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Summary

Partial melting is an important geological process in the deep Earth that a�ects physical,

chemical and rheological properties of rocks. The e�ect of partial melting on mantle

dynamics depends on both the amount of melt and how it is distributed within the

crystalline matrix. A few percent of melt have potentially large e�ect on the physical

properties of rocks. In this work, atomic scale simulations are used to study the structure

and transport properties of ultrathin melt �lms between olivine grains, which is a simple

model system of partially molten peridotite.

The model system consists of 0.8 to 7.0 nm thick layers of magnesium silicate melt

with a composition close to MgSiO3 (enstatite) con�ned between Mg2SiO4 forsterite

crystals. We examine how the atomic structure, the chemistry and the self-di�usion

coe�cients vary across the interface and investigate their dependence on the thickness

of the melt layer and the crystal orientation. The particle interactions are represented by

an advanced ionic model. From the particle trajectories, we derive various properties,

like charge densities, cation coordinations, chemical compositions, and self-di�usion

coe�cients. Interfacial layers of up to 2 nm thickness show distinctly di�erent physical

behavior than the bulk melt and the bulk mineral.

The simulation results indicate that for crystal orientations with higher surface energy,

the self-di�usion coe�cients of all ionic species in the melt decrease at constant melt

layer thickness. By increasing the melt layer thickness between the crystals, the average

mobility of ions in the melt is increased. On the interfacial part the charge mobility of

all species decreases due to solid-like ordering between atoms. For modeling the petro-
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physical behavior of partially molten rocks, the e�ective diameter for the conducting

channels is reduced by up to two nanometers, which e�ects the rheological and transport

properties of partially molten rocks, especially in the presence of ultra-thin melt �lms

in well-wetted systems. In the latter case, the electrical conductivity of the con�ned

melt in a partially molten rock could be reduced up to a factor of two due to interfacial

e�ects.

A slight di�erence is observed in the interfacial properties due to change in chemical

composition, pressure and temperature conditions. When calcium is added to the sys-

tem, the self-di�usion coe�cients of all species slightly change. At di�erent pressure

and temperature, a huge di�erence is observed in the self-di�usion coe�cients. Freezing

of the system and con�nement e�ect is clearly observed at 2000 K with pressure of 10

GPa, and at 2400 K with 10 GPa pressure.

Non-equilibrium molecular dynamics simulations with constant shear rate are performed

on this system showing complex rheological behavior in the vicinity of interfaces. A

dependence of the viscosity on shear rate is observed which constitutes non-Newtonian

behavior of the melt at the high shear rates accessible to molecular dynamics. The

viscosity calculated from non-equilibrium molecular dynamics simulations is found to

be somewhat higher then the viscosity calculated from equilibrium molecular dynamics

simulations. The viscosity at the lowest modeled shear rate is in good agreement with

the experimental viscosity.
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Zusammenfassung

Das partielle Aufschmelzen von Gestein ist ein wichtiger geologischer Prozess in der

tiefen Erde, der seine physikalischen, chemischen und rheologischen Eigenschaften bee-

in�usst. Die Wirkung von partiell geschmolzenem Gestein auf die Manteldynamik hängt

sowohl von der Menge der Schmelze als auch von ihrer Verteilung in der kristallinen

Matrix ab. Einige wenige Prozent Schmelzanteil können einen groÿen Ein�uss auf die

physikalischen Eigenschaften des Gesteins haben. In dieser Arbeit werden Simulationen

auf atomarer Ebene durchgeführt, um die Struktur und Transporteigenschaften ultra-

dünner Schmelz�lme zwischen Olivinkörnern zu untersuchen, die ein einfaches Modell-

system für partiell geschmolzenen Peridotit darstellen.

Das Modellsystem besteht aus 0.8 bis 7.0 nm dicken Schichten von Magnesiumsilikat

schmelze mit einer Zusammensetzung in der Nähe von MgSiO3 (Enstatit), die seitlich

von Forsterit-Kristallen (Mg2SiO4) begrenzt werden. Wir untersuchen die Änderung

der atomaren Struktur, der chemischen Zusammensetzung und der Selbstdi�usionsko-

e�zienten entlang eines Pro�ls senkrecht zur Grenz�äche sowie ihre Abhängigkeit von

der Dicke der Schmelzschicht und der Orientierung der Kristalle. Die Wechselwirkung

zwischen den Atomen wird durch ein erweitertes ionisches Modell beschrieben. Aus den

atomaren Trajektorien erhalten wir verschiedene Eigenschaften wie die Ladungsdichte,

Koordinationszahlen der Kationen, die chemische Zusammensetzung und Selbstdi�u-

sionskoe�zienten. Grenz�ächenschichten von bis zu 2 nm Dicke weisen ein deutlich

anderes physikalischen Verhalten auf als ausgedehnte Schmelzen und Mineralien.

Die Ergebnisse der Simulationen zeigen, dass für Kristallorientierungen mit höherer
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Ober�ächenenergie die Selbstdi�usionskoe�zienten aller Ionen in der Schmelze bei kon-

stanter Dicke der Schmelzschicht niedriger sind. Mit wachsender Dicke der Schmelzschicht

zwischen den Kristallen erhöht sich die durchschnittliche Mobilität der Ionen in der

Schmelze. Nahe der Grenz�äche ist die Ladungsmobilität niedriger, da sich dort eine

festkörperartige Anordnung der Atome ausbildet. Für die Modellierung des gestein-

sphysikalischen Verhaltens von partiell geschmolzenem Gestein ergibt sich, dass der ef-

fektive Durchmesser von leitenden Kanälen um bis zu 2 nm verringert ist, was sich auf die

Rheologie und die Transporteigenschaften von partiell geschmolzenem Gestein auswirkt,

besonders in Anwesenheit von ultradünnen Schmelz�lmen in gut benetzten Systemen.

In diesem Fall könnte sich die elektrische Leitfähigkeit der seitlich eingeschlossenen

Schmelze in partiell geschmolzenem Gestein aufgrund von Grenz�ächene�ekten um

einen Faktor von bis zu 2 verringern.

Bei den Grenz�ächeneigenschaften werden bei Änderung der chemischen Zusammenset-

zung, des Drucks und der Temperatur kleine Unterschiede beobachtet. Wird Calcium

zum System hinzugefügt, ändern sich die Selbstdi�usionskoe�zie ten aller Ionen le-

icht. Bei unterschiedlichen Druck- und Temperaturbedingungen werden stark verän-

derte Selbstdi�usionskoe�zienten beobachtet. Ein Einfrieren des Systems und ein Ein-

schlieÿungse�ekt sind deutlich sichtbar bei 2000 K und einem Druck von 10 GPa, ebenso

bei 2400 K und 10 GPa.

Auch Nicht-Gleichgewichts-Molekulardynamik mit einer konstanten Scherrate wurde

mit diesem System durchgeführt. Sie zeigt ein kompliziertes rheologisches Verhalten

in der Nähe der Grenz�ächen an. Es wird eine Abhängigkeit der Viskosität von der

Scherrate beobachtet, was ein nicht-Newtonsches Verhalten der Schmelze bei den hohen

Scherraten darstellt, die mit molekulardynamischen Simulationen erreicht werden kön-

nen. Die mit Hilfe von Nicht-Gleichgewichts- Molekulardynamik berechnete Viskosität

ist etwas gröÿer als die mit Hilfe von Gleichgewichts-Molekulardynamik bestimmte. Die
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Viskosität, die sich mit der niedrigsten modellierten Scherrate ergibt, stimmt gut mit

der experimentell bestimmten Viskosität überein.
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Chapter 1
Introduction

The evolution of the Earth, its present structure and dynamics depends on processes that

take place beneath and upon its surface (Poirier, 2000). For the understanding of these

processes, we need to investigate the chemical composition, temperature and pressure

conditions, and the phases present at the conditions of the Earth's interior. Direct access

to rock samples is limited to about 10 km depth (Kozlovsky and Andrianov, 1987).

Most of our understanding of the deeper interior of the Earth comes from seismological

observations, geomagnetic and gravity measurements made at the surface (Anderson,

1989).

Experimental and theoretical determinations of material properties at extreme pres-

sures and temperatures are of primary importance in the study of the Earth's interior.

Numerical modeling of mantle and core dynamic behavior, and computer simulation of

minerals and rocks also play an important role in studies of the composition, structure

and internal dynamics of our planet (Gillan et al., 2006). The presence of partial melts

has a major in�uence on the physical, chemical and rheological behavior of crustal and

mantle rocks (Kohlstedt and Holtzman, 2009). The process of partial melting is con-

sidered very important for the chemical di�erentiation in the Earth's crust and mantle.

Our knowledge about Earth's past and present state and dynamics are dependent on an

understanding of the nature of partial melting (Karato, 1986). The availability of mo-

bile ions as charge carriers makes partial melts a primary source of increased electrical

conductivity in the deep Earth (To�elmier and Tyburczy, 2007).
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CHAPTER 1. INTRODUCTION

Partial melting takes place at di�erent geological environments, from granitic partial

melts in the continental crust to basaltic or carbonate partial melts in the upper mantle.

Partial melting is considered to be very important for the chemical di�erentiation of the

Earth, and partial melt is the initial process of magmatism. Partial melting takes

place in the Earth's mantle, when minerals with lower melting points, like feldspars

and pyroxenes, melt and leave behind olivine crystals, forming basaltic magma. Magma

formation is strictly connected to the large scale convection of the mantle (Tackley,

2012). After the formation, magma migrates upward into Earth's crust, starts cooling

and then solidi�es. Parts of the mantle are expected to partially melt in e.g. subduction

zones, the vicinity of hotspot ,and at mid-ocean ridges (see Fig. 1.1).

Fig. 1.1: Occurrence of di�erent type of partial melt (magma) in three di�erent geolog-
ical settings: basaltic mid ocean ridges, subduction zone and hotspot.

The most productive source of magma are mid-ocean ridges where magma generated
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by decompression melting rises to the surface and produces oceanic crust of gabbro

and basalt. Partial melting occurs in the mantle wedge above subducting lithospheric

slabs, triggered by �uids released from the sinking lithospheric material (Tatsumi, 1989;

Davies and Stevenson, 1992). In hotspots, magma ascend from very deep in the Earth's

mantle, probably from the boundary between the core and the base of the mantle. The

magmas produced are basaltic and have a similar major elements composition as mid-

ocean ridge basalts. The initial composition of the magma depends on the source rock,

and on the degree of partial melting. Melting of a mantle source gives a basaltic magma

while melting of a crustal source causes more siliceous magmas. But this initial magma

composition changes during transport towards surface or during storage in the crust

(Anthony et al., 2011; Anderson, 2007).

Fig. 1.2: (a) Sketch of melt distribution and fraction of melt between olivine grains. (b)
Related sketch of our system to study the melt (about 1-10 nm) between olivine grains
on atomic scale. Green area represents olivine grains and white area is the con�ned
melt between grains.

Partially molten rocks are widely investigated in laboratory studies (Yoshino et al.,

2005; ten Grotenhuis et al., 2005). A schematic diagram of the distribution of melt

between olivine grains with continuously changing local melt fraction is shown in �gure

1.2(a). From experimental approach, it is not possible to study the structural and
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transport properties of ultra thin melt �lms con�ned between solid at nanoscale. By

using molecular dynamics simulations we can study such ultra thin melt �lm on atomic

scale. Figure 1.2(b) shows the sketch of our studied system of ultra thin melt �lm

con�ned between two olivine grains.

The majority of the Earth's upper mantle consists of olivine (Agee, 1998). In fact,

magnesium-rich olivine is the majority ingredient (about 60 % of the rock) of the rock

peridotite, the main component of Earth's upper mantle (Walker et al., 2003). The

composition of peridotite varies widely, re�ecting the relative proportion of pyroxenes,

plagioclase, spinel, garnet and amphibole (Winter, 2001). peridotitic rocks are assumed

to make up much of the volume of the Earth's mantle (Putnis, 1992).

Olivins are a family of closely related silicates which crystallize with orthorhombic sym-

metry (Deer et al., 1997). M2SiO4 is the general formula of olivine minerals, where M

is e.g. Mg, Fe2+ or Ca. Most natural olivines have a composition of the continuous

solid solution the two end-members magnesium silicate (forsterite) Mg2SiO4 and iron

silicate (fayalite) Fe2SiO4.

The structure of olivine consists of isolated SiO4 tetrahedra connected by divalent

cations in sixfold coordination (Fig. 1.3). The olivine structure can be described as

either an orthosilicate or a distorted hexagonally close packed (HCP) lattice of oxygens.

Half of the octahedral sites of the oxygen lattice are occupied by magnesium or iron and

one eighth of the tetrahedral sites occupied by silicon (Bragg and Brown, 1926). Figure

1.3 shows the arrangement of the isolated SiO4 tetrahedra pointing alternately up (red)

and down (green) along rows parallel to the c-axis. In the olivine structure, there are

two slightly di�erent octahedral metal sites M1 and M2. The M2 sites are larger and

more distorted from the regular geometry and M1 site is more regular.

Mg2SiO4-forsterite is the Mg end-member of olivine, and remains always of primary
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Fig. 1.3: Structure of olivine which shows the possible M1 and M2 sites, and connectivity
of SiO4 tetrahedra, which point alternately up and down along the rows parallel to c-
axis. Black dotted box represents the unit cell.

interest to scientists. Thermoplasticity of olivine is responsible for the motion of the

continental plates. Furthermore, the olivine-to-wadsleyite phase transition at high pres-

sure and high temperature is responsible for a major seismic discontinuity at a depth

of 410 km (Bina, 1997).

The literature and the previous work done on partially molten mantle rocks prove the

importance of these rocks and olivine, and their crucial role in determining physical

properties and dynamic behavior of the upper mantle of the Earth. A number of in-

vestigations of partial melting and the properties of partially molten rocks have been
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performed and published the results (Wa� and Bulau, 1979; de Kloe et al., 2000; Ri-

ley and Kohlstedt, 1990; Kohlstedt, 1992; Hirth and Kohlstedt, 1995; Kohlstedt and

Zimmerman, 1996; Mei and Kohlstedt, 2000; Mei et al., 2002).

Interconnectivity of melt strongly in�uences the electrical conductivity of partially

molten rocks (Sato and Ida, 1984; Partzsch et al., 2000). Electrical conductivity of

the asthenosphere is di�cult to resolve by deep electromagnetic sounding due to the

abundance of high conductivity zones in the crust which blur the image at depth. The

clearest indications for an enhanced conductivity originate from cratonic areas (Eaton

et al., 2009) and from studies of the oceanic asthenosphere (Baba et al., 2006). Under

favorable conditions, the asthenospheric wedge beneath volcanic arcs may be resolved

(Brasse and Eydam, 2008). The electrical properties of minerals and rocks are strongly

dependent on temperature, pressure, composition, melt distribution, point defect chem-

istry and also frequency at which measurements are made (Roberts and Tyburczy,

1993).

Systematic experimental studies have been made to have a better understanding of the

in�uence of an existing melt or �uid on rock properties such as seismic velocities or

the electrical conductivity. Schmeling (Schmeling, 1985, 1986) showed that the physical

properties of a rock are not only determined by the total amount but also by the

distribution of the melt or �uid phase on the grain scale. Robert and Tyburczy (Roberts

and Tyburczy, 1999) investigated the electrical response of an olivine-basalt partial melt

as a function of temperature. The relation of electrical conductivity, degree of partial

melting and melt distribution was studied by Partzsch et al . (Partzsch et al., 2000).

Partial melting of ma�c rocks under pressure and electrical conductivity is also recently

studied by Maumus et al . (Maumus et al., 2005). Electrical conductivity of olivine and

its dependence on melt distribution was described by ten Grotenhuis (ten Grotenhuis

et al., 2004, 2005).
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The concept of dihedral wetting angle is often used to describe the melt micro-structure

and the connectivity of adjacent melt pockets (Wa� and Bulau, 1979). Theory predicts

that the distribution of melt on the grain boundaries is determined by the di�erence

between interfacial energies of grain boundaries and melt-crystal interfaces (Wa� and

Bulau, 1982). Subsequent studies have shown that �at crystalline interfaces co-exist

with smoothly curved crystal-melt interfaces in equilibrium micro-structures of ultra-

ma�c partial melts (Wa� and Faul, 1992) and that a single dihedral angle expression

is inappropriate for olivine due to its distinct surface energy anisotropy (Cmiral et al.,

1998).

The dihedral angle becomes very small or even approaches zero degrees towards high

pressure and temperature in well wetted partially molten peridotite (Yoshino et al.,

2009) allowing for very thin melt layers. Fluid �lled pore geometry in texturally equili-

brated rocks characterized by dihedral angles and degree of faceting was investigated by

measuring the grain boundaries wetness by Yoshino and his co-workers (Yoshino et al.,

2005; Yoshioka et al., 2007).

Hess (Hess, 1994) showed that the thermodynamics of thin con�ned �uid �lms depends

crucially on the �lm thickness and the �lm tension. Ultrathin amorphous �lms (1-

2 nm) were found in olivine grain boundaries in mantle xenoliths (Wirth, 1996; Drury

and Fitz Gerald, 1996; de Kloe et al., 2000). They provide evidence for the existence

of thin melt layers in the grain boundaries during partial melting. Chemical analysis

across olivine grain boundaries in three specimens (a peridotite ultramylonite, olivine

phenocrysts in a basaltic rock and synthesized compacts of olivine + diopside) (Hiraga

et al., 2003) showed an enrichment of trace elements in an interfacial layer of about

5 nm thickness. Faul et al . (Faul et al., 2004) studied olivine-olivine grain boundaries

in melt-bearing olivine polycrystals and observed a region of about 1 nm thickness

that is structurally and chemically di�erent from the olivine grain interiors. Several
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experimental studies have been published on the rheological behavior of partially molten

mantle aggregates (Cooper and Kohlstedt, 1984; Bussod and Christie, 1991; Kohlstedt

and Zimmerman, 1996). The e�ect of melt distribution and grain size on the rheology of

mantle rocks was reviewed by Kohlstedt and Zimmerman (Kohlstedt and Zimmerman,

1996) and Kohlstedt and Holtzman (Kohlstedt and Holtzman, 2009).

Knowledge of viscosity of mantle silicate melts is necessary in order to quantitatively

model volcanic and magmatic processes. The relationship between viscosity of a par-

tially molten rock and melt fraction is critically very important for the characterizing

the rheological behavior of the interior of Earth. With the addition of only 1-3 vol% of

melt, the viscosity of partially molten rocks decreases by a factor of 2-5, such as MORB

(Cooper and Kohlstedt, 1986; Kohlstedt and Zimmerman, 1996; Mei et al., 2002). Vis-

cosity of magma is a critical parameter to understand the igneous processes, such as

melt segregation and migration in source regions, magma mixing, magma recharge,

di�erentiation by crystal fractionation, convection in magma chambers, and magma

fragmentation. Viscosity controls variety of theses processes like rates of crystal growth

and convection dynamics (Solomatov and Stevenson, 1993a; Tonk and Melosh, 1990).

Viscosity must also have in�uenced the rate of cooling of the early Earth. In addition,

the transport properties of magma would have strongly in�uenced early di�erentiation

mechanisms. Processes in which viscosity and di�usivity of molten mantle would have

been important include chemical equilibration between silicates and core forming metal-

lic liquids and the physics of crystal settling in a convecting magma ocean (Rubie et al.,

2003; Solomatov and Stevenson, 1993b).

Many research groups have measured viscosity of silicate melts experimentally at di�er-

ent pressure and temperature (Kushiro, 1978a,b; Urbain et al., 1982; Reid et al., 2003;

Liebske et al., 2005). Di�erent models are developed to estimate the viscosity of silicate

melts (Bottinga and Weill, 1972; Baker, 1996; Hess and Dingwell, 1996; Giordano and
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Russell, 2007; Hui and Zhang, 2007; Giordano et al., 2008). These models are very

helpful to estimates the viscosity which have strong compositional dependence. Non-

equilibrium molecular dynamics simulations are very useful to calculate viscosity at the

atomic level (Ashurst and Hoover, 1975; Cummuings and Morriss, 1987; Fuller and Row-

ley, 1998). In non-equilibrium molecular dynamics simulations, shear is applied directly

to the simulation cell. From equilibrium molecular dynamics simulations, viscosity is

calculated from stress auto correlation functions (Allen and Tildesley, 1987). Adjaoud

et al (Adjaoud et al., 2011) calculated transport properties of liquid Mg2SiO4 at high

pressure from stress auto correlation functions by applying molecular dynamics simu-

lations. Recently shear viscosity of MgSiO3 was calculated from molecular dynamics

simulation using a pair-wise additive potential at di�erent temperature by Nevins et al

(Nevins et al., 2009) and viscosity of molten Mg2SiO4 at di�erent pressure using molec-

ular dynamics simulation was calculated by Martin et al (Martin et al., 2009). From

�rst principles molecular dynamics simulations, viscosity of MgSiO3 liquid at condition

of Earth's mantle was also calculated by Wan et al. (Wan et al., 2007) and Karki et

al. (Karki and Stixrude, 2010). Both, molecular dynamics simulation and �rst principle

simulation show good agreement with experimental results.

Hence, an understanding of the mechanical and physical properties of olivine and partial

melts of olivine rich mantle rocks has major geophysical importance. Ultimately, it is

desirable to have a description of the olivine on an atomic scale, specifying the atomic

interaction between particles. From such a description it is possible to predict its phys-

ical and thermal properties at any temperatures and pressures which is not accessible

in the laboratory. We perform classical molecular dynamics (MD) simulation to study

the structure of olivine-melt interfaces on atomic scale.

Molecular dynamic (MD) simulations has been widely used for analyzing the structures

and properties of minerals and melts. MD simulations provide valuable information
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especially at high temperature and high pressure where conventional experiments are

di�cult to perform or sometime impossible. With the development of the molecular

dynamics simulation techniques, it became possible to calculate from a given interaction

model a very wide range of physical properties of solid and liquids, such as structural

and transport properties and dynamical response functions.

Molecular modeling techniques have been successfully used in many studies to investi-

gate the atomic structure and physical properties of various types of solid-liquid inter-

faces. This includes classical force �eld and ab initio molecular dynamics simulations of

melting behavior of oxides and silicates, e.g. (Belonoshko and Dubrovinsky, 1996; Alfe,

2005) or detailed structural investigations of solid-liquid interfaces of ionic systems, e.g.

(Lanning et al., 2004). Con�nement e�ects on melting and freezing of con�ned material

were reviewed, e.g., by Alcoutlabi and McKenna (Alcoutlabi and McKenna, 2005) and

Alba − Simionesco et al. (Alba-Simionesco et al., 2006).

In this thesis, the physical properties of mineral-melt interfaces are investigated on

atomic level using molecular dynamics simulations. We study the structure, chemistry

and transport properties of ultrathin melt �lms con�ned between olivine crystals as a

simple model system of partially molten peridotite. The studied model system consists

of magnesium silicate melt which is close to the composition of enstatite MgSiO3 and

con�ned between crystals of forsterite Mg2SiO4. In addition, the shear viscosity of the

con�ned melt is studied by non-equilibrium molecular dynamics simulations.

In the �rst part, the structural and transport properties of mineral-melt interfaces are

investigated using equilibrium molecular dynamics simulation. The structural and trans-

port properties are calculated for three di�erent types of crystal surface terminations to

investigate the e�ect of grain orientation on interfacial and melt properties. Di�erent

sizes of melt thicknesses are used to observe the e�ect of thin melt �lms con�ned be-

tween crystals. As pressure and temperature conditions are a very important factor to
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study the properties of mineral-interfaces, the e�ect of di�erent P-T conditions on our

system is also studied.

In the second part, non-equilibrium molecular dynamics simulation is used to calculate

the melt viscosity. A constant shear rate is applied to the interface and the respective

viscosity is derived. The dependence of the viscosity on shear rate is investigated.

For reference, the viscosity of bulk melt is calculated from both equilibrium molecular

dynamics and non-equilibrium molecular dynamics simulations.

Finally, some implications of the results on the electrical conductivity of partially molten

rocks are discussed.
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Chapter 2
Simulation Techniques

Computer simulations on the atomic scale have become a powerful and standard method

to investigate many-body problems in various scienti�c �elds of physics, chemistry,

biology and especially in material sciences. They allow to model the properties of

macroscopic systems by reference to their microscopic structure. Studies of the behavior

of materials in a wide range of physical conditions ( such as extreme pressure (P)

and temperature (T)), which are not always accessible experimentally, can be done by

simulation.

There are di�erent approaches for atomic scale computer simulation of materials. They

can be divided into two categories, one is based on classical and the other on a quantum

mechanical description of particle interactions. Classical molecular dynamics simula-

tions use potential models and are especially suited to apply for long simulation times

and large simulation cells. Quantum mechanical methods ( also referred to as ab-initio

or �rst principles methods ), such as density functional theory generally give a more ac-

curate solution but are computationally much more expensive, which puts limit on the

simulation cell size and time scale. Density functional theory is the most time-e�cient

approach to compute the electronic structure of many-electron systems.

For molecular dynamics simulations, length scales range from 0.1-10 nm and time scales

are typically in the range of femtoseconds to nanoseconds. The accessible range in terms

of time and length scales for classical and quantum methods is shown in �gure 2.1.

Classical molecular dynamics simulation is used for this study as a reliable modeling of
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Fig. 2.1: Time and length scale range for density functional theory and classical molec-
ular dynamics simulations.

the structure and transport properties of crystal-melt interfaces requires large simulation

cells and long simulation times. This is not possible with density functional theory

because it would be computationally too expensive to model a system with thousands

of atoms. In this chapter, classical simulation methods used for this study are outlined.

2.1 Potential Models

To study the behavior of any material accurately using classical methods requires a

good and transferable interaction potential.

Interatomic potentials for oxide materials have been developed over the years by using

ionic models and describing the interaction between particles in terms of pair potentials

of the Born-Mayer and Buckingham form (Catlow et al., 1988). Polarization e�ects
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may be treated by choosing the shell model (Dick and Overhauser, 1958) or the method

introduced by Wilson and Madden (Wilson and Madden, 1993). There are two ways

to parametrize interatomic potentials, either empirically by adjusting the potential pa-

rameters to achieve the best possible agreement between calculated and experimental

properties (crystal structures, dielectric and elastic constants) (Matsui, 1999, 2000) or

determined theoretically via ab initio calculations (Kendrick and Mackrodt, 1983; van

Beest et al., 1990; Tangney and Scandolo, 2002; Aguado et al., 2003b; Madden et al.,

2006).

2.1.1 Rigid Ion Model

The rigid ion model (RIM) is the simplest and computationally least expensive ap-

proach. In this model the ions are considered as rigid bodies, in which deformation

and polarization are neglected. A typical potential form used in this model is given by

(Catlow et al., 1988).

Vij(rij) =
zizj

rij

+ Bije
−rij
ρij − Cij

r6
ij

− Dij

r8
ij

(2.1)

where rij is the distance between atoms i and j, zi and zj are the e�ective charges

associated with the atoms i and j respectively. The �rst term of the equation is the

electrostatic potential of point charges (Coulombic potential) and is generally evaluated

by using the Ewald summation method (see section 2.1.4) (Allen and Tildesley, 1987;

Frenkel and Smit, 2001). The second term represents the repulsive interaction between

ions due to the overlap of their electron charge densities at short distances. The repul-

sion is modeled to decay exponentially with distance, Bij and ρij are parameters that

depend on the type of interacting ions. The last two terms represent the van der Waals

dispersion, considering a sum of dipole-dipole and dipole-quadrupole attraction with
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parameters Cij and Dij.

The advantage of this potential is that it has a small number of parameters and it is

fast for large systems and for long simulations. Guillot and Sator (Guillot and Sator,

2007a,b) have used this type of potential to study some properties of silicates melts in

a wide range of chemical compositions and pressure.

Matsui developed a transferable interatomic potential model of this type to describe the

four component system CMAS (CaO-MgO-Al2O3-SiO2) which produces satisfactorily

the structure, the molar volume and bulk modulus (Matsui, 1994, 1996). Later on,

this study was extended to NCMAS ( Na2O-CaO-MgO-Al2O3- SiO2) system (Matsui,

1998a). In Matsui's original model the van der Waals coe�cients are regarded as �tting

parameters.

It has been shown that rigid ion model is too simple as it does not consider the non-

central forces which are very important in ionic systems composed of ions with large po-

larizabilities, like oxides (Catlow et al., 1976; Cohen et al., 1987; Wilson et al., 1996c,b).

Matsui extended the model by introducing ionic polarization in the form of shell model.

Furthermore, the repulsive radii of ions are allowed to deform isotropically under the

e�ect of other ions in the crystal (Matsui, 1998b, 1999). This is so called breathing

shell model (BSM) has two additional parameters each polarizable and deformable type

of ion. Matsui et al . show that MD simulation with the BSM is a very successful

approach in reproducing very accurately not only the measured crystal structures and

elastic constants of MgO, CaO and the Mg2SiO4 polymorphs but also their pressure and

temperature dependencies over wide T, P ranges (Matsui, 1999; Matsui et al., 2000).

Later in 2000, this method was applied to observe structural and transport properties

of MgSiO3 perovskite over wide temperature and pressure ranges where experimental

data are available (Matsunaga, 2000).
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2.1.2 Aspherical Ion Model (AIM) Model

The Aspherical Ion Model follows the same idea as the (BSM). However, it is con-

structed in a more systematic way and it includes explicitly all contributions to the

ionic interactions assumed to be important. It treats ions as formally charged, closed

shell particles.

A detailed description of the AIM and its parametrization using first principles meth-

ods has been described by Aguado et al . and Madden et al . (Aguado et al., 2003a;

Madden et al., 2006). An accurate and transferable set of AIM potential parameters

for the CMAS system was presented by Jahn and Madden (Jahn and Madden, 2007).

The following description of the of AIM model is taken from the paper of Jahn and

Madden (Jahn and Madden, 2007): "The AIM model is based on the classical the-

ory of intermolecular forces (Stone, 1996) and constructed from four components: the

charge-charge interaction and dispersion interactions, a polarizable part and short-range

repulsion terms.

V = V qq + V disp + V rep + V pol (2.2)

The �rst two components, the charge-charge and dispersion are pairwise additive as in

the normal Born-Mayer-type pair potential. The �rst term (V qq) charge-charge inter-

action is simple a Coulomb potential between ions i and j separated by some distance

rij

V qq =
∑
i≤j

qiqj

rij
, (2.3)

with qi being the formal charge on ion i (-2 for O, +3 for Al, +4 for Si, +2 for Mg and

Ca). Dispersion e�ects are represented by dipole-dipole and dipole-quadrupole terms

V disp = −
∑
i≤j

[1− f ij
6 (rij)]

Cij
6

(rij)6
+ [1− f ij

8 (rij)]
Cij

8

(rij)8
(2.4)
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where Cij
6 and Cij

8 are the dipole-dipole and dipole-quadrupole dispersion coe�cients re-

spectively, and f ij
n are Tang-Toennies dispersion damping functions (Tang and Toennies,

1984), which describe short-range corrections to the asymptotic dispersion term:

f ij
n (rij) = cij

n e−bij
n rij

kmax∑

k=0

(bij
n rij)k

k!
(2.5)

For the dispersion interactions we set cij
6 = cij

8 = 1, bij
6 = bij

8 and kmax = 4.

For the short range repulsive interaction terms of the potential, deformable oxygen an-

ions and rigid cations are considered. The cation-cation repulsion is su�ciently modeled

by the Coulombic term due to the small size of cation. The shape deformations are taken

as relatively insigni�cant for the anion-anion repulsions, which are therefore represented

by a simple Born-Mayer exponential functions, but they are substantial in the shell of

nearest neighbors, i.e. for the anion-cation repulsion. The expression used here for the

short range repulsion is given by

V rep =
∑

i∈O,j∈Ca,Mg,Al,Si

[Aije−aijρij

+ Bije−bijρij

+

Cije−cijrij

] +
∑
i,j∈O

AOOe−aOOrij

+

∑
i∈O

[D(eβδσi

+ e−βδσi

) + (eζ2|νi|2 − 1) +

(eη2|κi|2 − 1)], (2.6)

where

ρij = rij − δσi − S(1)
α νi

α − S
(2)
αβ κi

αβ, (2.7)

and summation of repeated indices is implied. The variable δσi characterizes the devia-

tion of the radius of oxide anion i from its default value, {νi
α} are a set of three variables

describing the Cartesian components of a dipolar distortion of the ion, and {κi
αβ} are
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a set of �ve independent variables describing the corresponding quadrupolar shape dis-

tortions. In Eqn. 2.6, | κ |2= κ2
xx + κ2

yy + κ2
zz + 2(κ2

xy + κ2
xz + κ2

yz) and S
(1)
α = rij

α /rij

and S
(2)
αβ = 3rij

α rij
β /rij2 − δαβ are interaction tensors. The last summations include the

self-energy terms, representing the energy required to deform the anion charge density,

with β, ζ and η as e�ective force constants. The extent of each ion's distortion is deter-

mined at each molecular dynamics (MD) time-step by energy minimization. Especially

for the high pressure phases, the introduction of an additional 'rigid' Born-Mayer-type

term in the anion-cation repulsion interaction has proven useful. This extra exponential

function (C−+e−c−+rij in Eqn. 2.6) accounts for the hard core of the anion.

Polarization e�ects are considered up to the quadrupolar level (Wilson et al., 1996a).

Since the ionic polarizabilities of light cations are usually much smaller than those of

the anions (Heaton et al., 2006), only oxygen ions are regarded as being polarizable.

Further, the oxygen polarizabilities are approximated by constants. The polarization

part of the potential including dipolar and quadropolar contributions can be written as

V pol =
∑
i,j∈O

(
(qiµj

α − qjµi
α)T (1)

α + (
qiθj

αβ

3
+

θi
αβqj

3
− µi

αµj
β)T

(2)
αβ

+(
µi

αθj
βγ

3
+

θi
αβµj

γ

3
)T

(3)
αβγ +

θi
αβθj

γδ

9
T

(4)
αβγδ)

)

+
∑

i∈O,j∈Ca,Mg,Al,Si

(
qjµi

α[1− f ij
D (rij)]T (1)

α +
θi

αβqj

3
[1− f ij

Q (rij)]T
(2)
αβ

)

+
∑
i∈O

(
1

2α
| ~µi |2 +

1

6C
θi

αβθi
αβ

)
(2.8)

α and C are the dipole and quadrupole polarizabilities of the anion, respectively. Tαβγδ =

∇α∇β∇γ∇δ...
1

rij are the multipole interaction tensors (Stone, 1996). µi
α (α = x, y, z)

are the Cartesian coordinates of the induced dipole on ion i, θi
αβ (α, β = x, y, z) are

the respective components of the quadrupole tensor. Summation over repeated indices
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O-O Ca-O Mg-O Al-O Si-O
Aij 1068.0 40.168 41.439 18.149 43.277
aij 2.6658 1.5029 1.6588 1.4101 1.5418
Bij 50532. 59375. 51319. 43962.
bij 3.5070 3.9114 3.8406 3.9812
Cij 6283.5 6283.5 6283.5 6283.5
cij 4.2435 4.2435 4.2435 4.2435
bij
D 2.0261 2.2148 2.2886 2.1250

cij
D 3.9994 2.8280 2.3836 1.5933

bij
Q 1.5297 1.9300 2.1318 1.9566

cij
Q 1.6301 1.3317 1.2508 1.0592

Cij
6 44.372 2.1793 2.1793 2.1793 2.1793

Cij
8 853.29 25.305 25.305 25.305 25.305

bij
disp 1.4385 2.2057 2.2057 2.2057 2.2057
D 0.49566 β 1.2325
ζ 0.89219 η 4.3646
α 8.7671 C 11.5124

Table 2.1: Parameters in the repulsive and polarization parts of the potential. All values
are in atomic units (Jahn and Madden, 2007).

is implied. For the short-range damping of the charge-dipole and charge-quadrupole

cation-anion asymptotic functions again Tang-Toennies damping functions (Tang and

Toennies, 1984) were used with kmax = 4 for the dipole (f ij
D ) and kmax = 6 for the

quadrupole (f ij
Q ) damping functions. While the parameters bij

D and bij
Q determine the

range at which the overlap of the charge densities a�ects the induced multipoles, the

parameters cij
D and cij

Q determine the strength of the ion response to this e�ect.

The Aspherical Ion Model (AIM) contains several (seventeen) additional degrees of

freedom which describe the state of the electron charge density of the ion. The AIM

potential takes into account the compression of the electron density of the anion, and

ionic shape deformation and the polarization e�ect which are very important for many-

body system (Madden and Wilson, 2000; Madden et al., 2006). The AIM potential

parameters are optimized by reference to first principles DFT calculations (Aguado

19



CHAPTER 2. SIMULATION TECHNIQUES

et al., 2003a). The AIM parameters are obtained by �tting classical forces, stresses

and multipoles to the corresponding ab initio data. First of all, the polarizable part

is optimized by �tting the multipoles only. Secondly, the short-range repulsive terms

and the deformation self-energy parameters are optimized by �tting the stress tensors

and forces. The parameters for dispersion interactions remain �xed to values of earlier

alumina potential since dispersion is not well represented by standard DFT (Jahn et al.,

2006). The resulting potential parameters are given in Table 2.1."

This advanced ionic interaction model has been successfully applied to study properties

of MgO-Al2O3 melts (Jahn, 2008). The model has been shown to be accurate and

transferable in a wide range of pressures, temperatures and chemical compositions (Jahn

and Madden, 2007). It has been used, e.g., to model the structure and properties of

pure forsterite melt (Adjaoud et al., 2008, 2011) or high pressure phase transitions in

enstatites (Jahn and Marto¬ák, 2008, 2009; Jahn, 2010).

2.1.3 Periodic boundary conditions

Computer simulations using interaction potentials are usually performed on small sys-

tems. If we consider a system of 2000 molecules in the simulation box, 900 on the surface.

These molecules on the surface experience di�erent forces than the bulk molecules. To

avoid such surface e�ect, and to conserve the composition of simulation cell it is com-

mon to apply periodic boundary conditions. It is a very useful technique to make a

simulation that consists of only a few hundred atoms behave as if it was in�nite in size.

In periodic boundary conditions, the simulation box is replicated throughout space to

form an in�nite cell. For the simulation, when a molecule moves in the central box,

its periodic image in every one of the replicated boxes moves with exactly the same
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Fig. 2.2: Illustration of two-dimensional periodic boundary conditions consisting of a
central simulation cell surrounded by replica system. The straight upward solid arrows
indicate an atom leaving the central cell and re-entering on the opposite side.

orientation in exactly the same way. Thus, as a molecule leaves the central box, one of

its images will enter through the opposite face. There are no walls at the boundary of

the central box. A two-dimensional periodic image of such a system is shown in Figure

2.2. As a particle moves through a boundary, all its corresponding images move across

their corresponding boundaries. In this way the number of atoms in the central box and

in the entire system is conserved. Therefore the shape of the cells must be space �lling.

Since some parts of the interatomic potentials decrease strongly with distance, we can

limit the evaluation of the corresponding interactions to a certain distance set by the

cut-o� radius rcut, as shown in �gure 2.3. It is important that the sphere with r=rcut

�ts into the simulation cell. In our case, the rcut= 14 atomic unit ' 7 Å.
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Fig. 2.3: Setting up a cut-o� radius in an interatomic potential.

The minimum image convention (MIC) method is used by considering only interac-

tions between a particle and the closest periodic image of its neighbors. The electrostatic

interactions are more long-ranged than the repulsive terms and they therefore need spe-

cial treatment which is provided e.g by Ewald summation (Allen and Tildesley, 1987).

2.1.4 The Ewald Sum

A long range force is de�ned as one which falls o� no faster than r−d where d is the dimen-

sionality of the system. Typical examples for long range forces are ion-ion (Coulombic

interaction) and dipole-dipole potentials which are proportional to r−1 and r−3, respec-

tively (Allen and Tildesley, 1987; Frenkel and Smit, 2001).

The Ewald sum is a method to calculate e�ciently the electrostatic interactions between

ions. This is done by splitting the interaction into a screened short range part that is

treated in real space and the remaining long range term, which is computed in reciprocal

space (Allen and Tildesley, 1987). This technique was originally developed to study the

ionic crystals (Ewald, 1921; Madelung, 1918) but it is applicable to any periodic system
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of interacting particles. In the AIM MD code the polynomial terms of the potential are

long-ranged and treated with Ewald summation.

2.2 Molecular Dynamics (MD) Simulation

Molecular dynamics (MD) is a computer simulation technique where the time evolu-

tion of a set of interacting atoms is followed by integrating their equations of motion

with boundary conditions appropriate for the geometry or symmetry of the system.

Statistical mechanics provides the theoretical basis for extracting properties from such

molecular dynamics simulations. The dynamic and transport properties can be obtained

from time correlation functions. In order to investigate the microscopic behavior of a

system from the laws of classical mechanics, MD requires a description of the interaction

potential (or force �eld) as an input.

The quality of the result an MD simulation depends on the accuracy of the description

of inter-particle interaction potential. This choice depends very strongly on application.

Thus the MD technique acts as a computational microscope. This microscopic informa-

tion is then converted to the macroscopic observable like pressure, temperature, heat

capacity and stress tensor etc. using statistical mechanics.

At the beginning of a MD simulation, the initial positions and momenta of the particles

are speci�ed. The particles interact with each other through an interaction potential.

Then, Newton's second law of motion is solved (more detail is given in the following

part) to describe the motion of particles in the simulation box (tracking out trajectories

in space). Finally, physical quantities as a function of particles positions and their

momenta are derived. Statistical mechanics is used to average over many of these

instantaneous calculations.
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Classical Mechanics

The molecular dynamics simulation is based on Newton's second law or the equation

of motion. From the knowledge of the force acting on each atom, it is possible to

determine the acceleration of each atom in the system at a given instant. Integration of

the equations of motion then yields a trajectory that describes the positions, velocities

and accelerations of the particle as they vary with time. From this trajectory, the

average values of properties can be calculated. Once the positions and velocities of each

atom are known, the state of the system can be predicted at any time in future or past.

Newton's equation of motion for particle 'i' is given by,

~Fi = mi

~d2ri

dt2
= mi~ai (2.9)

where ~F is the force exerted on particle i, mi is its mass and ~ai is its acceleration.

Acceleration for particle 'i' is de�ned as

~ai =
d~vi

dt
=

d2~ri

dt2
(2.10)

The force can also be expressed as the gradient of the potential energy,

~Fi = −∂V

∂~ri

(2.11)

Where V is the potential energy of the system.

V = V (~r1, ~r2, ...~ri, ... ~rn) (2.12)
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Combining equations 2.9 and 2.11 gives

− ∂V

∂~ri

= mi
d2~ri

dt2
(2.13)

Newton's equation of motion can then relate the derivative of the potential energy to

the changes in position as a function of time.

Now, we need to solve the di�erential equations e. g. 2.9 and 2.13. An analytical

solution is di�cult and often impossible for a system of more than a few interacting

particles, because the force acting on a particle depends on the positions of all other

particles and the integration of the equation 2.13 would involve integrating over a sum.

Integration Algorithms

The potential energy is a function of the atomic positions in three dimensions of all the

atoms in the system. Due to the complicated nature of the second order di�erential

equation of motion (equation 2.13), it is solved numerically.

The most important properties of a successful simulation algorithm are as follows:

• The algorithm should conserve energy and momentum.

• It should be stable and give an accurate description of the targeted system.

• The algorithm should be computationally e�cient.

• It should permit a long time step δt for integration.

• Algorithm should have a simple structure and be easy to program.

The molecular positions, velocities, and accelerations are given at time t. We search for

positions, velocities and etc. at a later time t + δt , to a su�cient degree of accuracy. If

the classical trajectory is continuous, then an estimate of the positions, velocities etc.
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at time t + δt may be obtained by Taylor expansion about time t:

r(t + δt) = r(t) + v(t)δt +
1

2
a(t)δt2 +

1

6
b(t)δt3 + ... (2.14)

v(t + δt) = v(t) + a(t)δt +
1

2
b(t)δt2 + ... (2.15)

a(t + δt) = a(t) + b(t)δt + ... (2.16)

b(t + δt) = b(t) + .... (2.17)

where r and v are the positions and the velocities, a is the accelerations, and b stands

for the third time derivative of r.

Numerous numerical algorithms have been developed for integrating the equations of

motion e.g. Verlet algorithm, velocity Verlet, Beeman's algorithm, and leap-frog algo-

rithm which we use in our simulations (Allen and Tildesley, 1987).

The leap-frog algorithm

In this algorithm, the velocities are �rst calculated at time t + 1
2
δt, these are used to

calculate the positions r at time r(t + δt).

r(t + δt) = r(t) + v(t +
1

2
δt)δt (2.18)

v(t +
1

2
δt) = v(t− 1

2
δt) + a(t)δt (2.19)

The a(t) is taken from the equation 2.9.

In this way, the velocities leap over the positions, then the positions leap over the

velocities (Allen and Tildesley, 1987). The advantage of this algorithm is that the

velocities are explicitly calculated and eliminate the problem of adding small and large

numbers. However, the disadvantage is that the velocities are not synchronized with
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positions. The velocities at time t can be estimated by relationship:

v(t) =
1

2
[v(t− 1

2
δt) + v(t +

1

2
δt)] (2.20)

In the next step, thermodynamics is used to control all the variables, like pressure,

temperature and energy, in the system (discussed below).

Thermodynamics

The connection between microscopic simulations and macroscopic properties is made

via statistical mechanics which provides the accurate mathematical expressions that

relate macroscopic properties to the motion of atoms to the atoms and molecules of the

N-body system.

The thermodynamic state of a system is usually de�ned by a small set of variables, for

example, the pressure P , the temperature T , and the number of particles N . There

are four ensembles which are commonly used (Frenkel and Smit, 2001). In the micro-

canonical, or constant-NV E ensemble, the thermodynamic state is characterized by a

constant number of atoms, constant volume V , and constant energy E. This ensemble

corresponds to an isolated system. The canonical or constant-NV T ensemble is charac-

terized by a �xed number of atoms N , a �xed volume V , and a �xed temperature T . In

the isothermal-isobaric constant-NPT ensemble the number of atoms N , temperature

T , and pressure P are �xed. Finally, the grand canonical ensemble µVT has a constant

chemical potential µ, volume V and temperature T . NV T and NPT ensembles are

used here (see section 2.4).

Total Energy

The total energy is given by,
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E =
1

2

N∑
i=1

mivi
2 + V (ri) (2.21)

which is the sum of kinetic and potential energies.

The absolute temperature T of a system in thermal equilibrium can be computed using

Boltzmann's equipartition theorem which states that each degree of freedom of the

system has associated with it 1/2kBT of thermal energy on average. where kB = 1.38×
10−23 J/K is Boltzmann's constant, and temperature T measured in Kelvins (K).

3

2
NkBT = 〈1

2

N∑
i=1

mivi
2〉 (2.22)

where 〈...〉 denotes a time (ensemble) average. Thus the temperature is determined by

the average kinetic energy (Allen and Tildesley, 1987). Each atom has three degrees of

freedom (it moves in 3-dimensional space), and there are N atoms in the system.

Pressure Tensor

In a fully periodic system of volume V, the pressure tensor for a system of N atoms can

be evaluated from

Pαβ =
1

V
(
∑

i

piαpiβ/mi +
∑

i

riαfiβ) (2.23)

for (α 6= β) element of the pressure tensor (Allen and Tildesley, 1987). Where mi and

pi are the mass and momentum of particle i. The sum involving riα and fiβ implies

a sum over all the indvidual force contributions fiβ to the total force on i. Where

αβ = xy, yz, zx of Pαβ.

More Explanation about pressure tensor calculation is given in the book by Allen and

Tildesley (Allen and Tildesley, 1987).
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2.3 Non-Equilibrium MD Simulation

Molecular dynamics simulations have become a powerful tool in studying both equi-

librium and non-equilibrium atomistic processes in material science. Non-equilibrium

molecular dynamics (NEMD) has emerged as a very e�cient simulation process to study

directly the viscosity of a �uid under the e�ect of applied shear to the system..

Di�erent approaches are developed for viscosity calculation by using NEMD simulations

in the past few years (Ashurst and Hoover, 1975, 1977; Evans and Hoover, 1986; Fuller

and Rowley, 1998) and some useful models are also developed for the viscosity calcula-

tion of �iuds (Giordano and Russell, 2007; Hui and Zhang, 2007; Giordano et al., 2008).

A remarkable progress on NEMD is done by Hoover and his coworkers (Hoover, 1993;

Evans, 1986; Hoover and Hoover, 2005, 2009).

Fig. 2.4: Snapshot of applying shear to the simulation cell, initially the cell is sheared
from position 1 to position 2 after n steps. And then the cell is rede�ned from position
2 to position 3.

Here, we introduce non-equilibrium behavior to our AIM potential with the same pe-

riodic boundary conditions using Ewald sum. A constant shear velocity is applied to
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the periodically repeated cell in the xy-plane as shown in �gure 2.4. In �gure 2.4 the

black box shows the original cell which is represented by position 1. A constant shear

is applied to this cell along x-direction. After many steps, the number of steps which

depends on the size of the simulation cell and the shear rate green box with position 2.

The upper edge of the cell is displaced by ∆x ; ~b = ~b + ∆x~x. If, after n steps, ∆x ≥ a
2
,

the cell vectors are rede�ned as ~b = ~b − ~a which gives identical cell due to periodic

boundary conditions. The rede�ned cell box is shown as red box with position 3 in

Figure 2.4. This rede�nition of the cell vectors preserves the volume and the physical

properties of the system.

2.4 Setup of the Forsterite-Melt Interfaces

The temperature condition of the simulations was chosen to sample the forsterite +

liquid two-phase region of the Mg2SiO4−MgSiO3 phase diagram shown in Fig. 2.5. The

pressure of 1 atmosphere (ambient) is taken. Figure 2.5 is modi�ed according to the

system which is studied here. The red circle represents the temperature of our studied

system in the phase diagram. And the composition range of all the interfaces A-D lies

on the red dashed line which is at 2000 K in the �gure.

According to the experimental measurements, the melting temperature of forsterite

at ambient pressure is 2163±25 K (Bowen and Andersen, 1914) and enstatite melts in-

congruently at 1830 K to form a silicate rich melt and forsterite (Lange and Carmichael,

1987). At the conditions of our simulations, T = 2000 K and ambient pressure, forsterite

coexists with a silicate melt that is slightly enriched in MgO compared to MgSiO3. Start-

ing with a pure MgSiO3 melt, the somewhat di�erent equilibrium melt composition at a

given P−T condition is expected to self-adjust in the course of the simulation. Ambient

pressure conditions were chosen to allow direct comparison of the obtained transport
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Fig. 2.5: Modi�ed phase diagram (Barth, 1962, page 97) of the system used for this
study. The red dotted lines and the circle represents the existence of our system in the
phase diagram at 2000 K for ambient pressure.

properties to experimental work on partially molten rocks (e.g. (ten Grotenhuis et al.,

2005)).

The simulation cells of the initial silicate melt (MgSiO3) and of the forsterite crystal

(Mg2SiO4) contain a total of 480 ions (96 formula units) and 672 ions (96 formula

units), respectively. Solid and melt simulation cells are equilibrated separately. The

melt simulation cell is equilibrated for 50 ps in the NPT ensemble (constant number of

atoms/ions, pressure and temperature) using an isotropic barostat (Martyna et al., 1994)

coupled to a Nosé-Hoover thermostat (Nosé and Klein, 1983). Similarly, the forsterite

simulation cell is equilibrated at the same conditions in the NPT ensemble but using an

anisotropic barostat keeping the simulation cell orthorhombic. After equilibration, the

barostat is switched o� and production runs of 250 ps length for the solid and 500 ps
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length for the melt are performed in the NV T ensemble (constant volume). The results

of both simulations are used as reference to represent the structure and properties of

the bulk crystal and the bulk melt.

After separate equilibration of solid and melt, interfaces are constructed between them

as follows. First, the crystal cells are rotated to yield three di�erent surface termina-

tions: (010), (100) and (001). Then, four di�erent melt layers are constructed by using

1x1x0.5, 1x1x1, 1x1x2 and 1x1x4 supercells of the melt simulation box. The 1x1x0.5

cell with 240 ions was re-equilibrated after removing half of the ions from the cubic box

and reducing the simulation cell length in one dimension. The di�erent melts are sub-

sequently con�ned between two crystal cells (2×672 ions) leaving a small gap between

melt and solid of 0.1 nm to avoid direct ion contacts. To overcome the mis�t in the

cross-section between melt and crystal, the particle positions in the melt are rescaled in

the interfacial plane. Thus, 12 di�erent solid-melt interfaces with three di�erent surface

terminations and four di�erent melt thickness layers are obtained. In the following, we

refer to interfaces containing initial melt layer thicknesses (d) of 0.8 nm, 1.6 nm, 3.3 nm

and 6.5 nm as A-, B-, C- and D-interfaces. The total numbers of ions in these supercells

are 1584, 1824, 2304 and 3264, respectively.

Fig. 2.6 shows the simulation box (black) of interface C with (010) crystal surface

termination containing 2304 total number of atoms.

Two di�erent ranges of pressure and temperature are applied to the system to check the

stability of the system. In one case, only pressure is changed from ambient to 10 GPa

but temperature is kept same as before, i.e. 2000 K. In second case, both are increased,

pressure to 10 GPa and temperature from 2000 K to 2400 K. For these two cases,

molecular dynamics simulations are done only with (010) crystal surface termination

for all four interfaces. Similarly, all the steps are repeated as done before, system is

equilibrated �rst and then production runs are started.
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Fig. 2.6: Snapshot from simulation of interface C with (010) crystal surface termination.
SiO4 tetrahedral units and Mg ions are shown in polyhedral representation and as balls,
respectively. Black lines indicate the simulation box, which is about 7 nm long and
periodically repeated in three dimensions. Thus, the model is composed of alternating
melt (disordered) and crystal (ordered) layers

2.5 Technical Details of the Simulation

All interfaces are equilibrated at ambient pressure and 2000 K for 50 ps in the NPT

ensemble. The gaps are closed during equilibration within few starting steps. Due to the

di�erent interfacial cross sections of the orthorhombic crystal cell in di�erent orienta-

tions, the resulting thickness of the melt layers after equilibration varies slightly between

interfaces with di�erent surface terminations but with the same number of melt atoms.

After equilibration, production runs of 700 ps length for all interfaces are collected in

the NV T ensemble. From the particle trajectories we derive various properties like

charge density, cation coordination, connectivity of SiO4 tetrahedra and self-di�usion

coe�cients. For a detailed analysis of the various properties across the interface, the

simulation cell of each interface is divided into layers parallel to the interface.

NEMD simulation is used for the viscosity calculation of our system, again the system is

equilibrated for 50 ps in the NPT ensemble (constant number of atoms/ions, pressure
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and temperature) using an isotropic barostat (Martyna et al., 1994) coupled to a Nosé-

Hoover thermostat (Nosé and Klein, 1983). These calculations are done with positions

of the last 700 ps from equilibrium molecular dynamic simulations for all interfaces of

(010) orientation only. Di�erent shear rates are applied to the bulk melt and all the

interfaces.

Calcium (Ca) is added as impurity to the interface by replacing some Magnesium (Mg)

atoms. We directly replace 18 Mg atoms with Ca, as both have same atomic charge.

We choose only interface-C with (100) orientation to see the e�ect of impurity on the

system. After adding Ca, the system is again equilibrated for 50 ps and then production

runs are started for 600 ps. All the results are compared and discussed in result section

(chapter 3).

Before starting all these calculation, we tested the rigid ion model of Matsui (Matsui,

1994), and also the potential used by Guillot (Guillot and Sator, 2007a) for our system.

We need a fast and reliable model as we have to deal with thousands of atoms. Us-

ing such potential (RIM), increases the computational e�ciency for large system and

for longer time. The rigid ion model was not useful for our system because it shows

unphysical behavior and could not stabilize the interface at the relevant conditions.

Standard deviation (σ) is calculated over average of 400-700 ps according to the available

data to estimate the errors. The mean standard deviation (σmean) is obtained from σ

by using the relation σmean = σ/
√

N .

2.6 Analysis Tools

The structural and transport properties of the simulated system are analyzed using

di�erent programs and functions, which are discussed in this section. To study the
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variation of various properties across the interface, all the interfaces are divided into

di�erent numbers of layers in the direction perpendicular to the interface. Figure 2.7

Fig. 2.7: Snapshot from simulation of interface C with (010) crystal surface termination
represents the division into layers for analysis.

shows the interface with division into 15 layers. In some cases we divided the interface

into as much as 300 layers depending on the size of the interface.

The simulation cells are divided into 100, 150, 200 and 300 for interface A, B, C and D

respectively. For the bulk crystal and bulk melt, the simulation cell is divided into 50

layers. For all structural and transport properties, the layer division gives a clear vision

to follow the movement of all atoms. Dividing the interfaces into layers, the width of

the each layer is kept constant with some increment. The actual number of layers also

depends on the speci�c property of interest.

2.6.1 Element Distribution Pro�les

The element distribution pro�les are obtained by counting all atoms of a given element

in a given layer. An average is taken over the whole simulation run and sum them up

For charge distribution Dc(r) pro�les we multiply the element distribution pro�les by
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the respective charge of the ions.

Dc(r) =
n∑

i=O,Si,Mg

ρ(i, r)× q(i) (2.24)

Chemical composition pro�les in terms of components MgO and SiO2 are computed for

all interfaces and the bulk systems. For each layer, the system is normalized to the

total number of MgO and SiO2. The chemical composition pro�le provides information

about the enrichment or depletion of atoms (Mg or Si) across the interface.

The coordination of an atom i was determined by counting the number of atoms of a

given species j within a sphere of a given cuto� radius. The cuto� radius is determined

by the �rst minimum in the respective radial distribution function gij(r) as shown

in �gure 2.8. From the particle positions, radial distribution functions gij(r) [i, j ∈
(O, Si, Mg)] are de�ned

gij(r) =
N

ρN iN j

1

4πr2

∑
α

∑

β

〈δ(r + |~rα − ~rβ|)〉 (2.25)

The black line on the plot indicates the cuto� radius used for counting the numbers of

nearest neighbors of oxygen.

2.6.2 Mean Square Displacement

To compute the self-di�usion coe�cient, we need to follow the time dependence of the

mean square displacement. The mean square displacement is de�ned as

〈r2(t)〉 = 〈|~ri(t)− ~ri(0)|2〉 (2.26)
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Fig. 2.8: Radial Distribution Function of MgSiO3 melt for O-Mg at 2000 K

~ri(t) is the position of particle i at time t, and brackets refer to an average over time and

ions of the same species. These averages would be computed for each of the N particles

in the simulation (Allen and Tildesley, 1987).

The corresponding Einstein relation for the self-di�usion coe�cient, valid at long time

(Allen and Tildesley, 1987), is

D = lim
t→∞

< r2(t) >

6t
(2.27)

or

2tD =
1

3
〈(ri(t)− ri(0))2〉 (2.28)

Self-di�usion coe�cients are calculated from the slope of mean square displacements of

ions over a given time t as shown in Fig.2.9.
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Fig. 2.9: Mean square displacement versus time of Mg from molecular dynamics simula-
tion of forsterite crystal and enstatite melt at 2000 K. Black dashed lines show a linear
regression line to the msd in the long time limit.

2.6.3 Viscosity

Viscosity is the property of a �uid which describes the resistance to shear deformation.

When two layers of a �uid which are a distance dz apart are forced to move one over

the other at di�erent velocities, say u and u + du, the viscosity together with relative

velocity causes a shear stress acting between the �uid layers.

This shear stress is directly proportional to the rate of the change of velocity with

respect to z. It is denoted by σij (force per unit area F
A
).

Mathematically

τ ∝ du

dz
(2.29)

τ = η
du

dz
(2.30)
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where η is the constant of proportionality and is known as the coe�cient of viscosity.

The velocity gradient du
dz

represents the rate of shear strain or rate of shear deformation.

From equation 2.30 we get

η =
σij

du
dz

(2.31)

This formula is used to calculate the viscosity for all interfaces and bulk melt at di�erent

shear rates. This technique was used by others, e.g. Naitoh and Ono (Naitoh and Ono,

1976, 1979; Evans, 1979).

Fig. 2.10: Sketch of applying shear to the interface. Green box represents the e�ective
melt due to shear.

Figure 2.10 shows a sketch to illustrate how the shear is applied to the system. Shear
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is applied in x-direction on the whole cell. u represents the shear velocity at one end

of the simulation cell, whereas the other end remains �xed. The velocity gradient du
dz

is calculated to obtain the viscosity from the given respective shear. Considering that

shear applied on crystal is zero, we calculated the e�ective shear rate on melt part only.

The shear stress is computed from MD code as described in the book of Allen and

Tildesley (Allen and Tildesley, 1987).

Shear viscosity can also be computed from equilibrium MD simulation by using the

Green-Kubo relation, integrating the autocorrelation function for the o�-diagonal ele-

ments of the stress tensor which is,

η =
V

kBT

∫ ∞

0

dt〈σij(t)σij(0)〉 (2.32)

V is the volume of the system. σij are the elements of stress tensor. kB is the Boltz-

mann constant and T is the temperature. To improve the statistics, an average is

performed over �ve independent elements (σij) to obtain η: σxy, σxz, σyz, σxx − σyy and

2σzz − σxx − σyy.
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Fig. 2.11: (a) Average of the calculated stress autocorrelation function of MgSiO3 melt
with respect to time,(b) Viscosity calculated from stress autocorrelation function of
MgSiO3 melt at 2000 K. Black horizontal lines with dashed tilted vertical lines repre-
sents the error range for the viscosity.
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Figure 2.11 illustrates the calculation of melt viscosity by using the Green-Kubo relation,

i.e. equation (2.31). From the simulation of the melt (MgSiO3), the stress tensor

autocorrelation function is plotted versus time and then this function is integrated.

Viscosity is calculated by multiplying this integrated function with the constant factor

( V
kBT

).
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Chapter 3
Results

3.1 Equilibrium Molecular Dynamics Simulation

3.1.1 Bulk Properties and Free Crystal Surface

First of all, the results of the bulk systems are presented here. Bulk crystal and bulk

melt are �rst studied separately to have reference properties. In the following part,

the structural properties of bulk crystal and bulk melt are discussed in detail. Trans-

port properties of bulk melt, and the elastic properties and the free surface energies of

forsterite crystal are investigated.

◦ Bulk Crystal

For reference, we �rst present some structural properties of the bulk forsterite crystal

(Mg2SiO4). As already shown in a previous study (Jahn and Madden, 2007), the AIM

potential predicts the forsterite structure in good agreement with experimental data

(Fujino et al., 1981). The corresponding lattice constants at ambient conditions are

listed in table 3.1.

Table 3.1: Lattice parameters of forsterite from experiment at ambient conditions (Fu-
jino et al., 1981) and AIM simulations at T = 0 K (Jahn and Madden, 2007)

Experiment AIM
a (Å) 4.75 4.73
b (Å) 10.19 10.19
c (Å) 5.98 5.95
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Similarly, the elastic constants, the thermal expansion at ambient pressure and the

volume compression under applied pressure are well reproduced (Jahn and Madden,

2007). Elastic constants of forsterite at ambient conditions are shown in table 3.2.

Experimental AIM
c11 329 326
c22 200 188
c33 236 232
c44 67 62
c55 81 78
c66 81 82
c12 67 84
c13 68 82
c23 73 80

Table 3.2: Elastic constants (GPa) of forsterite at ambient conditions (T = 0 for the
simulations). AIM predictions (Jahn and Madden, 2007) are compared to experimental
data taken from (Fujino et al., 1981) and (Suzuki et al., 1983).

Figure 3.1 shows the atomic and charge distribution pro�les of a forsterite crystal along

[100]. The total charge distribution (bottom plot of �gure 3.1) is obtained by counting

all atoms in the respective layer multiplied by their respective charges. This function

oscillates around zero due to the imposed charge neutrality of the simulation cell.

Figure 3.2 shows the partial radial distribution functions (RDF's) of the bulk crystal.

This function gives the probability of �nding a pair of atoms at a distance r. The plotted

gij(r) are at 2000 K. Due to this high temperature the peaks are already very broad.

At short distances, which are less than the sum of ionic radii for anion-cation RDF's,

g(r) is zero. This is because of strong repulsive forces. The �rst sharp peak represents

a high probability to �nd two ions e.g. O-Si at the corresponding separation due to the

�rst coordination shell. The radial distribution function then falls and passes through

a minimum. The probability of �nding two atoms at this minimum separation is small.
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Fig. 3.1: Atomic (top) and charge (bottom) distribution pro�les of crystal Mg2SiO4

along [100].
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Fig. 3.2: Partial radial distribution functions of forsterite crystal at 2000 K.
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The radial distribution functions of the crystal have a large number of peaks up to very

long distance as shown in �gure 3.2. Eventually, coordination shells increasingly overlap

also due to thermal vibrations and the g(r) approaches to one.

Fig. 3.3 shows the resulted mean square displacements of Mg, Si and O for the bulk

crystal. Blue dotted lines on all three plots show the zero slope i.e there is no measurable

di�usion in the pure crystal. Di�erent values of oxygen, Si and Mg in �gure 3.3 are due

to di�erent vibrational amplitude between these three species.
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Fig. 3.3: Mean square displacement (msd) versus t (ps) at long time of the crystal at
2000 K. Dashed lines are the regression line which shows that there is no slope.

◦ Bulk Melt

Some structural and transport properties are calculated for the bulk melt (MgSiO3) to

compare its properties with the melt con�ned between crystals.

Figure 3.4(a) shows the atomic and charge distribution pro�les for the melt. The di�er-

ence in the structure between melt and crystal can be easily observed from the density

45



CHAPTER 3. RESULTS

pro�les of both as shown in �gures 3.1 and 3.4(a). Compared to the crystal there are

only small �uctuations in the atomic and charge distribution of the melt which re�ects

the disordered structure.

The coordination pro�les of oxygen by silicon are shown in the �gure 3.4(b). Black

dotted horizontal lines represents the nominal distribution according to the formula

MgSiO3, in which 2/3 of the oxygens are non-bridging and 1/3 are bridging oxygen.

There are small �uctuation around these numbers (2/3 and 1/3), due to the simulation

cell size e�ects and the �nite simulation time. There are very few free oxygens with no

nearest neighbor of Si. Bridging oxygens are de�ned as having two nearest neighbors of

silicon, whereas non-bridging oxygen have only one.
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Fig. 3.4: (a) Atomic (top) and charge (bottom) distribution pro�les of MgSiO3 melt at
2000 K. (b) Fractional distribution of oxygen coordinations by silicon as a function of
position for MgSiO3 melt.

The partial radial distribution functions of MgSiO3 melt, with a small number of peaks

at short distances, is shown in �gure 3.5. By comparing the partial RDF's of the crystal

and the melt (see �gures 3.2 and 3.5), it is clear that crystal has a larger number of

peaks up to longer distance then the melt.

Self-di�usion coe�cients of all three species (Mg,Si,O) for bulk melt (MgSiO3) are ob-

tained from the respective mean square displacements (as discussed in chapter 2). They
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Fig. 3.5: Partial radial distribution function of MgSiO3 melt at 2000 K.

are averaged over 600 ps in six intervals of 100 ps. The data in table 3.3 is for cubic

bulk melt with simulation cell length 1.75 nm. This corresponds to the thickness of

melt in interface B. Later we double this melt (2× 1× 1 supercell) in one direction to

increase the melt thickness for the interface C and use a 4× 1× 1 supercell for interface

D. The Mg self-di�usion coe�cient is about four times larger than that of oxygen and

6-7 times larger than that of Si as given in table 3.3 for cubic melt.

Table 3.3: Self di�usion coe�cients (×10−6cm2/s) of the three elements (O, Si, Mg) of
bulk melt (Averaged over 600 ps).

Bulk-melt O Si Mg
dtot (nm) di�usion

1.75 2.4(2) 1.5(2) 9.9(4)

Fig. 3.6 shows the resulting mean square displacements of Mg, Si and O drawn for

MgSiO3 melt from the simulation of bulk system. Blue dotted lines on the plot show
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Fig. 3.6: Mean square displacement versus time of Mg, Si and O in MgSiO3 melt at
2000 K. Dashed lines show the linear regression to the msd of each atom.

linear regression lines from which the self-di�usion coe�cients are calculated. In case of

melt, the mean square displacement increases linearly as t increases for all species (O, Si,

Mg). The di�erence between the mean square displacements of the melt and the crystal

is clear by comparing the two �gures for crystal and melt 3.3 and 3.6 respectively.

The viscosity of MgSiO3 melt is calculated from EMD by using the Green-Kubo relation

as de�ned in section 2.7.2. Table 3.4 represents the viscosity data of two di�erent

simulation cells. One is cubic melt (1 × 1 × 1) with simulation cell length of 1.75 nm.

The other is 2× 1× 1 supercell of the melt with simulation cell length of 3.50 nm. The

viscosity of the cubic melt of cell length 1.75 nm is three time higher than that of larger

supercell of cell length of 3.50 nm as given in the table 3.4.
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Table 3.4: Viscosity of MgSiO3 melt calculated from equilibrium MD for melt of di�erent
thickness (averaged over 400 ps).

Bulk Melt
Thickness Viscosity
dtot (nm) (Pas)

1.75 0.08(2)
3.50 0.05(2)

• Free Crystal Surface

The free surface energies of three surfaces (100), (010) and (001) of forsterite were

calculated. This is done by cutting the crystal in the plane of interest and adding a

thick vacuum layer between the two half-crystals. In the next step, the atomic positions

are allowed to relax while keeping the simulation cell parameters constant.

Fig. 3.7: Structure of the original
forsterite crystal when dipole is not
zero. The black dotted box represents
the unit cell and the red dotted line
shows the point where the crystal is cut.

Fig. 3.8: Structure of the forsterite
crystal after shifting the origin to ob-
tain a zero dipole perpendicular to the
(010) surface. (Green=Mg, Purple=Si,
Pink=O)

There is one condition to calculate the free surface energy, which is that the dipole

perpendicular to that surface should be zero in the repeat unit, because such a dipole

in a periodic cell lead to a divergent surface energy (Bertaut, 1958). As an example

Fig. 3.7 shows structure of forsterite along [001] as taken from the crystal structure
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database. The forsterite supercell contains 672 atoms with 384 oxygen, 96 Si and 192

Mg.

In this original cell, the dipole is not zero perpendicular to surface (010). After cutting

the surface in a di�erent plane by keeping all tetrahedra intact, the simulation cell has

a zero dipole (see �gure 3.8). A procedure for cutting surfaces and making dipoles zero

for forsterite is very well explained by Watson et al . (Watson et al., 1997). The relaxed

cell with vacuum is shown in �gure 3.9. The surface terminations and the relaxation

process are similar to the those used by Watson et al . [1997].

Fig. 3.9: Snapshot of relaxed forsterite crystal run with vacuum. Green=Mg, Purple=Si,
Pink=O

The surface energy is de�ned as the energy per unit area, and formula for calculating

the free surface energy is,

γ =
ES − EB

A
(3.1)

where ES is the energy of the relaxed surface calculation, EB refers to the energy of

the bulk system with the same number of ions, and A is the surface area. In table 3.5,

the surface energies obtained from the AIM potential are compared to the results of

the previous simulation study by Watson et al . [1997] using a rigid ion model. Despite
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Fig. 3.10: Average atomic (upper graph) and charge (lower graph) distribution pro�les
of the relaxed free (010) surface of forsterite.

Table 3.5: Free surface energies (in J/m2) of forsterite calculated for three surfaces by
AIM and a rigid ion model (Watson et al., 1997).

Surface Present study (Watson et al., 1997)
(100) 2.21 2.02
(010) 1.27 1.28
(001) 1.89 1.61

relative di�erences of up to about 20% in the surface energies due to the di�erent

interaction potentials, both models agree in that the most stable surface is (010) because

it has the lowest surface energy. The (100) surface is somewhat less stable than the (001)

surface. The di�erent surface energies a�ect the structural and transport properties as

will be discussed in next section.

Fig. 3.10 represents the atomic and charge distributions of the relaxed free (010) surface,

after relaxation by molecular dynamics simulations for 10 ps. Strong oscillations are

observed due to crystalline order and some small variation close to the surface due to
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the atomic relaxation.

3.1.2 Structure and Chemical Composition of the Interfaces with

(010) Crystal Surface Termination

Interfacial properties are divided into two parts, the structural and the transport prop-

erties. In this section structural properties, like charge densities, cation coordinations

and chemical compositions of the interfaces with (010) crystal surface termination are

presented. The structural properties of all four (A, B, C and D) interfaces with di�erent

melt thickness are investigated. In the next section (3.1.3) the e�ect of surface termi-

nation on the structural properties is studied by comparison of the results for the (010)

surface to those of (100) and (001) surfaces. Transport properties such as self di�usion

coe�cients are derived in section 3.1.4.

• Charge Density Profiles

Variations of the structure across the interfaces may be represented by the charge and

the atomic distribution pro�les. As an example, the distribution of the di�erent elements

(Mg, Si and O) across interface A, B, C and D with (010) crystal surface termination is

shown in the upper upper part of each graph of Fig. 3.11. All pro�les shown are results

averaged over the total production run of 700 ps. The spacial resolution after dividing

the simulation cell into 200 layers for interface C is about 0.04 nm. Green vertical lines

represent the position of the original interface.

The total charge distributions are shown in the lower parts of each graph of Fig. 3.11.

These functions oscillate around zero due to charge neutrality of the whole simulation

cell. The strong oscillations in the crystal part on both sides of all distribution pro�les

for all interfaces are due to the periodic crystal structure. A relatively strong solid-

like charge ordering is also observed in the �rst melt layers close to the mineral-melt
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Fig. 3.11: Average atomic (upper graph) and charge (lower graph) distribution pro�les
across all the interfaces of di�erent melt thickness (A, B, C and D) with (010) crystal
surface termination.

interface. In the middle of the melt, very small peaks are observed.

The e�ect of the melt on the crystal surfaces is apparent from the comparison of the

interfacial element and charge distribution pro�les (Fig. 3.11) with the corresponding

pro�les of the free surface, i.e. the crystal surface in contact with vacuum (Fig. 3.10).

The latter show much less reconstruction or distortions from the bulk structure close to

the interface than the crystal surfaces in contact with the melt.

The atomic and charge distribution functions suggest an interfacial width with strong

deviations from the bulk behavior of about 1-2 nm. However, there are still small

oscillations even in the central part of the melt, which is due to the strong e�ect of the
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interface on the melt.

Comparing the four diagrams of Fig. 3.11 for the di�erent interfaces, a strong e�ect of

melt thickness on the structure is observed. In the case of interface A, the e�ect of the

crystal (on the melt) is most pronounced. Due to the con�nement e�ect, there are sharp

peaks in the central part. As the melt thickness increases, the e�ect of the crystal on

melt is reduced.

• Chemical Composition

On the atomic scale, wetting of the crystal surface by the silicate melt leads to chemical

heterogeneities in the interfacial region. For all interfaces with (010) crystal orientation,

the simulation cells are divided into 80, 100, 120 and 160 layers of A, B, C and D

respectively.

Their respective chemical composition of each layer in terms of MgO and SiO2 compo-

nents are shown in Fig. 3.12 for all four interfaces from A-D. The immediate contact

between crystal and melt is characterized by strong compositional �uctuations.

The atomic layers of the crystal close to the interface are somewhat enriched and the

average melt composition is slightly depleted in SiO2 component in all interfaces of dif-

ferent melt thickness. As mentioned earlier (see �gure 2.5), the phase diagram suggests

a MgO mole fraction above 0.5 for the melt under the P − T conditions studied here,

which seems to be consistent with the simulation results. The horizontal line on each

plot represents the the original MgSiO3 melt composition.

Strong �uctuations are observed across interface-A in the interfacial region as well as in

the center of the melt. The �uctuations are decreasing as the melt thickness increases

(A to D), similarly as in case of charge and atomic distribution pro�les. For interface-D

the �uctuations in the center of the melt are already small and probably more due to

statistical �uctuations than to interfacial e�ect ( more detail on this e�ect is explained
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Fig. 3.12: Chemical composition across all interfaces with (010) crystal orientation in
terms of MgO and SiO2 components. The horizontal dotted line indicates MgSiO3

composition.

in section 4.3 ).

• Coordination

The coordination of an atom i was determined by counting all atoms of a given species

j within a sphere of a cuto� radius. The latter is de�ned by the �rst minimum in the

respective radial distribution function gij(r). Again all the interfaces are divided into

layers like density and composition pro�les, its 80, 100, 120 and 250 for interface A,

B, C and D respectively. The coordination pro�les of oxygen by silicon are shown in

Fig. 3.13 for all interfaces from A to D with (010) crystal surface termination.

Bridging oxygens are de�ned as having two nearest neighbors of silicon, whereas non-
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Fig. 3.13: Fractional distribution of oxygen coordinations by silicon for all four interfaces
(A-D) with (010) crystal surface termination as a function of position across interface.

bridging oxygens have only one. There are also a few free oxygens with no nearest

neighbor Si. Horizontal lines represent the nominal distribution according to the formula

MgSiO3, in which 2/3 of the oxygens are non-bridging and 1/3 are bridging oxygens.

The olivine crystal (Mg2SiO4) has only non-bridging oxygens, which can be seen in the

crystal part of all plots Fig. 3.13.

All interfaces show a similar behavior at the interfacial region with a small peak in the

crystal which is marked by 1 in the diagram, then a minimum and a second peak (2)

just in the liquid. There may be a third peak (3) but then the distribution become

more random. Interface-A has strong peaks and the central melt part does not cross

the black horizontal lines which are representing the nominal distribution.
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3.1.3 E�ect of Crystal Surface Termination on the Structure of

the Interface

As described earlier, three types of crystal surface terminations of forsterite are used

to construct interfaces of di�erent melt thickness. By looking at the structure of all

interfaces and their properties, we observe di�erent behavior due to the surface termi-

nations. This relative di�erence shows up in the density and coordination pro�les as

illustrated in �gure 3.14.
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Fig. 3.14: Atomic density pro�les (left) and coordination pro�les (right) of interface-B
for all three crystal orientations. Green vertical lines represents the position of original
interface.

The atomic distribution pro�le for (010) orientation has less �uctuations in the melt

region and is less structured in the interfacial region. The other two interfaces with

(001) and (100) surface terminations have strong �uctuations in the interfacial region

and also some peaks in the center of the melt. Similarly, in the coordination pro�le of

the (100) and (001) interfaces �uctuations in the whole are much stronger as compared

to the (010) interfaces. The small di�erence in the melt thickness and the variation

in simulation cell lengths between di�erent crystal surface terminations for the same
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Fig. 3.15: Snapshot of interface A and B with all three crystal surface terminations

interface, e.g. interface-B, are due to the di�erent cross-sections of the crystal in (010),

(100) and (001) and a constant number of atoms in the initial cell. This di�erence

in melt thickness can be observed from the snapshots of interface-B for three crystal

surface termination as shown in �gure 3.15.

Similar behavior is observed for interfaces C and D. As the melt thickness increases

from interface B to D, a decrease in the structuring of the melt part of the interface

with (010) crystal surface termination is observed. Also in the other two crystal surface

terminations (001) and (100), the structuring of the melt part is reduced. In case of the

smallest melt thickness, it is di�cult to di�erentiate clearly the e�ect of surface termi-

nation from the structure due to the con�nement. Interfaces A have a melt thickness

of about 0.88 nm, but still from the snapshot of interface A we can observe that the
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interface with (010) crystal surface termination has a little broader thickness of melt as

compared to the other (100) and (001).

3.1.4 Self-Di�usion Coe�cients

The self-di�usion coe�cients are calculated by two di�erent methods for all interfaces.

In the �rst case, all atoms that were contained in the original melt before constructing

the interface are considered in the averaging of the mean square displacements. A time

average is performed over 500 ps of the production runs.

Table 3.6: Self di�usion coe�cients (×10−6cm2/s) of the three elements (O, Si, Mg) in
A, B, C and D interfaces and for the three crystal orientations (100), (010) and (001).
dtot (nm) is the total melt layer thickness. The three columns on the left represent
self-di�usion coe�cients that are derived from the complete melt, whereas the three
columns on the right include averaging over the central melt part only (see main text
for more explanations).

Interface Melt-thickness O Si Mg O Si Mg
dtot (nm) total melt central melt

A
100 0.80 1.1(2) 0.6(2) 3.4(3) 1.1(2) 0.6(2) 4.0(2)
010 0.88 1.9(2) 1.2(2) 6.4(16) 2.0(2) 1.2(1) 8.4(14)
001 0.77 1.2(2) 0.6(2) 3.2(7) 1.2(3) 0.6(2) 4.4(3)
B
100 1.60 1.4(2) 0.9(2) 5.9(7) 1.5(3) 1.0(2) 7.2(8)
010 1.75 2.2(2) 1.5(2) 7.4(7) 2.4(3) 1.6(3) 9.1(7)
001 1.54 1.7(2) 1.1(2) 7.1(5) 1.8(3) 1.2(2) 7.9(5)
C
100 3.20 1.8(2) 1.2(2) 7.9(11) 2.0(2) 1.4(2) 9.2(12)
010 3.50 2.4(2) 1.7(2) 9.2(4) 2.5(2) 1.8(3) 10.0(7)
001 3.10 2.0(2) 1.3(1) 8.0(6) 2.2(2) 1.5(2) 9.3(9)
D
100 6.40 2.2(2) 1.5(2) 8.1(7) 2.4(2) 1.7(3) 9.2(11)
010 7.00 2.6(2) 1.9(2) 9.3(2) 2.7(4) 2.1(3) 10.0(8)
001 6.20 2.3(2) 1.5(1) 8.3(5) 2.3(3) 1.6(2) 9.0(7)

In the second case, the interface is divided into 10, 15, 20 and 30 equidistant layers for

the A, B, C and D interfaces, respectively. To account for interdi�usion between the
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layers, the time average over the mean square displacements is constrained to intervals

of 100 ps. This means that for production runs of 700 ps, there are seven intervals

of 100 ps. The assignment of atoms to individual layers is made at the beginning of

each 100 ps interval. Finally, an average over the seven intervals is taken. Self-di�usion

coe�cients of all three species are averaged over a few central layers (2, 3, 6 and 12 for

all A, B, C, and D interfaces, respectively). The resulting self-di�usion coe�cients are

compiled in Table 3.6.
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Fig. 3.16: Self-di�usion coe�cients of oxygen across the interface for crystal surface
terminations (010), (001) and (100) of all interfaces A-D. The vertical lines on each
pro�le present the initial interface.

For all interfaces A to D, the atoms of crystal termination (010) show higher self-di�usion

coe�cients then those of the corresponding interfaces with (100) and (001) termination.

By increasing the melt thickness of the same crystal surface, the self-di�usion coe�cients
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of all species increase. The largest di�erence is observed between the melts of interfaces

A and B with an increase in di�usivity of up to about 40%. This increase reduces to

about 20% between interfaces C and D (see Table 3.6).

Fig. 3.16 shows pro�les of oxygen self-di�usion coe�cients across all the interfaces A-D

with di�erent crystal orientations. The vertical lines on each plot refer to the initial

contact between melt and crystal. The simulation cell lengths and hence the e�ective

melt thickness in all four interfaces vary slightly between di�erent crystal surface ter-

minations due to the di�erent cross-sections of the crystal in (100), (010) and (001)

(see Table 3.6). While the di�usion in the crystal part is essentially zero, a plateau is

formed in the central part of the melt. For the interface with (010) crystal orientation,

the self-di�usion coe�cients in this central region are higher than those for the other

two pro�les. Also, in the (010) pro�le the plateau is reached more quickly away from

the original contact, which indicates a smaller interfacial width. Non-zero self-di�usion

in the crystal part indicate an increased ionic mobility in the �rst atomic layers of the

crystal close to the contact with the melt. The extend of the di�usion pro�les into the

crystal is consistent with that of the composition �uctuations (see Fig. 3.12), which

can be explained by an increased defect density in the crystal or by the formation of a

leached layer.

Fig. 3.17 shows the dependence of the oxygen self-di�usion coe�cients for the di�erent

crystal terminations as a function of melt thickness. In this �gure, both data of the

complete melt and the central melt part are drawn, which shows clearly that the di�usion

of the complete melt is somewhat smaller than that of the central melt part. A similar

trend is observed for the Mg and Si self-di�usion coe�cients (see Table 3.6). Averaging

of the central layers gives higher self-di�usion coe�cients because the electrostatic e�ect

of crystal on the melt is better shielded away from the interface. Averaging over the

complete melt also includes the region close to the interface which is less di�usive. By
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Fig. 3.17: Self-di�usion coe�cients of oxygen for di�erent melt thickness and di�erent
surface termination. Filled symbols are for the complete melt and open symbols refer
to the central melt part. Lines are a guide to the eye.

making the melt layer thicker, the self-di�usion coe�cients converge to the pure melt

value and if the melt layer becomes very thin, the self-di�usion approaches that of the

pure crystal, which is not observable on the time scale of our simulations.

3.1.5 Addition of Calcium (Ca)

In a �rst attempt to model a more complex melt composition, eighteen Mg atoms are

replaced by Ca atoms in the melt of interface C with (100) crystal surface termination.

Both cations have the same charge but di�erent atomic size. Figure 3.18 shows a

snapshot of interface-C with Ca atoms. This image is taken after a simulation run of

500 ps.
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Fig. 3.18: Snapshot of interface-C and (100) crystal surface termination with 18 Ca
replacing Mg cations.
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Fig. 3.19: Atomic density pro�les of interface-C with Ca impurity of (100) crystal surface
termination.
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Figure 3.19 represents the atomic distribution pro�le of Ca. Black circles show the

original position of Ca when added to the interface and red circles show the distribution

of Ca after the 500 ps production run. After 500 ps, there is one Ca atom in the

�rst layer of the direct contact area and similarly one atom in the second contact area.

There are only two atoms of Ca in each layer. The coordination of Mg (left) and Ca

(right) by oxygen is shown in �gure 3.20. The plot for the coordination of Mg shows

both the situations before and after adding Ca to the interface. Four and �ve-fold

coordination of Mg is slightly decreased after adding Ca. Six-fold coordination of Mg is

slightly increased due to Ca addition. Ca have more seven fold coordination. Some six

and eight fold coordination of Ca can be observed from the diagram 3.20 (right). The

average Mg and Ca coordinations are 5 and 7 respectively.
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Fig. 3.20: Coordination of Mg before and after adding Ca (left) and Ca (right) of
interface C with (100) crystal surface termination.

Table 3.7 shows the self-di�usion coe�cients of all four elements. By adding Ca to the

interface, the self-di�usion coe�cients of oxygen and Si increases slightly and of Mg

decreases. Ca is slower then Mg by a factor of 2 as shown in the tables 3.7 and 3.8.
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Interface C (100)
Total melt

O Si Mg Ca
2.1(2) 1.4(2) 7.4(3) 5.1(2)

Table 3.7: Self-di�usion coe�cients
(×10−6cm2/s) of the four elements
(O,Si,Mg,Ca) of interface-C with (100)
crystal surface termination (interface
with Ca) of total melt (Averaged over
500 ps).

Interface C (100)
Total melt

O Si Mg
1.8(2) 1.2(2) 7.9(4)

Table 3.8: self-di�usion coe�cients
(×10−6cm2/s) of the three elements
(O,Si,Mg) of interface-C with (100)
crystal surface termination (inter-
face without Ca) of total melt (Av-
eraged over 700 ps).

3.1.6 High Pressure and High Temperature E�ect on Properties

To see the e�ect of di�erent pressure and temperature ranges on our system, we studied

the system (without Ca) at two di�erent conditions. The choice of these pressure and

temperature range is done according to the phase diagram of forsterite (e.g see �gure(14)

of Presnall (1995)). Forsterite should remain crystalline, and not be a�ected by changing

the pressure and temperature conditions. The pressure is increased from 0 to 10 GPa

with two di�erent range of temperatures. First case is temperature of 2000 K with 10

GPa pressure, and second case is temperature of 2400 K with 10 GPa pressure. All

four interfaces (A-D) with (010) crystal surface termination are investigated at these

conditions.

• Self -Diffusion Coefficients and Structured at 10 GPa and 2000 K

In this case the pressure is increased from 0 GPa to 10 GPa, but the temperature is kept

the same as in the previous calculations. Table 3.9 shows the self-di�usion coe�cients

of the three species for interfaces A-D with (010) crystal surface termination. The data

presented in Table 3.9 is averaged over 400 ps by considering the complete melt part in

each interface.

From this data, a decrease of the self-di�usion coe�cient is observed. It seems that the

MgSiO3 melt starts to freeze in at 10 GPa and 2000 K. Enhanced ionic mobility is only
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Table 3.9: Self di�usion coe�cients (×10−6cm2/s) of the three elements (O, Si, Mg) in
A, B, C and D interfaces for (010) crystal orientation at 10 GPa and 2000 K. dtot (nm)
is the total melt layer thickness. The three columns represent self-di�usion coe�cients
of O, Si and Mg that are derived from the complete melt (Averaged over 400 ps).

Interface Melt-thickness O Si Mg
(010) dtot (nm) total melt

A 0.88 1.9(2) 1.1(2) 4.2(16)

B 1.75 1.1(2) 0.7(2) 1.8(7)

C 3.50 1.0(2) 0.6(2) 1.7(4)

D 7.00 1.0(2) 0.7(2) 1.7(2)

observed for interface A which has the smallest amount of melt (see �gure 3.22). This

may be due to the strong con�nement e�ect (Alba-Simionesco et al., 2006).
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Fig. 3.21: Coordination and chemical composition pro�les at 10 GPa and 2000 K

Looking at the structural properties (Fig. 3.21), it is di�cult to identify the clear

di�erence between the two di�erent pressure conditions as we observe in the self-di�usion

coe�cients. Still, if we compare the oxygen coordination and the chemical composition

pro�les (see Fig. 3.12 and 3.21), the melt part and the contact region seem to be

more structured at 10 GPa. The number of free oxygens in the coordination pro�le

at 10 GPa is decreased compared to the pro�le at ambient pressure (Fig. 3.13 Int-
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Fig. 3.22: Self-di�usion coe�cients of oxygen for di�erent melt thickness for crystal
orientation (010). Results are compared between two di�erent P − T conditions. The
results for ambient pressure correspond to those in �gure 3.17

C). Fluctuations in the plot of bridging and non-bridging oxygens are increased in the

central melt and some peaks crossed over the horizontal lines which is not observed in

case of the coordination pro�le at ambient pressure.

• Self -Diffusion Coefficients and Structure at 10 GPa and 2400 K

Table 3.10 contains the self-di�usion coe�cients of Mg, Si and O for interfaces A-D of

the (010) crystal surface termination at 10 GPa and 2400 K.

From the pressure-temperature phase diagram of forsterite, this was possible to maintain

the crystalline structure of forsterite (Presnall, 1995). Fig. 3.23 compares the evolution

of the self-di�usion coe�cients at 10 GPa and 2400 K (green circles) to that at 0 GPa

and 2000 K (red boxes). At the higher P-T conditions, oxygen has a higher self-di�usion

coe�cients. Interface A shows a distinctly di�erent behavior compared to interfaces B-
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Table 3.10: Self di�usion coe�cients (×10−6cm2/s) of the three elements (O, Si, Mg) for
interfaces A-D wit (010) crystal surface termination at 10 GPa and 2400 K, dtot (nm)
is the total melt layer thickness. The three columns represent self-di�usion coe�cients
of O, Si and Mg that are derived from the complete melt (Averaged over 400 ps).

Interface Melt-thickness O Si Mg
(010) dtot (nm) total melt

A 0.88 1.5(2) 0.9(2) 1.5(14)

B 1.75 4.2(2) 3.4(2) 8.7(7)

C 3.50 5.4(2) 4.0(2) 10.8(4)

D 7.00 5.8(2) 4.5(2) 11.0(4)

D. The di�erence in oxygen self-di�usion coe�cient between the two P-T conditions (see

�gure 3.23) is very small for interface A as compared to interfaces C-D. This is due to

the very thin melt layer in interface A. Even at such a high pressure and temperature,

the atoms have a reduced mobility due to con�nement e�ect.

Figure 3.24 shows the coordination and chemical composition pro�les at 10 GPa and

2400 K. They look very similar to the structure at 0 GPa and 2000 K. The chemical

composition pro�le shows more �uctuations in the interfacial region at 10 GPa and

2400 K as compared to the pro�le at 0 GPa and 2000 K (see �gure 3.12 for Int-C).

The central melt region has only small �uctuations in the chemical composition. Strong

oscillations are observed in the coordination pro�le at 10 GPa and 2400 K as compared

to coordination pro�le at 0 GPa and 2000 K for interface C with (010) crystal surface

termination (see Fig.3.13).
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Fig. 3.23: Self-di�usion coe�cients of oxygen for di�erent melt thickness for crystal
orientation (010). Results are compared between two di�erent P − T conditions.

0 2 4 6 8
Position across interface (nm)

0

0.2

0.4

0.6

0.8

1

Fr
ac

tio
n 

of
 s

pe
ci

es
 (

nm
)

Free oxygen

Bridging oxygen

Non-bridging oxygen

0 1 2 3 4 5 6 7 8
Position across interface (nm)

0

0.2

0.4

0.6

0.8

1

M
gO

-S
iO

2

SiO
2

MgO

Fig. 3.24: Coordination and chemical composition pro�les at 10 GPa and 2400 K
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3.2 Non-Equilibrium Molecular Dynamics Simulation

A constant shear rate is applied to the system via non-equilibrium molecular dynamics

simulation to calculate the viscosity for the di�erent interfaces with (010) crystal surface

termination. While the main goal is to discuss viscosity of the system, structural dif-

ferences between equilibrium and non-equilibrium MD are investigated �rst at ambient

pressure and temperature of 2000 K.

3.2.1 Structural Properties

To compare the structural properties between the equilibrium molecular dynamic (EMD)

and non-equilibrium molecular dynamics (NEMD) simulations, we continue with inter-

face C of orientation (010). Similar behavior is observed for the other interfaces (A, B,

and D).

• Charge Density Profiles

Fig. 3.25 shows the charge and atomic distribution pro�les of interface C of (010) crystal

surface termination with (left) and without shear (right). These pro�les are averaged

results over the total production run of 700 ps. Comparing both EMD and NEMD

simulation results, the pro�les look very similar except that a small di�erence is observed

in the central region which is less spiky in NEMD distribution pro�les as compared to

EMD.

• Chemical Composition

The chemical composition pro�les in terms of MgO and SiO2 components for interface

C with (010) orientation with (left) and without shear (right) are shown in Fig. 3.26.

In the interfacial region, both EMD and NEMD chemical pro�les look similar. In the

center of the melt, peaks are sharper in EMD as compared to the NEMD pro�le.
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Fig. 3.25: Average atomic (upper graph) and charge (lower graph) distribution pro�les
across interface C of (010) crystal orientation with (left) and without (right) shear.
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Fig. 3.26: Chemical composition across interface C of (010) crystal orientation with
(left) and without (right) shear, in terms of MgO and SiO2 components.

• Coordination

Sharper peaks are observed in NEMD coordination pro�le as compared to EMD along

the contact area between crystal and melt as shown in �gure 3.27. But in the central

region, the EMD pro�les are more spiky.
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Fig. 3.27: Fractional distribution of oxygen coordinations by silicon as a function of
position across interface C of (010) crystal surface termination with (left) and without
(right) shear.

3.2.2 Viscosity

The shear viscosity, often referred to as simply viscosity, which describes the response

of the system to an applied shear stress, is calculated for bulk melt and interfaces for

(010) crystal orientation at di�erent shear rates by using the following relation which is

already described in detail in section 2.5.5.

η =
σij

du
dz

(3.2)

σij is the shear stress and du
dz

the velocity gradient. A constant shear rate is imposed on

the simulation cell and the resulting stationary shear stress is obtained from molecular

dynamics.

To obtain the viscosity for a given shear rate, the time average over the shear stress

is evaluated in intervals of 100 ps. This means that for the production runs of 600 ps,

there are six individual intervals of 100 ps. Finally, an average over the six intervals is

taken and presented here.

Tables 3.11 and 3.12 present the viscosity data of bulk melt of di�erent sizes at di�erent
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Bulk melt (1.75 nm)
Shear rate Viscosity

(s−1) (Pas)

109 1.10(2)

108 1.80(7)

Table 3.11: Viscosity of bulk melt of
thickness 1.75 nm at di�erent shear rate

Bulk melt (3.50 nm)
Shear rate Viscosity

(s−1) (Pas)

1011 0.060(2)

109 0.10(7)

Table 3.12: Viscosity of bulk melt of
thickness 3.50 nm at di�erent shear rate

Interface-A
Shear rate Viscosity

(s−1) (Pas)

5.8× 1011 0.0030(2)

5.8× 1010 0.020(7)

5.8× 109 0.040(7)

5.8× 108 0.180(7)

Table 3.13: Viscosity of interface-A
with melt thickness 0.88 nm at di�er-
ent shear rate

Interface-B
Shear rate Viscosity

(s−1) (Pas)

3.5× 1011 0.0060(2)

3.5× 1010 0.030(7)

3.5× 109 0.070(7)

3.5× 108 0.20(7)

Table 3.14: Viscosity of interface-B
with melt thickness 1.75 nm at di�er-
ent shear rate

shear rate. From both tables of the bulk melt, we observe that the viscosity increases

as the shear rate is decreasing. Tables 3.13 to 3.16 show the calculated viscosities for all

interfaces at di�erent shear rates. The shear rate presented here is the e�ective shear

rate on melt (discussed before in section 2.6.3) in each interface. The interfaces show a

similar trend as the bulk melt, i.e. inverse relation between viscosity and shear rate.

From all these tables, we observe a strong dependence of the viscosity on the shear rate.

Viscosity versus shear rate is plotted in Fig. 3.28 for bulk melt and all interfaces. From

the plotted data of viscosity and shear rate, we can see that the viscosity decreases as

the shear rate increases. In �gure 3.28, the experimental value of the viscosity of the

MgSiO3 melt at 2000 K and ambient pressure is also shown. The viscosity calculated
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Interface-C
Shear rate Viscosity

(s−1) (Pas)

2.2× 1011 0.010(2)

2.2× 1010 0.040(7)

2.2× 109 0.0860(7)

Table 3.15: Viscosity of interface-C
with melt thickness 3.50 nm at di�er-
ent shear rate

Interface-D
Shear rate Viscosity

(s−1) (Pas)

1.6× 1011 0.0130(3)

1.6× 1010 0.050(7)

1.6× 109 0.090(7)

Table 3.16: Viscosity of interface-D
with melt thickness 7.0 nm at di�erent
shear rate

from equilibrium MD for the same composition is presented in the graph which and is

then the NEMD viscosity.
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Fig. 3.28: Viscosity of bulk melt and interfaces as a function of e�ective shear rate on
melt

Fig. 3.29 shows the correlation between shear stress and applied shear rate of our

studied system. The plot is not linear, and the slope of shear stress versus shear rate

curve is not constant as we change the shear rate. The plotted results of viscosity as
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function of shear rate, and of shear stress as function of shear rate, (see �gures 3.28 and

3.29 show a non-Newtonian behavior which will be discussed in next chapter. At low

shear rate, the viscosity should approach the bulk value. Similar behavior is observed

for di�erent interfaces and bulk melt. There is no strong dependence on melt thickness

as we observe in the case of the self-di�usion coe�cients.
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Fig. 3.29: Shear stress of bulk melt and interfaces A-D as a function of applied shear
rate.
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Discussion

4.1 Structure at the Interface

As shown in Figs 3.12 and 3.13, strong oscillations of structural parameters are observed

in the vicinity of the initial interface. Looking at the molecular structure at the contact

between melt and crystal, information on the wetting behavior can be obtained. In the

present case, Mg2SiO4 and MgSiO3 are structurally quite similar. The crystals of both

Fig. 4.1: Snapshot of the contact area between crystal (left) and melt (right). The
alignment of the �rst melt layer(s) with the crystal surface causes �uctuations in the
structural parameters, such as the number of bridging oxygens (see Fig. 3.13) in per-
pendicular direction to the interface.
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systems are composed of SiO4 tetrahedra and Mg in 6-fold octahedral coordination. The

latter is reduced to an average 5-fold coordination in the melt (see Fig. 3.20). While in

Mg2SiO4 forsterite the SiO4 are not connected, in MgSiO3 about 2 out of 4 oxygens are

bridging oxygens that connect neighboring tetrahedra. In the contact area between the

two phases (see Fig. 4.1), a partly polymerized meets a fully depolymerized structure.

Some of the melt tetrahedra connect directly to tetrahedra of the crystal as shown in the

upper part of the interfacial region in Fig. 4.1. In other parts, the �rst layer of the melt

aligns parallel to the crystal surface, which leads to a �uctuating chemical composition

and variations in the probability to �nd bridging oxygens. In contrast, the relaxation

of the free surfaces as shown in Fig. 3.10 does not result in the formation of bridging

oxygens.

4.2 Relation between Di�usion and Surface Energy

All ionic species (O, Si, Mg) have higher self-di�usion coe�cients in the vicinity of the

(010) as compared to (100) and (001) crystal surfaces. Looking at Table 3.5, (010) has

the lowest surface energy of the three surfaces. This suggests that there is an inverse

relation between free surface energy and the mean self-di�usion coe�cients of ions in the

melt layer. Figure 4.2 shows the surface energies versus oxygen self-di�usion coe�cients

for the di�erent interfaces and crystal orientations.

As the surface energy increases the self-di�usion coe�cient decreases. Similar behavior

is observed for Mg and Si (see Table 3.6). The reduced ionic mobility for high surface

energies is related to the stronger interaction of the crystal surface with the melt, which

leads to more structured melt close to the interface. The strong variation in surface

energies (Table 3.5) clearly indicates that simpli�ed dihedral angle concepts are not ca-

pable to model interfacial melt-mineral assemblages and that more complex models need

77



CHAPTER 4. DISCUSSION

1.2 1.4 1.6 1.8 2 2.2

Free surface energies (J/m
2
)

1

1.5

2

2.5

D
 (

10
-6

 c
m

2 /s
)

(010)

(001)
(100)

A

B

C

D

1 nm

7 nm

Fig. 4.2: Oxygen self-di�usion coe�cients for di�erent crystal surface terminations and
melt layer thickness (interfaces A to D) with respect to free surface energies. All errors
are in the same order as indicated for (100) of interface C. The dotted lines are a guide
to the eye.

to be applied, e.g. (Cmiral et al., 1998). Such a study would require the computation

of additional surface energies, especially of those surfaces with high Miller indices.

4.3 Con�nement E�ect on Self-Di�usion Coe�cients

The self-di�usion coe�cients of all three species (O, Si, Mg) in the melt are increased at

10 GPa and 2400 K as compared to the self-di�usion coe�cients at 0 GPa and 2000 K

as shown in �gure 4.3. For all three crystal orientation the melt thickness increases from

interfaces A-D, the self-di�usion coe�cients increased as shown in �gure 4.2. Similarly,

by increasing the temperature and pressure, there is a huge (about 30 to 40 % for

interfaces C-D compare to self-di�usion coe�cients at ambient pressure and 2000 K)
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increase in the self-di�usion coe�cients for all three species O, Si, and Mg (see the plot

for O 4.3). In case of interface A the self-di�usion coe�cients decreases at 10 GPa and

2400 K as compared to other interfaces (C-D). The ionic mobility is reduced for interface

A may be due to high pressure. For interfaces C-D, higher self-di�usion coe�cients are

due to high temperature.
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Fig. 4.3: Oxygen self-di�usion coe�cient at three di�erent pressure and temperature
conditions, and symmetric grain boundary (GB) di�usion with tilt axis [010].

The data of the present study may be compared to the self-di�usion coe�cients of

symmetric grain boundaries with tilt axis of [010] (unpublished data from Dr. Omar

Adjaoud with personal discussion) as shown in �gure 4.3. From this comparison, we can

observe that if the self-di�usion coe�cient for interface A continues to decrease with

time, it can approach to the self-di�usion in dry grain boundaries.

The time evolution plot for interface B at di�erent P-T conditions is shown on the left
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Fig. 4.4: Time evolution graph of oxygen self-di�usion coe�cients of interface B (B)
at di�erent P-T conditions and for interfaces C-D (right) at 10 GPa and 2400 K with
(010) surface termination at each interval of 100 ps.

plot of �gure 4.4, and for di�erent interfaces C-D at 10 GPa and 2400 K on the right.

These �gures show that the self-di�usion coe�cients �uctuates when averaged over

time intervals of 100 ps and that there is no systematic drift on time. This provides the

evidence that the system has reached an equilibrium state. The self-di�usion coe�cient

for interface A is decreasing even after 500 ps which means that interface A does not

reach to equilibrium.

4.4 Extrapolation to Bulk Di�usion Coe�cient and

E�ective Passive Layer

The thickness of melt layers in partially molten rocks may be determined by transmission

electron microscopy after quenching the sample to ambient pressure and temperature.

Thereby it is assumed that melt layer is preserved as an amorphous layer. The thickness

of this amorphous layer would be equivalent to the total thickness of the melt layer in

the simulations. However, it has been shown above that not all particles of the same
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kind contribute equally to the respective self-di�usion coe�cient. Whereas particles in

the central region of the melt may be almost as mobile as those in a bulk melt, the

melt atoms close to the crystal surface di�use much less. For practical use and as a

�rst approximation, the derived di�usion pro�le of the total melt layer is divided into

an active, bulk melt-like and a passive, essentially non-di�usive part. For that, we set

Dtotdtot = Dbulkdeff (4.1)

where Dtot and Dbulk are the average self-di�usion coe�cients of a particle in the melt

layer of the crystal-melt interface and in the corresponding bulk melt. dtot is the total

thickness of the melt layer in the interface and deff is the e�ective thickness of the active

layer. Dtot and dtot are known from Table 3.6. Dbulk is estimated from extrapolation of

Dtot to in�nite melt layer thickness, where con�nement e�ects are negligible.

A convincing extrapolation is achieved when Dtot is plotted over the inverse square root

of the melt layer thickness (see Fig. 4.5). The 480 atom simulation cell of pure MgSiO3

melt has a slightly higher di�usivity than the con�ned melts but due to the relatively

small simulation cell, �nite size e�ects are apparent. A summary of the extrapolated

Dbulk is given in Table 4.1.

The thickness of the passive layer dpassive of one crystal-melt interface is then given by

dpassive = (dtot − deff )/2 (4.2)

Note that there are two interfaces and therefore two passive layers. The evolution of the

passive layer thickness as a function of total melt layer thickness is shown for oxygen in

Fig. 4.6. After a signi�cant initial increase, a plateau is reached for thick melt layers.
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Fig. 4.5: Linear regression to self-di�usion coe�cients of oxygen (all melt data of Ta-
ble 3.6) plotted against the inverse square root of the total melt layer thickness. The
dashed line refers to the (100) interfaces B to D only.

The data is well described by the relation

dpassive = dpassive
∞ (1− exp(−kdtot)) (4.3)

where dpassive
∞ is the maximum thickness of the passive layer for thick melt layers and k

is a constant. All �tted dpassive
∞ and k are listed in Table 4.1. We also attempted a self-

consistent global �t of the self-di�usion data as a function of the total melt thickness by

combining equations 4.1 to 4.3 but the small number of data points and their relatively

large uncertainty resulted in large ambiguities of the �tted parameters. Within these

uncertainties, however, those parameters were consistent with the results presented in

Table 4.1.
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Table 4.1: Extrapolated self-di�usion coe�cients for bulk melt (10−6 cm2/s), thickness
of the passive layer (nm) and k �tting parameter of equation 4.3 (1/nm). Due to the
relatively large errors in Mg self-di�usion coe�cients (see Table 3.6), no meaningful
estimation of dpassive

∞ and k for Mg could be obtained. 1regression line �tted only to
interfaces B to D

Surface Dbulk dpassive
∞ k

(100) 2.69 0.60 0.64
(100)1 2.97 0.82 0.44

O (010) 2.96 0.44 0.43
(001) 2.87 0.64 0.46
(100) 1.92 0.72 0.57
(100)1 2.07 0.95 0.41

Si (010) 2.26 0.58 0.43
(001) 2.00 0.85 0.36
(100) 11.2

Mg (010) 11.2
(001) 11.7

For thick melt pockets, the interfacial melt layer that has to be considered immobile

is in the range of about 0.4 to 1.0 nm depending on the crystal surface termination.

Although this thickness reduces for ultrathin �lms of only a few nanometers, its relative

importance increases signi�cantly. While for a total melt �lm of about 7 nm, the two

passive layers comprise about 12% (010) to 24% (100) of the total melt thickness, these

values increase to about 35% (010) to 60% (100) for a 1 nm thick melt. Thus, in the

latter case the e�ective ionic mobility is reduced to half of that of the corresponding

bulk melt.

The electrical conductivity of the bulk melt can be estimated by inserting the extrapo-

lated self-di�usion coe�cients Dbulk (as substitute of the unknown conductivity di�usion

coe�cient) into the Nernst-Einstein equation

σ =
e2n

kBT

∑
i

z2
i ciD

bulk
i (4.4)

where e is the electronic charge, n the particle density of the melt, kB the Boltzmann
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Fig. 4.6: Thickness of the passive layer of oxygen as a function of total melt layer
thickness. The symbols and line styles correspond to those in Fig. 4.5.

constant, zi the nominal charge of ion i (-2 for oxygen, +2 for Mg, +4 for Si) and ci the

concentration of element i (0.6 for oxygen, 0.2 for Mg and Si). The particle density of

7.66×1028m−3 was obtained from the molecular dynamics simulation of the 480 ion bulk

melt. Using average Dbulk of 11.2 × 10−6cm2/s, 2.1 × 10−6cm2/s and 2.9 × 10−6cm2/s

for Mg, Si and O, an electrical conductivity of 161 S/m is obtained. The corresponding

partial contributions are 64 S/m (40%) for Mg, 48 S/m (30%) for Si and 49 S/m (30%)

for O.

The calculated electrical conductivity of the melt is consistent with experimental data of

(ten Grotenhuis et al., 2005). Extrapolation of their bulk melt conductivities to 2000 K

gives a slightly lower value of about 130 S/m. The estimated conductivity from the

simulation probably constitutes an upper limit since blocking and correlation e�ects
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were not taken into account and all particles were treated as purely ionic. Our results

suggest that for MgSiO3 melt all ionic species contribute almost equally to the electrical

conductivity.

In rocks with very thin melt �lms as they are expected as initial melts (Wirth, 1996) or

under well wetting conditions, the thin interfacial layer may contribute signi�cantly to

the overall conductivity. In partially molten rocks, the electrical conductivity is mainly

limited by the smallest junction of the melt. Considering the reduced self-di�usion coef-

�cients for the ultrathin melt �lms studied here, the reduction in electrical conductivity

or the anisotropy of the electrical conductivity in aggregates with preferred orientations

should not exceed a factor of two if caused by interfacial layers only. Potentially, such

simulations of partially molten rocks could be extended to sample the phase behavior

and to study di�erentiation processes in model systems at varying P −T conditions but

also for di�erent chemical composition.

4.5 Viscosity Dependence on Shear Rate

The observed behavior between viscosity and shear rate as shown in �gure 3.28 is known

as non-Newtonian. We found a strong shear rate dependency of viscosity. The viscosity

of non-Newtonian �uids is dependent on shear rate and temperature. In Newtonian

liquids, the viscosity is independent of the shear rate (Gohar, 2001).

All the data for bulk melt and interfaces show essentially a universal behavior (Fig.

3.28). At the lowest shear rates accessible to NEMD (10+5 − 10−2) the macroscopic

viscosity is approached. On the MD time scale it is not possible to apply smaller

shear rates. Methods of non-equilibrium molecular dynamics simulations also have some

limitations for predicting the Newtonian viscosity of �uid. A similar trend of shear rate

dependent viscosity is observed for alkane �uids via equilibrium and non-equilibrium
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molecular simulations (McCabe et al., 2002; Daivis and Evans, 1994). McCabe et. al.

extrapolate their results (Non-Newtonian viscosities) for alkane �uid to get Newtonian

viscosity from NEMD (McCabe et al., 2002).

Our results indicates that the NEMDmethod is not sensitive enough to resolve a possible

dependence of the viscosity on melt thickness and surface termination.
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Conclusion

The most important conclusions from this thesis are,

• The thickness of a silicate melt �lms con�ned between two crystals has a signi�cant

e�ect on the self-di�usion coe�cients of the melt.

• For ultrathin melt �lms between two forsterite grains the crystal orientation is

important. An inverse relationship is observed between the self-di�usion coe�cients of

the centered melt and the surface energy of the con�ning crystal grains.

• For a MgSiO3 melt, all ionic species contribute equally to the electrical conductivity.

Under well wetting conditions, the thin interfacial layer may contribute signi�cantly to

the overall conductivity.

• Both equilibrium and non-equilibrium molecular dynamics simulations gives rea-

sonable values for the melt viscosity at the lower shear rates. Good agreement with

experimental data is observed for MgSiO3 melt at 2000 K and 0 GPa.

• A strong shear rate dependence of viscosity is observed on non-equilibrium MD

simulations. This method is not very sensitive to resolve a possible dependence of the

viscosity on crystal (grain) orientations and melt thickness.
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