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Tag der Disputation: 14. Juni 2017





Acknowledgements

I am very grateful to my advisors Pavle V. M. Blagojević and Günter M. Ziegler for their support
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Chapter 1

Introduction

One of the first applications of topological methods or, more precisely, equivariant topological

methods to a problem in discrete geometry was Lovász’s 1978 proof [55] of the Kneser conjecture,

which was simplified a few months later by Bárány [7]. The Kneser conjecture, which was posed

as an exercise/problem by Kneser in 1956 [51], states that one needs at least ` + 2 colors for a

vertex coloring of the Kneser graph KGk,`. The Kneser graph KGk,` is the graph with vertices

given by the k-element subsets of the set {1, . . . , 2k + `} and edges given by pairs of vertices

whose corresponding k-element subsets are disjoint. Both proofs of the Kneser conjecture rely on

the Borsuk–Ulam theorem, which states that there is no Z/2-equivariant map S` → S`−1 from a

sphere of dimension ` to a sphere of dimension `− 1, when the group Z/2 acts antipodally.

Let us consider the proof of the Kneser conjecture by Bárány. We need to show that there is

no vertex coloring of KGk,` with ` + 1 colors. A result due to Gale [9, Thm. 1] implies that for

any two non-negative integers k and ` there is a set X of 2k + ` points on the sphere S` such

that every open hemisphere contains at least k points from X. Identify the vertices of KGk,`

with the k-element subsets of X. Assume that the vertices of KGk,` can be colored by ` + 1

colors. Define a covering of S` by open sets Ui ⊂ S` for i = 1, . . . , ` + 1 by letting Ui consist of

the normal vectors of open hemispheres that contain a vertex of KGk,` of color i. Take a closed

covering V1, . . . , V`+1 of S` with Vi ⊂ Ui for all i and define a Z/2-equivariant map f : S` → R`

by f(x) = (dist(x, V1) − dist(−x, V1), . . . ,dist(x, V`) − dist(−x, V`)). Then f(x) = 0 implies that

there is an index i0 with 1 ≤ i0 ≤ `+ 1 such that the set Vi0 contains both x and −x. This means

that KGk,` has two vertices of the same color in opposite open hemispheres and hence that KGk,`

has a monochromatic edge, leading to a contradiction. On the other hand, if f is never zero, then

composing f with the radial retraction yields a Z/2-equivariant map S` → S`−1, which contradicts

the Borsuk–Ulam theorem.

Other early examples of results in discrete geometry that are proved using topological methods

include the topological Tverberg theorem by Bárány, Shlosman, and Szűcs 1981 [10], the later

extension of this result by Özaydin 1987 [64], and the proof of the necklace splitting theorem by

Alon 1987 [2]. For a survey of these and other results see Matoušek [59]. For further surveys

of topological methods with applications to problems in discrete geometry and combinatorics see

Björner [14] and Blagojević and Ziegler [29].
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10 1. Introduction

Many proofs of theorems in discrete geometry using topological methods follow a common

“scheme” that we refer to as the configuration space/test map scheme; see [83], [84]. One assumes by

way of contradiction that the theorem in question fails and defines from this “failure” an equivariant

map X → Y , called the test map, between a configuration space X and a test space Y . Both

spaces X and Y are equipped with an action by a non-trivial group G. One then employs tools

from equivariant topology to determine that such an equivariant map cannot exist, leading to a

contradiction. (We will elaborate on some of these tools below.) We point out that in general

the converse implication is false. The existence of a test map X → Y does not necessarily imply

that the theorem is false. In the proof of the Kneser conjecture the spaces X and Y are spheres

of dimensions ` and ` − 1 and the question of nonexistence of a Z/2-equivariant map X → Y is

answered by the Borsuk–Ulam theorem. Of central importance to this approach are the properties

of the group G and its action on the spaces X and Y . Is G finite, or at least a compact Lie group?

Is its action free? Does it have fixed points?

There are several ways to approach the questions of existence and nonexistence of equivariant

maps X → Y between G-spaces X and Y . We point out three frequently used approaches that are

also used in this dissertation. From a theoretical standpoint they are not quite independent, but in

concrete settings they each come with a different set of technical challenges. In the following, we

tacitly assume that X and Y are G-spaces.

In the connectivity-based approach one argues with an extension of the Borsuk–Ulam theorem

known as Dold’s theorem [35]; see [77] for a more general version that is also applicable in this

context. Dold’s theorem asserts that if G is a finite non-trivial group and if X is n-connected and Y

is a free G-CW complex of dimension at most n, then a continuous G-equivariant map X → Y

cannot exist. This approach is taken in [10], [70], and in Chapter 4. It can be seen as a special case

of the approach by equivariant obstruction theory described below. However, in the connectivity-

based approach a concrete CW model for X or Y is not needed, often making the approach easier.

In the degree-based approach one argues with an equivariant extension of the Hopf theorem [34,

Thm. II.4.11]: If G is finite and if X is a compact oriented n-dimensional free G-manifold and Y is

the sphere Sn, then the degrees of any two G-equivariant maps X → Y are congruent modulo the

order of G. One then calculates the degree of the test map and gives an example of an equivariant

map X → Y with a different degree, leading to a contradiction. This approach can only work in

the setting where both spaces X and Y are compact orientable manifolds of the same dimension.

We take this approach in Chapter 2.

In the approach by relative equivariant obstruction theory one argues with an extension of

obstruction theory to the equivariant setting; see tom Dieck [34, Sec. II.3]. Here the group G can

be infinite as long as it is a compact Lie group. The space X however must be a relative G-CW

complex (A,B) with G acting freely on the complement A \ B. If for some k < dim(X) the

obstruction class in the (k + 1)-th equivariant cohomology group of the space X does not vanish,

then the test map defined on the k-skeleton of X cannot be extended to the (k+ 1)-skeleton of X,

implying that it cannot exist as a map from X → Y . The space Y should ideally be k-simple to

avoid the use of local coefficients. The difficulty in calculating the obstruction class depends on the

complexity of the CW model for the space X and on the action of the group on X. This approach

is taken in [28], [31], and in Chapter 3.
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One problem in discrete geometry that has been an active testing ground for methods from

equivariant topology is the Grünbaum–Hadwiger–Ramos hyperplane mass partition problem. It

goes back to Grünbaum 1960 [46, Sec. 4.(v)], who asked if any convex body in Rd can be cut

into 2d pieces of equal volume by d suitably-chosen affine hyperplanes. For d ≤ 2 this is an easy

consequence of the intermediate value theorem. For d = 3 Grünbaum’s question was answered

positively by Hadwiger in 1966 [48]. In 1984 Avis [4] answered Grünbaum’s question negatively

for d ≥ 5. The case d = 4 was left open.

Grünbaum’s question was independently raised in computational geometry, motivated by the

search for structures that efficiently store high-dimensional data. In this context, Willard [80]

reproved the case d = 2, while the case d = 3 was reproved by Yao, Dobkin, Edelsbrunner,

and Paterson [81]. In this context Grünbaum’s question was extended to the setting where con-

vex bodies are replaced with well-behaved finite Borel measures, called masses. Given a collec-

tion M = {µ1, . . . , µj} of j masses on Rd we say that an arrangement H of k affine hyperplanes

in Rd equiparts M, if for every orthant O defined by H the measure µi(O) is equal to µi(Rd)/2k

for all i.

In 1996 Ramos [68] formulated the general version of the hyperplane mass partition problem:

Determine the minimal dimension d = ∆(j, k) such that for every collection M of j masses on Rd

there exists an arrangement H of k affine hyperplanes in Rd that equiparts M.

The special case ∆(j, 1) = j of the Grünbaum–Hadwiger–Ramos problem for a single hyperplane

follows from the ham sandwich theorem, which was conjectured by Steinhaus and proved by Banach

in 1938; see [11]. This turns out to be an incarnation of the Borsuk–Ulam theorem. By placing

one-dimensional masses along a curve in Rd of degree d Ramos [68] and Avis [4] obtained lower

bounds: (2k − 1)j/k ≤ ∆(j, k). The best upper bounds to date were obtained by Mani-Levitska et

al. [57, Thm. 39]: ∆(j, k) ≤ j+(2k−1−1)2blog2 jc, where 2blog2 jc is “j rounded down to the nearest

power of 2.” Thus far, surprisingly few exact values of ∆(j, k) are known. Section 2.1 contains a

survey of exact values and bounds for ∆(j, k) that have been claimed or proved in the past.

In order to apply a configuration space/test map scheme to the Grünbaum–Hadwiger–Ramos

problem we first need a suitable configuration space X. There are several possibilities. An oriented

affine hyperplane Ĥ in Rd can be parametrized by a point H on the sphere Sd by mapping Ĥ

to Rd+1 via the embedding (x1, . . . , xd) 7→ (x1, . . . , xd, 1) and then extending its image to a linear

hyperplane in Rd+1, whose normal vector H lies on the sphere Sd. The north and south poles of Sd

correspond to hyperplanes at infinity. One configuration space for k affine hyperplanes in Rd is

given by the k-fold Cartesian product (Sd)k, called the product configuration space. This space has

low connectivity and low dimension. Another possibility is the k-fold join (Sd)∗k, called the join

configuration space. This space has high connectivity and high dimension.

Both configuration spaces have symmetries arising from permuting the order of the hyperplanes

and changing their orientations, which corresponds to permuting the spheres and acting antipo-

dally on each sphere. These symmetries are realized by an action of the hyper-octahedral group

(Z/2)k oSk, denoted in the following by S±k , which can be described as the symmetry group of the

k-dimensional cube. The action by S±k is not free on either configuration space, since each space

contains tuples of points corresponding to the same hyperplane, possibly with opposite orientations.

These points are fixed by a permutation and possible orientation change. By deleting the points

with non-trivial stabilizer one obtains a free configuration space.
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By evaluating each of the j masses on each orthant of the hyperplane arrangement and by

making a few technical modifications one obtains a S±k -equivariant map that is zero if and only if

the corresponding hyperplane arrangement equiparts the masses. If the masses cannot be equiparted

by any arrangement of k affine hyperplanes in Rd one obtains by radial retraction a S±k -equivariant

test map X → Y to a sphere Y , the test space, whose dimension depends only on k and j. Hence

the nonexistence of an S±k -equivariant map X → Y implies that any collection of j masses can be

equiparted by an arrangement of k affine hyperplanes in Rd.

In Chapter 2 we give a critical review of the work on the Grünbaum–Hadwiger–Ramos problem.

We point out which results come with valid proofs and which proofs do not hold up under critical

inspection. In Sections 2.6, 2.7, and 2.8 we give counterexamples and point out essential gaps.

Furthermore, we show that Hadwiger’s result [48] remains true if we replace convex bodies by

masses, implying that ∆(2, 2) = 3; see Section 2.4. Finally, we apply the product scheme in a setting

where the degree based approach is possible and obtain the exact values ∆(2t + 1, 2) = 3 · 2t−1 + 2

for t ≥ 1; see Section 2.5.

In Chapter 3 we apply the join scheme to the Grünbaum–Hadwiger–Ramos problem. We build

an efficient equivariant CW model for the configuration space (Sd)∗k and exploit the fact that the

space is highly connected. By connectivity, all obstruction classes aside from a critical obstruction

class that admits a combinatorial interpretation vanish. This allows us to take a unified approach

via relative equivariant obstruction based on calculating the critical obstruction class. This yields

several new as well as already known exact values of ∆(j, k); see Theorems 3.5 and 3.6: We retrieve

the exact values of ∆(2t − 1, 2) due to [57] and the exact values of ∆(2t + 1, 2) that were obtained

in Chapter 2. We recover the exact values of ∆(2t, 2) that were previously claimed by Mani-Levitska

et al. [57, Prop. 25]. Finally, we calculate the exact value ∆(2, 3) = 5 that was previously claimed

by Ramos and obtain the new exact value ∆(4, 3) = 10.

The relatively few known exact values of ∆(j, k) nevertheless seem to support the following

conjecture due to Ramos [68]: ∆(j, k) = d 2k−1
k je for every j ≥ 1 and k ≥ 1. Perhaps the most

notorious case of the conjecture is the situation in dimension 4, which was already noted by Avis [4].

It is known that 4 ≤ ∆(1, 4) ≤ 5, but none of the standard approaches seem capable of deciding

whether ∆(1, 4) is equal to 4 or 5.

The study of Tverberg-type problems has played a central role in developing topological meth-

ods for applications to problems in discrete geometry. We say that a problem or result is of

Tverberg-type if it is related to the following theorem from 1966 due to Tverberg [75]: For any

affine map f : ∆(k−1)(d+1) → Rd from a simplex of dimension (k − 1)(d + 1) to Rd there is a col-

lection {σ1, . . . , σk} of k pairwise disjoint faces of ∆(k−1)(d+1) such that
⋂k
i=1 f(σi) 6= ∅. We call

such a collection {σ1, σ2, . . . , σk} of faces a Tverberg k-partition. By a codimension argument one

verifies that the dimension of the simplex is minimal for the implication of the theorem to be true.

In an equivalent version, Tverberg’s theorem states that any set of (k − 1)(d+ 1) + 1 points in Rd

can by partitioned into k sets whose convex hulls have a common point of intersection. Tverberg’s

theorem for k = 2 is known as Radon’s theorem [67] and already has strong implications in discrete

geometry. For example, it yields that any k-neighborly d-polytope for k > bd/2c is combinatorially

equivalent to a d-simplex [47, Sec. 7.1]. A more advanced result that can obtained by using Tver-

berg’s theorem is a version of the celebrated Hadwiger–Debrunner (p, q)-problem [49] from 1957

established by Alon and Kleitman 1992 [3]: Let p ≥ q ≥ d+ 1 and let F be a family of convex sets
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in Rd such that among any p sets of F there are q sets with a common point. Then there exists

a transversal number t(p, q, d), also called the piercing number, such that there is a set X ⊆
⋃
F

of cardinality at most t(p, q, d), called a transversal, that intersects all elements of F . Matoušek

gives a modern exposition of this proof in [58, Sec. 10.5]. See [36, Sec. 9] for further implications of

Tverberg’s theorem and an early survey of related results.

In 1981 Bárány, Shlosman, and Szűcs extended Tverberg’s theorem [10]: They showed that if k

is prime, then any continuous map f : ∆(k−1)(d+1) → Rd has a Tverberg k-partition. This result is

known as the topological Tverberg theorem and is one of the landmark applications of topological

methods to a problem in discrete geometry. It was later reproved by Sarkaria [70] and extended

to the case where k is a prime power by Özaydin [64]. The question whether the topological

Tverberg theorem is true for k ≥ 1, known as the topological Tverberg conjecture, remained open

until recently, when Frick [42], [25], using the “constraint method” [24] and building on the work

by Mabillard and Wagner [56], showed that the topological Tverberg conjecture is false when k is

not a prime power and d ≥ 3k + 1.

The proofs of the topological Tverberg theorem mentioned above all use configuration space/test

map schemes. In the proof by Bárány, Shlosman, and Szűcs and in the proof by Özaydin the

configuration space X is the k-fold deleted product (∆(k−1)(d+1))
×k
∆ of the simplex ∆(k−1)(d+1),

called the product configuration space. In the proof by Sarkaria the configuration space X is the

k-fold deleted join (∆(k−1)(d+1))
∗k
∆ of the simplex ∆(k−1)(d+1), called the join configuration space.

The test spaces in both cases are spheres, whose dimensions grow as k and d increase. In the

case where k is prime, all spaces and in particular the two spheres (which are odd-dimensional if

k > 2) admit a free action by the group Z/k. The topological Tverberg theorem for k prime is

then obtained by showing that the connectivity of the configuration space is at least as high as the

dimension of the test space. If k is a prime power but not prime, one does not have a free action

on the test space Y and hence a different result is needed to show nonexistence of the test map;

see [64, Lem. 4.2] or [77, Lem. 1].

There are a number of interesting Tverberg-type results that follow directly from the topological

Tverberg theorem by using the constraint method and applying the theorem as a black box. With

this method one obtains a weak colored Tverberg theorem [24, Thm. 5.3], which states that if

we color the vertices of the simplex ∆(k−1)(2d+2) with d + 1 colors such that each color class

has cardinality at most 2k − 1, then in the case where k is a prime power any continuous map

f : ∆(k−1)(2d+2) → Rd has a Tverberg k-partition {σ1, . . . , σk} such that each σi has at most one

vertex of each color. Using the same method one can show that given a simplex of somewhat

larger dimension one can impose restrictions on the dimensions of the simplices σi in Tverberg

k-partitions when k is a prime power [24, Thm. 6.5]. This result implies the van Kampen–Flores

theorem [76], [40], which states that if d ≥ 2 is even, then for any continuous map f : ∆d+2 → Rd

there are two faces σ1, σ2 ⊂ ∆d+2 each of dimension at most d/2 such that f(σ1) ∩ f(σ2) 6= ∅. As

a special case we obtain the non-planarity of the complete graph on 5 vertices. See [59] and [8] for

recent surveys of these and other (topological) Tverberg-type results.

Our starting point in Chapter 4 is the recent Tverberg-type result for matroids by Bárány,

Kalai, and Meshulam [9, Thm. 1]. They introduced the topological Tverberg number TT(M,d) of a

matroid M as the maximal integer k ≥ 1 such that any continuous map f : M → Rd has a Tverberg

k-partition, where a matroid is viewed as the simplicial complex given by its independent sets. If k
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is a prime power and M is the uniform matroid ∆(k−1)(d+1) of rank (k − 1)(d + 1) + 1, then the

topological Tverberg theorem implies that TT(∆(k−1)(d+1), d) = k. By approximating f with a

general position map Schöneborn and Ziegler [71, Prop. 2.2] showed that the topological Tverberg

theorem implies the stronger statement TT(∆
(d)
(k−1)(d+1), d) = k for the d-skeleton of the simplex.

Bárány, Kalai, and Meshulam showed that for an arbitrary matroid of rank r = d+1 with b disjoint

bases the topological Tverberg number satisfies TT(M,d) ≥
√
b/4 [9, Thm. 1]. For the d-skeleton

of the simplex this result implies that TT(∆
(d)
(k−1)(d+1), d) ≥

√
k − 1/4. In the proof of [9, Thm. 1]

the join scheme is used, where the configuration space given by the k-fold deleted join M∗k∆ of the

matroid M . By [9, Cor. 3] the connectivity of M∗k∆ is at least br/(db/ke + 1) − 2 for any k ≥ 1,

where r denotes the rank of M . The result then follows by applying Dold’s theorem.

The proofs of the topological Tverberg theorem show that the connectivity-based approach yields

tight bounds for the topological Tverberg number of the simplex skeleton ∆
(d)
(k−1)(d+1) when k is a

prime power. The questions we are concerned with regard the connectivity-based approach in the

matroid case: What is the connectivity of the configuration spaces? Which results can be obtained

by a connectivity-based approach and which results cannot?

In Theorem 4.2 we give an example of a family of matroids Mr of rank r ≥ 2 with r disjoint

bases such that the connectivity of the 2-fold deleted join (Mr)
∗2 is 2r − 3, while its dimension

is 2r − 1. This disproves a conjecture by Bárány, Kalai, and Meshulam [9, Conj. 4] and shows that

the connectivity of the deleted join of a matroid is not independent of its number of disjoint bases.

In Theorem 4.20 we show that the connectivity of the k-fold deleted product M×k∆ of a matroid M

of rank r grows as the number of disjoint bases is increased and stabilizes when it reaches the

value (r − 2). In particular it does not increase as k increases. Since the dimension of the test

space (a sphere) grows as k is increased, this shows that a connectivity-based approach involving

the product scheme will not yield good results.

In Theorem 4.3 we show, using a Fadell–Husseini index argument, a sharp Radon theorem for

the counterexample family of matroids Mr. This yields better bounds for the topological Tverberg

number TT (Mr, d) than can be obtained with a connectivity-based approach. We thus show that the

connectivity-based approach does not yield the best bounds for the topological Tverberg number. A

similar phenomenon can be observed in the case of the optimal colored Tverberg theorem [28], where

the configuration space, a “chessboard complex”, has low connectivity. Finally, in Section 4.4.1 we

deduce from [9, Cor. 3] lower bounds for the topological Tverberg number of matroids of arbitrary

rank and provide upper bounds in the case when the rank r is at most d− 2.

Several open questions concerning Tverberg-type results for matroids remain. Our method of

proof of Theorem 4.2 fails when k > 2; see Section 4.4.4. Can we show for k > 2 that (Mr)
∗k
∆ has a

similar connectivity drop? Computations seem to suggest that this may be correct. Can we perhaps

find a different family for which the connectivity drop is easier to show? More generally, we can

ask if the connectivity bound by Bárány, Kalai, and Meshulam [9, Cor. 3] is optimal. Ultimately,

how do we obtain optimal bounds for the topological Tverberg number of a matroid? The evidence

suggests that we have to take an approach that is not based on connectivity alone. We can also ask

if it even makes sense to expect an optimal result for a family of simplicial complexes as general as

matroids. If not, what is the right family?
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Chapter 2

A critical review

Abstract

In 1960 Grünbaum asked whether for any finite mass in Rd there are d hyperplanes that cut

the mass into 2d equal parts. This was proved by Hadwiger (1966) for d ≤ 3, but disproved

by Avis (1984) for d ≥ 5, while the case d = 4 remained open. More generally, Ramos (1996)

asked for the smallest dimension d0 = ∆(j, k) such that for any j masses in Rd0 there are

k hyperplanes that cut each of the masses into 2k equal parts. At present the best lower

bounds on ∆(j, k) are provided by Avis (1984) and Ramos (1996), the best upper bounds

by Mani-Levitska, Vrećica and Živaljević (2006). Ramos’ conjecture is that the Avis–Ramos

necessary lower bound condition ∆(j, k) ≥ j(2k − 1)/k is also sufficient. The problem has

been an active testing ground for advanced machinery from equivariant topology. We give

a critical review of the work on the Grünbaum–Hadwiger–Ramos problem, which includes

the documentation of essential gaps in the proofs for some previous claims. Furthermore, we

establish that ∆(j, 2) = 1
2
(3j + 1) in the cases when j − 1 is a power of 2 and j ≥ 5.

Publication Remark. The results of this chapter are joint work with Pavle V. M. Blagojević,

Florian Frick, and Günter M. Ziegler [22].

2.1 Introduction

Our starting point is the following problem that is due to Grünbaum [46, Sec. 4.(v)], Had-

wiger [48], and Ramos [68].

The Grünbaum–Hadwiger–Ramos problem. Determine the minimal dimension d = ∆(j, k)

such that for every collection M of j masses on Rd there exists an arrangement H of k affine

hyperplanes in Rd that equiparts M.

It turns out that the most natural configuration spaces parameterizing k-tuples of oriented affine

hyperplanes are products of spheres, such as (Sd)k, which do not have the high connectivity that

is required for a simple application of Borsuk–Ulam-type machinery, for example via Dold’s Theo-

rem; see Matoušek [59] for an introduction to this approach. Thus more sophisticated machinery

is needed in order to decide about the existence of the equivariant maps proposed by various ap-

plications of the configuration space/test map scheme as developed by Sarkaria and Živaljević; see

17
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again [59] for an introduction. Methods that have been employed to settle such existence problems

include

– equivariant cohomology (the Fadell–Husseini index [38]),

– equivariant obstruction theory (see tom Dieck [34, Sec. II.3]), and

– the normal bordism approach of Koschorke [52].

In this chapter we attempt to provide a status report about the partial results obtained for the

Grünbaum–Hadwiger–Ramos problem up to now. This in particular includes the lower and upper

bounds ⌈
2k−1
k j

⌉
≤ ∆(j, k) ≤ j + (2k−1 − 1)2blog2 jc,

where j, k ≥ 1 are integers and 2blog2 jc is j “rounded down to the nearest power of 2,” thus
1
2j < 2blog2 jc ≤ j.

The lower bound was derived by Avis [4] (for j = 1) and Ramos [68] from measures concentrated

on the moment curve. The upper bound was obtained by Mani-Levitska, Vrećica and Živaljević [57]

from a Fadell–Husseini index calculation. A table below will show that there is quite a gap between

the lower and the upper bounds – they only coincide in the ham sandwich case ∆(j, 1) = j, and

in the case of two hyperplanes if j + 1 is a power of 2, with ∆(j, 2) = 1
2 (3j + 1). All the available

evidence up to now is consistent with the expectation that Ramos’ lower bound is tight for all j

and k; we will refer to this in the following as the Ramos conjecture. For example, while the above

bounds specialize to 3 ≤ ∆(2, 2) ≤ 4, Hadwiger [48] proved that indeed ∆(2, 2) = 3.

In addition to the general lower and upper bounds, a number of papers have treated special

cases, reductions, and relatives of the problem. As a basis for further work we will in the following

provide a critical review of all the key contributions to this study, which will also include short proofs

as far as feasible. In this context we have to observe, however, that quite a number of published

proofs do not hold up upon critical inspection, and indeed some of the approaches employed cannot

work. As some of these errors have not been pointed out in print (although they may be known to

experts), we will provide detailed reviews and explanations in these cases.

We have been able to salvage one of these results, with different methods: We will prove below

(Theorem 2.12) that ∆(j, 2) = 1
2 (3j + 1) also holds if j − 1 is a power of 2, j ≥ 5. So in this case

again the Ramos lower bound is tight while the Mani-Levitska et al. upper bound is not. (It is

tight in the case j = 3.)

2.1.1 Set-up and terminology

Any affine hyperplane H = Hv(a) = {x ∈ Rd : 〈x, v〉 = a}, given by a vector v ∈ Rd\{0} and

scalar a ∈ R, determines two closed halfspaces, which we denote by

H0 = {x ∈ Rd : 〈x, v〉 ≥ a} and H1 = {x ∈ Rd : 〈x, v〉 ≤ a}.

Let H be an arrangement (ordered tuple) of k ≥ 1 affine hyperplanes in Rd, and α = (α1, . . . , αk) ∈
(Z/2)k = {0, 1}k. The orthant determined by the arrangement H and an element α ∈ (Z/2)k is

the intersection of halfspaces

OHα = Hα1
1 ∩ · · · ∩H

αk
k .
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A mass on Rd is a finite Borel measure on Rd that vanishes on every affine hyperplane. Without

loss of generality we deal only with probability measures (that is, masses such that µ(Rd) = 1).

Examples of masses that appear frequently include

– measures given by the d-dimensional volume of a compact convex body K ⊂ Rd,
– measures induced by an interval on the moment curve in Rd,
– measures given by a finite family of (small, disjoint) balls.

An arrangement H = (H1, . . . ,Hk) equiparts a collection of masses M = (µ1, . . . , µj) if for every

element α ∈ (Z/2)k and every ` ∈ {1, . . . , j}

µ`(OHα ) =
1

2k
.

Clearly this can happen only if k ≤ d.

The Grünbaum–Hadwiger–Ramos problem thus asks for the smallest dimension d = ∆(j, k) in

which any collection M of j masses in Rd admits an arrangement H of k affine hyperplanes that

equiparts M.

For the proofs using equivariant topology methods, we make additional assumptions on the

masses to be considered, namely that the measures µi that we deal with have compact connected

support. This assumption can be made as we can strongly approximate each mass by masses with

compact connected support. (This can be done “mit passender Grenzbetrachtung und Kompakt-

heitserwägung auf die übliche schulmäßige Weise” [48, S. 275] as we learn from Hadwiger.) It

guarantees that the measure captured by an affine halfspace depends continuously on the halfs-

pace, and more generally that the measure captured by an orthant depends continuously on the

hyperplanes that define the orthant. Moreover, it yields that for any mass µ and a given vector v

the hyperplane Hv(a) that halves the mass µ is unique, and depends continuously on v.

One could also allow for measures supported on finitely many points, as often considered in

the computational geometry context; see e.g. [4] and [81]. Such point measures do not satisfy the

assumptions above, but they can be approximated by masses that do. To accommodate for point

measures, one would have to modify the definition of “equiparts” in such a way that each open

orthant captures at most a fraction of 1/2k of each measure.

2.1.2 Summary of known Results

We have noted that the ham-sandwich theorem yields ∆(j, 1) = j and that trivially k ≤ ∆(j, k).

A stronger lower bound was given by Ramos [68]:

2k−1
k j ≤ ∆(j, k). (2.1)

Ramos believed that his bound is tight:

The Ramos conjecture. ∆(j, k) = d 2k−1
k je for every choice of integers j ≥ 1 and k ≥ 1.

The best upper bound to date, due to Mani-Levitska et al. [57, Thm. 39], can be phrased as

follows:

∆(2t + r, k) ≤ 2t+k−1 + r for t ≥ 0, 0 ≤ r ≤ 2t − 1. (2.2)
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The proofs of these bounds are subject of Section 2.3 (Theorems 2.2 and 2.3). In particular, for

k = 2 and j = 2t+1 − 1 the lower bound (2.1) and the upper bound (2.2) coincide, implying that

∆(2t+1 − 1, 2) = 3 · 2t − 1 for t ≥ 0.

The first result that is not a consequence of a coincidence between the lower and upper bounds

(2.1) and (2.2) is due to Hadwiger [48], who showed that two masses in R3 can be simultaneously

cut into four equal parts by two (hyper)planes. We give a degree-based proof of a generalization of

this result in Section 2.4 by showing that ∆(2, 2) = 3. As Hadwiger observed, by a simple reduction

(2.5) this also implies that ∆(1, 3) = 3.

Despite a number of published papers in prominent journals on new cases of the Ramos conjec-

ture, the values and bounds for ∆(j, k) just mentioned appear to be the only ones available before

with correct proofs: The papers by Ramos [68] from 1996, by Mani-Levitska et al. [57] from 2006,

and by Živaljević [85] from 2008 and [86] from 2011 all contain essential gaps; see Sections 2.6, 2.7

and 2.8. In Table 2.1 we summarized the situation.

Lower ∆(j, k) Upper Reference of upper bound
8 ≤ ∆(5, 2) ≤ 8 [57, Thm. 4]

3
2 · 2

t ≤ ∆(2t, 2) ≤ 3
2 · 2

t [68, Thm. 6.3] [57, Prop. 25]
3
2 · 2

t + 2 ≤ ∆(2t + 1, 2) ≤ 3
2 · 2

t + 2 [86, Thm. 2.1]
7
3 · 2

t ≤ ∆(2t, 3) ≤ 5
2 · 2

t [68, Thm. 6.3]

4 ≤ ∆(1, 4) ≤ 5 [68, Thm. 6.3]
15
4 · 2

t ≤ ∆(2t, 4) ≤ 9
2 · 2

t [68, Thm. 6.3]

7 ≤ ∆(1, 5) ≤ 9 [68, Thm. 6.3]
31
5 · 2

t ≤ ∆(2t, 5) ≤ 15
2 · 2

t [68, Thm. 6.3]

Table 2.1: Upper bounds claimed in the literature with incorrect/incomplete proofs,
where t ≥ 1. For comparison, we also show the Ramos lower bounds, which are
conjectured to be tight.

Furthermore, in Section 2.6 we show that Živaljević’s approach in [85] towards the last remaining

open case ∆(1, 4) = 4 of the Grünbaum problem fails in principle as well as in details.

Finally, in Section 2.5 we prove using a degree calculation that

∆(2t + 1, 2) = 3 · 2t−1 + 2 for t ≥ 2. (2.3)

By this we verify an instance of the Ramos conjecture previously claimed by Živaljević in [86,

Thm. 2.1].

The resulting status of the Grünbaum–Hadwiger–Ramos problem is summarized in Table 2.2.

2.2 Transition to equivariant topology

In this section we demonstrate how the Grünbaum–Hadwiger–Ramos problem induces a problem

of Borsuk–Ulam type.
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2.2.1 The configuration spaces

Consider a collection of j massesM = (µ1, . . . , µj) on Rd. We would like to find an arrangement

of k affine hyperplanes H = (H1, . . . ,Hk) in Rd such that H equiparts M. The sphere Sd can be

seen as the space of all oriented affine hyperplanes in Rd, where the north pole ed+1 and the

south pole −ed+1 lead to hyperplanes at infinity. For this we embed Rd into Rd+1 via the map

(x1, . . . , xd) 7−→ (x1, . . . , xd, 1). An oriented affine hyperplane in Rd is mapped to an oriented affine

(d− 1)-dimensional subspace of Rd+1 and is extended (uniquely) to an oriented linear hyperplane.

The unit normal vector on the positive side of the linear hyperplane defines a point on the sphere

Sd. There is a one-to-one correspondence between points v in Sd \ {ed+1,−ed+1} and oriented

affine hyperplanes Hv in Rd. Let H0
v and H1

v denote the positive resp. the negative closed half-

space determined by Hv. The positive side of the hyperplane at infinity is Rd for v = ed and ∅ for

v = −ed. Hence H0
−v = H1

v for every v.

There are three natural configuration spaces that parametrize arrangements of k oriented affine

hyperplanes in Rd. Note that hyperplanes at infinity cannot arise as solutions to the mass partition

problem, since they produce empty orthants. Hence we do not need to worry about the fact that

the following configuration spaces incorporate these.

The configuration spaces we consider are

(i) the join configuration space Xd,k = (Sd)∗k ∼= Sdk+k−1, the k-fold join of spheres Sd,

(ii) the product configuration space Yd,k = (Sd)k, the k-fold Cartesian product of spheres Sd, and

(iii) the free configuration space Zd,k = {(x1, . . . , xk) ∈ Yd,k : xi 6= ±xj for i < j}, the largest

subspace of Yd,k on which the group action described below is free.

2.2.2 The group

The Weyl group S±k = (Z/2)k oSk, also known as the group of signed permutations, or as the

symmetry group of the k-dimensional cube, acts naturally on the configuration spaces we consider:

It permutes the hyperplanes, and changes their orientations. Correspondingly it also acts on the

test spaces, which record the fractions of the j measures captured in each of the 2k orthants.

2.2.3 The action on configuration spaces

Elements in Xd,k can be presented as formal ordered convex combinations t1v1 + · · · + tkvk,

where ti ≥ 0,
∑
ti = 1 and vi ∈ Sd. The action of the group S±k = (Z/2)k oSk on the space Xd,k

is defined as follows. Each copy of Z/2 acts antipodally on the corresponding sphere Sd while the

symmetric group Sk acts by permuting coordinates. More precisely, let ((β1, . . . , βk) o τ) ∈ S±k
and t1v1 + · · ·+ tkvk ∈ Xd,k, then

((β1, . . . , βk) o τ) · (t1v1 + · · · + tkvk) = tτ−1(1)(−1)β1vτ−1(1) + · · · + tτ−1(k)(−1)βkvτ−1(k).

The diagonal subspace { 1
kv1 + · · · + 1

kvk ∈ Xd,k} ∼= Yd,k of Xd,k is invariant under the S±k -action

and thus has a well-defined induced S±k -action. Furthermore, there is a well-defined induced action

of S±k on Zd,k, since the action leaves the subset Y >1
d,k of all points in Yd,k with non-trivial stabilizers

invariant. Note that for k ≥ 2 the S±k -action is free on Zd,k but not on Xd,k or on Yd,k.
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Values of ∆(j, k) for j measures and k hyperplanes and t ≥ 1
aaaaaa

j
k 1 2 3 4

1 ≤ 2 ≤ 3 ≤ 4 ≤

1 1 2 3

≤ 1 ≤ 2 ≤ 4 ≤ 8

2 ≤ 3 ≤ 5 ≤ 8 ≤

2 2 3

≤ 2 ≤ 4 ≤ 8 ≤ 16

3 ≤ 5 ≤ 7 ≤ 12 ≤

3 3 5

≤ 3 ≤ 5 ≤ 9 ≤ 17

...
...

2t − 1 ≤ 3 · 2t−1 − 1 ≤

2t − 1 2t − 1 3 · 2t−1 − 1

≤ 2t − 1 ≤ 3 · 2t−1 − 1

2t ≤ 3 · 2t−1 ≤

2t 2t ≤ 3 · 2t−1 + 1

≤ 2t ≤ 4 · 2t−1

2t + 1 ≤ 3 · 2t−1 + 2 ≤

2t + 1 2t + 1 3 · 2t−1 + 2

≤ 2t + 1 ≤ 4 · 2t−1 + 1

Table 2.2: Each square in this table records the lower bound (2.1) in the north-west corner,
the upper bound (2.2) in the south-east corner, and the exact value or improved bound in
the center. The values/bounds that do not simply follow from the two bounds coinciding are
typeset in boldface.

2.2.4 The test space

Consider the vector space R(Z/2)k and the subspace of codimension one

Uk =
{

(yα)α∈(Z/2)k ∈ R(Z/2)k :
∑

α∈(Z/2)k

yα = 0
}
.

We define an action of S±k on R(Z/2)k as follows: ((β1, . . . , βk) o τ) ∈ S±k acts on a vector

(y(α1,...,αk))(α1,...,αk)∈(Z/2)k ∈ R(Z/2)k

by acting on its indices

((β1, . . . , βk) o τ) · (α1, . . . , αk) = (β1 + ατ−1(1), . . . , βk + ατ−1(k)),

where the addition is in Z/2. With respect to this action of S±k the subspace Uk is a S±k -

subrepresentation. The test space related to both configuration spaces Yd,k and Zd,k and a family

of j masses is the S±k -representation U⊕jk , where the action is diagonal.
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2.2.5 The test map

Consider the following map from the configuration space Yd,k to the test space U⊕jk associated

to the collection of masses M = (µ1, . . . , µj):

φM : Yd,k −→ U⊕jk ,

(v1, . . . , vk) 7−→
((
µi(H

α1
v1 ∩ · · · ∩H

αk
vk

)− 1
2k

)
(α1,...,αk)∈(Z/2)k

)
i∈{1,...,j}

.

The map φM is S±k -equivariant with respect to the actions introduced in Sections 2.2.3 and 2.2.4.

The essential property of the map φM is that the oriented hyperplanes Hv1 , . . . ,Hvk equipart M
if and only if φM(v1, . . . , vk) = 0 ∈ U⊕jk . Note that the space U⊕jk does not depend on the

dimension d.

Finally, we define the S±k -equivariant map ψM : Zd,k −→ U⊕jk as the restriction of φM to Zd,k.

Again, the essential property holds: The oriented hyperplanes Hv1 , . . . ,Hvk equipart M if and only

if ψM(v1, . . . , vk) = 0 ∈ U⊕jk .

The maps φM and ψM are called test maps. Thus we have established the following criteria.

Proposition 2.1. Let d ≥ 1, k ≥ 1, and j ≥ 1 be integers.

(1) Let M be a collection of j masses on Rd, and let φM : Yd,k −→ U⊕jk and ψM : Zd,k −→ U⊕jk
be the S±k -equivariant maps defined above. If 0 ∈ imφM, or 0 ∈ imψM, then there are k

oriented hyperplanes that equipart M.

(2) Let S(U⊕jk ) denote the unit sphere in the vector space U⊕jk . If there is no S±k -equivariant map

Yd,k −→ S(U⊕jk ), or Zd,k −→ S(U⊕jk ), then ∆(j, k) ≤ d.

We have an equivalence 0 ∈ imφM ⇐⇒ 0 ∈ imψM, since on the non-free part two hyperplanes

are equal or opposite, so some orthants are empty, and we do not loose any equipartitions by

deleting the non-free part. However, the nonexistence of a S±k -equivariant map Zd,k −→ S(U⊕jk )

only implies the nonexistence of a S±k -equivariant map Yd,k −→ S(U⊕jk ), but not conversely.

The join configuration spaces Xd,k were introduced in [30]. They will not be used here, but will

be essential in Chapter 3. The construction of the corresponding S±k -equivariant test map is given

in [30, Sec. 2.1]. The product configuration space Yd,k embeds into Xd,k via the diagonal embedding

Yd,k ↪→ Xd,k, (v1, . . . , vk) 7→ 1
kv1+· · ·+ 1

kvk. They play a central role for the configuration space/test

map scheme that will produce all major results in the following.

The free configuration spaces Zd,k appear in the literature as orbit configuration spaces; see

for example [39], where they are denoted by FZ/2(Sd, k). We will show below that the restriction

of the configuration space/test map scheme to Zd,k is problematic, as for this restricted scheme

the equivariant maps, whose nonexistence would be needed for settling new cases of the Ramos

conjecture, do exist, partially for trivial reasons; see in particular Section 2.6.

2.3 Bounds and reductions for ∆(j, k)

In this section we present the general lower and upper bounds for the function ∆(j, k). For the

sake of completeness we present proofs.
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2.3.1 The lower bounds by Ramos

Theorem 2.2 (Ramos [68]). For integers j ≥ 1 and k ≥ 1, the minimal dimension d = ∆(j, k)

such that any j masses on Rd can be equiparted by k hyperplanes satisfies

d (2k−1)
k je ≤ ∆(j, k).

Proof. Let γ : R −→ Rd given by γ(t) = (t, t2, . . . , td) be the moment curve in Rd. Choose j pairwise

disjoint intervals on this curve and let µ1, . . . , µj be the corresponding masses. Any equipartition

of these masses by k hyperplanes must give rise to at least (2k−1)j intersections of the hyperplanes

with im γ. The result now follows if we recall that the moment curve has degree d: Any hyperplane

meets it in at most d distinct points, so k hyperplanes can intersect it in at most dk points.

2.3.2 The upper bounds by Mani-Levitska et al.

Theorem 2.3 (Mani-Levitska et al. [57, Thm. 39]). Given integers 0 ≤ t, 0 ≤ r ≤ 2t−1 and 1 ≤ k,

the minimal dimension d = ∆(2t + r, k) such that any j = 2t + r masses on Rd can be equiparted

by k hyperplanes satisfies

∆(2t + r, k) ≤ 2t+k−1 + r.

Proof. Let d = 2t+k−1 + r and j = 2t + r. According to Proposition 2.1 it suffices to prove that

there is no (Z/2)k-equivariant, and consequently no S±k -equivariant, map Yd,k −→ S(U⊕jk ). We

prove this using the Fadell–Husseini ideal-valued index theory [38], for the group (Z/2)k and F2

coefficients.

Let (Z/2)k = 〈ε1, . . . , εk〉 with εi acting antipodally on the i-th sphere in the product Yd,k =

(Sd)k. The cohomology of (Z/2)k is H∗((Z/2)k;F2) = F2[u1, . . . , uk], where deg(ui) = 1 and the

variable ui corresponds to the generator εi, 1 ≤ i ≤ k. Then according to [38, Ex. 3.3]

Index(Z/2)k(Yd,k;F2) =
〈
ud+1

1 , . . . , ud+1
k

〉
.

According to [38, Prop. 3.7] or [30, Prop. 3.13] we have that

Index(Z/2)k(S(U⊕jk );F2) =
〈( ∏

(α1,...,αk)∈(Z/2)k\{0}
(α1u1 + · · ·+ αkuk)

)j〉
.

Now assume that there is a (Z/2)k-equivariant map Yd,k −→ S(U⊕jk ). Then a basic property of the

Fadell–Husseini index [38, Sec. 2] implies that

Index(Z/2)k(S(U⊕jk );F2) ⊆ Index(Z/2)k(Yd,k;F2),

and consequently( ∏
(α1,...,αk)∈(Z/2)k\{0}

(α1u1 + · · ·+ αkuk)
)j
∈
〈
ud+1

1 , . . . , ud+1
k

〉
. (2.4)
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Let us denote

p =
∏

(α1,...,αk)∈(Z/2)k\{0}
(α1u1 + · · ·+ αkuk) ∈ F2[u1, . . . , uk].

As a Dickson polynomial of maximal degree [1, Sec. III.2] it can be presented as

p =
∑
π∈Sk

u2k−1

π(1) u
2k−2

π(2) · · ·u
20

π(k).

Therefore,

pj =
( ∏

(α1,...,αk)∈(Z/2)k\{0}
(α1u1 + · · ·+ αkuk)

)j
=

( ∑
π∈Sk

u2k−1

π(1) u
2k−2

π(2) · · ·u
20

π(k)

)2t+r

=
( ∑
π∈Sk

u2k+t−1

π(1) u2k+t−2

π(2) · · ·u2t

π(k)

)( ∑
π∈Sk

u2k−1

π(1) u
2k−2

π(2) · · ·u
20

π(k)

)r
=

(
u2k+t−1

1 u2k+t−2

2 · · ·u2t

k

)
·
(
ur1u

2r
2 · · ·u2k−1r

k

)
+ Rest

= u2k+t−1+r
1 u2k+t−2+2r

2 · · ·u2t+2k−1r
k + Rest,

where Rest does not contain the monomial

u2k+t−1+r
1 u2k+t−2+2r

2 · · ·u2t+2k−1r
k .

Thus pj /∈ 〈ud+1
1 , . . . , ud+1

k 〉, which contradicts (2.4). This concludes the proof of the nonexistence

of a (Z/2)k-equivariant map Yd,k −→ S(U⊕jk ).

2.3.3 Dimension reductions via constraints

In order to bound ∆(j, k) it is not always necessary to make use of advanced topological methods,

as there are also reduction arguments available: Hadwiger and Ramos used the rather obvious fact

that

∆(j, k) ≤ ∆(2j, k − 1), (2.5)

while Matschke in [60] proved that

∆(j, k) ≤ ∆(j + 1, k)− 1. (2.6)

We employ a simple combinatorial reduction argument to deduce the nonexistence of equivariant

maps and, in particular, to obtain a topological analog of Matschke’s result, Proposition 2.4. Re-

cently, Blagojević, Frick, and Ziegler used this approach to give elementary proofs of old and new

Tverberg-type results [24].

For α ∈ (Z/2)k\{0} let Vα be the one-dimensional real (Z/2)k-representation for which β ∈
(Z/2)k acts non-trivially if and only if

∑k
i=1 αiβi = 1 mod 2. Then there is an isomorphism

of (Z/2)k-representations Uk ∼=
⊕

α∈(Z/2)k\{0} Vα. Denote by A ⊆ (Z/2)k the subset of all α =

(α1, . . . , αk) ∈ (Z/2)k with exactly one αi non-zero, and let B ⊆ (Z/2)k be the subset of all
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α ∈ (Z/2)k with more than one αi non-zero. The representation Uk splits into
⊕

α∈A Vα⊕
⊕

α∈B Vα.

Proposition 2.4. If there is no S±k -equivariant map Yd,k −→ S(U⊕jk ), then there is also no S±k -

equivariant map Yd−1,k −→ S
(
U
⊕(j−1)
k ⊕

⊕
α∈B Vα

)
.

Proof. There is a S±k -equivariant map Φ: Yd,k −→
⊕

α∈A Vα with Φ−1(0) = Yd−1,k, where Yd−1,k ⊆
Yd,k is naturally identified with a product of equators. In fact, the space Yd,k contains all real

(d+ 1)× k matrices whose columns have norm one. Now define

Φ: Yd,k −→
⊕
α∈A

Vα, A 7−→ (xd+1,1, . . . , xd+1,k)

as the map that evaluates the last row of a given matrix A ∈ Yd,k.

Let f : Yd−1,k −→ U
⊕(j−1)
k ⊕

⊕
α∈B Vα be an arbitrary equivariant map. We need to show

that f has a zero. Extend f somehow to an equivariant map F : Yd,k −→ U
⊕(j−1)
k ⊕

⊕
α∈B Vα.

The map F ⊕ Φ: Yd,k −→ U⊕jk has a zero x0, otherwise it would induce a S±k -equivariant map

Yd,k −→ S(U⊕jk ) by retraction. Since Φ(x0) = 0, we have x0 ∈ Yd−1,k and it is a zero of the

map f .

By induction we obtain the following criterion.

Theorem 2.5. Suppose there is no S±k -equivariant map Yd,k → S(U⊕jk ), then ∆(j−m, k) ≤ d−m
for all m = 0, . . . , j − 1.

Corollary 2.6. Let j, k ≥ 1 be integers, then we have

∆(j −m, k) ≤ ∆(j, k)−m for m = 0, . . . , j − 1.

2.4 The Ramos conjecture for ∆(2, 2)

The first result on the Grünbaum–Hadwiger–Ramos problem for more than one hyperplane is

due to Hadwiger [48]. He proved the following result.

Theorem 2.7 (Hadwiger [48]). Let A,B ⊆ R3 be two compact sets with positive Lebesgue measure

and denote by µA and µB the restriction of the Lebesgue measure to the respective sets. Then there

is an arrangement of two affine hyperplanes that equipart the measures µA and µB.

We prove, using as a main ingredient a degree-theoretic argument, that any two masses in R3

can be equiparted by two affine hyperplanes, so ∆(2, 2) ≤ 3. For this we use that equivariant maps

have restricted homotopy types.

Lemma 2.8 (Equivariant Hopf Theorem [34, Thm. II.4.11]). Let G be a finite group that acts

on Sd and acts freely on a closed oriented d-manifold M . Then for any two G-equivariant maps

Φ,Ψ: M −→ Sd

deg Φ ≡ deg Ψ mod |G|.

First we consider measures with continuous densities that have connected support. This guar-

antees that the measure captured by each orthant depends continuously on the hyperplanes that

define the orthant. The general result then follows by approximation; see [48, S. 275].
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Lemma 2.9. Let µ1 and µ2 be masses on R3. The space C ⊂ S3 of all oriented affine hyperplanes

that simultaneously bisect both µ1 and µ2 admits a Z/2-equivariant map S1 −→ C where the action

on the sphere S1 is antipodal.

Proof. The sphere S3 parametrizes all oriented affine hyperplanes in R3 including the ones at

infinity. Consider the following subspace of S3:

S = {u ∈ S3 : µ1(H0
u) = 1

2}.

The space S is homeomorphic to a 2-sphere that is invariant with respect to the antipodal action

on S3 (that is, with respect to change of orientation of the hyperplane): Any normal vector in R3

determines a unique bisecting affine hyperplane for µ1. For this we need that µ1 has connected

support.

Let us define a map φ : S −→ R by u 7−→ µ2(H0
u) − µ2(H1

u). The map φ is Z/2-equivariant

where the action on both spaces is antipodal. Set C = φ−1(0) =
⋃
i∈I Ci where the Ci are the

path-components of C. First we prove that there exists a Z/2-invariant path-component Cj of C.

According to the general Borsuk–Ulam–Bourgin–Yang Theorem [27, Sec. 6.1]

IndexZ/2(C;F2) · IndexZ/2(R\{0};F2) ⊆ IndexZ/2(S;F2). (2.7)

Let the cohomology of Z/2 be denoted by H∗(Z/2;F2) = F2[t], where deg(t) = 1. Using [30,

Prop. 3.13] we get

IndexZ/2(R\{0};F2) = IndexZ/2(S0;F2) = 〈t〉, IndexZ/2(S;F2) = 〈t3〉.

If C did not have a path-component that the Z/2-action maps to itself, then the path-components

of C would come in pairs that the group action would exchange. Consequently, there exists a

Z/2-equivariant map C → S0 implying that IndexZ/2(C;F2) = 〈t〉. This contradicts (2.7), and so

C contains a path-component that the Z/2-action maps to itself.

Let Cj be a Z/2-invariant path-component of C. We prove that there exists a Z/2-equivariant

map S1 −→ Cj where the action on S1 is antipodal. Connect two antipodal points in Cj via an

injective path and extend to S1 via the Z/2-symmetry.

Theorem 2.10. ∆(2, 2) = 3.

Proof. Let µ1 and µ2 be masses on R3. The subspace C ⊆ S3 of oriented hyperplanes that

simultaneously bisect both masses admits a Z/2-equivariant map i : S1 −→ C, where the action on

the sphere S1 is antipodal.

Consider the composition Φ: S1 × S1 −→ C × C −→ R2 defined by

(u, v) 7−→ (µ1

(
H0
i(u) ∩H

0
i(v)

)
− 1

4 , µ2

(
H0
i(u) ∩H

0
i(v)

)
− 1

4 ).

Assume that µ1 and µ2 do not have any equipartition by two hyperplanes in R3. Consequently

0 /∈ Φ(S1×S1), since the zeros of the map Φ are pairs of hyperplanes that equipart µ1 and µ2. Now

Φ composed with radial retraction R2\{0} −→ S1 induces the map Ψ: S1×S1 −→ S1. Notice that

Ψ(u, u) =
(√

2
2 ,
√

2
2

)
for each u ∈ S1. Thus the map Ψ|D : D −→ S1, where D = {(u, u) : u ∈ S1} is

the diagonal, is constant and so has degree 0.



28 2. A critical review

Let t be a generator of Z/4. Then t · (u, v) = (v,−u) defines a free Z/4-action on S1 × S1. The

circle Γ = {(u, eiπ2 · u) : u ∈ S1} ⊆ S1 × S1 is a Z/4-invariant subspace that is homotopic to the

diagonal D in S1 × S1. Thus deg Ψ|Γ = deg Ψ|D = 0.

On the other hand, the map Ψ|Γ : Γ → S1 is Z/4-equivariant with the generator t acting

antipodally on the codomain sphere S1. All such maps have the same degree modulo 4 by Lemma 2.8

and z 7→ z2 is such a map of degree 2. This yields a contradiction, and so the map Φ has a zero.

The reduction argument (2.5) applied to the result of the previous theorem in combination with

Ramos’ lower bound yields the following consequence.

Corollary 2.11 (Hadwiger [48]). ∆(1, 3) = 3.

2.5 The Ramos conjecture for ∆(2t + 1, 2)

In this section we prove the following theorem, establishing a family of exact values for the

function ∆(j, 2) in the case of two hyperplanes. It is a nontrivial instance of the Ramos conjecture

that was previously claimed by Živaljević [86, Thm. 2.1], but the proof given there is not complete;

see Section 2.8.

Theorem 2.12. ∆(2t + 1, 2) = 3 · 2t−1 + 2 for any integer t ≥ 2.

Using the reduction of (2.6) we obtain from this that

∆(2t, 2) ≤ 3 · 2t−1 + 1 for any t ≥ 2.

as listed in Table 2.2.

The rough outline of the proof is as follows: For d = 3 · 2t−1 + 1 the existence of j masses in Rd

that do not admit an equipartition by two affine hyperplanes yields the D8-equivariant test map

ψ : Sd × Sd −→ S2d−2. The restricted map ψ : Sd−1 × Sd−1 −→ S2d−2 has degree zero since it

factors through Sd × Sd. We then consider the test map φ for j specific masses and compute the

degree of the restricted map φ on Sd−1 × Sd−1 by counting the zeros of φ on Bd × Sd−1 (where

Bd is a hemisphere of Sd) with sign and multiplicity. This is done by counting equipartitions for

this specific set of measures. The maps ψ and φ need not be homotopic and so their degrees might

not coincide. This is remedied by exploiting the equivariance of both maps, yielding degψ ≡ deg φ

mod 8, which gives a contradiction if j − 1 is a power of two, j ≥ 5.

2.5.1 Equipartitions restrict degrees of equivariant maps

In order to show that ∆(j, k) ≤ d we use Proposition 2.1(2) and prove that there is no S±k -

equivariant map Yd,k −→ S(U⊕jk ).

Lemma 2.13. Let j, k, d ≥ 1 be integers. Assume ∆(j, k) > d for k(d − 1) = (2k − 1)j − 1 and

assume that k(d − 1) is not divisible by d. Then any S±k -equivariant map ψ : Yd,k −→ S(U⊕jk )

induces a S±k -equivariant map ψ : Yd−1,k −→ S(U⊕jk ) with degψ = 0.

Proof. Since ∆(j, k) > d there is a S±k -equivariant map ψ : Yd,k −→ S(U⊕jk ). This map restricts

to a S±k -equivariant map ψ : Yd−1,k −→ S(U⊕jk ) on the product of the equators. The domain and
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codomain of ψ are closed orientable manifolds of the same dimension, and thus ψ has a well-defined

degree up to a sign. Consider the following commutative diagram of S±k -equivariant maps

Yd,k = (Sd)k
ψ // S(U⊕jk )

Yd−1,k = (Sd−1)k.
?�

OO
ψ

77

After applying the k(d− 1)-dimensional homology functor we get

Hk(d−1)((S
d)k;Z)

ψ∗ // Hk(d−1)(S(U⊕jk );Z)

Hk(d−1)((S
d−1)k;Z).

OO
ψ∗

55

Thus the map ψ∗ factors through Hk(d−1)((S
d)k;Z). Since d does not divide k(d− 1) we have that

Hk(d−1)((S
d)k;Z) ∼= 0. Consequently, degψ = 0.

The equality k(d − 1) = (2k − 1)j − 1 implies that d = (2k−1)
k j − 1

k + 1 = d (2k−1)
k je, which

coincides with the lower bound (2.1). The space Yd−1,k = (Sd−1)k is naturally a subspace of Yd,k

by identifying it with oriented linear hyperplanes in Rd, that is, (x1, . . . , xk) ∈ Yd,k ⊆ (Rd+1)k is in

Yd−1,k precisely if 〈ed+1, xi〉 = 0 for i = 1, . . . , k.

We use the following generalized equivariant Hopf theorem.

Theorem 2.14 (Kushkuley & Balanov [54, Cor. 2.4]). Let M be a compact oriented n-dimensional

manifold with an action of a finite group G. Let N ⊆M be a closed G-invariant subset containing

the set of all points with non-trivial stabilizers. Then any two G-equivariant maps φ, ψ : M −→ Sn

that are equivariantly homotopic on N satisfy deg φ ≡ degψ mod |G|.

The set Y >1
d−1,k of points in Yd−1,k with non-trivial stabilizers with respect to the action of S±k is

{(x1, . . . , xk) ∈ Yd−1,k : xr = xs or xr = −xs for some r 6= s}.

Observe that for k ≥ 3 and d ≥ 2, the space Y >1
d−1,k is path-connected, while for k = 2 it consists of

two path-components.

Corollary 2.15. Let k(d − 1) = (2k − 1)j − 1 and let k(d − 1) be not divisible by d. Let M =

(µ1, . . . , µj) be a collection of masses on Rd that cannot be equiparted by k linear hyperplanes with

the corresponding test map φ = φM : Yd,k −→ U⊕jk . Denote the (normalized) test map restricted to

linear hyperplanes by φ : Yd−1,k −→ S(U⊕jk ). If deg φ 6≡ 0 mod 2kk!, then ∆(j, k) = d, that is, the

Ramos conjecture holds for j masses and k hyperplanes.

Proof. Suppose ∆(j, k) > d. Then from Lemma 2.13 we get a S±k -equivariant map ψ : Yd−1,k −→
S(U⊕jk ) with degψ = 0. By assumption there is a S±k -equivariant map φ : Yd−1,k −→ S(U⊕jk )

with deg φ 6≡ 0 mod |S±k |. Set N = Y >1
d−1,k. Once we have shown that φ and ψ are equivariantly

homotopic on N we can apply Theorem 2.14 and get that deg φ ≡ degψ mod |S±k |. This is a

contradiction with degψ = 0, and therefore ∆(j, k) ≤ d.
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The equivariant homotopy from φ|N to ψ|N is just the linear homotopy in U⊕jk normalized to

the unit sphere. For this to be well-defined we need to show that the linear homotopy does not have

a zero. This follows from the fact that for each point z ∈ N the vectors φ(z) and ψ(z) lie in some

affine subspace of U⊕jk that is not a linear subspace. Since z = (x1, . . . , xk) ∈ N has non-trivial

stabilizer there are r 6= s with xr = ±xs. Thus the corresponding affine hyperplanes Hr and Hs

coincide with perhaps opposite orientations. This implies that the arrangement of hyperplanes

has an empty orthant, implying that any test map has value equal to −1/2k in the coordinate

corresponding to the empty orthant. This implies that φ(z) and ψ(z) lie in an affine subspace not

containing zero.

2.5.2 The standard configuration along the moment curve

Now we specialize to the problem of two hyperplanes, k = 2. In this case the relevant group

is the dihedral group S±2 = D8 = (Z/2)2 o Z/2 = 〈ε1, ε2〉o 〈ω〉, and the corresponding test space

is Yd,2 = Sd × Sd. Thus the test map is a D8-equivariant map φ : Sd × Sd → U⊕j2 whose zeros

correspond to equipartitions.

Before proceeding further we recall how, in this case, D8 = (Z/2)2 o Z/2 = 〈ε1, ε2〉 o 〈ω〉 acts

on Sd × Sd and U2. For (u, v) ∈ Sd × Sd we have that

ε1 · (u, v) = (−u, v), ε2 · (u, v) = (u,−v), ω · (u, v) = (v, u).

The real 3-dimensional D8-representation U2 considered as a (Z/2)2-representation decomposes into

a direct sum of irreducible real 1-dimensional representations as U2 = V(1,0) ⊕ V(0,1) ⊕ V(1,1), where

V(1,0) = V(0,1) = V(1,1) = R and

ε1 · (a, b, c) = (−a, b,−c), ε2 · (a, b, c) = (a,−b,−c), ω · (a, b, c) = (b, a, c)

for (a, b, c) ∈ V(1,0) ⊕ V(0,1) ⊕ V(1,1).

We will now define masses µ1, . . . , µj for which computing the degree of the normalized test

map restricted to linear hyperplanes is particularly simple. Recall that the moment curve γ(t) =

(t, . . . , td) in Rd has the special property that any set of pairwise distinct points on γ is in general

position. Hence every affine hyperplane intersects γ in at most d points. For the rest of this section

we consider the masses µ1, . . . , µj to be concentrated along j pairwise disjoint intervals along the

moment curve that do not include the origin.

The masses µ1, . . . , µj satisfy the hypotheses of Corollary 2.15 for k = 2 and 2d = 3j + 1: Any

equipartition of µ1, . . . , µj by two affine hyperplanes intersects the moment curve in 3j points. Ad-

ditionally requiring that both hyperplanes pass through the origin prescribes one more intersection

point with γ for each hyperplane. Two hyperplanes intersect the moment curve in at most 2d

points, that is, the space of linear hyperplanes Yd−1,2 contains no pair of equiparting hyperplanes if

2d < 3j+ 2. Now we will compute the degree of the restricted test map by counting equipartitions.
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Lemma 2.16. Let 2d = 3j + 1 and let i ≥ 1 be an integer. Let µ1, . . . , µj be masses concentrated

on the pairwise disjoint intervals γ(i, i+ 1) of length 1 along the moment curve in Rd. Then there

are
( j
j−1
2

)
pairs of unoriented (non-parallel) affine hyperplanes (H1, H2) equiparting µ1, . . . , µj such

that H2 passes through the origin.

Proof. To equipart µ1, . . . , µj the pair (H1, H2) needs to have at least 3j intersection points with the

moment curve. Moreover, H2 is a linear hyperplane. Thus each hyperplane H1 and H2 intersects

the moment curve in at least 3j + 1 points. Since 2d = 3j + 1 and every hyperplane can intersect

in at most d points, there are exactly 3j + 1 intersection points. In particular, each µi has either

one intersection with H1 (in the midpoint of µi) and two intersections with H2 (in the midpoint

of the two halves defined by H1) or vice versa. Consequently, the intersection points of the pair

(H1, H2) with the interval µi are uniquely determined by the number of intersections of µi and H1.

There are
(

j
2j−d

)
masses with exactly one point of intersection with H1. Since d = 3j+1

2 this is

equal to
( j
j−1

2

)
.

2.5.3 Computing the degree of the restricted test map geometrically

Let φ = φM : Sd × Sd −→ U⊕j2 be the D8-equivariant test map associated to the standard

configuration M of j masses along the moment curve in Rd where 2d = 3j + 1. By Lemma 2.16

such an equipartition exists and thus φ−1(0) is non-empty. However there is no such equipartition

by linear hyperplanes since this would require more than d intersection points of some hyperplane

with the moment curve γ.

Denote by φ : Sd−1 × Sd−1 → S(U⊕j2 ) the normalized restriction of φ to linear hyperplanes.

Note that dimSd−1×Sd−1 = 2d−2 = 3j−1 = dimS(U⊕j2 ) and thus φ has well-defined degree (up

to a sign). For even d this degree modulo 8 was previously computed by Živaljević [86, Prop. 9.15].

Lemma 2.17. For even d the map φ : Sd−1 × Sd−1 −→ S(U⊕j2 ) has degree

deg φ = 2

(
j
j−1

2

)
.

For odd d the degree of φ vanishes.

We will now prove this lemma by counting zeros of φ with signs and multiplicities. Theorem

2.12 then follows from an application of Corollary 2.15 once we have established that 2
(

2t+1
2t−1

)
is not

divisible by 8 for t ≥ 2.

Proof of Lemma 2.17. Let W ⊆ Sd × Sd be the subspace of hyperplanes (H1, H2), where H1 has

the origin in its positive half-space and H2 is a linear hyperplane. The subspace W is a manifold

homeomorphic to Bd×Sd−1 with boundary Sd−1×Sd−1. By Lemma 2.16 φ has 2
( j
j−1

2

)
zeros on W .

The orientation of H1 is prescribed by the requirement that the origin be in its positive half-space,

but the orientation of H2 is not prescribed. We will show that for d even all local degrees of φ on

W are 1 and that deg φ is the sum of local degrees of φ on W .

Denote by W̃ = W \φ−1(Bε(0)) for a sufficiently small ε > 0 such that W \φ−1(0) deformation

retracts to W̃ . The boundary ∂W̃ consists of Yd−1,2 and disjoint copies of (2d−2)-spheres S1, . . . , S`,

one for each zero of φ on W . Let φ′ : W̃ −→ S(U⊕j2 ) denote the composition of φ and radial
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retraction restricted to W̃ . The fundamental class [Yd−1,2] is equal to
∑

[Si] in H2d−2(W̃ ) since

Yd−1,2 and
⋃
Si are cobordant in W̃ . Now

∑
φ′∗([Si]) = φ′∗([Yd−1,2]) = deg φ · [S(U⊕j2 )], and hence

deg φ =
∑

deg φ′|Si ; see [62, Prop. IV.4.5].

That local degrees of φ are ±1 is simple to see since in a small neighborhood U around any zero

(u, v) the test map φ is a continuous bijection: For any sufficiently small vector w ∈ R3j there is

exactly one tuple (u′, v′) ∈ U with φ(u′, v′) = w. Thus φ|∂U is a continuous bijection into some

(3j − 1)-sphere around the origin and by compactness of ∂U is a homeomorphism.

The symmetry of the configuration allows us to compute the local signs of the test map. First

let us describe a neighborhood of every zero of the test map in W . Let (u, v) ∈W with φ(u, v) = 0.

Denote the intersections of Hu with the moment curve by x1, . . . , xd in the correct order along

the moment curve. Similarly, let y1, . . . , yd be the intersections of Hv with the moment curve. In

particular, y1 = 0. Choose an ε > 0 such that ε-balls around the x1, . . . , xd and around y2, . . . , yd

are pairwise disjoint and such that these balls intersect the moment curve only in precisely one

interval µi.

Tuples of hyperplanes (Hu′ , Hv′) with (u′, v′) ∈ W that still intersect the moment curve in the

corresponding ε-balls parametrize a neighborhood of (u, v). The local neighborhood consisting of

pairs of hyperplanes with the same orientation still intersecting the moment curve in the corre-

sponding ε-balls can be naturally parametrized by
∏2d
i=2(−ε, ε), where the first d factors correspond

to neighborhoods of the xi and the last d − 1 factors to ε-balls around y2, . . . , yd. A natural basis

of the tangent space at (u, v) is obtained via the push-forward of the canonical basis of R2d−1 as

tangent space at the origin.

Consider the subspace Z ⊆ W that consists of pairs of hyperplanes (Hu, Hv) in W that each

intersect the moment curve in d points. It has two path-components determined by the orientation

of Hv. The path-components of Z are contractible as each hyperplane can be continuously moved

to intersect the moment curve in d fixed points. On each part the orientation around the zeros given

above derives from the same global orientation since the given bases of tangent spaces transform

into one another along this contraction path. The map ε2 : (Hu, Hv) 7−→ (Hu, H−v) is orientation-

preserving if and only if d is even.

Any two neighborhoods of distinct zeros of the test map φ can be mapped onto each other by a

composition of coordinate charts since their domains coincide. This is a smooth map of degree 1:

the Jacobian at the zero is the identity map. Let (u, v) and (x, y) be zeros in the same path-

component of Z of the test map φ and let Ψ be the change of coordinate chart described above.

Then φ and φ ◦ Ψ differ in a neighborhood of (u, v) just by a permutation of coordinates. This

permutation is always even by the following:

Claim 2.18. Let A and B be finite sets of the same cardinality. Then the cardinality of the

symmetric difference A M B is even.

Up to orientation of Hu the hyperplanes Hu and Hv are completely determined by the set of

measures that Hu cuts once. Let A ⊆ {1, . . . , j} be the set of indices of measures that Hu intersects

once, and let B ⊆ {1, . . . , j} be the same set for Hv. Then Ψ is a composition of a multiple of

A M B transpositions and, hence, an even permutation.

The linear map ε2 : U⊕j2 → U⊕j2 always has determinant equal to 1 since ε2 is a composition

of 2j reflections in hyperplanes on U⊕j2 . Thus for d even all local degrees of φ on W are the same
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since the coordinate change Ψ preserves orientation (on a path-component), and we have proved

Lemma 2.17. Thus for d even deg φ = 2
( j
j−1

2

)
.

To apply Corollary 2.15 it is essential to know when the binomial coefficient
( j
j−1

2

)
is divisible

by 4. This is answered by the following lemma by Kummer.

Lemma 2.19 (Kummer [53]). Let n ≥ m ≥ 0 be integers and let p be a prime. The maximal

integer k such that pk divides
(
n
m

)
is the number of carries when m and n−m are added in base p.

Putting these statements together we obtain a proof of Theorem 2.12.

Proof of Theorem 2.12. Let k = 2, j = 2t + 1 with t ≥ 2, and d = 3 · 2t−1 + 2. Then 2(d − 1) =

j(2k−1)−1 and d does not divide k. Thus we can apply Corollary 2.15 to the standard configuration

M of j masses along the moment curve. The restriction to linear hyperplanes φ of the corresponding

test map φM has degree
( j
j−1

2

)
by Lemma 2.17 since d is even. This degree is non-zero modulo 8

by Lemma 2.19.

2.6 The failure of the free configuration space

Here we prove the following theorem about the existence of S±k -equivariant maps from the free

configuration space Zd,k. Recall that Zd,k = {(x1, . . . , xk) ∈ Yd,k : xs 6= ±xr for s < r} is the largest

subspace of Yd,k on which the S±k -action is free.

Theorem 2.20. Let d ≥ k ≥ 3 be integers and let (2k− 1)j+ 2 ≥ max{dk, dk+ 4−k}. Then there

is a S±k -equivariant map Zd,k −→ S(U⊕jk ).

Theorem 2.20 will be proved in Section 2.6.2. As dimS(U⊕jk ) = (2k − 1)j and dimZd,k = dk, it

exhibits a disadvantage of the free configuration spaces.

As a direct consequence of Theorem 2.20 we prove the first main result claimed in Živaljević’s

2008 paper [85, Thm. 5.9].

Corollary 2.21. There is a S±k -equivariant map f : Z4,4 −→ S(U4).

In Section 2.6.3 we explain why the proof given in [85] for this result is invalid. To compare the

results, note that Z4,4 is there denoted by (S4)4
δ . Furthermore, in Section 2.6.3 we exhibit a gap in

the proof of the second main (positive) result of the same paper, [85, Thm. 5.1].

2.6.1 Existence of equivariant maps

Let G be a finite group, let X be a free G-CW complex and W be an orthogonal real G-

representation. Let us further denote by cohdimX = max{i : Hi(X;Z) 6= 0} the cohomological

dimension of the space X.

In this section we consider the existence of a G-equivariant map X −→ S(W ) under specific

conditions and prove the following theorem.
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Theorem 2.22. Let G be a finite group, let X be a free G-CW complex, let W be an orthogonal

real G-representation, and let I = {i : dimW − 1 ≤ i ≤ dimX − 1}. If

(i) 2 ≤ cohdimX < dimW , and

(ii) πiS(W ) is a trivial Z[G]-module for every i ∈ I,

then there exists a G-equivariant map X −→ S(W ).

The proof of the theorem will be obtained via equivariant obstruction theory, as presented by

tom Dieck in [34, Sec. II.3]. In the proof of the theorem we use the following special case of a result

given as an exercise by Bredon [32, Exer. 9, p. 168]. It is an extension (for acyclicity above a certain

dimension) of the important result from Smith theory that the quotient of a compact, acyclic space

by a finite group action is still acyclic.

Lemma 2.23. Let G be a finite group acting cellularly on the compact G-CW-complex X. If

Hi(X;Z) = 0 for all i > n, then Hi(X/G;Z) = 0 for all i > n.

Proof of Theorem 2.22. Let us denote by N = dimX, n = cohdimX and w = dimW . For i ∈
{0, . . . , N}, the i-th skeleton of X is denoted as usual by X(i).

Since S(W ) is (w − 2)-connected, (w − 1)-simple and X is a free G-CW complex there is no

obstruction for the existence of a G-equivariant map f : X(w−1) −→ S(X). The proof continues by

induction.

The first obstruction for the extension of the map f to the w-skeleton X(w) lives in the specially

defined Bredon type equivariant cohomology [34, pp. 111–114]:

HwG(X;πw−1S(W )) ∼= HwG(X;Z),

Now πw−1S(W ) ∼= Z is a trivial Z[G]-module by the assumption of the theorem. The isomorphism

of [34, II, Prop. 9.7, (ii)] implies HwG(X;Z) ∼= Hw(X/G;Z), where on the right we have singular

cohomology. Since n = cohdimX < w, by the assumption of the theorem, an application of

Lemma 2.23 gives HwG(X;Z) = 0. Thus HwG(X;πw−1S(W )) = 0, and the map f can be G-

equivariantly extended to the w-skeleton of X.

The process continues in the same way until we reach the N -th skeleton of X since all the

ambient groups HiG(X;πi−1S(W )), i ∈ {w, . . .N}, for the obstructions vanish.

2.6.2 Proof of Theorem 2.20

Let d ≥ k ≥ 3 be integers and let

(2k − 1)j + 2 ≥ max{dk, dk + 4− k}.

We prove the existence of a S±k -equivariant map Zd,k −→ S(U⊕jk ) by direct application of Theo-

rem 2.22.

Let X be a dk-dimensional S±k -CW complex with the property that X ⊆ Zd,k is an equivariant

deformation retract of Zd,k. Then X is a dk-dimensional free S±k -CW complex and it suffices to

prove that there exists a S±k -equivariant map X −→ S(U⊕jk ).

If dk = dimX ≤ dimS(U⊕jk ) = (2k − 1)j − 1 then a S±k -equivariant map X −→ S(U⊕jk ) exists

since X is a free S±k -CW complex and all obstructions vanish. Thus we can in addition assume
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that dk − 1 ≥ (2k − 1)j − 1. Now

I = {i : dimW − 1 ≤ i ≤ dimX − 1} = {i : (2k − 1)j − 1 ≤ i ≤ dk − 1}.

Since (2k − 1)j + 2 ≥ max{dk, dk+ 4− k} and dk− 1 ≥ (2k − 1)j − 1 we have that |I| ≤ 3, that is,

I ⊆ {(2k − 1)j − 1, (2k − 1)j, (2k − 1)j + 1}.

The following fact is known. For completeness we give a brief proof.

Claim. cohdimZd,k = (d− 1)k + 1 for d ≥ k ≥ 3.

Proof. The free configuration space Zd,k is defined as a difference Yd,k\Y >1
d,k of an oriented dk-

manifold Yd,k = (Sd)k and the regular CW-complex Y >1
d,k .

The CW-complex Y >1
d,k can be covered by a family

L = {L+
s,r : 1 ≤ s < r ≤ k} ∪ {L−s,r : 1 ≤ s < r ≤ k}

of subcomplexes

Y >1
d,k =

⋃
1≤s<r≤k

(
L+
s,r ∪ L−s,r

)
,

where for 1 ≤ s < r ≤ k we set

L+
s,r = {(x1, . . . , xk) ∈ Yd,k : xs = xr}, L−s,r = {(x1, . . . , xk) ∈ Yd,k : xs = −xr}.

Every subcomplex L±s,r as well as any finite non-empty intersection of them is (d − 1)-connected.

Therefore, by a version of the nerve lemma [15, Th. 6], we have that πr(Y
>1
d,k ) ∼= πr(∆(PL)) for all

r ≤ d−1, where ∆(PL) denotes the order complex of the intersection poset PL of the family L. The

intersection poset PL can be identified as a subposet of the type B partition lattice ΠB
k , consult

Wachs [79, Ex. 5.3.6]. Moreover, ΠB
k is a geometric semilattice, which implies that ∆(PL) '

∨
Sk−2.

Thus Y >1
d,k is (k − 3)-connected.

The Poincaré–Lefschetz duality [33, Cor. VI.8,4] relates the homology of Zd,k to the cohomology

of the pair (Yd,k, Y
>1
d,k ):

Hdk−i(Zd,k;Z) ∼= Hi(Yd,k, Y
>1
d,k ;Z).

Using the long exact sequence in cohomology for the pair (Yd,k, Y
>1
d,k ) and the facts that Yd,k is

(d − 1)-connected and Y >1
d,k is (k − 3)-connected we get that H̃i(Yd,k, Y

>1
d,k ;Z) = 0 for i ≤ k − 2

and Hk−1(Yd,k, Y
>1
d,k ;Z) ∼= Hk−2(Y >1

d,k ;Z) 6= 0 is free abelian. Consequently, using the universal

coefficient theorem [33, Cor. V.7.2], we conclude that cohdimZd,k = (d− 1)k + 1.

In order to apply Theorem 2.22 and complete the proof we need to verify the conditions (i)

and (ii).

(i) By assumption (2k − 1)j + 2 ≥ max{dk, dk + 4− k} and k ≥ 3. Consequently,

dimU⊕jk = (2k − 1)j > dk − 1 = dimX − 1 > (d− 1)k + 1 = cohdimZd,k.
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(ii) Since S(U⊕jk ) ≈ S(2k−1)j−1 and I ⊆ {(2k − 1)j − 1, (2k − 1)j, (2k − 1)j + 1} we consider

π(2k−1)j−1S(U⊕jk ) ∼= Z, π(2k−1)jS(U⊕jk ) ∼= Z/2, π(2k−1)j+1S(U⊕jk ) ∼= Z/2

as Z[S±k ]-modules. Since the second two groups are Z/2 and therefore trivial Z[S±k ]-modules

it remains to be shown that S±k acts orientation preserving on S(U⊕jk ).

Each of the generators εi of (Z/2)k acts on the top integral homology of the sphere S(U⊕jk )

by multiplication with

(−1)j
(
(k−1

0 )+(k−1
1 )+···+(k−1

k−1)
)

= 1.

Furthermore, each of the transpositions τsr = (sr) for 1 ≤ s < r ≤ k, which generate Sk, acts

on the top integral homology of the sphere S(U⊕jk ) by multiplication with

(−1)j
(
(k−2

0 )+(k−2
1 )+···+(k−2

k−2)
)

= 1.

Thus S±k preserves orientation of S(U⊕jk ) and consequently π(2k−1)j−1S(U⊕jk ) is a trivial

Z[S±k ]-module.

Now Theorem 2.22 implies the existence of a S±k -equivariant map Zd,k −→ S(U⊕jk ), and we have

completed the proof of Theorem 2.20.

2.6.3 Gaps in [85]

In this section we exhibit and explain essential gaps in [85] that invalidate Živaljević’s proofs

for both main results of that paper.

A Gap in [85, Lemma 4.3]

We note that this lemma is the starting point for the explicit calculations related to both main

results of that paper and thus crucial for their validity.

First we recall some notation from [85]:

• (Sn)nδ = {x ∈ (Sn)n : xi 6= ±xj for i 6= j}, consult [85, (2.2)]; in the notation of this chapter,

(Sn)nδ is equal to the free configuration space Zn,n.

• SP 4
δ (RP4) := (S4)4

δ/S
±
4 ⊆ SP 4(RP4) where SPm(X) = Xm/Sm denotes the symmetric prod-

uct of X, consult [85, Prop. 3.1].

The following statement is claimed to be “an easy consequence of Poincaré duality”; the homol-

ogy is considered with coefficients in the field Z/2.

[85, Lemma4.3] There is an isomorphism H2(SP 4
δ (RP4)) −→ H2(SP 4(RP4)) of homology

groups, induced by the inclusion map SP 4
δ (RP4) ↪−→ SP 4(RP4).

Further on, it was claimed that

H2(SP 4(RP4)) ∼= H2(SP 4(RP∞)) ∼=
H2(K(Z/2, 1)×K(Z/2, 2)×K(Z/2, 3)×K(Z/2, 4)) ∼= Z/2⊕ Z/2.
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Now we prove that H2(SP 4
δ (RP4)) is not isomorphic to Z/2⊕ Z/2. Indeed, there is a sequence

of isomorphisms

H2(SP 4
δ (RP4)) ∼= H2(SP 4

δ (RP4)) by the Universal Coefficient Theorem,
∼= H2((S4)4

δ/S
±
4 ) by definition of SP 4

δ (RP4),
∼= H2(ES±4 ×S±4

(S4)4
δ) since the action of S±4 is free,

∼= H2(S±4 ) since (S4)4
δ is 2-connected [39].

A result of Nakaoka [37, Thm. 5.3.1] combined with H2(S4) ∼= Z/2 ⊕ Z/2 [1, Ex. VI.1.13] implies

that

H2(S±4 ) ∼=
2⊕
p=0

Hp(S4, H
2−p((Z/2)4))

∼= H0(S4, H
2((Z/2)4))⊕H1(S4, H

1((Z/2)4))⊕H2(S4, H
0((Z/2)4))

∼= H2((Z/2)4)S4 ⊕H1(S4, H
1((Z/2)4))⊕H2(S4)

∼= Z/2⊕ Z/2⊕H1(S4, H
1((Z/2)4))⊕ Z/2⊕ Z/2.

Thus H2(SP 4
δ (RP4)) is not isomorphic to Z/2⊕ Z/2 and therefore [85, Lemma 4.3] is not true.

A Gap in the proof of [85, Thm. 5.1]

Here we discuss a gap in the proof of the following theorem, the second main result in [85].

[85, Theorem5.1] Suppose that µ is a measure on R4 admitting a 2-dimensional plane of

symmetry in the sense that for some 2-plane L ⊂ R4 and the associated reflection RL : R4 −→
R4, for each measurable set A ⊂ R4, µ(A) = µ(RL(A)). Then µ admits a 4-equipartition.

The proof of the theorem is based on [85, Claim on p. 165]. For convenience we copy the claim

with the first two sentences of its proof from [85].

[85, Claim on p. 165] There does not exist a G-equivariant map f : (S4)4
∆ −→ S(U4 ⊕ λ),

where S(U4 ⊕ λ) is the G-invariant unit sphere in U4 ⊕ λ. In other words each G-invariant

map f : (S4)4
∆ −→ U4 ⊕ λ has a zero.

Proof of the Claim. The claim is equivalent to the statement that the vector bundle ξ : (S4)4
∆×G

(U4⊕λ) −→ (S4)4
∆/G does not admit a non-zero continuous cross section. For this it is sufficient

to show that the top Stiefel–Whitney class wn(ξ) is non-zero.

The group G is the direct sum S±4 ⊕ Z/2, and (S4)4
∆ is the largest subspace of (S4)4 on which

the group G acts freely. The base space (S4)4
∆/G of the vector bundle ξ is an open manifold of

dimension 16. The real G-representation U4⊕λ is 16-dimensional and therefore ξ is a 16-dimensional

vector bundle. Thus the top Stiefel–Whitney class w16(ξ) lives in H16((S4)4
∆/G;Z/2) = 0 and so

it vanishes. This contradicts the proof of the claim.

Actually, more is true: Since ξ is a 16-dimensional vector bundle over a connected non-compact

16-dimensional manifold (S4)4
∆/G, an exercise from Koschorke [52, Exer. 3.11] guarantees the exis-

tence of a nowhere vanishing cross section, again contradicting the proof of the claim.
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2.7 A gap in Ramos [68]

In this section we will give a counterexample to [68, Lem. 6.2], from which Ramos derives

his main result [68, Thm. 6.3] by induction. Our Counterexample 2.30 exploits the fact that a

certain coordinate permutation action has fixed points, a crucial fact that is missed in the proof

of [68, Lem. 6.2].

The following table lists bounds for ∆(j, k) that are obtained directly from [68, Thm. 6.3]. They

cannot be obtained from [68, Thm. 4.6] or any other result in his article.

∆(2m, 2) ≤ 3 · 2m/2
∆(2m, 3) ≤ 5 · 2m/2
∆(2m, 4) ≤ 9 · 2m/2
∆(2m, 5) ≤ 15 · 2m/2

Table 2.3: Here m ≥ 0. From [68, p. 164].

In order to clarify Ramos’ approach, we will describe his initial configuration space, which he

modifies twice. The second modification is the basis for [68, Lem. 6.2]. Given a dimension d ≥ 1 and

a number of hyperplanes k ≥ 1 and masses µ1, . . . , µj , the initial configuration space is defined as

Bd−1 × · · · ×Bd−1 = Bk(d−1).

Here Bd−1 is regarded as the upper hemisphere of Sd−1, where each sphere Sd−1 is the space of

directions of normal vectors in Rd of hyperplanes in Rd that bisect the first mass µ1. We make the

assumption that each mass has a unique bisecting hyperplane, which is the case, if masses have

connected support. The results for general masses then follow by approximation; see [48, S. 275].

In order for his first result [68, Thm. 4.6] to hold, Ramos makes restricts the configuration space a

first time to

Bn1 × · · · ×Bnk ⊆ Bk(d−1),

where ni ≤ d− 1 for all i = 1, . . . , k and
∑
ni = (2k − 1)j − k [68, Sec. 4]. Note that [68, Thm. 4.6]

does not yield the upper bounds in Table 2.3.

Let µ1, . . . , µj be masses on Rd. For x = (x1, . . . , xk) ∈ Bn1×· · ·×Bnk and i ∈ [k], let H(xi) be

the unique hyperplane in Rd with normal vector xi that bisects the first mass µ1, where we regard

the xi in Rd via the inclusions Bni ⊆ Bd−1 ↪→ Sd−1. For α ∈ {0, 1}, let Hα(xi) be the positive (if

α = 0) respectively negative (if α = 1) closed half-space defined by H(xi). Observe the difference

in notation to Hxi , which we used to denote the affine hyperplane corresponding to a point xi in

the sphere Sd of one dimension higher.

Ramos defines the test map

Φ: Bn1 × · · · ×Bnk ψ−→ (R2k)⊕j
U⊕···⊕U−→ (R2k)⊕j

π−→ (R2k−1)⊕j = U⊕jk ,

(x1, . . . , xk)
ψ7−→
(
µ1

( k⋂
i=1

Hαi(x1)
)
, . . . , µj

( k⋂
i=1

Hαi(xk)
))

(α1,...,αk)∈(Z/2)k
.

The map ψ is followed by an orthogonal coordinate transformation U ⊕ · · · ⊕ U = U⊕j given by
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the matrix

U =
(
εj1,...,jki1,...,ik

)
for (i1, . . . , ik), (j1, . . . , jk) ∈ (Z/2)k,

where

εj1,...,jki1,...,ik
= (−1)b and b = (i1, . . . , ik)t(j1, . . . , jk).

The map π chops off the coordinates of (U ⊕ · · · ⊕U) ◦φ corresponding to the row of U with index

(i1, . . . , ik) = (0, . . . , 0). In these coordinates, (U ⊕ · · · ⊕ U) ◦ φ is constant and equal to 1, since

the value of such a coordinate is the sum, for a fixed mass, of the masses of all of the orthants.

The map Φ can be viewed as a map to a ((2k − 1)j − k)-dimensional subspace of (R2k−1)⊕j ∼= U⊕jk
since the map Φ has k zero-components due to the fact that all hyperplanes bisect the first mass

by definition.

Proposition 2.24 ( [68, Property 4.4]). Let x = (x1, . . . , xk) ∈ Rd, then Φ(x) = 0 if and only if the

hyperplanes H(xi) ⊂ Rd with normal vectors xi that bisect the first mass µ1 form an equipartition

of the masses µ1, . . . , µj. Moreover, if Φ(x) = 0, then ∆(j, k) ≤ d.

In the following definition, Ramos introduces the notion of a map that is equivariant on the

boundary of the domain and calls this antipodal. For this we let (Z/2)k act antipodally on the

boundary of Bn1 × · · · ×Bnk .

Definition 2.25 ( [68, p. 151]). A continuous map f : Bn1 × · · · ×Bnk −→ R(2k−1)j is antipodal in

the m-th component with respect to the n-th ball with antipodality apq ∈ {0, 1}, for p ∈ [(2k − 1)j]

and q ∈ [k], if

f(x1, . . . ,−xq, . . . , xk) = (−1)apqfp(x1, . . . , xq, . . . , xk)

for all (x1, . . . , xk) ∈ Bn1 × · · · × Snq−1 × · · · ×Bnk .

Call f antipodal if f is antipodal in all components with respect to all balls. In this case we call

A = (apq)p,q ∈ R(2k−1)j×k the antipodality matrix of f .

Using the antipodality matrix A, we define an action of (Z/2)k on R(2k−1)j by letting the

generators of (Z/2)k act by changing the signs of vectors in R(2k−1)j according to the columns of

A. In this restricted sense, f is equivariant on the boundary of Bn1 × · · · ×Bnk .

Proposition 2.26 ( [68, Property 4.3]). The test map Φ is antipodal. Its antipodality in the com-

ponent with index (i1, . . . , iq, . . . , ik) with respect to the q-th ball is iq (for any mass). Hence the

rows of A are precisely all 0/1-vectors of length k, each repeated j times, up to some re-ordering

of the rows that depends only the labeling of the components of Φ. If we regard Φ as mapping into

U⊕jk , then A consists of all 0/1-vectors of length k except of (0, . . . , 0), each repeated j times.

Ramos’s method of proof is to show that the parity of the number of zeros of the test map Φ

on the given domain is odd and hence the map has at least one zero. In [68, Thm. 4.6] he shows

that if the permanent of a certain matrix is odd, then the parity of the number of zeros of Φ is

also odd. However, this permanent is odd in only a few cases and in particular in none of the cases

listed in Table 2.3. To prove [68, Lem. 6.2] and obtain the results in Table 2.3, Ramos restricts the

configuration space a second time with the goal of obtaining more cases where the matrix permanent
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is odd. Instead of a product of balls, he uses a subspace of a product of balls: For p, q ≥ 1 define

(Bp)q≤ = {(x1, . . . , xt) ∈ (Rp)q : ‖x1‖ ≤ ‖x2‖ ≤ · · · ≤ ‖xq‖ ≤ 1} ⊆ (Bp)q.

The space (Bp)q≤ is a closed fundamental domain (meaning that boundary points may be contained

in an orbit of an interior point) for the action of the symmetric group Sq on (Bp)q given by

permuting copies. [68, Lem. 6.2] is a result that relates the parity of the number of zeros of the

test map Φ on (Bp)q≤ to the parity of the number of zeros of Φ on the boundary of (Bp)q≤. Ramos

parametrizes the boundary as follows: For 1 ≤ m < n ≤ q, define sets

Cm,n = {(x1, . . . , xq) ∈ (Bp)q≤ : ‖xm‖ = ‖xn‖},

Cq,q+1 = {(x1, . . . , xq) ∈ (Bp)q≤ : ‖xq‖ = 1}.

Here Cq,q+1 can be regarded as the “lid” of (Bp)q≤, where the “top lid” X+
q,q+1 = Xq,q+1∩{xq ≥ 0}

and the “bottom lid” X−q,q+1 = Xq,q+1 ∩ {xq ≤ 0} are homeomorphic to (Bp)q−1
≤ ×Bp−1. Hence

bd(Bp)q≤ =
⊎

1≤m≤q
Cm,m+1 ,

where “
⊎

” denotes the union of sets whose relative interiors are disjoint. On the sets Cm,n, Ramos

defines a permutation action given by

βmn : Cm,n −→ Cm,n

(x1, . . . , xm, . . . , xn, . . . , xq) 7→ (x1, . . . , xn, . . . , xm, . . . , xq).

Notice that points in the subsets {x ∈ (Bp)q≤ : xm = xn} ⊂ Cm,n are fixed by this action. Hence

the action is not fixed point free.

For the proofs, Ramos switches to a piecewise-linear (PL) approximation of the test map that

maps the simplices of a “symmetric” triangulation of (Bp)q≤ into general position with respect to

the origin. See the following definition for these notions.

Definition 2.27 ( [68, p. 149]). If T is a pseudomanifold, then we call a map r : ‖T‖ → Rn piecewise

linear if it is affine on every simplex of T . We call r non-degenerate if given any m-simplex σ ∈ T ,

any m component functions of r have at most one common zero on σ and any common zero lies

in the relative interior of σ. We will say that r is NDPL if r is both non-degenerate and piecewise

linear.

The test map or its NDPL approximation is again required to be “equivariant” in some sense.

This is made precise in the following definition.

Definition 2.28 ( [68, p. 162]). Given a map r = (r′, r′′) : (Bp)q≤ −→ Rpq, where r′ denotes the

first pq − 1 components of r and r′′ the last component, we call r symmetric for the zeros in the

boundary if for all 1 ≤ m < n ≤ q and all x ∈ Cm,n the following implication holds:

r′(x) = 0 implies that r′(βmn(x)) = 0 and r′′(x) = r′′(βmn(x)).
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Lemma 2.29 ( [68, Lem. 6.2]). Let r = (r′, r′′) : (Bp)q≤ −→ Rpq be a map where r′ denotes the

first pq − 1 components and r′′ the last component. Suppose r is NDPL and symmetric for the

zeros in the boundary. Let r be antipodal in the last component with respect to the q-th ball and

let a = apq,q ∈ {0, 1} be its antipodality. If P (r′, r′′; (Bp)q≤) denotes the parity of the number of

zeros of r in (Bp)q≤ and P (r′; (Bp)q−1
≤ × Bp−1) denotes the parity of the number of zeros of r′ in

X+
q,q+1 ≈ (Bp)q−1

≤ × Bp−1, the “top lid” of the boundary of (Bp)q≤, then we have the following

equality:

P (r′, r′′; (Bp)q≤) = a · P (r′; (Bp)q−1
≤ ×Bp−1).

Example 2.30 (Counterexample to [68, Lem. 6.2]). This example exploits the simple fact that the

permutation action on the coordinates in Cm,n has fixed points, a fact that Ramos does not account

for in his proof of [68, Lem. 6.2]. Let p = 1 and q = 3. Then

(Bp)q≤ = (B1)3
≤ = {(x, y, z) ∈ R3 : |x| ≤ |y| ≤ |z| ≤ 1}.

See Figures 2.1a and 2.1b for a visualization of (B1)3
≤. Define the following sets and color them as

in the Figures:

Fx,y = {(x, y, z) ∈ (B1)3
≤ : x = y} ⊂ C1,2, “red”

Fy,z = {(x, y, z) ∈ (B1)3
≤ : y = z} ⊂ C2,3, “blue”

Fx,z = {(x, y, z) ∈ (B1)3
≤ : x = z} ⊂ C1,3, “green”

Top = {(x, y, z) ∈ (B1)3
≤ : z = 1} ⊂ C3,4, “black”

Bot = {(x, y, z) ∈ (B1)3
≤ : z = −1} ⊂ C3,4. “black”

We will now construct a map r = (r′, r′′) : (B1)3
≤ −→ R3 that contradicts [68, Lem. 6.2].

(i) Rotate (B1)3
≤ by 90◦ to the right along the y-axis. Now Top and Bot lie in the two parallel

hyperplanes {x = 1} and {x = −1}.
(ii) Rotate (B1)3

≤ along the x-axis and translate it such that the z-axis runs through Fx,y,1 and

Fy,z,1 and the origin lies in the interior of the tetrahedron that has Fx,y,1 and Fy,z,1 as two of

its faces. See Figure 2.1c.

The map r′ has a zero in Fx,y and Fy,z. By exploiting the fact that the permutation β1,2 and β2,3

fix these zeros, we see that the map r = (r′, r′′) is in fact symmetric for the zeros in the boundary.

Since r′′(x, y,−z) = r′′(x, y, z) = (−1)0r′′(x, y, z), the map r is antipodal in the last component

with respect to the third ball with antipodality a = 0. It is easy to check that r is non-degenerate.

Moreover, r has exactly one zero in (B1)3
≤. Hence

P (r′, r′′; (B1)3
≤) = 1 6= 0 = 0 · P (r′; (B1)2

≤ ×B0).
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(a) One view of (B1)3
≤ (b) Another view of (B1)3

≤

(c) The r image of (B1)3
≤

Figure 2.1

2.8 Further gaps in the literature

In this section we explain essential gaps in proofs of the main results in the papers of Mani-

Levitska et al. [57] and Živaljević [86].

2.8.1 Gaps in [57]

Mani-Levitska et al. in their 2006 paper [57] studied the Ramos conjecture in the case of two

hyperplanes, k = 2. One of the main result of this paper [57, Thm. 4] was a criterion under which

for special values of m, in particular for m = 1, one would get ∆(4m+ 1, 2) ≤ 6m+ 2.

To get this criterion, they used the product configuration space/test map scheme and applied

the equivariant obstruction theory of tom Dieck [34, Sec. II.3] in order to study the nonexistence

of D8-equivariant maps Sd × Sd −→ S(U⊕j2 ). Indeed, in the beginning of [57, Sec. 2.3.3] the

authors supply details on the equivariant obstruction theory they apply as well as about the first

isomorphism that will be used in the identification of the obstruction element:
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[57, Section 2.3.3] Once a problem is reduced to the question of (non) existence of equivariant

map, one can use some standard topological tools for its solution. For example, one can use

the cohomological index theory for this purpose [14,17,45,47]. This approach is discussed in

Section 4.1. In this paper our main tool is elementary equivariant obstruction theory [13],

refined by some basic equivariant bordism, and group homology calculations.

Suppose that Mn is orientable, n-dimensional, free G-manifold and that V is a m-dimensional,

real representation of G. Then the first obstruction for the existence of an equivariant map

f : M −→ S(V ), is a cohomology class

ω ∈ Hm
G

(
M,πm−1

(
S(V )

))
in the appropriate equivariant cohomology group [13, Section II.3], where πk(S(V )) is seen as

a G-module. The action of G on M induces a G-module structure on the group Hn(M,Z) ∼=
Z which is denoted by O. The associated homomorphism θ : G −→ {−1,+1} is called the

orientation character. Let A be a (left) G-module. The Poincaré duality for equivariant

(co)homology is the following isomorphism [39],

Hk
G(M,A)

D−→ HG
n−k(M,A⊗O).

(Boldface added for emphasis.) In [57, Sec. 2.6] they present further isomorphisms that will be used

in the identification of the obstruction element:

[57, Section 2.6] By equivariant Poincaré duality, Section 2.3.3, the dual D(ω) of the first

obstruction cohomology class ω ∈ Hm
G (M,πm−1S(V )) lies in the equivariant homology group

HG
n−m(M,πm−1S(V ) ⊗ Z). If M is (n − m)-connected, then there is an isomorphism [11,

Theorem II.5.2]

HG
n−m(M,πm−1S(V )⊗Z)

∼=−→ Hn−m(G, πm−1S(V )⊗Z).

This allows us to interpret D(ω) as an element in the latter group. Moreover, if the coefficient

G-module πm−1S(V )⊗Z is trivial, then the homology group Hn−m(G,Z) ∼= Hn−m(BG,Z) is

for n−m ≤ 3 isomorphic to the oriented G-bordism group Ωn−m(G) ∼= Ωn−m(BG), that is to

the groups based on free, oriented G-manifolds [12].

Our objective is to identify the relevant obstruction classes. Already the algebraically trivial

case H0(G,M) ∼= MG, where MG = Z⊗M is the group of coinvariants, may be combinatorially

sufficiently interesting. Indeed, the parity count formulas applied in [32], see also [49, Section

14.3], may be seen as an instance of the case MG
∼= Z/2.

However, the most interesting examples explored in this paper involve the identification of 1-

dimensional obstruction classes. Since these classes in practice usually arise as the fundamental

classes of zero set manifolds, our first choice will be the bordism group Ω1(G).

After presenting the method used in the paper [57] for the study of the nonexistence of D8-

equivariant maps Sd×Sd −→ S(U⊕j2 ) we can point out the gap. For the method to work the action

of the group (in this case D8) on the manifold (in this case Sd×Sd) has to be free. The action of D8

on Sd×Sd is not free and therefore the method can not be applied to the problem of the nonexis-

tence of D8-equivariant maps Sd × Sd −→ S(U⊕j2 ). Consequently, all the claims by Mani-Levitska

et al. derived from the application of this method — namely [57, Thm. 4, Prop. 25, Thm. 33, Cor. 37]

— are not proven.
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Furthermore, we point out that

• the Poincaré duality isomorphism Hk
G(M,A)

D−→ HG
n−k(M,A ⊗ O) stands only with the as-

sumption that M is an oriented compact manifold with a free G-action; a complete proof can

be found in [21, Thm. 1.4],

• the isomorphism HG
n−m(M,A)

∼=−→ Hn−m(G,A) holds for a trivial G-module A when M is an

(n−m)-connected space on which the G-action is free.

Finally, let us mention that already in 1998 Živaljević [84, Proof of Prop. 4.9] has given a suggestion

how to deal with the presence of non-free actions in the context of equivariant obstruction theory

applied to the Ramos conjecture: There he studied the nonexistence of a (Z/2 ⊕ D8)-equivariant

map (S3)3 −→ S(R9) with non-free action on the domain using relative equivariant obstruction

theory.

2.8.2 A gap in [86]

In his 2015 paper [86], Živaljević studied the Ramos conjecture in the case of two hyperplanes,

k = 2. The main result [86, Thm. 2.1] claims that ∆(4 · 2k + 1, 2) = 6 · 2k + 2. For this claim we

gave a degree-based proof, see Theorem 2.12.

In order to study the nonexistence of D8-equivariant maps induced by the product configura-

tion scheme Sd × Sd −→ S(U⊕j2 ) Živaljević in [86, App. B] introduces an “algebraic equivariant

obstruction theory.” We explain why the proofs for [86, Thms. 2.1 and 2.2] using this obstruction

theory are not complete, as they fail to validate essential preconditions that are not automatically

provided by this theory.

Following [86, App. B], suppose that X is a d-dimensional G-space with admissible filtration [86,

Def. B.3]:

∅ = X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xn−1 ⊂ Xn ⊂ Xn+1 ⊂ · · · ⊂ Xd = X.

Furthermore, let Y be a G-CW-complex with associated filtration by skeleta:

∅ = Y−1 ⊂ Y0 ⊂ Y1 ⊂ · · · ⊂ Yn−1 ⊂ Yn ⊂ Yn+1 ⊂ · · · ⊂ Yν = Y.

Then, according to [86, Prop. B.6], if we assume that there exists a G-equivariant map f : X −→ Y ,

then there exists a chain map

f∗ : Hn(Xn, Xn−1;Z) −→ Hn(Yn, Yn−1;Z)

between the associated augmented chain complexes of Z[G]-modules:

. . .
∂ // Cn+1

∂ //

fn+1

��

Cn
∂ //

fn

��

Cn−1
∂ //

fn−1

��

. . .
∂ // C1

∂ //

f1

��

C0
∂ //

f0

��

Z //

=

��

0

. . .
∂ // Dn+1

∂ // Dn
∂ // Dn−1

∂ // . . .
∂ // D1

∂ // D0
∂ // Z // 0

where Cn = Hn(Xn, Xn−1;Z) and Dn = Hn(Yn, Yn−1;Z) for every n.
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Now [86, Sec. B.3] studies the existence of chain maps between chain complexes of Z[G]-modules.

[86, Prop. B.7] introduces an obstruction theory as follows: For n+ 1 ≤ d we are given

• a finite chain complexes of Z[G]-modules C∗ = {Ck}dk=−1 and D∗ = {Dk}dk=−1, with

C−1 = D−1 = Z, and

• a fixed partial chain map Fn−1 = (fj)
n−1
j=−1 : {Ck}n−1

k=−1 −→ {Dk}n−1
k=−1.

We further assume that Fn−1 can be extended to dimension n, that is, there exists fn : Cn −→ Dn

such that ∂fn = fn−1∂. Then [86, (B.7)] defines the obstruction to the existence of a partial chain

map as

Fn+1 = (fj)
n+1
j=−1 : {Ck}n+1

k=−1 −→ {Dk}n+1
k=−1,

which extends the partial chain map Fn−1, with a possible modification of fn, as an appropriate

element θ of the cohomology group:

Hn+1(C∗;Hn(D∗)) = Hn+1(Hom(C∗, Hn(D∗)).

The element θ is represented by the cocycle [86, (B.8)]:

θ(fn) : Cn+1
∂−→ Cn

fn−→ Zn(D∗)
π−→ Hn(D∗).

Now [86, Prop. B.7] states that vanishing of θ is not only necessary but also sufficient for the

existence of the extension Fn+1 if Cn and Cn+1 are projective modules.

The obstruction θ highly depends on the partial chain map Fn−1 = (fj)
n−1
j=−1. The first para-

graph of [86, Sec. B.4] comments on this issue as follows:

[86, Section B.4. Heuristics for evaluating the obstruction θ.] In many cases the

chain map Fn−1 = (fj)
n−1
j=−1, which in Proposition B.7 serves as an input for calculating the

obstruction θ, is unique up to a chain homotopy. This happens for example when D∗ is a chain

complex associated to a G-sphere Y of dimension n.

The last sentence is not true: In order to guarantee that the input partial chain map Fn−1 =

(fj)
n−1
j=−1 is unique up to a chain homotopy an additional condition on the chain complex C∗ needs

to be fulfilled, for example that {Ck}n−1
k=−1 is a sequence of projective Z[G]-modules.

The algebraic obstruction theory just described is applied in [86] to the problem of the nonex-

istence of a D8-equivariant map Sd × Sd −→ S(U⊕j2 ):

• in [86, Sec. 6] an admissible filtration of Sd × Sd is defined,

• in [86, Sec. 7] the top three levels of the associated chain complex C∗ of Sd × Sd are described

as projective Z[D8]-modules,

• in [86, Prop. 9.9] evaluates the obstruction θ for particular input data F2d−2 = (fj)
2n−2
j=−1 proving

that it does not vanish.

Since the D8-action on Sd × Sd is not free the chain complex C∗ of Z[D8]-modules associated to

Sd × Sd is not a chain complex of projective Z[D8]-modules. Thus different input data F2d−2 =

(fj)
2n−2
j=−1 need not define the same obstruction θ computed in [86, Prop. 9.9]. Consequently, no

conclusion about the nonexistence of an extension of F2d−1, and further of a D8-equivariant map

Sd × Sd −→ S(U⊕j2 ) can be obtained from the computation of just one obstruction. This exhibits

an essential gap in the proof of the main result [86, Thm. 2.1] as well as a serious deficiency in the

proposed algebraic obstruction theory.
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Chapter 3

A unified approach via relative

equivariant obstruction theory

Abstract

The Grünbaum–Hadwiger–Ramos hyperplane mass partition problem asks for the smallest

dimension d0 = ∆(j, k) such that for any j masses in Rd0 there are k hyperplanes that cut

each of the masses into 2k equal parts. Ramos’ conjecture is that the Avis–Ramos necessary

lower bound condition ∆(j, k) ≥ j(2k − 1)/k is also sufficient. We develop a join scheme for

this problem, such that for any d ≥ 1 the nonexistence of an S±
k -equivariant map between

spheres (Sd)∗k → S(Wk ⊕ U⊕j
k ) that extends a test map on the subspace of (Sd)∗k where the

hyperoctahedral group S±
k acts non-freely, implies that ∆(j, k) ≤ d. For the sphere (Sd)∗k we

obtain a regular equivariant CW model, whose cells get a combinatorial interpretation with

respect to measures on a modified moment curve. This allows us to apply relative equivariant

obstruction theory successfully, even in the case when the difference of dimensions of the

spheres (Sd)∗k and S(Wk ⊕ U⊕j
k ) is greater than one. We give a rigorous, unified treatment

of the previously announced cases of the Grünbaum–Hadwiger–Ramos problem, as well as a

number of new cases for Ramos’ conjecture.

Publication Remark. The results of this chapter are joint work with Pavle V. M. Blagojević,

Florian Frick, and Günter M. Ziegler [23].

3.1 Introduction

3.1.1 Grünbaum–Hadwiger–Ramos hyperplane mass partition problem

Recall the following problem that is due to Grünbaum [46, Sec. 4.(v)], Hadwiger [48], and

Ramos [68].

The Grünbaum–Hadwiger–Ramos problem. Determine the minimal dimension d = ∆(j, k)

such that for every collection M of j masses on Rd there exists an arrangement H of k affine

hyperplanes in Rd that equiparts M.

47
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All available evidence up to now supports the following conjecture, though it has been established

rigorously only in few special cases; see Section 2.1.2 for a summary of known results, excluding

the new results presented in this chapter.

The Ramos conjecture. ∆(j, k) = d 2k−1
k je for every choice of integers j ≥ 1 and k ≥ 1.

3.1.2 Product scheme and join scheme

It seems natural to use Yd,k := (Sd)k as a configuration space for any k oriented affine hy-

perplanes/halfspaces in Rd. Indeed, this was our main approach in Chapter 2. This leads to the

following product scheme: If there is no equivariant map

(Sd)k −→S±k
S(U⊕jk )

from the configuration space to the unit sphere in the space U⊕jk of values on the orthants of Rk that

sum to 0, which is equivariant with respect to the hyperoctahedral (signed permutation) group S±k ,

then there is no counter-example for the given parameters, so ∆(j, k) ≤ d.

However, our critical review in Chapter 2 of the main papers on the Grünbaum–Hadwiger–

Ramos problem since 1998 has shown that this scheme is very hard to handle. Except for the

2006 upper bounds by Mani-Levitska, Vrećica and Živaljević [57], derived from a Fadell–Husseini

index calculation, it has produced very few valid results: The group action on (Sd)k is not free,

the Fadell–Husseini index is rather large and thus yields weak results, and there is no efficient cell

complex model at hand.

In this chapter, we provide a new unified approach. For this, we use a join scheme, as introduced

by Blagojević and Ziegler [27], which takes the form

F : (Sd)∗k −→S±k
S(Wk ⊕ U⊕jk ).

Here the domain (Sd)∗k ⊆ R(d+1)×k is a sphere of dimension dk + k − 1, given by

Xd,k := {(λ1x1, . . . , λkxk) : x1, . . . , xk ∈ Sd, λ1, . . . , λk ≥ 0, λ1 + · · ·+ λk = 1},

where we write λ1x1 + · · ·+λkxk as a short-hand for (λ1x1, . . . , λkxk). The co-domain is a sphere of

dimension j(2k − 1) + k− 2. Both domain and co-domain are equipped with canonical S±k -actions.

We observe that the map restricted to the points with non-trivial stabilizer (the “non-free part”)

F ′ : X>1
d,k ⊂ (Sd)∗k −→S±k

S(Wk ⊕ U⊕jk )

is the same up to homotopy for all test maps. If for any parameters (j, k, d) an equivariant extension

F of F ′ does not exist, we get that ∆(j, k) ≤ d.

To decide the existence of this map, or at least obtain necessary criteria, we employ relative

equivariant obstruction theory, as explained by tom Dieck [34, Sect. II.3]. This approach has the

following aspects:

• The Fox–Neuwirth [41]/Björner–Ziegler [19] combinatorial stratification method yields a simple

and efficient cone stratification for the space R(d+1)×k, which is equivariant with respect to the

action of S±k on the columns.
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• This yields a small equivariant regular CW complex model for the sphere (Sd)∗k ⊆ R(d+1)×k,

for which the the non-free part, given by an arrangement of k2 subspheres of codimension d+1,

is an invariant subcomplex. The cells DS
I (σ) in the complex are given by combinatorial data.

• To evaluate the obstruction cocycle, we use measures on a non-standard (binomial coefficient)

moment curve. For the resulting test map, the relevant cells DS
I (σ) can be interpreted as k-

tuples of hyperplanes such that some of the hyperplanes have to pass through prescribed points

of the moment curve, or equivalently, they have to bisect some extra masses.

3.1.3 Statement of the main results

The join scheme reduces the Grünbaum–Hadwiger–Ramos problem to a combinatorial counting

problem that can be solved by hand or by means of a computer: A k-bit Gray code is a k × 2k

binary matrix of all column vectors of length k such that two consecutive vectors differ by only one

bit. Such a k-bit code can be interpreted as a Hamiltonian path in the graph of the k-cube [0, 1]k.

The transition count of a row in a binary matrix A is the number of bit-changes, not counting a bit

change from the last to the first entry. By transition counts of a matrix A we refer to the vector of

the transition counts of the rows of the matrix A. Two binary matrices A and A′ are equivalent, if

A can be obtained from A′ by a sequence of permutations of rows and/or inversion of bits in rows.

Definition 3.1. Let d ≥ 1, j ≥ 1, ` ≥ 0 and k ≥ 1 be integers such that dk = (2k − 1)j + ` with

0 ≤ ` ≤ d− 1. A binary matrix A of size k × j2k is an `-equiparting matrix if

(a) A = (A1, . . . , Aj) for Gray codes A1, . . . , Aj with the property that the last column of Ai is

equal to the first column of Ai+1 for 1 ≤ i < j; and

(b) there is one row of the matrix A with the transition count d − `, while all other rows have

transition count d.

Example 3.2. If d = 5, j = 2, ` = 1 and k = 3, then a possible 1-equiparting matrix is

A = (A1, A2) =

0 0 1 1 0 0 1 1 1 1 1 1 0 0 0 0

0 0 0 1 1 1 1 0 0 1 1 0 0 0 1 1

0 1 1 1 1 0 0 0 0 0 1 1 1 0 0 1

 .

Here the first row of A has transition count 4 while the other two rows have transition count 5.

Theorem 3.3. Let d ≥ 1, j ≥ 1, ` ≥ 0 and k ≥ 2 be integers with the property that dk =

(2k−1)j+ ` and 0 ≤ ` ≤ d−1. The number of non-equivalent `-equiparting matrices is the number

of arrangements of k affine hyperplanes H that equipart a given collection of j disjoint intervals on

a moment curve γ in Rd, up to renumbering and orientation change of hyperplanes in H, when it

is forced that one of the hyperplanes passes through ` prescribed points on γ that lie to the left of

the j disjoint intervals.

In some situations this yields a solution for the Grünbaum–Hadwiger–Ramos problem.

Theorem 3.4. Let j ≥ 1 and k ≥ 3 be integers with d := d 2k−1
k je and ` := d 2k−1

k jek− (2k− 1)j =

dk− (2k−1)j, which implies 0 ≤ ` < k ≤ d. If the number of non-equivalent `-equiparting matrices

of size k × j2k is odd, then

∆(j, k) = d 2k−1
k je.
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Theorem 3.4 is also true for k = 1 (and thus d = j, ` = 0), where it yields the Ham Sandwich

theorem: In this case an equiparting matrix A is a row vector of length 2d and transition count d.

Thus each Ai is either (0, 1) or (1, 0), where Ai uniquely determines Ai+1. Hence, up to inversion

of bits, A is unique and so ∆(d, 1) ≤ d, and consequently ∆(d, 1) = d.

While the situation for k = 1 hyperplane is fully understood, we seem to be far from a complete

solution for the case of k = 2 hyperplanes. However, we do obtain the following instances.

Theorem 3.5. Let t ≥ 1 be an integer. Then

(i) ∆(2t − 1, 2) = 3 · 2t−1 − 1,

(ii) ∆(2t, 2) = 3 · 2t−1,

(iii) ∆(2t + 1, 2) = 3 · 2t−1 + 2.

The statements (i) and (iii) were already known: Part (i) is the only case where the lower bound

of Ramos and the upper bound of Mani-Levitska, Vrećica, and Živaljević [57, Thm. 39] coincide.

Part (ii) is Hadwiger’s result [48] for t = 1; the general case was previously claimed by Mani-

Levitska et al. [57, Prop. 25]. However, the proof of the result was incorrect and not recoverable,

as explained in Section 2.8.1. Here we recover this result by a different method of proof. Similarly,

statement (iii) was claimed by Živaljević [86, Thm. 2.1] with a flawed proof; for an explanation of

the gap see Section 2.8.2. We gave a proof of (iii) via degrees of equivariant maps in Section 2.5.

Here we will prove all three cases of Theorem 3.5 in a uniform way.

In the case of k = 3 hyperplanes we prove using Theorem 3.4 the following instances of the

Ramos conjecture.

Theorem 3.6.

(i) ∆(2, 3) = 5,

(ii) ∆(4, 3) = 10.

Statement (i) was previously claimed by Ramos [68, Sec. 6.1]. A gap in the method that Ramos

developed and used to get this result was explained in Section 2.7. It is also claimed by Vrećica

and Živaljević in the recent preprint [78] without a proof for the crucial [78, Prop. 3].

The reduction result of Hadwiger and Ramos ∆(j, k) ≤ ∆(2j, k − 1) applied to Theorem 3.6

implies the following consequences. For details on reduction results see Section 2.3.

Corollary 3.7.

(i) 4 ≤ ∆(1, 4) ≤ 5,

(ii) 8 ≤ ∆(2, 4) ≤ 10.

Note that ∆(1, 4) is the open case of Grünbaum’s original conjecture.

3.2 The join configuration space test map scheme

In this section we develop the join configuration test map scheme that was introduced in [30,

Sec. 2.1]. A sufficient condition for ∆(j, k) ≤ d will be phrased in terms of the nonexistence of a

particular equivariant map between representation spheres.
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3.2.1 Arrangements of k hyperplanes

Let Ĥ = {x ∈ Rd : 〈x, v〉 = a} be an affine hyperplane determined by a vector v ∈ Rd\{0} and

a constant a ∈ R. The hyperplane Ĥ determines two (closed) halfspaces

Ĥ0 = {x ∈ Rd : 〈x, v〉 ≥ a} and Ĥ1 = {x ∈ Rd : 〈x, v〉 ≤ a}.

Let H = (Ĥ1, . . . , Ĥk) be an arrangement of k affine hyperplanes in Rd, and let α = (α1, . . . , αk)

be an element of (Z/2)k. The orthant determined by the arrangement H and α ∈ (Z/2)k is the

intersection

OHα = Ĥα1
1 ∩ · · · ∩ Ĥ

αk
k .

Let M = (µ1, . . . , µj) be a collection of finite Borel probability measures on Rd such that the

measure of each hyperplane is zero. Such measures will be called masses. The assumptions about

the measures guarantee that µi(Ĥ
0
s ) depends continuously on Ĥ0

s .

An arrangement of affine hyperplanes H = (Ĥ1, . . . , Ĥk) equiparts the collection of masses

M = (µ1, . . . , µj) if for every element α ∈ (Z/2)k and every ` ∈ {1, . . . , j}

µ`(OHα ) = 1
2k
.

3.2.2 The configuration spaces

The space of all oriented affine hyperplanes (or closed affine halfspaces) in Rd can be parametrized

by the sphere Sd, where the north pole ed+1 and the south pole −ed+1 represent hyperplanes at

infinity. An oriented affine hyperplane in Rd at infinity is the set Rd or ∅, depending on the orien-

tation. Indeed, embed Rd into Rd+1 via the map (ξ1, . . . , ξd)
t 7−→ (1, ξ1, . . . , ξd)

t. Then an oriented

affine hyperplane Ĥ in Rd defines an oriented affine (d − 1)-dimensional subspace of Rd+1 that

extends (uniquely) to an oriented linear hyperplane H in Rd+1. The outer unit normal vector that

determines the oriented linear hyperplane is a point on the sphere Sd.

We consider the following configuration spaces that parametrize arrangements of k oriented

affine hyperplanes in Rd:
(1) The join configuration space: Xd,k := (Sd)∗k ∼= S(R(d+1)×k),

(2) The product configuration space: Yd,k := (Sd)k.

The elements of the join Xd,k can be presented as formal convex combinations λ1v1 + · · · + λkvk,

where λi ≥ 0,
∑
λi = 1 and vi ∈ Sd.

3.2.3 The group actions

The space of all ordered k-tuples of oriented affine hyperplanes in Rd has natural symmetries:

Each hyperplane can change orientation and the hyperplanes can be permuted. Thus the group

S±k := (Z/2)k oSk encodes the symmetries of both configuration spaces.

The group S±k acts on Xd,k as follows. Each copy of Z/2 acts antipodally on the appropriate

sphere Sd in the join while the symmetric group Sk acts by permuting factors in the join product.



52 3. A unified approach via relative equivariant obstruction theory

More precisely, for ((β1, . . . , βk) o π) ∈ S±k and λ1v1 + · · ·+ λkvk ∈ Xd,k the action is given by

((β1, . . . , βk) o τ) · (λ1v1 + · · · + λkvk) = λτ−1(1)(−1)β1vτ−1(1) + · · · + λτ−1(k)(−1)βkvτ−1(k).

The product space Yd,k is a subspace of the join Xd,k via the diagonal embedding

Yd,k −→ Xd,k, (v1, . . . , vk) 7−→ 1

k
v1 + · · ·+ 1

k
vk.

The product Yd,k is an invariant subspace of Xd,k with respect to the S±k -action and consequently

inherits the S±k -action from Xd,k. For k ≥ 2, the action of S±k is not free on either Xd,k or Yd,k.

The sets of points in the configuration spaces Xd,k and Yd,k that have non-trivial stabilizer with

respect to the action of S±k can be described as follows:

X>1
d,k = {λ1v1 + · · · + λkvk : λ1 · · ·λk = 0, or λs = λr and vs = ±vr for some 1 ≤ s < r ≤ k},

and

Y >1
d,k = {(v1, . . . , vk) : vs = ±vr for some 1 ≤ s < r ≤ k}.

3.2.4 Test spaces

Consider the vector space R(Z/2)k , where the group element ((β1, . . . , βk) o τ) ∈ S±k acts on a

vector (y(α1,...,αk))(α1,...,αk)∈(Z/2)k ∈ R(Z/2)k by acting on its indices as

((β1, . . . , βk) o τ) · (α1, . . . , αk) = (β1 + ατ−1(1), . . . , βk + ατ−1(k)). (3.1)

The subspace of R(Z/2)k defined by

Uk =
{

(yα)α∈(Z/2)k ∈ R(Z/2)k :
∑

α∈(Z/2)k

yα = 0
}

is S±k -invariant and therefore an S±k -subrepresentation.

Next we consider the vector space Rk and its subspace

Wk =
{

(z1, . . . , zk) ∈ Rk :

k∑
i=1

zi = 0
}
.

The group S±k acts on Rk by permuting coordinates, that is, for ((β1, . . . , βk) o τ) ∈ S±k and

(z1, . . . , zk) ∈ Rk we have

((β1, . . . , βk) o τ) · (z1, . . . , zk) = (zτ−1(1), . . . , zτ−1(k)). (3.2)

In particular, the subgroup (Z/2)k of S±k acts trivially on Rk. The subspace Wk ⊂ Rk is S±k -

invariant and consequently a S±k -subrepresentation.
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3.2.5 Test maps

The product test map associated to the collection of j masses M = (µ1, . . . , µj) from the

configuration space Yd,k to the test space U⊕jk is defined by

φM : Yd,k −→ U⊕jk ,

(v1, . . . , vk) 7−→
((
µi(H

α1
v1 ∩ · · · ∩H

αk
vk

)− 1
2k

)
(α1,...,αk)∈(Z/2)k

)
i∈{1,...,j}

.

In this chapter we mostly work with the join configuration space Xd,k. The corresponding join

test map associated to a collection of j massesM = (µ1, . . . , µj) maps the configuration space Xd,k

into the related test space Wk ⊕ U⊕jk . It is defined by

ψM : Xd,k −→Wk ⊕ U⊕jk ,

λ1v1 + · · ·+ λkvk 7−→ (λ1 − 1
k , . . . , λk −

1
k )⊕ (λ1 · · ·λk) · φM(v1, . . . , vk).

Both maps φM and ψM are S±k -equivariant with respect to the actions defined in Sections 3.2.3

and 3.2.4. Let S(U⊕jk ) and S(Wk ⊕ U⊕jk ) denote the unit spheres in the vector spaces U⊕jk and

Wk ⊕ U⊕jk , respectively. The maps φM and ψM are called test maps since we have the following

criterion, which reduces finding an equipartition to finding zeros of the test map.

Proposition 3.8. Let d ≥ 1, k ≥ 1, and j ≥ 1 be integers.

(i) Let M be a collection of j masses on Rd, and let

φM : Yd,k −→ U⊕jk and ψM : Xd,k −→Wk ⊕ U⊕jk

be the S±k -equivariant maps defined above. If 0 ∈ imφM, or 0 ∈ imψM, then there is an

arrangement of k affine hyperplanes that equiparts M.

(ii) If there is no S±k -equivariant map of either type

Yd,k −→ S(U⊕jk ) or Xd,k −→ S(Wk ⊕ U⊕jk ),

then ∆(j, k) ≤ d.

It is worth pointing out that 0 ∈ imφM if and only if 0 ∈ imψM, while the existence of an

S±k -equivariant map Yd,k −→ S(U⊕jk ) implies the existence of a S±k -equivariant map Xd,k −→
S(Wk ⊕ U⊕jk ) but not vice versa.

The homotopy class of the restrictions of the test maps φM and ψM on the set of points with

non-trivial stabilizer (as maps avoiding the origin) is independent of the choice of the masses M,

by the following proposition.

Proposition 3.9. Let M and M′ be collections of j ≥ 1 masses in Rd. Then

(i) 0 /∈ imφM|Y >1
d,k

and 0 /∈ imψM|X>1
d,k

,

(ii) φM|Y >1
d,k

and φM′ |Y >1
d,k

are S±k -homotopic as maps Y >1
d,k −→ U⊕jk \{0}, and

(iii) ψM|X>1
d,k

and ψM′ |X>1
d,k

are S±k -homotopic as maps X>1
d,k −→ (Wk ⊕ U⊕jk )\{0}.

Proof. (i) If (v1, . . . , vk) ∈ Y >1
d,k , then vs = ±vr for some 1 ≤ s < r ≤ k. Consequently, the

corresponding hyperplanes Hvi and Hvj coincide, possibly with opposite orientations. Thus some
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of the orthants associated to the collection of hyperplanes (Hv1 , . . . ,Hvk) are empty. Consequently,

Proposition 3.8 implies that 0 /∈ imφM|Y >1
d,k

.

In the case where λ1v1 + · · ·+ λkvk ∈ X>1
d,k the additional case λs = 0 for some 1 ≤ s ≤ k may

occur. If λs = 0, then the s-th coordinate of ψ(λ1v1 + · · ·+ λkvk) ∈Wk ⊕U⊕jk is equal to − 1
k , and

hence 0 /∈ imψM|X>1
d,k

.

(ii) The equivariant homotopy between φM|Y >1
d,k

and φM′ |Y >1
d,k

is just the linear homotopy in U⊕jk .

For this the linear homotopy should not have zeros; compare to Corollary 2.15. It suffices to prove

that for each point (v1, . . . , vk) ∈ Y >1
d,k , the points φM(v1, . . . , vk) and φM′(v1, . . . , vk) belong to

some affine subspace of the test space that is not linear.

First observe that R(Z/2)k , considered as a real (Z/2)k representation, is the real regular repre-

sentation of (Z/2)k and therefore it decomposes into the direct sum of all real irreducible represen-

tations. For this we use the fact that all real irreducible representations of (Z/2)k are 1-dimensional.

The subspace Uk seen as a real (Z/2)k subrepresentation of (Z/2)k decomposes as follows:

Uk ∼=
⊕

α∈(Z/2)k\{0}
Vα. (3.3)

Here Vα is the 1-dimensional real representation of (Z/2)k determined by β · v = −v for x ∈ Vα
if and only if α · β :=

∑
αsβs = 1 ∈ Z/2, for β ∈ (Z/2)k. The isomorphism (3.3) is given by the

direct sum of the projections πα : Uk −→ Vα, α ∈ (Z/2)k\{0},

(yβ)β∈(Z/2)k\{0} 7−→
∑
α·β=1

yβ −
∑
α·β=0

yβ .

Now let vs = ±vr. Consider α ∈ (Z/2)k given by αs = 1 = αr and α` = 0 for ` /∈ {s, r}, and

the corresponding projection π⊕jα : U⊕jk −→ V ⊕jα . Then

π⊕jα ◦ φM(v1, . . . , vk) = π⊕jα ◦ φM′(v1, . . . , vk) = (±1, . . . ,±1).

(iii) Likewise, the linear homotopy between ψM|X>1
d,k

and ψM′ |X>1
d,k

is equivariant and avoids zero.

Let λ1v1 + · · ·+ λkvk ∈ X>1
d,k. If λ := λ1 · · ·λk 6= 0, λs = λr and vs = ±vr, then

(π⊕jα ◦ η ◦ ψM)(λ1v1 + · · ·+ λkvk) = (π⊕jα ◦ η ◦ ψM′)(λ1v1 + · · ·+ λkvk) = (±λ, . . . ,±λ),

where η : Wk⊕U⊕jk −→ U⊕jk is the projection. Finally, in the case when λs = 0 for some 1 ≤ s ≤ k,

ψM(λ1v1 + · · · + λkvk) and ψM′(λ1v1 + · · · + λkvk) after projection to the sth coordinate of the

subrepresentation Wk are equal to − 1
k .

Denote the radial projections by

ρ : U⊕jk \{0} −→ S(U⊕jk ) and ν : (Wk ⊕ U⊕jk )\{0} −→ S(Wk ⊕ U⊕jk ).

Note that ρ and ν are S±k -equivariant maps. Now the criterion stated in Proposition 3.8 (ii) can

be strengthened as follows.
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Theorem 3.10. Let d ≥ 1, k ≥ 1 and j ≥ 1 be integers and let M be a collection of j masses

in Rd. We have the following two criteria:

(i) If there is no S±k -equivariant map

Yd,k −→ S(U⊕jk )

whose restriction to Y >1
d,k is S±k -homotopic to ρ ◦ φM|Y >1

d,k
, then ∆(j, k) ≤ d.

(ii) If there is no S±k -equivariant map

Xd,k −→ S(Wk ⊕ U⊕jk )

whose restriction to X>1
d,k is S±k -homotopic to ν ◦ ψM|X>1

d,k
, then ∆(j, k) ≤ d.

3.3 Applying relative equivariant obstruction theory

In order to prove Theorems 3.4, 3.5, and 3.6 via Theorem 3.10(ii), we study the existence of an

S±k -equivariant map

Xd,k −→ S(Wk ⊕ U⊕jk ), (3.4)

whose restriction to X>1
d,k is S±k -homotopic to ν ◦ ψM|X>1

d,k
for some fixed collection M of j masses

in Rd. If we prove that such a map cannot exist, Theorems 3.4, 3.5, and 3.6 follow.

Denote by

N1 := (d+ 1)k − 1

the dimension of the sphere Xd,k = (Sd)∗k, and by

N2 := (2k − 1)j + k − 2

the dimension of the sphere S(Wk ⊕ U⊕jk ). If N1 ≤ N2, then

dimXd,k = N1 ≤ conn
(
S(Wk ⊕ U⊕jk )

)
+ 1 = N2.

Consequently, all obstructions to the existence of an S±k -equivariant map (3.4) vanish and so the

map exists. Here conn(·) denotes the connectivity of a space.

Therefore, we assume that N1 > N2, which is equivalent to the Ramos lower bound d ≥ 2k−1
k j.

Furthermore, the following prerequisites for applying equivariant obstruction theory are satisfied:

• The N1-sphere Xd,k can be given the structure of a relative S±k -CW complex X := (Xd,k, X
>1
d,k)

with a free S±k -action on Xd,k\X>1
d,k: In Section 3.4 we construct an explicit relative S±k -CW

complex that models Xd,k.

• The sphere S(Wk⊕U⊕jk ) is path connected and N2-simple, except in the trivial case of k = j = 1

when N2 = 0. Indeed, the group π1(S(Wk ⊕U⊕jk )) is abelian for N2 = 1 and trivial for N2 > 1

and therefore its action on πN2
(S(Wk ⊕ U⊕jk )) is trivial.

• The S±k -equivariant map h : X>1
d,k −→ S(Wk⊕U⊕jk ) given by the composition h := ν ◦ψM|X>1

d,k
,

for a fixed collection of j masses M, serves as the base map for extension.

Since the sphere S(Wk ⊕ U⊕jk ) is (N2 − 1)-connected, the map h can be extended to a S±k -
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equivariant map from the N2-skeleton X(N2) −→ S(Wk ⊕ U⊕jk ). A necessary criterion for the

existence of the S±k -equivariant map (3.4) extending h is that the S±k -equivariant map h = ν ◦
ψM|X>1

d,k
can be extended to a map from the (N2 + 1)-skeleton X(N2+1) −→ S(Wk ⊕ U⊕jk ).

Given the above hypotheses, we can apply relative equivariant obstruction theory, as presented

by tom Dieck [34, Sec. II.3], to decide the existence of such an extension.

If g is an equivariant extension of h to the N2-skeleton X(N2), then the obstruction to extending

g to the (N2 + 1)-skeleton is encoded by the equivariant cocycle

o(g) ∈ CN2+1

S±k

(
Xd,k, X

>1
d,k ; πN2(S(Wk ⊕ U⊕jk ))

)
.

The S±k -equivariant map g : X(N2) −→ S(Wk ⊕ U⊕jk ) extends to X(N2+1) if and only if o(g) = 0.

Furthermore, the cohomology class

[o(g)] ∈ HN2+1

S±k

(
Xd,k, X

>1
d,k ; πN2

(S(Wk ⊕ U⊕jk ))
)
,

vanishes if and only if the restriction g|X(N2−1) to the (N2 − 1)-skeleton can be extended to the

(N2 + 1)-skeleton X(N2+1). Any two extensions g and g′ of h to the N2-skeleton are equivariantly

homotopic on the (N2− 1)-skeleton and therefore the cohomology classes coincide: [o(g)] = [o(g′)].

Hence it suffices to compute the cohomology class [o(ν ◦ψM|X(N2))] for a fixed collection of j masses

M with the property that 0 /∈ im(ψM|X(N2)).

Let f be the attaching map for an (N2 + 1)-cell θ and e its corresponding basis element in the

cellular chain group CN2+1(Xd,k, X
>1
d,k). Then

o(ν ◦ ψM|X(N2))(e) = [ν ◦ ψM ◦ f |∂θ]

is the homotopy class of the map represented by the composition

∂θj
f |∂θ //X(N2)

ν◦ψM|X(N2) //S(Wk ⊕ U⊕jk ).

Since ∂θ and S(Wk⊕U⊕jk ) are spheres of the same dimension N2, the homotopy class [ν ◦ψM◦f |∂θ]
is determined by the degree of the map ν ◦ ψM ◦ f |∂θ. Here we assume that the S±k -CW structure

on Xd,k is endowed with cell orientations, and in addition an orientation on the sphere S(Wk⊕U⊕jk )

is fixed in advance. Therefore, the degree of the map ν ◦ ψM ◦ f |∂θ is well-defined.

Let α := ψM ◦ f |∂θ. In order to compute the degree of the map ν ◦ α and consequently the

obstruction cocycle evaluated at e, fix the collection of measures as follows. LetM be the collection

of masses (I1, . . . , Ij) where Ir is the mass concentrated on the segment γ((t1r, t
2
r)) of the moment

curve in Rd

γ(t) = (t,
(
t
2

)
,
(
t
3

)
, . . . ,

(
t
d

)
)t,

such that

` < t11 < t21 < t12 < t22 < · · · < t1j < t2j ,

for an integer `, 0 ≤ ` ≤ d − 1. The intervals (I1, . . . , Ij) determined by numbers t1r < t2r can be

chosen in such a way that 0 /∈ im(ψM|X(N2)). For every concrete situation in Section 3.5 this is

verified directly.



3.3 Applying relative equivariant obstruction theory 57

Now consider the following commutative diagram:

∂θ
f |∂θ //

��

X(N2)
ψM|X(N2) //

��

Wk ⊕ U⊕jk \{0}

��

ν // S(Wk ⊕ U⊕jk )

θ
f // X(N2+1)

ψM|X(N2+1) // Wk ⊕ U⊕jk

where the vertical arrows are inclusions, and the composition of the lower horizontal maps is denoted

by β := ψM|X(N2+1) ◦ f . Furthermore, let Bε(0) be a ball with center 0 in Wk ⊕U⊕jk of sufficiently

small radius ε > 0. Set θ̃ := θ\β−1(Bε(0)). Since dim θ = dimWk ⊕ U⊕jk we can assume that the

set of zeros β−1(0) ⊂ relint θ is finite, say of cardinality r ≥ 0. Again, in every calculation presented

in Section 3.5 this assumption is explicitly verified. The function β is a restriction of the test map

and therefore the points in β−1(0) correspond to arrangements of k hyperplanes H in relint θ that

equipart M. Moreover, the facts that the measures are intervals on a moment curve and that each

hyperplane of the arrangement from β−1(0) cuts the moment curve in d distinct points imply that

each zero in β−1(0) is isolated and transversal. The boundary of θ̃ consists of the boundary ∂θ and r

disjoint copies of N2-spheres S1, . . . , Sr, one for each zero of β on θ. Consequently, the fundamental

class of ∂θ is equal to the sum of fundamental classes
∑

[Si] in HN2
(θ̃;Z). Here the fundamental

class of ∂θ is determined by the cell orientation inherited from the S±k -CW structure on Xd,k. The

fundamental classes of [Si] are determined in such a way that the equality [∂θ] =
∑

[Si] holds. Thus∑
(ν ◦ β|θ̃)∗([Si]) = (ν ◦ β|θ̃)∗([∂θ]) = (ν ◦ α)∗([∂θ]) = deg(ν ◦ α) · [S(Wk ⊕ U⊕jk )].

Recall, we have fixed the orientation on the sphere S(Wk ⊕ U⊕jk ) and so the fundamental class

[S(Wk ⊕ U⊕jk )] is also completely determined. On the other hand,∑
(ν ◦ β|Si)∗([Si]) =

(∑
deg(ν ◦ β|Si)

)
· [S(Wk ⊕ U⊕jk )].

Hence deg(ν ◦ α) =
∑

deg(ν ◦ β|Si) where the sum ranges over all arrangements of k hyperplanes

H in relint θ that equipart M; consult [62, Prop. IV.4.5]. In other words,

o(ν ◦ ψM|X(N2))(e) = [ν ◦ ψM ◦ f |∂θ] = deg(ν ◦ α) · ζ =
∑

deg(ν ◦ β|Si) · ζ, (3.5)

where ζ ∈ πN2
(S(Wk ⊕ U⊕jk )) ∼= Z is a generator, and the sum ranges over all arrangements of k

hyperplanes H in relint θ that equipart M.

If in addition we assume that all local degrees deg(ν ◦ β|Si) are ±1 and that the number

of arrangements of k hyperplanes H in relint θ that equipart M is odd, then we conclude that

o(ν ◦ ψM|X(N2))(e) 6= 0. It will turn out that in many situations this information implies that the

cohomology class [o(ν ◦ ψM)] is not zero, and consequently the related S±k -equivariant map (3.4)

does not exist, concluding the proof of corresponding Theorems 3.4, 3.5, and 3.6.
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3.4 A regular cell complex model for the join configuration

space

In this section, motivated by methods used in [19] and [31], we construct a regular S±k -CW

model for the join configuration space Xd,k = (Sd)∗k ∼= S(R(d+1)×k) such that X>1
d,k is a S±k -CW

subcomplex. Consequently, (Xd,k, X
>1
d,k) has the structure of a relative S±k -CW complex. For

simplicity the cell complex we construct is denoted by X := (Xd,k, X
>1
d,k) as well. The cell model is

obtained in two steps:

(1) the vector space R(d+1)×k is decomposed into a union of disjoint relatively open cones (each

containing the origin in its closure) on which the S±k -action operates linearly permuting the

cones, and then

(2) the open cells of a regular S±k -CW model are obtained as intersections of these relatively open

cones with the unit sphere S(R(d+1)×k).

The explicit relative S±k -CW complex we construct here is an essential object needed for the

study of the existence of S±k -equivariant maps Xd,k −→ S(Wk ⊕ U⊕jk ) via the relative equivariant

obstruction theory of tom Dieck [34, Sec. II.3].

3.4.1 Stratifications by cones associated to an arrangement

The first step in the construction of the S±k -CW model is an appropriate stratification of the

ambient space R(d+1)×k. First we introduce the notion of the stratification of a Euclidean space

and collect some relevant properties.

Definition 3.11. Let A be an arrangement of linear subspaces in a Euclidean space E. A strat-

ification of E (by cones) associated to A is a finite collection C of subsets of E that satisfies the

following properties:

(i) C consists of finitely many non-empty relatively open polyhedral cones in E.

(ii) C is a partition of E, that is, E =
⊎
C∈C C.

(iii) The closure C of every cone C ∈ C is a union of cones in C.
(iv) Every subspace A ∈ A is a union of cones in C.

An element of the family C is called a stratum.

Example 3.12. Let E be a Euclidean space of dimension d, let L be a linear subspace of codi-

mension r, where r is an integer with 1 ≤ r ≤ d, and let A be the arrangement {L}. Choose a flag

that terminates at L, that is, fix a sequence of linear subspaces in E

E = L(0) ⊃ L(1) ⊃ · · · ⊃ L(r) = L, (3.6)

so that dimL(i) = d− i. The family C associated to the flag (3.6) consists of L and of the connected

components of the successive complements

L(0)\L(1), L(1)\L(2), . . . , L(r−1)\L(r).

A L(i) is a hyperplane in L(i−1), each of the complements L(i−1)\L(i) has two connected components.

This indeed yields a stratification by cones for the arrangement A in E.
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Definition 3.13. Let (A1,A2, . . . ,An) be a collection of arrangements of linear subspaces in the

Euclidean space E and let (C1, C2 . . . , Cn) be the associated collection of stratifications of E by

cones. The common refinement of the stratifications is the family

C := {C1 ∩ C2 ∩ · · · ∩ Cn 6= ∅ : Ci ∈ Ci for all i}.

In order to verify that the common refinement of stratifications is again a stratification, we use

the following elementary lemma.

Lemma 3.14. Let A1, . . . , An be relatively open convex sets in E that have non-empty intersection,

A1 ∩ · · · ∩An 6= ∅. Then the following relation holds for the closures:

A1 ∩ · · · ∩An = A1 ∩ · · · ∩An.

Proof. The inclusion “⊆” follows directly. For the opposite inclusion take x ∈ A1∩· · ·∩An. Choose

a point y ∈ A1 ∩ · · · ∩ An 6= ∅ and consider the line segment (x, y] := {λx+ (1− λ)y : 0 ≤ λ < 1}.
As each Ai is relatively open, the segment (x, y] is contained in each of the Ai and consequently it

is contained in A1∩ · · ·∩An. Thus we obtain a sequence in this intersection converging to x, which

implies that x ∈ A1 ∩ · · · ∩An.

Proposition 3.15. Given stratifications by cones C1, C2 . . . , Cn associated to linear subspace ar-

rangements A1,A2, . . . ,An, their common refinement is a stratification by cones associated to the

subspace arrangement A := A1 ∪ · · · ∪ An.

Proof. Properties (i) and (ii) of Definition 3.11 follow immediately from the definition of the common

refinement. To verify property (iv), observe that a subspace At ∈ At is a union of strata from Ct,
say At =

⋃
s Ut,s where Ut,s ∈ Ct. Hence taking the union of intersections C1 ∩ · · · ∩Ut,s ∩ · · · ∩Cn

for all Ci ∈ Ci where i 6= t, and all Ut,s gives At. Property (iii) follows from Lemma 3.14.

Example 3.16. Let E be a Euclidean space of dimension d and let A = {L1, . . . , Ls} be an arrange-

ment of linear subspaces of E. As in Example 3.12, for each of the subspaces Li in the arrangement

A fix a flag L
(s)
i and form the corresponding stratifications C1, . . . , Cs. The common refinement of

stratifications C1, . . . , Cs is a stratification by cones associated to the subspace arrangement A.

An arrangement of linear subspaces is essential if the intersection of the subspaces in the ar-

rangement is {0}.

Proposition 3.17. The intersection of a stratification C of E by cones associated to an essential

linear subspace arrangement with the sphere S(E) gives a regular CW-complex.

Proof. The elements C ∈ C are relative open polyhedral cones. As {0} is a stratum by itself, none

of the strata contains a line through the origin. Thus C ∩ S(E) is an open cell, whose closure

C ∩ S(E) is a finite union of cells of the form C ′ ∩ S(E), so we get a regular CW complex.

3.4.2 A stratification of R(d+1)×k

Now we introduce the stratification of R(d+1)×k that will give us a S±k -CW model for Xd,k.

One version of it, C, arises from the construction in the previous section. However, we also give
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combinatorial descriptions of relatively-open convex cones in the stratification C′ directly, for which

the action of S±k is evident. We then verify that C and C′ coincide.

Stratification

Let elements x ∈ R(d+1)×k be written as x = (x1, . . . , xk) where xi = (xt,i)t∈[d+1] is the i-th

column of the matrix x. Consider the arrangement A consisting of the following subspaces:

Lr := {(x1, . . . , xk) ∈ R(d+1)×k : xr = 0}, 1 ≤ r ≤ k

L+
r,s := {(x1, . . . , xk) ∈ R(d+1)×k : xr − xs = 0}, 1 ≤ r < s ≤ k

L−r,s := {(x1, . . . , xk) ∈ R(d+1)×k : xr + xs = 0}, 1 ≤ r < s ≤ k.

With each subspace we associate a flag:

(i) With Lr = {xr = 0} we associate

R(d+1)×k ⊃ {x1,r = 0} ⊃ {x1,r = x2,r = 0} ⊃ · · · ⊃ {x1,r = x2,r = · · · = xd+1,r = 0},

(ii) With L+
r,s = {xr − xs = 0} we associate

R(d+1)×k ⊃ {x1,r − x1,s = 0} ⊃ {x1,r − x1,s = x2,r − x2,s = 0} ⊃ · · · ⊃

{x1,r − x1,s = x2,r − x2,s = · · · = xd+1,r − xd+1,s = 0},

(iii) L−r,s = {xr + xs = 0} we associate

R(d+1)×k ⊃ {x1,r + x1,s = 0} ⊃ {x1,r + x1,s = x2,r + x2,s = 0} ⊃ · · · ⊃

{x1,r + x1,s = x2,r + x2,s = · · · = xd+1,r + xd+1,s = 0}.

The construction from Example 3.12 shows how every subspace in A leads to a stratification by

cones of R(d+1)×k. The stratifications associated to the subspaces Lr, L
+
r,s, L

−
r,s are denoted by

Cr, C+
r,s, C−r,s, respectively. Now, if we apply Example 3.16 to this concrete situation we obtain the

stratification by cones C of R(d+1)×k associated to the subspace arrangement A. This means that

each stratum of C is a non-empty intersection of strata from the stratifications Cr, C+
r,s, C−r,s where

1 ≤ r < s ≤ k.

Partition

Let us fix:

• a permutation σ := (σ1, σ2, . . . , σk) ≡ (σ1σ2 . . . σk) ∈ Sk, σ : t 7→ σt,

• a collection of signs S := (s1, . . . , sk) ∈ {+1,−1}k, and

• integers I := (i1, . . . , ik) ∈ {1, . . . , d+ 2}k.

Furthermore, define x0 to be the origin in R(d+1)×k, σ0 = 0 and s0 = 1. Define

CSI (σ) = Cs1,...,ski1,...,ik
(σ1, σ2, . . . , σk) ⊆ R(d+1)×k

to be the set of all points (x1, . . . , xk) ∈ R(d+1)×k, xi = (x1,i, . . . , xd+1,i), such that for each integer t
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with 1 ≤ t ≤ k,

• if 1 ≤ it ≤ d+ 1, then st−1xit,σt−1
< stxit,σt with st−1xi′,σt−1

= stxi′,σt for every i′ < it,

• if it = d+ 2, then sit−1
xσt−1

= sitxσt .

Any triple (σ|I|S) ∈ Sk×{1, . . . , d+2}k×{+1,−1}k is called a symbol. In the notation of symbols

we abbreviate signs {+1,−1} by {+,−}. The defining set of “inequalities” for the stratum CSI (σ)

is briefly denoted by:

CSI (σ) = Cs1,...,ski1,...,ik
(σ1, σ2, . . . , σk)

= {(x1, . . . , xk) ∈ R(d+1)×k : 0 <i1 s1xσ1
<i2 s2xσ2

<i3 · · · <ik skxσk},

where y <i y
′, for 1 ≤ i ≤ d + 1, means that y and y′ agree in the first i − 1 coordinates and at

the i-th coordinate yi < y′i. The inequality y <d+2 y
′ denotes that y = y′. Each set CSI (σ) is the

relative interior of a polyhedral cone in (Rd+1)k of codimension (i1 − 1) + · · ·+ (ik − 1), that is,

dimCs1,...,ski1,...,ik
(σ1, σ2, . . . , σk) = (d+ 2)k − (i1 + · · ·+ ik).

Let C′ denote the family of strata CSI (σ) defined by all symbols, that is,

C′ = {CSI (σ) : (σ|I|S) ∈ Sk × {1, . . . , d+ 2}k × {+1,−1}k}.

Different symbols can define the same set, and

CSI (σ) ∩ CS
′

I′ (σ) 6= ∅ ⇐⇒ CSI (σ) = CS
′

I′ (σ).

In order to verify that the family C′ is a partition of R(d+1)×k it remains to prove that it is a

covering.

Lemma 3.18.
⋃
C′ = R(d+1)×k.

Proof. Let (x1, . . . , xk) ∈ R(d+1)×k. First choose signs r1, . . . , rk ∈ {+1,−1} so that the vectors

r1x1, . . . , rkxk are greater or equal to 0 ∈ R(d+1)×k with respect to the lexicographic order, that is,

the first non-zero coordinate of each of the vectors rixi is greater than zero. The choice of signs is

not unique if one of the vectors xi is zero. Next, record a permutation σ ∈ Sk such that

0 <lex rσ1
xσ1

<lex rσ2
xσ2

<lex · · · <lex rσkxσk ,

where <lex denotes the lexicographic order. The permutation σ is not unique if rixi = rtxt for

some i 6= t. Define si := rσi . Finally, collect coordinates it where vectors st−1xσt−1
and stxσt first

differ, or put it = d+ 2 if they coincide. Thus (x1, . . . , xk) ∈ Cs1,...,ski1,...,ik
(σ1, σ2, . . . , σk).
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Example 3.19. Let d = 0 and k = 2. Then the plane R2 is decomposed into the following cones.

There are 8 open cones of dimension 2:

C+,+
1,1 (12) = {(x1, x2) ∈ R2 : 0 < x1 < x2},

C−,+1,1 (12) = {(x1, x2) ∈ R2 : 0 < −x1 < x2},
C+,−

1,1 (12) = {(x1, x2) ∈ R2 : 0 < x1 < −x2},
C−,−1,1 (12) = {(x1, x2) ∈ R2 : 0 < −x1 < −x2},
C+,+

1,1 (21) = {(x1, x2) ∈ R2 : 0 < x2 < x1},
C−,+1,1 (21) = {(x1, x2) ∈ R2 : 0 < −x2 < x1},
C+,−

1,1 (21) = {(x1, x2) ∈ R2 : 0 < x2 < −x1},
C−,−1,1 (21) = {(x1, x2) ∈ R2 : 0 < −x2 < −x1}.

Furthermore, there are 8 cones of dimension 1:

C+,+
1,2 (12) = C+,+

1,2 (21) = {(x1, x2) ∈ R2 : 0 < x1 = x2},
C−,+1,2 (12) = C+,−

1,2 (21) = {(x1, x2) ∈ R2 : 0 < −x1 = x2},
C+,−

1,2 (12) = C−,+1,2 (21) = {(x1, x2) ∈ R2 : 0 < x1 = −x2},
C−,−1,2 (12) = C−,−1,2 (21) = {(x1, x2) ∈ R2 : 0 < −x1 = −x2},
C+,+

2,1 (12) = C−,+2,1 (12) = {(x1, x2) ∈ R2 : 0 = x1 < x2},
C+,−

2,1 (12) = C−,−2,1 (12) = {(x1, x2) ∈ R2 : 0 = x1 < −x2},
C+,+

2,1 (21) = C−,+2,1 (21) = {(x1, x2) ∈ R2 : 0 = x2 < x1},
C+,−

2,1 (21) = C−,−2,1 (21) = {(x1, x2) ∈ R2 : 0 = x2 < −x1}.

The origin in R2 is given by C±,±2,2 (12) = C±,±2,2 (21). The example illustrates a property of our

decomposition of R(d+1)×k: There is a surjection from symbols to cones that is not a bijection, that

is, different symbols can define the same cones.

x1

x2

C+,+
1,1 (12)

C+,+
1,1 (21)

C−,+
1,1 (12)

C+,−
1,1 (21)

C−,−
1,1 (21) C−,+

1,1 (21)

C−,−
1,1 (12) C+,−

1,1 (12)

Figure 3.1: Illustration of the stratification in Example 3.19
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Example 3.20. Let d = 2 and k = 4. The stratum associated to the symbol (2143 | 2, 3, 1, 4 | +

1,−1,+1,−1) can be described explicitly as follows.
 x1,1 x1,2 x1,3 x1,4

x2,1 x2,2 x2,3 x2,4

x3,1 x3,2 x3,3 x3,4

 ∈ (R3)4 :

0 = x1,2 = −x1,1 < x1,4 = −x1,3

0 < x2,2 = −x2,1 x2,4 = −x2,3

x3,2 < −x3,1 x3,4 = −x3,3

 .

In particular,

C+,−,+,−
2,3,1,4 (2143) = C+,−,−,+

2,3,1,4 (2134).

C and C′ coincide

We proved that C is a stratification by cones of R(d+1)×k, and that C′ is a partition of R(d+1)×k.

Since both C and C′ are partitions it suffices to prove that for every symbol (σ|I|S) contained in

Sk × {1, . . . , d+ 2}k × {+1,−1}k the cone CSI (σ) ∈ C′ also belongs to C.

Consider the cone CSI (σ) in C′. It is determined by

CSI (σ) = Cs1,...,ski1,...,ik
(σ1, σ2, . . . , σk)

= {(x1, . . . , xk) ∈ R(d+1)×k : 0 <i1 s1xσ1
<i2 s2xσ2

<i3 · · · <ik skxσk}.

The defining inequalities for CSI (σ) imply that (x1, . . . , xk) ∈ CSI (σ) if and only if

• 0 <min{i1,...,ia} saxa for 1 ≤ a ≤ k, and

• saxa <min{ia+1,...,ib} sbxb for 1 ≤ a < b ≤ k,

if and only if

• (x1, . . . , xk) belongs to the appropriate one of two strata in the complement

La
(min{i1,...,ia}−1) \ La(min{i1,...,ia}−2)

of the stratification Ca depending on the sign sa where 1 ≤ a ≤ k, and

• (x1, . . . , xk) belongs to the appropriate one of two strata in the complement

Lsasba,b
(min{ia+1,...,ib}−1) \ Lsasba,b (min{ia+1,...,ib}−2)

of the stratification Csasba,b depending on the sign of the product sasb where 1 ≤ a < b ≤ k. The

product sasb, appearing in the “exponent notation” of Lsasba,b , is either “+” when the product

sasb = 1, or “−” when sasb = −1.

Here we use the notation of Examples 3.12 and 3.16.

Thus we have proved that CSI (σ) ∈ C and consequently C = C′.
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3.4.3 The S±
k -CW model for Xd,k

The action of the group S±k on the space R(d+1)×k induces an action on the family of strata C
by as follows:

π · CSI (σ) = CSI (πσ), (3.7)

εt · CSI (σ) = εt · Cs1,...,ski1,...,ik
(σ1, σ2, . . . , σk)

= Cs1,...,−st,...,ski1,...,ik
(σ1, σ2, . . . , σk), (3.8)

where π ∈ Sk and ε1, . . . , εk are the canonical generators of the subgroup (Z/2)k of S±k .

The S±k -CW complex that models Xd,k = S(R(d+1)×k) is obtained by intersecting each stratum

CSI (σ) with the unit sphere S(R(d+1)×k). Each stratum is a relatively open cone that does not

contain a line. Therefore the intersection

DS
I (σ) = Ds1,...,sk

i1,...,ik
(σ1, σ2, . . . , σk) := Cs1,...,ski1,...,ik

(σ1, σ2, . . . , σk) ∩ S(R(d+1)×k)

is an open cell of dimension (d + 2)k − (i1 + · · · + ik) − 1. The action of S±k is induced by (3.7)

and (3.8):

π ·DS
I (σ) = DS

I (πσ), (3.9)

εt ·DS
I (σ) = εt ·Ds1,...,sk

i1,...,ik
(σ1, σ2, . . . , σk)

= Ds1,...,−st,...,sk
i1,...,ik

(σ1, σ2, . . . , σk). (3.10)

Thus we have obtained a regular S±k -CW model for Xd,k. In particular, the action of the group

S±k on the space R(d+1)×k induces a cellular action on the model.

Theorem 3.21. Let d ≥ 1 and k ≥ 1 be integers and let N1 = (d+ 1)k − 1. The family of cells

{DS
I (σ) : (σ|I|S) 6= (σ|d+ 2, . . . , d+ 2|S)}

forms a finite regular N1-dimensional S±k -CW complex X := (Xd,k, X
>1
d,k) that models the join

configuration space Xd,k = S(R(d+1)×k). It has

• one full S±k -orbit in maximal dimension N1, and

• k full S±k -orbits in dimension N1 − 1.

The (cellular) S±k -action on Xd,k is given by (3.9) and (3.10). Furthermore the collection of cells

{DS
I (σ) : is = d+ 2 for some 1 ≤ s ≤ k}

is a S±k -CW subcomplex and models X>1
d,k.

Example 3.22. Let d, j ≥ 1 and k ≥ 2 be integers with dk = (2k − 1)j + ` for an integer ` with

0 ≤ ` ≤ d − 1. Consider the cell θ := D+,+,+,...,+
`+1,1,1,...,1(1, 2, 3, . . . , k) of dimension N1 − ` = N2 + 1 in

Xd,k. It is determined by the following inequalities:

0 <`+1 x1 <1 x2 <1 · · · <1 xk.
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For the process of determining the boundary of θ, depending on value of `, we distinguish the

following cases.

(1) Let ` = 0. Then θ := D+,+,+,...,+
1,1,1,...,1 (1, 2, 3, . . . , k). The cells of codimension 1 in the boundary of

θ are obtained by introducing one of the following extra equalities:

x1,1 = 0 , x1,1 = x1,2 , . . . , x1,k−1 = x1,k.

Each of these equalities will give two cells of dimensionN2, hence in total 2k cells of codimension

1, in the boundary of θ.

(a) The equality x1,1 = 0 induces cells:

γ1 := D+,+,+,...,+
2,1,1,...,1 (1, 2, 3, . . . , k), γ2 := D−,+,+,...,+2,1,1,...,1 (1, 2, 3, . . . , k)

that are related, as sets, via γ2 = ε1 ·γ1. Both cells γ1 and γ2 belong to the linear subspace

V1 = {(x1, . . . , xk) ∈ R(d+1)×k : x1,1 = 0}.

(b) The equality x1,r−1 = x1,r for 2 ≤ r ≤ k gives cells:

γ2r−1 := D+,+,+,...,+
1,...,1,2,1,...,1(1, . . . , r − 1, r, r + 1, . . . , k),

γ2r := D+,+,+,...,+
1,...,1,2,1,...,1(1, . . . , r, r − 1, r + 1, . . . , k)

satisfying γ2r = τr−1,r ·γ2r−1. In these cells the index 2 in the subscript 1, . . . , 1, 2, 1, . . . , 1

appears at the position r. These cells belong to the linear subspace

Vr = {(x1, . . . , xk) ∈ R(d+1)×k : x1,r−1 = x1,r}.

Let eθ denote a generator in CN2+1(Xd,k, X
>1
d,k) that corresponds to the cell θ. Furthermore let

eγ1 , . . . , eγ2k denote generators in CN2
(Xd,k, X

>1
d,k) related to the cells γ1, . . . , γ2k.

The boundary of the cell θ is contained in the union of the linear subspaces V1, . . . , Vk. Therefore

we can orient the cells γ2i−1, γ2i consistently with the orientation of Vi, 1 ≤ i ≤ k, that is given

in such a way that

∂eθ = (eγ1 + eγ2) + (eγ3 + eγ4) + · · ·+ (eγ2k−1
+ eγ2k).

Consequently,

∂eθ = (1 + (−1)dε1) · eγ1 +

k∑
i=2

(1 + (−1)dτi−1,i) · eγ2i−1 . (3.11)

(2) Let ` = 1. Then θ := D+,+,+,...,+
2,1,1,...,1 (1, 2, 3, . . . , k). Now the cells in the boundary of θ are

obtained by introducing extra equalities:

x2,1 = 0 , (0 =)x1,1 = x1,2 , . . . , x1,k−1 = x1,k.

Each of these equalities, except for the second one, will give two cells of dimension N2, which
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yields 2(k− 1) cells in total, in the boundary of θ. The equality x1,1 = x1,2 will give additional

four cells in the boundary of θ.

(a) The equality x2,1 = 0 induces cells:

γ1 := D+,+,+,...,+
3,1,1,...,1 (1, 2, 3, . . . , k), γ2 := D−,+,+,...,+3,1,1,...,1 (1, 2, 3, . . . , k)

that are related, as sets, via γ2 = ε1 · γ1. Notice that both cells γ1 and γ2 belong to the

linear subspace

V1 = {(x1, . . . , xk) ∈ R(d+1)×k : x1,1 = x2,1 = 0}.

(b) The equality x1,1 = x1,2 yields the cells

γ3 := D+,+,+,...,+
2,2,1,...,1 (1, 2, 3, . . . , k), γ31 := D+,−,+,...,+

2,2,1,...,1 (1, 2, 3, . . . , k),

γ32 := D+,+,+,...,+
2,2,1,...,1 (2, 1, 3, . . . , k), γ33 := D−,+,+,...,+2,2,1,...,1 (2, 1, 3, . . . , k).

They satisfy set identities γ31 = ε2 · γ3, γ32 = τ1,2 · γ3, and γ33 = ε1τ1,2 · γ3. All four cells

belong to the linear subspace

V2 = {(x1, . . . , xk) ∈ R(d+1)×k : 0 = x1,1 = x1,2}.

(c) The equality x1,r−1 = x1,r for 3 ≤ r ≤ k gives cells:

γ2r−1 := D+,+,+,...,+
2,...,1,2,1,...,1(1, . . . , r − 1, r, r + 1, . . . , k),

γ2r := D+,+,+,...,+
2,...,1,2,1,...,1(1, . . . , r, r − 1, r + 1, . . . , k)

satisfying γ2r = τr−1,r · γ2r−1.

In these cells the second index 2 in the subscript 2, . . . , 1, 2, 1, . . . , 1 appears at the posi-

tion r. These cells belong to the linear subspace

Vr = {(x1, . . . , xk) ∈ R(d+1)×k : x1,1 = 0, x1,r−1 = x1,r}.

Again eθ denotes a generator in CN2+1(Xd,k, X
>1
d,k) corresponding to θ. Let

eγ1 , eγ2 , eγ3 , eγ31 , eγ32 , eγ33 , eγ4 . . . , eγ2k

denote generators in CN2
(Xd,k, X

>1
d,k) related to the cells γ1, γ2, γ3, γ31, γ32, γ33, . . . , γ2k.

The boundary of the cell θ, as before, is contained in the union of the linear subspaces V1, . . . , Vk.

Therefore we can orient cells consistently with the orientation of Vi, 1 ≤ i ≤ k, that is given in

such a way that

∂eθ = (eγ1 + eγ2) + (eγ3 + eγ31 + eγ32 + eγ33) + · · ·+ (eγ2k−1
+ eγ2k).
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Consequently,

∂eθ = (1 + (−1)d−1ε1) · eγ1 + (3.12)

(1 + (−1)dε2 + (−1)dτ1,2 + (−1)d+dε1τ1,2) · eγ3 +

k∑
i=3

(1 + (−1)dτi−1,i) · eγ2i−1
.

(3) Let 2 ≤ ` ≤ d − 1. Then θ := D+,+,+,...,+
`+1,1,1,...,1(1, 2, 3, . . . , k). The cells in the boundary of θ are

now obtained by introducing following equalities:

x`+1,1 = 0 , (0 =)x1,1 = x1,2 , . . . x1,k−1 = x1,k.

Each of them will give two cells of dimension N2 in the boundary of θ, all together 2k.

(a) The equality x`+1,1 = 0 induces cells:

γ1 := D+,+,+,...,+
`+2,1,1,...,1(1, 2, 3, . . . , k), γ2 := D−,+,+,...,+`+2,1,1,...,1(1, 2, 3, . . . , k)

that are related, as sets, via γ2 = ε1 ·γ1. Both cells γ1 and γ2 belong to the linear subspace

V1 = {(x1, . . . , xk) ∈ R(d+1)×k : x1,1 = · · · = x`+1,1 = 0}.

(b) The equality (0 =)x1,1 = x1,2 gives the cells

γ3 := D+,+,+,...,+
`+1,2,1,...,1(1, 2, 3, . . . , k), γ4 := D+,−,+,...,+

`+1,2,1,...,1(1, 2, 3, . . . , k)

that satisfy γ4 = ε2 · γ3. Both cells belong to the linear subspace

V2 = {(x1, . . . , xk) ∈ R(d+1)×k : x1,1 = · · · = x`,1 = 0, x1,1 = x1,2}.

(c) The equality x1,r−1 = x1,r for 3 ≤ r ≤ k gives cells:

γ2r−1 := D+,+,+,...,+
`+1,...,1,2,1,...,1(1, . . . , r − 1, r, r + 1, . . . , k),

γ2r := D+,+,+,...,+
`+1,...,1,2,1,...,1(1, . . . , r, r − 1, r + 1, . . . , k)

satisfying γ2r = τr−1,r · γ2r−1. In these cells the index 2 in the subscript

`+ 1, . . . , 1, 2, 1, . . . , 1 appears at the position r. These cells belong to the linear subspace

Vr = {(x1, . . . , xk) ∈ R(d+1)×k : x1,1 = · · · = x`,1 = 0, x1,r−1 = x1,r}.

Again eθ denotes a generator in CN2+1(Xd,k, X
>1
d,k) that corresponds to the cell θ. Furthermore

eγ1 , . . . , eγ2k denote generators in CN2
(Xd,k, X

>1
d,k) related to the cells γ1, . . . , γ2k.

As before, the boundary of the cell θ is contained in the union of the linear subspaces V1, . . . , Vk.

Thus we can orient cells γ2i−1, γ2i consistently with the orientation of Vi, 1 ≤ i ≤ k, that is
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given in such a way that

∂eθ = (eγ1 + eγ2) + (eγ3 + eγ4) + · · ·+ (eγ2k−1
+ eγ2k).

Hence

∂eθ = (1 + (−1)d−`ε1) · eγ1 + (1 + (−1)dε2) · eγ3 +

k∑
i=3

(1 + (−1)dτi−1,i) · eγ2i−1
. (3.13)

The relations (3.11), (3.12) and (3.13) that will be essential in the proofs of Theorems 3.4 and 3.5.

3.4.4 The arrangements parametrized by a cell

In this section we describe all arrangements of k hyperplanes parametrized by the cell

θ := D+,+,+,...,+
`+1,1,1,...,1(1, 2, 3, . . . , k),

where 1 ≤ ` ≤ d − 1. This description will be one of the key ingredients in Section 3.5 when the

obstruction cocycle is evaluated on the cell θ.

Recall that the cell θ is defined as the intersection of the sphere S(R(d+1)×k) and the cone given

by the inequalities:

0 <`+1 x1 <1 x2 <1 · · · <1 xk.

Consider the binomial coefficient moment curve γ̂ : R −→ Rd defined by

γ̂(t) = (t,
(
t
2

)
,
(
t
3

)
, . . . ,

(
t
d

)
)t. (3.14)

After embedding Rd −→ Rd+1, (ξ1, . . . , ξd)
t 7−→ (1, ξ1, . . . , ξd)

t it corresponds to the curve

γ : R −→ Rd+1 given by

γ(t) = (1, t,
(
t
2

)
,
(
t
3

)
, . . . ,

(
t
d

)
)t.

Consider the following points on the moment curve γ:

q1 := γ(0), . . . , q`+1 := γ(`). (3.15)

Next, recall that each oriented affine hyperplane Ĥ in Rd (embedded in Rd+1) determines the

unique linear hyperplane H such that Ĥ = H ∩ Rd, and almost vice versa. Now, the family of

arrangements parametrized by the (open) cell θ is described as follows:

Lemma 3.23. The cell θ = D+,+,+,...,+
`+1,1,1,...,1(1, 2, 3, . . . , k) parametrizes all arrangements (H1, . . . ,Hk)

of k linear hyperplanes in Rd+1, where the order and orientation are fixed appropriately such that

• Q := {q1, . . . , q`} ⊂ H1,

• q`+1 /∈ H1,

• q1 /∈ H2, . . . , q1 /∈ Hk, and

• H2, . . . ,Hk have unit normal vectors with different (positive) first coordinates, that is,

|{〈x2, q1〉, 〈x3, q1〉, . . . , 〈xk, q1〉}| = k − 1.

Here xi ∈ S(R(d+1)×k) is a unit normal vector of the hyperplane Hi, for 1 ≤ i ≤ k.
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Proof. Observe that {q1, . . . , q`} ⊂ H1 holds if and only if 〈x1, q1〉 = 〈x1, q2〉 = · · · = 〈x1, q`〉 = 0 if

and only if x1,1 = x2,1 = · · · = x`,1 = 0: This is true since we have the binomial moment curve, so

qi = γ(i− 1) has only the first i coordinates non-zero.

Furthermore, q`+1 /∈ H1 holds if and only if x`+1,1 6= 0; choosing an appropriate orientation for H1

we can assume that x`+1,1 > 0.

The third condition is equivalent to 0 /∈ {〈x2, q1〉, 〈x3, q1〉, . . . , 〈xk, q1〉}, that is, x1,2, x1,3, . . . , x1,k 6=
0. Choosing orientations of H2, . . . ,Hk suitably this yields x1,2, x1,3, . . . , x1,k > 0.

Since the values x1,2 = 〈x2, q1〉, x1,3 = 〈x3, q1〉, . . . , x1,k = 〈xk, q1〉 are positive and distinct, we get

0 < x1,2 < x1,3 < · · · < x1,k by choosing the right order on H2, . . . ,Hk.

3.5 Proofs

3.5.1 Proof of Theorem 3.3

Let d ≥ 1, j ≥ 1, ` ≥ 0 and k ≥ 2 be integers with the property that dk = j(2k − 1) + ` for

0 ≤ ` ≤ d − 1. Consider a collection of j ordered disjoint intervals M = (I1, . . . , Ij) along the

moment curve γ. Let Q = {q1, . . . , q`} ⊂ γ be a set of ` predetermined points that lie to the left of

the interval I1. We prove Theorem 3.3 in two steps.

Lemma 3.24. Let A be an `-equiparting matrix, that is, a binary matrix of size k × j2k with one

row of transition count d − ` and all other rows of transition count d such that A = (A1, . . . , Aj)

for Gray codes A1, . . . , Aj with the property that the last column of Ai is equal to the first column

of Ai+1 for 1 ≤ i < j. Then A determines an arrangement H of k affine hyperplanes that equipart

M = (I1, . . . , Ij) and one of the hyperplanes passes through each point in Q.

Proof. Without loss of generality we assume that the first row of the matrix A has transition count

d − ` while rows 2 through k have transition count d. For a row as of the matrix A, denote by ts

its transition count, 1 ≤ s ≤ k.

Place j(2k + 1) ordered points q`+1, . . . , q`+j(2k+1) on γ, such that

Ii = [q`+(i−1)2k+i, q`+i2k+i]

and each sequence of 2k + 1 points divides Ii into 2k subintervals of equal length. Ordered refers

to the property that qr = γ(tr) if t1 < t2 < · · · < tj(2k+1).

We now define the hyperplanes in H by specifying which of the points they pass through and

then choosing their orientations. Force the affine hyperplane H1 to pass through all of the points

in Q. For s = 1, . . . , i, the affine hyperplane Hs passes through x`+r+i if there is a bit change in

row as from entry r to entry r + 1 for (i − 1)2k < r ≤ i2k. Orient Hs such that the subinterval

[qr, qr+1] is on the positive side of Hs if it corresponds to a 0-entry in as. Since each A1, . . . , Aj is

a Gray code, the arrangement H is indeed an equipartition.

Lemma 3.25. Every arrangement of k affine hyperplanes H that equiparts M = (I1, . . . , Ij) and

where one of the hyperplanes passes through each point of Q induces a unique binary matrix A as

in Lemma 3.24.
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Proof. Since dk = j(2k − 1) + ` and 0 ≤ ` ≤ d − 1, the hyperplanes in H must pass through the

points q`+(i−1)2k+i+1, . . . , q`+i2k+i−1 of the intervals Ii for i ∈ {1, . . . , j}. Recording the position of

the subintervals [q`+r, q`+r+1], for r 6= i2k + i, with respect to each hyperplane leads to a matrix as

in described in Lemma 3.24.

q10 q11

q19

q12q9

q18

I1 I2

q1

H1

q2 q3

Figure 3.2: Illustration of one step in the proof of Lemma 3.24. Here H1 is an affine hyperplane bisecting
two intervals I1 and I2 on the 5-dimensional moment curve.

Thus the number of non-equivalent `-equiparting matrices is the same as the number of ar-

rangements of k affine hyperplanes H that equipart the collection of j disjoint intervals on the

moment curve in Rd, up to renumbering and orientation change of hyperplanes in H, when one of

the hyperplanes is forced to pass through ` prescribed points on the moment curve lying to the left

of the intervals. This concludes the proof of Theorem 3.3.

3.5.2 Proof of Theorem 3.4

Let j ≥ 1 and k ≥ 3 with be integers and let d = d 2k−1
k je and ` = dk − (2k − 1)j. In addition,

assume that the number of non-equivalent `-equiparting matrices of size k × j2k is odd. In order

to prove that ∆(j, k) ≤ d it suffices by Theorem 3.10 to prove that there is no S±k -equivariant map

Xd,k −→ S(Wk ⊕ U⊕jk ),

whose restriction toX>1
d,k is S±k -homotopic to ν◦ψM|X>1

d,k
forM = (I1, . . . , Ij). Following Section 3.3

we verify that the cohomology class

[o(g)] ∈ HN2+1

S±k

(
Xd,k, X

>1
d,k ; πN2

(S(Wk ⊕ U⊕jk ))
)
,

does not vanish, where g = ν ◦ ψM|X(N2) .

Consider the cell θ := D+,+,+,...,+
`+1,1,1,...,1(1, 2, 3, . . . , k) of dimension (d+ 1)k− 1− ` = N2 + 1 in Xd,k,

as in Example 3.22. Let eθ denote the corresponding basis element of the cell θ in the cellular chain

group CN2+1(Xd,k, X
>1
d,k), and let hθ be the attaching map of θ. This cell is cut out from the unit

sphere S(R(d+1)×k) by the following inequalities:

0 <`+1 x1 <1 x2 <1 · · · <1 xk.

In particular, this means that the first ` coordinates of x1 are zero, that is, x1,1 = x2,1 = x3,1 =

· · · = x`,1 = 0, and x`+1,1 > 0.

Let us fix ` points Q = {q1, . . . , q`} on the moment curve (3.14) in Rd+1 as it was done in (3.15):

q1 := γ(0), . . . , q` := γ(`−1). Then, by Lemma 3.23, the relative interior ofD+,+,+,...,+
`+1,1,1,...,1(1, 2, 3, . . . , k)

parametrizes the arrangements H = (H1, . . . ,Hk) for which orientations and order of the hyper-

planes are fixed with H1 containing all the points from Q. According to the formula (3.5) we have
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that

o(g)(eθ) = [ν ◦ ψM ◦ hθ|∂θ] =
∑

deg(ν ◦ ψM|X(N2+1) ◦ hθ|Si) · ζ,

where as before ζ ∈ πN2
(S(Wk⊕U⊕jk )) ∼= Z is a generator, and the sum ranges over all arrangements

of k hyperplanes in relint θ that equipartM. Here, as before, Si denotes a small N2-sphere around

a root of the function ψM|X(N2+1) ◦ hθ, that is, the point that parametrizes an arrangements of k

hyperplanes in relint θ that equipart M.

Now, the local degrees of the function ν ◦ψM|X(N2+1) ◦hθ are ±1. Indeed, in a small neighborhood

U ⊆ relint θ around any root the test map ψM is a continuous bijection. Thus ψM|∂U is a continuous

bijection into some N2-sphere around the origin in Wk ⊕ U⊕jk and by compactness of ∂U is a

homeomorphism. Consequently,

o(g)(eθ) =
∑

deg(ν ◦ ψM|X(N2+1) ◦ hθ|Si) · ζ =
(∑

±1
)
· ζ = a · ζ, (3.16)

where the sum ranges over all arrangements of k hyperplanes in relint θ that equipartM. According

to Theorem 3.3 the number of (±1)’s in the sum (3.16) is equal to the number of non-equivalent

`-equiparting matrices of size k × j2k. By our assumption this number is odd and consequently

a ∈ Z is an odd integer. We obtained that

o(g)(eθ) = a · ζ, (3.17)

where a ∈ Z is an odd integer.

Remark 3.26. It is important to point out that the calculations and formulas up to this point

also hold for k = 2. The assumption k ≥ 3 affects the S±k = (Z/2)k o Sk module structure on

πN2
(S(Wk ⊕ U⊕jk )) ∼= Z. For k ≥ 2 every generator εi of the subgroup (Z/2)k acts trivially, while

each transposition τi,t, a generator of the subgroup Sk, acts as multiplication by −1 in the case

k ≥ 3, and as multiplication by (−1)j+1 in the case k = 2.

Finally, we prove that [o(g)] does not vanish and conclude the proof. This will be achieved by

proving that the cocycle o(g) is not a coboundary.

Let us assume to the contrary that o(g) is a coboundary. Thus there exists a cochain

h ∈ CN2

S±k

(
Xd,k, X

>1
d,k ; πN2

(S(Wk ⊕ U⊕jk ))
)

such that o(g) = δh, where δ denotes the coboundary operator.

(1) For ` = 0 the relation (3.11) implies that

a · ζ = o(g)(eθ) = δh(eθ) = h(∂eθ)

= (1 + (−1)dε1) · h(eγ1) +

k∑
i=2

(1 + (−1)dτi−1,i) · h(eγ2i−1
)

= (1 + (−1)d) · h(eγ1) +

k∑
i=2

(1 + (−1)d+1) · h(eγ2i−1)

= 2b · ζ,
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for some integer b. Since a is an odd integer this is not possible, and therefore o(g) is not a

coboundary.

(2) For ` = 1 the relation (3.12) implies that

a · ζ = o(g)(eθ) = δh(eθ) = h(∂eθ)

= (1 + (−1)d−1ε1) · h(eγ1) +

(1 + (−1)dε2 + (−1)dτ1,2 + (−1)d+dε1τ1,2) · h(eγ3) +

k∑
i=3

(1 + (−1)dτi−1,i) · h(eγ2i−1
)

= (1 + (−1)d−1) · h(eγ1) + (1 + (−1)d + (−1)d+1 − 1) · h(eγ3) +

k∑
i=3

(1 + (−1)d+1) · h(eγ2i−1)

= (1 + (−1)d−1) · h(eγ1) +

k∑
i=3

(1 + (−1)d+1) · h(eγ2i−1
)

= 2b · ζ,

for b ∈ Z. Again we reached a contradiction, so o(g) is not a coboundary.

(3) For 2 ≤ ` ≤ d− 1 the relation (3.13) implies that

a · ζ = o(g)(eθ) = δh(eθ) = h(∂eθ)

= (1 + (−1)d−`ε1) · h(eγ1) + (1 + (−1)dε2) · h(eγ3) +

k∑
i=3

(1 + (−1)dτi−1,i) · h(eγ2i−1
)

= (1 + (−1)d−`) · h(eγ1) + (1 + (−1)d) · h(eγ3) +

k∑
i=3

(1 + (−1)d+1) · h(eγ2i−1)

= 2b · ζ,

for an integer b. Since a is an odd integer this is not possible. Again, o(g) is not a coboundary.

3.5.3 Proof of Theorem 3.5

Let j ≥ 1 be an integer with d = d 3
2je and ` = 2d− 3j ≤ 1.

The proof of this theorem is done in the footsteps of the proof of Theorem 3.4. In all three cases

we rely on Theorem 3.10 and prove

• the nonexistence of S±2 -equivariant map Xd,2 −→ S(W2 ⊕ U⊕j2 ) whose restriction to X>1
d,2 is

S±2 -homotopic to ν ◦ ψM|X>1
d,2

for M = (I1, . . . , Ij); by

• evaluating the obstruction cocycle o(g) for g = ν ◦ ψM|X(N2) on cells D+,+
1,1 (1, 2) or D+,+

2,1 (1, 2),

depending on ` being 0 or 1, using Theorem 3.3; and then

• prove that the cocycle o(g) is not a coboundary, using boundary formulas from Example 3.22.
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2-bit Gray codes

In order to evaluate the obstruction cocycle o(g) on the relevant cells in the case k = 2 we need to

understand (2× 4)-Gray codes. These correspond to equipartitions of an interval I on the moment

curve into four equal orthants by intersecting with two hyperplanes H1 and H2 in altogether three

points of the interval. There are two such configurations: either H1 cuts through the midpoint of

I and H2 separates both halves of I into equal pieces by two additional intersections, or the roles

of H1 and H2 are reversed. In terms of Gray codes we can express this as follows.

Lemma 3.27. There are two different 2-bit Gray codes that start with the zero column (or any

other fixed binary vector of length 2):(
0 1 1 0

0 0 1 1

)
and

(
0 0 1 1

0 1 1 0

)
.

Proof. The second column of the Gray code determines the rest of the code, and there are only two

choices for a bit flip.

This means that in the case k = 2 an `-equiparting matrix A has a more compact representation:

it is determined by the first column – a binary vector of length 2 – and j additional bits, one for

each Ai, encoding whether the first bit flip in Ai is in the first or second row. These j bits cannot

be chosen independently since there are restrictions imposed by the transition count.

Lemma 3.28. Let j ≥ 1 be an integer with d = d 3
2je and ` = 2d− 3j ≤ 1.

(1) If ` = 0, then the number of non-equivalent 0-equiparting matrices is equal to

1
2

(
j
j
2

)
.

(2) If ` = 1, then the number of non-equivalent 1-equiparting matrices is equal to(
j
j+1

2

)
.

Proof. We count the number of non-equivalent `-equiparting matrices of the form A = (A1, . . . , Aj)

where Ai is a 2-bit Gray code. A (2 × 4)-Gray code with the first bit flip in the first row has in

total two bit flips in the first row and one bit flip in the second row.

(1): Let ` = 0. Then 2d = 3j and consequently j has to be even. The matrix A must have transition

count d in each row. Thus half of the Ai’s have the first bit flip in the first row. Consequently,

0-equiparting matrices A with a fixed first column are in bijection with j
2 -element subsets of a set

with j elements. By inverting the bits in each row we can fix the first column of A to be the zero

vector. Additionally, we are allowed to interchange the rows. Up to this equivalence there are
1
2

(
j
j/2

)
such matrices.

(2): Let ` = 1. Then 2d = 3j + 1 and so j is odd. The matrix A must have transition count d

in one row while transition count d − 1 in the remaining row. Without loss of generality we can

assume that A have transition count d in the first row. Assume that r of the Ai’s have the first

bit flip in the first row. Consequently, j − r of the Ai’s have the first bit flip in the second row.



74 3. A unified approach via relative equivariant obstruction theory

Now the transition count of the first row is 2r+ j − r while the transition count of the second row

is r + 2(j − r). The system of equations 2r + j − r = d, r + 2(j − r) = d − 1 yields that r = j+1
2 .

Therefore, up to equivalence, there are
(
j
r

)
such matrices.

The case ` = 0⇔ 2d = 3j

Let θ := D+,+
1,1 (1, 2), and let eθ denote the related basis element of the cell θ in the top cellular

chain group C2d+1(Xd,2, X
>1
d,2) which, in this case, is equivariantly generated by θ. According to

equation (3.16), which also holds for k = 2 as explained in Remark 3.26,

o(g)(eθ) =
(∑

±1
)
· ζ = a · ζ, (3.18)

where ζ ∈ π2d+1(S(W2⊕U⊕j2 )) ∼= Z is a generator, and the sum ranges over all arrangements of two

hyperplanes in relint θ that equipartM. Since θ parametrizes all arrangements H = (H1, H2) where

orientations and order of hyperplanes are fixed, the sum in (3.18) ranges over all arrangements of

two hyperplanes that equipartM where orientation and order of hyperplanes are fixed. Therefore,

by Theorem 3.3, the number of (±1)’s in the sum of (3.18) is equal to the number of non-equivalent

0-equiparting matrices of size 2 × 4j. Now, Lemma 3.28 implies that the number of (±1)’s in the

sum of (3.18) is 1
2

(
j
j/2

)
. Consequently, integer a is odd if and only if 1

2

(
j
j/2

)
is odd.

Assume that the cocycle o(g) is a coboundary. Hence there exists a cochain

h ∈ C2d
S±2

(
Xd,2, X

>1
d,2 ; π2d(S(W2 ⊕ U⊕j2 ))

)
with the property that o(g) = δh. The relation (3.11) for k = 2 transforms into

∂eθ = (1 + (−1)dε1) · eγ1 + (1 + (−1)dτ1,2) · eγ3 .

Thus we have that

a · ζ = o(g)(eθ) = δh(eθ) = h(∂eθ)

= (1 + (−1)dε1) · h(eγ1) + (1 + (−1)dτ1,2) · h(eγ3)

= (1 + (−1)d) · h(eγ1) + (1 + (−1)d+j+1) · h(eγ3)

= 2b · ζ.

Consequently, o(g) is not a coboundary if and only if a is odd if and only if 1
2

(
j
j/2

)
is odd. Having

in mind the Kummer criterion Lemma 2.19 stated below we conclude that: A S±2 -equivariant

map Xd,2 −→ S(W2 ⊕ U⊕j2 ) whose restriction to X>1
d,2 is S±2 -homotopic to ν ◦ ψM|X>1

d,2
does not

exists if and only is o(g) is not a coboundary if and only if a is an odd integer if and only if 1
2

(
j
j/2

)
is odd if and only if j = 2t for t ≥ 1.

Thus we have proved the case (ii) of Theorem 3.5. Moreover, since the primary obstruction o(g)

is the only obstruction, we have proved that a S±2 -equivariant map Xd,2 −→ S(W2 ⊕ U⊕j2 ) whose

restriction to X>1
d,2 is S±2 -homotopic to ν ◦ ψM|X>1

d,2
exists if and only if j, an even integer, is not a

power of 2.
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The case ` = 1⇔ 2d = 3j + 1

Let θ := D+,+
2,1 (1, 2), and again let eθ denote the related basis element of the cell θ in the cellular

chain group C2d(Xd,2, X
>1
d,2) which, in this case, is equivariantly generated by two cells D+,+

2,1 (1, 2)

and D+,+
1,2 (1, 2). Again, the equation (3.16) implies that

o(g)(eθ) =
(∑

±1
)
· ζ = a · ζ, (3.19)

where ζ ∈ π2d+1(S(W2 ⊕ U⊕j2 )) ∼= Z is a generator, and the sum ranges over all arrangements of k

hyperplanes in relint θ that equipart M. The cell θ parametrizes all arrangements H = (H1, H2)

where H1 passes through the given point on the moment curve and orientations and order of

hyperplanes are fixed. Thus the sum in (3.19) ranges over all arrangements of two hyperplanes

that equipart M where H1 passes through the given point on the moment curve with order and

orientation of hyperplanes being fixed. Therefore, by Theorem 3.3, the number of (±1)’s in the

sum of (3.19) is the same as the number of non-equivalent 1-equiparting matrices of size 2 × 4j.

Again, Lemma 3.28 implies that the number of (±1)’s in the sum of (3.19) is
(

j
(j+1)/2

)
. The integer

a is odd if and only if
(

j
(j+1)/2

)
is odd if and only if j = 2t − 1 for t ≥ 1.

Assume that the cocycle o(g) is a coboundary. Then there exists a cochain

h ∈ C2d−1

S±2

(
Xd,2, X

>1
d,2 ; π2d−1(S(W2 ⊕ U⊕j2 ))

)
with the property that o(g) = δh. Now, the relation (3.12) for k = 2 transforms into

∂eθ = (1 + (−1)d−1ε1) · eγ1 + (1 + (−1)dε2 + (−1)dτ1,2 + (−1)d+dε1τ1,2) · eγ3 .

Thus, having in mind that j has to be odd, we have

a · ζ = o(g)(eθ) = δh(eθ) = h(∂eθ)

= (1 + (−1)d−1ε1) · h(eγ1) +

(1 + (−1)dε2 + (−1)dτ1,2 + (−1)d+dε1τ1,2) · h(eγ3)

= (1 + (−1)d−1) · h(eγ1) + (1 + (−1)d + (−1)d+j+1 + (−1)j+1) · h(eγ3)

= (1 + (−1)d−1) · h(eγ1) + (1 + (−1)d + (−1)d + 1) · h(eγ3)

=

2h(eγ1), d odd

4h(eγ3), d even.
(3.20)

Now, we separately consider cases depending on parity of d and value of j.

(1) Let d be odd. Recall that a is odd if and only if j = 2t − 1 for t ≥ 1. Since d = 1
2 (3j + 1) =

3 ·2t−1−1 and d is odd we have that for j = 2t−1, with t ≥ 2, the integer a is odd and consequently

o(g) is not a coboundary. Thus a S±2 -equivariant map Xd,2 −→ S(W2 ⊕ U⊕j2 ) whose restriction to

X>1
d,2 is S±2 -homotopic to ν ◦ψM|X>1

d,2
does not exists. We have proved the case (ii) of Theorem 3.5

for t ≥ 2.

(2) Let d = 2 and j = 1 = 21 − 1. Then the integer a is again odd and consequently cannot

be divisible by 4 implying again that o(g) is not a coboundary.Therefore a S±2 -equivariant map
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X2,2 −→ S(W2 ⊕ U2) whose restriction to X>1
2,2 is S±2 -homotopic to ν ◦ ψM|X>1

2,2
does not exists.

This concludes the proof of the case (ii) of Theorem 3.5.

(3) Let d ≥ 4 be even. Now we determine the integer a by computing local degrees deg(ν ◦
ψM|X(N2+1)◦hθ|Si); see (3.16) and (3.19). We prove, almost identically as in the proof of Lemma 2.17,

that all local degrees equal, either 1 or −1.

That local degrees of ν ◦ ψM|θ are ±1 is simple to see since in a small neighborhood U in

relint θ around any root λu+ (1−λ)v the test map ψM|θ is a continuous bijection. Indeed, for any

vector w ∈ W2 ⊕ U⊕j2 , with sufficiently small norm, there is exactly one λu′ + (1 − λ)v′ ∈ U with

ψM(λu′ + (1 − λ)v′) = w. Thus ψM|∂U is a continuous bijection into some 3j-sphere around the

origin of W2 ⊕ U⊕j2 and by compactness of ∂U is a homeomorphism.

Next we compute the signs of the local degrees. First we describe a neighborhood of every root of

the test map ψM in relint θ. Let λu+(1−λ)v ∈ relint θ with ψM(λu+(1−λ)v) = 0. Consequently

λ = 1
2 . Denote the intersections of the hyperplane Hu with the moment curve by x1, . . . , xd in

the correct order along the moment curve. Similarly, let y1, . . . , yd be the intersections of Hv with

the moment curve. In particular, x1 is the point q1 that determines the cell θ; see Lemma 3.23.

Choose an ε > 0 such that ε-balls around x2, . . . , xd and around y1, . . . , yd are pairwise disjoint

with the property that these balls intersect the moment curve only in precisely one of the intervals

I1, . . . , Ij . Pairs of hyperplanes (Hu′ , Hv′) with λu′ + (1 − λ)v′ ∈ relint θ that still intersect the

moment curve in the corresponding ε-balls parametrize a neighborhood of 1
2u + 1

2v. The local

neighborhood consisting of pairs of hyperplanes with the same orientation still intersecting the

moment curve in the corresponding ε-balls where the parameter λ is in some neighborhood of 1
2 .

For sufficiently small ε > 0 the neighborhood can be naturally parametrized by the product

( 1
2 − ε,

1
2 + ε)×

2d∏
i=2

(−ε, ε),

where the first factor relates to λ, the next d − 1 factors correspond to neighborhoods of the

x2, . . . , xd and the last d factors to ε-balls around y1, . . . , yd. A natural basis of the tangent space

at 1
2u + 1

2v is obtained via the push-forward of the canonical basis of R2d as tangent space at

( 1
2 , 0, . . . , 0)t.

Consider the subspace Z ⊆ relint θ that consists all points λu+ (1− λ)v associated to the pairs

of hyperplanes (Hu, Hv) such that both hyperplanes intersect the moment curve in d points. In the

space Z the local degrees only depend on the orientations of the hyperplanes Hu and Hv, but these

are fixed since Z ⊆ relint θ. Indeed, any two neighborhoods of distinct roots of the test map ψM
can be mapped onto each other by a composition of coordinate charts since their domains coincide.

This is a smooth map of degree 1: the Jacobian at the root is the identity map. Let 1
2u + 1

2v

and 1
2u
′ + 1

2v
′ be roots in Z of the test map ψM and let Ψ be the change of coordinate chart

described above. Then ψM and ψM ◦Ψ differ in a neighborhood of 1
2u+ 1

2v just by a permutation

of coordinates. This permutation is always even by Claim 2.18.

The orientations of the hyperplanes Hu and Hv are fixed by the condition that 1
2u+ 1

2v ∈ relint θ.

Thus Hu and Hv are completely determined by the set of intervals that Hu cuts once. Let A ⊆
{1, . . . , j} be the set of indices of intervals I1, . . . , Ih that Hu intersects once, and let B ⊆ {1, . . . , j}
be the same set for Hv. Then Ψ is a composition of a multiple of A M B transpositions and, hence,

an even permutation. This means that all the local degrees (±1’s) in the sum (3.19) are of the
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same sign, and consequently a = ±
(

j
(j+1)/2

)
.

Now, since d is even the equality (3.20) implies that a·ζ = 4b·ζ . Thus, if o(g) is a coboundary, a

is divisible by 4. In the case j = 2t+1 where t ≥ 2, and d = 3·2t−1+2 the Kummer criterion implies

that the binomial coefficient
(

j
(j+1)/2

)
is divisible by 2 but not by 4. Hence o(g) is not a coboundary

and a S±2 -equivariant map Xd,2 −→ S(W2 ⊕ U⊕j2 ) whose restriction to X>1
d,2 is S±2 -homotopic to

ν ◦ ψM|X>1
d,2

does not exist. This concludes the final instance (iii) of Theorem 3.5.

3.5.4 Proof of Theorem 3.6

We prove both instances of the Ramos conjecture ∆(2, 3) = 5 and ∆(4, 3) = 10 using Theorem

3.4. Thus in order to prove that

• ∆(2, 3) = 5 it suffices to show that the number of non-equivalent 1-equiparting matrices of size

3× 2 · 23 is odd, Proposition 3.30;

• ∆(4, 3) = 10 it suffices to show that the number of non-equivalent 2-equiparting matrices of

size 3× 4 · 23 is also odd, Enumeration 3.31.

Consequently we turn our attention to 3-bit Gray codes. It is not hard to see that the following

lemma holds.

Lemma 3.29. Let c1 ∈ {0, 1}3 be a choice of first column.

(i) There are 18 different 3-bit Gray codes A = (c1, c2, . . . , c8) ∈ {0, 1}3×8 that start with c1.

They have transition counts (3, 2, 2), (3, 3, 1), or (4, 2, 1).

(ii) There are 3 equivalence classes of Gray codes that start with with c1. The three classes can be

distinguished by their transition counts.

Proof. (i): Starting at a given vertex of the 3-cube, there are precisely 18 Hamiltonian paths. This

can be seen directly or by computer enumeration.

(ii): Follows directly from (i), as all equivalence classes have size 6: If c1 = (0, 0, 0)t then all

elements in a class are obtained by permutation of rows. For other choices of c1, they are obtained

by arbitrary permutations of rows followed by the “correct” row bit-inversions to obtain c1 in the

first column.

Proposition 3.30. There are 13 non-equivalent 1-equiparting matrices that are of size 3× (2 · 23).

Proof. Let A = (A1, A2) be a 1-equiparting matrix. This means that both A1 and A2 are 3-bit

Gray codes and the last column of A1 is equal to the first column of A2. In addition, the transition

counts cannot exceed 5 and must sum up to 14. Having in mind that A is a 1-equiparting matrix

it follows that A must have transition counts {5, 5, 4}. Hence two of its rows must have transition

count 5 and one row must have transition count 4. In the following a realization of transition counts

is a Gray code with the prescribed transition counts.

Since we are counting 1-equiparting matrices up to equivalence we may fix the first column of

A, and hence first column of A1, to be (0, 0, 0)t and choose for A1 one of the matrices from each of

the 3 classes of 3-bit Gray codes described in Lemma 3.29(ii).

If A1 has transition counts (3, 2, 2), that is, the first row has transition count 3 while remaining

rows have transition count 2, then its last column is (1, 0, 0)t. The next Gray code A2 in the matrix

a can have transition counts (2, 3, 2), (2, 2, 3), or (1, 3, 3), each having 2 realizations A2, each with

first column (1, 0, 0)t.
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If A1 has transition (3, 3, 1), then its last column is (1, 1, 0)t. The Gray code A2 can have

transition counts (2, 2, 3), having 2 realizations, or (1, 2, 4), having 1 realization, or (2, 1, 4), having

one realization, each with first column (1, 1, 0)t.

If A1 has transition counts (4, 2, 1), then its last column is (0, 0, 1)t. The Gray code A2 can

have transition counts (1, 2, 4), having 1 realization, or (1, 3, 3), having 2 realizations, each with

first column (0, 0, 1)t.

In total we have 6 + 4 + 3 = 13 non-equivalent 1-equiparting matrices A = (A1, A2).

Enumeration 3.31. There are 2015 non-equivalent 2-equiparting matrices that are of size 3×4·23.

Proof. Using Lemma 3.29 we enumerate non-equivalent 2-equiparting matrices by computer. Let

A = (A1, A2, A3, A4) be a 2-equiparting matrix. It must have transition counts {10, 10, 8}. Similarly

as above, A is constructed by fixing the first column to be (0, 0, 0)t and A1 to be one representative

from each of the 3 classes of Gray codes. Then all possible Gray codes for A2, A3, A4 are checked,

making sure that the last column of Ai is equal to the first column of Ai+1 and that the transition

counts of A1, . . . , A4 sum up to {10, 10, 8}. This leads to 2015 possibilities.

This concludes the proof of Theorem 3.6.

Remark 3.32. By means of a computer we were able to calculate the number N(j, k, d) of non-

equivalent `-equiparting matrices for several values of j ≥ 1 and k ≥ 3, where d = d 2k−1
k je and

` = dk − (2k − 1)j; see Table 3.1.

Number N(j, k, d) of non-equiv `-equiparting matrices
given integers j ≥ 2 and k ≥ 3.

j k ` d N(j, k, d)

2 3 1 5 13
3 3 0 7 60
4 3 2 10 2015
5 3 1 12 35040
6 3 0 14 185130
7 3 2 17 7572908
8 3 1 19 132909840
9 3 0 21 732952248
1 4 1 4 16
2 4 2 8 37964

Table 3.1: Here d = d 2k−1
k
je and ` = dk − (2k − 1)j.
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Chapter 4

A counterexample and a proof

Abstract

Bárány, Kalai, and Meshulam recently obtained a topological Tverberg-type theorem for ma-

troids, which guarantees multiple coincidences for continuous maps from a matroid complex

to Rd, if the matroid has sufficiently many disjoint bases. They make a conjecture on the

connectivity of k-fold deleted joins of a matroid with many disjoint bases, which could yield a

much tighter result – but we provide a counterexample already for the case of k = 2, where a

tight Tverberg-type theorem would be a topological Radon theorem for matroids. Neverthe-

less, we prove a topological Radon theorem for the counterexample family of matroids by an

index calculation, despite the failure of the connectivity-based approach.

Publication Remark. The results of this chapter are joint work with Pavle V. M. Blagojević

and Günter M. Ziegler [26].

4.1 Introduction

Let d ≥ 1 and k ≥ 1 be integers and let f : Σ → Rd be a continuous map from a non-trivial

simplicial complex Σ to Rd. A Tverberg k-partition of f is a collection {σ1, . . . , σk} of k pairwise

disjoint faces of Σ such that
⋂k
i=1 f(σi) 6= ∅. For fixed d ≥ 1, the topological Tverberg number

TT(Σ, d) is the maximal integer k ≥ 1 such that every continuous map f : Σ→ Rd has a Tverberg

k-partition. The topological Tverberg theorem due to Bárány, Shlosman, and Szűcs [10] implies

that, if Σ is the d-skeleton ∆
(d)
(k−1)(d+1) of the simplex of dimension (k−1)(d+1) and k is prime, then

TT(∆
(d)
(k−1)(d+1), d) = k. For k = 2 this result is equivalent to the topological Radon theorem [6].

It follows from the work of Özaydin [64] that this result remains true when k is a prime power.

Recently Frick [42], [25], using the “constraint method” [24] and building on work by Mabillard and

Wagner [56], showed that if k ≥ 6 is not a prime-power and d ≥ 3k+1, then TT(∆(k−1)(d+1), d) < k;

see [8] for a recent survey.

Recently Bárány, Kalai, and Meshulam [9] gave lower bounds for the topological Tverberg

number of a matroid, regarded as the simplicial complex of its independent sets. Let Σ be a

matroid M of rank d+ 1 with b disjoint bases, then [9, Thm. 1] asserts that TT(M,d) ≥
√
b/4. If

M is the uniform matroid ∆
(d)
(k−1)(d+1), then this result implies that TT(∆

(d)
(k−1)(d+1), d) ≥

√
k − 1/4

for all integers d, k ≥ 1.

81
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The results of [10], [64], and [9, Thm. 1] mentioned above are all obtained by using a configuration

space/test map scheme. In the join scheme used in [70] and [9] the configuration space X is

the k-fold deleted join Σ∗k∆ of the complex Σ and the test space Y is a sphere S(k−1)(d+1)−1 of

dimension (k − 1)(d+ 1)− 1. In the product scheme used in [10] the configuration space X is the

k-fold deleted product Σ×k∆ of the complex Σ and the test space Y is a sphere S(k−1)d. If k is prime,

then all spaces and in particular the two spheres admit free actions by the group Z/k.

In order to obtain sharp results using a configuration space/test map scheme it is necessary

to determine proof strategies for the nonexistence of an equivariant map from the configuration

space X to the test space Y . One commonly used method is the connectivity-based approach, which

can be applied if Y is a finite-dimensional CW complex on which the group acts freely: If one

establishes that the connectivity of the space X is at least as high as the dimension of the space Y ,

then Dold’s theorem [35] implies that an equivariant map X → Y cannot exist. For a more general

version of Dold’s theorem that is also applicable in this context see [77].

The connectivity-based approach (for k prime) yields tight bounds for the topological Tverberg

number of Σ = ∆
(d)
(k−1)(d+1) with both the product scheme [10] and the join scheme [70]. The natural

questions we are concerned with regard the more general case where Σ is a matroid M : What is

the connectivity of the test spaces? Which results can/cannot be obtained via a connectivity-based

approach? Having these questions in mind, Bárány, Kalai, and Meshulam formulated the following

conjecture.

Conjecture 4.1 (Bárány, Kalai, and Meshulam 2016 [9, Conj. 4]). For any integer k ≥ 1 there

exists an integer nk ≥ 1 depending only on k such that for any matroid M of rank r ≥ 1 with at

least nk disjoint bases, the k-fold deleted join M∗k∆ of the matroid M is (kr − 1)-dimensional and

(kr − 2)-connected.

For k = 1 the conjecture is true, since a matroid of rank r is pure shellable and hence in

particular (r − 2)-connected [17, Thm. 4.1]. Using the connectivity-based approach the conjecture

would imply that for a matroid M of rank d+1 with b ≥ nk disjoint bases the topological Tverberg

number satisfies TT(M,d) ≥ k.

We prove the following theorem that gives a counterexample to the conjecture already in the

case where k = 2.

Theorem 4.2 (Conjecture 4.1 fails for k = 2). There is a family of matroids Mr (r ∈ Z, r ≥ 2)

such that each matroid Mr has rank r and r disjoint bases, while the 2-fold deleted join (Mr)
∗2
∆

of Mr is is (2r − 1)-dimensional and (2r − 3)-connected, but not (2r − 2)-connected.

The family of matroids Mr (r ≥ 2) is a tight example for the failure of Conjecture 4.1 in the

sense that if we increase the number of bases from r to r + 1, then the 2-fold deleted join of the

new complex is (2r − 2)-connected; see Corollary 4.12. To prove Theorem 4.2 we first show that

the complex (Mr)
∗2
∆ is shellable for r ≥ 3 using the notion of shellability for non-pure complexes

due to Björner and Wachs [17], [18]; see Proposition 4.11. The crucial ingredient in the proof is

Proposition 4.9, which shows that balanced subcomplexes of shellable balanced complexes are again

shellable. The case r = 2 is treated separately; see Remark 4.10. We give a first proof of Theorem 4.2

by constructing a covering of (Mr)
∗2
∆ by two subcomplexes; see Corollary 4.15. A second proof

of Theorem 4.2 is a straightforward calculation involving only the combinatorics of (Mr)
∗2
∆ ; see

Section 4.3.5. This allows us to calculate the Betti numbers of (Mr)
∗2
∆ ; see Corollary 4.16.
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Using the connectivity-based approach one obtains that TT(Mr, d) ≥ 2 when 2r − 3 ≥ d; see

Corollary 4.23. However, despite the lower connectivity of the matroid Mr we still obtain a sharp

topological Radon theorem for Mr by means of a Fadell–Husseini index argument that goes back

to [20, Thm. 1] and [27, Thm. 4.2]; for the classical reference regarding the Fadell–Husseini index

see [38]. Thus the following theorem is an example of a Tverberg-type result for a family of matroids

that cannot be obtained via the connectivity-based approach.

Theorem 4.3 (Topological Radon theorem for Mr). Let d ≥ 1 and r ≥ 3 be integers such that

2r − 2 ≥ d. Then the topological Tverberg number of the family of matroids Mr from Theorem 4.2

satisfies TT(Mr, d) ≥ 2.

We summarize the remaining results of this chapter as follows.

• We show that [9, Cor. 3] in fact implies lower bounds for the topological Tverberg num-

ber TT(M,d) for matroids M of all ranks; see Corollary 4.17.

• We give upper bounds for the topological Tverberg number TT(M,d) in the case where the

rank r of the matroid M is at most d− 2; see Proposition 4.18.

• We show that the connectivity of the k-fold deleted product M×k∆ of a matroid M of rank r

with b disjoint bases is at least r−2−br(k−1)/bc, when k ≥ 2 and b, r ≥ k. If b ≥ r(k−1)+1,

then M×k∆ is not (r − 1)-connected; see Theorem 4.20.

• Using Theorem 4.20 we establish the connectivity of the ordered configuration space of two

particles in a matroid; see Corollary 4.21.

4.2 Preliminaries

4.2.1 Terminology

By a simplicial complex or simply complex we refer to a finite abstract simplicial complex or a

geometric realization of a finite abstract simplicial complex. We require that any complex contains

the empty set as a face of dimension −1. A facet of a complex is a face that is not contained

in any other face. Let Σ1, . . . ,Σk be simplicial complexes with vertex sets V1, . . . , Vk. Then the

join of the Σi is defined as the simplicial complex Σ1 ∗ · · · ∗ Σk = {σ1 t · · · t σk : σi ∈ Σi} with

vertex set equal to the disjoint union
⊔k
i=1 Vi. Assume the vertex sets Vi are all contained in a

common set V , then the deleted join of the Σi is defined as the simplicial complex (Σ1 ∗· · ·∗Σk)∆ =

{σ1 t · · · tσk : σi ∈ Σi, σi ∩σj = ∅ for i 6= j} with vertex set
⊔k
i=1 Vi. Let Σi = Σ for i = 1, . . . , k.

Then Σ∗k := Σ1 ∗ · · · ∗ Σk is the k-fold join of Σ and Σ∗k∆ := (Σ1 ∗ · · · ∗ Σk)∆ is the k-fold deleted

join of Σ. If σ ⊆ V , the deletion of σ from Σ is defined as Σ\σ = {τ ∈ Σ : σ 6⊆ τ}. We also denote

Σ\σ by Σ|(V \σ) and refer to it as the restriction of Σ to the set V \σ. The link of Σ with respect

to a face σ ∈ Σ is defined as Σ/σ = {τ ∈ Σ : σ ∩ τ = ∅, σ ∪ τ ∈ Σ}. Given a geometric simplicial

complex Σ, we define the k-fold deleted product Σ×k∆ of Σ as the CW complex with cells given by

products of relative interiors of (geometric) simplices σi ∈ Σ of the form relint(σ1)×· · ·×relint(σk),

where σi ∩ σj = ∅ for all i, j with 1 ≤ i < j ≤ k. The attaching maps for Σ×k∆ are given by the

products of the attaching maps of Σ. For additional terminology and results regarding simplicial

complexes see Matoušek [59].

A matroid M with ground set E is a simplicial complex with vertices in E such that for every

A ⊆ E the restriction M |A = {σ ∈ M : σ ⊆ A} is pure. We call a face of M an independent set.
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We call a facet of M a basis and call the cardinality of a (any) basis the rank of M . Let m and n be

integers with 0 ≤ m ≤ n. Given a ground set E of cardinality n, the uniform matroid Um,n(E) is

given by the collection of all subsets of E of cardinality at most m. Let ∆
(m−1)
n−1 be (m−1)-skeleton

of the simplex of dimension n− 1. Then we have ∆
(m−1)
n−1 = Um,n(E). Given matroids M1, . . . ,Mk

with ground sets E1, . . . , Ek, the direct sum M1 ⊕ · · · ⊕ Mk of the family Mi is defined as the

collection {I1 t · · · t Ik : Ii ∈Mi} and is a matroid with ground set E1 t · · · tEk. The direct sum

of a collection of matroids is equal to the join of the collection of matroids, viewed as simplicial

complexes. For additional terminology and results regarding matroids see Oxley [63].

4.2.2 Non-pure shellability

Since some of the complexes we are interested in are non-pure, we use the notions of “non-pure

shellability” introduced by Björner and Wachs [17], [18].

By [17, Def. 2.1] a shelling of a possibly non-pure finite simplicial complex Σ of dimension d

is defined as a strict order “�” on the set F of facets of Σ such that for any facet B ∈ F of

dimension d′ ≤ d for which there exists a prior facet A ∈ F with A� B, the simplicial complex

B ∩
( ⋃
A∈F, A�B

A
)

defined by the intersection of B with the union of the previous facets (and their faces) is pure and

(d′ − 1)-dimensional. This is equivalent to the following condition. For any two facets A,B ∈ F
with A� B, there is a facet C ∈ F and a vertex x ∈ B such that

C � B and A ∩B ⊆ B ∩ C = B \ {v}. (4.1)

For pure complexes Σ, the above definition coincides with the “usual” definition of shellability. A

d-dimensional simplicial complex Σ is shellable if it has a shelling. It is pure shellable if it is pure

and shellable.

4.3 Proof of the main result

4.3.1 The counterexample family Mr

Definition 4.4 (The counterexample family Mr). Let r ≥ 2 be an integer. Let E be a set of

pairwise distinct elements vji and wj for i = 1, . . . , r − 1 and j = 1, . . . , r. Define blocks Ei by

Ei = {v1
i , . . . , v

r
i } for i = 1, . . . , r − 1, and Er = {w1, . . . , wr}.

Define a matroid M̂r by

M̂r = U1,r(E1)⊕ · · · ⊕ U1,r(Er−1)⊕ Ur,r(Er).

Then the matroid Mr with ground set E is defined as the (r − 1)-skeleton of M̂r, hence

Mr = {I ∈ M̂r : |I| ≤ r}.
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The matroid Mr has rank r and has r pairwise disjoint bases of the form {vj1, . . . , v
j
r−1, wj} for

j = 1, . . . , r. Faces of Mr are given by choosing at most r vertices in total and at most 1 vertex in

each of the first r − 1 blocks; see Figure 4.1.

v11 vr1 v12 vr2 v1r−1 vrr−1 w1 wr

[≤ r elements]≤ 1 element ≤ 1 element ≤ 1 element

block 1 block 2 block r − 1 block r

≤ r el’s

Figure 4.1: The matroid Mr.

v11 vr1 v12 vr2 v1r−1 vrr−1 w1 wr

[≤ r per row]≤ 1 per row ≤ 1 per row ≤ 1 per row

≤ 1 per column ≤ 1 per column≤ 1 per column ≤ 1 per column

block 1 block 2 block r − 1 block r

≤ r el’s

≤ r el’s

≤ r el’s

Figure 4.2: The k-fold deleted join (Mr)
∗k
∆ with an example facet.

Consider the k-wise deleted join of the complex Mr, which we denote by (Mr)
∗k
∆ . We display

the vertices of (Mr)
∗k
∆ in k rows, based on the copy of Mr they belong to. We group the vertices

of (Mr)
∗k
∆ into r blocks; see Figure 4.2. A column of (Mr)

∗k
∆ consists of the k copies of a fixed vertex

v ∈ E. Faces of (Mr)
∗k
∆ are given by choosing at most r vertices in each row, at most 1 vertex

per column and at most 1 vertex in each row of each of the first r − 1 blocks. Note that (Mr)
∗k
∆

has dimension d = 2r − 1 and is not pure: Its facets have dimensions d, d − 1, . . . , d − k + 1. See

Figure 4.3 for an example facet of dimension d− 1 = 8 for r = 5 and k = 2.

v11 v51 v12 v52 w1 w5v13 v53 v14 v54

≤ r el’s

Figure 4.3: An 8-dimensional facet of the 9-dimensional complex (M5)∗2
∆ .

4.3.2 Shellability of subcomplexes of balanced complexes

To define a shelling of (Mr)
∗2
∆ we use the existence of pure shellings of certain pure subcomplexes

that we can describe as “balanced complexes.” Let us recall the definition of a balanced complex.
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Definition 4.5 (Stanley [74, Sec. 2]). Let m ≥ 1 and d ≥ 0 be integers and let a = (a1, . . . , am)

be an m-tuple of non-negative integers such that a1 + · · ·+ am = d+ 1. Let Σ be a d-dimensional

simplicial complex with vertex set V . Let V := (V1, . . . , Vm) be an ordered partition of V into

pairwise disjoint sets Vi, called a vertex coloring. We call Σ a balanced complex (of type a with

respect to the partition V) if

(i) Σ is pure, and

(ii) for every facet A ∈ Σ we have that |A ∩ Vi| = ai for i = 1, . . . ,m.

We call Σ completely balanced if it is balanced of type (1, . . . , 1).

For example, the order complex of any graded poset is completely balanced. A simplicial

complex is pure if and only if it is balanced of type a = (a1). Balanced complexes were introduced

by Stanley in 1979 [74]. They have been studied in the context of posets [5], [16], simplicial

polytopes [45], [50], and Cohen-Macaulay or shellable complexes [17], [61]. We point out that some

authors use “balanced complex” to refer to a “completely balanced complex.”

Balanced complexes are not necessarily pure shellable, as can be seen by taking any pure non-

shellable d-dimensional complex. Given a balanced complex Σ consider its type-selected subcom-

plex ΣT [14, p. 1858], which is the restriction of Σ to the set
⋃
i∈T Vi of vertices whose types (colors)

are contained in the set T ⊆ {1, . . . ,m}. It was shown in [12] that any type-selected subcomplex of

a pure shellable complex is pure shellable; see [14, Thm. 11.13] for a more general result. However,

we are interested in the pure shellability of the following subcomplex.

Definition 4.6 (Balanced b-skeleton). Let m ≥ 1 be an integer and let Σ be a balanced d-complex

of type a = (a1, . . . , am) with vertex coloring (V1, . . . , Vm) and let b = (b1, . . . , bm) be an m-tuple

of integers with 0 ≤ bi ≤ ai for i = 1, . . . ,m. Then the complex Σb given by the faces F of Σ for

which |F ∩ Vi| ≤ bi for i = 1, . . . ,m is the balanced b-skeleton of Σ.

To show that balanced b-skeleta of pure shellable balanced complexes are pure shellable (Proposi-

tion 4.9) we use the existence of shellings of the skeleta of a shellable complex that are “compatible”

with the original shelling of the complex. Let us formulate this as a definition.

Definition 4.7. Let Σ be a shellable simplicial complex of dimension d ≥ 0 with shelling order “�”.

Let k be an integer with 0 ≤ k ≤ d. Then a shelling �′ of the k-skeleton of Σ is compatible with

the shelling of Σ if the following implication holds for any two k-faces A and B of Σ: If A �′ B
and if A and B are the smallest (w.r.t. “�”) d-faces of Σ containing A and B, respectively, then

A� B or A = B.

The following lemma is true even for shellable complexes that are non-pure. We apply it only

in the pure setting.

Lemma 4.8 (Björner and Wachs [17, Thm. 2.9]). Let Σ be a shellable simplicial complex of dimen-

sion d. Let k be an integer with 0 ≤ k ≤ d. Then there exists a shelling of the k-skeleton of Σ that

is compatible with the shelling of Σ.

We point out that the property of compatibility is transitive in the following sense. Let Σ be a

shellable complex and let the shelling of its k-skeleton be compatible with the shelling of Σ. Then

any shelling of its (k − 1)-skeleton that is compatible with the shelling of its k-skeleton is also

compatible with the shelling of Σ.
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Proposition 4.9. Let m ≥ 1 be an integer and let Σ be a balanced d-complex of type a =

(a1, . . . , am) with vertex coloring (V1, . . . , Vm) and let b = (b1, . . . , bm) be an m-tuple of non-negative

integers with 0 ≤ bi ≤ ai for i = 1, . . . ,m. If Σ is pure shellable, then the balanced b-skeleton Σb

of Σ is pure shellable.

Proof. By induction and transitivity of compatibility, it suffices to prove the statement for b1 =

a1 − 1 and bi = ai for i = 2 . . . ,m. Let d denote the dimension of Σ. Let “�” denote the shelling

of Σ and, to simplify notation, let “�” also denote a compatible shelling of the (d − 1)-skeleton

of Σ, which exists by Lemma 4.8. We show that the restriction of this shelling to the subcomplex Σb

is a shelling. Let A and B be two (balanced) facets of Σb such that A � B. We must show that

there exists a (d− 1)-face C of Σ and a vertex v ∈ B such that

C � B and A ∩B ⊆ C ∩B = B \ {v} with |C ∩ Vi| = |bi| for i = 1, . . . ,m. (4.2)

Let A and B denote the smallest (w.r.t. “�”) facets of Σ containing A and B, respectively. So,

either A = B or A� B. If A = B, then we are done, since A and B are codimension-one faces of

the same facet, implying that they have all but one vertex in common. In this case C = A satisfies

Equation (4.2). Otherwise, if A � B, then by shellability of Σ there is a (balanced) facet C � B

of Σ that satisfies Equation (4.1). In particular C and B have all but one vertex in common. Both

C and B have type a. This implies that the two vertices in B4C must have the same color. Hence

if {v} = B \ C and {w} = C \ B, then there is an i0 ∈ {1, . . . ,m} such that v, w ∈ Vi0 . Assume

that v is not a vertex of B. Then B ⊂ C, leading to a contradiction to the minimality of B.

Hence v is a vertex of B. Now define C = B ∩ C. Then C is a face of Σ and C = B \ {v} ∪ {w}.
Since v and w are of the same type, |C ∩ Vi| = |bi| holds for all i ∈ [m]. The fact that C is

contained in the facet C � B of Σ and B ⊂ B is not contained in C implies that C � B. Hence

C satisfies Equation (4.2).

4.3.3 Shellability of the two-fold deleted join (Mr)
∗2
∆

We make the following notational conventions. Let k and r be integers with k ≥ 2 and r ≥ 2k−1.

We write a face A of (Mr)
∗k
∆ as A = (A1, . . . , Ak), where Ai lists the vertices used in the i-th row

of (Mr)
∗k
∆ for i = 1, . . . , k. We write Ai = (Ai, A

r
i ), where Ai lists the vertices of Ai contained in the

first r− 1 blocks of (Mr)
∗k
∆ and Ari lists the vertices of Ai contained in the r-th block of (Mr)

∗k
∆ . If

we need to clarify that a vertex v of Σ originates from row i, we write (v, i). We say that a vertex v

of (Mr)
∗k
∆ is free for a face A if there is no vertex of A in the column containing v, meaning that

A contains neither v nor a copy of v.

Let [r] refer to a zero-dimensional complex with r vertices. Then the deleted join ∆k,r := [r]∗k∆ is

a “chessboard complex” with k rows and r columns; see [82] for a detailed description. Each of the

first r − 1 blocks of (Mr)
∗k
∆ is isomorphic to ∆k,r. The r-fold join ∆∗rk,r is a subcomplex of (Mr)

∗k
∆ .

The restriction of ∆∗rk,r to the vertices of the first r − 1 blocks is isomorphic to the (r − 1)-fold

join ∆
∗(r−1)
k,r . Denote ∆

∗(r−1)
k,r by Σk,r−1. Color the vertices of Σk,r−1 based on the row i they are

in. Let a = (a1, . . . , ak) with ai = r − 1 for i = 1, . . . , k. Then Σk,r−1 is balanced of type a. For

b = (b1, . . . , bk) with 0 ≤ bi ≤ ai, the balanced b-skeleton Σbk,r−1 of Σk,r−1 is the complex given by

faces with at most bi vertices in row i; see Definition 4.6.



88 4. A counterexample and a proof

In the following, let k ≥ 2 and let r ≥ 2k − 1. Then the complex ∆∗rk,r is shellable. This follows

from the fact that the chessboard complex ∆k,r is shellable for r ≥ 2k − 1 [82, Thm. 2.3] and

that joins of shellable complexes are shellable (as one can shell the factors “lexicographically” [66,

Prop. 2.4]). Since Σk,r−1 = ∆
∗(r−1)
k,r is a link of the complex ∆∗rk,r. Hence the shelling of ∆∗rk,r induces

a shelling of Σk,r−1.

Remark 4.10. For r = 2, the complex (M2)∗2∆ is not (2r − 2)-connected, since its Euler char-

acteristic is 2. Hence (M2)∗2∆ is not shellable. A calculation shows that its fundamental group is

trivial.

Proposition 4.11 (Shellability of (Mr)
∗2
∆ ). Let r ≥ 3 be an integer. Then the 2-fold deleted

join (Mr)
∗2
∆ of the matroid Mr is shellable.

Proof. For x = (x1, x2) ∈ N2
≥0 let s(x) = (xi1 , xi2) be a reordering of the entries of x by decreasing

value such that xi1 ≥ xi2 . Let <l be the lexicographic order. Let ≺ be the strict order on N2
≥0 such

that x ≺ y if and only if s(x) <l s(y) or both s(x) = s(y) and x <l y. Let “�” be a shelling of the

subcomplex ∆∗r2,r. For facets A and B of (Mr)
∗2
∆ , let b, x, y ∈ N2

≥0 be defined by

xi = |Ari |, yi = |Bri |, and bi = min{r − xi, r − 1} for i = 1, 2.

If B /∈ ∆∗r2,r, then let A� B, if any of the following three cases holds:

(a) x ≺ y,

(b) x = y and Ar <l B
r,

(c) Ar = Br and A� B for a fixed shelling of the balanced complex Σb2,r−1.

In the following we show that “�” is indeed a shelling of (Mr)
∗2
∆ . Let A � B be two facets

of (Mr)
∗2
∆ . The goal is to find a facet C that satisfies Equation (4.1). We proceed case by case. For

clarity, if A� B due to (a), we write A�(a) B, likewise for (b) and (c).

Case (a): x ≺ y. Then there is a row j ∈ {1, 2} with yj > 1, implying that |Bj | > 1. Hence there is

a vertex (b, j) ∈ Br \Ar and empty block t < r of B in row j. We obtain C by switching (b, j) with

a vertex in the empty block: Let (c, j) be any free vertex for B in row j and block t. Define C =

B \{(b, j)}∪{(c, j)}. Observe that (|Cr1 |, |Cr2 |) ≺ y. Thus C �(a) B and C satisfies Equation (4.1).

Case (b): x = y and Ar <l B
r. Assume x2 = 1. Then x1 > 1. Assume Ar1 = Br1 . Then Ar and Br

each have one vertex in row 2 and these two vertices are distinct. Define C = (B,Ar). Since Ar

and Br only have two rows, C differs from B in only one vertex. (This is the point where this proof

would fail if k > 2.) Hence C �(b) B and C satisfies 4.1. Assume Ar1 6= Br1 . Since x1 > 1, there

is an empty block t < r of B in row 1. We switch vertices: Let (b, 1) be any vertex in Br1 \ Ar1
and let (c, 1) be any free vertex for B in block t and row 1. Define C = B \ {(b, 1)} ∪ {(c, 1)}
and observe that |Cr1 | = |Br1 | − 1 and |Cr2 | = |Br2 |. Hence C �(a) B and C satisfies 4.1. Assume

x2 > 1, then there is an empty block t < r of B in row 2. Again we switch vertices: Let (b, 2)

be any vertex in Br2 \ Ar2 and let (c, 2) be any free vertex for B in block t and row 2. Define

C = B \ {(b, 2)} ∪ {(c, 2)} and observe that |Cr2 | = |Br2 | − 1 and |Cr1 | = |Br1 |. Hence C �(a) B

and C satisfies Equation (4.1).

Case (c): Since the balanced subcomplex Σb2,r−1 is shellable by Proposition 4.9, there exists a facet

C of Σb2,r−1 with C � B that satisfies Equation (4.2). Define C = (C,Br). Then C �(c) B and C

satisfies Equation (4.1).
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For r ≥ 2, define blocks E′i by

E′i = {v1
i , . . . , v

r
i , v

r+1
i } for i = 1, . . . , r − 1, and E′r = {w1, . . . , wr, wr+1},

for pairwise distinct vji and wi. Define a matroid M ′ with ground set
⋃
iEi by

M ′ = U1,r+1(E1)⊕ · · · ⊕ U1,r+1(Er−1)⊕ Ur+1,r+1(Er).

Now let M ′r+1 be the (r − 1)-skeleton of M ′. Then M ′r is “built by the same principle” as Mr,

but has r + 1 instead of only r disjoint bases. Note that (M ′r)
∗2
∆ is a pure complex for all r ≥ 2

and contains the r-fold join ∆∗r2,r+1 as a subcomplex. From [82] we have that ∆∗r2,r+1 is shellable

for all r ≥ 2. By starting with a shelling of ∆∗r2,r+1 and repeating the proof of Proposition 4.11

for (M ′r)
∗2
∆ instead of (Mr)

∗2
∆ one obtains the following corollary.

Corollary 4.12. For any integer r ≥ 2, the 2-fold deleted join (M ′r)
∗2
∆ of the matroid M ′r of rank r

with r + 1 disjoint bases is shellable and hence (2r − 2)-connected.

4.3.4 A covering of (Mr)
∗2
∆

Next we give a topological description of (Mr)
∗2
∆ via a covering by two subcomplexes. This

yields a first proof of Theorem 4.2. In addition, the covering will allow us to determine the action

of the group Z/2 := 〈t〉 on cohomology needed for the proof of Theorem 4.3. Recall that the action

of Z/2 on (Mr)
∗2
∆ is given by interchanging the factors of the join.

Definition 4.13. Let r ≥ 2 be an integer. Define Σ2r−1 to be the subcomplex of (Mr)
∗2
∆ induced

by the facets of dimension 2r − 1 and their faces, and denote by Σ2r−2 the subcomplex of (Mr)
∗2
∆

induced by the facets of dimension 2r − 2 and their faces.

Since each face of (Mr)
∗2
∆ is contained in a facet of dimension 2r − 1 or 2r − 2, the two com-

plexes Σ2r−1 and Σ2r−2 form a covering. The complex Σ2r−1 consists of faces that do not have

more than r − 1 vertices in either row of the last block. The complex Σ2r−2 consists of faces that

in one row use only vertices in the last block and in the other row use no vertices in the last block.

Hence Σ2r−2 has two connected components that we refer to as Σ1
2r−2 and Σ2

2r−2; see Figure 4.4.

v11 vr1 v12 vr2 v1r−1 vrr−1

w1 wr

≤ r − 1 el’s

≤ 1 element ≤ 1 element ≤ 1 element

≤ r el’s

Figure 4.4: One connected component of Σ2r−2.

Proposition 4.14. Let r ≥ 3 be an integer.

(i) The complex Σ2r−1 is a non-trivial wedge of (2r−1)-spheres, and a Z/2-invariant subcomplex.

(ii) The complex Σ2r−2 is the disjoint union of two contractible spaces Σ1
2r−2 and Σ2

2r−2. Moreover,

t · Σ1
2r−2 = Σ2

2r−2, where t denotes the generator of the group Z/2.

(iii) The intersection Σ2r−1 ∩Σ2r−2 = (Σ2r−1 ∩Σ1
2r−2) ∪ (Σ2r−1 ∩Σ2

2r−2) is the disjoint union of

two non-trivial wedges of (2r − 3)-spheres, and t · (Σ2r−1 ∩ Σ1
2r−2) = (Σ2r−1 ∩ Σ2

2r−2).
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Proof. (i) By [17, Lem. 2.6] we can reorder the facets of (Mr)
∗2
∆ by decreasing dimension and obtain

a shelling. This is done by first taking the facets of dimension 2r − 1 in the order given by “�”,

then taking the facets of dimension 2r − 2 again in the order given by “�”, and so forth. This

implies that Σ2r−1 is shellable. Since the chessboard complex ∆∗r2,r consists of (2r−1)-facets that by

definition of “�” are shelled first, homology facets of the chessboard complex are homology facets

of Σ2r−1. The chessboard complex ∆∗r2,r is not contractible, and hence Σ2r−1 must be a non-trivial

wedge of (2r − 1)-spheres. Since the action of the group Z/2 is simplicial and therefore preserves

the dimension of the simplices we have that t · Σ2r−1 = Σ2r−1.

(ii) Each connected component of Σ2r−2 is isomorphic to the join (Mr|S) ∗ ∆r−1 of the restric-

tion (Mr|S) and the simplex ∆r−1, where S =
⋃r−1
i=1 Ei. Hence each component is contractible.

Furthermore, by direct inspection one sees that t · Σ1
2r−2 = Σ2

2r−2.

(iii) The intersection Σ2r−1∩Σ2r−2 has two connected components. Its faces use in one row only r−1

vertices that are all contained in the last block. In the other row they use no vertices in the last

block. Hence both components are isomorphic to the join (Mr|S) ∗ ∆
(r−2)
r−1 , where ∆

(r−2)
r−1 is the

(r − 2)-skeleton of the the simplex. The complex (Mr|S) is a matroid of rank r − 1. It is (r − 2)-

connected and has reduced Euler characteristic (r−1)r−1. Hence each component of Σ2r−1∩Σ2r−2

is a non-trivial wedge of (2r − 3)-spheres.

Corollary 4.15. Let r ≥ 3 be an integer. Then the deleted join (Mr)
∗2
∆ is homotopy equivalent to

a non-trivial wedge of spheres of dimensions 2r − 1 and 2r − 2.

4.3.5 Proof of Theorem 4.2

The homotopy type of a shellable complex can be computed as follows. Let Σ be a shellable com-

plex of dimension d. Define the degree of a face A of Σ by δ(A) = max{|F | : F ∈ Σ, A ⊆ F}. Thus

δ(A)− 1 is the dimension of a largest facet containing A. Define the f -triangle (fi,j(Σ))0≤i≤j≤d+1

of Σ by fi,j(Σ) = |{A ∈ Σ: |A| = i, δ(A) = j}|. Thus fi,j(Σ) is equal to the number of faces A of Σ

of dimension i − 1 that are contained in a largest facet of dimension j − 1. For j = 0, 1, . . . , d + 1

set

hj(Σ) = (−1)j ·
j∑
i=0

(−1)ifi,j(Σ) .

The vector h(Σ) = (h0(Σ), . . . , hd+1(Σ)) is the diagonal of the “h-triangle” of Σ [17, Def. 3.1].

By [17, Thm. 4.1], the homotopy type of Σ is a wedge of spheres, consisting of hj(Σ) copies of the

(j − 1)-sphere for j = 1, . . . , d+ 1.

Proof of Theorem 4.2. The matroid Mr is of rank r and has r disjoint bases. For r = 2 the

complex (Mr)
∗2
∆ is simply connected, but not 2-connected; see Remark 4.10. Let r ≥ 3 in the

following. Then the complex (Mr)
∗2
∆ is shellable by Proposition 4.11. Hence by [17, Thm. 4.1] the

homotopy type of (Mr)
∗2
∆ is a wedge of spheres, consisting of hj spheres of dimension j − 1 for

j = 1, . . . , 2r, where h((Mr)
∗2
∆ ) = (h0, . . . , h2r) is the diagonal of the h-triangle of (Mr)

∗2
∆ .

For j = 0, . . . , 2r − 2, the entries hj are zero, since (Mr)
∗2
∆ has no facets of dimension j. Hence

(Mr)
∗2
∆ is (2r − 3)-connected.

Let j = 2r − 1. We will show that h2r−1 6= 0 and thus that (Mr)
∗2
∆ is not (2r − 2)-connected.

The number h2r−1 is equal to the alternating sum −f0,2r−1 +f1,2r−1−· · ·+f2r−1,2r−1 of the entries
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of the row f2r−1((Mr)
∗2
∆ )) of the f -triangle of (Mr)

∗2
∆ . Here, fi,2r−1 denotes the cardinality of the

set

Fi−1 := {A ∈ (Mr)
∗2
∆ : |A| = i, δ(A) = 2r − 1}

of faces of dimension i − 1 of (Mr)
∗2
∆ that are contained in a largest facet of dimension 2r − 2.

Facets A of dimension 2r − 2 are given by choosing all vertices {w1, . . . , wr} in one row of (Mr)
∗2
∆

and one vertex from each of the sets {v1
i , . . . , v

r
i } for i = 1, . . . , r− 1 in the other row. This implies

that fi,2r−1 = 0 for i = 0, . . . , r − 1 and that any face in Fi−1 for i ≥ r must use all vertices

{w1, . . . , wr}. See Figure 4.3 for an example of a facet of dimension 2r − 2 = 8 for r = 5.

Let S = {v1
i , . . . , v

r
i : 1 ≤ i ≤ r − 1} and let Mr|S be the restriction of Mr to the vertex set S.

Then for i = 0, . . . , r − 1 there is a 2-to-1 surjection between the faces in Fr+i−1 and the set of

(i− 1)-dimensional faces of Mr|S. This implies that

fr+i,2r−1((Mr)
∗2
∆ ) = 2 fi(Mr|S) for i = 0, . . . , r − 1,

where fi(Mr|S) is the number of (i− 1)-faces of Mr|S. Hence

h2r−1 = (−1)r−1 2
(
χ(Mr|S)− 1

)
,

where χ(Mr|S) denotes the Euler characteristic of Mr|S.

The complex Mr|S is isomorphic to the (r − 1)-fold join of the restriction Mr|{v1
1 , . . . , v

r
1},

which in turn is isomorphic to a 0-dimensional complex with r vertices. Hence Mr|S has Euler

characteristic equal to 1 + (−1)r−1(r − 1)r−1. Thus h2r−1 = 2 (r − 1)r−1, which is non-zero

since r ≥ 2.

The missing value h2r of the diagonal of the h-triangle can be calculated, similarly to the above,

by calculating the complete f -vector of (Mr)
∗2
∆ . Both calculations are technical. Instead we give

lower bounds.

Corollary 4.16. Let r ≥ 3 be an integer and let βi denote the i-th reduced Betti number of (Mr)
∗2
∆

for i = 0, . . . , 2r − 1. Then

βi =

2 (r − 1)r−1 if i = 2r − 2

0 if i ≤ 2r − 3
and β2r−1 ≥ (r2 − 3r + 1)r .

Proof. Note that βi = hi+1 and that h2r is equal to the number of (2r − 1)-dimensional homology

facets of (Mr)
2
∆. In the shelling of (Mr)

2
∆ the r-fold join ∆∗r2,r of the chessboard complex is shelled

first, implying that its homology facets are also homology facets of (Mr)
2
∆. The chessboard complex

is pure and has Euler characteristic 1− (r2 − 3r + 1)r. Therefore h2r ≥ (r2 − 3r + 1)r.
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4.4 Further results

4.4.1 Bounds for the topological Tverberg number of matroids

Recall that the topological Tverberg number TT(M,d) of M is the largest integer k ≥ 1 such

that for every continuous map f : M → Rd, there is a collection {σ1, . . . , σk} of k pairwise disjoint

faces, called a Tverberg k-partition, such that
⋂k
i=1 f(σi) 6= ∅.

Corollary 4.17 (Lower bounds for the topological Tverberg number). Let b, d, r ≥ 1 be integers

and let M be a matroid of rank r with b disjoint bases. Let x = d+ 1 for ease of notation. Let

`(b, r, x) =
2x+ (r − x)b+

√
(2x+ b(r − x))2 + 8bx2

8x
.

If p is a prime power with

p ≤ 2`(b, r, x),

then TT(M,d) ≥ p.

Proof. We use the join scheme and take a connectivity-based approach based on the lemma in [77]

due to Volovikov, which can be seen as a generalization of Dold’s theorem. If we show that

the connectivity of the configuration space M∗p∆ is at least as high as the dimension of the test

space S(p−1)(d+1)−1, then the result follows.

By [9, Cor. 3] the deleted join M∗p∆ has connectivity at least br/(db/pe + 1) − 2, implying that

its connectivity is at least dbr/(db/pe+ 1)e − 2. Hence it suffices to show that

br

b/p+ 2
− (p− 1)(d+ 1) ≥ 0.

This is equivalent to

− 2xp2 + (2x− xb+ br)p+ xb ≥ 0, (4.3)

which defines a negatively curved parabola in p with zeros

2x+ (r − x)b+ br ±
√

(2x+ (r − x)b)2 + 8bx2

4x
.

Finally, we observe that

2x+ (r − x)b−
√

(2x+ (r − x)b)2 + 8bx2

4x
≤ `(b, r, x) ≤ p ≤ 2`(b, r, x),

and hence p satisfies Equation (4.3).

Upper bounds for the topological Tverberg number for matroids with codimension at least 3,

meaning r − 1 ≤ d − 3, can be obtained using the new sufficiency criterion [56, Thm. 7] due to

Mabillard and Wagner for the nonexistence of Tverberg k-partitions for simplicial complexes with

codimension 3. For a real number x ≥ 0, we let dxenpp denote the smallest integer k ≥ x that is

not a prime-power.
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Proposition 4.18 (Upper bounds for the topological Tverberg number). Let d ≥ 3 and r ≥ 1 be

integers and let r ≤ d− 2. If M is a matroid of rank r, then⌈
d

d−r+1

⌉
npp

> TT(M,d).

Proof. Let k =
⌈

d
d−r+1

⌉
npp

. The dimension of the deleted productM×k∆ is at most k(r−1), which by

choice of k is at most (k−1)d. Thus by [29, Cor. 5.2], which is a simple consequence of [64, Lem. 4.2],

there exists an Sk-equivariant map from M×k∆ to the sphere S(k−1)d−1. (Here Sk denotes the

symmetric group on k letters.) Since M has dimension at most d − 3, we can apply [56, Thm. 7]

and get the existence of a continuous map f : M → Rd that does not have a Tverberg k-partition.

This implies that k > TT (M,d).

Remark 4.19. Recently Paták [65] building on [44] proved several Tverberg-type results for ma-

troids that are not directly related to [9, Thm. 1], including colored versions. We point out [65,

Lem. 2]: Let M be a matroid of rank r ≥ 1 with closure operator cl and let S be a subset of the

ground set of M of cardinality at least r(k − 1) + 1. Then there exist pairwise disjoint subsets

S1, . . . , Sk of S such that cl ∅ ( clS1 ⊆ · · · ⊆ clSk.

4.4.2 Connectivity of the deleted product of a matroid

In Theorem 4.20 we assume that the rank r of M is at least k, otherwise M×k∆ can be empty.

To simplify the statement of the theorem we assume that k ≤ b, since then the dimension of M×k∆

is equal to (r − 1)k and, in particular, is independent of the number of disjoint independent sets

of lower cardinality. We point out, however, that the proof of Theorem 4.20 can be applied to the

setting where k < b; see for example Corollary 4.22.

Theorem 4.20 (Connectivity bounds for the deleted product). Let b, k, r ≥ 2 be integers with

r ≥ k and b ≥ k. Let M be a matroid of rank r with b disjoint bases and let M×k∆ be the k-fold

deleted product of M .

(i) Then the connectivity of M×k∆ is at least

r − 2−
⌊
r(k − 1)

b

⌋
.

(ii) If b ≥ r(k − 1) + 1, then M×k∆ is (r − 2)-connected, but not (r − 1)-connected.

The ordered configuration space Conf(X,n) of n particles in a topological space X is defined

as the space {(x1, . . . , xn) ∈ Xn : xi 6= xj for i 6= j}. As Smale [72, Lem. 2.1] observed, in the

case where n = 2 and X = Σ is a finite simplicial complex, the 2-fold deleted product Σ×2
∆ is a

deformation retract of Conf(M, 2). This leads to the following corollary of Theorem 4.20.

Corollary 4.21. Let b, r ≥ 2 be integers and let M be a matroid of rank r with b disjoint bases.

Then the configuration space Conf(M, 2) = {(x, y) ∈ M2 : x 6= y} of two ordered particles in M is

at least (
r − 2−

⌊r
b

⌋)
-

connected and not (r − 1)-connected, when b ≥ r + 1.
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By [66, Thm. 3.2.1] any matroid M of rank r is pure shellable, implying that M is contractible

or homotopy equivalent to a wedge of (r − 1)-spheres. The reduced Euler characteristic χ̃(M)

of M can be computed using the Möbius function µ of the lattice of flats L of the dual matroid

of M . By [13, Prop. 7.4.7] χ̃(M) is zero if M has coloops (elements contained in every basis), and

is otherwise equal to (−1)r−1|µL(0̂, 1̂)|, which is non-zero. In fact |µL(0̂, 1̂)| is non-zero for any

geometric lattice [69, Thm. 4].

Proof of Theorem 4.20. (i) A cell of M×k∆ is of the form

relint(σ1)× · · · × relint(σk),

where σi ∩ σj = ∅ for all i, j with 1 ≤ i < j ≤ k. Its dimension is given by the sum of the

dimensions of the σi. Since the σi are vertex-disjoint and by assumption k ≤ b, a product cell of

maximal dimension uses rk vertices and has dimension (r − 1)k.

We fix r and establish the connectivity of M×k∆ by induction on k. Assume k = 1. If M has no

coloops, it is homotopy equivalent to a wedge of (r − 1)-spheres, else it is contractible.

Assume the statements of the theorem are true for k − 1 for a fixed k ≥ 2. Consider the

projection pk−1 of the k-fold product Mk to the first k− 1 coordinates. The map pk−1 restricts to

a surjective continuous proper map

pk−1 : M×k∆ −→M×k−1
∆ .

Since r ≥ k, both the domain and codomain of pk are connected by induction. They are also locally

compact, locally contractible separable metric spaces.

Let x ∈ M×k−1
∆ be a point and let faces σ1, . . . , σk−1 ∈ M be minimal under inclusion such

that x is contained in the product relint(σ1)×· · ·×relint(σk−1) of the relative interiors of the σi. Let

Vx = vert(σ1)∪· · ·∪vert(σk−1) be the union of the vertex sets of the σi. Assume Vx = {v1, . . . , vn}.
Then the preimage

p−1
k−1({x}) ∼= {y ∈M : ∃σ ∈M s.t. y ∈ σ and σ ∩ σi = ∅ for i = 1, . . . , k − 1}

= {σ ∈M : {vi} 6⊆ vert(σ) for i = 1, . . . , n}.

Hence p−1
k−1({x}) is homeomorphic to (any geometric realization of) the successive deletion Mx :=

M \ v1 \ · · · \ vn of the vertices Vx from M . Any deletion of a matroid is again a matroid (see [63]),

implying by induction that Mx is a matroid. Let rx denote its rank. The total number n of vertices

deleted is at most r(k − 1). Let

rk = r −
⌊
r(k − 1)

b

⌋
.

If Vx contains br(k−1)/bc vertices from b disjoint bases ofM , then rx can be equal to rk, otherwise rx

is larger. Equality is given, if M has no other disjoint independent sets of cardinality greater

than rk. Thus Mx is a matroid of rank rx ≥ rk. Hence p−1
k−1({x}) is locally contractible and either

contractible (if Mx has coloops) or homotopy equivalent to a wedge of (rx− 1)-spheres, which is at

least (rk − 2)-connected. By induction hypothesis M×k∆ is (rk−1 − 2)-connected. Since rk ≤ rk−1,

the deleted product M×k∆ is (rk − 2)-connected by Smale’s theorem, which is stated below.
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Smale’s Theorem [73]. Let X and Y be connected, locally compact, separable metric spaces,

and in addition let X be locally contractible. Let f : X −→ Y be a surjective continuous proper

map. If for every y ∈ Y the preimage f−1({y}) is locally contractible and n-connected, then

the induced homomorphism

f# : πi(X)→ πi(Y )

is an isomorphism for all 0 ≤ i ≤ n, and is an epimorphism for i = n+ 1.

(ii) Let b ≥ (r− 1)(k− 1) + 1 for fixed r and fixed k. Then rk = r. Hence p−1
`−1({x}) is a matroid of

rank r for all x ∈M×`−1
∆ and all ` with 2 ≤ ` ≤ k. For ` = 2, the deleted product M×`−1 is equal

to the matroid M , which is (r − 2)-connected and not (r − 1)-connected, since M has no coloops.

By induction on ` the skeleton M×`−1
∆ is (r − 2)-connected but not (r − 1)-connected. Hence by

Smale’s theorem M×`∆ is (r − 2)-connected, but not (r − 1)-connected.

As a corollary we obtain a proof of the following result due to Bárány, Shlosman, and Szűcs.

Corollary 4.22 ( [10, Lem. 1] ). Let r and k be integers with r ≥ k ≥ 1. Then the deleted

product (∆r−1)×k∆ of the simplex ∆r−1 of dimension r− 1 is (r− k− 1)-connected and not (r− k)-

connected.

Proof. The simplex ∆r−1 is a uniform matroid Ur,r of rank r. It has one basis. Its dimension dk is

equal to r − k for all k ≥ 1. The fibers p−1
k−1({x}) are all contractible, since vertex-deletions of the

simplex are contractible. Hence for all k ≥ 2, Smale’s theorem together with the Whitehead theorem

implies that (∆r−1)×k∆ and skr−k
(
(∆r−1)×k∆

)
are homotopy equivalent. In particular (∆r−1)×k∆ is

(r − k − 1)-connected and not (r − k)-connected.

4.4.3 A topological Radon-type theorem for Mr

The following topological Radon-type theorem for the family of matroids Mr (r ≥ 3) follows

from Theorem 4.2 by using the join scheme and taking the connectivity-based approach.

Corollary 4.23. Let d ≥ 1 and r ≥ 3 be integers such that 2r − 3 ≥ d. Then TT(Mr, d) ≥ 2.

Proof. By Theorem 4.2 the connectivity of the configuration space (Mr)
∗2
∆ is 2r − 3, which is at

least as high as the dimension of the test space Sd.

We obtain a sharper result by using the join scheme and applying [20, Thm. 1], which is obtained

by a Fadell–Husseini index calculation. We point out the following typo in [20, Thm. 1]: In the

notation of the theorem, the roles of X and Y should be interchanged in the last sentence of the

statement. See [27, Thm. 4.2] for a more general version that implies [20, Thm. 1].

Proof of Theorem 4.3. Without loss of generality let d = 2r − 2. In order to prove the theorem

using the join scheme, we need to show that there is no Z/2-equivariant map (Mr)
∗2
∆ → Sd, where

the sphere is equipped with the antipodal action.

From Corollary 4.15 we have that Hd((Mr)
∗2
∆ ;F2) 6= 0, and Hi((Mr)

∗2
∆ ;F2) = 0 for all i with

1 ≤ i ≤ d − 1. Hence (Mr)
∗2
∆ is not d-connected. Consequently the classical Dold theorem [35]

cannot be applied. To prove nonexistence of a Z/2-equivariant map we use [20, Thm. 1] For this it

suffices to prove that the cohomology Hd((Mr)
∗2
∆ ;F2) is a free F2[Z/2]-module where the action is

induced by the Z/2-action on (Mr)
∗2
∆ .
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Indeed, consider the covering {Σd+1,Σd} = {Σd+1,Σ
1
d ∪ Σ2

d} of the complex (Mr)
∗2
∆ ; see Sec-

tion 4.3.4. The relevant part of the induced Mayer–Vietoris sequence in cohomology with F2-

coefficients has the form:

Hd−1(Σd+1)⊕Hd−1(Σ1
d)⊕Hd−1(Σ2

d)
// Hd−1(Σd+1 ∩ Σ1

d)⊕Hd−1(Σd+1 ∩ Σ2
d)

//

Hd((Mr)
∗2
∆ ) // Hd(Σd+1)⊕Hd(Σ1

d)⊕Hd(Σ2
d).

From Proposition 4.14 we have that the subcomplexes Σ1
d and Σ2

d are contractible, and that Σd+1

is d-connected. Thus the sequence simplifies to:

0 // Hd−1(Σd+1 ∩ Σ1
d)⊕Hd−1(Σd+1 ∩ Σ2

d)
// Hd((Mr)

∗2
∆ ) // 0.

Since, again by Proposition 4.14, the Z/2-action interchanges the subcomplexes Σd+1 ∩ Σ1
d and

Σd+1 ∩ Σ2
d, we conclude that Hd((Mr)

∗2
∆ ;F2) is a free F2[Z/2]-module, as claimed.

4.4.4 Failure of shellability and vertex-decomposability for general k

For a definition of vertex-decomposability for possibly non-pure complexes see [18, Def. 11.1].

Proposition 4.24. Let k and r be integers.

(i) For k ≥ 3 and r ≥ 2k − 1 the complex (Mr)
∗k
∆ is not shellable.

(ii) For k ≥ 2 and r ≥ 2k − 1 the complex (Mr)
∗k
∆ is not vertex-decomposable.

Proof. (i) Let r = 2k − 1. Consider the face

A = {(vi1, i), . . . , (vir−1, i) : i = 1, . . . , k − 1} ∪ {(vr1, k), . . . , (vrk−1, k), (wk, k), . . . , (wr, k)}.

Hence A has in rows 1 to k − 1 one vertex in each of the first r − 1 blocks and in the k-th row

k−1 vertices in the first r−1 blocks and r−k+1 vertices in the last block. The link (Mr)
∗k
∆ /A of A is

isomorphic to the square chessboard complex ∆k−1,k−1, which is not (pure) shellable by [43, Thm. 2].

However, links of shellable complexes must be shellable [18, Prop. 10.14].

(ii) To see that (Mr)
∗k
∆ is not vertex-decomposable, we argue by contradiction. First we point out

that it suffices to show this statement for k = 2, since by [18, Thm. 11.3], vertex-decomposability

implies shellability. Assume there is a shedding sequence S for (Mr)
∗2
∆ . Consider only the deletions

and let s0 ∈ S be the first vertex to be deleted from block r of (Mr)
∗2
∆ . Let M ′ be the complex

given by successively deleting all vertices up to but not including s0. By symmetry we may assume

that s0 = (w1, 2). Let d be the dimension of M ′. Consider the link M ′/s0. A facet of the link has

dimension d − 1 and uses one vertex less in the second row than a d-dimensional facet of M ′. It

cannot use the vertices (w1, 1) or (w1, 2). Let A be a facet of M ′/s0 that uses the vertices (wi, 1)

for i = 2, . . . , r in the first row of block r. Then the vertices (wi, 2) for i = 1, . . . , r in the second

row of block r cannot be used by A, since they are either deleted (i = 1) or “blocked” (i > 1). Now

consider the deletion M ′ \ s0. It has dimension d. None of its facets use the vertex (w1, 2) and

some of its facets have dimension d− 1. In fact A is a facet of M ′/s0 of dimension d− 1. Hence A

is a facet of both the link and the deletion of M ′ with respect to s0, thus violating the definition of

vertex-decomposability [18, Def. 11.1].
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[71] Torsten Schöneborn and Günter M. Ziegler. The topological Tverberg theorem and winding
numbers. J. Combin. Theory Ser. A, 112(1):82–104, 2005.

[72] Arnold Shapiro. Obstructions to the imbedding of a complex in a Euclidean space. I. The first
obstruction. Ann. of Math. (2), 66:256–269, 1957.

[73] Stephen Smale. A Vietoris mapping theorem for homotopy. Proc. Amer. Math. Soc., 8:604–610,
1957.

[74] Richard P. Stanley. Balanced Cohen–Macaulay complexes. Trans. Amer. Math. Soc.,
249(1):139–157, 1979.

http://arxiv.org/abs/1508.02349
http://arxiv.org/abs/1001.0193
arXiv:1001.0193
https://minds.wisconsin.edu/handle/1793/63829
https://arxiv.org/abs/1702.08170


BIBLIOGRAPHY 101

[75] Helge Tverberg. A generalization of Radon’s theorem. J. London Math. Soc., 41:123–128,
1966.

[76] Egbert R. van Kampen. Komplexe in euklidischen Räumen. Abh. Math. Sem. Univ. Hamburg,
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[83] Rade T. Živaljević. User’s guide to equivariant methods in combinatorics. Publ. Inst. Math.
(Beograd) (N.S.), 59(73):114–130, 1996.
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Summary

In this dissertation we present new applications of topological methods to problems in discrete

geometry. The topological proof strategy we use goes back to Lovász’ celebrated 1978 proof of

the Kneser conjecture [55]: reduce the question of whether a geometric statement is true to the

nonexistence of an equivariant map between a test space and a configuration space, where both

spaces have the same non-trivial group acting on them.

The introduction (Chapter 1) is followed by two chapters in which the topological proof strategy

is applied to the Grünbaum–Hadwiger–Ramos hyperplane mass partition problem, which is due to

Grünbaum [46, Sec. 4.(v)], Hadwiger [48], and Ramos [68]: Given positive integers j, k the problem

asks for the smallest dimension d such that any choice of j convex bodies in Rd or, more generally,

any choice of j absolutely continuous finite Borel measures on Rd can be cut into 2k equal pieces

by k hyperplanes.

In Chapter 2 we give a critical review of the progress that has been made on the Grünbaum–

Hadwiger–Ramos hyperplane mass partition problem and point out mistakes and gaps in the articles

[85], [68], [57], and [86]. This shows that the problem is still wide open. The main new result of

Chapter 2 is a correct solution of the problem in the case of two hyperplanes and 2t + 1 measures.

It is obtained by a degree calculation of a restriction of the test map.

In Chapter 3 we use a different approach based on relative equivariant obstruction theory to

verify the solutions of the problem in the cases of two hyperplanes and 2t−1 respectively 2t+1 mea-

sures and obtain a correct solution of the problem in the case of two hyperplanes and 2t measures.

We also obtain solutions in the cases of three hyperlanes and two respectively four measures.

In Chapter 4 we study the problem, to what extent the well-known variant of the topological

proof strategy based on the connectivity of the configuration space and a theorem by Dold [35] can

be used to answer the question, when a matroid (viewed as a simplicial complex) can be mapped

to Rd such that the images of no k pairwise disjoint faces intersect. An answer to this question

would give rise to a Tverberg-type theorem for matroids. Our main result is a counterexample to

a conjecture by Bárány, Kalai, and Meshulam [9, Conj. 4] concerning the connectivity of one of the

two possible configuration spaces. Furthermore, we establish the connectivity of the other possible

configuration space. Finally, we prove a tight Tverberg-type theorem for the family of matroids

arising as counterexamples. Together, our results imply that the topological proof strategy based

on the connectivity of the configuration space and Dold’s thoerem does not lead to an optimal

Tverberg-type result in the case of matroids.
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Zusammenfassung

In dieser Dissertation werden neue Anwendungen von topologischen Methoden auf Probleme

der diskreten Geometrie entwickelt. Die verwendete und untersuchte topologische Lösungsstrategie

geht auf Lovász’ bahnbrechende Arbeit [55] aus dem Jahr 1978 zurück und gestaltet sich wie folgt:

Man reduziere die Frage der Richtigkeit der geometrischen Aussage auf die Frage der Nicht-Existenz

einer equivarianten Abbildung zwischen einem Konfigurationsraum und einem Testraum, auf die

jeweils diselbe nicht-triviale Gruppe wirkt.

Der Einleitung (Kapitel 1) folgen zwei Kapitel, die sich mit der Anwendung von Varianten

der topologischen Lösungsstrategie auf das Grünbaum–Hadwiger–Ramos hyperplane mass partition

problem beschäftigen, das auf Grünbaum [46, Sec. 4.(v)], Hadwiger [48] und Ramos [68] zurückgeht.

In diesem Problem geht es um die Frage nach der kleinsten Dimension, in der sich bei beliebig

vorgegebenen natürlichen Zahlen j, k ≥ 1 jede Wahl von j konvexen Körpern, oder allgemeiner ab-

solutstetigen endlichen Borelmaßen, durch k Hyperebenen in 2k gleich große Teile zerlegen lassen.

In Kapitel 2 werden der Fortschritt in Bezug auf dieses in weiten Teilen ungelöste Problem kritisch

beleuchtet und Fehler sowie Beweislücken in den Aufsätzen [85], [68], [57] und [86] aufgedeckt. Das

wesentliche neue Resultat dieses Kapitels ist ein korrekter Beweis für den Fall von zwei Hyper-

ebenen und 2t + 1 Maßen. Der im Beweis verwendete Ansatz basiert auf einer Grad-Berechnung.

In Kapitel 3 wird ein anderer Ansatz der topologischen Lösungsstrategie basierend auf relativer

equivarianter Hindernistheorie verfolgt, mit dem die bereits bekannten Lösungen in den Fällen von

zwei Hyperebenen und 2t − 1 Maßen und zwei Hyperebenen und 2t + 1 Maßen bestätigt werden,

sowie erstmals für den Fall von zwei Hyperebenen und 2t Maßen ein korrekter Beweis geliefert wird.

Zwei weitere neue Lösungen für den Fall von drei Hyperebenen und zwei sowie vier Maßen werden

erarbeitet.

Kapitel 4 beschäftigt sich mit der Anwendung einer bekannten Variante der topologischen

Lösungsstrategie, die auf den topologischen Zusammenhangseigenschaften des Konfigurations- und

Testraums und einem Satz von Dold [35] basiert, auf das Problem, ob sich ein Matroid (aufgefasst

als Simplizialkomplex) stetig in den d-dimensionalen Raum abbilden lässt, ohne dass sich k paar-

weise disjunkte Seitenflächen im Bild schneiden. Dieses Problem kann als Frage aufgefasst werden,

ob bzw. wie sich das topological Tverberg theorem [10] auf Matroide erweitern lässt. Hauptresultate

dieses Kapitels sind die Widerlegung einer Vermutung von Bárány, Kalai und Meshulam [9, Conj. 4]

bezüglich des topologischen Zusammenhangs eines der beiden möglichen Konfigurationsräume und

die Berechnung des topologischen Zusammenhangs des anderen Konfigurationsraums. Ferner wird

an einem Beispiel gezeigt, dass die Variante der Lösungsstrategie basierend auf dem Satz von Dold

im Fall von Matroiden nicht zu optimalen Ergebnissen führt.
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