
Chapter 2

Methodical fundamentals

In this chapter, the principle theory on which magnetotellurics (MT) and geomagnetic depth
sounding (GDS) are based is presented. External time-dependent electromagnetic fields in-
duce currents in the conducting earth, and relations between components of the total elec-
tromagnetic variation field measured at the earth’s surface are functions of the subsurface
conductivity distribution. Analytical and numerical modelling aims at reproducing these
functions. In the period range that is considered in this study (between 10 s and 2 ·104 s), the
natural sources that is taken advantage of originate from time varying current systems within
the ionosphere and magnetosphere of the earth, exited mainly by solar radiation. These cur-
rents are supposed to have dimensions > 1000 km, so that the external variation fields at the
earth’s surface can be regarded as not too far from being uniform, a circumstance which is
essential to quantitatively infer conductivities of the subsurface from their induced currents
in the conductive earth.

According to the theory of classical electrodynamics, electromagnetic fields in a non or slowly
accelerated reference frame can completely be described with Maxwell’s equations, here in
differential form:

∇ · E =
q

ε0

(2.1a)

∇×E = −
∂B

∂t
(2.1b)

∇ ·B = 0 (2.1c)

∇×B = µ0j + µ0ε0

∂E

∂t
(2.1d)

Within materials, to macroscopically describe the interaction of the field with the host (i.e. po-
larization and magnetization effects), eq. 2.1a and 2.1d are commonly written as

∇ · D = q′ (2.1a′)

∇×H = j′ +
∂D

∂t
(2.1d′)

with j′ = σE (2.2)

D = εrε0E and B = µrµ0H (2.3)
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METHODICAL FUNDAMENTALS

where the relative permittivity εr, the relative permeability µr and the electrical conductivity
σ are assumed to be scalars (in fact, in highly anisotropic material, they all can be tensors,
too). Here, q′ denotes the density of free charge carriers (i.e. total charge density q minus
a charge density of polarization), and j′ denotes the total current density j minus current
densities of polarization and magnetization currents. For the earth, the relative permeability
µr can be regarded as approximately 1, whereas εr can have values between 1 (vacuum) and
∼80 (water).

For time intervals considered in this thesis (≥10 s) and conductivities observable in the earth,
the so-called displacement currents εrε0∂E/∂t can be neglected with respect to σE.
For time-harmonic variations of period T the term ∂E/∂t is of magnitude E/T . With
T � εrε0/σ, (σ 6= 0) we have:

∣

∣εrε0
∂E

∂t

∣

∣

σ |E|
� 1 (2.4)

This approximation is called quasi stationary. For the following, all equations are Fourier
transformed to the frequency domain and the field quantities are their corresponding Fourier
amplitudes. With the above approximations, we now write down the basic equations of
electromagnetic induction in the earth:

∇ ·E =
q

ε0

(2.5a)

∇×E = −iωB (2.5b)

∇×B = µ0σE (2.5c)

Because displacement currents are neglected, the relative permittivity is not further consid-
ered for simplicity. Still, if the electric field has a component parallel to the gradient of
conductivity, it actually cannot really be discarded, as charge densities q will appear.
The next section will introduce the theory of transfer functions, following the approach of
Egbert and Booker [1989] which is strictly based on linear algebra mathematics and leads
directly to a multivariate analysis of electromagnetic array data, as it has been used here.

2.1 The physical model

At the earth’s surface, the curl of the magnetic field vanishes, and it can be regarded as
the gradient of a scalar potential B = ∇Φ. The fundamental postulation now is that the
external magnetic field is a linear combination of a defined number p of linear independent
source potentials, which span the space Φ of all possible source potentials:

Φe =

p
∑

j=1

αjΦj ∈ Φ = �Φ1, . . . ,Φp� (2.6)

For true uniform sources (p=2), we would have Φe
1

= x, Φe
2

= y and Be
1

= (1, 0, 0),
Be

2
= (0, 1, 0). The potential Φ of the total magnetic field at the earth’s surface can be
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2.2 CALCULATION OF TRANSFER FUNCTIONS

written as the sum of the source potential of the external magnetic field and a potential of
the induced internal magnetic field: Φ = Φe + Φi. Egbert [1987] showed that Φi is a linear
function of the external potential, which depends on the frequency and the conductivity of
the subsoil:

Φ = Φe + LB
ω,σ(Φe) (2.7)

Dmitriev and Berdichevsky [1979] proved that the electric field E is related to the horizontal
magnetic field by a linear operator, also depending on ω and σ:

E = LE
ω,σ(Bhor) (2.8)

Taking eqs. 2.6, 2.7 and 2.8 together, we can write:

B = ∇
[

Φe + LB
ω,σ(Φe)

]

=

p
∑

j=1

αj

[

Φe + LB
ω,σ(Φe)

]

=

p
∑

j=1

αjBj (2.9a)

E = LE
ω,σBhor =

p
∑

j=1

αjL
E
ω,σ(Bhor) =

p
∑

j=1

αjEj (2.9b)

where Bj , Ej are the magnetic and electric fields associated with the source potential Φj.
Now the electromagnetic field F = (B,E) is regarded as a function of position r and
supposed to be measured at n stations. Then, if the source potential is equal at all field
stations, i.e. translationally invariant, the complex coefficients α in eqs. 2.9 are the same
at all sites and express the actual source field configuration. Composing vectors of all m
measured field components, we can write:

b =







F(r1)
...

F(rn)






=

p
∑

j=1

αj







F(r1)
...

F(rn)






=

p
∑

j=1

αjuj = Uα (2.10)

where U = (u1, . . . ,up). Thus, the principle assumption of eq. (2.6) in combination with
the translationally invariance of Φe leads to the conclusion, that all measurable data vectors
have to lie in a p-dimensional subspace of Cm, the response space

R =�u1, . . . ,up� (2.11)

The task of careful field data analysis is equivalent with the task of finding the response space
R (see section 4.1).

2.2 Calculation of transfer functions

We postulate from now on true uniform source excitation, i.e. p = 2 and Φe
1

= x, Φe
1

= y
⇒ Be

1
= (1, 0, 0), Be

2
= (0, 1, 0) (for p ≥ 2 see Egbert and Booker [1989]). As it is the total
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field that is measured, the determination of the response vectors u1,2 is naturally impossible.
But suppose the data processing succeeded in finding R and thus found two basis vectors
v1,v2, then there is an unknown regular (2× 2) matrix A with V = UA. Now rearranging
the lines of eq. (2.10) we group the field components into m− 2 channels (index 2) that shall
be predicted from the two remaining channels (index 1), and calculate

(

b1

b2

)

=

(

U1

U2

)

U−1

1
U1α =

(

I2

U2U
−1

1

)

b1 (2.12)

where I2 is the two-dimensional identity matrix. The matrix T = U2U
−1

1
is consisting of

inter-component transfer functions that relate the m − 2 channels of index 2 to the two
channels of index 1. Remembering that from data analysis a matrix V = (v1,v2) has been
determined instead of U, it is important to notice that the matrix of transfer functions T is
independent of the basis:

T = U2U
−1

1
= (V2A)(V1A)−1 = V2V

−1

1
(2.13)

so that all possible inter-component transfer functions are determined by the knowledge of
the response space R.
Also the commonly analyzed local magnetotelluric impedance tensor Z and the local geomag-
netic ‘tipper’ transfer functions Tx and Ty can be calculated:

b2 =





Bz

Ex

Ey



 =





Tx Ty

Zxx Zxy

Zyx Zyy





(

Bx

By

)

= V2V
−1

1
b1 (2.14)

For the calculation of inter-station geomagnetic transfer function, we chose the horizon-
tal magnetic field of a preferred station as reference. To correspond with the notation of
Schmucker’s perturbation matrix W (Schmucker [1970]):

B−B0

hor =





hH hD

dH dD

zH zD



B0

hor = WB0

hor (2.15)

we have:

b1 =

(

B0
x

B0
y

)

b2 =





Bx

By

Bz



 V2V
−1

1
= W +





1 0
0 1
0 0



 (2.16)

where b2 can be expanded to all stations, so that all measured geomagnetic field components
are referred to one horizontal reference field. With some simple linear algebra, the formal-
ism also allows to construct synthetic references, for example a spatially averaged horizontal
magnetic field (see Egbert and Booker [1989]).
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2.3 ANALYSIS OF TRANSFER FUNCTION TENSORS

2.3 Analysis of transfer function tensors

The dimension of the subsurface conductivity distribution, i.e. the number of spatial coor-
dinates from which σ is dependent, is reflected in the transfer function tensors. The first
task in data analysis is usually to detect this dimensionality, which is called dimensionality

analysis (only isotropic structures are considered below).

• One-dimensional conductivity distributions

The conductivity distribution is a function of depth only (σ = σ(z)). As E ⊥ ∇σ, we have
∇ ·E = 0 (see also: eq. 2.31). From the formulas of geomagnetic induction (eqs. 2.5), with
∇×∇× F = ∇∇ · F−4F, F = E,B, we can derive the Helmholtz equations:

4E− iωµ0σE = 0 (2.17)

4B− iωµ0σB = 0 (2.18)

Within an homogenous area, solutions of these equations are diffusing up- or downgoing
waves

F = F±
0
(z)e

iωt± z
C(ω) C(ω)2 =

1

iωµ0σ
(2.19)

with the complex penetration depth C(ω) — its doubled real part is called skin depth.
Maxwell’s equations additionally require that E ⊥ B, i.e. no electrical field component parallel
to the magnetic field is induced. The impedance tensor takes the form:

Z =

(

0 Z
−Z 0

)

(2.20)

For a homogeneous half-space, we have just a downgoing wave and C is directly referred to
the impedance from the fields measured at the surface (Z = iωC), so that the resistivity of
the earth can be determined

ρ =
µ0

ω
|Z|2 (2.21)

and the complex phase φ = arg(Z) of the impedance is equal to π/4 or 45◦ (Cagniard

[1953]).

Weidelt [1972] showed that for an arbitrary layered earth model, the real part of Z(ω)/(iω)
represents the depth of the “center of gravity” of the in-phase induced current system. The
apparent resistivity ρa(ω) calculated from eq. (2.21) can therefore be regarded as a repre-
sentative conductivity for that depth, the phase φ(ω) giving additional structural informa-
tion. The magnetotelluric method (MT) is concerned with the evaluation of these functions
(Cagniard [1953]), which are often constructed for all tensor elements, though not having a
clear physical meaning in the multidimensional case.

For 1-D distributions, no lateral anomalous electric currents are induced and thus all tipper
and perturbation transfer functions are zero (Tx,y = 0,W = O).
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• Two-dimensional conductivity distributions

The conductivity distribution is a function of depth and one lateral spatial coordinate (e.g.,
y). The induction equations (eq. 2.5) separate into two independent modes of polarization,
with currents flowing parallel to the conductivity contrast (TE-mode) or perpendicular to it
(TM-mode).

TE-mode TM-mode

∂Bz
∂y

−
∂By

∂z
= µ0σEx

∂Ex
∂z

= −iωBy

−∂Ex
∂y

= −iωBz

∂Ez
∂y

−
∂Ey

∂z
= −iωBx

∂Bx
∂z

= µ0σEy

−∂Bx
∂y

= µ0σEz

(2.22)

In the TM-mode, no vertical magnetic field is induced, and the horizontal magnetic field
is spatially constant along the earth’s surface (as σ = 0 at z = −0). Therefore, the
investigation of geomagnetic anomalies due to 2-D conductivity contrasts is always dealing
with the TE-mode. The tensors take the form:

Z =

(

0 Z‖

Z⊥ 0

)

W =





0 0
0 dD

0 zD



 . (2.23)

In general, Z‖ 6= −Z⊥. Local tipper functions are: Tx = 0, Ty = Bz/By.
Suppose the measurements have not been carried out in the coordinate system of the con-
ductivity contrast. Data analysis then yields the tensors

Z′ = RT
αZRα W′ = RT

B,αWRα (2.24)

Rα =

(

cosα sinα
− sinα cos α

)

RB,α =





cosα sinα 0
− sinα cos α 0

0 0 1





with α being the rotation angle between the measured coordinate system and the system of
the 2-D strike. All transfer functions of Z and W are in general 6= zero. Local geomagnetic
transfer functions are often illustrated as induction vectors IV

<(IV ) = <(Tx)ex + <(Ty)ey =(IV ) = =(Tx)ex + =(Ty)ey (2.25)

with the unity vectors ex,y in north and east direction, respectively. From a combination of
tipper and perturbation tensor analysis, it can easily be shown that for a single 2-D contrast
tan αtp = Ty/Tx, i.e. the induction vector is oriented perpendicular to the strike direction,
real parts pointing away from the better conductor (Wiese-convention, Wiese [1962]).
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2.3 ANALYSIS OF TRANSFER FUNCTION TENSORS

To find the strike direction from the impedance tensor (with an ambiguity of ± 90 degrees),
Swift [1967] derived from the request |Z ′

xx|
2+|Z ′

yy|
2 → min! (zero for true 2-D structures):

αsw =
1

4
· arc tan

2 · <[(Z ′
xx − Z ′

yy)(Z
′
xy + Z ′

yx)]
∣

∣Z ′
xx − Z ′

yy

∣

∣

2
−

∣

∣Z ′
xy + Z ′

yx

∣

∣

2
(2.26)

Analogous to Swift, Siemon [1991] derived a geomagnetic strike direction from the request
|h′

D|2 + |d′H |2 → min!

αsi =
1

4
· arc tan

2 · <[(h′
H − d′D)(h′

D + d′H)]
∣

∣h′
H − d′D

∣

∣

2
−

∣

∣h′
D + d′H

∣

∣

2
(2.27)

To quantitatively specify the dimensionality of the subsurface, Swift and Siemon addition-
ally defined rotationally invariant skewnesses, which vanish under true 2-D conditions, but
are not necessarily unequal zero above 3-D structures:

κsw =

∣

∣Z ′
xx + Z ′

yy

∣

∣

∣

∣Z ′
xy − Zyx

∣

∣

κsi =
|h′

D + d′H |
∣

∣h′
H + d′D + 2

∣

∣

. (2.28)

Eggers [1982] had a more formal approach to the recovery of the 2-D impedance tensor in
strike direction coordinates, presenting a generalized eigenstate formulation of the magne-
totelluric impedance tensor. From the request Ei · Bi = 0 for each polarization resp. eigen-
vector, he derived the eigenstate problem

(

Z− Λi
)

Bi = 0 Λi =

(

0 λi

−λi 0

)

(2.29)

with rotationally invariant solutions resp. eigenvalues:

λ± = Z1 ±
√

Z2

1
− detZ (2.30)

(Z1 = (Zxy − Zyx)/2, detZ = ZxxZyy − ZxyZyx). It is easy to show that for 2-D struc-
tures the eigenvalues λ± are identical with the impedances Z‖ and Z⊥ from the unrotated
impedance tensor. This formulation of the problem can also be helpful if the structural set-
ting is not truly two-dimensional.

• Three-dimensional conductivity distributions

The electrical conductivity is a function of all spatial coordinates. All transfer functions
of Z,W, IV are in general 6= zero, independent from the coordinate system of observation.
Compared to the investigation of 1-D and 2-D structures, a full 3-D approach to field data
that are obviously three-dimensional can be a significantly more difficult task and is rarely
performed extensively due to bad data coverage of the investigation area and high computa-
tional costs.

However, data often look more three-dimensional than they actually are:
Heterogeneities of small extent close to the earth’s surface, which are not the target of in-
vestigation, can act as local scatterers and distort the (eventually one- or two-dimensional)
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regional electromagnetic field, i.e. the field that would be observed without superficial hetero-
geneities. As is sketched below, the effect of scattering can be described by means of real
matrices acting on the regional field, which implies that if the regional field is one- or two-
dimensional, the information from the undistorted transfer function tensor can be partly
recovered.

As ∇ · (∇ × B) = 0, the quasi stationary approximation leads to ∇ · j = ∇ · (σE) = 0
and with ∇ · (σE) = σ ∇ · E + E · ∇σ and eq. (2.5a) finally to:

q = −
ε0

σ
(∇σ) ·E (2.31)

Thus, as soon as the electric field has a component E⊥ perpendicular to the conductivity
strike direction, it is no longer free of sources and charge densities do accumulate (also for
the 2-D TM-mode). The densities arise in phase with the primary electric field and the factor
between q and E⊥ is independent of frequency. Because of the permittivity term, the charge
densities and the corresponding secondary currents are minute. The secondary electric field,
however, which can be calculated by Coulomb’s law

Es(r0) =
1

4πε0

∫

VS

qi

r2

i0

ri0

ri0

dv′ (2.32)

(ri0 = ri − r0) can be of the same order as the primary electric field (Price [1973]).
Depending on geometry and conductivity of the structures, the total electric field – the sum
of the primary and secondary electric fields – is enhanced or diminished in the vicinity of
anomalies, resulting in channelling or deflection of currents (Jiracek [1990]).

For confined superficial bodies of anomalous conductivity with dimensions small compared to
the skin depth of the embedding host for the periods considered, the described effect, which
will be referred to as ‘quasi-static’ in the following, can exceed inductive effects by far — the
body acts as a distorter. As is suggested from the above description, and as can be derived
from a full treatment of the problem, the effect of scattering can be described by means of
real matrices (Groom and Bahr [1992]; Habashy et al. [1993]; Chave and Smith [1994]):

E = CEr B = Br + DEr (2.33)

where the telluric distortion (2×2) matrix C is non-dimensional and the magnetic distortion
(3×2) matrix D has the units of an admittance ([s/m]; or [A/V], if H instead of B is used).
We can derive:

Z = CZr · (I2 + DhorZ
r)−1 or: Z = CZr − ZDhorZ

r (2.34)

If the dimensions of the scattering body are small enough, then the currents related to dis-
tortion and the corresponding secondary magnetic fields can be neglected (Z = CZr). If
then the regional fields are due to a one-dimensional structure or due to a two-dimensional
structure and the tensor is in the coordinate system of the strike, the effect of distortion shifts
the logarithmic ρa curves by a factor independent of the frequency, while impedance phases
φ remain unchanged (static shift).
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2.3 ANALYSIS OF TRANSFER FUNCTION TENSORS

Decomposition techniques resp. transfer function analyses mainly aim at quantifying, if the
model of quasi-static distortion can be applied to the data and, if yes, at finding the strike
direction of the regional structures, if there is any (Zhang et al. [1987]; Bahr [1988]; Groom

and Bailey [1989]). In doing so, most authors only consider electric distortion, which is sub-
stantially easier. More recently, also magnetic quasi-static distortion effects are examined
Chave and Smith [1994]; Ritter [1996].

For example, Bahr [1988] derived a rotationally invariant phase sensitive skew, which mea-
sures the phase differences between elements of the same column of the impedance tensor, and
thus is a measure how appropriate the quasi-static telluric distortion model is with respect
to the data1:

ηb =

√

[D1, S2] − [S1, D2]|

D2

(2.35)

If the model is appropriate, i.e. if ηb = 0, the strike direction αb of the regional 2-D
structure can be calculated via

tan 2αb =
[S1, S2] − [D1, D2]

[S1, D1] + [S2, D2]
(2.36)

For cases where the superposition model is not valid, i.e. ηb 6= 0 and the phase differences
between elements of the same column do not vanish in any coordinate system, Bahr [1991]
(corrected by Prácser and Szarka [1999]) found a formula to find an angle α that at least
minimizes these phase differences, what the above αb does not (phase deviation method).

1[S1, D2] = <[S1]=[D2] −=[S1]<[D2],
S1 = Zxx + Zyy, S2 = Zxy + Zyx, D1 = Zxx − Zyy, D2 = Zxy − Zyx
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