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Chapter 1

Introduction

The theory of boundary value problems for complex partial differential equa-
tions combines knowledged and methods from many fields of mathematics,
i.e. complex analysis, partial differential equations, functional analysis, equa-
tion of mathematical physics etc. Initiated by B. Riemann and D. Hilbert the
theory develops up to nowadays involving different research groups all over
the world. In the classical theory of complex analysis, it is well known that
harmonic functions are intimately connected with analytic functions. That
is, for any real harmonic function, one can find an analytic function such
that the harmonic function becomes its real part. In other words, any real
harmonic function can be decomposed as a sum of an analytic function and
its conjugate function which is an antianalytic function. The idea is simple
but suitable and important because it constructs a bridge linking the two
kinds of functions so that they can be mutually applied. In fact, the mutual
applications are successfully realized in the classical theory of one complex
variable. In this dissertation, one can find that the idea is valid for the
generalized analogues of harmonic functions which are called tri-harmonic
functions. Of course, analytic functions should also be generalized. It is for-
tunate that some generalized analogues for analytic functions have already
been introduced by contribution from many mathematicians |7, 17, 21], 143].
Since complex analysis is closely related to mathematical physics, the theory
of boundary value problems (simply, BVPs) in complex analysis were abun-
dantly developed. Especially, the theory of boundary value problems for
analytic functions is an important branch of function theory. Many math-
ematicians contributed to this field such as B. Riemann, D. Hilbert, N. I.
Muskhelishvili, F. D. Gakhov, I. N. Vekua and their students. The initial in-
vestigations are due to B.Riemann and D. Hilbert. Deep developments were
given by the BVPs school of the former Soviet Union. Except for analytic
functions, the investigations were also devoted to particular partial differen-
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tial equations, for example, the Bitsadze equation, elliptic partial differential
equations with analytic coefficients and so on. There are many different types
of BVPs which are called Riemann, Hilbert, Dirichlet, Schwarz, Neumann,
Robin boundary value problems. Among them, the Riemann boundary value
problem and the Hilbert boundary value problem are in the center of inter-
est. The Dirichlet boundary value problem is connected to the Riemann
boundary value problem. In this dissertation, we are mainly concerned with
the Dirichlet and Neumann boundary value problems for the unit disc. The
Schwarz problem is the simplest form of the Hilbert problem. The Neumann
problem is related the Dirichlet problem. The Robin problem is contacted
to the Dirichlet problem and the Neumann problem. In addition, for some
special cases, e.g. the unit disc or the half plane, the Hilbert problem can
be transformed to the Riemann problem. The present thesis contributes to
the research subject initiated by Prof. Dr. H. Begehr and developed by his
students and collaborators. A systematic investigation of boundary value
problems for complex partial differential equations of arbitrary order on the
base of integral representation formulas was initiated by H. Begehr. To start
with, the basic boundary value problems for model equations are observed.
The differential operator of a model equation consists of a product of powers
of the complex Cauchy-Riemann operator d; and its complex conjugate 0.,.
The main methods of the theory will be pointed on now.

The complex form of the Gauss theorem for the unit disc D on the
complex plane C and an arbitrary function w € C'(D;C) N C(D;C) leads
to the Cauchy-Pompeiu formula for analytic functions. The area integral
appearing in the Cauchy-Pompeiu formula is called the Pompeiu opera-
tor. It plays an important role in treating boundary value problems for
inhomogeneous complex partial differential equations. The properties of
the Pompeiu operator were studied by I.N. Vekua [43]. If f belongs to
L,(D;C),p > 1, then T'f possesses weak derivatives with respect to z and Z,
moreover O:Tf = f, 0, Tf =: Ilf, where II is a singular integral being un-
derstood in the principle value sense. Integrals of such type are investigated
in [32].

From the Cauchy-Pompeiu representation formula it follows that any
function w € CY(D;C) N C(D;C) can be found by known values on the
boundary and values of a first order derivative inside of the domain. On the
other hand, for given f € L,(D;C),p > 1, and v € C(9D;C) a new function

w(z) = = / (s / f(C)%, (1.0.1)

2w (—2z
oD D

can be constructed according to this formula. The boundary integral is an



analytic function, while the area integral represents the Pompeiu operator.
Using the properties of the Pompeiu operator, the function w is seen to be
a solution of the differential equation w; = f in D, being understood in the
weak sense. But the boundary values of the function defined in (1.0.1) in
general differ from ~. Therefore the function w given by (1.0.1) is not the
solution of the problem

ws;=fin D, w=+ on 0D,

which is called the Dirichlet boundary value problem for the inhomogeneous
Cauchy-Riemann equation. This fact leads to the idea that the Cauchy-
Pompeiu representation formula has to be modified in a proper way for being
useful to treat boundary value problems. There are three basic boundary
value problems for complex partial differential equations, namely, Schwarz,
Dirichlet and Neumann problems. To find the solutions in explicit form
they are investigated in particular domains, i.e. the unit disk, half planes,
quarter planes, etc. For the unit disk the modified Cauchy-Pompeiu formula,
which is known as Cauchy-Pompeiu-Schwarz-Poisson formula (or Schwarz-
Poisson formula in the case of analytic functions), serves as the starting
point in |[13], where the solutions of the basic boundary value problems to
first order equations are given. To solve boundary value problems for the
inhomogeneous Cauchy-Riemann equation ws; = f the idea of I.N. Vekua
is exploited, who suggested [43] to represent the solution of these problems
in the form w = ¢ + T'f, with ¢ being an analytic function. By using the
properties of the Pompeiu operator the boundary value problems for the
inhomogeneous Cauchy-Riemann equation are reduced to the homogeneous
case (see, e.g.[13]). Besides the three main boundary value problems listed
above the Robin boundary value problem should be mentioned. This problem
is the combination of Dirichlet and Neumann ones. The solutions of the
particular Robin boundary value problem to the Cauchy-Riemann operator
is given [19].

In Chapter 2 we present the main theorem of calculus, which is used to
solve differential equations of first and second order under certain initial or
boundary conditions in complex analysis. This chapter is written on the
basis of some important papers of H. Begehr.

In Chapter 3, we obtain a tri-harmonic Green function for the unit disc
and a tri-harmonic Neumann function for the unit disc. Moreover, we solve
boundary value problems for the Poisson equation in the unit disc. In this
chapter representation formulas for the tri-harmonic differential equation are
given on the basis of some hybrid Green functions. We also discuss BVPs for
the tri-harmonic differential equation, in particular the Dirichlet, Neumann
and combined conditions.



In Chapter 4, we present some results on boundary value problems for
higher order inhomogeneous complex partial differential equations in the unit
disc. We begin with the higher order Pompeiu operators and then use these
operators to study four classes of Dirichlet problems for the inhomogeneous
equations.

The Appendix I devote to my results about the solutions of a class of
complex partial differential equations of third order in the plane with Fuchs
type differential operators. The solutions are constructed in explicit form and
the Cauchy problem with prescribed growth at infinity is solved in unbounded
angular domains within specified function classes.



Chapter 2

Boundary value problems for first
and second order complex partial
differential equations in the unit
disc

A systematic investigation of basic boundary value problems for complex par-
tial differential equations of arbitrary order is restricted to model equations.
Four basic boundary value problems, namely, the Schwarz, the Dirichlet,
the Neumann, the Robin problems for analytic functions and more gener-
ally for the inhomogeneous Cauchy-Riemann equation are investigated in
the unit disc. The representation for the solutions and solvability conditions
are given in explicit form. The fundamental tools are the Gauss theorem and
the Cauchy-Pompeiu representation.

2.1 Notations and technical preliminaries

Let C be the complex plane of the variable z = x+1y, x,y € R. The extended
complex plane is denoted by C := CU {o0}. The complex number z = = — iy
is called the conjugate number to z. By Rez, Imz the real and imaginary
parts of z are denoted.

In complex analysis it is convenient to use the complex partial differential
operators 0, and 0; defined by the real partial differential operators 0, and
0y as

20. = 0, — i0,, 20= = 0, + 0, (2.1.1)
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Formally they are deducible by treating
=41y, z=x—1y, T,y €R,

as independent variables using the chain rule of differentiation.

A complex-valued function w = u + v given by two real-valued functions
w and v of the real variables = and y will be denoted by w(z) although being
rather a function of z and z. In case when w is independent of Z in an open
set of the complex plane C it is an analytic function. It then is satisfying the
Cauchy-Riemann system of first order partial differential equations

Uy = Uy, Uy = —Uy (2.1.2)
This is equivalent to
ws =0 (2.1.3)
as follows from
205w = (0 +10y)(u + iv) = Opu — Oyv + 1(0xv + Oyu) (2.1.4)

In that case also
20,w = (0; —10y)(u + iv) = Oyu+ 0 + yv + i(0,v — Oyu)
= 20,w = —2i0,w = 2w’ (2.1.5)

Using these complex derivatives the real Gauss divergence theorem for func-
tions of two real variables being continuously differentiable in some regular
domain, i.e. a bounded domain D with smooth boundary 0D, and continuous
in the closure D = D UdD of D, easily can be given in complex forms.

Main theorem of calculus. Let w be analytic in 2y, zg € C, i.e. complex
differentiable with respect to z in some neighborhood of zy

z

w(z) = wlzo) + / W/(C)dc. (2.1.6)

20

Here the integration is taken along any rectifiable curve from 2y to z in the
neighborhood of zy, i.e. the straight line. This result is evident because w’
is continuous as it is a complex differentiable function itself.

Lemma 2.1.1 Let w be analytic in zy, 2o € C, then for any n € N and z in
the neighborhood of z

w(z) = 3 et - 20+ o [ (= PO ()



Proof. For n = 0 the representation (2.1.7) coincides with (2.1.6). Assume
(2.1.7) holds for n — 1 rather than for n i.e.

z

i}% Z—%V+g;§51/@—cwlww@mo

20
Applying (2.1.6) to w™(¢) shows for ¢ in the neighborhood of 2

¢
w™(¢) = w(zo) + /w(”“)(t)dt.

20
Inserting this in the preceding formula and using integration by parts giving

z ¢ z

Je—or [urdwaa =+ [ - oru Qe

=] 20 20

leads to (2.1.7).

In real analysis from a representation formula like (2.1.7) the Taylor for-
mula is deduced by applying the mean value theorem for integrals. This
principle of iterating integral representation formulas can be applied also in
case of partial differential operators being involved. However, the procedure
is not restricted to this case or to hypercomplex analysis [10]. It can be
applied in real analysis as well and this is done in Clifford analysis [8], [10],
in particular in quaternionic analysis [10], [13]. For octonionic analysis the
non-associativity causes some problems for higher order iterations [18].

The complex forms of the Gauss theorem.

The Gauss or Gauss - Ostrogradskii theorem is the main theorem of
calculus in the case of several variables. the integral of the divergence of
a vector field taken over a regular domain is expressed by the boundary
and the (outward) normal direction. In case of the complex plane there are
two kinds of divergence differential operator, the Cauchy-Riemann operator
20; = 0,+10, and its complex conjugate, the anti-Cauchy-Riemann operator
20; = 0, — 10,.

Gauss Theorem (complex forms)

Let D C C be a regular domain and w € C!(D;C) N C(D;C). Then

L‘ w(z)dz = l/wz(z)alxdy, —L_ w(z)dz = %/wz(z)da:dy.

211 T 211
) D )
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A regular domain means a bounded domain with a piecewise smooth bound-
ary.

From these Gauss theorems, see e.g. [7], [13], integral representation for-
mulas are deduced by inserting a fundamental solution to the differential
operators involved. This is for the Cauchy-Riemann operator (up to some
constant factor) 1/z.

Choosing an arbitrary point z € D and applying the respective Gauss
theorem to the function w(¢)/(¢ —z) in D. = D\{C:|[( —z| <e} for0 < e
small enough and letting € tend to zero leads to a representation formula.
Similarly the second Gauss formula can be treated.

Cauchy-Pompeiu representations. Let D and w satisfy the assump-
tions from the Gauss theorem. Then

1 dg 1 oadédn [ w(z), ze D,
2mi w“%—z_;/ﬁdoC—z_{Q cecyp, (219
oD D
L 1 dedn  f w(z), z€D,
- w(C)C—z_;/wC(OC—z{O, . e C\D, (2.1.10)
oD

Here ¢ = & + in is used. The kernel function 1/(¢ — z) is the Cauchy
kernel. The integral operator

1 dédn
14 =1 [ 10
s (—=z
D
is defined for f € L,(D;C),1 < p. It is called Pompeiu operator. Its proper-
ties are studied in detail in [43] in connection with the theory of generalized
analytic functions. T'f is weakly differentiable (in distributional sense) with

OTf=f 0.Tf=Ilf

where
d&dn
(€ —2)?

is a singular integral operator of Calderon-Zygmund type to be taken as
a Cauchy principle value integral. The properties of this Ahlfors-Beurling
operator II are also studied in [39].

In case w is analytic in D, i.e. w; = 0in D, formula (2.1.9) is the Cauchy
formula for analytic functions, one of the main tools in function theory and
the source of many properties of analytic functions.

1) = -1 [ 70
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The representation formulas (2.1.9) and (2.1.10) are proper for iterations.
This leads at the same time as well to higher order Cauchy-Pompeiu repre-
sentation formulas as to fundamental solutions to the differential operators
involved.

Theorem 2.1.2 If f € L1(D;C) then for all p € C3(D;C)

/Tf(z) dxdy—i—/f z)dxdy = 0 (2.1.11)

D

Here C}(D;C) denotes the set of complez-valued functions in D being con-
tinuously differentiable and having compact support in D, i.e. vanishing near
the boundary.

Proof. From (2.1.9) and the fact that the boundary values of ¢ vanish at
the boundary

d déd
o) =55 [ #0725 - 1 [eOF = @e0(e)

oD D

follows. Thus interchanging the order of integrations

[ Tr@ese)dody = - / 1 / d“”dydéd - [ 10w

Formula (2.1.11) means that

GTf=f (2.1.12)

in distributional sense.

Definition 2.1.3 Let f,g € Li(D;C). Then f is called generalized (distri-
butional)derivative of g with respect to z if for all p € C3(D;C)

/ (2)ps dxdy+/f z)dxdy = 0.

D

This derivative is denoted by f = gz = 0sg.
In the same way generalized derivatives with respect to z are defined. In

case a function is differentiable in the ordinary sense it is also differentiable
in the distributional sense and both derivative coincide.
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Sometimes solutions to differential equations in distributional sense can
be shown to be differentiable in the classical sense. Then generalized solu-
tions become classical solutions to the equation. An example is the Cauchy-
Riemann system (2.1.3), see [43], [7].

More delecate is the differentiation of T f with respect to 2. For 2 € C\D
obviously T'f is analytic and its derivative

0. Tf(z) = :——/f dgd" (2.1.13)

That this holds in distributional sense also for z € D almost everywhere when
f € L,(D;C), 1 < p, and the integral on the right-hand side is understood
as a Cauchy principal value integral

/ fc dfdn ~tim / fc dgdn
D\K-(2)

is a deep result of Calderon-Zygmund [32].
With respect to boundary value problems a modification of the Cauchy-
Pompeiu formula is important in the case of the unit disc D = {2 : |z| < 1}.

Theorem 2.1.4 Any w € C'(D; C) N C(D;C) is representable as

w(z) = 1 Re w(C)C + ng + / Im w(g‘)%

o2mi (—=z C ¢
¢|=1 \CI 1
1 we(¢)  zwe(Q)
- / (C oy 2 zg> dedn, |2 < 1. (2.1.14)
ci<t

Corollary 2.1.5 Any w € C*(D;C) N C(D;C) can be represented as

C—I—zd{
27TZ/R —ZC

I¢|=1

1 / <wC(C)C+Z+ (C)HZC) d¢dn+ilm w(0), |2| < 1. (2.1.15)

¢ (=2 ¢ 1=2C

13



Proof. For fixed z,|z| < 1, formula (2.1.8) applied to I shows

1 zd 1 _
2mi w(olz_ig_;/wc(C)l_Zzgdfdn:O.

I¢]=1 I<I<1

Taking the complex conjugate and adding this to (2.1.9) in the case D =D
gives |z| < 1

L@ @) de 1 fwe(Q) | zwe(C)
w<z)_2m/<¢—z+m>< ﬂ/<§—2+1—2§)d€dn’

I¢]=1 I¢I<1

where (d¢ = —(d( for |¢| = 1 is used. This is (2.1.14). Subtracting iIm w(0)
from (2.1.14) proves (2.1.15).

Remark 2.1.6 For analytic functions (2.1.15) is the Schwarz-Poisson for-
mula

w(z) = — / Re w(C) ( 2 _ 1> & 4 itm w(0). (2.1.16)

27 (—=z ¢
I<|=1
The kernel
(tz_ 26 _
(—z (—=
15 called the Schwarz kernel. Its real part
- 2|42
¢, &k
(=2 (—= ¢ — 2|
is the Poisson kernel. The Schwarz operator
1 (+z2d¢
S(z) = 5 SD(C)g_Z?
l¢l=1

for ¢ € C(OD;R) is known to provide an analytic in D satisfying
Re Sp =¢ on 0D

see [42] in the sense

lim S¢(z) = ¢(¢), ¢ € D,

z—(
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for z in D tending to (. Poisson has proved the respective representation for
harmonic functions, i.e. to solutions for the Laplace equation

Au=8§u+8§u:0

in D. Re w for analytic w is harmonic.

The Schwarz operator can be defined for other simply and even multi-
connected domains, see e.g.|].

Formula (2.1.15) is called the Cauchy-Schwarz-Poisson-Pompeiu formula.
Rewriting it according to

w; =f in D, Rew=¢ on ID, Im w(0) =c,

L[ et
we) =5 [ HOFET

I¢1=1

1 FO¢+z | fO1+2 .
-5 ( . (_Z+ c 1—2() dédn + ic (2.1.17)

then

I¢I<1

is expressed by the given data. Applying the result of Schwarz it is easily seen
that taking the real part on the right-hand side letting z tend to a boundary
point ¢ this tend to v(C).

Differentiating with respect to z as every term on the right-hand side s
analytic besides the T-operator applied to f this gives f(z). Also for z =0
besides ic all other terms on the right-hand side are real.

Hence, (2.1.17) is a solution to the so-called Dirichlet problem

w;=f in D, Rew=¢ on ID, Im w(0) = c,

This shows how integral representation formulas serve to solve boundary value
problems. The method is not restricted to the unit disc but in this case the
solutions to the problems are given in an explicit way.

Second order Cauchy-Pompeiu representations. Let D C C be a
regular domain and w € C*(D;C) N C*(D;C). Then for z € D

w(z) = 5 [ w2

oD
1 — 1 T
Bl %/“)C(C)g_j‘d<+;/wcC(C)g_jdfdn (2.1.18)
oD 0
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and

w2) = 5 [ 0O~

211 (—z
oD

-1
/ ¢)log|¢ — z|%d( + - /w«(() log |¢ — z|*d&dn (2.1.19)
oD D
Proof of (2.1.18)). Inserting formula (2.1.9) applied to ws, i.e.

w0 = 5 [l 2= - 1 [ B2

27rzaD (—C J (—¢
into (2.1.9)shows
_ L d¢
w) = 57 [ wlOZ2
oD
1

" o UHOW%O%+;/w¢OM ¢)dédn (2.1.20)

oD 7

_l Lodedp 1 1/ 1 1N e
»(2,) J =it C_m/( ; )dfdn.

Formula (2.1.9) applied to the function Z is

__ L fzdC 1 [ dedj

_zm'aD (-2 g—z'
Therefore

1 d 1 déd -
= mi ) TooeTy “ —;/¢ 35,0 +9(,0)
D
" (2.1.21)

where

. 1 ] Edé
v 2@! (€= ~2)

is an analytic function in both its variables outside dD.
From the Gauss theorem

L iz Qe

271
aD
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— [ aclue©d e Oldgan = - [ weel€)i e

™
D D

follows. Combining this with (2.1.20)and observing (2.1.21) proves (2.1.18)
In a similar way combining (2.1.10) applied to wz(¢) with (2.1.9) leads to

¢
(2.1.19). Here instead of the kernel (2.1.21))

1 -, dC 1 1 dédn
log|<-25|2—%/logK—ng_Z——/C (C—Z (2.1.22)
oD

is used.

This follows from (2.1.21)) applied to the weakly singular function log |¢ —
z|? for fixed ¢ € D, which can be justified by a limiting process as before
considering D, = D\{z : |z — ¢| < €}. The kernel functions in (2.1.21) and
(2.1.22) are primitives of the Cauchy kernel with respect to the differential
operators 0; and 0, respectively. For z # 0 there hold

z 1
855 =, O log|z]* =~
z oz

This is a principle for generating fundamental solutions for higher order dif-
ferential operators from fundamental solutions of lower order ones. Just the
respective primitives have to be determined. Thus the fundamental solution
to the operator 97 is 2"~ /[z(n—1)!], to 97 it is 2"~ /[z(n—1)!], and to O™
it is 212" 1log|z|*/[(m — 1)!(n — 1)!]. More natural and more convenient
is for the last operator to use

S 1yn—1

3 mfl1 n—1 1
1 2 — ——» —|.
(m—1)(n—1)! (og]z\ ; o 1/)

The difference of the last from the preceding one is just a function from
the kernel of the operator 07°07, i.e. a function annihilated by this operator.
These fundamental solutions are part of a set of kernel functions of a hierarchy
of higher order Pompeiu operators appearing when continuing the indicated
iteration process, see [20]. Avoiding the general case for simplicity only two
particular situations are listed the proofs of which follow again by induction.

Polyanalytic Cauchy-Pompeiu representation. Let w € C"(D;C)N
C"~1(D;C) for some n > 1. Then

v z—=q)"
w(z) 2m /8 1/' )dg_

17




N z—C)"*l
/a T )dgdn (2.1.23)

Polyharmonic Cauchy-Pompeiu representation. Let w € C*(D;C)N
C*"~1(D;C) for some n > 1. Then

1 w( C—2z)
>_%/C— dc + 22 z/ V—llyl [log | — ="~
oD

_Z% - %] (9c0¢)"w(C)dC (2.1.24)

/!C 2\2(” .

Modifications of the Cauchy-Pompeiu representations.

Looking at the Cauchy-Pompeiu formulas, say at (2.1.9),(2.1.10), a func-
tion from C*(D;C) U C(D;C) is obviously determined by its values on the
boundary and one of its first order derivatives in the domain. If on the other
hand a function f € L1(D;C) and a v € C(9D;C) are given this leads to a

function ) P dfd
w(z) = —./7 C /f 1 (2.1.25)

log |¢ — z|> — 22 ] (0:07)™w(¢)dédn.

271
oD

As the boundary integral is analytic and the area integral is the Pompeiu
operator w is a weak solution to the differential equation ws = f in D. But in
general the boundary values of w on 9D differ from ~. (2.1.25) in general fails
to be a weak solution to this so-called Dirichlet problem. This suggests to
modify the Cauchy-Pompeiu formulas. Any solution to the equation w; = f
is of the form w = ¢ + T'f with analytic ¢. The reason is that ¢ = w —T'f
is a weak solution to ¢:; = 0. But this means ¢ is a classical solution i.e.
analytic, see [43]. In order that w satisfies some boundary conditions just
© has to be chosen properly. This leads to boundary value problems for
analytic functions.

There are four basic boundary value problems [13], [19]. In order to be
explicit just some special domains will be considered, the unit disc D = \{z :
|z| < 1} and the upper half plane H = \{z : 0 < Imz}, the last one as

18



unbounded being no regular domain. For the proofs with respect to the unit
disc, see [13], [19], [35], for the upper half plane [35].

2.2 Boundary value problems for analytic func-
tions

As was pointed out in connection with the Schwarz-Poisson formula in the
case of the unit disc boundary value problems can be solved explicitly. For
this reason this particular domain is considered. This will give necessary
information about the nature of the problems considered. The simplest and
therefore fundamental cases occur with respect to analytic functions.

Schwarz boundary value problem. Find an analytic function w in
the unit disc, i.e. a solution to ws; = 0 in D, satisfying

Re w =7 on ID, Im w(0) =c¢
for v € C(0D;R), ¢ € R given.

Theorem 2.2.1 This Schwarz problem is uniquely solvable. The solution s
given by the Schwarz formula

W) =5 [ O e

2T
I¢l=1

The proof follows from the Schwarz-Poisson formula (2.1.16) together with a
detailed study of the boundary behavior, see [42].

(2.2.1)

Dirichlet boundary value problem. Find an analytic function w
in the unit disc, i.e. a solution to w; = 0 in D, satisfying for given v €
C'(0D; C)

w =+ on JD.

Theorem 2.2.2 This Dirichlet problem is solvable if and only if for |z| <1

1 zd
3 [ 07 =0 (222
I¢]=1

The solution is then uniquely given by the Cauchy integral

we) =5 [ O

2T
[¢]=1

(2.2.3)
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Remark 2.2.3 This result is a consequence of the Plemelj-Sokhotzki for-
mula, see e.g.[40], [36], [7]. The Cauchy integral (2.2.3) obviously provides
an analytic function on D and on C\D, C the Riemann sphere. The Plemelj-
Sokhotzki formula states that for |(| =1

lim w(z)— lm wz= .
z—(, |z|<1 ( ) z—¢, 1<|z| 7(<)

In order that for any |(| =1

z—»?,ﬂ%|<1w(z) =7(¢)

the condition  lim ‘ |w(z) = 0 s necessary and sufficient. However, the
z—(, 1<z

Plemelj-Sokhotzki formula in its classical formulation holds if v is Holder
continuous. Nevertheless, for the unit disc Holder continuity is not needed,

see [40].

Proof 1. (2.2.2) is shown to be necessary. Let w be a solution to the
Dirichlet problem. Then w is analytic in D having continuous boundary
values

lin% w(z) =7v(Q) (2.2.4)
for all || = 1.
Consider for 1 > |z| the function
N [ 1 z A
=g ) 9T T T ) Ve
=1 I¢1=1
From ¢ : i
1 1
we) o =5 [0 (Fr 2 -) T
I¢]=1

and the properties of the Poisson kernel for |(| = 1 and (2.2.4)) it is seen that
lirré w(1/Z) exists and

lim w(z)— lim w(z)=~v(() (2.2.5)

2—C, 2l<1 2—C, 1</

follows. Comparison with (2.2.4) shows lirré w(z) =0for 1 < |z|. As w(oc0) =

0 then the maximum principle for analytic functions tells that w(z) = 0 in
1 < |z|. This is condition (2.2.2).
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2. The sufficiency of (2.2.2) follows at once from adding (2.2.2) to (2.2.3)

leading to
1 z d
w(z) == [ ) (gfﬁé)é
I¢|=1
1 ¢ ¢ dg
a0 =) ¢
=1
Thus for |¢| =1

lim w(z) = 7(¢)

z—¢, |z|<1

follows again from the properties of the Poisson kernel.

The third basic boundary value problem is based on the outward normal
derivative at the boundary of a regular domain. This directional derivative
on a circle |z —a| = r is in the direction of the radius vector, i.e. the outward
normal vector is v = (z — a)/r, and the normal derivative in this direction v
given by

0, = 0, = ~0. + ~0-.
r r
In particular for the unit disc D
0, = 20, + 20;.

Neumann boundary value problem. Find an analytic function w in the
unit disc, i.e. a solution to w; = 0 in D, satisfying for some v € C(9D;C)
and c € C

d,w =10 on ID, w(0) = c.

Theorem 2.2.4 This Neumann problem is solvable if and only if for |z| < 1

1 d
o 7(@—0 —CZC)C =0 (2.2.6)
l¢l=1
is satisfied. The solution then is
1 ~.d
w(z) =c— 5 7(¢) log(1 — ZC)?C (2.2.7)
¢I=1

Proof. The boundary condition reduced to the Dirichlet condition is
2w'(z) =7(z) for ||z] =1
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because of the analyticity of w. Hence from the preceding result

iy L dg
() = o [ A0
<=1
if and only if for |z]| < 1
1 zd¢
i 7(()1 — i 0 (2.2.8)
I¢]=1

But as zw'(z) vanished at the origin this imposes the additional condition

1 ¢
e ’Y(C)? =0 (2.2.9)
I¢]=1

on vy. Then X &

I¢l=1
Integrating shows

—zd
wE) =g [ 0o =
I¢]=1

which is (2.2.7). Adding (2.2.8) and (2.2.9) leads to

1 1 d¢ 1 ¢ d¢
v W(C)l_ch—% V(C)C_Z?—
i¢i=1 ci=1
_ 1 dC_ _
=5 ’Y(C)C_Z—O
ci=1

i.e. to (2.2.6). By integration this gives

L (01081 - 20)dc =0

271
[¢l=1

A particular Robin boundary value problem. Find an analytic
function in the unit disc D, satisfying the boundary condition

w+0,w=vy on JD (2.2.10)
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for given v € C(0D;C) with v being the outward normal vector to the
boundary 0D.
Note that in our case the boundary condition (2.2.10) takes the form

w+ zw, =7 on JD.
Let us set g := w + 2w, and solve the Dirichlet problem
gz=0 in D, (2.2.11)

g=7 on OJD. (2.2.12)

According to Theorem (2.2.2)) the problem (2.2.11)), (2.2.12) is uniquely
solvable if and only if

| zd¢
— = 2.2.1
I¢|=1
for all |z| < 1 and the solution is
1 ()
= — : 2.2.14
o0 =5y [ 2Lac (2:2.14)
I¢]=1

Let w(z) = Y wiz* be the Taylor expansion of w in D. Then (2.2.14) gives

k=0
us
- RSV (¢
§kzoj<k+1>wkz’“ _Zk:o {5m / G f2

<=1

_ L1 (<)
wk_k+1%/<k+1d<
I¢l=1

from which we have

and _
1 In(1 —
[¢l=1

dc. (2.2.15)

We have proved the following

Theorem 2.2.5 The special Robin boundary value problem for analytic func-
tions is solvable if and only if v satisfies the condition (2.2.13) and the solu-
tion has the form (2.2.15).
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Let o € C(9D,C). Consider the Robin problem with the more general
boundary condition

a(z)w+zw, =~ on OJD. (2.2.16)

A modification of this general case is to reformulate (2.2.16) as a Neumann
boundary condition. We write (2.2.16) in the form

2w, =y — a(z)w.

According to Theorem (2.2.4) we get the unique solution

9= [ {600 2O~ 20} E + (o)
I¢l=1

under the necessary and sufficient condition

1 _dc 1 w2
2 ). NG =Z0¢ = 2 /. (Qul) T =0¢

for |z| < 1. B
Using the Taylor expansion of the function In(1 — z() we have

21
- gfjky—a (O dgFw(0). (2217)
I¢l=1
Example 2.2.6 Let us take a(z) = 2". Then from (2.2.17) we get

w(z) =

ko
%2_ / k+1 o Cht >n}dC+w(0)

Let w(z) = " wpz® in D. Then we have
k=0

1 7(¢)
= =1,....n—1
Yk ok / Gan d, k=1L...,n-1,
I¢l=1

wk:%<%/z£8d(—wkn), k=mn,....

I¢|=1
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Hence, with ay =

2mi =1
w(z _ % Z VZ . k+un
v=0 =1 [[(k+on)
=0
is the solution if and only if for |z| <1
1 d¢
— S )
omi | 9 (1-20)C
I¢]=1
Example 2.2.7 For a(z) =Z" we have
— 2 7(6)
Z ?<% / chtl d¢ — wk+n> +w(0),
k=1
I¢]=1
i.€e.,
1.1 (<) _
wk_E<2_7'[‘Z / Ck+1d§ wn+k>, k’—l,
I¢1=1
Hence, with ay as before
n n oo v—1
Zwkzk + Z Z u+1 H k + an)wkz“”"
=1 v=1 o=0

oo (u+1)n oo

+ Z Z Z ”+11:[(k+0n)akzk+””

p=0 k=pn+1 v=1 o=1

is the solution for arbitrary wg,wsy, ..., w, if and only if for |z| <1

1 A =
el S o SL

I¢|=1

Remark 2.2.8 An other modification is to reformulate (2.2.16) as a Dirich-
let boundary condition. To this end we solve the equation (2.2.16) with respect
to w normalized by w(zy) = 0 for a fized zo € OD. It can be seen, see |19/
that the solutions is

w(z) = exp{ - /Z @dt} /Zexp { /8 @dt}%‘g)ds, lz| =1, (2.2.18)

20 20 20
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where the integrals are taken along arcs v, C 0D with initial point zo and
end point z; moreover, 7y, is positively oriented with respect to D for all
2 € 0D,z = 2%e¥,0< ¢ <7, and negatively for the remainder part of OD.
Now we proceed in the same way as above: We find an analytic function
in D, satisfying the Dirichlet boundary condition (2.2.16). Using Theorem
2.2.2 we have . ©
w
we) =g [ FELA <1
I¢l=1
under the “if and only if " condition
1 z
om ) YOTTR
I¢l=1

¢ = 0.

Next these boundary value problems will be studied for the inhomogeneous
Cauchy-Riemann equation. Using the T-operator the problems will be reduced
to the ones for analytic functions. Here in the case of the Neumann problem
it will make a difference if the normal derivative on the boundary or only the
effect of 20, on the function is prescribed.

2.3 Boundary value problems for the inhomo-
geneous Cauchy-Riemann equation

The Schwarz, the Dirichlet, the Neumann, the Robin boundary value prob-
lems for the inhomogeneous Cauchy-Riemann equation in the unit disc D =
{z :|2| < 1} are solved in this section. Using the definition and properties of
the Pompeiu operator, the problems are reduced to the homogeneous case, or
which is equivalent, to the boundary value problems for analytic functions.

Theorem 2.3.1 The Schwarz problem for the inhomogeneous Cauchy-Riemann
equation in the unit disc

ws; = f
inD, Rew =7 on 0D, Imw(0) =c for f e L,(D;C),2 <p,ve C(OD;R),
c € R is uniquely solvable by the Cauchy-Schwarz-Pompeiu formula

d
w) = 5r [ NS +ic
I¢]=1

_L/ [f<<>c+z+m1+z5

o et | (2.3.1)

I¢I<1
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The Schwarz kernel function for the disc

¢+z_ 2¢ 1
(—z (—z
is a simple modification of the Cauchy kernel function. Its real part
S S
(=2 (—z

is the Poisson kernel function for discs.
By an inductive proof (2.1.24) is generalized in a nice way, [22].

Theorem 2.3.2 The Dirichlet problem for the inhomogeneous Cauchy-Riemann
equation in the unit disc

=fin D, w=~v on 0D

for f € L,(D;C),2 < p and vy € C(ID; C) is solvable if and only if for |z| <1

1 zd 1 zdéd
o [ 07 =5 [ ro=2 2:32)
I¢l=1 I¢l<1
The solution then is uniquely given by
1 d¢ 1 d&dn
we) =g [ 107 -2 [HOF 23y
[¢]=1 [¢l<1

Representation (2.3.1)) follows from (2.1.9) if the problem is solvable. The
unique solvability is a consequence of Theorem (2.2.2). Applying condition
(2.2.2) to the boundary value of the analytic function w — T'f in D, i.e. to
v —Tf on 0D gives (2.3.2) because of

SRR

IKI=1 g

1 1 :od -1 E
105 [T = [ 5 i

I<| 1q I¢l=1

as is seen from the Cauchy formula.
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Theorem 2.3.3 The Neumann problem for the inhomogeneous Cauchy-Riemann
equation in the unit disc

=fin D, d,w=+ on ID, w(0) =c,

for f € C*(D;C), 0 < a< 1, v€ C(OD;C), c € C is solvable if and only if
for|z| <1

1
o | 19 1—-g zm/f 1—
ici=1 ci=1

1 Zf(¢) _
+ / i Zozdfdn = 0. (2.3.4)

I¢]<1

The unique solution then is

wz)=c— - (V(C)—Cf(C))IOgl—ZC———/C

211
<=1 I¢l<1

(2.3.5)

Proof. The function ¢ = w — T'f satisfies
w:=0in D, 0,p =~ —2IIf —Zf on ID, ¢(0) =c—Tf(0).

As the property of the Il-operator, see [43], guarantee IIf € C%(D;C) for
f € C%(D;C) Theorem (2.2.3) shows

- ~.d

P == T10) = 5 [ (60) = O = () gl — 20T

21
[¢|=1

if and only if

dg
(1—2¢)¢

L o) = crpo) - E£(0))

2
I¢I=1

= 0.

From i
o [ Crog(t =20
[¢]=1
_ ! / fO)-2 / 1oL = 20) ¢ iy =

2
I¢]<1 m\(lzl (¢=¢)
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1 = 1 [ log(l - 2() -
=1 [ 105y [ S =0

I¢]<1 =1
and
1 a1 ; L 1 dg _

27m.§|/1 Hf(C)l_EC— 7]_~/v f(C) / (C C)21_ Cdfdﬁ

= [§5S!

1 . 1 s
= / f(C)acl_—EC’c:EdédC / f(¢ dgd"
Cl<1 i

the result follows.
Theorem 2.3.4 The problem
=finD, zw,=7v on ID, w(0) =c,
is solvable for f € CO‘(]D;(C), 0<a<l, vyeC@OD;C), ceC if and only

1 _dgdn
5 V(C)( / f(C A=z =0.
I¢]=1 |C|<1
The solution is then uniquely given as
1 d d
wz)=c— g [ ¢ los(1 - z< T2 [ o foth @30
v
I¢]=1 |§|<1

A half-Neumann and the Neumann problem for the polyanalytic operator
is investigated together with other boundary value problems in [21], [37].
As an example of a Robin boundary value problem, consisting of a linear
combination of Dirichlet and Neumann boundary conditions a particular case
is investigated in [19].

Theorem 2.3.5 The Robin problem for the inhomogeneous Cauchy-Riemann
equation in the unit disc

ws = f in D, (2.3.7)
w+ d,w =2 on ID (2.3.8)

is uniquely solvable for given f € Li(ID;C) NC(ID;C), v € C(ID;C) if and
only if for all z, |z| < 1,

1 - d¢ 1 ZC
Z{% / Q) =<k e ;/mf(é)dfdn} =0, (2.3.9)

I¢1=1 D
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and the solution s

w() = o [ @0 (o) B g ] | a0
I¢l=1 D

Proof. First observe that in the case of the unit disc the boundary con-
dition (2.3.8) takes the form

w+ zw, +Zws; =y on JID. (2.3.11)
The general solution of (2.3.7) is given by
1 1
=p—— [ —— déd 2.3.12
w=p—1 [ (e (2312)
D
for an analytic function ¢ in the unit disc. Putting the latter and
[ e
w, = z T T N9 5
Y N
D
Wz = f
in (2.3.11), we get
1 ¢ _ -
0+ zp, Z*y—i-; (Z_Ozf(g)dfdn—zf(z) =73, |2|=1, (2.3.13)
D

in the latter summand meaning the boundary values f(z) = Dlaicrgz f(Q).

Using the Theorem about the Robin boundary value problem for analytic
functions, we find the unique ¢ satisfying (2.3.13) if and only if for |z| <1

I
I¢]=1

(2.3.14)

and ¢ is given by the integral

o2) =~ [ 30,
I¢|=1
o) = s [ 1210 -0y B2
[¢]=1



The interior integral in the latter summand is equal to

1 log(l—235) ,_ 1 _ log(1—%s)
"o | G [ M 0

[s|=1

Hence from (2.3.12) we get (2.3.10).
On the other hand from (2.3.14), using the relation
| dc 7
— = eD
omi | (C—s2(1-20) (1—zs 5
I¢|=1

we get (2.3.9). 0.

2.4 Harmonic Green and Neumann functions
and related boundary value problems for
second order equations

Harmonic Green and Neumann functions are classical tools for treating the
Dirichlet and the Neumann boundary value problems for the Poisson equa-
tion. They both arise in a very natural way in modifying the second order
representation (2.1.23)). This formula is unsymmetric. A dual formula is

w(z) = ——— (oL

211 C—Z
oD

we(Q)logl¢ — #Pd + - [we(Qlog ¢ — oPdgdy  (24.)

oD D

 2mi

Combining (2.1.23) and (4.1.1) would give a symmetric representation. But
it would not meet the requirement to lead to solutions to proper boundary
value problems. As a motivation the simplest case of a harmonic function,
l.e. a solution to w,; = 0, is considered in the unit disc.

Lemma 2.4.1 The Dirichlet problem w = 0 on 0D for harmonic functions
in the unit disc D 1s only trivially solvable.

Proof. From w,; = 0 the function w, is seen to be analytic. Integrating
w, shows w = ¢ + ¢ with analytic functions ¢ and ¢ in . Without loss of
generality ¥(0) = 0 may be assumed. From the boundary condition ¢ = —1
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on 0D follows. This is a Dirichlet problem for ¢. By Theorem 2.3.2 it is

solvable if and only if
1 —— Zd(
oD

= v 2m/¢ 0(z) - 90) = 0(3).

27 -z
oD

Hence ¢ and thus ¢ vanishes in ID), i.e. so does w.

This proof does not require any maximum principle. The lemma shows
that the Dirichlet problem for the Poisson equation w,; = f is uniquely given.
Hence, the terms in (2.1.23) and (4.1.1) with first order derivatives have to
be avoided in order to get a representation formula related to the Dirichlet
problem. This is done in the particular case of the unit disc. On the basis of
the Gauss theorem

| L
we(Q)loglC — P = 5 [ we(¢)log 1 ~ 2GPdC =

2mi
oD oD
1 ~ 1
= —— [ wee(¢)log |1 — 2(*d€dn + — [ we(Q) ——=d&dn
7TD/ 7TD/ 1 C
and
1 1 zw(() 1 zw(()
* Juctor=pacin =1 [ o (72 ) dean = 5 [ i
D D oD
Inserting this into (2.1.23) gives
1 ¢ ¢ d¢
)= 5 [0 (5 22 1) €
oD
=12
2 [ utcytog| 22 e 242
D
The function .
Gi(2,0) = log |

is twice the Green function for the unit disc. It is harmonic in both variables
with a characteristic logarithmic singularity for z = ( and vanishes for one
variable on the boundary. As the Poisson kernel appears in the boundary
integral (4.1.2) leads to solutions of the Dirichlet problem.
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Theorem 2.4.2 The Dirichlet problem for the Poisson equation in the unit
disc

w=finD, o=~ on D, f € L,(D;C), v € C(D;C),

s uniquely solvable. The solution is

w)= o 100 (Eo+ 2= 1) £ -1 [ 106 asan

(=2 (—=z
(2.4.3)

To modify (2.1.9) with respect to the Neumann boundary condition again
the Gauss theorem is stressed.

o [ weletoglc = 2Pdc = o [Lue(€)log1 - 2CPdc -
oD oD
1 - 1
L [ uwcctoytoshn — scaean— % [ o [wo) | dean -
D D
1 _ L2 L 2w(() =
. / weg(O) log 1 - =C[*dn + 5 / -
_ d
- [ we©og it = stpagan - o w0 2%
D oD

Combining this with (2.1.9) shows

1 d 1 - d
w(®) = 5 [ 0OF = o [ (€l + CucO)og g — PG+
oD oD

4 [ud@os (¢ - 2)(1 - 20Pdan (24.4)

Here the normal derivative of w appears in the second term and

Ni(z,¢) = —log (¢ — 2)(1 = 2()[*

is twice the negative Neumann function of the unit disc. As the Green func-
tion it is harmonic in both variables as long as z ¢ ¢ with the characteristic

33



logarithmic singularity. Its normal derivative on the boundary is for, say,
zeD

o S € ¢ «$
(COc + COz) N1 (2,¢) = C—z+1—2<“ c—z+1—z§_ 2.

The normalization condition is

1 d¢ 1 _,d¢
— [ Nz0% = —= [10g)1 — (22 =0,
e

271 ¢
oD

Theorem 2.4.3 The boundary value problem for the Poisson equation in the
unit disc
wzézf imn ]Da w =", Wy =71 0N aID7

for f € L,(D;C),2 <p, 7)o, 11 € C(ID;C) is uniquely solvable if and only
if

1 dc 1 _
5 [ WO+ g [ (@ oa(1 - 20
I¢]=1 I¢1=1
=~ [ 5181~ Q) (2.4.5)
I¢l<1
and B i ~ ded
Z _z Ui
[ ot =2 [ o (2.46)
[¢|=1 I¢l<1
The solution then is
1 dc 1 _
we) =g [ WO - g [ w(Qloa(t D¢
[¢]=1 [¢]=1
1 9 B
o [ FQoglc ~ o ~log1 - s)dgan. (247
[¢l<1

Proof. The system
w,=w, ws=fin D, w=r, w="2 on ID

is uniquely solvable if and only if

z ac =z d&dn
" omi 70(01—4_%/”(01—4’

I¢I=1 I¢]<1




z a¢c =z d&dn
o [ o= =2 [ 1o

<=1 [¢l<1
The solution then is

wie) =50 [ w0 -1 [ w0 E

z ™
I¢]=1

_Z’
cI<1
1 a1 d&dn
w(z)—% 71(C)€_Z_;/f<og_z
¢l=1

I¢I<1
Inserting w into the first condition gives

1 dedn 1 1 dedn .
s J K[l 00—

1—2C 2mi %(O;
I¢l<1
1 ~ 1 d&dn ~
_ — _ —d€d
”m[l / @”K[l C-oa—-0%

with

1 zdédn = 1 = dC
_- ~ — — —loo(1 — -
Zl[l G /

z log(1 — z¢) d¢
:—10g<1—2<)+%/0g1(1_—§§<)?<-
I¢|=1

= —log(1 — zE)
Combining the two integral representations for w and w leads to (4.1.6) as
1 déd 1 ~ 1 ded >
m ¢—=z o T ) (=0 —72)
I¢1<1 ICl=1

I<1<1

1 ~ 1 d&dn .
L1 O L — T
wmé d (OwK[l C—oC=a""

1 dédn S,
- —_  ~_ :l -
”<|</1 Coac—g el

where
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N d
log | — 2 — / 1og<1—z<><%<~
[¢]=1

. d¢
2 ). =225

— log|¢ — 2[2 — log(1 — 20).
Remark 2.4.4 In a similar way the problem
sz:f mn ]Da W =", Wz =71 0N oD

with f € Li(D;C), v, 71 € C(OD;C), can be solved.
Integral representations may not always be used to solve related boundary
value problems as was done in the case of the Dirichlet problem with the

formula B
1
wE) =5 [ () (sz+cfz_1) -
ci=1
1 1— 2
- / wee(¢) log T’f dédn
ci<1

If w is a solution to the Poisson equation w,; = f in D satisfying O,w = v
on 0D and being normalized by

L[ wo% =

211
[¢|=1

for proper f and v then it may be presented as

we) == 5 [ 2ol — P F
I¢l=1
o [ HQoglic = 21~ 0P dgan (2.48)

I¢]<1

But this formula although providing always a solution to w,> = f does not for
all v satisfy the respective boundary behavior. Such a behavior is also known
from the Cauchy integral.
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Theorem 2.4.5 The Neumann problem for the Poisson equation in the unit
disc

_ _ 1 ¢ _
w,; = f in D, O,w =y on ID, 57 / w(() c =c, (2.4.9)
I¢I=1

for f € Li(D;C), v € C(0D;C), c € C is solvable if only if

L W(O%:; / £(C)dedn. (2.4.10)

21
I¢|=1 I¢]<1

The unique solution is then given by (2.4.8).

Proof. As the Neumann function is a fundamental solution to the Laplace
operator and the boundary integral is a harmonic function, (2.4.8) provides
a solution to the Poisson equation. For checking the boundary behavior the
first order derivatives have to be considered. They are

we) =g [0 2 [ 10 (2 ) dedn

I¢]=1 ¢I<1

1 1 ¢
- (C_ZO—;/f(O(CTZ+1_Z€>d5dn,

_ b ¢ PANLS
) '<|17(O(C_Z+CTZ Q)C

1 z Z 1 1
- 2 — — — - — déd
+7r/f“>{ (—: T 1-% 1—z<} s
I¢1=1
For |z| = 1 this is using the property of the Poisson kernel

o) =) =5 [ AOF 4= [ Qe

271
I¢|=1 I¢l=1
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Therefore 9,w = 7 on |z| = 1if and only if condition (2.4.9) holds. At last the
normalization condition has to be verified. It follows from |( — z| = |1 — 2(|
for |z| =1 and

1 ~odz 1 ~.dz
[ rogl = 202 = [ 1og(1 — 20 E—
~ / gl —(PL = / o1~ ()

|2|=1 |z[=1

dz
— = leg(1—20)% — 0.
o | sl =20)— =0

|z|=1
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Chapter 3

Boundary value problems for the
tri-harmonic complex partial
differential operator in the unit
disc

In order to treat boundary value problems for second order complex partial
differential equations special kernel functions have to be constructed. The
most important among them are Green and Neumann functions. All of them
are certain fundamental solutions to the Laplace operator. The Green and
Neumann functions are used to solve the Dirichlet, Neumann boundary value
problems for the Poisson equation via corresponding integral representation
formulas for solutions.

3.1 Cauchy - Pompeiu representation formulas

Definition 3.1.1 The function G(z,() = (1\2)G1(z, () with

2

L-=C C2.CeD, 24, (3.1.1)

G1(2,¢) = log

is called Green function of the Laplace operator for the unit disc.

Remark 3.1.2 The Green function has the following properties. For any
fixred ¢ € D as a function of z

(1) G(z,(Q) is harmonic in D\{C},

(2) G(z,¢) + log|C — 2| is harmonic in D,

(3) lziir%G(z, ¢) =0 for all t € OD,
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(4) G(z2,¢) = G((,2) for 2, €D, z # (.

Not any domain in the complex plane has a Green function. The existence
of the Green function for a given domain D C C can be proved in the
case when the Dirichlet problem for harmonic functions is solvable for D
(see,e.g.[7]) For the unit disc the following result is shown.

Theorem 3.1.3 Any w € C*(D;C) N CY(D;C) can be represented as

1 ¢ ¢ g 1 i
we) =5 [ w0 (Fs+2=-1) T3 [ w0 Qdedn
I¢|=1 I¢I<1 (3.1.2)

where G1(z, () is defined in (3.1.1).

Formulas (2.1.19) and (2.4.1) are both unsymmetric. Adding both gives
some symmetric formula which is for the unit disc

we) = [ 00 (Fo v ==) T

4 (—z (—2z2/) ¢
I¢]=1
1 _ d
o [ (o) + Cuo toglc - 2
I¢1=1
o [ weOosl¢ - 2Pdedn (313)
I¢]<1

Motivated by the procedure before, the Gauss Theorems are applied in a
symmetric way to

= [ wlortoglc - +Pdgay

I<I<1

:% / {aC[wf(C)lOg“—Z§|2]—I—ag[wC(C)log\l—zEP]

I¢]<1
z z
v [wO =z | + 2 [wior =] faean
1 - d
— i [ w0+ Cu g e - 2PF
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41
[¢l=1

1 ZC 2 | d¢
Tami w(o{l—zcﬂ—zc}?

1 - d
— i [ 108l = #Plguwclc) + Cuce)

¢/=1

1 z z d¢

Ym | O [g— = z] T
=

Here are two possibilities. At first the second term in (3.1.3) can be elimi-
nated giving

we) = 5 [ w0 (

21

¢ ¢ d¢ 1 .
I¢l=1 I¢l<1

- |
z

ded
C &dn,

ie. (2.1.19).
Theorem 3.1.4 Any function w € C*(D;C) N C*(D;C) can be represented
by

w(z) = L / w(()9eGh(z, ¢)dC — % / 0:0:w(¢)Gh(2,C)dedn  (3.1.4)

211
oD D

Proof. Let z € D and € > 0 be so small that D.(z) C D,
De(z) ={¢€C:|( - 2| <e}

Let us denote D, = D\ D.(z) and consider

/ 00w (C) Gy (2, ¢)dédn =

=~ [ {0 0:(Q)G2,0) - ()06 (2.} did

De

¢ [w(f)afGl(Z,C)] (C)acacGl }dfdn
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= L 100w (2 Ode +w(Q)9:Ga (=, ¢)dl]

271
oD,

4o [ w0806 (=, C)dean
D.

Introducing polar coordinates ¢ = z + g€ leads to

w(()9:G1 (2, )d¢ =
j¢—l==

2

—it
:z’/w(2+5eit) { == —— +1|dt

1 — 2(z 4+ ee™#)
0

It tends to 2miw(z) as € — 0.
Using this formula and polar coordinates gives

dew(Q)G(z,¢)d¢ =
[C—2l=e

= i/@gw(z +ee’)ee [log|1 — 2(2 + ee™)|* — log |ee” |*] dt

which tends to zero as € — 0. Hence

lim — /&acw Q)G1(z,¢)dedn = —/ 0)9:G4 (2, ¢)d¢ — w(z)

e—0 77
De

This proves (3.1.4).
Definition 3.1.5 The function N(z,() = (1/2)Ny(z,() with
Ni(z,¢) = —log|(¢ = 2)(1 = 2Q)*, 2,( €D, 2z #¢, (3.1.5)

15 called Neumann function of the Laplace operator for the unit disc.

Remark 3.1.6 The Neumann function, sometimes [34] also called Green
function of second kind or second Green function, has the properties

(1) N(z,() is harmonic in z € D\{(},
2) N(2,¢)+log|¢ — z| is harmonic in z € D for any ¢ € D,
3) O ( ()=—-2forz€ 0D, (€D,
4) N(z.0) = (C, z) for z,( €D, z #C.
)

0% _
f: g 0.

AAAA

5

“’\
—_
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For convenience sometimes some factors are introduced here. Both func-
tions are related to the fundamental solution of the Laplacian. While the
Green function vanishes on the boundary, i.e. for z € 9D, ( € D, the Neu-
mann function satisfies

8y, N1 (2,C) = (20. + 0-)N (2,¢) = —2.

Basic for a representation formula in terms of the Laplacian is

wte) = g [ {28 vr0g1c = sPuctoac b1 [ 1ogic-sPecocucidedn
oD D

see [7, 9, 20]. By symmetrization this becomes

w(z) = ﬁ/{(g E P CC%Z) w(¢) —log |¢ — z|28,,<w(g)} %

- / log ¢ — 2|20, 0zw(C)dedn.

D
Adding
1 _
;/IOg 11— ZC’Qagagw(C)dfdn
D
1 _ _
=50 / {0 [log |1 = 2(?0cw(¢)] + O¢ [log |1 — 2(*Opw(()]
D

—0¢ [(09z1og |1 — 2(?) w(C)] — O [0clog |1 — 2¢Pw(()] +

+20;0¢ (log |1 — 2{|*) w(¢) } dédn

RN L Vo)
_4m/{log|1 zC|23ycw(C)+ (1—ZC+1—ZC) w(()} c

oD

leads to ] d¢
w(2) = 5= [ {wl0) ~loglc - 2Po,w()} T
oD

- / log (¢ — 2)(1 — 20) "0 dzw()dedn.

D
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This representation can be written as

1
41

/{31/(]\[1(2,010(() —Nl(z,g)aygw(o %_

w(z) = —

_ %/Nl(z,g)acagw(g)dgdn. (3.1.6)

D

Theorem 3.1.7 Any w € C?*(D;C) N CY(D;C) can be represented as

1 d¢ 1 d¢
we) = g [ WOF -5 / () log|¢ — =22
<=1 I¢]=1
-2 / wee Q)N (=, ) dedn. (3.1.7)
I¢l<1
This formula can also be written as
1 d¢
UJ(Z) = _m [w(C)8V<N1<Z? C) - 8,,w(C)N1(z, C)]?
I¢]=1
- [ wdNe dean. (318
I¢l<1

Here the normal derivative appears in the second term while a new kernel
function arises in the area integral. Formula (3.1.8) is (3.1.6). A second
proof is given for (3.1.8).

Proof. Let z € D and € > 0 be so small that K.(z) C D,

K. (z)={CeC:|¢(—2| <e}.

We denote D. = D\ K.(z) and consider

~ [ Mt Qadcudedn -
D

= %/ [0z [0cw(C)N1 (2, ¢)] + O [0:w(¢)N1(z,¢)] —

D,
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—0cw(C)0eN1(2, ¢) — Oew(¢) I Ni(2, )| d&dn =

_ 4% / Ni(2,) [cw(¢)d¢ — dzw(C)dC] —
0D

1

271'
De

[0¢ [w(€)0eNi(2, Q)] + O [w(¢) e Ni(2, )]

—23485]\71 (2, Ow(o} d&dn =

- fm/ Ni(2,¢) [Ocw(€)dC — dgw(¢)dC] —

47rz / Ni(z 8¢w dC—@gw(C)dﬂ —
|¢—z|=¢

1
47

w(C) [0 N1 (2, Q)d¢ — DNy (2, ¢)dC] =

0D,

dg

/N1 .0) (€O +05) w(O) 2~

_L' / Ni(2,0) [(g — z)we + (¢ — Z)wé(o]

47
[¢—2|=¢

1
4—/ ) (€8¢ + COz) Ni(2,¢) CC
oD

L (€= 2)0Ni(2,0) + = 20N (2,0)| w()

4
[¢—2]

dg
(-2

This gives formula (3.1.7), letting e tend to zero, by the same arguments as
have been used in the proof of Theorem 3.1.4.

Integral representation formula (3.1.7) is used to solve the Neumann prob-
lem for the Poisson equation, see Theorem 2.4.5
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3.2 A tri-harmonic Green function for the unit
disc

A tri-harmonic Green function is constructed in an explicit way for the unit

disc of the complex plane by convoluting the harmonic with a bi-harmonic

Green function. With this Green function an integral representation formula

is developed for the try-harmonic operator. The Green function is the tool
to solve the Dirichlet problem for the Poisson equation

0,0;w = f in D,w =+ on 0D,

where f € L,(D;C), 2 < p, v € C(0D;C). The solution is unique and given
by

w(z) =~ [ 0:G1(5 00 (Odsc — - [ Gule.OFQdean, (32

where 0, denotes the outward normal derivative and s¢ the arc length pa-

1
rameter on 0D with respect to the variable (. The kernel —55«@(;1(2’ () is
the Poisson kernel. In case of the unit disk D =D = {|z| < 1} it is

1 1
= = -1
as in that case .
1—-=2

Despite of it’s singularity G1(z, () can be inserted instead of f(z) in the area
integral in (3.2.1). Denoting

@@oz—lfawba@@%% (3.2.2)

™
D

and comparing this with formula (3.2.1) obviously @g(~, () is the solution to
the Dirichlet problem
8,0Ga(2,¢) = G1(2,¢) in D, Ga(z,¢) =0 on 8D
for any ¢ € D. That (3.2.2) in fact is the solution to this problem can be
shown by considering
1 x 2N F e\ gF s
1 [ G 00:0,Ga(C. )t

™
D.
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where D, = {5 eD: g < \5‘ —(l,e2 < |§ — z|} for small enough, positive
e = (e1,€2). Applying the Gauss theorem and letting the €’s tend to zero
then (3.2.2) follows.

Evaluating (3.2.2) for D = D shows

2

Ga(=,C) = I — #I* log | ==
+ (1= 121%) (1= [¢P) Fog(lzg %) 1og(12<— ZO} (3.2.3)

This biharmonic Green function differs from |3} 4, 6, [7, 8]

2

AL ). (324

Ga(2.0) = I¢ — 2 log | 5

which is also a biharmonic Green function but not a primitive of G1(z,()
with respect to the Laplasian 0,0;. Both these functions satisfy

e they are biharmonic in z € D\{(} for any ¢ € D,

e adding |¢ — z|*log|¢ — z|* produces a biharmonic function in z € D for
any ¢ € D,

e they are symmetric in z and ( for z # (.

__ However their boundary behaviors differ. While
Go(2,¢) =0, 0,0zGo(z,() =0 for z € 0D, € D

instead
Go(2,¢) =0, 0y, Ga(z,¢) =0 for z € D, € D
hold. From
~ 1 ~ - . -
Galzr¢) =~ [ [log]C — 2P 1og ¢ = ¢~ 10g | — 2Phu(C.0)
D

log ¢ — ¢[*h1(2, Q) + hu(2, )i (C, €) | dédiy

it is seen that
Ga(2,¢) = —[¢ — 2P log | — 2[* + ha(z.¢)

with a biharmonic ho(z,¢). This follows because —log|¢ — 2|? is a funda-
mental solution to the Laplace operator 0,0; and

0,0:|¢C — z|2 [log |¢ — z|2 — 2} =log|¢ — z|2.
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Hence, 62(2, () is a smooth function, moreover it is obviously symmetric.
Let

. 1. 4 1 N Z o
(2. 0) = 300 Galz.0) = = [ Gl Om(C. )
D
For D = D the g5 is explicitly given as

{loga —20)  log(1— ()
_ + —
18 ZC
see [17]. Proceeding with @g(z, () as before with G(z, () leads to

g2(2,0) = (1= |2 +1},

@3(7570 = —E/G1(Z7C)é2(5a C)dédﬁ

T
D

For the unit disc it is

|

Gl ) = |g—z|41g\< T ha(=,0).

Applying the Gauss theorems in complex form for a regular domain D and
a continuously differentiable function w repeatedly leads to

1/(8485)3@0(0@3(2,00556577 - %/{85 [8?342111({)@3(2,0] _

™
D D

3000 Gz, ) = 5 [ 0202 O0Gal,
oD
- / (002020(C)2, Gl )) — 202(Q),0 G210} déely =

= 5= / dz0%w (€)9eGs(2,¢)dC + = / 202w O)Ga(z, () dédn =

= o [ 00 w(Q0cGs(, ) + 5 / (= Q)+
oD oD
e, Q1 — w(0),
0(2) = 5 [ [ 00(0) + dale, Qi = 0Bl 02 Pul0)] T
oD
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-2 / G (2, Q)00 w(C)dédn, (3.2.5)

D

and similarly

= [ @:00°w(OGu(z den = - [{00R02(0)Gatz,0))-

™
D

~020%w(C)0, G2, ) e = — 5 / 00w (C) B2, C)dC—
_—/{ 8:0)*w ¢)Gs(z,¢)}dedn =

o / 2RO Cs( G + - [(@0070(0) (e, e,

so that
1 . -~ 2 g
w= 5o [0z 0w(Q) + ol Ouge(€) = Oz (@0 w( Q)] -
-+ [ Gale. 0@ w()dean (3.2.6)
From (3.2.5) and (3.2.6) follows
w(z) = g [0 Qw(0) + e, Oue()-
oD
(€0, + 0Bz, (00w T — © / G (2 (00 w(C e

Then using the Cauchy-Pompeiu formula

1 a1 dedn
w2) = 55 [ w0722 =1 [ucOF
D

oD

results in a representation formula. So, we have
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Lemma 3.2.1 Any w € C*(D; C) N C%(D; C) is representable by

1 d
w(z) = % /[91<Z7 C)w(C) + §2<z7 C)wﬁf(g) + g?)(zv C)wCCCC(g)]?C—
oD
(3.2.7)
1 [ ~
1 [ a0 ol dgan
D
where, see [17]
1 L
91(2,C)—1_25+1_2< ’
(:10) = (1= [22) | 2 log(1 = 20) + 2 logl1 = 20+ 1]
93(2,Q) = (1= |2) [ % (O + (O +1] -
k=2
. |Z|4 Lz; o ((OF + (204 +% :

_ 1 / Gi (2, O)Ca(E, O)dédi.

This representation provides the solution to the Dirichlet problem.

Theorem 3.2.2 The Dirichlet problem for the inhomogeneous tri-harmonic
equation

(0.0:)*w = f in D,
W =", Wz =71, Wzzzz="72 0N oD
is uniquely solvable for f € L,(D;C), 2 < p, v, 1, 72 € C(0D;C) by

o 1912 0(0) + 822, O (O + (2 ()] df

oD

1
2m

w(z) =

[ Gl (et

D

20



The tri-harmonic function has the properties
o(i3(2,¢) 1is tri-harmonic for z € D\{(}

|

oGia(z.6) = 716 = 2l log |- | +ha(z.) = FIC=21'Ga(=0)+ (2. ),

where hs3(z, () is tri-harmonic for z € D, ( € D
0Giy(2,) = 0, 2.0:G5(2,() = Ga(2.) = 0,
(0.0:)%G3(2,¢) = G1(2.¢) =0 for 2 €D, (€D

.§3(27C) = 63<C7Z>7 z,¢eD, z 7A C.

From these properties follow
— 1 1 - Zﬁ
hafz,0) = Ga(2,¢) = 716 =l log |-

0.0:h5(2,C) = (1~ [CB)(IC — =+ 1~ [¢P?),

=0 for z€0D, (€D

1 1 1 1

0.0:a(2,0) = 1K) | 7=z + 1=z | 5 0-KPF | = + oz
This function can be found by the next result, see [10].
Theorem 3.2.3 The Dirichlet-2 problem
(0.0:)*w = f in D, w=", Wz =" on OD
is uniquely solvable for f € L,(D;C), 2 <p, 7,72 € C(0D;C) b

2;/[91( ,O(C) + g2(2, O)2(Q)] dCC

w(z) =

oD
- / G2, )F (). (328)

Here
/Glzcgl O)dédiy =

D
B log(1 = 2¢) | log(1 — 2¢)
—<1—|z\2>[ T

+1

s satisfying

0.0:02(2,C) = g1(2,C) for 2, €D, §2(2,0) =0 for z € ID,( € D.
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In order to find the tri-harmonic function hs(z,() use Theorem3.2.3.
Then the solution will be found in the form

ha(z,C) = 5— /{91 Ohs(C,€) + gal= C)@gafhg(é,g)}%_

1 / Ga(2, €)(0:05)hs (¢, () dEdi] —

1 a¢ | 1 $
= o [0 O 0 f+2ﬂ [ vt D025 .0

oD oD

2 [ Bute oy aca =

D

1 log(1—2¢)  log(1 — z() 1 5
ey [CEY [ e 1] -1 [ - P
oD

o 1 1
|C|]——;/G2(z {) [(1_|C|)<1_§§+1—5C>+

D

1 1 1 .
Z(1— |C]?)? _ _ dédi,
2 KD <<1—C€)2 " (1—5C)2)] o

1 :
37 [ 912 OO =0

oD
because h3(z,() =0 for z € D, € D.

where

So, we solve the boundary integral

log(1 — 2 log(1 — 2
% {(1 _ ’2‘2) [ g<1 _ g) g(lc C) 1] %
oD ZC ®

g0 1) P 1 i)} & =

l\DI»—t
J\,m

(L= 1[2) (1= 1¢P) (¢ +20) — (1= [2) (1=1[¢).

»-lkll—‘
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In the next step, we are solving the area integral
1 1
——/G2 RIS QL -
1-¢C 1-¢¢

1 212 1 1 I
+§(1 - |C| ) ((1 ~ 55)2 + (1 —E<)2>] dgdn

In order to evaluate this integral, it is divided into two integrals:

1-—%]]{@2(45) [(1— <) ( S )] dédi =

1-C¢C 1-¢
= 5= k=) { (g5 ~ ¢ ) st~ 200+

1 1 1
(e~ ) st =20 e+
1= =P =16 3 5 GO + (201):

1 ~ 1 1 -
_ — _ dédn =
S [ e ((1—<<> AT )] o
1 A o2 [log(l —2¢)  log(1l — 2() 1
— {1 | ) -

CI S 2t
_%(1 _ |Z’2) (1- ’<’2)2 FOg(l _ () i log(1 — ZO} .

2C zC

1 [~ - 1 1
—_ GQZ, - 2 ~— =
R o[(l |§|)<1_<<+1—CC>+

1 1 -
— = dédn =
(1— ¢l <( —<<)2+(1—5C)2>] §diy
1 4 o 2 1 _i o _27
~5 =0 =10 { (g~ ) st - 20+
1 1 1
+<<z<) o) os1 =0+ e o f +

A= P - 1K) S o [0 + (505 +
k=1

Hence

N)I»—t

k2
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L e e [log(1— 20) | log(1 - 20) 17
=N 'C'){ CNESE +z< zc}

_(1 . |Z|2) (1 . |<‘2)2 [log(lzg ZC) + 10g<12g 2C):|

Hence, we get

hs(z,¢) = (1—\Z| )1 = [¢) (¢ + 2¢) = (1= ) (1 = [¢]*)—

~5 =0 -1 { (g~ ) st - 200+

! ((zi)? 14) og(1 =)+ 2 + 14}

HL= 1P~ 16D Y 5 [0 + (205 +
k=1

Ly (1 o2 [loal = 2Q)  log(1 — 2() 1]
=D 'g'){ E R e ZJ
1 2 e [log(1—2¢) | log(l — ()
~5L= ) (1= 1¢p)? [FEE 2 e E)

Simplifying this expression, we get

s(2,€) = 31— o)1 = [CP) (= + 2 — 4)-

1 . log(1 — 2() , log(1 — 2() :
(=== { 2 T e X zc zc}
1 2 ) 2 o [log(1 — ZE) log(1 — 2¢)
+5 (1= [z = [CF) (= + [C] >{ < T = }

HO= )1 - 1) Y 7 [0 + (20
k=1

1 4 L 112)2 log(1 — 2¢) _ log(l — 2() -
+4—1(1_|Z| ) (1—1[¢?) { (20)? * (z¢)2 +ZC ZC}

o4



! > 22 [log(l — 2¢) | log(1 — %)
~5= ) (1= 1¢p)? [FEE 2 e R

Thus, we receive the following result

=2
Gy(2,€) = 71— =I*log | 2|+ ha(z,¢) =

4 ¢ —

= 110 = 2l'Ca(2, Q)+ 71— )1~ G + 5 — 4)-

iy [0 020 1
4(1 |2[F) (1 = [¢]%) [ (20)2 + (z2¢)? " 25+ EJ i
1 2 2 2 2y [log(1 — Z@ log(1 — 2()
3L )= PP + oy [PEE 228  EE 220

o0 1 3 B ~ B
(1= )= 1P Y 5 [0+ (201
k=1
So, by iteration, using the solution to the Dirichlet problem for harmonic
and bi-harmonic functions we received the solution to the Dirichlet problem
for the tri-harmonic equation in form the (3.2.7).

3.3 A tri-harmonic Neumann function for the
unit disc

While the Green function for the Laplacian of the unit disc is given as

1—252

(—z

G1(z,¢) = log

)

the Neumann function is

Ni(z,¢) = —log (¢ — 2)(1 = 2.

Both functions are related to the fundamental solution of the Laplacian.
While the Green function vanishes on the boundary, i.e. for z € 9D, ( € D,
the Neumann function satisfies

0. N1(2,¢) = (20, + 205) N1 (2, () = —2.

Neumann boundary conditions are given via outer normal derivatives 0,. For
the unit disc this is

0, = 20, + z05.
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Typical for Neumann problems is that they are in general not well-posed.
They are neither always solvable nor uniquely solvable. As well solvability
conditions have to be determined as normalization conditions to be posed.
The bi-harmonic Neumann function has the form, see [25, 26]

_NQ(Z,C) = ‘C — ZP [log ’(C )(1 _ ZC +4Z ZE

2[25*‘5<]10g|1—-zéP-—<1-+|zF><1-%|<F>{10g‘1i'2<>.%10g<1—-z<>}

ZC zG
and satisfies the Neumann problem

0,0:No(2,¢) = Ni(z,¢) in D for fixed ¢ € D,
0,.Na(2,¢() = 2(1 —|¢[*) on OD for fixed ¢ €D,

and the normalization condition

1 dz
— [N — =0
27TZ/ Q(ZaC) P

oD

Moreover, Ny is symmetric in z and ¢, No(z,() = Na((, 2).
Theorem 3.3.1 The Neumann problem
(0,0:)*w = f in D, d,w =, 0,0,0:w =y on ID,
1

¢ 1 i @_
i / w(C)?—CO, %/wgg(g)c =0

I¢]=1 I¢]=1

for f € L,(D,C), 2 < p, v,71 € C(OD;C), co,c1 € C is uniquely solvable if
and only if

and

I¢l=1 I<I<1
The solution is given as

dg

W%%%FMM+—/WMMMHMMM@C

I¢]=1
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- [ Meos@gn (331)

I¢l<1

Definition 3.3.2 The Neumann-3 function for the unit disc D s

Ny(2,¢) = —1¢ — 2l*Iog (¢ — 2)(1 = 20)P + ma(=,0),

Where ng(z, () is tri-harmonic in both variables with proper boundary behav-
tor. The properties of the third Neumann function are

0:0:N3(z,¢) = Na(z,¢) in D\{C} for ¢ €D,

0,N3(2,¢) = —3 (1~ () ~ 5,No(z,C) on 0D for C €D,
where
. No(2,¢) = 2(1 = [¢[*) on OD for ¢ € D,
so that
0. Mu(,0) = = [0 - PP + (L= k).

[ M0Z =0 for ceD,

271
|z|=1

N3(z,() = N3((,2) for z, €D.

It is important that the normal derivative of N3(z, () with respect to z
does depend on ¢ but not on z. In order to find N5(z,() in a proper way
some particular Neumann problems are investigated.

Calculating

ma(z,€) = Ny(2,C) + 21¢ — 2l log (¢ — 2)(1 — 20

0.15(2,¢) = D:Ns(2, ) = (¢ = 2)(C= 2)log (¢ = 2)(1 = =0)*~

1 1 ¢

0:0:m3(2,¢) = Na(z,¢) + [ — 2[*log (¢ — 2)(1 — 2C)” + 2|¢ — 2*~

1 L !
_§|C—z|2(1 —[¢?) (1 e 1 —zc) ’
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(9.0:)na(2,¢) = 6 — (1~ |C]) (1 _lzg 1 —lzc) B

1 oo [ 1 1
501 (= o).

for |z| =1 then

Oums(2,¢) = —5 (1= [P = (1= [¢)+
310 = 222 = 20 = ) og (¢ — 2)(1 — 2O + 51¢ — 21,

0,0.0:n3(2,¢) = 4(2—2( —20) +2(2 — 2( — 2¢) log |1 — z{|> — (1 = [¢]*)+

. 2 o - zC — ¢
51— 22— 2~ 2) - <1—|<|>( i 24)

follows.
Next the first solvability conditions of Theorem 3.3.2 is verified.

2
G / dunz(z =201 — p / (1= [2[*)0.0:n3(2, ¢)dxdy

|z|=1 |z|<1

At the beginning consider the left-hand side

d 1 1
o [ o 0% = oL [ {-ja-1ePr- -
|z|=1 |z|=1

C p d
F3lC = 22— 2T — 20)log (¢ — 2)(1 — 2P + 51¢ - z|4} B

z

S (L= G2 = (1= ) +3ICP + SICH +3ICP7 + 311+ 1+l + [l =

= 10[¢* + I¢* = 1.
Also to solve the right-side of the condition, namely:

2,2 / (1= |2[2)0.0en5(z, O)dady

where
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—orr | a0+ I = 2P log (¢ — (1 - 0P
<=1

2 1 2 2 1 1 dz
T T I <1—|<|>{ _Z§+1_ZC}};—

= 4| + 2+ 2/¢* - ( I¢*) = ﬂ—%d)—7KV+1

and solving separately:

|z|<1

_E e _ 2 1 1
=2 [a-ienfo-a-1P (2t ox)
|z]<1
1 1 1
—5 (L= IePY <<1 R T s z<‘>2) } drdy =
6 21— |¢P) — (1— [¢P)? = 3+ dic* — ¢]*
it follows that

20, — / (1~ [2)(0:0:)ns (=, C)dédn = 10[¢* + [¢[* — 1

I¢1<1

We have proved the validity of the first condition:
10[¢)* + [¢[* =1 =10[¢)* + |¢[* — 1

In the next step we verify the second solvability condition of Theorem

3.3.2:
2

/ 0,0,0:n3(z, c) - / (0,0:)*n3(z, ¢)dxdy.

|z]=1 |z|<1

The left-hand side is

QL/@@@ng(z ()—

27?2

= / {4(2—25—20 +2(2 - 2( — 20) log |1 — 2> — (1 — |[¢]P)+

|z[=1
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1 - N
+§(1_|§|2)(2—z(—5C)—(1—’C’Q)(1_i§+1_;§>}5:

=8+ 4¢]* = (1= [¢]*)* = (L= [¢I) @ = [¢]*) = 6+ 8[¢]* — 2{¢|*.

Then evaluating the right-hand side of the condition shows

% / (0:0:)"ns(z, ()dxdy =
I¢I<1
2 ! :
== / {6—(1—|C|2> (1_Z<+ 1—ZC> B
¢I<1

1 1
501~ (= + i) f o -
= 121 [P 21— ) = 844G~ 2 41— 21T = 6+ 8IcP 21

Hence the second conditions is satisfied, i.e.

6+ 8|¢]* —2/¢]" = 6+ 8|¢|* — 2¢|*

In order to find the solution of Theorem 3.3.2, we also must calculate

1 d
COZ% nd(Z,C)?C:
I¢l=1
= d
5 &%“O+2K—*b@@—du—4W}f

I¢]=1

3
Evaluating this integral shows ¢y = 2|¢|? — 5](]4.

Thus we have verified all the necessary and sufficient conditions of solv-
ability of Theorem 3.3.2.
According to Theorem 3.3.2 the function n3(z, () is given as

ma(z 0 =+ (=[P — o [ { Mz Dan(C O+

47y
I¢l=1
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+N2(2C)888n3§°§ ?C__/NQZC O)dédi =

I<l<1

=20 = Siglt+ (1= P+ 1+ g [ { (sl - 201 - 2071)

I¢l=1

« (%(1 PP+ %!C — (P2 = ¢C— C)log (¢ — )1 — SO+

raic-a) s L [ {16~ oo €~ 51— D - s

C 4
I¢|=1
+o00 Nk ANk _ B _ _ =
a3 B R ;(’ZO +2(2C + 20) log |1 — ¢ — (1 + 1) (L + [¢ ) [_1og<125 ),
k=2
1 — 3 = . = .
+%<OD (42 - &= CO) +2(2 = {C = Otog 1 = &2 = (1 = |¢A)+

1 12 L FE e A2 ¢C 1—<:§ d_?_
51— )2 - - 8o - ‘4”(1_« 1_§<)>}§

+§/{(15—z\2[logr<é’ - +4ZZ<,€#+

I¢I<1

+2(2C + 20) log [1 — 2> = (1 + =) (1 + [¢[) [M—F
z

log(l—zC) e 1 LY
A=) - -k (g )

1 22 1 1 E a5
—51=1¢P) <(1—ZC>2 + (1_5@2» }dfdn.

3.4 Tri-harmonic hybrid Green-Neumann func-
tions for the unit disc

Convolution of the biharmonic Green and the harmonic Neumann functions
leads to a hybrid tri-harmonic Green function, also harmonic Green and the
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biharmonic Neumann functions lead to a hybrid tri-harmonic Neumann func-
tion. Related boundary conditions are of Dirichlet-Neumann and Neumann-
Dirichlet type. On the basis of the biharmonic Green function given by
Almansi [6] two dual Dirichlet problems and a Dirichlet-Neumann problem
arise.

Biharmonic Green and Neumann functions can be easily attained by convo-
lution of the harmonic ones, see [14] 26, 27].

Definition 3.4.1 Let for z,( € D, z # (,

Hy(2,() = —~ / G (2, OV (G, O)dCdi

™
D

This function s called a hybrid biharmonic Green function.

This hybrid biharmonic Green function is seen to be the solution to the
Neumann problem

8C86H2(27<) = Gl(zag) in D, 8V§H2<27C> = 2(1 - |Z|2)7

1 d
%/Hz(%f)?c = 0.
oD

That the solvability condition (2.4.10) to this problem holds follows from
(2.4.3) applied to the function 1 — |z|?* in D.
The characterizing properties of this function are
0(0.0;)?Hy(2,() =0 for z € D\(¢),( €D
0(0.0:)% [Hy(2,() + |¢ — 2|?log |¢ — 2]?] = 0 for 2, €D
eHy(2,() =0, 0,,0.0:Hs(2,{) = =2 for z € ID,( € D
©(0.0:)*Hy(2,() =0 for ( € D\(2),2z €D
(9c07)* [Ha(2,¢) +[¢ — 2*log | — 2[*] = 0 for 2, €D
00, Hy(z,¢) = 2(1 — |2[*), 9:0zH2(2,¢) =0 for ¢ € OD,z € D.
Evaluating the integrals shows

Hy(z,¢) = —|¢ — 2*log ¢ — 2]~
log(1 — 2{) + L ;CZC log(1—2¢)| —

C=50-20

1—2C
¢

—(L=12?) |4+

NSRS g1~ =)

For the bi-Laplace operator there exist several different kinds of Green func-
tions as there are more possibilities to prescribe the boundary behavior.
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Hybrid Green-NNeumann function
Similarly, for arbitrary domains

GiNi(210) = —1 [ Gi(a ON(C.
D

satisfies for ( € D
0.0:G1N1(z,() = Ni(z,() for z € D, G1Ny(2,{) =0 for z € 9D,

and hence for any ( € D. o
(G Ni(z, () is biharmonic in D\{(} and continuously differentiable on D\{(},
oG 1Ny (z,() + |¢ — 2|?log |¢ — 2|? is biharmonic in z in the neighborhood of

G,

oG Nyi(2,¢) =0, 0,.0.0:G1N1(2,() = —o(s) for z = z(s) € OD.
Obviously, G1N1(z,() is not symmetric in z and (. As a function of ( it
satisfies for any z € D besides the Poisson equation and Neumann boundary

condition
3g3¢G1N1( ,¢) = Gi(z,¢) for (€D,

9y G1N1(z,¢) = / (z,C)dédn for ¢ =((s) € dD,
D

the conditions
e ¢ G;Ni(z,() is biharmonic in D\{z} and continuously differentiable on

D\{z},
e e G Ni(2,¢) +|¢ — z|*log|¢ — z|? is bi-harmonic in ¢ in the neighborhood
of z,

©0 9, GiNi(2,() = fG O)dédn,

D
ooagacGlNl( C)—OfrC C()E@D
[ N ] E f G1N1 Z7C)d‘9( = 0.

If N1G1<Z C __le z C Gl(C C)dgdna
then the symmetry of G1(z,¢) and Ny(z,() gives
NlGl(Zug) = GINI(Z7C) for Z,C S D,Z 7é C

Some of the boundary value problems for the biharmonic operator can be
decomposed into a system of two problems for the Laplace operator. They
can be solved by iterating proper samples of formulas (2.5.4) and (2.5.3).
Another method is to use partial integration for evaluating the area integral
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over the product of the bi-Laplasian applied to the unknown function w
and the respective kernel function. The simplest way for proving the result
below is by verification. However, for the uniqueness of the solutions and the
necessity parts if any some extra argumentation is needed, see [15].

Theorem 3.4.2 The Dirichlet-Neumann problem
(0.0:)°w = f in D, w=ry, Ow.: =13 on D,

1 ( )dz

Cy = — [ wys(z)—

7 o z
oD

is uniquely solvable for f € L,(D;C), 2 < p, v3 € C(ID;C), ¢ € C if and

only if ' i© 2
o | 9T =2 [ F0can
D

271
oD

The solution is

w(®) = (2 = Dea + o= [ . OO+

1 d 1
b [ Haln OulOF = 2 [ a0 )dsan.
oD D

For a proof, see [11].
Theorem 3.4.3 The Neumann-Dirichlet problem
(0.0:)*w = f in D, O,w =, w.s =7 on OD,

1 ()dz

o= — | w(z)—

0 271 z
oD

is uniquely solvable for f € L,(D;C), 2 < p, 71,72 € C(ID), ¢y € C if and

only if
o [ @)+ 2200 G = 2 [ 100 - ¢ )dgan.

27
oD

The solution is

d
w) =t o [ MEOOF - o [ 600 Halc.9)-
oD oD
1 [ 1O R g
D



For a proof, see [11].
Definition 3.4.4 Let for z,( € D, z # (,
1 [ o o
Hy(:,¢) = =1 [ Gal O Q)

D
This function is called a hybrid tri-harmonic Green function.

This hybrid tri-harmonic Green function is seen to be the solution to the
Dirichlet problem

0.0:Hs(z, () = ——fG1 2, C)N1(¢, Q)dédij = Ha(z, (),
Hy(z,¢) =0 for z E oD.

Moreover,

ga 8 ;2[“[3% g 3 8 HQ(Z C) Hl(Z,C),

aCaCH?)( ’C> GQ( 7<)7

(648§>2H3(Z’ C) = Gl(Z> C)?

(00 Hal=,C) = 0.

The characterizing properties of this function on the boundary are
0H;3(2,{) =0 for z€ 0D, €D
00.0:H3(2,() =0 for z€ 9D, €D
00, (0,05)?Hs3(2,¢) = 0,.N1(z,¢) for z € ID,( €D

0, Hy(.C) ——lfGQ (2, )y N1 (C, C)déds =
:—ng ()dédq for ¢ € OD, z €D

oagacﬂg( 2,0) = Ga(2,() =0 for (€D, 2€D
(0c0¢)?H3(2,¢) = G1(2,() =0 for (€ ID, z€D
Obviously, Hs(z,() # H3((, 2) is not symmetric in z and (.

Theorem 3.4.5 The Dirichlet-Neumann problem
(0.0:)°w = f in D, w=ry, 0,0:w=r1, 0, (8282)2w =, on OD,

1 . de
5 (0.02) w(C)?
[¢]=1

for f € L,(D;C), 2 < p, v,7,7 € C(OD;C), ¢; € C is uniquely solvable if

d only 1
and only if X 0“2 >
o [ 2OF =2 [ Hdcan
D

oD

:Cl
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The solution is given as

w(z) = 271m /%(g)gl(z C)%—F %/ 1(€)g2(z, C)?C_
oD
__/72 ngg__—/f ) Hy (=, )dédn

Proof.
Decomposing the Dirichlet-2 problem and Neumann problem into the system

(0.0:)*w =w in D, w ="y, 9.0;w =, on ID,

having the solution

1 - d 1 ~
w(2) = 5z [0 (2.0 + (@Bl Y E ~ - [ wlOBalz agan
oD D
and the Neumann problem
0,0:w = f in D, O,w = 7y, QL/ —cl on 0D,
oD

with the solvability condition

1 i 2
o [ 2% =2 [ #@aan
D

oD
and the solution
1 ~ )
O =ert g [2OMEOT - 1 [ HONME Qdéd
oD D

Inserting w into the solution of the Dirichlet-2 problem,we get

w( /{’70 )91(2, ) +71(¢)ga(2, C)}— - (%/@2(2700550577) -

D

d¢
47”/ /Gz 2,O)N(C, C)dfdﬁ?
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Ga(z, Q)N ((, ¢)dedndEdiy =

+
3|~
—
=
Oz
S|
O —

where

~ [ Gate e = (1~ PP + 50 1aP)

D

Definition 3.4.6 Let for 2, € D, z # (,
:——/N2 QG (C.0)dédi

This function s also a hybrid tri-harmonic Green function.

The properties are

0,0:Hs(2,¢) = ——fN1 2,0)G1(C, Q)dedii = Hy(C, 2)

(0:0:)*Hs(2,¢) = Gl(%()
(0.0:)*H3(2,() = 0

00 H (=, &) = Na(2,0)
(0c0¢)*Hs(z, ) = Ni(2, ()
(0c0¢)* H3(2,¢) =0

0u.Tio(2.C) = == [ 0,82, )G (€. )it
d,.0,0:Hs(z,¢) = ——faule 2,0)G1((, Q)dédn for z € dD,C € D
(0.0:)2Hs(2,¢) = Gl(Z,Q 0 for z€ 90D, €D

3(~,C)—O for z € 0D, € D
(;z () = 0, Na(2,() for z€ 0D,( € D

3
8C8~)2 3( 7C) - al/gNl(ZJC) for C S (9D,z €D

Theorem 3.4.7 The Dirichlet-Neumann problem

(8Z82)3w =finD, w=r, 0,0.0:w =", 0,.(0.0:)*w =, on ID,

dz 1 9 dz
50 /8 Ozw( = C1, ﬁ/(azaf) w(z)? =C

oD
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is uniquely solvable for f € L,(D;C), 2 < p, 70,71,72 € C(OD;C), ¢1,c2 € C

by
1 2
(1-257)
2

b1 [ MOROT + 1= [ OG0T ~ - [ 1Oz dan

oD oD D

Proof.
Rewriting the problem as the system

dc |

w(z) = —c1(1—|2]°) + ¢ :

+ o [ 008Gz 0 F+

oD

w,; =w in D, w=" on JID,

(0,0:)’w = f in D, Ow =", 90,0,05w =", on D

satisfying i "
1 1
i W(C)? = (1, %/%c(o? = C2,
oD oD
and ) ac 5
o %@fcﬂ@——/u—m><mwm
o
i | /f )dedn
and combining its solutlons
1 d 1
02) = 5 [ 0uGa(:0wOF — 1 [ GOt
oD D
and
wfz) = 1&!&%—/{ O+ }%—§/m

w() = <1vn@ﬂ—/hwxom@+m¢Cw }——j/%CC
oD

Will prove the result.
Inserting w into the solution of the Dirichlet problem gives
ac 1

w) = 5 [ 0,61 0T = % [ (= (1= [EPhea
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/ (NGO + Mo(c, }——— / Mo, 0)f dédn) (2, C)dédn,

where .
» [ it grdgan =1 s
D
2
L[t otean = (1= g1 -]
D
then
maz—qa—VW+@(u—54W—§)+§;/ ()06 ) G+

e 3 +$/w ———/f &) sz, O)dedn
oD

oD

Theorem 3.4.8 The Neumann-Dirichlet problem
(0.0:)> = f in D, 0,,w="1, 0,,0.0:w =3, (0.0:)*w =3 on D,

1 dz 1 dz
prf Ry O
oD

oD

is uniquely solvable for f € L,(D;C), 2 < p, y1,7%2,73 € C(OD;C), ¢1,c2 € C
if and only of

1 d
o [1OF +5m [ (0% =200+ 1 /f (200 5l¢P) - 5 ) ded

oD oD

1 1 2 [,
o [ 2OF =50 [T -2 [a-Psdsan

oD oD D
w(2) = e — (L= [2P)es + 7 / (M= Om(Q) + Moz, Cna(€)—
0, @ 1 / Hy (=€) f(¢)dedn
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Proof.
The problem is equivalent to the system

(0.0:)*w =w in D, d,w =1, 0,0.0:w =y, on ID

1 ac 1 a4
o [ 00T =a 5 [T =ea

oD oD

satisfying

and
=fin D, w="3 on JD

Its solutions

w(z:——/(?,,cGlszyg ———/GlzC ¢)d&dn
:——/ ———/Glccaaw@)dfdn
and
w(2) = = (L= [2P)ea = 1 [ (OO + (e (O} -
oD

_%/NQ(z,c)w(C)dfdn

Inserting w into in the solution of the biharmonic Neumann problem

w(2) = = (L= sP)ea + 7 [ (M= OO + Nale, el O) -

= N2<z,c>( = / 0,.C1(C. cm(o%—% / G1<<,5>f<5>dédﬁ) dd

D
shows

w(z) = e = (1= |2P)e + 1 / (N2 OmlQ) + Na(e, Y+

¢
/aH3 ———/f &) Hy(z, $)dedn
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3.5 Boundary value problems for tri-harmonic
differential equation

Theorem 3.5.1 The tri-harmonic Dirichlet problem
(0,0:)*w = f in D, w=ry, 0,0;w="y, (0,0:)*w =, on OD.

is uniquely solvable for f € L,(D;C), 2 <p, v,M,72 € C(0D;C) by

w2) = 51 [ 1031 O(0) + 8l OM(Q) + il el -
oD
-2 [ a0 1(<dean (351)

Here

3

Ga(z0) = / G (2, O (G, O)dEdi
D

=(1- 2% [i% (O + O +1] -
k=9

-2t | 1 . 1
— 2|Z| [Z k(k " 1) ((Zc)kfl + (Ec)kfl) + 5
k=2
is satisfying, see [18]

i 1 . 1 )
8z3593(z, C) = —58%@856‘3(2,@“) = _58’/CG2<Z’C> = 92(2,4‘) fO’I“ Z?C c ]D,
93(2,() =0 for z € 0D, ¢ € D.

Proof.
Decompose the problem into the system

00w =w in D, w=ry on ID,

(0,0:)’w=f in D, w="1, W,z =Y on ID,

This system has the unique solution

w(z) = 5 [ (e o ———/G1z< )dédi

oD
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O =5 [ (0C0M(©O +2:6.070) F -+ [ G Qs s

oD D

Inserting w into the formula for w gives (3.5.1).
As go, g3 and G3 vanish for |z| = 1 from the behavior of the Poisson formula

lim w(z) = 70(C)

z—(

follows for |(| = 1. Applying the Laplace operator it is seen that

wasl) = 5 [ {0 Om(O) + 3l (O} T
oD
1 [ Gale (e

Analogue as before
lim w,z(2) = 71(¢)

z—(
follows and from

Womr(2) = —— / g1(2, Oa()

271

d 1
?4 . / G (2 Q) f(C)dedn

oD D
lim szzZ(Z) = WQ(C)

z—(

Moreover, finally (0.0:)>w = f is seen from the properties of Gj.
Theorem 3.5.2 The tri-harmonic Neumann problem
(0,0:)w=f inD, feL,(D;C), 2<p< +o0,

d,w =y, 0,0.0:w = 8,,(8Z82)2w =5 on ID, v,71,72 € C(ID;C),

satisfying
1 d 1 d 1 d
i w(g)?g = ¢y, i / 8¢8§w(g)?€ = ¢y, 5 / (a{az)%u(ozc — ¢
I¢]=1 [¢]=1 I¢l=1
s uniquely solvable if and only if
1 d 1 d 1
o [ 00% =2 [T [ (=2 - 3) sicasan
oD oD D
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1 dc 2
— [ n(Q—= —01—262—— (1= [¢[*)f(¢)dedn
and . i o
o [ 20T =2 [ 1(0dedn
oD D

The solution is given as

w(e) = c-ea(1-laP) = (30 = 12+ 50 1) )+ g [ (Nl Gra()+
oD

+M@£MK%H%®OW(}———/f N3z, €)dédn

Proof.
Rewriting the Neumann-3 problem as the system

(0.0:)*w =w in D, d,w =y, 0,0.0:w =, on ID,

d d
o [ WOF a5 000 =
oD

2mi ¢ ¢
oD
and
: 1 dg
0.0:w=f in D, d,w =", on ID, —,/w(()— =y
2mi ¢
oD
leads to the solvability conditions
1 ¢ 2 e
o [ OF =20 =2 [a- P @52
o D
and ) i© 2
o [ OF == [t (353)
oD D

The solution then is

w(2) == (L= sP)er+ 1 [ DoOM(:0) + mONal 0} T

oD
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— = [Nz ey (3.5.4)

1 . ~d¢ 1 o
QO =e+ o [2OMEOF -1 [ M@OnQaidd
oD D
Inserting w into the (3.5.2) condition gives

d 1 1 - - dC
% 70(()%201;/(142){024‘@/%(0]\6((7 )?C_
oD D oD

1 / N1<c,5>f<5>d§dﬁ} dedn

™
D

with
1 1

: 1 I
L[ iepmic ddean = 5 (1- 31k - ¢
D

Then inserting w into (3.5.4) shows
, 1 1
w(z) =co— (1 —|z[7)er — e p Na(z,¢)ddn | + A {10(O)Ni(z, O+
D oD

d 1 . . d
N5 ONE — e [ 0lOF [ NGO Nali e +
oD D

i [ 1O [ M€ Nt dgandé
D D

So,we get

1

wle) = a-aa(1-laP)-cr (30 = B2+ 50 1) )+ o [ (Ml Gt
oD

+ N, O(Q) + (e, a0} G = = [ FONa(e. Qogn
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Chapter 4

Boundary value problems for
higher order complex partial
differential equations in the unit
disc

4.1 Boundary value problems for the inhomo-
geneous polyanalytic equation

In this section we present how to proceed and what kind of boundary con-
ditions can be posed. However, there is a variety of boundary conditions
possible. All kinds of combinations of the three kinds, Schwarz, Dirichlet,
Neumann conditions can be posed. As a simple example the Schwarz prob-
lem will be studied for the inhomogeneous polyanalytic equation, see [23].
Another possibility is the Neumann problem for the inhomogeneous polyhar-
monic equation, see [25], [26], and the Dirichlet problem, see [12].

Lemma 4.1.1 For |z| <1, |{| <1 and k € Ny

%H(i a4 -2 = %(z + z)kH—
1 1¢+¢ 11+ ——
- (_ - _~> (C — 2+ C — 2)Fdedn. (4.1.1)
W|<|[1 (¢—¢ C1-¢C
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Proof. The function w(¢) = i(C — z 4+ ¢ — 2)"*'/(k + 1) satisfies the
Schwarz condition

B 5 _ N (_l)k—H
w:(¢) = i(C—24+C —2)* in D, Rew(¢) =0 on OD, Imw(0) = 1

; (Z+2)k+1,

so that according to [13],

s (e i 1¢+¢ 114CC —
w(() =1 ) (Z+Z)k+l—% / (ZC ¢ Tz §5> (C—2+C¢ — 2)*dgdn

I¢l<1

This is (4.1.1).

Corollary 4.1.2 For|z| <1 and k € Ny

1 11 —
o (Z_Z) ((—z+C—2)'dédn =0 (4.1.2)
¢l<1
and
1 1¢+2z 11+42C - (=M -~
%/(ZC—Z_El—zC>(<_2+£_z)kd§dn_ k+1 (242

¢I<1

(4.1.3)

_ Proof. (4.1.2) and (4.1.3) are particular cases of (4.1.1) for ¢ =0 and
( = z, respectively.

Theorem 4.1.3 The Schwarz problem for the inhomogeneous polyanalytic
equation in the unit disc.

02 =f in D, Re 0 =7, on D, Imd?w(0) =0, 0<v<n-—1,
s uniquely solvable for
feLl,(D;C),2<p, v CODR), ¢, e R, 0<v<n-—1.

The solution is

we) =iX v+ b [0 - T

—Z

I

—1)" FO¢C+z  FO1+2 -t
27r((n—)1)!/<(<)<—2+ %)1_ZC_>(C_Z+€_Z) e

I¢I<1

(4.1.4)

76



Proof. For n = 1 formula (4.1.4)) is just [13], (4.1.1). Assuming it holds
for n — 1 rather than for n the Schwarz problem is rewritten as the system

02 'w=w in D, Re 0w =, on ID, Im dw(0) =c,, 0 <v <n-—2,

w;=fin D, Rew="2,-1 on dD, Im w(0) = ¢,_1,

having the solution

(=n" W@+ w(@Q1+2C
+27r(n—2)! / ( * —z(

1 /(f(C><+z+m1+ZE>d€dn

2m ¢ (=2 ¢ 1-x
[¢l<1
Using
N (S I R (O B -
2m(n —2)! / ( -z ¢ 1—z§>(4_2+<_2) “dédn
I¢|<1

. Cp—1 . (_1)n_1
RO AR = | / eald)

¢l=1

) (an m>"—2d5dn%§

% =

i (—¢¢C—2 [ _¢Cl-2C

(=" f(©)
+27r(n—2)! / ¢

[4ES!

L1 <§+q<+z 1+¢C11+2(
ci<1

N <§+C1§+z+mll+z§

L T2 s
o E—CCC—Z 1—CC~C1—ZC)<C z 4 ¢ — z)"“dEdnd&dn

7



I¢l<1

1o (1eicre CHCii+K)
X”T/T<r—@<<—z+ztzgyﬁg>@ 2+ (= 2)" dgdndédi

[4S!
follows. Because ~ . _
C+C1(+z+1+CC11+zC

(—¢CC—%z 1-¢(Cl—2C

__5+z 11 C+ 2z f_z 11
B 25—2((— C_Z)+2§—Z<1—C~C 1_ZC) C+6

_ (+e 1C+§_11+C~5_1C+2+11+2C_ B
§ (¢—¢ C1-¢C (¢-z ¢1-2C

and similarly

1+¢C1¢+z, CHCLltaC
- CC—=  ocli-x

(e ) (E-0-(F 1 =)

2l ) (e
= = -+ = — :+_
1—20\C—2%2 1-( 1—-¢¢C ¢
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_ 1+ l§+5_11+§§_1(+z+l1+z§ 11
1—20\¢¢—¢ S1-¢ ¢C—2 (l=2¢) (¢ ¢
and applying (4.1.1), (4.1.2), and (4.1.3)

N S I I R S S e W —
27T/<C~_CC<_Z+1—<<~C1—ZC>(C 2+ (¢ —2)"""d&dn

L Ged [ (e R i ) g
<C<—5 (1-¢C CC_Z+<1—2C)(C z+( — 2)""dédn

S IR e T o T e
g—z[m(C_ZJFC_Z) Bl G ) M e wel G kD) 1}
:gizni1<g_z+5—z)"l,

1 CHC1¢+z 14811+ 2C),  ——
2n (5—C((—Z+1—C§~Cl—z§>(c 2 Cmz) e

I¢I<1

:_1+z5i/ (1@_11—&‘_1<+z+11_25

> - > Z > . — n—Qdd
e ) T Ging e <1—z<>“ e
_1+Z§:° R o () o1, (=D \n—
—1_25{n_1(g—z+g—z) - n—1 (42 + n—1 (+2) 1}
1421 s
_1—zgn—1(c_z+c_z) E
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then

e A (ST B (O S W =
zw(n—2)!/<gg—z+ 1 Z¢>(C +(—2)"  dgdn

I¢l<1 ‘ -
- ~ -1 n—1 -
— it A b g [ OF - s TR
=1
—1)" FO 14 2C S—
+27T((n _) 1! / <f(go g - i * f(go 1 - ig) (= 24— 2)"dedn.
<1

This proves formula (4.1.4).

Theorem 4.1.4 The Dirichlet problem for the inhomogeneous poly-analytic
equation in the unit disc

0 =f D, 0=7, on D, 0<v<n-—1,

is uniquely solvable for f € L,(D;C), 2 <p, v, € C(OD;R), 0 <v <n-—1,
if and only iof for0 <v <n-—1

z Ao WO (=2
2mi /(_” 1A—zg (A=)

[y

n—

d¢

g)
I¢]=1

U [ SO e s

T

14

_l_

I¢I<1

The solution then is

w<z>:u—o 5 R S
- ci=1
(=" fQ (==
+ = e (4.1.6)
ci<1

Proof. For n = 1 condition (4.1.5) coincides with (2.3.2) and (4.1.6) is
(2.3.3). Assuming Theorem 4.1.4 is provided for n — 1 rather than for n
the problem is decomposed into the system

O Mw=win D, O%w="+, on D, 0 <v<n—2,
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O:w=f in D, O:w =",_1 on ID,
with the solvability conditions (4.1.5) for 0 < v < n — 2 and w instead of f

together with
z dfdn
P Tn— 1 - f =
2mi zC 1 -z
I¢l=1 |<|<1

and the solutions (4.1.6) for n — 1 instead of n and w instead of f where

d dd
o) = g [ a7 /f i

i
<=1 |C|<1

Then for0<v <n-—2

L[ w(Q) ((=2)">
;/1—2<(n—2—y)!d§dn
I¢l<1
1 . o
o | @l — L [ rOC 2)aan
I¢|=1 [4ES!
where S
S 1 (C—2)r>  dedn
l6o2) = 7T|C[1 (n—2-)(1-20)¢—¢
D 1 C=2'r  d&
(n—1—u)(1—20) 27Ti‘<|_1 (n—1-v)I(1-2¢)¢-¢
(i

(= 1-n)l(1-20)
The last equality holds because

O N (S (e R W O (S Gt
/ “

2mi ) (1-20)(C-¢) ~  2m ) ((=2)(1-¢2)
¢l=1 ¢l=1
S S I ()
o 2mi (1—(z) dc =0.
cl=1
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Thusfor 0 <pv <n-—2

))\V

Au% () (=
Z27rz/ 1—2( (A —=v)! %

- I¢l=1

+

(-1 [ C2 = e

T 1-2( (n—2-v)!
I<I<1

_ z Lo (C—=
_Z% (-1 1—2 (A—v)!

(=D)""z fQ C—2
R 1—2§(n—1—y)!d§dn_0’
I¢I<1

This is (4.1.5). For showing (4.1.6)) similarly
| =T
el R e e e

7T n— 2)!(C — z)
I¢l<1
2Lm Tn— 1(C)¢n 1(€ dc—— / f ¢n 1(( )dng],
¢l=1 I¢l<1
with . (5 - _l / (m)n 2 dedn
o " e (n=2HC=2)¢—¢
— ! (C—2)~? 1 1 e — (gj)?—l
Wmll (n=2)HC - )(< - ) N =)

B 1 (S N () i W (S
omi(n — DI — 2) / ( ¢ - C—z ) (n— DI - 2)

I¢]=1
_z>n—1( 1 __1 _)dc: (C— 2"

1
+27rz'(n—1)!(gt—z) / « 1-¢C 1—-2¢ 3 (n—11¢ - 2)

I¢|=1
Hence, w(z) is equal to

= (-1 [ w2, (~)! w(() (=22
Z / — d¢ + . /< dedn

— 2 7 n—2) (-z
- ¢I=1 ¢l<1
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B Y L (oY (S P o Y A (O (S
_; 2mi |<|[1 vl (—=z dé + m CIZI n—1)! (-2 dgdn,

ie. (4.1.6) is valid.

4.2 Polyharmonic Green and Neumann func-
tions

As the Green function is used to modify the representation (2.1.9) and
(2.1.10) a polyharmonic Green function serves for altering (2.1.24). Such
a function is explicitly known [6] for the unit disc. For D it is [6], [12]

1 ¢
(1= DGl ¢) =1 = 2" Vlog | =2 | +
n—1 (_1)V
+ 3 e e -y, 2
v=1
while for the upper half plane H [35]
é— 2
(1= DPGo(2,0) = ¢ — 2 D1og | <=2
n—1 1
S o2(n—1-v) 3\ a4
+ Z ~|¢ — 4] (2= 2)"(¢ = 0" (4.2.2)

Introducing G, into the representation (2.1.24) leads to

we) =5 [ { [gmz,o Y (i \z\?)“] w0

oD v=1
n—1

+3 S, 01 — |2 (¢

[%] n—1 v—2u 1 (Vf,ufif)\)
+ “;

2 2 2 ()

z d
9 [gAH<z, O+ Aﬁ} (1 Py oLotnc)



g ettt

-+ [ Gz oaoru(ean (123)
D

where for v € N
1 1

M=y !

This representation formula corresponds to the Dirichlet problem

(0.0:)"w=f in D, (0,0:)"w =", on dD, 0 <2u<n-—1,
oL w =4, on OD, 0<2u<n—2. (4.2.4)
A dual problem is
(0.0:)"w=f in D, (0,0:)"w =", on dD, 0 <2u<n-—1,
OMt9w =4, on ID, 0 < 2u<n-—2. (4.2.5)
and a combination of both
(0.0:)"w=f in D, (0,05)"w =", on dD, 0 <2u<n-—1,
(0, + 0:)(0,0:)" =4, on D, 0 <2u<n-—2. (4.2.6)
Another Dirichlet problem
(0,0:)"w = f in D, (20, + 20;)’w =", on D, 0 <v<n-—1. (4.2.7)

The Dirichlet problem related to the representation (4.2.1) is treated in [27]
and in the case of the upper half plane H in [35]. For the case of the unit
disc the result it as follows.

Theorem 4.2.1 The unique solution to the Dirichlet problem (4.2.6) for
[ € Li(D;C), v, € C"2(D;C), 4, € C"172(D;C) in the distributional
sense s given as

1 d¢
w(z) = 2m/{lg1zc+z (=P WO

oD
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v=1
. ["51} n—1 v—2u 1 (V—M:}—)\)
n=1 v=2u A\=0 M|( + 1)' ( :—1)
z d
e 4 A | = 1P
. [5}—1 n—1 v—2u 1 (sz:if)\)
p=1 v=2p A=0 H (M+ 1)' (uil)
% ga(5, (1 — [2)"3,(C dg——/ S OfOdedy.  (428)

D

Besides these Dirichlet problems there is another Dirichlet problem for the
polyharmonic operator arising from iterating the Dirichlet problem for the
Laplacian. It is

(0,0:)"w = f in D, (0,0:)"w =", on D, 0 <v<n-—1. (4.2.9)

As in the preceding problem here are again n boundary conditions posed. This
problem s equivalent to the system

0,0:w =w,1 in D, w,=7,1 on D, 0 <v<n-—1,

with wy = w, wyy, = f. Hence it is unconditionally and uniquely solvable.
Composing the solutions to these Dirichlet problems to the Poisson equations
gives the unique solution for the polyharmonic equation. It is

ZQW /% 1 ¢)d¢ — —/G ¢)dédn,  (4.2.10)

where for 2 < v

@@o:—i/QA@Ow@oﬁw

™
D

with the Poisson kernel




and

él/(z7 C) = _%/éu—l(zﬂ 5)G1(57 C)dédﬁ
D

with the harmonic Green function G1(z,¢) = G1(z, ().
The higher order Poisson kernels g,(z, () are investigated in the thesis [33]
Theorem 4.2.2 The Dirichlet problem
(0,0:)"w = f in D, (0,0:)"w="-, on D, 0 <v<n-—1
s uniquely solvable in the weak sense for
feL,(D;C),2<p, v,€CO0D;C), 0<v<n-—1.

The solution is given by (4.2.10).

Neither the higher order Green functions G, iterated convolutions of the
Green function Gy, nor the convolutions of the Poisson kernel with these
higher order Green functions are calculated in general. The first ones are

(14, [17]

Go(2,¢) = I¢ — =/log C‘Zj
- P - 1) [—loga ~20)+ g1 - zo}
Ga,0) = (1— =) {7510g<1-— 0+ 2 log( —-zc>+1]

Other Dirichlet problems can be posed by combining the conditions in (4.2.4),
(4.2.5), (4.2.77). The larger n is the more Dirichlet problems can be formu-
lated and hence, the related polyharmonic Green functions exist.

Iterating the harmonic Neumann function Ni(z,() in the same way leads
to higher order (polyharmonic) Neumann functions

:——/M” OM(C, ¢)déd

It has the properties
0.0:Nu(2,0) = N 1(2,€) in D,

ﬁ(’(? - 1)t
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pt?
0y.Nyi1(z,¢) on OD

(n=Dln—1—wE2p—n+1" "

=
|
w[3

1 dz
— [ N, (z,0)=
271 (Z O z

oD

for 2 <n, v €D, and thus solves itself a Neumann problem. It also satisfies

the higher order Neumann problem

=0

(0.0:)" Ny (2,¢) = Ni(2,¢) in D,

2
0y Nn(2,¢) = - /Nng(z,C)dxdy on 0D, 1<oc<n-—1,

D

1

a Nn )

omi (2,07
oD

for 2 < n and arbitrary ¢ € D. Using Theorem 2.4.5 a generalization of
this result follows inductively.

d
dz _

Theorem 4.2.3 Any w € C**(D; C) N C?"~1(D; C) can be represented by

w2) = =3 1 [N 2. 002w 0
r=0 G
¢

This representation formula supplies a solution to the related higher order
Neumann problem under some solvability conditions.

N (208,00 w(()} 2~ L / N (2, €)@ w(C)ddy

Theorem 4.2.4 The Neumann-n problem
(0.0:)"=f in D, feL,(D;C) for 2<p<+o0,
0,(0,0:)° =7, on ID, ~, € C(ID;C) for 0 <o <n-—1,

satisfying

L (8@4)”11}(()% =Cyy, o €EC for 0<o<n-—1,

271
oD
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15 solvable if and only if 0 <o <n—1

L Z Qp—oCpy — _/8VZN7LU(Z7C)f(C)d£d?7 (4211)

21
oD p=oc+1 D

Here oy =2 and for 3 <k <n

12

_ M
Mt = Z[:k] e S e S A (42.12)
F=l2

The solution is unique and given by

— 1 d 1
w(z) = {p =1 [ Nz OO f} > [ Ntz 0r(dean

pn=0

" 0 (4.2.13)

where with 0,, = 20, + 20; and ( € ID
1
pu(z) = —EﬁycNu(Z, ¢) for 1<pu<n and z€D

Only Ny(z, Q) is explicitly calculated so far [25]. It is for D

~No(2,¢) = [ — 2 [log| (¢ — 2)(1 — 20 +4Z =

+2 [2C + 2] log |1 — 2CJ* — (1 + [2[*)(1 + [¢])

{log(l — 2() N log(1 — ZC)}
2 zZ¢ '
For N3(z,(), see [38].
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Appendix

Cauchy problem for a class of
elliptic systems of third order in
the plane with Fuchsian
differential operator

The solutions of a class of complex partial differential equations of third order
in the plane with a Fuchs type differential operator are constructed in explicit
form and the Cauchy problem with prescribed growth at infinity is solved in
unbounded angular domains within specified function classes, see [31].

Let 0 < <2m,G={2=re¥:0<r<oo, 0<¢p <y} Consider in
G the equation

PV 0%V ov —
_3 _9 _ o v

8f1(p)z 75 4f2(p)2 22 2f3(80)25 + fal@)V = fs(p)r”, (A1)

v > 0 is a real parameter, f;(¢) € C[0, p1], (I =1,2,3,4,5), fi(p) # 0;

o 1[0 .0 orvV 0 [oFV
5 " 2 <0_+a_y) FEaRrT (—a> (k=23).
Equation (A.1) is investigated for fi(p) = 0, fa(e) = const # 0, f3(¢) =

const # 0 in [1, 2]and for fo(p) = fa(e) =0, f3 = const # 0 in [5].
To find the solutions of equation these operators are used in polar coordinates

o (o 0

0z 2 \or rop)’
PP w P 1 10 u0

or2  rdrdp r20p: ror r20p)’

022 4
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& _ew(y % & 3 &  i&
0z 8 \Ord3  ror2de  r20920r  r30p3
3 3_2 9 0? 6 02 30 8 8)

rort 2 ordp | 130g%  r2or | Pop

Equation (A.1) is rewritten in the form

O3V O3V O3V O3V
3 ; 2 g —+
Hle)r or3 Sifile)r or20p 3f1(('0>r87"8g02 ihig) 03

+ () = 350D g + (21al) = ()i o

0*V ov

+(6/1() — fz(@))a—@2 +Bh(p) = falo) + filp))r— -+

+ (A.2)

L(8A1(0) — 2fa(0) + h(w))% LAV = falo)r

The solutions of equation (A.2) are searched for in the Sobolev class [43]

W, (G), (A.3)

p

Where1<p<3_%, ifv<3dandp>1,if v > 3.
One can, that the function

Vi(r, ») =1r"Y(p) (A.4)

represents a solution of equation (A.2) from class (A.3), if ¥(p) € C3[0, ¢
is satisfying the equation

V" + ar ()" + as(@)y + az(©)Y = as(p) — as(@)V, (A.5)
where
- 6f1(¢) — falp) — 3Vf1(90)2~
a1(90) B fl(SO) ’
_v(9fi(w) = 2fa(0)) = 3v(v — 1) fi(w) = 8f1() +2f2(0) — f3(e)
a2(¢) B f1(90> ’
() = v(v — 1) (v =2)file) +v(v = 1)(falp) = 3f1(¥)) + 3f1() = falp) + f3(p) .
as 80) = z,
f1(%0>
f5(0) _ fuly),
“WO=5wh ® = )



Let 0(p) = {1(p), ¥a(@), ¥3(¢)} be a fundamental system of solutions of
the homogeneous equation

"+ ar ()" + az ()Y + as(p)h =0 (A.6)

Using the general solution of this equation in the form

Y(p) = c11(p) + caba(p) + es3(p),

where ¢, (I = 1,2,3) are arbitrary constants, by applying the method of
variation of constants equation (A.5) becomes the integral equation

V(p) = (BY) (@) + cJo(p) + Golw), (A7)
where
Ji(9) = {J1k(9), ax(®); Jax()}s Jiolp) = Yi(p),
J20(p) = Va(w), Jz0(p) = P3(p), c = {c1, e, 3},

® ®

(B)(0) = / b, TV B(T)dr, Goli) = / g(p,7)dr,

b(e,7) = as(1) - v(e,7), gle,7) = as(7) - (e, 7),

1 !/ /
(e, 7) = A 0) ((a(T)5(T) = s(T)1h(7)) Jr0(e0) =

— (W1 (T)ds(7) = a(T)n (7)) T2 (@) + (D (T)85(7) — ha(T)11(7)) Js.0()),

1 Yo Y3
A(p) = Tﬁ/i/ 1/}/5/ @/);%/ :

1 2 3

|A(¢)] is the determinant of the matrix A(y).
For solving equation (A.7) the functions and operators

©

Jis(p) = / b, TV Trs 2 ()dr, Galy) = / bo, ) Cra(T)dr, (1< j < oo),
(BB 1)) () = (B* ) (9), (k=T,00), (B°f)(¢)=(Bf)(p)

are used.
Applying the operator B to both sides of equation (A.7) gives an expres-
sion for the function (B f)(y). Inserting it again into (A.7), we have

V(p) = (B3) () +c(Jo(p)+Ja(p)) +eJ1(p) +Golp) +Gi(p) +Galp), (A.8)
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Continuing this process 2k 4 1 times, we get

v(p) = (B y)(¢ +cZJ2n )T Tna(p) + Y Galp).  (A9)

As a consequence it is easy to check the inequalities

k

(B*) ()] < b, T)[E

-
i ki)l < bl T)Hﬁ’ (A.10)

where
|b(()07 T)‘l = max ’b(gO, T)|

0<¢p, 7<¢1

If passing to the limit in the representations (A.9)as k — oo, by virtue of
(A.10) we receive

Y(p) = cQp) +2P(p) + G(p), (A.11)

where

Qp) = (Qi(p), Qa(p), Q3(v)), Plp) = (Pi(p), P(p), Ps(¢)),

ZJ] 2n Z 4, 2n— 1 G(@) = ZGH((:O)v (] = 17273)'

n=1

For these functions Q;(¢), P;i(¢), (j = 1,2,3) and G(p) it is easy to check
the relations

ng)(gp) = /g;?(gp, T)dT + /bg?(% T)G(T)dTv (k =1, 2)7 (A'12)

0 0
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PI(0) = —as(0)05(9) + / ;

©

7]
Gi(e) = i) + [ g, P — (@GR + [ Wi, T
0 0
It is also easy to check the equalities
b(p,0) =0, b,(0,0) =0, b(p,0)=—bp),
(A.13)
9(p,0) =0, g,(p,0) =0,

9o (0, 0) = f5(¢)
By using formula (A.12) and (A.13) we receive the equalities

P (@) + P} () + @) + asPi (o) = ~as(0) Qs 7)

Qm( ) + CLlQ (@) + G2Q;(90) + a3Q;(p) = —as(p) Pj (),
G" (@) + a1G" () + a2G' () + a3G () = au(ip) — as()G(p)

).
Hence, we receive

V' (i) 209;4—076:0(@, T)P;(T )d7+07 b, (e,

7)Q;(r)dr+
© ©
+ [ gite miar + [ b, GEar
0 0
V(@) = b, +c b" T)dT + € Q.()dr+
¥ ¢
0 0
+ / Goe (e, T / bla(p, T T,
0 0



+c [ bl (e, T)P;(T)dr — cas(¢)Q;(p) + ¢ bla(p, T)Q;(T)dr
j j

©

+ as(p) + /g:;’s(go, T)dr — as()G(p) + /b:;/s(go, T7)G(T)dT. (A.14)

Since J;jo(¢), b(p,T), g(g, T) represent a solution of equation (A.6), then by
virtue of formula (A.14) we see, that the function 1 (y), given by formula
(A.11)) is satisfying equation (A.5).

Using inequality (A.10), it is easy to receive the estimates

Q) < li(er)lch([ble, T)),  |1Pi(@)] < | (e)lsh(|b(e, 7)),
(A.15)

1G] < eilgle, T)liexp(lble, T)1), (T =1,2,3).
By estimate (A.15) we can assure that the function V' (r, ¢), given by formulas

(A.4), (A.11), is solving equation (A.1) in the class (A.3).
Thus, the following result holds.

Theorem 4.2.5 FEquation (A.1) has a solution in the class (A.5), which is
given by formula (A.4), (A.11).

Consider the Cauchy problem with prescribed growth at infinity for sys-
tem (A.1).

Problem C. Find a solution of equation (A.1) from the class (A.3),
satisfying the conditions

a4
0p?
’V(T’, Qp)l = O(ry)a r—0Q, (A17)

where a;, (k= (1,2,3), 7 =(1,2,3)) are given real numbers.

For solving problem C formulas (A.4), (A.11) are used. In that case
(A.17) holds automatically. The constants ci, cg, ¢3 in formula (A.11) are
determined, in order that the solution of equation (A.1), represented in the
form (A.4) and (A.11), satisfies condition (A.16). For that, insert function
V (r, ¢) according to formulas (A.4), (A.11) into (A.16). Thus we get a system
of linear algebraic equations in ¢y, ¢, c3:

ov
apV(r, 0) + ozkg%('r, 0) + ags (r, 0) =pBpr”, (k=1,2,3) (A.16)

(aN(0))c! = 3, (A.18)
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where

Q11 Q12 0g3 ﬂl &1

T
o = Qo1 Qg Oi23 , B= 52 , C = C2
Q31 (Qizp (iz3 B3 C3

Solving system (A.18) under |a/A(0)] # 0, we receive
' = (aA(0)7'p (A.19)
Thus, the following result holds.

Theorem 4.2.6 Let the roots of the characteristic equation (A.6) be mutu-
ally different and different from zero. Under |a/\(0)| # 0 the Cauchy problem
has a unique solution, which is given by formulas (A.4), (A.11) and (A.19).

If |aA(0)] = 0 for the solvability of the algebraic systems (A.18) the
conditions:

are necessary and sufficient. Here A; is the matrix, which is received by
replacing the ¢ in matrix column of the matrix /A (0) by the column £.

Theorem 4.2.7 Let |aA(0)| = 0, then for the solvability of the Cauchy
problem the condition (A.20) is necessary and sufficiently. In that case the
Cauchy problem has an infinity number of solutions. They are given by for-
mulas (A.4), (A.11), where c is determined from equation (A.18) under con-
dition (A.20).
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Zusammenfassung

Eine der grundlegenden partiellen Differentialgleichungen der mathematis-
chen Physik ist die Poisson Gleichung. Sie ist der Prototyp fiir eine ganze
Klasse von Modellgleichungen, den polyharmonischen Differentialgleichun-
gen, auch n-Poisson Gleichungen genannt. Im zweidimensionalen Fall bietet
sich die komplexe Analysis zur Behandlung an. Ihr grofer Vorteil ist es,
dass sich der Laplace Operator mittels des Cauchy-Riemann Operators fak-
torisieren ldsst. Im Komplexen ist die n-Poisson Gleichungen in den letzten
Jahren in der Gruppe von Professor Begehr wiederholt untersucht worden.
In einer Reihe von Arbeiten sind verschiedene Randwertprobleme in unter-
schiedlichen Gebieten behandelt worden. Mittels eines natiirlichen Itera-
tionsprozesses lassen sich Cauchy-Pompeiusche Integraldarstellungsformeln
beliebiger Ordnung gewinnen. Die sind allerdings zur Losung von Randw-
ertproblemen im Allgemeinen ungeeignet. Die Einfiihrung polyharmonicher
Green Funktionen transformiert diese Integraldarstellungen in solche, die
gewisse Randwertprobleme losen helfen. Je hoher der Grand umso mehr
polyharmonische Green Funktionen gibt es. FEinige von ihnen lassen sich
durch Faltung von Green Funktionen niedrigerer Ordnung gewinnen. Fiir
spezielle Gebiete kann man diese Faltungsintegrale auswerten und so explizite
poyharmonische Green Funktionen erhalten. In dieser Arbeit werden in der
genannten Weise eine triharmonische Green und eine triharmonische Neu-
mann Funktion fiir den Einheitskreis konstruiert. Die entsprechenden har-
monischen und biharmonischen Funktionen sind explizit bekannt. Dies ist ein
Beitrag zur induktiven Bestimmung von polyharmonischen Green und Neu-
mann Funktionen beliebiger Ordnung fiir den Einheitskreis. Es gilt zunéchst,
die entsprechende Induktionsbehauptung aufzustellen. Mit Hilfe der gewon-
nen triharmonischen Green und Neumann Funktionen werden die zugehori-
gen Randwertprobleme gel6st. Dariiber hinaus werden einige hybride trihar-
monische Green Funktionen eingefiihrt und die zugehoérigen Randwertprob-
leme gel6st. In einem Anhang wird eine singulére lineare komplexe partielle
Differentialgleichung vom Fuchs Typ mit trianalytischem Hauptteiloperator
behandelt.
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