4. Experimenteller Teil

4.1 Allgemeines

4.1.1 Arbeitsmethoden und Geräte

Luft- und hydrolyseempfindliche Substanzen wurden, sofern bei Raumtemperatur stabil, in einem Handschuhkasten der Firma Braun GmbH, Garching, Typ MB 150 B-G-I gehandhabt. Eine automatische Gasreinigung (Molekularsieb und Kupferkatalysator), garantiert einen Wasser- und Sauerstoffgehalt des verwendeten Schutzgases Argon von unter 1 ppm.

Alle Experimente wurden im Vakuum oder unter Argon, welches zur Entfernung von Wasserspuren über Phosphorpentoxid geleitet wurde, durchgeführt. Die Glasgeräte wurden vor jeder Benutzung im Hochvakuum mit dem Brenner ausgeheizt.

Ein Teil der Reaktionen wurden in Polyperfluorethen-perfluorvinylether-Copolymerisat (PFA) Schläuchen der Firma IFK-ISOFLUOR Kunststoffverarbeitungs GmbH, Neuss, durchgeführt. Die Schläuche mit einem Innendurchmesser von 12 mm (1.5 mm Wandstärke), 6.5 mm (1 mm Wandstärke) und 3 mm (0.5 mm Wandstärke) wurden mit demineralisiertem Wasser gewaschen, zur besseren Trocknung mit Ethanol und Aceton gespült und bei 120°C im Trockenschrank aufbewahrt. Die Schläuche wurden an einem Ende verschmolzen und mit dem anderen Ende auf einen Metallkern geschoben, der mit einem Ventil der Fa. Hoke verbunden ist. Somit konnten die Schläuche an eine Stahloder Glas-Hochvakuum-Apparatur angeschlossen werden.

Die Aufnahmen der NMR-Spektren erfolgte an einem 400 MHz-Spektrometer der Firma Jeol, Japan, Typ FX 400. Die chemischen Verschiebungen beziehen sich bei den ¹⁹F-NMR-Messungen auf CFCl₃, bei den ¹²⁵Te-Messungen auf Te(OH)₆. Nach IUPAC Regeln werden die chemischen Verschiebungen nach tieferen Feld, bezogen auf CFCl₃, mit positivem Vorzeichen angegeben.

Die Ramanspektren wurden in Glasröhrchen von 4 mm Durchmesser mit einem FT-Ramanspektrometer der Firma Bruker, Typ RFS 100 mit Tiefkühleinrichtung gemessen. Die Anregung erfolgte mit einem Nd-YAG-Laser der Wellenlänge 1064 nm und der Leistung von 10-550 mW. Mit Hilfe einer speziellen Apparatur^[71] werden die Kristalle unter Stickstoffkühlung auf einen Glasfaden montiert und auf einem Bruker-SMART-CCD-1000-TM-Diffraktometer vermessen. Die Messung erfolgte mit MoK α -Strahlung (λ = 71.069 pm) mit Graphitmonochromator. Die Scanbreite betrug 0-3 ω und die Belichtungszeit betrug 10 s pro Aufnahme. Die Daten wurden zu Intensitäten reduziert und nach semiempirischer Absorptionskorrektur durch Angleichung symmetriegleicher Reflexe (SADABS)^[72], wurde die Lösung und Verfeinerung der Strukturen mit den SHELX-Programmen^[73] durchgeführt.

Verwendete Lösungsmittel wurden zuvor über Natrium/Benzophenon (Diethylether, Pentan, THF) bzw. Phosphorpentoxid (CFCl₃, Methylenchlorid) getrocknet, unter Argon abdestilliert und über Molekularsieb 0.4 nm aufbewahrt. Propionitril und Acetonitril wurden nach Literatur^[74] nacheinander über Aluminiumtrichlorid, Kaliumpermanganat und Calciumhydrid gekocht und anschließend über Phosphorpentoxid getrocknet. Beide Lösungsmittel werden unter Argon abdestilliert und über Molekularsieb 0.4 nm aufbewahrt. Die Synthese und Reinigung des Sulfurylchloridfluorid erfolgte gemäß der Literatur^[75].

TeF₆ und AsF₅ wurden hergestellt, indem Fluor über Metallpulver in einem Kupferreaktionsrohr geleitet wird. Das resultierende Gasgemisch wird zur Vorkühlung durch eine 0°C Kühlfalle geleitet. In der folgenden -183°C kalten (fl. Sauerstoff) Kühlfalle wird das Produkt von Fluor getrennt. Die letzte Kühlfalle (-78°C) dient dem Feuchtigkeitsausschluss.

Wasserfreies FeCl₃ wurde durch Reaktion aus den Elementen und Sublimation in einem schwerschmelzbarem Reaktionsrohr frisch hergestellt.

Ozon wurde mit einem Siemens'schen Ozonisator hergestellt. Als UV-Lichtquelle dient eine 500 Watt Osram-Quecksilberhochdrucklampe, deren Licht mit Hilfe zweier Quarzlinsen (5 cm Durchmesser) fokussierbar ist.

4.1.2 Ausgangssubstanzen

TlCl ₃	stand im Arbeitskreis zur Verfügung, wasserfrei
$B(OTeF_5)_3$	stand im Arbeitskreis zur Verfügung
ClF	stand im Arbeitskreis zur Verfügung
XeF ₂	stand im Arbeitskreis zur Verfügung
Xe	Fa. Linde
AuF ₃	stand im Arbeitskreis zur Verfügung
PtCl ₂	stand im Arbeitskreis zur Verfügung
IrCl ₃	Fa. Aldrich, wasserfrei
Fe-Pulver	stand im Arbeitskreis zur Verfügung
Cl_2	Fa. Aldrich
SO ₂	stand im Arbeitskreis zur Verfügung
O ₂	Fa. Linde
Te-Pulver	Fa. ChemPur, 99.9 %
F_2	Fa. Solvay
((CH ₃) ₃ Si) ₂ NH	stand im Arbeitskreis zur Verfügung
As-Pulver	stand im Arbeitskreis zur Verfügung, 99.9 %
HF	Spende der Fa. Bayer, gereinigt durch fraktionierte Destillation im Hochvakuum
$Na[N(Si(CH_3)_3)_2]$	stand im Arbeitskreis zur Verfügung
AsF ₃	stand im Arbeitskreis zur Verfügung
SbF ₅	Fa. Aldrich, gereinigt durch fraktionierte Destillation im Hochvakuum
BiCl ₃	stand im Arbeitskreis zur Verfügung
TeCl ₄	stand im Arbeitskreis zur Verfügung
IF ₅	stand im Arbeitskreis zur Verfügung

4.2 Synthesen und Kristallstrukturanalysen

4.2.1 Thalliumtrispentafluorotellurat(VI)

4.2.1.1 Synthese von Tl(OTeF₅)₃

a. durch Umsetzung von TlCl3 mit ClOTeF5

 $ClOTeF_5^{[28]}$ wurde nach bekannter Methode aus $B(OTeF_5)_3$ und ClF im Autoklaven bei Raumtemperatur hergestellt und durch fraktionierte Destillation gereinigt.

¹⁹F-NMR (Raumtemperatur): AB₄-Spektrum, $\delta_A = -52.79$ ppm, $\delta_B = -56.29$ ppm, $J_{AB} = 172.4$ Hz, $J_{TeB}^{125} = 3831.1$ Hz

In eine 10 ml Glasampulle werden im Handschuhkasten 100 mg (0.33 mmol) wasserfreies TlCl₃ eingefüllt. Die Ampulle wird auf -196°C abgekühlt, an der Vakuumapparatur werden nacheinander 5 ml SO₂ClF und ein kleiner Überschuss an ClOTeF₅ 280 mg (1 mmol) aufkondensiert. Nach Verschließen der Ampulle lässt man diese auf Raumtemperatur erwärmen. Es setzt sofort eine Reaktion ein und das TlCl₃ geht unter Gasentwicklung in Lösung. Nach Beenden der Reaktion wird alles Flüchtige abgepumpt, es bleibt ein trockener farbloser Feststoff zurück. An der Vakuumapparatur wird auf den Festkörper, bei -196°C, SO₂ClF aufkondensiert und die Glasampulle abgeschmolzen. Durch langsames Abkühlen auf -78°C erhält man farblose plättchenförmige Kristalle.

b. durch Umsetzung von TCl₃ mit Xe(OTeF₅)₂

 $Xe(OTeF_5)_2^{[26]}$ wurde nach bekannter Methode aus frisch hergestelltem HOTeF_5^[1] und XeF₂ hergestellt und durch Sublimation gereinigt.

¹⁹F-NMR (Raumtemperatur): AB₄-Spektrum, $\delta_A = 4,81$ ppm, $\delta_B = 43.35$ ppm, $J_{AB} = 183.2$ Hz, $J_{TeB}^{125} = 3602$ Hz

In eine 10 ml Glasampulle werden im Handschuhkasten 100 mg (0.33 mmol) wasserfreies TlCl₃ eingefüllt. Nach Abkühlen der Probe auf -196°C, werden an der Vakuumapparatur 5 ml SO₂ClF einkondensiert. In die auf -78°C erwärmte Lösung wurden 293 mg (0.50 mmol) Xe(OTeF₅)₂ gegeben. Nach Verschließen der Ampulle erwärmt man diese langsam auf Raumtemperatur, die Reaktionslösung beginnt bereits bei -50°C zu gasen. Nach Beenden der Gasentwicklung wird alles Flüchtige abgepumpt, bis ein trockener elfenbeinfarbiger Feststoff erhalten wird. An der Vakuumapparatur wird auf den Festkörper bei -196°C SO₂ClF aufkondensiert.

Schmelzpunkt der Kristalle: -35°C

Ramandaten (Festkörper, -80°C, 200 mW): $\tilde{\nu} = 1431$ (8), 1204 (23), 849 (9), 830 (6.5), 794 (7.5), 761 (11), 718 (55), 702 (89), 685 (28), 654 (100), 640 (50.5), 573 (3), 511 (20.5), 500 (24), 469 (94), 451 (32), 436 (86), 401 (13), 383 (11), 348 (20.5), 327 (47), 311 (34), 300 (61), 242 (13), 231 (48.5), 165 (6), 137 (65), 128 (53) cm⁻¹

¹⁹F-NMR (Raumtemperatur, SO₂ClF): AB₄-Spektrum, δ_A = -53.08 ppm, δ_B = -57.45 ppm, J_{AB} = 170.7 Hz, J¹²⁵_{TeB} = 3858.8 Hz

Farbe	farblos
Summenformel	$Cl_4F_{34}O_{14}S_4Te_6Tl_2$
Molmasse	2314.38 g/mol
Messtemperatur	173(2) K
Wellenlänge	71.073 pm
Kristallsystem	triklin
Raumgruppe	P 1
Gitterkonstanten	a = 958.9(6) pm α = 109.80(3)°
	b = 1016.1(4) pm β = 102.31(5)°
	$c = 1225.4(7) \text{ pm}$ $\gamma = 97.18(4)^{\circ}$
Volumen	1071.9(10)·10 ⁶ pm ³

4.2.1.2 Strukturaufklärung der Verbindung [Tl(OTeF₅)₃ · 2 SO₂ClF]₂

Formeleinheiten pro Zelle	1
Dichte (berechnet)	3.585 g/cm ³
Absorptionskoeffizient	12.147 mm ⁻¹
F(000)	1024
Kristalldimension	0.2 x 0.2 x 0.1 mm ³
Theta-Bereich der Datensammlung	1.84 to 30.70°
hkl-Bereich der Indizes	-13<=h<=13, -14<=k<=14, -17<=l<=17
Gemessene Reflexe	12993
Unabhängige Reflexe	6446 [R(int) = 0.0241]
Vollständigkeit zu Theta = 30.70°	96.5%
Methode der Strukturverfeinerung	Vollmatrix-Kleinste-Fehlerquadrate
Reflexe/ davon unterdrückt /Parameter	6446 / 0 / 433
Gütefaktor (gegen F²)	0.962<41
Endgültiger Fehler R [I>2sigma(I)]	R1 = 0.0294, wR2 = 0.0630
R (alle Daten)	R1 = 0.0427, wR2 = 0.0667
Extinktionskoeffizient	0.0004(2)
Größte und kleinste Restelektronendichte	1.924 und -2.713 ·10 ⁶ e.pm ⁻³

Atomkoordinaten(x 10⁴) und äquivalente isotrope Temperaturfaktoren (pm² x 10⁻¹) für $[Tl(OTeF_5)_3 \cdot 2 SO_2ClF]_2$.

	х	у	Z	U(eq)
Tl	890(1)	6323(1)	1548(1)	21(1)
Te(1)	-1821(1)	8363(1)	1286(1)	35(1)
O(1)	-155(6)	7947(5)	1980(4)	60(2)
F(11)	-911(5)	10238(4)	1908(5)	71(1)
F(12)	-1332(5)	8093(5)	-134(4)	69(1)
F(13)	-2842(4)	6520(3)	639(3)	49(1)
F(14)	-2414(6)	8676(6)	2635(5)	92(2)
F(15)	-3435(5)	8869(4)	617(5)	80(2)
Te(2)	4034(1)	5307(1)	2906(1)	37(1)

O(2)	2414(4)	5157(4)	1744(3)	34(1)
F(21)	4436(4)	3726(5)	1875(4)	58(1)
F(22)	3779(4)	6896(5)	4056(3)	60(1)
F(23)	3026(5)	4181(6)	3485(4)	72(1)
F(24)	5197(4)	6465(5)	2460(4)	59(1)
F(25)	5655(4)	5391(6)	4044(4)	74(2)
Te(3)	1977(1)	6771(1)	-1056(1)	21(1)
O(3)	839(4)	5745(3)	-453(3)	20(1)
F(31)	1796(4)	8482(3)	5(3)	37(1)
F(32)	3640(3)	6843(4)	37(3)	38(1)
F(33)	2224(4)	5141(3)	-2162(3)	34(1)
F(34)	393(3)	6771(3)	-2196(3)	34(1)
F(35)	3089(4)	7794(4)	-1649(3)	41(1)
O(4)	695(5)	6469(5)	3618(4)	41(1)
S(11)	840(20)	7400(50)	4760(30)	72(11)
S(12)	730(20)	7010(30)	4822(19)	58(5)
S(13)	590(20)	7511(16)	4734(16)	39(3)
Cl(11)	-1030(40)	7480(50)	5080(30)	135(13)
Cl(12)	-1130(30)	7360(30)	4970(30)	75(7)
Cl(13)	-1130(20)	6860(20)	5081(17)	62(4)
F(122)	1890(30)	7130(60)	5770(40)	82(18)
F(112)	1310(50)	6190(50)	5450(30)	138(17)
F(131)	840(40)	8990(30)	4870(30)	105(13)
O(111)	1740(40)	8340(50)	5490(40)	120(20)
O(121)	1400(30)	8780(30)	5040(30)	57(9)
O(132)	1530(40)	7410(50)	5750(30)	58(9)
O(6)	2980(6)	8512(5)	2474(5)	61(1)
S(21)	3204 (12)	10016(13)	2977(10)	27(1)
S(22)	3680(20)	9820(16)	3253(17)	41(3)
S(23)	3540(40)	10000(40)	3230(30)	106(10)
Cl(21)	4911(14)	10769(15)	2516(19)	74(3)
Cl(22)	3870(30)	11066(13)	2412 (14)	196(12)
Cl(23)	4820(30)	10640(30)	2660(40)	190(16)

F(211) 2	2070(30)	10660(30)	2285(19)	56(5)
F(221)	5313(13)	9872(16)	3723(16)	74(4)
F(231) 2	2390(40)	10830(30)	2580(40)	190(20)
O(212)	3940(70)	10550(70)	4360(40)	260(40)
O(222)	3160(40)	10370(30)	4300(40)	92(13)
O(232)	3410(30)	10870(30)	4190(30)	53(6)

Bindungslängen [pm] und -winkel [°] für [Tl(OTeF₅)₃·2 SO₂ClF]₂

Tl-O(1)	201.4(4)
Tl-O(2)	201.8(4)
Tl-O(3) #1	228.9(3)
Tl-O(3)	230.7(3)
Tl-O(4)	254.0(4)
Tl-O(6)	254.1(5)
Tl-Tl#1	370.3(3)
Te(1)-O(1)	181.1(5)
Te(1)-F(11)	181.4(4)
Te(1)-F(12)	183.9(4)
Te(1)-F(13)	181.6(4)
Te(1)-F(14)	180.1(5)
Te(1)-F(15)	181.0(4)
Te(2)-O(2)	182.1(4)
Te(2)-F(21)	182.0(4)
Te(2)-F(22)	183.3(4)
Te(2)-F(23)	182.0(4)
Te(2)-F(24)	181.5(4)
Te(2)-F(25)	182.4(4)
Te(3)-O(3)	184.5(3)
Te(3)-F(31)	184.0(3)
Te(3)-F(32)	182.6(3)

Te(3)-F(33)	183.0(3)
Te(3)-F(34)	183.1(3)
Te(3)-F(35)	181.9(3)
O(3)-Tl#1	228.9(3)
O(1)-Tl-O(2)	158.38(17)
O(1)-Tl-O(3)#1	107.78(18)
O(2)-Tl-O(3)#1	89.77(15)
O(1)-Tl-O(3)	106.54(18)
O(2)-Tl-O(3)	90.44(14)
O(3) #1-Tl-O(3)	72.65(13)
O(1)-Tl-O(4)	79.33(19)
O(2)-Tl-O(4)	86.24(15)
O(3)#1-Tl-O(4)	96.95(13)
O(3)-Tl-O(4)	169.12(12)
O(1)-Tl-O(6)	77.5(2)
O(2)-Tl-O(6)	86.94(18)
O(3) #1-Tl-O(6)	170.80(14)
O(3)-Tl-O(6)	98.77(15)
O(4)-Tl-O(6)	91.40(16)
O(1)-Tl-Tl#1	111.48(14)
O(2)-Tl-Tl#1	90.14(11)
O(3) #1-Tl-Tl #1	36.50(8)
O(3)-Tl-Tl#1	36.15(8)
O(4)-Tl-Tl#1	133.37(10)
O(6)-Tl-Tl#1	134.84(13)
Te(3)-O(3)-Tl#1	126.45(16)
Tl#1 -O(3)-Tl	107.35(13)
Te(1)-O(1)-Tl	136.1(3)
Te(2)-O(2)-Tl	136.6(2)
Te(3)-O(3)-Tl	126.20(16)
F(14)-Te(1)-F(15)	89.4(3)
F(14)-Te(1)-O(1)	90.8(3)
F(15)-Te(1)-O(1)	177.2(2)

F(11)-Te(1)- O(1)	89.2(2)
F(14)-Te(1)-F(11)	88.2(2)
F(15)-Te(1)-F(11)	88.0(2)
F(14)-Te(1)-F(13)	91.0(2)
F(14)-Te(1)-F(12)	175.8(3)
F(25)-Te(2)- O(2)	178.0(2)
F(21)-Te(2)-O(2)	90.03(18)
F(24)-Te(2)-F(21)	90.9(2)
F(21)-Te(2)-F(23)	89.9(2)
F(25)-Te(2)-F(22)	86.3(2)
F(24)-Te(2)-F(23)	174.15(19)
F(35)-Te(3)-O(3)	179.49(15)
F(31)-Te(3)-O(3)	91.59(14)

Verwendete Symmetrietransformationen zur Generierung äquivalenter Atome: #1 -x, -y+1, -z

Anisotrope Temperaturfaktoren (pm ² x 10 ⁻¹) für $[Tl(OTeF_5)_3 \cdot 2 SO_2ClF]_2$
Der anisotrope Temperaturfaktor hat die Form: -2 π^2 [$h^2 a^2 U_{11}$ + + 2 h k a* b* U_{12}]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U_{12}
Tl	24(1)	19(1)	18(1)	6(1)	5(1)	2(1)
Te(1)	40(1)	23(1)	45(1)	13(1)	15(1)	13(1)
O(1)	67(3)	39(2)	50(3)	-4(2)	-7(2)	33(2)
F(11)	57(3)	27(2)	113(4)	24(2)	-3(3)	1(2)
F(12)	58(3)	106(4)	47(2)	43(2)	14(2)	-2(3)
F(13)	70(3)	26(2)	48(2)	12(2)	17(2)	4(2)
F(14)	114(4)	76(3)	70(3)	-7(3)	62(3)	0(3)
F(15)	48(3)	44(2)	135(5)	27(3)	6(3)	22(2)
Te(2)	20(1)	64(1)	29(1)	23(1)	3(1)	7(1)
O(2)	26(2)	45(2)	24(2)	7(2)	-3(2)	16(2)
F(21)	45(2)	73(3)	66(3)	30(2)	13(2)	35(2)

F(22)	37(2)	84(3)	33(2)	-2(2)	1(2)	1(2)
F(23)	46(2)	120(4)	66(3)	67(3)	8(2)	0(2)
F(24)	38(2)	78(3)	70(3)	39(2)	20(2)	6(2)
F(25)	28(2)	139(5)	59(3)	55(3)	-7(2)	14(2)
Te(3)	22(1)	21(1)	23(1)	11(1)	8(1)	1(1)
O(3)	22(2)	19(1)	20(2)	9(1)	7(1)	0(1)
F(31)	45(2)	23(1)	41(2)	7(1)	16(2)	3(1)
F(32)	22(2)	47(2)	43(2)	22(2)	1(1)	-1(1)
F(33)	40(2)	34(2)	32(2)	10(1)	19(2)	11(1)
F(34)	30(2)	40(2)	37(2)	25(1)	6(1)	7(1)
F(35)	40(2)	41(2)	55(2)	31(2)	24(2)	0(2)
O(4)	38(2)	59(3)	24(2)	12(2)	13(2)	5(2)
S(11)	21(6)	120(20)	31(7)	-3(8)	13(5)	22(8)
S(12)	75(11)	78(9)	22(4)	12(5)	15(4)	33(7)
S(13)	33(7)	50(6)	22(4)	3(4)	4(4)	-11(5)
Cl(12)	52(8)	98(13)	66(12)	11(8)	34(7)	-4(8)
Cl(11)	80(15)	190(30)	84(14)	-20(14)	41(12)	67(16)
Cl(13)	35(5)	115(12)	33(4)	19(6)	23(3)	4(7)
F(122)	29(12)	220(40)	43(11)	61(18)	7(9)	78(16)
F(112)	310(50)	250(40)	110(30)	140(30)	130(30)	180(40)
F(131)	180(40)	53(11)	56(13)	2(8)	10(20)	29(19)
O(111)	42(15)	140(40)	90(40)	-40(20)	-20(20)	-10(20)
O(121)	50(20)	33(14)	60(20)	-10(12)	-3(15)	-9(12)
O(132)	25(14)	140(30)	15(8)	23(13)	-1(9)	56(17)
O(6)	63(3)	38(2)	62(3)	12(2)	4(3)	-22(2)
S(21)	21(3)	20(3)	35(3)	3(3)	12(3)	-2(2)
S(22)	45(6)	25(3)	46(6)	5(4)	19(6)	-4(4)
S(23)	112(19)	67(13)	80(15)	-8(10)	2(14)	-41(11)
Cl(21)	56(4)	47(4)	163(10)	63(6)	79(6)	14(4)
Cl(22)	350(30)	44(5)	128(11)	55(7)	-61(16)	-36(12)
Cl(23)	161(15)	89(12)	300(40)	11(14)	170(20)	-44(10)
F(211)	40(9)	56(11)	56(8)	10(7)	5(7)	-1(7)
F(221)	29(6)	63(9)	90(12)	2(8)	-10(7)	-10(6)

F(231)	100(20)	36(12)	340(50)	-18(18)	0(20)	33(15)
O(212)	320(80)	210(50)	80(30)	0(30)	-40(40)	-210(50)
O(222)	110(20)	48(14)	100(20)	-17(13)	89(19)	-17(14)
O(232)	48(12)	41(11)	61(15)	-3(11)	41(12)	-4(10)

Torsionswinkel [°] für [Tl(OTeF₅)₃·2 SO₂ClF]₂

O(2)-Tl-O(1)-Te(1)	-175.3(3)
O(3) #1-Tl-O(1)-Te(1)	-32.4(5)
O(3)-Tl-O(1)-Te(1)	44.2(5)
O(4)-Tl-O(1)-Te(1)	-126.4(5)
O(6)-Tl-O(1)-Te(1)	139.8(5)
Tl#1-Tl-O(1)-Te(1)	6.2(5)
O(1)-Tl-O(2)-Te(2)	-0.2(8)
O(3) #1-Tl-O(2)-Te(2)	-145.2(3)
O(3)-Tl-O(2)-Te(2)	142.2(3)
O(4)-Tl-O(2)-Te(2)	-48.2(3)
O(6)-Tl-O(2)-Te(2)	43.4(3)
Tl#1-Tl-O(2)-Te(2)	178.3(3)
O(1)-Tl-O(3)-Te(3)	75.7(3)
O(2)-Tl-O(3)-Te(3)	-90.7(2)
O(3) #1-Tl-O(3)-Te(3)	179.6(3)
O(4)-Tl-O(3)-Te(3)	-162.9(6)
O(6)-Tl-O(3)-Te(3)	-3.8(2)
Tl#1-Tl-O(3)-Te(3)	179.6(3)
O(1)-Tl-O(3)-Tl#1	-103.9(2)
O(2)-Tl-O(3)-Tl#1	89.62(17)
O(3) #1-Tl-O(3)-Tl#1	0.001(2)
O(4)-Tl-O(3)-Tl#1	17.5(7)
O(6)-Tl-O(3)-Tl#1	176.59(16)

Verwendete Symmetrietransformationen zur Generierung äquivalenter Atome: #1 -x, -y+1, -z

4.2.1.3 Umsetzung von Tl(OTeF₅)₃ mit Xenon

In eine 8 ml Glasampulle werden im Handschuhkasten 100 mg (0.33 mmol) wasserfreies TlCl₃ eingefüllt und 5 ml SO₂ClF bei -196°C an der Vakuumapparatur aufkondensiert. In die auf -78°C erwärmte Lösung wird 293 mg (0.50 mmol) Xe(OTeF₅)₂ gegeben. Nach Verschließen der Ampulle lässt man diese langsam auf Raumtemperatur erwärmen, die Reaktionslösung beginnt bereits bei -50°C zu gasen. Nach Beenden der Reaktion wird alles Flüchtige abgepumpt bis ein trockener farbloser Feststoff erhalten wird. An der Vakuumapparatur wird auf den Festkörper bei -196°C 2 g (9 mmol) Xenon aufkondensiert und die Ampulle abgeschmolzen. Die Lösung wird langsam auf 0°C erwärmt und anschließend wieder auf -78°C abgekühlt. Ein Teil des farblosen Feststoffes löst sich beim Erwärmen auf, beim anschließenden Abkühlen konnten einige farblose Kristalle erhalten werden.

Alternativ wird die Reaktion zwischen 50 mg (0.17 mmol) wasserfreiem TlCl₃ und 147 mg (0.25 mmol) Xe(OTeF₅)₂ direkt in Xenon durchgeführt. Beide Reaktionspartner wurden bei -78°C in einer 8 ml Glasampulle gemischt und auf -196°C abgekühlt. Nach Aufkondensieren von Xenon wird der Reaktionsansatz langsam auf -50°C erwärmt. Diese Temperatur wird 1h gehalten und anschließenden auf0°C angehoben. Beim anschließenden langsamen Abkühlen konnten farblose Kristalle erhalten werden.

Während der Präparation der plättchenförmigen Kristalle für die kristallographische Untersuchung, wurde eine Gasentwicklung beobachtet. Die Kristallstrukturanalyse des stark fehlgeordneten Kristalls ergab, dass ein [Tl(OTeF₅)₃]₂ Dimer vorlag, aber ohne Lösungsmittel.

Ramandaten (Festkörper, -80°C, 55 mW): $\tilde{\nu} = 827$ (5), 790 (3), 761 (7), 735 (13), 725 (32), 714 (61), 694 (21), 685 (24), 657 (52), 640 (42), 599 (29.5), 513 (13), 476 (100), 378 (8.5), 347 (8), 335 (8), 321 (36), 298 (36), 233 (38), 219 (7), 198 (6), 165 (6), 141 (48), 129 (63), 116 (31) cm⁻¹

4.2.3 Umsetzung von Goldtrispentafluorotellurat(VI) in Xenon

 $Au(OTeF_5)_3$ wird nach Literatur^[16] durch Reaktion von AuF_3 mit $B(OTeF_5)_3$ über 6 Tage bei 60°C hergestellt.

 $^{19}\text{F-NMR}$ (Raumtemperatur, n-C₄F₉SO₂F): AB₄-Spektrum δ_{A} = -44.63 ppm, δ_{B} = -49.22 ppm, J_{AB} = 186 Hz

In eine 8 ml Glasampulle wurden im Handschuhkasten 10 mg $Au(OTeF_5)_3$ eingefüllt, an der Vakuumapparatur wird auf den Festkörper bei -196°C 2 g (9 mmol) Xenon aufkondensiert. Die Ampulle wurde abgeschmolzen und langsam auf 0°C erwärmt, anschließend wieder auf -78°C abgekühlt. Es konnte keine Lösung der Goldverbindung beobachtet werden.

4.2.4 1-Pentafluorotellurat(VI)ethylenimin und 1-Pentafluorotellurat(VI)propylenimin

4.2.4.1 Synthese von CH₃C(NH)OTeF₅ und C₂H₅C(NH)OTeF₅

In eine 10 ml Glasampulle wurden im Handschuhkasten 100 mg (0.38 mmol) PtCl₂ eingefüllt und an der Vakuumapparatur nacheinander 5 ml CH₃CN und ein kleiner Überschuss an ClOTeF₅ 206 mg (0.76 mmol) einkondensiert. Nach Verschließen der Ampulle erwärmt man diese auf Raumtemperatur, weder eine Gasbildung noch eine farbliche Veränderung der Probe ist zu beobachten. Daher wurde die Glasampulle auf 40°C erwärmt und diese Temperatur für 3h gehalten, es entsteht eine gelbe Lösung über einem schwarzen Niederschlag. Diese gelbe Lösung wird abdekantiert und das Lösungsmittel abgezogen. Der gelbe Rückstand der Lösung wird in C₂H₅CN aufgenommen und durch langsames Abkühlen auf -78°C erhält man farblose Nadeln.

Ramandaten (Festkörper, -80°C, 200 mW): $\tilde{\nu} = 2988$ (2), 2937 (8), 2350 (1), 1704 (2), 1673 (8.5), 1436 (2), 999 (3), 958 (13), 803 (2), 767 (8.5), 690 (65), 642 (100), 573 (26), 543 (3), 419 (3), 382 (8), 355 (10), 335 (13), 324 (12), 302 (31), 266 (8.5), 255 (9), 224 (2), 200 (2), 161 (2), 139 (4), 126 (24) cm⁻¹

¹⁹F-NMR (Raumtemperatur, CH₃CN): AB₄-Spektrum δ_A = -32.76 ppm, δ_B = -43.15 ppm, J_{AB} = 177.1 Hz

4.2.4.2 Strukturaufklärung des Cokristallisat von CH₃C(NH)OTeF₅ und C₂H₅C(NH)OTeF₅

Farbe	farblos		
Summenformel	$C_5 H_{10} F_{10} N_2 O_2 T e_2 \\$		
Molmasse	575.3 g/mol		
Messtemperatur	173(2) K		
Wellenlänge	71.073 pm		
Kristallsystem	monoklin		
Raumgruppe	P1 2/c		
Gitterkonstanten	a = 1529.4(4) pm	α= 90°	
	b = 524.66(8) pm	β= 97.25(1)°	
	c = 1765.7(3) pm	γ= 90°	
Volumen	$1405.5(5) \cdot 10^6 \text{pm}^3$		
Formeleinheit pro Zelle	4		
Dichte (berechnet)	2.709 g/cm ³		
Absorptionskoeffizient	14.170 mm ⁻¹		
F(000)	1328		
Kristalldimensionen	$0.2 \ge 0.1 \ge 0.1 \ \text{mm}^3$		
Theta-Bereich der Datensammlung	1.34 bis 30.54°		
hkl-Bereich der Indizes	-21<=h<=2, -7<=k<=7,	-20<=l<=20	
Gemessene Reflexe	5468		
Unabhängige Reflexe	3715 [R(int) = 0.0243]		
Vollständigkeit zu Theta = 30.51°	86.0 %		
Strukturverfeinerung (gegen F ²)	Vollmatrix – Kleinste -	Fehlerquadrate	
Reflexe / davon unterdrückt / Parameter	3715 / 0 / 190		
Gütefaktor (gegen F²)	1.034<41		
Endgültiger Fehler R [I>2sigma(I)]	R1 = 0.0845, wR2 = 0.2520		
R (alle Daten)	R1 = 0.1064, wR2 = 0.2763		
Extinktionskoeffizient	0.00008(9)		
Größte und kleinste Restelektronendichte	6.604 und -3.846 ·10 ⁻⁶	e∙pm ⁻³	

	X	у	Z	U(eq)
Te(1)	979(1)	4146(1)	1340(1)	34(1)
O(1)	2108(5)	2506(18)	1466(6)	17(2)
F(11)	1382(6)	7055(15)	916(6)	31(2)
F(12)	635(5)	2823(18)	404(5)	25(2)
F(13)	486(5)	1492(15)	1796(6)	22(2)
F(14)	1218(6)	5600(20)	2296(5)	33(2)
F(15)	-89(6)	5687(17)	1276(6)	30(2)
N(1)	2470(6)	3270(20)	298(7)	15(2)
C(1)	2620(7)	2170(20)	896(7)	11(2)
C(2)	3400(8)	390(30)	1081(9)	24(3)
Te(2)	4076(1)	6284(1)	3655(1)	33(1)
O(2)	2974(5)	7685(18)	3889(6)	18(2)
F(21)	3608(6)	4972(17)	2734(5)	27(2)
F(22)	4453(5)	9114(13)	3174(5)	19(2)
F(23)	4644(5)	7441(16)	4570(5)	21(2)
F(24)	3820(5)	3322(14)	4127(5)	22(2)
F(25)	5130(6)	4830(17)	3513(6)	34(2)
N(2)	2622(6)	9710(20)	2773(6)	17(2)
C(3)	2437(7)	9300(20)	3392(8)	15(3)
C(4)	1648(9)	10230(30)	3687(10)	33(4)
C(5)	1777(12)	12080(40)	4313(16)	60(6)

Atomkoordinaten (x 10⁴) und äquivalente isotrope Temperaturfaktoren ($pm^2 x 10^{-1}$) für CH₃C(NH)OTeF₅ und C₂H₅C(NH)OTeF₅. U(eq) ist definiert als 1/3 des orthogonalisierten Uij Tensors. Bindungslängen [pm] und -winkel [°] für CH_3C(NH)OTeF_5 und C_2H_5C(NH)OTeF_5

Te(1)-F(11)	184.0(8)
Te(1)-F(12)	180.9(8)
Te(1)-F(13)	182.0(8)
Te(1)-F(14)	184.7(9)
Te(1)-F(15)	181.4(8)
Te(1)-O(1)	191.6(8)
O(1)-C(1)	136.2(13)
N(1)-C(1)	119.9(16)
C(1)-C(2)	151.9(17)
Te(2)-F(21)	182.7(8)
Te(2)-F(22)	183.9(7)
Te(2)-F(23)	183.8(8)
Te(2)-F(24)	182.9(7)
Te(2)-F(25)	183.0(7)
Te(2)-O(2)	193.0(8)
O(2)-C(3)	140.7(15)
N(2)-C(3)	118.2(17)
C(3)-C(4)	145.9(18)
C(4)-C(5)	147(3)
F(12)-Te(1)-F(15)	87.6(4)
F(12)-Te(1)-F(13)	91.2(4)
F(15)-Te(1)-F(13)	87.0(4)
F(12)-Te(1)-F(11)	91.1(4)
F(15)-Te(1)-F(11)	87.1(4)
F(13)-Te(1)-F(11)	173.6(4)
F(12)-Te(1)-F(14)	174.4(4)
F(15)-Te(1)-F(14)	86.9(4)
F(13)-Te(1)-F(14)	87.5(5)
F(11)-Te(1)-F(14)	89.6(5)
F(12)-Te(1)-O(1)	95.1(4)

F(15)-Te(1)-O(1)	176.9(4)
F(13)-Te(1)-O(1)	91.3(4)
F(11)-Te(1)-O(1)	94.4(4)
F(14)-Te(1)-O(1)	90.5(4)
C(1)-O(1)-Te(1)	124.4(8)
O(1)-C(1)-C(2)	115.4(11)
N(1)-C(1)-O(1)	121.8(11)
N(1)-C(1)-C(2)	122.8(11)
F(21)-Te(2)-F(22)	90.2(4)
F(21)-Te(2)-F(23)	174.6(4)
F(21)-Te(2)-F(25)	88.5(4)
F(23)-Te(2)-F(22)	89.9(4)
F(24)-Te(2)-F(21)	90.2(4)
F(24)-Te(2)-F(22)	173.7(3)
F(24)-Te(2)-F(23)	89.1(4)
F(24)-Te(2)-F(25)	87.2(4)
F(25)-Te(2)-F(22)	86.6(4)
F(25)-Te(2)-F(23)	86.1(4)
F(24)-Te(2)-O(2)	89.1(4)
F(21)-Te(2)-O(2)	94.5(4)
F(25)-Te(2)-O(2)	175.2(4)
F(23)-Te(2)-O(2)	90.9(4)
F(22)-Te(2)-O(2)	97.1(4)
C(3)-O(3)-Te(2)	123.5(8)
N(2)-C(3)-O(2)	119.8(11)
N(2)-C(3)-C(4)	125.1(12)
O(2)-C(3)-C(4)	114.9(12)
C(5)-C(4)-C(3)	116.9(14)

	U11	U22	U33	U23	U13	U12	
Te(1)	38(1)	33(1)	32(1)	-1(1)	10(1)	4(1)	
F(11)	46(5)	7(3)	47(7)	8(4)	29(4)	-1(3)	
F(12)	34(4)	42(5)	0(4)	-5(3)	0(3)	9(4)	
F(13)	16(3)	21(4)	30(6)	9(3)	11(3)	-3(3)	
F(14)	41(5)	51(6)	11(5)	-23(4)	12(4)	1(4)	
F(15)	35(5)	30(5)	28(6)	10(4)	16(4)	22(4)	
O(1)	16(4)	22(4)	12(6)	-3(4)	3(3)	7(3)	
N(1)	24(5)	24(5)	10(4)	12(4)	0(6)	4(4)	
C(1)	18(5)	18(5)	0(7)	-7(4)	11(4)	0(4)	
C(2)	17(5)	27(7)	28(9)	4(6)	10(5)	11(5)	
Te(2)	37(1)	31(1)	33(1)	-1(1)	10(1)	1(1)	
F(21)	54(5)	27(4)	0(5)	-13(3)	12(3)	-8(4)	
F(22)	24(4)	11(3)	24(5)	7(3)	16(3)	-3(3)	
F(23)	25(4)	25(4)	11(5)	1(3)	-6(3)	1(3)	
F(24)	36(4)	4(3)	27(5)	4(3)	12(3)	2(3)	
F(25)	28(4)	23(4)	56(7)	1(4)	20(4)	16(3)	
O(2)	17(4)	22(5)	15(6)	-2(4)	5(3)	4(3)	
N(2)	12(4)	38(6)	0(6)	13(4)	-1(3)	2(4)	
C(3)	8(4)	23(6)	15(8)	7(5)	0(4)	-1(4)	
C(4)	18(6)	37(9)	44(12)	17(8)	10(6)	13(6)	
C(5)	28(8)	56(13)	100(20)	12(13)	6(9)	-2(8)	

Anisotrope Temperaturfaktoren (pm² x 10⁻¹) für CH₃C(NH)OTeF₅ und C₂H₅C(NH)OTeF₅.

Der anisotrope Temperaturfaktor hat die Form: - $2\pi^2$ [h² a^{*2}U11 + ... + 2 h k a^{*} b^{*} U₁₂]

Torsionswinkel [°] für CH₃C(NH)OTeF₅ und C₂H₅C(NH)OTeF₅

F(11)-Te1-O(1)-C(1)	-53.3(10)
F(12)-Te1-O(1)-C(1)	38.2(10)
F(13)-Te1-O(1)-C(1)	129.6(10)

F(14)-Te1-O(1)-C(1)	-142.9(10)
F(15)-Te1-O(1)-C(1)	-173(8)
Te1-O(1)-C(1)-N(1)	12.9(17)
Te1-O(1)-C(1)-C(2)	-168.6(9)
F(24)-Te2-O(2)-C(3)	-142.8(10)
F(21)-Te2-O(2)-C(3)	-52.7(10)
F(25)-Te2-O(2)-C(3)	178(5)
F(23)-Te2-O(2)-C(3)	128.1(9)
F(22)-Te2-O(2)-C(3)	38.0(10)
Te2-O(2)-C(3)-C(4)	-177.8(10)
N(2)-C(3)-C(4)-C(5)	-113.4(19)
O(2)-C(3)-C(4)-C(5)	70.3(19)

4.2.5 Versuche zur Darstellung von Iridiumtrispentafluorotellurat(VI)

a. Umsetzung von IrCl₃ mit ClOTeF₅

Im Handschuhkasten wurden 100 mg (0.34 mmol) IrCl₃ in einem PFA Schlauch (Innendurchmesser 8 mm) eingewogen und mit einem Metallkern mit Ventil verschlossen. Das so verschlossene Reaktionsrohr wird evakuiert und auf -196°C abgekühlt. 275 mg (1 mmol) ClOTeF₅ wurden aufkondensiert, das Reaktionsrohr abgeschmolzen und auf Raumtemperatur gebracht. Die Reaktion läuft unter heftiger Gasentwicklung und Trübung der Lösung ab, das Produkt ist ein unlöslicher, tiefgrün gefärbter Feststoff.

b. Umsetzung von IrF₆ mit B(OTeF₅)₃

Im Handschuhkasten werden 1.4 g (2 mmol) $B(OTeF_5)_3$ in einem PFA Schlauch (Innendurchmesser 8 mm) eingewogen und mit einem Metallkern mit Ventil verschlossen. Das so verschlossene Reaktionsrohr wird evakuiert und auf -196°C abgekühlt, 300 mg (1 mmol) IrF₆ wird aufkondensiert, das Reaktionsrohr abgeschmolzen und auf Raumtemperatur gebracht. Das Resultat der heftigen Reaktion ist ein braun gefärbter Feststoff.

Die Untersuchung der entstandenen Feststoffe ergab keinen Aufschluss über die Art der Produkte.

4.2.6 Eisentrispentafluorotellurat(VI)

4.2.6.1 Synthese von $[Fe(OTeF_5)_3 \cdot 3 SO_2]$

In eine 10 ml Glasampulle werden im Handschuhkasten 100 mg (0.61 mmol) wasserfreies FeCl₃ eingefüllt. Dann werden an der Vakuumapparatur nacheinander 4 ml SO₂ClF und ein kleiner Überschuss an ClOTeF₅ 0.6 g (2.2 mmol) einkondensiert. Nach Verschließen der Ampulle lässt man diese auf Raumtemperatur erwärmen. Es setzt sofort eine Reaktion ein, das FeCl₃ geht unter Gasentwicklung in Lösung. Nach Beenden der Reaktion wird alles Flüchtige abgepumpt, bis ein trockener farbloser Feststoff erhalten wird. An der Vakuumapparatur wird auf den Festkörper bei -196°C SO₂ aufkondensiert. Die Glasampulle wird abgeschmolzen und langsam auf -78°C gekühlt. [Fe(OTeF₅)₃ · 3 SO₂] kristallisiert in feinen, rosafarbenen Nadel aus.

Ramandaten (Festkörper, -78°C, 100 mW): $\tilde{\nu} = 1335$ (11), 1324 (18), 1145 (90), 1132 (36), 1123 (40), 888 (10), 848 (31), 832 (54), 697 (51), 683 (100), 636 (6,Schulter), 630 (65), 594 (3), 531 (11), 518 (7.5), 429 (38), 356 (9.5), 336 (66), 313 (27), 299 (25.5), 258 (12), 234 (18), 210 (16.5), 180 (23), 155 (7) cm⁻¹

¹⁹F-NMR (Raumtemperatur, SO₂): breites Signal bei δ = -41.13 ppm

Farbe	zartrosa	
Summenformel	$F_{15}FeO_9S_3Te_3$	
Molmasse	963.82 g/mol	
Messtemperatur	213(2) K	
Wellenlänge	71.073 pm	
Kristallsystem	monoklin	
Raumgruppe	P2/n	
Gitterkonstanten	a = 1629.6(4)pm	$\alpha = 90^{\circ}$
	b = 1528.4(4)pm	$\beta = 106.13(2)^{\circ}$
	c = 1632.9(3)pm	$\gamma = 90^{\circ}$

4.2.6.2 Strukturaufklärung der Verbindung [Fe(OTeF₅)₃ · 3 SO₂]

Volumen	3906.9(16) ⁻ 10 ⁶ pm ³
Formeleinheit pro Zelle	8
Dichte (berechnet)	0.328 g/cm ³
Absorptionskoeffizient	1.503 mm ⁻¹
F(000)	899
Kristalldimensionen	0.2 x 0.2 x 0.1 mm ³
Theta-Bereich der Datensammlung	2.15 bis 30.51°
hkl-Bereich der Indizes	-23<=h<=23, -21<=k<=21, -23<=l<=23
Gemessene Reflexe	62257
Unabhängige Reflexe	11936 [R(int) = 0.0427]
Vollständigkeit zu Theta = 30.51°	99.8%
Strukturverfeinerung (gegen F ²)	Vollmatrix – Kleinste - Fehlerquadrate
Reflexe / davon unterdrückt / Parameter	11936 / 0 / 618
Gütefaktor (gegen F ²)	1.081<41
Endgültiger Fehler R [I>2sigma(I)]	R1 = 0.0511, wR2 = 0.1191
R (alle Daten)	R1 = 0.0888, wR2 = 0.1383
Extinktionskoeffizient	0.000066(11)
Größte und kleinste Restelektronendichte	1.860 und -1.872·10 ⁻⁶ e.pm ⁻³

Atomkoordinaten (x 10⁴) und äquivalente isotrope Temperaturfaktoren (pm² x 10⁻¹) für $Fe(OTeF_5)_3 \cdot 3 SO_2$. U(eq) ist definiert als 1/3 des orthogonalisierten Uij Tensors.

	X	у	Z	U(eq)
Fe	-5(1)	7498(1)	-1276(1)	14(1)
Te(1)	1264(1)	7541(1)	810(1)	21(1)
O(1)	717(3)	7091(3)	-236(3)	22(1)
F(12)	1584(3)	8546(3)	373(3)	34(1)
F(11)	317(3)	8085(3)	964(3)	36(1)
F(13)	2280(3)	7020(3)	836(3)	37(1)
F(14)	1002(4)	6603(3)	1390(3)	41(1)
F(15)	1817(3)	7987(3)	1860(3)	41(1)

Te(2)	-1399(1)	9041(1)	-884(1)	23(1)
O(2)	-400(3)	8556(3)	-919(3)	23(1)
F(21)	-1678(3)	8149(3)	-266(3)	33(1)
F(22)	-2401(3)	9568(3)	-859(4)	45(1)
F(23)	-1240(4)	9992(3)	-1496(3)	49(2)
F(24)	-2019(3)	8517(3)	-1866(3)	40(1)
F(25)	-894(4)	9633(3)	119(3)	42(1)
Te(3)	-1346(1)	5853(1)	-939(1)	19(1)
O(3)	-973(3)	6777(3)	-1416(3)	20(1)
F(31)	-2365(3)	6386(3)	-993(3)	34(1)
F(32)	-1842(3)	5341(3)	-1970(3)	31(1)
F(33)	-378(3)	5223(3)	-862(3)	32(1)
F(34)	-900(3)	6264(3)	167(3)	35(1)
F(35)	-1740(4)	4914(3)	-466(3)	42(1)
S(1)	1171(2)	9169(2)	-1769(2)	44(1)
O(11)	1026(4)	8296(4)	-1506(3)	32(1)
O(12)	460(6)	9707(4)	-2097(5)	62(2)
S(2)	-1138(1)	7517(2)	-3366(1)	31(1)
O(21)	-567(3)	7876(3)	-2602(3)	26(1)
O(22)	-1353(5)	6626(5)	-3342(4)	61(2)
S(3)	1184(2)	5854(2)	-1907(2)	45(1)
O(31)	623(4)	6557(4)	-1884(4)	36(1)
O(32)	1222(11)	5092(11)	-1412(14)	75(8)

Bindungslängen [pm] und -winkel [°] für Fe(OTeF_5)_3 \cdot 3 SO_2

Fe-O(1)	188.2(5)
Fe-O(3)	188.5(4)
Fe-O(2)	189.1(5)
Fe-O(11)	219.2(5)
Fe-O(21)	218.3(5)

Fe-O(31)	216.0(5)
Te(1)-O(1)	182.8(5)
Te(1)-F(11)	183.1(5)
Te(1)-F(12)	183.0(4)
Te(1)-F(13)	182.8(4)
Te(1)-F(14)	183.2(4)
Te(1)-F(15)	183.2(4)
Te(2)-O(2)	180.3(5)
Te(2)-F(21)	182.8(4)
Te(2)-F(22)	183.2(5)
Te(2)-F(23)	182.3(4)
Te(2)-F(24)	182.5(5)
Te(2)-F(25)	185.2(5)
Te(3)-O(3)	179.8(4)
Te(3)-F(31)	183.0(4)
Te(3)-F(32)	182.8(4)
Te(3)-F(33)	182.2(4)
Te(3)-F(34)	186.0(4)
Te(3)-F(35)	183.0(4)
S(1)-O(11)	144.0(6)
S(1)-O(12)	140.1(9)
S(2)-O(21)	144.1(5)
S(2)-O(22)	140.9(8)
S(3)-O(31)	141.9(6)
S(3)-O(32)	141.1(2)
O(1)-Fe-O(3)	102.1(2)
O(1)-Fe-O(2)	100.7(2)
O(3)-Fe-O(2)	101.1(2)
O(1)-Fe-O(11)	91.3(2)
O(2)-Fe-O(11)	85.4(2)
O(3)-Fe-O(11)	163.7(2)
O(1)-Fe-O(21)	165.3(2)
O(3)-Fe-O(21)	85.86(2)

O(2)-Fe-O(21)	89.7(2)
O(1)-Fe-O(31)	86.5(2)
O(2)-Fe-O(31)	162.9(2)
O(3)-Fe-O(31)	92.4(2)
O(31)-Fe-O(11)	78.9(2)
O(31)-Fe-O(21)	80.8(2)
O(21)-Fe-O(11)	79.2(2)
S(1)-O(11)-Fe	139.8(4)
S(2)-O(21)-Fe	138.6(3)
S(3)-O(31)-Fe	155.2(4)
O(1)-Te(1)-F(15)	179.6(2)
O(2)-Te(2)-F(25)	178.1(2)
O(3)-Te(3)-F(35)	179.1(2)

Anisotrope Temperaturfaktoren (pm² x 10⁻¹) für Fe(OTeF₅)₃ · 3 SO₂. Der anisotrope Temperaturfaktor hat die Form: $-2\pi^2$ [h² a^{*2}U11 + ... + 2 h k a^{*} b^{*} U₁₂]

	U11	U22	U33	U23	U13	U12
Fe	15(1)	14(1)	14(1)	0(1)	3(1)	-2(1)
Te(1)	25(1)	19(1)	16(1)	-1(1)	3(1)	1(1)
O(1)	24(2)	22(2)	15(2)	-2(2)	1(2)	1(2)
F(11)	39(3)	44(3)	30(2)	-3(2)	15(2)	10(2)
F(12)	46(3)	24(2)	30(2)	0(2)	9(2)	-9(2)
F(13)	25(2)	40(3)	40(3)	-6(2)	0(2)	10(2)
F(14)	65(3)	35(2)	23(2)	9(2)	14(2)	-6(2)
F(15)	49(3)	43(3)	21(2)	-11(2)	-6(2)	6(2)
Te(2)	31(1)	17(1)	20(1)	2(1)	8(1)	6(1)
O(2)	26(3)	18(2)	27(2)	-4(2)	10(2)	-1(2)
F(21)	44(3)	31(2)	27(2)	6(2)	18(2)	-2(2)
F(22)	40(3)	41(3)	55(3)	2(2)	19(3)	17(2)
F(23)	89(4)	24(2)	46(3)	18(2)	37(3)	13(2)

F(24)	34(3)	53(3)	25(2)	-4(2)	-5(2)	14(2)
F(25)	56(3)	35(2)	39(3)	-13(2)	20(3)	2(2)
Te(3)	21(1)	15(1)	20(1)	1(1)	6(1)	-4(1)
O(3)	17(2)	22(2)	17(2)	5(2)	0(2)	-7(2)
F(31)	21(2)	31(2)	56(3)	-4(2)	19(2)	-3(2)
F(32)	30(2)	28(2)	28(2)	-10(2)	-2(2)	-13(2)
F(33)	27(2)	27(2)	40(3)	3(2)	6(2)	10(2)
F(34)	55(3)	35(2)	17(2)	-3(2)	12(2)	-3(2)
F(35)	65(3)	24(2)	49(3)	6(2)	33(3)	-15(2)
S(1)	46(1)	44(1)	40(1)	4(1)	12(1)	-29(1)
O(11)	34(3)	34(3)	29(3)	-2(2)	11(2)	-13(2)
O(12)	89(6)	34(3)	82(6)	6(3)	54(5)	-3(4)
S(2)	25(1)	52(1)	14(1)	6(1)	1(1)	7(1)
O(21)	34(3)	26(2)	18(2)	6(2)	7(2)	1(2)
O(22)	67(5)	84(5)	30(3)	-1(3)	9(3)	-44(4)
S(3)	52(1)	42(1)	48(1)	-8(1)	27(1)	2(1)
O(31)	34(3)	46(3)	32(3)	-18(2)	15(2)	2(3)
O(32)	40(9)	62(10)	127(18)	84(12)	28(10)	37(9)

4.2.6.3 Umsetzungen von Fe(OTeF₅)₃

a. mit Xenon

In einer 8 ml Glasampulle wird, wie oben beschrieben, eine Lösung von $Fe(OTeF_5)_3$ in SO₂ClF hergestellte. Nach Beenden der Reaktion wird alles Flüchtige abgepumpt bis ein trockener farbloser Feststoff erhalten wird. An der Vakuumapparatur wird auf den Festkörper bei -196°C 2 g (9 mmol) Xe aufkondensiert. Die Glasampulle wird abgeschmolzen und langsam auf -10°C erwärmt. Eine Lösung von Fe(OTeF₅)₃ in Xe wird nicht beobachtet.

Die gleiche Reaktion wird durchgeführt, der isolierte Feststoff wird mit SO₂ClF und Xe bei -196°C versetzt. Nach Abschmelzen der Glasampulle, durch Erwärmen auf -10 °C und Abkühlen auf -78°C erhält man kleine weiße, aber extrem feine Kristalle.

b. mit Ozon

In eine 10 ml Glasampulle wird chlorfreie Lösung von Fe(OTeF₅)₃ in SO₂ oder SO₂ClF gefüllt. Bei -78°C wird durch die Lösung Ozon geleitet, welches mit einem Siemens'schen Ozonisator produziert wird. Das Ozon wird zur Trocknung vorher bei -78°C durch Glaswolle geleitet und solange in die Lösung eingeleitet bis die überstehende Lösung blau ist. Es kam zu keiner Reaktion.

Die gleiche Reaktion wird durchgeführt, jedoch wird während der Ozoneinleitung der Fokus einer UV-Lampe auf das Reaktionsröhrchen gerichtet. Nach Beendigung der Reaktion ist die gesamte Lösung orange gefärbt. Die Untersuchung der Lösung ergab keinen Aufschluss über die Natur der Produktes.

c. mit CO

In eine konzentrierte, chlorfreie Lösung von Fe(OTeF₅)₃ in SO₂ oder SO₂ClF wird bei -50°C langsam nach Literatur^[75] hergestelltes und getrocknetes CO eingeleitet. Im Lauf der Reaktion bildet sich ein orangebrauner Niederschlag. Die Untersuchung des entstandenen Niederschlages ergab keinen Aufschluss über die Zusammensetzung.

d. mit CO₂

In eine chlorfreie Lösung von Fe(OTeF₅)₃ in SO₂ oder SO₂ClF wird langsam frisch hergestelltes und getrocknetes CO₂ bei -60°C eingeleitet. Im Lauf der Reaktion bildet sich ein gelb-brauner Niederschlag. Die Untersuchung des Niederschlages ergab ebenfalls keinen genauen Aufschluss über die Art des Produktes bzw. Produktgemisches.

4.2.7 Arsen(V)aminotellurpentafluoridtetrafluorid

Die Synthese des $(CH_3)_3SiNHTeF_5$ erfolgt gemäß der Literatur^[3]. In eine 70 ml Glasampulle, die mit einem Magnetkern ausgestattet ist, wird nacheinander bei -196°C 2.02 g (12.5 mmol) frisch destilliertes $((CH_3)_3Si)_2NH$ und 6.04 g (25 mmol) TeF₆ einkondensiert. Die Ampulle wird zugeschmolzen und langsam auf Raumtemperatur erwärmt. Anschließend wird die Lösung 24h gerührt, wobei ein Farbumschlag von farblos zu gelb zu beobachten ist. Nach Öffnen der Ampulle wird der Inhalt einer fraktionierten Destillation (Raumtemperatur, -30°C und -196°C) unterworfen, die -30°C Kühlfalle enthält das farblose Produkt (CH₃)₃SiNHTeF₅.

¹⁹F-NMR (Raumtemperatur): AB₄-Spektrum, $\delta_A = -31.1$ ppm, $\delta_B = -37.0$ ppm, $J_{AB} = 173$ Hz, J¹²⁵_{TeA} = 3245 Hz, J¹²⁵_{TeB} = 3375 Hz ¹²⁵Te-NMR (Raumtemperatur): $\delta = 662.8$ ppm ¹H-NMR (Raumtemperatur): $\delta_{NH} = 3.66$ ppm, $\delta_{CH} = 0.03$ ppm

Im Handschuhkasten wird in einen mit Magnetkern ausgestatteten 50 ml Einhalskolben 1.6 g (5.7 mmol) (CH₃)₃SiHNTeF₅ eingewogen. Nach kurzem Evakuieren wird der Kolben auf -196°C abgekühlt. Nacheinander werden 6 g CH₂Cl₂ und 0.96 g (5.7 mmol) AsF₅ aufkondensiert und die Lösung wird 1h bei -78°C gerührt.

¹⁹F-NMR (Raumtemperatur, CH₂Cl₂): AB₄C-Spektrum, $\delta_A = -34.6$ ppm, $\delta_B = -41.9$ ppm, $\delta_C = -36.5$ ppm, $J_{AB} = 169.2$ Hz, $J^{125}_{TeB} = 3549$ Hz, $J^{125}_{TeA} = 3188$ Hz, $J_{CD} = 139.1$ Hz ¹²⁵Te-NMR (Raumtemperatur, CH₂Cl₂): $\delta = 663.9$ ppm ¹H-NMR (Raumtemperatur, CH₂Cl₂): $\delta_{NH} = 3.5$ ppm

4.2.8 Arsen(V)di(aminotellurpentafluorid)trifluorid

4.2.8.1 Synthesen von As(NHTeF₅)₂F₃

a. durch Umsetzung von (CH₃)₃SiHNTeF₅ mit AsF₅

In einen 50 ml Einhalskolben, ausgestattet mit einem Magnetkern, werden im Handschuhkasten 1.6 g (5.70 mmol) (CH₃)₃SiHNTeF₅ eingewogen. Nach kurzem Evakuieren und Abkühlen auf -196°C werden nacheinander 6 g CH₂Cl₂ und 0.48 g (2,85 mmol) AsF₅ aufkondensiert. Die Lösung wird 3h bei -78°C gerührt. Aus der klaren Lösung fällt ein elfenbeinfarbener Niederschlag aus. Der Rückstand wird, nach Abzug des Lösungsmittels und der flüchtigen Nebenprodukte, im statischen Vakuum sublimiert.

b. durch Sublimation von AsF5·H2NTeF5

H₂NTeF₅ wird nach Literatur^[3] hergestellt. Im Handschuhkasten wird 3 g (10.7 mmol) (CH₃)₃SiHNTeF₅ in eine Quarzglas-Kühlfalle eingewogen, evakuiert und auf -10°C abgekühlt. Eine äquimolare Menge wasserfreie HF wird in kleinen Portionen aufkondensiert, sofort setzt eine exotherme Reaktion ein. Nach Abkühlen auf -40°C wird (CH₃)₃SiF abgepumpt, das Produkt wird im dynamischen Vakuum auf einen -30°C kalten Kühlfinger sublimiert.

In einem 50 ml Kolben wird 1 g (419 mmol) H₂NTeF₅ bei Raumtemperatur in 8 g CH₂Cl₂ gelöst, bei -196°C werden 0.71 g (419 mmol) AsF₅ aufkondensiert. Die klare Lösung wird 2h bei -78°C gerührt, es entsteht ein weißer Niederschlag. Nach Abzug des Lösungsmittels bei Raumtemperatur erhält man einen weißen Festkörper, dieser wird im statischen Vakuum sublimiert. Schmelzpunkt/Zersetzungspunkt: 131°C

Ramandaten (Kristall, Raumtemperatur, 200 mV): $\tilde{\nu} = 119(1)$, 202(1), 276(13), 310(30), 321(16), 355(Schulter,4), 370(13), 376(13), 566(21), 584(13), 671(Schulter,23), 682(100), 729(13), 741(4), 751(4), 1404(1), 3095(1) cm⁻¹

¹⁹F-NMR (Raumtemperatur, C₂H₅CN): AB₄CD₂-Spektrum, $\delta_A = -34.62$ ppm, $\delta_B = -41.97$ ppm, $\delta_C = -36.49$ ppm, $\delta_D = -36.86$ ppm, $J_{AB} = 169.2$ Hz, $J^{125}_{Te-B} = 3549$ Hz, $J^{125}_{Te-A} = 3188$ Hz, $J_{CD} = 139.1$ Hz

¹H-NMR (Raumtemperatur, CD₃CN): δ_{NH} = 3.5 ppm

farblos Farbe Summenformel $H_2AsF_{13}N_2Te_2$ Molmasse 607.16 g/mol Messtemperatur 173(2) K Wellenlänge 71.073 pm Kristallsystem monoklin C2/cRaumgruppe Gitterkonstanten a = 966.75(18) pm $\alpha = 90^{\circ}$ c = 2080.7(3) pm $\gamma = 90^{\circ}$ b = 522.33(8) pm $\beta = 95.33(1)^{\circ}$ Volumen 1046.1(3)⁻10⁶pm³ 4 Formeleinheit pro Zelle Dichte (berechnet) 3.855 g/cm³ 8.890 mm⁻¹ Absorptionskoeffizient F(000) 1080 Kristalldimensionen $0.2 \ge 0.2 \ge 0.3 \text{ mm}^3$ 1.97 bis 30.59° Theta-Bereich der Datensammlung hkl-Bereich der Indizes -13<=h<=13, -7<=k<=7, -29<=l<=29 Gemessene Reflexe 6007 Unabhängige Reflexe 1600 [R(int) = 0.0456]99.8% Vollständigkeit zu Theta = 30.59° Strukturverfeinerung (gegen F²) Vollmatrix - Kleinste - Fehlerquadrate Reflexe / davon unterdrückt / Parameter 1600 / 0 / 88 Gütefaktor (gegen F²) 1.169<41 Endgültiger Fehler R [I>2sigma(I)] R1 = 0.0368, wR2 = 0.0900 R (alle Daten) R1 = 0.0385, wR2 = 0.0910 Extinktionskoeffizient 0.00091(18)Größte und kleinste Restelektronendichte 2.361 und -1.655 10⁻⁶ e.pm⁻³

3.2.8.2 Strukturaufklärung der Verbindung As(NHTeF₅)₂F₃

72

	Х	У	Z	U(eq)	
Te	416(1)	2448(1)	3977(1)	16(1)	
As	0	5314(1)	2500	16(1)	
Ν	-552(4)	3789(8)	3189(2)	20(1)	
F(1)	-598(3)	-529(6)	3868(1)	25(1)	
F(2)	1474(3)	5320(6)	4128(1)	24(1)	
F(3)	1789(3)	979(6)	3545(1)	24(1)	
F(4)	-922(3)	3781(6)	4444(1)	25(1)	
F(5)	1262(3)	1087(7)	4718(1)	28(1)	
F(6)	1721(3)	5410(6)	2831(1)	24(1)	
F(7)	0	8563(8)	2500	31(1)	

Atomkoordinaten (x 10⁴) und äquivalente isotrope Temperaturfaktoren ($pm^2 x 10^{-1}$) für As(NHTeF₅)₂F₃. U(eq) ist definiert als 1/3 des orthogonalisierten Uij Tensors.

Bindungslängen [pm] und -winkel [°] für As(NHTeF_5)_2F_3

As-F(6)	174.1(3)
As-F(6)#1	174.1(3)
As-F(7)	169.7(4)
As-N	176.5(4)
As-N#1	176.5(4)
N-H	74.(8)
Te-N	194.3(4)
Te-F(1)	184.1(3)
Te-F(2)	182.6(3)
Te-F(3)	183.8(3)
Te-F(4)	182.6(3)
Te-F(5)	182.1(3)
F(7)-As-N	116.83(14)

F(6)-As-N	92.43(16)
N-As-N#1	126.3(3)
F(7)-As-N#1	116.83(14)
F(6)#1-As-N	89.07(16)
F(6)-As-N#1	89.07(16)
F(6)#1-As-N#1	92.43(16)
F(7)-As-F(6) #1	88.34(10)
F(7)-As-F(6)	88.34(11)
F(6)#1-As-F(6)	176.7(2)
As-N-Te	133.6(2)
As-N-H	115(6)
Te-N-H	112(6)
F(1)-Te-N	89.48(15)
F(2)-Te-N	93.84(15)
F(3)-Te-N	92.89(15)
F(4)-Te-N	90.12(15)
F(5)-Te-N	177.46(15)
F(2)-Te-F(1)	176.68(12)
F(2)-Te-F(3)	90.52(14)
F(2)-Te-F(4)	90.46(14)
F(3)-Te-F(1)	89.30(14)
F(4)-Te-F(1)	89.54(14)
F(4)-Te-F(3)	176.76(13)
F(5)-Te-F(1)	88.12(14)
F(5)-Te-F(2)	88.56(14)
F(5)-Te-F(4)	89.03(14)

Verwendete Symmetrietransformationen zur Generierung äquivalenter Atome: #1 -x, y, -z +1/2

	U11	U22	U33	U23	U13	U12	
Te	16(1)	19(1)	14(1)	1(1)	1(1)	1(1)	
As	17(1)	17(1)	13(1)	0	1(1)	0	
Ν	15(2)	28(2)	16(2)	3(1)	1(1)	1(1)	
F(1)	25(1)	23(1)	26(1)	3(1)	1(1)	-5(1)	
F(2)	26(1)	24(1)	22(1)	-2(1)	-1(1)	-5(1)	
F(3)	17(1)	31(2)	26(1)	0(1)	5(1)	6(1)	
F(4)	22(1)	34(2)	20(1)	-1(1)	7(1)	7(1)	
F(5)	26(1)	38(2)	18(1)	8(1)	-4(1)	2(1)	
F(6)	23(1)	33(2)	16(1)	0(1)	0(1)	-7(1)	
F(7)	49(3)	14(2)	31(2)	0	3(2)	0	

Anisotrope Temperaturfaktoren (pm² x 10⁻¹) für As(NHTeF₅)₂F₃. Der anisotrope Temperaturfaktor hat die Form: $-2\pi^{2}$ [h² a^{*2}U11 + ... + 2 h k a^{*} b^{*} U₁₂]

Wasserstoffkoordinaten (x 10⁴) und isotrope Temperaturfaktoren (pm² x 10⁻¹) für As(NHTeF₅)₂F₃

	X	у	Z	U(eq)
Н	-1310(80)	3620(150)	3180(30)	32(18)

Torsionswinkel [°] für As(NHTeF₅)₂F₃

F(7)-As-N-Te	-94.4(3)
F(6) #1-As-N-Te	178.0(3)
F(6)-As-N-Te	-5.0(3)
N#1-As-N-Te	85.6(3)
F(5)-Te-N-As	-151(3)
F(2)-Te-N-As	47.9(3)

F(4)-Te-N-As	138.4(3)
F(3)-Te-N-As	-42.8(3)
F(1)-Te-N-As	-132.1(3)

Verwendete Symmetrietransformation zur Generierung äquivalenter Atome: #1 -x, y, -z+1/2

4.2.9 Versuche zur Darstellung von Arsen(V)tri(aminotellurpentafluorid)difluorid

In einen 50 ml Einhalskolben, ausgestattet mit einem Magnetkern, werden im Handschuhkasten 100 mg (0.16 mmol) As(NHTeF₅)₂F₃ eingewogen. Nach kurzem evakuieren, wird der Kolben auf -196°C abgekühlt und nacheinander 6 g C₂H₅CN und 60 mg (0.16 mmol) (CH₃)₃SiNHTeF₅ aufkondensiert. Die Lösung wird 3h bei -78°C gerührt. Ein ¹⁹F-NMR-Spektrum zeigt, dass keine Reaktion stattgefunden hat. Die Lösung wird langsam auf Raumtemperatur gebracht, anschließend 3h bei 50°C gerührt. Ein erneutes ¹⁹F-NMR-Spektrum zeigt, dass wieder keine Reaktion erfolgte.

¹⁹F-NMR (Raumtemperatur, CH₃CN): As(NHTeF₅)₂F₃, δ_A = -34.62 ppm, δ_B = -41.97 ppm, δ_C = -36.49 ppm, δ_D = -36.86 ppm, J_{AB}= 169.2 Hz, (CH₃)₃SiNHTeF₅ δ_A = -32.38 ppm, δ_B = -38.76 ppm

4.2.10 Versuche zur Knüpfung einer Bindung zwischen einem Amin, Arsen(V) und Silicium

a. AsF₅ mit ((CH₃)₃Si)₂NH

1.89 g (11,71 mmol) ((CH₃)₃Si)₂HN werden mit 5 g C₂H₃CN gemischt, die Lösung auf -196°C abgekühlt und in kleinen Portionen 1 g (5.89 mmol) AsF₅ aufkondensiert. Anschließend wird 2h bei -78°C gerührt. Nach Abzug von (CH₃)₃SiF und des Lösungsmittels zuerst bei einer Temperatur von -40°C, danach bei Raumtemperatur erhält man einen weißen Festkörper. In dem so gewonnenen Festkörper ist es unmöglich durch ¹⁹F-NMR-Spektrum Verbindungen vom Typ As(NHSi(CH₃)₃)_xF_(5-x) nachzuweisen.

b. AsF₅ mit Na[N[Si(CH₃)₃]₂]

In ein 100 ml Schlenkrohr, ausgestattet mit einem Magnetkern, werden im Handschuhkasten 2.16 g (12 mmol) Na[N[Si(CH₃)₃]₂] eingefüllt. In das auf –196°C abgekühlte Schlenkrohr wird Diethylether einkondensiert und auf Raumtemperatur erwärmt. In ein zweites auf -196°C abgekühltes 100 ml Schlenkrohr werden nacheinander 1 g (6 mmol) AsF₅ und Diethylether einkondensiert und auf -50°C erwärmt. Die auf -50°C abgekühlte Lösung von Na[N[Si(CH₃)₃]₂] wird über 2h über einen Teflonschlauch, durch Argon-Überdruck, zu der Lösung mit AsF₅ gegeben. Die Lösung wird 6h bei -50°C gerührt, nach Beenden der Reaktion wird der entstandene Niederschlag von der Lösung abgetrennt. (CH₃)₃SiF und ²/₃ des Lösemittels werden abgezogen, anschließend ein ¹⁹F-NMR-Spektrum der öligen Restsubstanz aufgenommen. Der eingeengte Reaktionsansatz wird langsam von 0°C auf -78°C abgekühlt. Aus der Lösung sublimieren Kristalle heraus, die bei der Präparation für die röntgographische Untersuchung geschmolzen sind.

¹⁹F-NMR (Raumtemperatur, CD_2Cl_2): δ = -23.00 ppm (t), -33.27 ppm (q), -36.01 ppm (t), -45.13 ppm (q), -50.88 ppm (m), -54.38 ppm (s, breit), -65.91 ppm (s, breit; im Verhältnis 1:2 zum vorhergehenden Singulett)

¹H-NMR (Raumtemperatur, CD_2Cl_2): $\delta(CH_3) = 0.06$ ppm

4.2.11 Antimon(V)di(aminotellurpentafluorid)trifluorid

Im Handschuhkasten werden 100 mg (0,46 mmol) SbF₅ in einen PFA-Schlauch (Innendurchmesser 12 mm) gefüllt, auf das bei -196°C gekühlte SbF₅ werden 2 g SO₂ClF kondensiert und langsam 384 mg (1,38 mmol) (CH₃)₃SiHNTeF₅ kondensiert. Die Reaktionsmischung wird erst bei -78°C gerührt, langsam auf -25°C erwärmt und anschließend bei dieserTemperatur 12h gerührt. Es entsteht ein weißer Niederschlag. Nach Abzug von (CH₃)₃SiF und des Lösungsmittels bei -25°C und anschließend bei Raumtemperatur erhält man einen elfenbeinfarbigen Festkörper.

Schmelzpunkt/Zersetzungspunkt: 139°C

Ramandaten (Festkörper, Raumtemperatur, 200 mV): $\tilde{\nu} = 126(1)$, 182(5), 218(1), 232(2), 278(13), 291(7), 315(30), 353(4), 409(13), 543(21), 587(13), 652(Schulter, 26), 660(35), 672(34), 682(100), 710(15), 738(13) cm⁻¹

¹⁹F-NMR (Raumtemperatur, CH₃CN): AB₄CD₂ Spektrum, δ_A = -58.17 ppm, δ_B = -65.38 ppm, δ_C = -53.10 ppm, δ_D = -53.49 ppm, J_{AB} = 167.69 Hz, J¹²⁵_{TeB} = 3211 Hz, J_{CD} = 146.64 Hz ¹H-NMR (Raumtemperatur, CH₃CN): δ_{NH} = 3.6 ppm

4.2.12 Versuche zur Darstellung einer Iod(V)aminotellurpentafluorid-Verbindung

In einem typischen Ansatz werden im Handschuhkasten in ein PFA-NMR-Reaktionsrohr (4 mm Durchmesser) 50 mg (0.22 mmol) IF₅ und 70 mg (0.22 mmol) (CH₃)₃SiNHTeF₅ eingewogen und mit einem Metallkern und Ventil verschlossen. Das so verschlossene Reaktionsrohr wird evakuiert, auf -196°C abgekühlt und etwas Propionitril aufkondensiert. Die Probe wird abgeschmolzen und auf Raumtemperatur erwärmt.

¹⁹F-NMR (C₂H₅CN): AB₄C-Spektrum, δ_A = -36.69 ppm, δ_B = -43.95 ppm, J_{AB} = 171.08 Hz; δ_c = -45.98 ppm; (CH₃)₃SiF δ = -159.31 ppm

4.2.13 Aminotellurpentafluoriddifluoridarsoran

Im Handschuhkasten werden in einen 50 ml Einhalskolben ausgestattet, mit einem Magnetkern 100 mg (0.75 mmol) AsF₃ und 236 mg (0.75 mmol) (CH₃)₃SiNHTeF₅ vorgelegt. Auf diese Mischung wird bei -196°C an der Vakuumapparatur Dietyhlether aufkondensiert und anschließend 1h bei Raumtemperatur gerührt.

¹⁹F-NMR (Raumtemperatur, $(C_2H_5)_2O$): AB₄C₂ Spektrum, δ_{A} = -34.96 ppm, δ_B = -41.97 ppm, δ_C = -44.70 ppm, J_{AB} = 170.70 Hz, J^{125}_{Te-B} = 3550 Hz, J^{125}_{Te-A} = 3389 Hz ¹²⁵Te-NMR (Raumtemperatur, $(C_2H_5)_2O$): δ = 633 ppm ¹H-NMR (Raumtemperatur, $(C_2H_5)_2O$): δ_{NH} = 4.14 ppm

4.2.14 Di(aminotellurpentafluorid)fluoridarsoran

In einen 50 ml Einhalskolben, ausgestattet mit einem Magnetkern, werden im Handschuhkasten 100 mg (0.75 mmol) AsF₃ und 471 mg (1.5 mmol) (CH_3)₃SiNHTeF₅ eingewogen. Auf diese Mischung werden bei -196°C an der Vakuumapparatur Dietyhlether aufkondensiert. Der Reaktionsansatz wird 1h bei Raumtemperatur gerührt.

¹⁹F-NMR (Raumtemperatur, $(C_2H_5)_2O$): AB₄C Spektrum, δ_{A} = -34.87 ppm, δ_B = -41.92 ppm, δ_C = -67.91 ppm, J_{AB} = 170.60 Hz, $J_{125}^{125}_{Te-B}$ = 3555 Hz, $J_{125}^{125}_{Te-A}$ = 3391 Hz ¹²⁵Te-NMR (Raumtemperatur, $(C_2H_5)_2O$): δ = 633.4 ppm ¹H-NMR (Raumtemperatur, $(C_2H_5)_2O$): δ_{NH} = 4.20 ppm

4.2.15 Tri(aminotellurpentafluorid)arsoran

Im Handschuhkasten werden in einen 50 ml Einhalskolben, ausgestattet mit einem Magnetkern, 100 mg (0.75 mmol) AsF₃ und 770 mg (2.25 mmol) (CH₃)₃SiNHTeF₅ eingewogen. Auf diese Mischung werden bei -196°C an der Vakuumapparatur Dietyhlether aufkondensiert. Der Reaktionsansatz wird 1h bei Raumtemperatur gerührt. Ramandaten (Raumtemperatur, 200 mV): $\tilde{\nu} = 119(50)$, 194(55), 289 (62), 310(30), 328 (19), 628 (95), 680 (100), 3303(1) cm⁻¹

¹⁹F-NMR (Raumtemperatur, $(C_2H_5)_2O$): AB₄ Spektrum, δ_{A} = -34.93 ppm, δ_B = -42,08 ppm, J_{AB} = 167,69 Hz, J^{125}_{Te-B} = 3549 Hz, J^{125}_{Te-A} = 3188 Hz, J_{CD} = 139.1 Hz ¹²⁵Te-NMR (Raumtemperatur, $(C_2H_5)_2O$): δ = 633 ppm ¹H-NMR (Raumtemperatur, $(C_2H_5)_2O$): δ_{NH} = 4.16 ppm

4.2.16 Umsetzung von Antimontrichlorid mit N-Trimethylsilylaminotellurpentafluorid

In ein 5 mm NMR-Röhrchen werden 50 mg (0.22 mmol) SbCl₃ und 204 mg (0.66 mmol) (CH₃)₃SiNHTeF₅ im Handschuhkasten eingewogen. Das NMR-Rohr wird evakuiert, abgeschmolzen und langsam auf Raumtemperatur gebracht. Nach Durchmischen des Reaktionsansatzes wird die Probe 24h bei 50°C erwärmt, anschließend auf Raumtemperatur abgekühlt. Ein ¹⁹F-NMR Spektrum zeigt, dass keine Reaktion stattgefunden hat, nur die Signale für (CH₃)₃SiHNTeF₅ wurden registriert. Auch nach Erwärmen auf 100°C konnte keine Reaktion beobachtet werden.

4.2.17 Umsetzung von Bismuttrichlorid mit N-Trimethylsilylaminotellurpentafluorid

315 mg (1 mmol) BiCl₃ und 310 mg (1 mmol) (CH₃)₃SiNHTeF₅ werden im Handschuhkasten in ein PFA-Reaktionsrohr (Innendurchmesser 12 mm), mit Magnetkern ausgestattet, gefüllt. Das mit einem Metallkern und Ventil verschlossene Reaktionsrohr wird evakuiert, auf -196°C abgekühlt und THF aufkondensiert. Die Mischung wird langsam auf Raumtemperatur erwärmt und 6h gerührt. Die anschließend im Handschuhkasten entnommenen ¹⁹F-NMR-Probe zeigt, dass keine Reaktion statt gefunden hat.

Die Probe wird erneut mit einem Metallkern und Ventil verschlossen, auf -196°C abgekühlt und evakuiert. Der Ansatz wird 6h auf 50°C erwärmt, wobei ein Farbumschlag von farblos nach gelb zu beobachten ist. Eine im Handschuhkasten entnommenen ¹⁹F-NMR-Probe zeigt, dass ebenfalls keine Reaktion statt gefunden hat.

4.2.18 Synthese von Tellur(IV)di(aminotellurpentafluorid)difluorid

Nach Literatur^[76] hergestelltes TeF₄ 0.3 g (1.47 mmol) werden im Handschuhkasten in ein PFA-Reaktionsrohr (6.5 mm Innendurchmesser), ausgestattet mit einem Magnetkern, eingewogen. Das Reaktionsrohr wird mit einem Metallkern mit Ventil verschlossen, an der Vakuumapparatur werden nacheinander C₂H₅CN und 0.93 g (2.94 mmol) (CH₃)₃SiNHTeF₅ aufkondensiert und 24h bei -78°C gerührt. Die anfänglich farblose Lösung verfärbt sich zartgelb. Um die flüchtigen Nebenprodukte zu entfernen wird das PFA-Reaktionsrohr auf -20°C erwärmt und langsam im Hochvakuum nacheinander durch eine -78°C und eine -196°C kalte Kühlfalle destilliert. Die Kühlfalle bei -20°C enthält hauptsächlich H₂NTeF₅, die Kühlfalle bei -78°C ein Produktgemisch und die Kühlfalle bei -196°C (CH₃)₃SiF. Um das Produkt möglichst sauber zu erhalten, wird der Inhalt der -78°C-Kühlfalle mindestens zweimal dieser Destillation unterworfen. Wie das Tieftemperatur ¹⁹F-NMR-Spektrum zeigt, ist ein reines Produkt nicht zu isolieren. Der Inhalt der -78°C Kühlfalle ist zartgelb gefärbt, sehr hygroskopisch und vollständig in Propionitril löslich.

¹⁹F-NMR (-78°C, in C₂H₅CN): AB₄C₂ Spektrum, $\delta_A = -34.98$ ppm, $\delta_B = -42.15$ ppm, $\delta_B = -31.98$ ppm, J_{AB} = 168 Hz, J¹²⁵_{Te-B} = 3556 Hz

4.2.19 Strukturaufklärung der Verbindung Aminotellurpentafluorid

Eine Probe, hergestellt wie bei dem Versuch der Synthese von Te(NHTeF₅)₂F₂ beschrieben, wurde mit Propionitril versetzt und langsame auf -78°C abgekühlt, es konnten farblose nadelförmige Kristalle gewonnen werde.

Farbe	farblos
Summenformel	H_2F_5NTe
Molmasse	238.63 g/mol
Messtemperatur	173(2) K
Wellenlänge	71.073 pm
Kristallsystem	monoklin
Raumgruppe	P21/n

a = 580.96(14) pm α = 90°
b = 908.7(2) pm β = 91.195(5)°
$c = 865.6(2) \text{ pm} \qquad \gamma = 90^{\circ}$
456.87(19) ⁻ 10 ⁶ pm ³
4
3.469 g/cm ³
6.513 mm ⁻¹
424
0.1 x 0.1 x 0.2 mm ³
3.25 bis 30.55°
-8<=h<=8, -13<=k<=12, -12<=l<=12
5494
1391 [R(int) = 0.0410]
99.9%
Vollmatrix – Kleinste - Fehlerquadrate
1391 / 0 / 73
1.077<41
R1 = 0.0231, wR2 = 0.0680
R1 = 0.0251, wR2 = 0.0717
0.191(6)
0.904 und -1.232 10 ⁻⁶ e.pm ⁻³

Atomkoordinaten (x 10⁴) und äquivalente isotrope Temperaturfaktoren (pm² x 10⁻¹) für H₂NTeF₅.

	X	у	Z	U(eq)	
Te	1116(1)	7472(1)	-1355(1)	19(1)	
F(1)	1211(5)	7403(1)	774(3)	29(1)	
F(2)	3502(3)	8803(2)	-1293(3)	32(1)	
F(3)	-975(4)	5947(2)	-1397(3)	38(1)	
F(4)	1299(5)	7383(1)	-3482(3)	39(1)	
F(5)	3357(4)	6058(3)	-1281(3)	40(1)	
Ν	-1157(5)	9003(3)	-1380(3)	27(1)	

U(eq) ist definiert als 1/3 des orthogonalisierten Uij Tensors.

Bindungslängen [pm] und -winkel [°] für H_2NTeF_5

Te-F(1)	184.3(3)
Te-F(2)	183.97(19)
Te-F(3)	184.3(2)
Te-F(4)	184.8(3)
Te-F(5)	182.9(2)
Te-N	191.8(3)
N-H(1)	70.(4)
N-H(2)	70.(5)
F(5)-Te-F(2)	85.73(14)
F(5)-Te-F(3)	86.61(14)
F(2)-Te-F(3)	172.34(7)
F(5)-Te-F(1)	86.27(10)
F(2)-Te-F(1)	89.22(10)
F(3)-Te-F(1)	90.01(10)
F(5)-Te-F(4)	87.07(11)
F(2)-Te-F(4)	89.93(11)
F(3)-Te-F(4)	89.96(10)
F(1)-Te-F(4)	173.33(8)
F(5)-Te-N	177.70(8)
F(2)-Te-N	92.37(14)
F(3)-Te-N	95.27(15)
F(1)-Te-N	92.40(11)
F(4)-Te-N	94.25(11)
Te-N-H(1)	116(3)
Te-N-H(2)	113(3)
H(1)-N-H(2)	109(4)

J11	U22	U33	U23	U13	U12
8(1)	23(1)	7(1)	-1(1)	-1(1)	0(1)
60(1)	36(1)	19(1)	4(1)	-3(1)	1(1)
23(1)	38(1)	35(1)	5(1)	-5(1)	-10(1)
1(1)	29(1)	45(1)	0(1)	-8(1)	-14(1)
52(1)	66(1)	18(1)	-7(1)	1(1)	3(1)
66(1)	40(1)	45(1)	-7(1)	-8(1)	18(1)
27(1)	26(1)	26(1)	1(1)	-4(1)	6(1)
	3(1) 0(1) 3(1) 1(1) 2(1) 6(1) 7(1)	J11 $U22$ $B(1)$ $23(1)$ $0(1)$ $36(1)$ $3(1)$ $38(1)$ $1(1)$ $29(1)$ $2(1)$ $66(1)$ $6(1)$ $40(1)$ $7(1)$ $26(1)$	J11U22U33 $B(1)$ $23(1)$ $7(1)$ $0(1)$ $36(1)$ $19(1)$ $3(1)$ $36(1)$ $19(1)$ $3(1)$ $38(1)$ $35(1)$ $1(1)$ $29(1)$ $45(1)$ $2(1)$ $66(1)$ $18(1)$ $6(1)$ $40(1)$ $45(1)$ $7(1)$ $26(1)$ $26(1)$	M11 $U22$ $U33$ $U23$ $B(1)$ $23(1)$ $7(1)$ $-1(1)$ $0(1)$ $36(1)$ $19(1)$ $4(1)$ $3(1)$ $36(1)$ $19(1)$ $4(1)$ $3(1)$ $38(1)$ $35(1)$ $5(1)$ $1(1)$ $29(1)$ $45(1)$ $0(1)$ $2(1)$ $66(1)$ $18(1)$ $-7(1)$ $6(1)$ $40(1)$ $45(1)$ $-7(1)$ $7(1)$ $26(1)$ $26(1)$ $1(1)$	M11 $U22$ $U33$ $U23$ $U13$ $B(1)$ $23(1)$ $7(1)$ $-1(1)$ $-1(1)$ $0(1)$ $36(1)$ $19(1)$ $4(1)$ $-3(1)$ $3(1)$ $36(1)$ $19(1)$ $4(1)$ $-3(1)$ $3(1)$ $38(1)$ $35(1)$ $5(1)$ $-5(1)$ $1(1)$ $29(1)$ $45(1)$ $0(1)$ $-8(1)$ $2(1)$ $66(1)$ $18(1)$ $-7(1)$ $1(1)$ $6(1)$ $40(1)$ $45(1)$ $-7(1)$ $-8(1)$ $7(1)$ $26(1)$ $26(1)$ $1(1)$ $-4(1)$

Anisotrope Temperaturfaktoren (pm² x 10⁻¹) für H₂NTeF. Der anisotrope Temperaturfaktor hat die Form: $-2\pi^2$ [h² a^{*2}U11 + ... + 2 h k a^{*} b^{*} U₁₂]

Wasserstoffkoordinaten (x 10⁴) und isotrope Temperaturfaktoren (pm² x10⁻¹) für H₂NTeF₅

	X	у	Z	U(eq)
H(1)	-1500(60)	9270(40)	2100(40)	102(13)
H(2)	-2140(80)	8820(40)	-960(50)	142(17)

4.2.20 Versuche zur Darstellung von Dichlortelluriminotellurpentafluorid

a. TeCl₄ mit H₂NTeF₅

Im Handschuhkasten werden in ein PFA-Reaktionsrohr (6.5 mm Innendurchmesser), ausgestattet mit einem Magnetkern, 275 mg (1.02 mmol) TeCl₄ und 244 mg (1.02 mmol) H₂NTeF₅ eingewogen und mit einem Metallkern mit Ventil verschlossen. Auf diese Mischung werden bei -196°C an der Vakuumapparatur 3 g CH₂Cl₂ aufkondensiert. Der Reaktionsansatz wird eine Woche bei 50°C gerührt. Die anfänglich farblose Lösung verfärbt sich zartgelb. Alternativ wurde POCl₃ als Lösungsmittel verwendet und der Reaktionsansatz bei 100°C gerührt. Ständig entnommene ¹⁹F-NMR Proben beider Ansätze zeigten neben dem typischen AB₄-Spektrum für H₂NTeF₅ keine weiteren Signale.

b. TeCl₄ mit (CH₃)₃SiNHTeF₅

Im Handschuhkasten werden in ein PFA-Reaktionsrohr (6,5 mm Innendurchmesser), ausgestattet mit einem Magnetkern, 250 mg (0.93 mmol) TeCl₄ und 294 mg (0.93 mmol) (CH₃)₃SiNHTeF₅ ohne ein weiteres Lösungsmittel eingewogen und mit einem Metallkern mit Ventil verschlossen. Das so verschlossene Reaktionsrohr wird evakuiert und 24h bei Raumtemperatur bzw. bei 50°C gerührt. Die anfänglich farblose Lösung verfärbt sich zartgelb. ¹⁹F-NMR-Proben zeigten neben dem typischen AB₄-Spektrum für (CH₃)₃SiNHTeF₅ keine weiteren Signale.

4.2.21 Tellur(IV)dichloriddifluorid

4.2.21.1 Synthese von $TeCl_2F_2 \cdot 2 C_4H_8O$

In ein PFA-Reaktionsrohr (6.5 mm Innendurchmesser), ausgestattet mit einem Magnetkern, werden im Handschuhkasten 250 mg (0.93 mmol) TeCl₄ und 294 mg (0.93 mmol) (CH₃)₃SiNHTeF₅ eingewogen und mit einem Metallkern mit Ventil verschlossen. Das so verschlossene Reaktionsrohr wird evakuiert und 24h bei 50°C gerührt. Die anfänglich farblose Lösung verfärbt sich zitronengelb. Auf diese Mischung werden bei -196°C an der Hochvakuumapparatur ein Gemisch aus Tetrahydrofuran und Pentan (5:1) kondensiert. Das Rohr wird verschmolzen und langsam auf -78°C abgekühlt, aus der gelben Lösung scheiden sich farblose Kristalle ab.

Schmelzpunkt: -28°C

¹⁹F-NMR (C₄H₈O): breites Signal δ = -55.4 ppm Ramandaten (Festkörper, Raumtemperatur, 100 mW): TeF₄ $\tilde{\nu}$ = 672 (100), 601 (75), 370 (91) cm⁻¹

$4.2.21.2 \hspace{0.5cm} Strukturaufklärung \ der \ Verbindung \ TeCl_2F_2 \cdot 2 \ C_4H_8O$

Farbe	farblos
Summenformel	$C_8H_{16}Cl_2F_2O_2Te$
Molmasse	380.71 g/mol
Messtemperatur	173(2) K
Wellenlänge	71.073 pm
Kristallsystem	triklin
Raumgruppe	Pī
Gitterkonstanten	a = 6.543(2) pm α = 97.075(6)°
	b = 7.732(3) pm β = 97.721(7)°
	c = 145.09(5) pm γ = 110.490(6)°
Volumen	669.9 (4) ⁻ 10 ⁶ pm ³
Formeleinheit pro Zelle	2
Dichte (berechnet)	1.887 g/cm ³
Absorptionskoeffizient	2.623 mm ⁻¹
F(000)	368
Kristalldimensionen	0.3 x 0.3 x 0.2 mm ³
Theta-Bereich der Datensammlung	2.86 bis 30.55°
hkl-Bereich der Indizes	-9<=h<=9, -11<=k<=11, -20<=l<=20
Gemessene Reflexe	8265
Unabhängige Reflexe	4052 [R(int) = 0.0141]
Vollständigkeit zu Theta = 30.55°	98.6%
Strukturverfeinerung (gegen F ²)	Vollmatrix – Kleinste - Fehlerquadrate
Reflexe / davon unterdrückt / Parameter	4052 / 0 / 186
Gütefaktor (gegen F²)	1.035<41
Endgültiger Fehler R [I>2sigma(I)]	R1 = 0.0186, wR2 = 0.0479
R (alle Daten)	R1 = 0.0200, wR2 = 0.0485
Extinktionskoeffizient	0.0052(6)
Größte und kleinste Restelektronendichte	0.911 und -0.613 10 ⁻⁶ e.pm ⁻³

C(13)

C(14)

O(2)

C(21)

C(22)

C(23)

C(24)

	X	У	Z	U(eq)		
Te	3673(1)	2065(1)	2619(1)	26(1)		
Cl(1)	5307(1)	1164(1)	3987(1)	48(1)		
Cl(2)	1409(1)	2877(1)	1371(1)	53(1)		
F(1)	2405(2)	3234(2)	3460(1)	40(1)		
F(2)	1125(2)	-101(2)	2532(1)	42(1)		
O(1)	6467(2)	5258(2)	3140(1)	31(1)		
C(11)	8625(3)	5441(3)	2906(1)	37(1)		
C(12)	10296(3)	6373(3)	3808(2)	42(1)		

7600(3)

6395(3)

9541(2)

8150(4)

7135(3)

7371(4)

8759(5)

4307(1)

4078(1)

1473(1)

774(2)

199(2)

868(2)

1705(2)

40(1)

40(1)

43(1)

66(1)

49(1)

56(1)

76(1)

Atomkoordinaten (x 10⁴) und äquivalente isotrope Temperaturfaktoren (pm² x 10⁻¹) für TeCl₂F₂ ·2 C₄H₈O. U(eq) ist definiert als 1/3 des orthogonalisierten Uij Tensors.

Bindungslängen [pm] und -winkel [°] für TeCl₂F₂ ·2 C₄H₈O

9250(3)

6826(3)

4223(2)

2471(4)

3583(4)

5693(5)

5835(6)

Te-F(1)	187.59(11)
Te-F(2)	188.03(12)
Te-Cl(1)	242.02(7)
Te-O(1)	245.35(13)
Te-Cl(2)	246.57(7)
O(1)-C(11)	145.9(2)
O(1)-C(14)	146.9(2)
C(11)-C(12)	150.3(3)

C(12)-C(13)	152.1(3)
C(13)-C(14)	149.7(3)
O(2)-C(24)	141.2(3)
O(2)-C(21)	143.4(3)
C(21)-C(22)	149.7(3)
C(22)-C(23)	151.8(3)
C(23)-C(24)	148.8(3)
F(1)-Te-F(2)	85.44(6)
F(1)-Te-Cl(1)	86.32(5)
F(2)-Te-Cl(1)	87.32(4)
F(1)-Te-O(1)	76.12(5)
F(2)-Te-O(1)	161.37(5)
Cl(1)-Te-O(1)	88.84(4)
F(1)-Te-Cl(2)	85.20(5)
F(2)-Te-Cl(2)	85.66(4)
Cl(1)-Te-Cl(2)	169.39(2)
O(1)-Te-Cl(2)	95.29(4)
C(11)-O(1)-Te	112.92(9)
C(14)-O(1)-Te	123.87(11)
C(11)-O(1)-C(14)	108.67(13)
O(1)-C(11)-C(12)	105.88(14)
O(1)-C(14)-C(13)	105.50(14)
C(11)-C(12)-C(13)	102.38(16)
C(14)-C(13)-C(12)	102.91(15)
C(24)-O(2)-C(21)	106.69(19)
O(2)-C(24)-C(23)	107.97(19)
O(2)-C(21)-C(22)	105.60(19)
C(21)-C(22)-C(23)	104.16(18)
C(24)-C(23)-C(22)	105.04(18)

Anisotrope Temperaturfaktoren (pm ² x 1	10^{-1}) für TeCl ₂ F ₂ ·2 C ₄ H ₈ O.	Der anisotrope Tempera	aturfaktor hat
die Form: $-2\pi^2$ [h ² a ^{*2} U11 + + 2 h k a [*]	* b* U ₁₂]		

	U11	U22	U33	U23	U13	U12
Te	24(1)	26(1)	25(1)	2(1)	4(1)	8(1)
Cl(1)	54(1)	47(1)	39(1)	12(1)	-5(1)	18(1)
Cl(2)	55(1)	69(1)	42(1)	16(1)	-1(1)	31(1)
F(1)	37(1)	45(1)	38(1)	1(1)	14(1)	17(1)
F(2)	32(1)	37(1)	47(1)	6(1)	6(1)	2(1)
O(1)	29(1)	29(1)	31(1)	-3(1)	6(1)	8(1)
C(11)	33(1)	35(1)	39(1)	-2(1)	13(1)	8(1)
C(12)	32(1)	42(1)	49(1)	0(1)	3(1)	14(1)
C(13)	39(1)	31(1)	39(1)	-5(1)	3(1)	7(1)
C(14)	38(1)	39 (1)	36(1)	-9(1)	10(1)	11(1)
O(2)	38(1)	38(1)	48(1)	-10(1)	-6(1)	19(1)
C(21)	44(1)	73(2)	66(2)	-36(1)	-14(1)	29(1)
C(22)	60(1)	49(1)	40(1)	-3(1)	6(1)	26(1)
C(23)	56(1)	65(2)	57(1)	-2(1)	10(1)	38(1)
C(24)	76(2)	105(2)	57(1)	-27(2)	-22(1)	70(2)

Wasserstoffkoordinaten (x10⁴) und isotrope Temperaturfaktoren (pm2x10⁻¹) für TeCl₂F₂ \cdot 2 C₄H₈O

X	у	Z	U(eq)
8850(50)	6240(40)	2390(20)	69(2)
8630(50)	4240(40)	2700(20)	69(2)
11700(50)	7050(50)	3670(20)	69(2)
10330(50)	5480(50)	4130(20)	69(2)
9870(50)	8030(40)	4970(20)	69(2)
9450(50)	8780(50)	4070(20)	69(2)
6270(50)	5440(50)	4490(20)	69(2)
	x 8850(50) 8630(50) 11700(50) 10330(50) 9870(50) 9450(50) 6270(50)	x y 8850(50) 6240(40) 8630(50) 4240(40) 11700(50) 7050(50) 10330(50) 5480(50) 9870(50) 8030(40) 9450(50) 8780(50) 6270(50) 5440(50)	xyz8850(50)6240(40)2390(20)8630(50)4240(40)2700(20)11700(50)7050(50)3670(20)10330(50)5480(50)4130(20)9870(50)8030(40)4970(20)9450(50)8780(50)4070(20)6270(50)5440(50)4490(20)

H(14B)	5900(60)	7000(50)	4040(20)	69(2)
H(21A)	1540(60)	8720(50)	480(20)	69(2)
H(21B)	1650(60)	7530(50)	1050(20)	69(2)
H(22A)	3750(50)	7560(50)	-330(20)	69(2)
H(22B)	2730(50)	5880(50)	-90(20)	69(2)
H(23A)	5660(50)	6110(40)	1010(20)	69(2)
H(23B)	6910(60)	7710(50)	630(20)	69(2)
H(24A)	5030(50)	7880(40)	2290(20)	69(2)
H(24B)	6840(50)	9270(40)	2140(20)	69(2)

Torsionswinkel [°] für Te $Cl_2F_2 \cdot 2 C_4H_8O$

F(1)-Te-O(1)-C(11)	165.66(12)
F(2)-Te-O(1)-C(11)	157.24(15)
Cl(1)-Te-O(1)-C(11)	79.16(11)
Cl(2)-Te-O(1)-C(11)	-110.63(11)
F(1)-Te-O(1)-C(14)	31.03(13)
F(2)-Te-O(1)-C(14)	22.6(2)
Cl(1)-Te-O(1)-C(14)	-55.47(13)
Cl(2)-Te-O(1)-C(14)	114.74(13)
C(14)-O(1)-C(11)-C(12)	12.1(2)
Te-O(1)-C(11)-C(12)	-129.29(13)
O(1)-C(11)-C(12)-C(13)	-31.1(2)
C(11)-C(12)-C(13)-C(14)	38.2(2)
C(11)-O(1)-C(14)-C(13)	12.3(2)
Te-O(1)-C(14)-C(13)	148.57(12)
C(12)-C(13)-C(14)-O(1)	-31.4(2)
C(24)-O(2)-C(21)-C(22)	-33.7(3)
O(2)-C(21)-C(22)-C(23)	26.1(3)
C(21)-C(22)-C(23)-C(24)	-9.5(3)
C(21)-O(2)-C(24)-C(23)	27.7(4)
C(22)-C(23)-C(24)-O(2)	-10.6(4)

$4.2.21.3 \quad \mbox{Strukturaufklärung der Verbindung TeF}_4 \cdot 2 \ C_4 H_8 O$

Farbe	farblos
Summenformel	$C_8H_{16}F_4O_2Te$
Molmasse	347.81 g/mol
Messtemperatur	103(2) K
Wellenlänge	71.073 pm
Kristallsystem	triklin
Raumgruppe	1
Gitterkonstanten	a = 677.84(10) pm α= 108.749(3)°
	b = 926.83(14) pm β = 101.186(3)°
	$c = 1042.31(16) \text{ pm}$ $\gamma = 101.586(4)^{\circ}$
Volumen	583.37(15) [.] 10 ⁶ pm ³
Formeleinheit pro Zelle	2
Dichte (berechnet)	1.980 g/cm ³
Absorptionskoeffizient	2.523 mm ⁻¹
F(000)	336
Kristalldimensionen	0.3 x 0.3 x 0.2 mm ³
Theta-Bereich der Datensammlung	2.15 bis 30.51°
hkl-Bereich der Indizes	-9<=h<=5, -9<=k<=12, -12<=l<=14
Gemessene Reflexe	2683
Unabhängige Reflexe	2525 [R(int) = 0.0402]
Vollständigkeit zu Theta = 30.51°	70.9 %
Strukturverfeinerung (gegen F ²)	Vollmatrix – Kleinste - Fehlerquadrate
Reflexe / davon unterdrückt / Parameter	2525 / 0 / 186
Gütefaktor (gegen F ²)	1.035<41
Endgültiger Fehler R [I>2sigma(I)]	R1 = 0.0227, wR2 = 0.0570
R (alle Daten)	R1 = 0.0251, wR2 = 0.0570
Extinktionskoeffizient	0.0003(9)
Größte und kleinste Restelektronendichte	1.100 und -1.186 10 ⁻⁶ e.pm ⁻³

x	у	Z	U(eq)
485(1)	6183(1)	8602(1)	15(1)
-294(3)	7078(2)	7197(2)	26(1)
2778(3)	7983(2)	9325(2)	23(1)
2020(3)	5194(2)	7452(2)	26(1)
2181(3)	5668(3)	10065(2)	31(1)
-2342(3)	3582(3)	6567(2)	20(1)
-4416(5)	3787(4)	6503(3)	23(1)
-5841(5)	2429(5)	5181(3)	27(1)
-2232(5)	3111(5)	5128(3)	34(1)
-4403(6)	2107(5)	4217(3)	31(1)
-503(3)	8205(3)	10303(2)	29(1)
699(5)	9076(5)	11769(3)	24(1)
-877(6)	8893(5)	12603(3)	30(1)
-2897(5)	8855(5)	11636(3)	25(1)
-2741(5)	7954(5)	10171(3)	28(1)
	x 485(1) -294(3) 2778(3) 2020(3) 2181(3) -2342(3) -4416(5) -5841(5) -2232(5) -4403(6) -503(3) 699(5) -877(6) -2897(5) -2741(5)	xy485(1)6183(1)-294(3)7078(2)2778(3)7983(2)2020(3)5194(2)2181(3)5668(3)-2342(3)3582(3)-4416(5)3787(4)-5841(5)2429(5)-2232(5)3111(5)-4403(6)2107(5)-503(3)8205(3)699(5)9076(5)-877(6)8893(5)-2897(5)8855(5)-2741(5)7954(5)	xyz485(1)6183(1)8602(1)-294(3)7078(2)7197(2)2778(3)7983(2)9325(2)2020(3)5194(2)7452(2)2181(3)5668(3)10065(2)-2342(3)5582(3)6567(2)-4416(5)3787(4)6503(3)-5841(5)2429(5)5181(3)-2232(5)3111(5)5128(3)-4403(6)2107(5)4217(3)-503(3)8205(3)10303(2)-699(5)9076(5)11769(3)-877(6)8893(5)12603(3)-2897(5)8855(5)11636(3)-2741(5)7954(5)10171(3)

Atomkoordinaten (x 10⁴) und äquivalente isotrope Temperaturfaktoren (pm² x 10⁻¹) für TeF₄ ·2 C₄H₈O. U(eq) ist definiert als 1/3 des orthogonalisierten Uij Tensors.

Bindungslängen [pm] und -winkel [°] für TeF4 ·2 C4H8O

Te-F(1)	194.13(16)
Te-F(2)	186.1(2)
Te-F(3)	187.66(15)
Te-F(4)	197.07(16)
Te-O(1)	269.5(2)
O(1)-C(11)	144.8(3)
O(1)-C(14)	144.3(3)
C(11)-C(12)	151.6(5)

C(12)-C(13)	153.4(4)
C(13)-C(14)	150.7(5)
Te-O(2)	243.6(2)
O(2)-C(24)	146.0(4)
O(2)-C(21)	145.3(4)
C(21)-C(22)	151.9(5)
C(22)-C(23)	152.1(4)
C(23)-C(24)	152.2(4)
F(2)-Te-F(3)	86.77(8)
F(2)-Te-F(1)	82.34(8)
F(3)-Te-F(1)	86.28(7)
F(2)-Te-F(4)	81.01(8)
F(3)-Te-F(4)	84.71(8)
F(1)-Te-F(4)	161.46(9)
F(2)-Te-O(2)	74.38(8)
F(3)-Te-O(2)	161.09(9)
F(1)-Te-O(2)	89.69(8)
F(4)-Te-O(2)	93.61(8)
C(14)-O(1)-C(11)	105.0(2)
O(1)-C(11)-C(12)	104.8(2)
C(11)-C(12)-C(13)	103.4(3)
O(1)-C(14)-C(13)	106.3(3)
C(14)-C(13)-C(12)	105.3(2)
C(21)-O(2)-C(24)	110.1(2)
C(21)-O(2)-Te	124.70(16)
C(24)-O(2)-Te	116.66(19)
O(2)-C(21)-C(22)	104.7(3)
C(21)-C(22)-C(23)	102.9(2)
C(22)-C(23)-C(24)	103.0(2)
O(2)-C(24)-C(24)	105.8(2)

Anisotrope Temperaturfaktoren (pm² x 10⁻¹) für TeF₄ ·2 C₄H₈O. Der anisotrope Temperaturfaktor hat die Form: $-2\pi^2$ [h² a^{*2}U11 + ... + 2 h k a^{*} b^{*} U₁₂]

	U11	U22	U33	U23	U13	U12	
Te	14(1)	16(1)	16(1)	7(1)	6(1)	3(1)	
F(1)	31(1)	29(1)	24(1)	16(1)	8(1)	11(1)	
F(2)	17(1)	21(1)	30(1)	9(1)	6(1)	0(1)	
F(3)	25(1)	28(1)	29(1)	9(1)	15(1)	11(1)	
F(4)	22(1)	42(2)	37(1)	28(1)	6(1)	5(1)	
O(1)	18(1)	25(2)	15(1)	4(1)	6(1)	4(1)	
C(11)	19(1)	27(2)	21(1)	7(1)	7(1)	6(2)	
C(12)	20(1)	30(3)	24(1)	8(1)	2(1)	1(2)	
C(13)	32(2)	35(3)	19(1)	-2(1)	5(1)	7(2)	
C(14)	26(2)	45(3)	19(1)	-1(1)	9(1)	5(2)	
O(2)	17(1)	35(2)	24(1)	-3(1)	4(1)	8(1)	
C(21)	21(1)	18(2)	21(1)	-2(1)	3(1)	-1(2)	
C(22)	31(2)	33(3)	22(1)	9(1)	7(1)	6(2)	
C(23)	24(2)	26(2)	26(1)	10(1)	12(1)	6(2)	
C(24)	17(1)	31(2)	27(1)	1(1)	6(1)	5(2)	

4.2.22 Versuche zur Darstellung einer Xenon-Aminotellurpentafluorid Verbindung

a. Umsetzung von XeF2 mit (CH3)3SiNHTeF5

Im Handschuhkasten werden in ein PFA-NMR-Reaktionsrohr (3 mm Innendurchmesser) 473 mg (2.36 mmol) (CH₃)₃SiNHTeF₅ eingewogen und mit Propionitril versetzt. Das PFA-Reaktionsrohr wird zweifach gebogen und fixiert, 100 mg (0.59 mmol) XeF₂ oberhalb der Abschnürung eingewogen und mit einem Metallkern mit Ventil verschlossen. Das so verschlossene Reaktionsrohr wird evakuiert, auf -78°C abgekühlt und die Fixierung gelöst. Sobald die beiden Komponenten gemischt werden, fängt die farblose Lösung an zu gasen. Nach 5 min wird die Lösung bei -78°C evakuiert, das Reaktionsrohr wird abgeschmolzen und ein ¹⁹F-NMR-Spektrum aufgenommen.

¹⁹F-NMR (TT, in CH₃CN): AB₄-Spektrum, H₂NTeF₅ δ_{A} = -36.69 ppm, δ_{B} = -43.95 ppm, J_{AB} = 171.08 Hz; TeF₆ δ = -57.7 ppm; (CH₃)₃SiF δ = -159.31 ppm

Anschließend werden alle flüchtigen Anteile bei Raumtemperatur abgezogen, man erhält ein farbloses Pulver. Durch Ramanspektroskopie wird dieser Rückstand als TeF4 identifiziert.

Ramandaten (Festkörper, Raumtemperatur, 100 mW): TeF₄ $\tilde{\nu}$ = 670, 602, 566, 312 cm⁻¹

b. Umsetzung von XeF₂ mit (CH₃)₃SiNClTeF₅

Die Synthese des $(CH_3)_3$ SiNClTeF₅ erfolgt gemäß der Literatur^[7]. In einen 50 ml Zweihalskolben, ausgestattet mit einem Magnetkern, Gaseinleitungsrohr und einem gegen Feuchtigkeit geschützten Gasauslass, werden 6.20 g (40 mmol) (CH₃)₃SiNHTeF₅ mit 20 ml CFCl₃ gemischt. Durch die auf -78°C gekühlte Lösung werden 1.10 g (20 mmol) ClF geleitet. Durch eine anschließende fraktionierte Destillation (-40°C, -78°C und -196°C) wird bei -78°C flüssiges, gelb-oranges Cl₂NTeF₅ isoliert.

¹⁹F-NMR: AB₄-Spektrum, Cl₂NTeF₅ δ_A = -50.51 ppm, δ_B = -59.60 ppm, J_{AB} = 163.6 Hz

In einen 50 ml Zweihalskolben, ausgestattet mit einem Magnetkern, Tropftrichter und einem gegen Feuchtigkeit geschützten Gasauslass, werden 3.70 g (12 mmol) Cl₂NTeF₅ mit 20 ml CFCl₃ gemischt. Nach zutropfen von 2 g (13 mmol) (CH₃)₃SiBr, verfärbt sich die anfänglich gelb orange Lösung braun. Die Lösung wird 2h bei Raumtemperatur gerührt und anschließend einer fraktionierten Kondensation (-30°C, -78°C und -196°C) unterworfen. Das Produkt (CH₃)₃SiNClTeF₅ wird als gelbe Flüssigkeit bei -30°C erhalten.

¹⁹F-NMR (-30°C): (CH₃)₃SiNClTeF₅ AB₄-Spektrum δ_A = -35.55 ppm, δ_B = -41.01 ppm, J_{AB} = 172 Hz

Im Handschuhkasten werden in ein NMR-PFA-Reaktionsrohr (3 mm Innendurchmesser) 50 mg (0.30 mmol) XeF₂ eingewogen und mit einem Metallkern mit Ventil verschlossen. Das so verschlossene Reaktionsrohr wird evakuiert und auf -196°C abgekühlt. Nacheinander werden CFCl₃ und 1.02 g (0.30 mmol) (CH₃)₃SiNClTeF₅ aufkondensiert. Das Rohr wird abgeschmolzen und die Komponenten bei -78°C gemischt, die Lösung fängt an zu gasen.

¹⁹F-NMR (- 78°C, in CFCl₃): TeF₆ δ = -57.1 ppm; (CH₃)₃SiF δ = -159.25 ppm