providing detail information about the qualities of proposed algorithm and

forecasting methods.

To this end, results show that the characteristics of rainfall events existed obviously

spatial and temporal variability. Most rainfall events were small in size with durations

of a few minutes to one hour and the internal growth and decay for their characteristics

were obvious during the event’s life cycles. The RCIT algorithm produced ’large’ and

’flat’ precipitation objects, which contained less precipitations in comparison with what
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were measured from radar images, and mass centers of the modeled objects were slightly

deviated to the measured ones. Forecasted precipitation objects were ’small’ and ’peaked’

in comparison with the measured ones bay the developed forecasting methods, which

contained more precipitation than the measured objects and their mass centers were more

or less deviated to the measured ones. Performance of newly developed QPF methods:

’PIV_Semi-Lagrangian’ and ’PIV_Lagrangian-Persistence’ performed better than reference

methods through the traditional verification results, nevertheless, shape and mass center of

precipitation objects obviously effected the performances of developed forecasting methods

for light rainfall forecasting, while precipitation object’s rainfall volume and mass center

were the key factors which affect the predictability of convective rainfall forecasting.

Zusammenfassung

Niederschlag ist nicht nur einer der wichtigsten natürlichsten Prozesse auf der Erde, sondern

stellt darüber hinaus einen wichtigen Faktor bei der Entstehung von Hochwassern dar. Eine

quantitative Niederschlagsabschätzung (QPE) und –Vorhersage (QPF) trägt nicht nur dazu

bei, unser Verständnis dieses Prozesses und die Wechselwirkungen mit hydrologischen

Prozessen zu verbessern, sondern liefert auch effektive Möglichkeiten zur Vorwarnung, noch

bevor Katastrophen entstehen.

Ziel dieser Arbeit ist es, die räumliche und zeitliche Variabilität von Niederschlagsereignis-

sen im Bundesland Nordrhein Westphalen (Deutschland) zu untersuchen und die radar-

basierten Methoden zur Kurzzeitniederschlagsvorhersage zu bewerten. Dazu wurden

hochaufgelöste Niederschlagsdaten der C-Band Radarstation Essen des Deutschen Wet-

terdienstes (DWD) verwendet.

Ziel ist es weiterhin, einen Algorithmus zur Identifikation und für das Tracking von

Niederschlagsobjekten (RCIT, Rain Cluster Identification and Tracking) zu entwickeln um

die Anforderungen der quantitativen Niederschlagsschätzung zu erfüllen. Mit dieser Meth-

ode wurden räumliche und zeitliche Charakteristika der Niederschlagsereignisse ermittelt

und analysiert. Um den Anforderungen der quantitativen Niederschlagsvorhersage gerecht

zu werden wurden darüber hinaus zwei Vorhersagemethoden entwickelt, das „PIV_Semi-

Langrangian“ und das „PIV_Langrangian Persistence“ Verfahren. Die Geschwindigkeits-

felder werden dabei über „Particle Image Velocimetry“ (PIV) bestimmt, während die Advek-

tion getrennt über Semi-Lagrange und Lagrange Persistence Verfahren extrapoliert werden.

Weiterhin wurde eine Vorhersagemethode für die Charakteristik der Niederschlagsereignisse

entwickelt sowie ein Kalman-Filteralgorithmus zur Vorhersage der Lokalisierung dieser
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Ereignisse angewandt. Um detaillierte Informationen zur Qualität des Algorithmus und

der Vorhersagemethode zu gewinnen, wurden zwei objekt-orientierte räumliche Nieder-

schlagsverifizierungsmethoden genutzt: SAL und Geometric Index.

Die Ergebnisse zeigen, dass die Eigenschaften der Niederschlagsereignisse offen-

sichtlich räumlich und zeitlich variabel sind. Die meisten Niederschlagsereignisse sind von

geringer Größe und dauern nur wenige Minuten bis eine Stunde an. Das interne Wachstum

wie auch dessen Zerfall sind während des Event-Lebenszyklus deutlich erkennbar. Der RCIT

Algorithmus produziert große und vertikal flache Niederschlagsobjekte, welche im Vergleich

zu den Radarmessungen weniger Niederschlag enthalten und auch die Massenschwerpunkte

der modellierten Objekte weichen leicht von den Messungen ab. Die vorhergesagten Nieder-

schlagsobjekte sind im Vergleich mit den Messungen kleiner und vertikal spitz zulaufend,

enthalten mehr Niederschlag und die Schwerpunkte weichen mehr oder weniger stark von

den Messungen ab.

Die neu entwickelten QPF Methoden „PIV_Semi-Lagrangian“ und „PIV_Lagrangian-

Persistence“ zeigen eine im Vergleich mit den Referenzmethoden und deren Verifizierungsver-

fahren eine verbesserte Leistung. Für leichte Niederschlagsereignisse sind der gemittelte

Niederschlag und der Massenschwerpunkt des Niederschlagsobjektes die beiden Faktoren,

die die Qualität der entwickelten Vorhersagemethode beeinflussen, während für konvek-

tive Ereignisse das Niederschlagsvolumen und der Massenschwerpunkt die Schlüsselfaktor

darstellen.
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APPENDIX A

ILLUSTRATION OF RAIN CLUSTER MATCHING RULE

Rain cluster matching rule is defined in this study for searching most matched child rain

clusters (see section 4.3 in Chapter 4). The detail procedure is illustrated as following steps:

a. Global motion vectors Vt of each radar image are derived at every five minutes by the

PIV method, and their mean value Vmean is calculated as in equation (A.1).

Vmean =

n∑
i=1

Vt(i)

n
(A.1)

where n is number of grids divided from PIV procedure.

b. Rain clusters are identified (section 4.3 in Chapter 4) and their characteristics are

derived: Area (A), Cumulative rainfall (Itotal), Max rain rate per 5 minutes (Ipeak)

and Mean rain rate per 5 minutes (Imean).

c. For each rain cluster at time t (Rt), a boundary box is defined with a horizontal range

of [x−d,y +d] and a vertical range of [y −d,y +d], where d is a predefined range, in

this study d is 8 km.

d. For rain clusters at time t+∆t (Rt+∆t), searching the ones which are intersected with

boundary box defined in step c.

e. For each Rt+∆t fallen into the boundary box, vector (vx, vy) between its weighted

center and center of mass of Rt are calculated. Meanwhile, the overlap (C)between

each Rt+∆t and Rt+∆t.

f. Three cases are considered in this step:

(1) If there is only one Rt+∆t in the boundary box, then if C > 0 then Rt+∆t is

the most matched child cluster. If C = 0 but length of (vx, vy) < length of 3

× length of Vmean and angle of (vx, vy) minus the angle of Vmean < 45o, then
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Rt+∆t is the most matched child rain cluster.

(2) If there are at least two Rt+∆t, for each one, if C > 0.2, then it is the most

matched child rain cluster, if C < 0, the conditions is same with case one but the

angle difference is less than 20o; if above conditions are not fulfilled, then the

ones which have less difference in A are the most matched child rain clusters.

The child rain cluster matching rule developed here is similar with the rule that proposed

by Weusthoff and Hauf (2008b), but is more adapt to local conditions, particularly, in this

study, the global motion vector calculating results by the PIV method keeps persisting feature

of wind fields, which is more robust than results calculated by maximum correlating way.



APPENDIX B

MULTI GOODNESS OF FIT TEST

The idea of Goodness of Fit test (GOF) is to test whether a data set is well fitted with a

predefined distribution which gives the highest probability of producing the observed data.

Based on such idea, series GOF test method were developed with commonly applied ones

are:

a. Chi-Square test (χ2 test) (Wuensch, 2011), which is used to test if the samples of data

comes from a population with a specific distribution. It can be applied to any univariate

distribution whose cumulative distribution function can be calculated. The Chi-Square

test is defined for the hypothesis - H0: The data follow a specified distribution; H1:

The data do not follow the specified distribution. Test static is operated on data which

is pre-divided into k bins and can be described by equation (B.1):

x2 =
k∑

i=1

(Oi −Ei)2

Ei
(B.1)

where Oi is the observed frequency for bin i and Ei is the expected frequency for bin

i. The expected frequency is calculated by:

Ei = N(F(Yu)−F(Yl)) (B.2)

In equation (B.2), F is the cumulative distribution function for the distribution being

tested, Yu is the upper limit for class i, Yl is the lower limit for class i, and N is the

sample size.

The test statistic follows, approximately, a chi-square distribution with k-c degrees of

freedom where k is the number of non-empty cells and c is the number of estimated

parameters for the distribution by added one. For example, for a three parameter

Weibull distribution, c value is 4. Therefore, the hypothesis that the samples of data

are from a population with the specified distribution is rejected if x2 > x2
1−α,k−c,
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whereas x2
1−α,k−c is the Chi-Square critical value with k - c degrees of freedom and

significance level a.

b. Kolmogorov-Smirnov test (K-S test) (Massey Jr, 1951), this type test method is

based on the empirical distribution function (ECDF). Given N ordered data points

Y1,Y2, ....,Yn, the ECDF is defined as in equation (B.3):

EN = n(i)
N

(B.3)

where n(i) is the number of points less than Yi and Yi are ordered from smallest

to largest value. This is a step function that increases by 1/N at the value of each

ordered data point. Same with Chi-Square test, K-S test is based on the hypothesis:

H0: the data follow a specified distribution; H1: the data do not follow the specified

distribution. The statistic test of it can be described as in equation (B.4):

D = max
1≤i≤N

(F(Yi)− i−1
N

,
i

N
−F(Yi)) (B.4)

where F is the theoretical cumulative distribution which must be a continuous distri-

bution, and it must be fully specified. The hypothesis of K-S test which regards the

distributional form is rejected if its test statistic (D) is greater than the critical value

obtained from a table. There are several variations of these tables in the literature that

use somewhat different scalings for the K-S test statistic and critical regions. These

alternative formulations should be equivalent, but it is necessary to ensure that the test

statistics is calculated in a way that is consistent with how the critical values were

tabulated.

Though widely applied in distribution fits test, flaws exists for these two comm

goodness-of-fit test methods. The Chi-Squared test method depends on specifying the

number of histogram classes into which the data will be grouped, and there is no good rule

that gives the correct number to use. It also makes some assumptions that only come close to

being valid when data set is provided. The Kolmogorov-smirnoff test method is deigned to

test the goodness of fit for distributions with defined parameter values, not those where the

parameters are estimated from the observed data. Corrections are possible for only a very

few types of distribution.

None of these goodness of fit statistics penalize distributions for the number of param-

eters they use. Thus, a distribution with more parameters may well fit the observed data

better because it has a lot more flexibility in shape than a distribution with fewer parameters,

but the apparently improves over-fitting problem. Another problem is that none of these
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methods can correctly handle truncated, censored or binned data and they can not give a

proper statistical weighting to the plausibility of each candidate distribution.

For finding the good and reliable fitted distributions of rain cluster’s characteristics,

in this thesis, several goodness of fit test methods are employed, which are Kolmogorov-

Smirnov test (K-S test) method, Akaike Information Criterion (AIC), Bayesian Information

Criterion (BIC).

a. Akaike Information Criterion (AIC) (Akaike, 1998) is based on the use of Kullback-

Leible’s information as the discrepancy measure between the true distribution and

the approximating distributions: Mi = gi(x,p1,p2, ...,pn). The AIC for ith candidate

distribution can be computed as in equation (B.5):

AIC = −2
∏

(θ)+2p (B.5)

where
∏

(θ) stands for maximum log-likelihood of data set’s sample, p is the parame-

ter’s number of candidate distribution. When the sample size n is samll, with respect

to the number of estimated parameter Pi. The smaller for value of AIC, the best fitting

result for candidate distribution.

b. Bayesian Information Criterion (BIC) (Schwarz, 1978) is served as an asymptotic

approximation to a transformation of the Bayesian posterior probability of a candidate

model. It based on the empirical log-likelihood and does not require the specification

of priors. BIC is defined as:

BIC = −2
∏

(θ)+ ln(n)p (B.6)

where the symbols are equal to equation (B.6). And smaller value of BIC means the

candidate distribution can well fit empirical distribution.

Totally fifteen candidate distributions are used for fitting empirical distribution of

characteristics for rain clusters.The goodness of fit test results for candidate distributions of

rain cluster’s characteristics are presented in Table B.1 and Table B.2.
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Table B.1 Goodness-of-fit testing results of candidate distributions, for light rain cluster’s character-
istics

Distributions Area Cum rainfall Max intensity Mean precip Eccentricity

BIC AIC K-S BIC AIC K-S BIC AIC K-S BIC AIC K-S BIC AIC K-S

GPD 13907 13885 0.05 23522 23501 0.07 17383 17361 0.09 6339 6317 0.07 -6323 -6345 0.31

GEV 15574 15553 0.04 23686 23665 0.04 17811 17790 0.06 6676 6655 0.05 -14936 -14958 0.02

Inv_Gauss 16063 16048 0.06 NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL

Brinbaum Saunders 16087 16073 0.06 NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL

Log-Normal 16124 16109 0.06 NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL

Log-Logistic 16568 16553 0.07 NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL

Gamma 16750 16736 0.08 NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL

Nakagami 17613 17599 0.09 NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL

t Location-Scale 18390 18368 0.12 25781 25760 0.08 19913 19892 0.12 9469 9447 0.11 -11540 -11561 0.10

Logistic 18435 18420 0.12 25875 25861 0.09 20263 20248 0.10 9561 9547 0.10 -11317 -11331 0.10

Rician 18652 18638 0.11 NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL

Weibull 18653 18639 0.13 NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL

Normal 18894 18879 0.11 25800 25786 0.09 19904 19890 0.12 9469 9455 0.12 -10275 -10290 0.10

Extreme Value 23878 23864 0.22 29591 29576 0.17 22968 22954 0.16 13246 13231 0.18 -13842 -13857 0.06

Exponential 31197 31189 0.43 NULL NULL NULL NULL NULL NULL NULL NULL NULL 15731 15723 0.44
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Table B.2 Same with table B.1, but for convective rain cluster’s characteristics.

Distributions Area Cum rainfall Max intensity Mean precip Eccentricity

BIC AIC K-S BIC AIC K-S BIC AIC K-S BIC AIC K-S BIC AIC K-S

GPD 3069 3050 0.06 6156 6137 0.10 2794 2775 0.13 -1850 -1869 0.10 -2663 -2681 0.32

GEV 3797 3779 0.05 5890 5871 0.03 2517 2498 0.05 -1989 -2008 0.03 -6079 -6098 0.03

Inv_Gauss 4075 4063 0.07 5871 5858 0.03 NULL NULL NULL NULL NULL NULL NULL NULL NULL

Brinbaum Saunders 4082 4069 0.07 5873 5860 0.03 NULL NULL NULL NULL NULL NULL NULL NULL NULL

Log-Normal 4090 4077 0.07 5892 5879 0.03 NULL NULL NULL NULL NULL NULL NULL NULL NULL

Log-Logistic 4250 4238 0.08 6104 6092 0.03 NULL NULL NULL NULL NULL NULL NULL NULL NULL

Gamma 4313 4300 0.08 5999 5986 0.04 NULL NULL NULL NULL NULL NULL NULL NULL NULL

Nakagami 4605 4593 0.09 6180 6168 0.06 NULL NULL NULL NULL NULL NULL NULL NULL NULL

t Location-Scale 4857 4838 0.12 6501 6482 0.07 2656 2637 0.06 -1762 -1781 0.05 -4685 -4704 0.11

Logistic 4862 4849 0.12 6537 6525 0.07 2872 2859 0.06 -1606 -1618 0.06 -4581 -4594 0.11

Rician 4959 4946 0.11 6456 6444 0.08 NULL NULL NULL NULL NULL NULL NULL NULL NULL

Weibull 5179 5166 0.14 6532 6519 0.07 NULL NULL NULL NULL NULL NULL NULL NULL NULL

Normal 5002 4990 0.11 6503 6490 0.08 2647 2635 0.06 -1770 -1783 0.05 -4112 -4125 0.11

Extreme Value 6907 6895 0.21 7968 7955 0.15 3427 3414 0.10 -702 -714 0.12 -5614 -5626 0.06

Exponential 11487 11481 0.48 12426 12420 0.40 NULL NULL NULL NULL NULL NULL 6348 6341 0.45
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For the character - area, ’Generalized Pareto’ distribution was the best fitted candidate

with minimum BIC value of 13907/3069, the minimum AIC value of 13885/3050 and the

K-S value of 0.05/0.06. For character cumulative precipitation derived from rain cluster

above 19 dBZ, ’Generalized Pareto’ distribution is the best candidate with minimum BIC

vaue of 23522, the minimum AIC value of 23501 and maximum K-S value of 0.07, for the

ones derived from rain cluster above 37 dBZ, ’Inverse Gaussian’ distribution is the best one

with minimum BIC value of 5873, the minimum AIC value of 5860 and the K-S value of

0.03. For character maximum intensity of rain cluster above 19 dBZ, ’Generalized Pareto’

distribution is the best one with minimum BIC value of 17383, the minimum AIC value of

17361 and K-S value of 0.09, for the same character derived from rain cluster above 37 dBZ,

’Generalized Extreme Value’ distribution was fitted to sample of data with the minimum BIC

value of 2517, the minimum AIC value of 2498 and K-S value of 0.05. ’Generalized Pareto’

distribution is the best one for fitting sample of character areal mean precipitation from rain

cluster above 19 dBZ with the min BIC value of 6339, the minimum AIC value of 6317 and

K-S vaue of 0.07, but for those from rain cluster above 37 dBZ, ’Generalized Extreme Value’

distribution was the best one with the minimum BIC value of -1989, the minimum AIC

value of -2008 and the K-S value of 0.03. For character eccentricity, ’Generalized Extreme

Value’ distribution was chosen as the best fitted distribution with the minimum BIC value of

-14936/-6079, the minimum AIC value of -6345/-6098 and K-S value of 0.31/0.03.



APPENDIX C

NORMALIZED DURATION LINE CALCULATING PROCEDURE

’Normalized Duration Lines’ for rain cluster’s characteristic prediction is calculated for

’Single-tracks’ which are generated by the RCIT algorithm, detail steps are listed as follows:

a. Searching trajectories with same duration, here, each trajectory is defined as tracki =
[Pt1,Pt2, ...Ptm], where Ptj is the characteristic value at each time step tj; i is the id

of trajectory and i ∈ [1,n]; duration of trajectory is 5∗m.

b. For time vector T = [t1, t2, ... tm] of trajectories with same duration, its normalized

time vector Tnormal is calcuated as in equation (C.1):

Tnormal = T−Tmin
5m −Tmin

(C.1)

where Tmin is the minimum value of T.

c. For each trajectory with same duration, its normalized vector is calculated as in

equation (C.2):

tracknormal = tracki −Pmin
mean(P) (C.2)

d. After step b and c, each normalized characteristics of rain cluster is grouped according

to the normalized time vector within a range [0,1].

e. Fitting method is applied and the coefficient parameters a and b of fitted parabola

function are calculated for each characteristic’s normalized duration line, here, the

Bi-Square robust way is used for fitting method (Rousseeuw and Leroy, 2005) .





APPENDIX D

SPATIAL CORRELATION CALCULATING PROCEDURE

Spatial correlation calculation is based on the spatial distance of the rain cluster along

its prevail moving direction, following steps illustrated procedure for calculating spatial

correlation:

a. Each rain cluster in radar image is made of sets of Cartesian grids and each grid is

surrounded by eight neighboring grids. According to their positions, each neighbouring

grid is labeled and presented as in Figure D.1.

I

(0,1) (1,1)(-1,1)

(-1,0)

(-1,-1) (-1,0)

(1,0)

(1,-1)

Figure D.1 Illustration of spatial distance in different direction.



158 Spatial Correlation Calculating Procedure

In the figure A.1 each grid is labeled with unit vector, and the arrow means direction

of the vector.

b. According to the prevail wind direction which is calculated by RCIT algorithm (figure

5.13 in Chapter 5), the spatial distance is chosen along that direction, e.g. for rainy

day 27-May-2007 its prevail moving direction is from south-west to north-east for

rain cluster above 19 dBZ, then the unit spatial distance is the vector of grid (1,1); for

rainy day 28-Jul-2008 its prevail moving direction is from south-east to north-west for

rain clusters above 19 dBZ, then the unit spatial distance is the vector of grid (-1,1).
Finally, the spatial correlation is calculated based on equation 5.6 (in section 5.3 of

Chapter 5).
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