3.2 Verbindungen mit Aminotellurpentafluorid-Liganden

3.2.1 Arsen(V)aminotellurpentafluoridtetrafluorid

Setzt man Arsenpentafluorid mit (CH₃)₃SiNHTeF₅ im Verhältnis 1:1 bei tiefen Temperaturen in Dichlormethan um, erhält man Arsen(V)aminotellurpentafluoridtetrafluorid. Die farblose Flüssigkeit ist in geschlossenen Gefäßen bei -78°C stabil.

$$AsF_5 + (CH_3)_3SiNHTeF_5 \xrightarrow{CH_2Cl_2, -78^{\circ}C} As(NHTeF_5)F_4 + (CH_3)_3SiF_5$$

Die Reaktion muss bei tiefen Temperaturen durchgeführt werden, da sonst in Konkurrenz zur Substitution des Fluoratoms am Arsen, die Reduktion des fünfwertigen zum dreiwertigen Arsen abläuft^[49].

$$AsF_5 + (CH_3)_3SiF \longrightarrow AsF_3 + (CH_3)_2SiF_2 + CH_3F$$

Das dreiwertige Arsen kann dann wiederum mit (CH₃)₃SiNHTeF₅ reagieren, aus diesem Produktgemisch ist eine Isolierung von As(NHTeF₅)F₄ nicht gelungen.

Das ¹⁹F-NMR-Spektrum zeigt neben den typischen AB₄-Signalen für (CH₃)₃SiNHTeF₅ ein neues AB₄-Signal. Im Gegensatz zum AB₄ Spektrum von (CH₃)₃SiNHTeF₅ ist der A-Teil von As(NHTeF₅)F₄ zum B-Teil relativ hochfeldverschoben.

Die vier Fluoratome am Arsen sind NMR-spektroskopisch äquivalent und zeigen nur ein breiteres Signal bei -28.03 ppm. Die chemische Verschiebung liegt im selben Bereich wie das Signal für die Fluoratome in der Verbindung $C_6F_5AsF_4^{[50]}$, hier beträgt die chemische Verschiebung des Signals -25.11 ppm.

3.2.2 Arsen(V)di(aminotellurpentafluorid)trifluorid

3.2.2.1 Synthese von $As(NHTeF_5)_2F_3$

Arsen(V)di(aminotellurpentafluorid)trifluorid kann man durch die stöchiometrische Umsetzung von Arsenpentafluorid mit (CH₃)₃SiN(H)TeF₅ in Dichlormethan bei -78°C erhalten. Das Produkt fällt als elfenbeinfarbener Feststoff aus. Durch Sublimation dieses Feststoffes konnten farblose nadelförmige Kristalle erhalten werden. Eine alternative Synthese ist die Sublimation des Addukts AsF₅·H₂NTeF₅^[3] im statischen Vakuum.

AsF₅ + 2 (CH₃)₃SiNHTeF₅ $\xrightarrow{\text{CH}_2\text{Cl}_2, -78^\circ\text{C}}$ As(NHTeF₅)₂F₃

Das ¹⁹F-NMR-Spektrum der Verbindung As(NHTeF₅)₂F₃ zeigt neben zwei breiten Signalen im Verhältnis 1:2 ein charakteristisches AB₄-Spektrum.

3.2.2.2 Kristallstrukturanalyse von As(NHTeF₅)₂F₃

Die Röntgenstrukturanalyse der farblosen nadelförmigen Kristalle zeigt, dass Arsen(V)di(aminotellurpentafluorid)trifluorid in der monoklinen Raumgruppe C2/c kristallisiert (Abb. 9). In der Elementarzelle sind 4 Formeleinheiten enthalten.

Die fünf Liganden umgeben Arsen in einer verzerrten trigonal-bipyramidalen Geometrie. Das Molekül besitzt eine C_{2v}-Symmetrie, die zweizählige Drehachse liegt entlang der äquatorialen Bindung As-F(7). Die Stickstoffatome der beiden NHTeF₅-Gruppen liegen ebenfalls in der äquatorialen Ebene, der Bindungswinkel N-As-N' beträgt 126.3(3)° (Tab. 8). An die trigonal planar gebauten Stickstoffatome ist je ein Wasserstoffatom gebunden. Diese konnten durch Differenz-Fourier-Synthese lokalisiert und verfeinert werden, der N-H Abstand beträgt 74.(8) pm.

Abb. 9: ORTEP-Darstellung der Molekülstruktur von As(NHTeF₅)₂F₃. Die Gitterkonstanten betragen a = 966.8(2) pm, b = 522.3(1) pm und c = 2080.7(3) pm, der monokline Winkel beträgt β = 95.33(1)°. Schwingungsellipsoide repräsentieren 50 % Aufenthaltswahrscheinlichkeit.

Die Arsen-Fluor Bindungslängen sind mit As-F(6) 174,1 und As-F(7) 169.7 pm deutlich länger als in Arsenpentafluorid mit 169.8 und 165.1 pm^[51]. Der Arsen-Stickstoff-Abstand liegt im Bereich vergleichbarer anderer As(V)-Verbindungen, wie z.B. in $[(CF_3)_2 AsClNSi(CH_3)_3]_2^{[52]}$ mit 176.8 pm.

In der Verbindung As(NHTeF₅)₂F₃ nehmen die NHTeF₅-Liganden die äquatorialen Positionen ein. Nach der VSEPR-Theorie^[21] ist der Schluss erlaubt, dass dieser Substituent weniger elektronegativ als Fluor oder OTeF₅ ist.

Bindungslängen		Bindungswinkel		
	8 8		8	
As-F6	174.1(3)	F6-As-N	92.43(2)	
As-F7	169.7(4)	F6'-As-F6	176.7(2)	
As-N	176.5(4)	F6'-As-N	89.07(2)	
Te-N	194.3(4)	F6' -As-N'	92.43(2)	
Te-F1	184.1(3)	F7-As-N	116.83(2)	
Te-F2	182.6(3)	N-As-N'	126.3(3)	
Te-F3	183.8(3)	As-N-Te	133.6(2)	
Te-F4	182.6(3)			
Te-F5	182.1(3)			

Tab. 8: Ausgewählte Bindungslängen [pm] und Bindungswinkel [°] von As(NHTeF₅)₂F₃.

3.2.3 Versuche zur Darstellung von Arsen(V)tri(aminotellurpentafluorid)difluorid

Versuche As(NHTeF₅)₃F₂ zu synthetisieren, wie z.B. bei der Umsetzung von AsF₅ mit (CH₃)₃SiHNTeF₅ im Verhältnis 1:3, schlugen fehl. Die Umsetzung von As(NHTeF₅)₂F₃ mit (CH₃)₃SiHNTeF₅ bei 40°C führte zu keiner weiteren Substitution.

$$As(NHTeF_5)_2F_3 + (CH_3)_3SiNHTeF_5 \longrightarrow As(NHTeF_5)_3F_2 + (CH_3)_3SiF_5$$

Dies ist ein etwas überraschendes Ergebnis, da laut ab initio Rechnungen^[53] eine Substitution von Arsenpentafluorid mit NHTeF₅-Gruppen bis As(NHTeF₅)₃F₂ möglich sein sollte.

3.2.4 Versuche zur Knüpfung einer Bindung zwischen einem Amin, Arsen(V) und Silicium

Substituierte Amine mit zwei oder drei Element-N-Bindungen mit Elementen der 4., 5. und 6. Hauptgruppe sind schon lange bekannt^[54]. Betrachtet man die Verbindung As(NHTeF₅)₂F₃ nicht unter dem Gesichtspunkt der Aminotellurpentafluorid-Gruppe, sondern vom Stickstoff aus, so stellt sie das erste Amin mit einer Arsen(V)- und Tellur-Bindung dar. Analog der Herstellung von As(NHTeF₅)₂F₃ wird Arsenpentafluorid mit Hexamethyldisilazan umgesetzt, um eine Arsen(V)- und Silicium-Stickstoff-Bindung herzustellen.

AsF₅ + x ((CH₃)₃Si)₂NH
$$\longrightarrow$$
 As(NHSi(CH3)₃)_xF_(5-x)+ x (CH₃)₃SiF mit x= 1-5

Hexamethyldisilazan und Arsenpentafluorid reagieren in Propionitril bereits bei -78°C miteinander.

In Konkurrenz zur Substitution des Fluoratoms am Arsen läuft die Reduktion des fünfwertigen zum dreiwertigen Arsen durch $(CH_3)_3SiF$ ab. Arsentrifluorid kann wiederum mit $((CH_3)_3Si)_2NH$ zum bereits dokumentierten As $(NHSi(CH_3)_3)_3^{[55]}$ reagieren. In dem entstehenden Produktgemisch ist es unmöglich, Verbindungen vom Typ As $(NHSi(CH_3)_3)_xF_{(5-x)}$ nachzuweisen.

Das Problem der Reduktion des Arsens kann durch die Verwendung von Natriumbis(trimethylsilyl)amid umgangen werden. Hierzu werden Arsenpentafluorid und Na[N(Si(CH₃)₃)₂] im Verhältnis 1:2 bei -50°C zur Reaktion gebracht. Nach dem Abtrennen des entstandenen Niederschlags und einem Großteil des Lösungsmittels erhält man eine braun gefärbte ölige Substanz. Im ¹⁹F-NMR- Spektrum findet man neben zwei breiten Signalen im Verhältnis 1:2 bei -54.38 ppm und -65.91 ppm eine Reihe von Tripletts und Quartetts im Bereich von -23.00 ppm bis -50.88 ppm. Die beiden Signale im Verhältnis 1:2 stellen das Hauptprodukt dar und sind einer zweifachsubstituierten Arsenverbindung des Typs R₂AsF₃ zuzuordnen. Nicht einzuordnen sind die anderen Signale. Aufgrund der geringen Intensität der Methyl-Signale im ¹H-NMR, sowie der Bestimmung des geringen C-Gehaltes durch Elementaranalyse kann man von einer polymeren Substanz vom Typ (-AsF₃-NR-AsF₃-)_n (R = H, -AsF₃N-) ausgehen. Trotz mehrfacher Verdünnung konnte nicht verhindert werden, dass das Produkt weiterhin polymerisiert. Daraufhin wurden weitere Versuche eingestellt.

3.2.5 Antimon(V)di(aminotellurpentafluorid)trifluorid

Als nächstes wurde versucht, den NHTeF₅-Liganden auf SbF₅ zu übertragen. Versuche Sb(NHTeF₅)F₄, durch Reaktion von SbF₅ mit (CH₃)₃SiHNTeF₅ im Verhältnis 1:1, zu synthetisieren, führten immer wieder zur Bildung von Sb(NHTeF₅)₂F₃. Auch die Umsetzung von SbF₅ in SO₂ClF mit einem dreifachen molaren Überschuss an (CH₃)₃SiHNTeF₅ bei -25°C führte zu Sb(NHTeF₅)₂F₃. Selbst wenn die Reaktion bei tiefen Temperaturen von -78°C ausgeführt wurde, konnten keine Signale im ¹⁹F-NMR-Spektrum der Reaktionslösung dem Sb(NHTeF₅)F₄ oder Sb(NHTeF₅)₃F₂ zugeordnet werden. Nach Abzug der flüchtigen Produkte und des Lösungsmittels erhält man bei Raumtemperatur einen stabilen elfenbeinfarbenen Festkörper.

$$SbF_5 + 2 (CH_3)_3SiNHTeF_5 \qquad \xrightarrow{SO_2CIF, -25 \ \circ C} \qquad Sb(NHTeF_5)_2F_3 + 2 (CH_3)_3SiF_5 + 2 (CH_3)_3FF_5 + 2 (CH_3$$

Eine Charakterisierung erfolgte über ¹⁹F-NMR-Spektren. Obwohl Sb(NHTeF₅)₂F₃ in verschiedenen Lösungsmitteln (SO₂ClF, Propionitril) gut löslich ist und die Verbindung auch sublimierbar ist, schlugen alle Kristallisationsversuche fehl.

Neben dem AB₄-Signalen der NHTeF₅-Gruppe mit $\delta_A = -58.17$ und $\delta_B = -65.38$ findet man, konsistent mit einer Pentakoordination des Zentralatoms, jeweils ein Singulett für das äquatoriale F-Atom mit $\delta_C = 53.10$ und eins für die axialen F-Atome mit $\delta_D = -53.49$ ppm. Aufgrund der stärkeren Abschirmung durch den Antimon-Kern sind die chemischen Verschiebungen von Sb(NHTeF₅)₂F₃ im Vergleich zu As(NHTeF₅)₂F₃ stark hochfeldverschoben (Tab. 9).

Tab. 9: ¹⁹F-chemische Verschiebungen [ppm] und F,F-Kopplungskonstanten [Hz] von Arsen(V)- und Antimon(V)di(aminotellurpentafluorid)trifluorid in Propionitril bei RT, mit CFCl₃ als externem Standard.

	δ _A	$\delta_{\rm B}$	δ _C	δ_{D}	J _{AB}	J _{CD}
As(NHTeF5)2F3	-34.62	-41.97	-36.49	-34.86	169.2	146.5
Sb(NHTeF ₅) ₂ F ₃	-58.17	-65.38	-53.10	-53.49	167.7	139.1

3.2.6 Versuche zur Darstellung einer Iod(V)aminotellurpentafluorid Verbindung

Nach Arsen und Antimon, sollte versucht werden, IF₅ mit einer oder mehreren NHTeF₅-Gruppen zu substituieren. IF₅ und (CH₃)₃SiNHTeF₅ reagieren im äquimolaren Verhältnis bei Raumtemperatur. Im ¹⁹F-NMR-Spektrum des Reaktionsansatzes ist neben den Signalen für (CH₃)₃SiF und IF₅, noch ein neues AB₄-Spektrum mit $\delta_A = -34.67$ und $\delta_B = -41.84$ ppm zu beobachten, sowie ein breites Signal bei -45.98 ppm. Die gemessene Kopplungskonstante J_{AB} =167.69 Hz ist typisch für eine NHTeF₅-Gruppe.

Seppelt zeigte in einer Untersuchung zu I(OTeF₅)_{5-x} F_x (x = 1-4)^[56], dass die AB₄-Spektren der Teflatgruppen im Bereich von 0 bis 100 ppm liegen. Daher kann, aufgrund der Lage des gefundenen AB₄-Spektrums im hohen Feld, davon ausgegangen werden, dass I(NHTeF₅)_{5-x} F_x mit (x = 1-4) nicht entstanden ist. Weitere spektroskopische Untersuchungen des Reaktionsansatzes ergaben keinen genauen Aufschluss über die Art des Produktes.

3.2.7 Aminotellurpentafluoriddifluoridarsoran, Di(aminotellurpentafluorid)fluoridarsoran und Tri(aminotellurpentafluorid)arsoran

Ohne Probleme gelang der sukzessive Ersatz der Fluoratome vom Arsentrifluorid durch den NHTeF₅-Liganden. Bei Raumtemperatur wird eine Lösung von Arsentrifluorid in Diethylether mit N-Trimethylsilylaminotellurpentafluorid umgesetzt, die Reaktion ist nach einer Stunde abgeschlossen.

$$AsF_{(3-x)} + x (CH_3)_3SiNHTeF_5 \xrightarrow{Et_2O, RT} AsF_{(3-x)}(NHTeF_5)_x + x (CH_3)_3SiF \text{ mit } x = 1-3$$

In Abhängigkeit von der gewählten Stöchiometrie entsteht $As(NHTeF_5)F_2$, $As(NHTeF_5)_2F$ oder $As(NHTeF_5)_3$. Alle drei Verbindungen sind flüchtige, farblose Flüssigkeiten und bei -78°C, unter Luftausschluss, unbegrenzt haltbar.

Das ¹⁹F-NMR-Spektrum der Verbindung As(NHTeF₅)F₂ zeigt ein Singulett für die beiden Fluoratome am Arsen und eine AB₄-Signalgruppe für NHTeF₅ (Tab. 11). Die chemische Verschiebung ist, im Vergleich zu der Verbindung AsClF₂^[57], mit -44.7 ppm zum tieferen Feld verschoben, hier liegt das Signal bei -49.0 ppm. Für As(NHTeF₅)F wurde ein ähnliches ¹⁹F-NMR Spektrum erhalten, die chemische Verschiebung für das einzelne Fluoratom beträgt -67.91 ppm, die analoge Verbindung AsCl₂F^[57] zeigt ein Signal bei -67.4 ppm. Beim As(NHTeF₅)₃ wurde nur ein AB₄-Spektrum erhalten. Die chemische Verschiebung des A- und B-Teils liegt genau wie bei der mono- und disubstituierten Arsoranverbindung bei -34.93 ppm bzw. -42.08 ppm.

Tab. 11: ¹⁹F-chemische Verschiebungen [ppm] und F,F-Kopplungskonstanten [Hz] von As(NHTeF₅)F₂,As(NHTeF₅)₂F und As(NHTeF₅)₃ in Diethylether bei Raumtemperatur.

	δ_{AsF}	δ _A	$\delta_{\rm B}$	J _{AB}
As(NHTeF5)F2	-44.70	-34.96	-41.97	170.70
As(NHTeF5)2F	-67.91	-34.87	-41.92	170.60
As(NHTeF5)3		-34.93	-42.08	167.69

3.2.8 Umsetzung von Antimon- und Bismuttrichlorid mit N-Trimethylsilylaminotellurpentafluorid

Analog der Synthese von As(NHTeF₅)_xF_(3-x) sollte versucht werden, dreiwertiges Antimon oder Bismut mit einer oder mehreren NHTeF₅-Gruppen zu substituieren. Dazu setzt man SbCl₃ ohne Lösungsmittel oder BiCl₃ in THF mit (CH₃)₃SiNHTeF₅ um. Durch kontinuierlich aufgenommene ¹⁹F-NMR-Spektren war festzustellen, dass die Edukte weder bei RT noch bei höheren Temperaturen (50°C oder 100°C) miteinander reagieren. Im Fall von Antimon ist dies ein überraschendes Ergebnis, eine mögliche Erklärung ist, dass SbCl₃ sich nicht genügend in (CH₃)₃SiNHTeF₅ löst. Ein anderes Lösungsmittel wurde nicht gefunden. BiCl₃ verhält sich ähnlich. Versuche mit BiF₃ und (CH₃)₃SiNHTeF₅ verlaufen extrem exotherm und führen meist unter Bildung von beispielsweise TeF₄ zur Zerstörung des Liganden.

3.2.9 Tellur(IV)di(aminotellurpentafluorid)difluorid

Verbindungen vom Typ X₂E=NTeF₅ mit E = S, Se und X = Cl, F wurden bereits von Seppelt et al.^[5] vorgestellt. Durch Umsetzen von Tellurtetrafluorid mit $(CH_3)_3SiNHTeF_5$ wurde versucht, F₂Te=NTeF₅ herzustellen. TeF₄ und $(CH_3)_3SiNHTeF_5$, im Verhältnis 1:2, bei -78°C zur Reaktion gebracht, ergibt eine zartgelb gefärbte Lösung. Die ¹⁹F-NMR-Daten des Reaktionsansatzes bei -78°C konnten dahingehend interpretiert werden, dass Te(NHTeF₅)₂F₂ entstand.

$$TeF_4 + 2 (CH_3)_3SiNHTeF_5 \longrightarrow Te(NHTeF_5)_2F_2 + 2 (CH_3)_3SiF_5$$

Tellur(IV)di(aminotellurpentafluorid)difluorid ist eine zartgelbe, leichtflüchtige Verbindung, die nur schwer von H₂NTeF₅, welches als Nebenprodukt bei der Reaktion anfällt, zu trennen ist.

Die Bildung von $F_2Te=NTeF_5$ auf diesem Syntheseweg ist unwahrscheinlich, da die Tendenz des Tellurs zur Ausbildung von Doppelbindungen weniger ausgeprägt ist als bei Selen. Te=C=Te und F₂C=Te sind, im Unterschied zu Se=C=Se und F₂C=Se, selbst bei tiefen Temperaturen labil^[58].

3.2.10 Kristallstrukturanalyse von Aminotellurpentafluorid

Im Rahmen dieser Arbeit gelang erstmals die Kristallstrukturanalyse des Aminotellurpentafluorids^[2], ein Nebenprodukt der Synthese von Tellur(IV)di(aminotellurpentafluorid)difluorid. H₂NTeF₅ kristallisiert aus Propionitril in nadelförmigen Kristallen in der monoklinen Raumgruppe P21/n (Abb. 10).

In H₂NTeF₅ ist das Telluratom verzerrt-oktaedrisch von Fluor und Stickstoff umgeben. Tellur liegt dabei 12 pm unter der Fläche, die durch die vier äquatorialen Fluoratome aufgespannt wird (Tab. 13). Im Vergleich zu anderen Verbindungen ist die oktaedrische Struktur in H₂NTeF₅ stärker verzerrt (Tab. 14).

Abb. 10: ORTEP-Darstellung der Molekülstruktur von H₂NTeF₅. Die Gitterkonstanten betragen a = 580.96(2) pm, b = 908.7(2) pm, c = 865.6(2) pm und $\beta = 91.195(5)^{\circ}$. Die Schwingungsellipsoide repräsentieren 50 % Aufenthaltswahrscheinlichkeit.

Bisher konnten nur von vier Verbindungen mit einer NTeF₅-Gruppe kristallographische Daten erhalten werden. Die beiden in dieser Arbeit vorgestellten Strukturen As(NHTeF₅)₂F₃, H₂NTeF₅ sowie $Cl_4W=NTeF_5^{[5]}$ und Hg[N(CF₃)TeF₅]₂^[59].

Tab. 13: Ausgewählte Bindungslängen [pm] und Bindungswinkel [°] für H₂NTeF₅.

Bindungslängen		Bindungswinkel		
Te-N	191.8(3)	F1-Te-F3	172,34(7)	
Te-F1	184.3(3)	F2-Te-F4	173.33(8)	
Te-F2	184.0(1)	F5-Te-N	177.70(8)	
Te-F3	184.3(2)	Te-N-H1	116(3)	
Te-F4	184.8(3)	Te-N-H2	113(3)	
Te-F5	182.9(2)	H1-N-H2	109(4)	

Ein Trend, dass die Stickstoff-Tellur-Bindung genauso empfindlich wie die Sauerstoff-Tellur-Bindung der Teflatgruppe gegenüber Änderungen in der Umgebung des Stickstoffs bzw. des Sauerstoffs reagiert, ist in Ansätzen zu erkennen (Tab. 14). So beträgt die Te-N Bindung in den kovalenten Verbindungen H_2NTeF_5 191.8 pm und in $As(NHTeF_5)_2F_3$ 194.3 pm. In den Übergangsmetallverbindungen $Cl_4W=NTeF_5$ und $Hg[N(CF_3)TeF_5]_2$ konnten die N-Te-Bindungen mit 198 pm und 201 pm bestimmt werden. Bisher konnte der kürzeste Te-N Abstand durch Elektronenbeugung in $F_5TeNCO^{[60]}$ mit 185.9 pm bestimmt werden.

Tab. 14: Ausgewählte Bindungslängen [pm] und Bindungswinkel [°] für H₂NTeF₅, AsF₃(NHTeF₅)₂, $Cl_4W=NTeF_5^{[5]}$ und Hg[N(CF₃)TeF₅]₂^[59].

	H_2NTeF_5	As(NHTeF ₅) ₂ F ₃	Cl ₄ W=NTeF ₅	$Hg[N(CF_3)TeF_5]_2$
$Te\text{-}F^{\ a)}$	184.1	183.0	177.2	179.2
Te-N	191.8	194.3	198	201
F _{eq} -Te-N	177.8	177.5	177.9	
$F_{eq}\text{-}Te\text{-}F_{eq}\ ^{a)}$	172.8	177.46	178.75	
$F_{eq}\text{-}Te\text{-}F_{ax}^{\ a)}$	86.4	89.9	89.8	

a) gemittelte Werte

3.2.11 Tellur(IV)dichloriddifluorid

Die Verbindung Cl₂Te=NTeF₅ sollte durch die Umsetzung von TeCl₄ mit H₂NTeF₅ hergestellt werden. Diese Reaktion hätte den Vorteil, dass leicht isolierbares HCl als Nebenprodukt entsteht.

 $TeCl_4 + H_2NTeF_5 \longrightarrow Cl_2Te=NTeF_5 + 2 HCl$

Alle Versuche die Reaktion bei -78°C durchzuführen scheiterten, da beide Edukte selbst in längeren Zeiträumen (1Stunde oder 48 Stunden) und bei erhöhten Temperaturen (50 oder 100°C) nicht miteinander reagieren. Mit dem selben Ergebnis wurde versucht, TeCl₄ mit (CH₃)₃SiNHTeF₅ ohne Lösungsmittel umzusetzen. Die Bildung von Cl₂Te=NTeF₅ wurde nicht beobachtet, dafür bildete sich TeCl₂F₂. Wahrscheinlich entsteht TeCl₂F₂ durch Halogenaustausch mit der TeF₅-Gruppe des (CH₃)₃SiNHTeF₅.

TeCl₄ und (CH₃)₃SiNHTeF₅ werden im Verhältnis 1:1 ohne Lösungsmittel einen Tag bei 50°C gerührt, die zuerst farblose Lösung verfärbt sich im Lauf der Zeit zitronengelb. Auf diese Mischung werden bei -196°C, an der Hochvakuumapparatur, ein Gemisch aus Tetrahydrofuran und Pentan (5:1) kondensiert, aus dieser Lösung bilden sich durch langsames Abkühlen auf -78°C farblose Kristalle.

3.2.11.1 Kristallstrukturanalyse von TeCl₂F₂ · 2 C₄H₈O

Bei der kristallographischen Analyse wurde festgestellt, dass $TeCl_2F_2$ mit zwei Molekülen Tetrahydrofuran auskristallisiert. Die Verbindung kristallisiert in der triklinen Raumgruppe $P\overline{1}$.

Das Telluratom ist verzerrt-oktaedrisch von den Liganden umgeben. Die beiden Sauerstoffatome des Lösungsmittels THF sind cis angeordnet. Die Te-O Bindungsabstände sind mit 245 pm deutlich länger als die kovalente Te-O Bindung in H₆TeO₆ mit 191 pm^[45].

Abb. 11: ORTEP-Darstellung der Molekülstruktur von TeCl2F₂ · 2 THF. Die Schwingungsellipsoide repräsentieren 50 % Aufenthaltswahrscheinlichkeit. Die Gitterkonstanten betragen a = 6.543(2) pm, b = 7.732(3) pm, c = 145.09(5) pm. Die Winkel α = 97.075(6)°, β = 97.721(7)° und γ = 110.490(6)°

Die axialen Bindungen zu F (188.03 und 187.59 pm) liegen in der gleichen Größenordnung wie in TeF₄·2 THF^[61] (187.66 und 186.1 pm). Dagegen sind die Bindungslängen für Te-Cl mit 242 bzw. 246.6 ppm (Tab. 15) deutlich länger als vergleichbare Abstände im tetrameren TeCl₄^[62]. Die terminalen Te-Cl Bindungsabstände betragen hier 231 pm. Zwischen den beiden axialen Chloratomen beträgt der Winkel in TeCl₂F₂ 169.4°, zwischen den beiden äquatorialen Fluoratomen beträgt er 85.5°.

Bindungslängen		Bindungswinkel		
Te-F1	187.59(1)	F1-Te-F2	85.44(6)	
Te-F2	188.03(1)	Cl1-Te-Cl2	169.39(2)	
Te-Cl1	242.02(7)	F1-Te-Cl1	86.32(5)	
Te-Cl2	246.57(7)	F2-Te-Cl1	87.32(4)	
Te-O1	245.35(1)	F1-Te-Cl2	85.20(5)	
		F2-Te-Cl2	85.66(4)	
		F1-Te-O1	76.12(5)	

Tab. 15: Ausgewählte Bindungslängen [pm] und Bindungswinkel [°] von TeCl₂F₂·2 THF.

Die Winkel zeigen, dass das einsame Elektronenpaar des Tellurs hier stereochemisch aktiv ist. Wie bei den analogen Verbindungen SF4, SeF4 und TeF4 lässt sich die Struktur des TeCl₂F₂ ohne Lösungsmittel von einer trigonalen Bipyramide ableiten, bei der eine der drei äquatorialen Positionen durch das freie Elektronenpaar des Tellurs besetzt ist.

Ein Vergleich mit anderen gemischten Halogeniden des Tellurs ist nicht möglich. Es sind zwar TeBr₂Cl₂ und TeCl₂I₂ bekannt, aber außer IR- und Ramanuntersuchungen sind keine weiteren Daten vorhanden. Für beide Verbindungen wird eine ionische Struktur angenommen, die pyramidalen Kationen TeBr₂Cl⁺ und TeCl₂I⁺ enthalten^[63]. Ramanspektroskopische Untersuchungen von TeCl₂F₂·2THF zeigten ein Spektrum, dass dem von TeF₄·2 THF ähnelt.

3.2.12 Versuche zur Darstellung einer Xenonaminotellurpentafluorid Verbindung

Beim Versuch, eine Xe-NTeF₅ Verbindung herzustellen, wurde XeF₂ mit einem vierfachen Überschuss (CH₃)₃SiNHTeF₅ in Propionitril umgesetzt. Sobald die Edukte bei -78°C gemischt wurden, setzte eine Gasbildung ein. Mit Hilfe von ¹⁹F-NMR-Messungen konnte die Bildung von (CH₃)₃SiF, H₂NTeF₅ und TeF₆ festgestellt werden. Nachdem Beenden der Reaktion wurden alle flüchtigen Anteile des Reaktionsansatzes abgezogen und man erhielt ein farbloses Pulver. Der Feststoff wurde durch Ramanspektroskopie als TeF₄ identifiziert. Folgende Reaktionsfolge kann daher formuliert werden:

XeF₂ reagiert mit (CH₃)₃SiNHTeF₅ unter Bildung von (CH₃)₃SiF und der xenonhaltigen Verbindung (I), diese Verbindung zerfällt sofort zu Verbindung (II), HF und Xe. Die entstandene HF reagiert mit (CH₃)₃SiNHTeF₅ zu H₂NTeF₅ (VI) und kann so nicht im ¹⁹F-NMR-Spektrum beobachtet werden. Produkt (II) erwies sich als sehr instabil, nur die Zerfallsprodukte TeF₆ und TeF₄ konnten beobachtet werden.

Die HF Eliminierung konnte auch bei tieferen Temperaturen (-90°C) nicht verhindert werden. Ein Weg, dem Zerfall von Zwischenprodukt (I) entgegen zuwirken, könnte die Verwendung eines protonenfreien Eduktes sein.

Aus diesem Grund wurde versucht, (CH₃)₃SiNClTeF₅^[7] mit XeF₂ in CFCl₃ bei -78°C umzusetzen. Wieder wurde eine Gasentwicklung beobachtet, und die ¹⁹F-NMR-Spektren zeigten anstelle des erwünschten Produktes eine Reihe verschiedener Zerfallsprodukte, wie z.B. TeF₆. Anzunehmen ist, dass die Xe-NTeF₅ Bindung instabil ist und daher eine Isolierung nicht möglich ist.

3.2.13 Theoretische Betrachtungen zur Gruppenelektronegativität von NHTeF5

Pauling definierte die Elektronegativität als ein Maß für die Stärke eines Atoms in einem Molekül, Elektronen an sich zu ziehen^[64], Es konnte gezeigt werden, dass die Gruppenelektronegativität des OTeF₅ Liganden mit der von Fluor vergleichbar ist^[2,20]. Jetzt soll die Frage geklärt werden, wie verhält es sich mit der Gruppenelektronegativität von NHTeF₅ im Verhältnis zu Fluor und OTeF₅?

3.2.13.1 VSEPR-Theorie

Nach den VSEPR-Regeln^[21] ist die äquatoriale Position in quadratisch-pyramidaler Anordnung verschiedener Liganden in AX₅ den elektronegativeren Liganden vorbehalten. Der Ligand OTeF₅ besetzt z.B. in den Verbindungen $IF_x(OTeF_5)_{5-x}$ (x = 1-5)^[19] als elektronegativerer Ligand die äquatoriale Positionen.

Bei der trigonal-bipyramidalen Anordnung der Liganden in AX₅ bevorzugt der elektronegativere Ligand nach der VSEPR-Regel die axiale Position, wie es in PCl₃F₂ und PCl₂F₃^[65] beobachtet wurde. Die Tendenz, dass sich stärker elektrophile Substituenten in trigonalen Bipyramiden in axialer Position anordnen, wird als "Apicophilie" (apex (lat.) = Spitze) bezeichnet. In der Verbindung As(NHTeF₅)₂F₃ hat sich der NHTeF₅-Ligand nicht axial, sondern äquatorial angeordnet. Das erlaubt den Schluss, dass dieser Substituent weniger elektronegativ ist als Fluor oder der OTeF₅-Ligand.

Kinetische Gründe für das Substitutionsmuster können ausgeschlossen werden, da immer dieselbe Substitution erfolgt, ganz gleich ob man bei der Synthese AsF5 mit (CH3)3SiN(H)TeF5 reagieren lässt oder das Addukt AsF5·H2NTeF5 sublimiert. Weder längere Reaktionszeiten, noch erhöhte Temperaturen haben das Substitutionsverhalten beeinflusst.

Auch sterische Gründe können vernachlässigt werden. Untersuchungen an Verbindungen mit OTeF₅ zeigten, dass trotz der Größe der Gruppe keine sterischen Probleme beobachtet wurden^[19]. Vergleicht man die NHTeF₅-Gruppe mit der OTeF₅-Gruppe, ist der Raumbedarf beider Liganden ähnlich. Der einzige Unterschied liegt im kleineren Winkel As-N-TeF₅ (133.6°) im Gegensatz zum Winkel As-O-TeF₅ (139.9° ^[66]).

Eine andere Möglichkeit, die Elektronegativität des NHTeF₅-Liganden abzuschätzen, ist die Korrelation von NMR-Daten vergleichbarer Verbindungen mit Substituenten bekannter Elektronegativität. Auf diesem Weg wurden bereits die relative Gruppenelektronegativität der Gruppen OTeF₅ und OSeF₅ bestimmt^[19].

Vergleicht man die NMR-Daten verschiedener Trimethylsilylverbindungen des Typs (CH₃)₃SiX, mit X = OCH₃, CH₃, F, Cl, Br, I (Tab. 17), so fällt auf, dass die chemischen Verschiebungen der ¹³C-Kerne im Gegensatz zu denen der ²⁹Si-Kerne einen relativ kleinen Bereich abdecken. Beachtenswert ist, dass je elektronegativer der Halogensubstituent ist, der Wert der chemischen Verschiebungen im ¹³C-NMR-Spektrum relativ hochfeldverschoben wird. Bei den chemischen Verschiebungen der ²⁹Si-Kerne in den gleichen Verbindungen ist der Trend entgegengesetzt.

Tab. 17: ¹³C, ²⁹Si chemische Verschiebungen [ppm] und ²⁹Si, ¹³C-Kopplungskonstanten [Hz] von Trimethylsilylverbindungen (CH₃)₃SiX mit X = F, Cl, Br, I, CH₃, OCH₃ und NHTeF₅.

Verbindung	δ ¹³ C ^[67]	δ ²⁹ Si ^[68]	$^{1}J_{SiC}$ [69]
(CH ₃) ₃ SiF	-0.32	35.4	60.5
(CH ₃) ₃ SiCl	4.1	29.4	57.7
(CH ₃) ₃ SiBr	4.6	26.4	56.0
(CH ₃) ₃ SiI	6.5	8.6	54.0
(CH ₃) ₃ SiOCH ₃	-1.9	17.2	59.0
(CH ₃) ₃ SiNHTeF ₅	- 0.61	19.1	60.1

In Abbildung 12 ist die ²⁹Si-chemische Verschiebung der Trimethylsilylverbindungen, mit X = F, Cl, Br, I und OCH₃ gegen die Elektronegativität der Substituenten nach Pauling^[70] aufgetragen. Es ist erkennbar, obwohl es eine allgemeine Abhängigkeit zwischen den Werten der chemischen Verschiebung und Elektronegativität der Halogene gibt, dass die Korrelation schlecht ist (Korrelationskoeffizient r = 0.6516).

Abb. 12: Korrelation der ²⁹Si-chemischen Verschiebungen von Trimethylsilylverbindungen $(CH_3)_3SiX$ mit der Pauling'schen Elektronegativität von X mit X = F, Cl, Br, I und OCH₃.

Die schlechte Korrelation lässt darauf schließen, dass nicht allein die Elektronegativität der Substituenten einen Einfluss auf die chemische Verschiebung ausübt.

Harris und Kimber^[69] konnten zeigen, dass dagegen der Wert der Kopplungskonstante ${}^{1}J_{SiC}$ sehr gut mit der Elektronegativität der Substituenten korreliert (Korrelationskoeffizient r = 0.9794) (Abb. 14).

Abb. 13: Korrelation der Kopplungskonstanten $|{}^{1}J_{SiC}|$ von Trimethylsilylverbindungen (CH₃)₃SiX gegen die Elektronegativität nach Pauling von X, mit X = F, Cl, Br, I und OCH₃.

Die Kopplungskonstanten $|{}^{1}J_{SiC}|$ werden ohne Probleme in 13 C-NMR-Spektren ermittelt, da das Signal-Rausch-Verhältnis besser ist als in 29 Si-NMR-Spektren. Für (CH₃)₃SiNHTeF₅ wurde eine Kopplungskonstante von ${}^{1}J_{SiC}$ = 60.1 Hz ermittelt, der Wert liegt damit genau zwischen denen für Fluor und OCH₃. Die Pauling'sche Gruppenelektronegativität wurde mit Hilfe der linearen Gleichung (Abb. 13) für den NHTeF₅-Liganden mit 3.79 ermittelt.

Somit konnte durch die VSEPR-Theorie und durch NMR-Untersuchungen, die im Vergleich zu Fluor oder OTeF5 geringere Gruppenelektronegativität des NHTeF5-Liganden bestimmt werden.