Summary 98

6. Summary

The behaviour of covalent teflat compounds of metals versus xenon was infestigated. $Tl(OTeF_5)_3$, $Pt(OTeF_5)_2$ and $Ir(OTeF_5)_3$ were tried to be synthesized and characterized by x-ray crystallography. Only $Tl(OTeF_5)_3$ was successfully synthezied and characterized.

In case of $[Tl(OTeF_5)_3 \cdot 2 \ SO_2ClF]_2$ the first covalent maingroup-compound with bridged teflate-groups could be isolated and investigated by x-ray crystallography. There are only three other compounds of transitionmetals, e.g. $Au(OTeF_5)_3^{[16]}$, where a bridged teflategroup exist.

The known compounds $\text{Au}(\text{OTeF}_5)_3^{[16]}$, $\text{Fe}(\text{OTeF}_5)_3^{[17]}$ as well as $\text{Tl}(\text{OTeF}_5)_3$ did not form a coordination compound with liquid xenon. We can therefore assume that the basicity of xenon within chosen conditions is not high enough to form a stable compound. Ab-initio-calculations by Seppelt^[77] showed that $\text{Tl}(\text{OTeF}_5)_2^+$ or $\text{Tl}(\text{OTeF}_5)^{2+}$ should be able to coordinate xenon. The synthesis and crystallographic analysis of the cationic thallium(III)-teflate compounds and their reaction with xenon needs to be the focus of further research.

During the attempt to synthesize $Pt(OTeF_5)_2$, the two side products $CH_3C(NH)OTeF_5$ and $C_2H_5C(NH)OTeF_5$ have been obtained. With those the first carbon-teflate compounds are accomplished that are crystallographically determined.

Another emphasis of this dissertation was the synthesis of main group-compounds with the ligands NHTeF₅, and their x-ray crystallographic and NMR characterisation. In the following table the compounds of the 5^{th} and 6^{th} maingroup are summarized. To differentiate the compounds synthesized during this research are written in black whereas the already known compounds are grey.

Summary 99

Group 5	Group 6
F ₃ P=NTeF ₅ [5]	OS=NTeF ₅ ^[5]
$Cl_3P=NTeF_5^{[5]}$	$F_5TeN{=}S{=}NTeF_5{}^{[10]}$
	$F_2S=NTeF_5$ [5]
$AsF_5 \cdot H_2NTeF_5^{[3]}$	$F_5SN(CF_3)TeF_5^{[6]}$
	$O=F_2S=NTeF_5$ [5]
$As(NHTeF_5)F_4$	$Cl_2S=NTeF_5$ [5]
$\begin{aligned} &As(NHTeF_5)_2F_3\\ &As(NHTeF_5)_xF_{(3-x)} \end{aligned}$	F ₂ Se=NTeF ₅ [5] Cl ₂ Se=NTeF ₅ [5]
Sb(NHTeF ₅) ₂ F ₃	$Te(NHTeF_5)_2F_2$

The attemps to obtain $E(NHTeF_5)_5$ with E = As, Sb, I has been only successful in part. In the case of arsenic, $As(NHTeF_5)F_4$ was $^{19}F-NMR$ -spectrographically, and $As(NHTeF_5)_2F_3$ crystallographically characterized. In the case of antimony $Sb(NHTeF_5)_2F_3$ was $^{19}F-NMR$ -spectrographically characterized. The synthesis and $^{19}F-NMR$ characterisation of compounds of the type $I(NHTeF_5)_{5-x}F_x$ with x = 1-5 are further challenge.

As(NHTeF₅)_xF_(3-x) with x = 1-3 is so far the only know trivalent compound with the NHTeF₅ ligand.

During the attempts to obtain $X_2Te=NTeF_5$, with X=F, Cl, $Te(NHTeF_5)_2F_2$ and $TeCl_2F_2 \cdot 2$ THF was discovered. $TeCl_2F_2$ is the first crystallographic determined mixed tellurium tetrahalogenid.

In accordance with the VSPER-theory the NHTeF₅ ligand assumes the equatorial position as a more electro-positive ligand in the trigonal-bipyramidal As(NHTeF₅)₂F₃. NMR investigations confirmed the lesser groupelectronegativity of the NHTeF₅ ligand as compared to fluorine or OTeF₅.