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Abstract

The performance of Li-ion batteries is mainly determined by ionic and electronic con-

ductivities of the electrode materials. Both transport properties were studied in this

dissertation using ab initio-based calculations together with thermodynamic and kinetic

analysis in three electrode materials. Here, the Li transport in Si as a future anode ma-

terial as well as LiCoO2 as the most commonly used and Li2S as a promising cathode

materials were investigated. Each of them shows a distinct Li diffusion mechanism and

hence different ionic transport properties. In addition, effect of stress/strain on the ionic

and electronic mobilities in bulk LiCoO2 were evaluated within the theory of elasticity.

In the first section, lithiation of the crystalline silicon anode (c-Si), which results in the

formation of a two-phase system consisting of amorphous Li2Si (a-Li2Si) as shell around

c-Si as core, was investigated. The lithiation of silicon nanowires, which is accompanied

by an anisotropic swelling, is governed by the motion of the interfaces between a-Li2Si

and c-Si. To reveal the origin of this phenomenon, adsorption and migration of Li were

first evaluated at the three most stable surfaces of c-Si. It was shown that the adsorption

of Li initially starts from the (110) surface with the lowest Li migration energy at the high-

est Li concentration. Afterwards, Li migration was estimated at three explicitly-modeled

interfaces of a-Li2Si/c-Si corresponding to the three surfaces of c-Si. It was found that

the origin of the anisotropic swelling is not due to a faster ionic diffusion at the inter-

faces but it is because of thermodynamic reasons related to various interface stabilities.

Thus, the growth process at the interfaces of a-Li2Si/c-Si is orientation dependent. The

a-Li2Si/c-Si(110) interface has the highest formation energy, lowest stability and hence

highest interface mobility among the others which is in agreement with experimental

findings.

In the second section, thermodynamics and kinetics of defects in Li2S cathode material

were studied. To find the origin of the low ionic conductivity in Li2S, the formation and

migration of defects in this material were investigated. It was demonstrated that the Li

diffusion in Li2S is driven by the formation of Frenkel pairs and migration of single Li

vacancies since migration of interstitials Li is not energetically favorable. The lithiation

process in Li2S is accompanied by a high activation energy. Therefore, since the forma-

tion energies for Li vacancy and interstitial are almost the same, the ionic conductivity

is controlled by the kinetic, i.e. the migration energy of single Li vacancies.

For LiCoO2 cathode material with a layered structure, first the mechanisms of Li migra-
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tion both in bulk and on the (101̄4) surface were investigated. It was shown that the

planar lithiation in both bulk and (101̄4) surface occurs via the diffusion of Li into a

divacancy of Li on a curved pathway. This process, in the case of the topmost layer of

(101̄4) surface, takes place with no energy barrier. The lithiation process in LiCoO2 is ac-

companied by hole-polaron hopping, which can only be detected using a DFT functional

corrected with an onsite Hubbard term for Co, and as a result increases the migration

energy of lithium. Estimated electronic conductivity in bulk LiCoO2 is in good agree-

ment with experimental value. Additionally, the effect of stress/strain on charge carriers

mobilities was investigated in bulk LiCoO2 by means of the “elastic dipole tensor (EDT)”

method. Li diffusion energy barrier decreases with lateral tensile strain while the forma-

tion energy of Li vacancy increases, however, the effect of strain on the migration energy

is stronger. 1% longitudinal strain in bulk LiCoO2 can change the ionic conductivity

more than one order of magnitude. The effect of stress/strain on electronic conductivity

is opposite and less pronounced than that of the ionic one. The results obtained from

the computationally efficient EDT method for both ionic and polaronic transports are in

very good agreement with the conventional computationally-demanding method.
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Zusammenfassung

Die Leistung von Li-Ionen-Batterien wird hauptsächlich durch ionische und elektronis-

che Leitfähigkeiten der Elektrodenmaterialien bestimmt. Beide Transporteigenschaften

wurden in dieser Dissertation mit ab initio-basierten Berechnungen zusammen mit ther-

modynamischen und kinetischen Analysen in drei Elektrodenmaterialien untersucht.

Hier wurden den Li-Transport im Si als zukünftiges Anodenmaterial, LiCoO2 als das

am häufigsten verwendete und Li2S als ein sehr vielversprechendes Kathodenmaterial

untersucht. Jedes von ihnen zeigt einen anderen Li-Diffusionsmechanismus und damit

unterschiedliche ionische Transporteigenschaften. Darüber hinaus wurde die Wirkung

von Stress/Dehnung auf ionische und elektronische Mobilitäten in Bulk LiCoO2 inner-

halb der Theorie der Elastizität ausgewertet.

Im ersten Abschnitt wird die Lithiierung von einer kristallinen Silizium-Anode (c-Si)

untersucht, die durch die Bildung eines Zweiphasensystems entsteht, mit amorphem

Li2Si (a-Li2Si) als Hülle um c-Si als Kern. Die Lithiierung von Silizium-Nanodrähten,

die begleitet wird von einer anisotropen Ausdehnung, erfolgt durch die Bewegung der

Grenzflächen zwischen a-Li2Si und c-Si. Um den Ursprung dieses Phänomens zu

enthüllen, wurden zuerst Adsorption und Migration von Li an den drei stabilsten

Oberflächen von c-Si ausgewertet. Es wurde gezeigt, dass die Adsorption von Li zunächst

auf der (110) Oberfläche mit der niedrigsten Li-Migrationsanergie bei der höchsten Li-

Konzentration beginnt. Danach wurde die Li-Migration für drei explizit modellierte Gren-

zflächen von a-Li2Si/c-Si, die den drei Oberflächen von c-Si entsprechen, untersucht.

Die Ergebnisse zeigten, dass der Ursprung der anisotropen Ausdehnung nicht auf eine

schnellere ionische Diffusion an den Grenzflächen zurückzuführen ist, sondern auf ther-

modynamischen Gründen, die sich auf verschiedene Grenzflächenstabilitäten beziehen.

Daher ist der Wachstumsprozess an den Schnittstellen von a-Li2Si/c-Si

orientierungsabhängig. Die a-Li2Si/c-Si(110) Grenzfläche besitzt die höchste

Grenzflächenbildungsenergie, die niedrigste Stabilität und damit die höchste Mobilität

der untersuchten Grenzflächen, was mit dem Experiment übereinstimmt.

Im zweiten Abschnitt wurden die Thermodynamik und Kinetik von Defekten im Li2S

Kathodenmaterial untersucht. Um den Ursprung der niedrigen Ionenleitfähigkeit in Li2S

heraus zu finden, wurden die Defektbildung und -migration in diesem Material unter-

sucht. Es wurde gezeigt, dass die Li-Diffusion in Li2S durch die Bildung von Frenkel-

Paaren und die Migration von einzelnen Li-Leerstellen angetrieben wird, da die Migration
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von interstitiellen Li-Ionen energetisch nicht günstig ist. Der Lithiierungsprozess wird

von einer hohen Aktivierungsenergiebarriere begleitet. Daher wurde gefolgert, dass, da

die Formationsenergien für Li-Leerstellen und Interstitiale fast gleich sind, die Ionen-

leitfähigkeit wird durch kinetische gesteuert, und damit die Migrationsenergie einzelner

Li-Leerstellen.

Für das LiCoO2 Kathodenmaterial mit einer Schichtstruktur, wurden zunächst die Mech-

anismen der Li-Migration sowohl im Bulk als auch auf der (101̄4) Oberfläche unter-

sucht. Es wurde gezeigt, dass die planare Lithiierung sowohl im Bulk als auch der (101̄4)

Oberfläche über die Diffusion von Li in eine Divakanz von Li auf einem gekrümmten

Weg erfolgt. Dieser Vorgang, im Falle der oberste Schicht der (101̄4) Oberfläche, er-

folgt ohne Energiebarriere. Der Lithiierungsprozess in LiCoO2 wird von einem Loch-

Polaron-Hopping begleitet, das nur mit einem DFT-Funktional erkannt werden kann, das

mit einem lokalen-Hubbard-Term für Co korrigiert wird und die Migrationsenergie von

Lithium erhöht. Die berechnete elektronische Leitfähigkeit in Bulk LiCoO2 ist in sehr

guter Übereinstimmung mit dem experimentellem Wert. Darüber hinaus wurde die

Wirkung von Stress/Dehnung auf Ladungsträger-Mobilitäten mittels des ”elastischen

Dipol-Tensors (EDT)” Verfahrens in Bulk LiCoO2 untersucht. Die Li-Diffusionsenergie-

barriere nimmt mit lateraler Zugbeanspruchung ab, während die Vakanz-Bildungsenergie

zunimmt, jedoch ist der Effekt der Dehnung auf die Migrationsenergie stärker. 1%

Längsdehnung in Bulk LiCoO2 kann die Ionenleitfähigkeit mehr als eine Größenord-

nung verändern. Dieser Effekt ist gegenüber und weniger ausgeprägt im Fall der elek-

tronischen Leitfähigkeit. Die Ergebnisse aus dem rechnerisch effizienten EDT Verfahren

stimmen sowohl für ionische als auch polaronische Transporte mit dem konventionellen

rechnerisch anspruchsvollen Verfahren ausgezeichnet überein.
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1 Introduction

In “electrochemistry” conversion between chemical and electrical energies is studied [1,

2]. The chemical reactions, i.e. oxidation and reduction also referred to as “redox” reac-

tions, occur as a result of ionic and electronic charge transfers between atomic or molec-

ular species which lead to a change in their oxidation states [1, 2]. Therefore, electronic

and ionic conductivities play important roles in electrochemistry [3]. Ionic conductivity

in battery materials occurs via the movements of ions. These movements can be either in

the form of single hopping or cooperative (synchronized) motions (see section 2.2). Elec-

tronic conductivity in battery materials is governed by electron (or hole) transport which

mainly takes place via polaron-hopping (see section 2.4) [4, 5, 6].

In rechargeable Li-ion batteries (LIB) which are one of the main branches in electrochem-

istry, charging and discharging processes can be performed repeatedly up to 1000 cycles

[7, 8, 9]. Li-ion (Fig. 1) and Li-S (Fig. 2-a) batteries (both are referred to as LIB) are

among the most promising rechargeable energy storage devices [10, 11].

In this thesis, the focus is on the transport properties in some electrode materials of

rechargeable LIB where the migration of lithium ions (or vacancies) as well as electrons

(or holes), both as the charge carriers, are decisive [3]. The aim is to study the transport

properties with different mechanisms using quantum mechanical atomistic modeling and

to investigate the approaches by which the transport phenomena in LIB may be modified.

1.1 Working principles of Li-ion and Li-S batteries

Li-ion batteries

Fig. 1 shows the schematic of a commercially used Li-ion battery cell, consisting of an an-

ode (e.g. carbon in the form of graphite), an electrolyte (e.g. diethyl carbonate, i.e. DEC,

and salts such as LiPF6) and cathode (e.g. LiCoO2). Anode is the negative electrode,

where during the charging process, reduction of Li+ ions coming from the electrolyte by

collecting the electrons occur. Cathode is the positive electrode where the oxidation of

its material (e.g. LiCoO2 in the case of Fig. 1) and releasing the electrons take place. The

working mechanism of a typical Li-ion cell is as the following steps. During the charging

process, Li ions are extracted (deintercalated) from the cathode material (LiCoO2) via elec-

trochemical oxidation process. By passing through the electrolyte, Li ions are inserted

(intercalated) into the graphite anode which is accompanied by electrochemical reduction

process [7]. Both graphite anode and LiCoO2 cathode have layered structures which are

1



suitable for Li storage [12]. The processes for discharging on both sides are the opposite

of charging. Following reactions summarize the charging processes in a typical Li-ion

battery (see Fig. 1):

(Cathode) LixMO2 −−→ yLi+ + y e− + Lix−yMO2 (1)

(Anode) y Li+ + y e− + C6 −−→ LiyC6 (2)

(Overall) C6 + LixMO2 −−→ LiyC6 + Lix−yMO2 (3)

Figure 1: Schematic of a commercially used

Li-ion battery. C, Li, Co and O atoms are shown

with brown, light green, blue and red colors, re-

spectively.

Electrodes in LIB are separated via the elec-

trolyte which is an inert material and must

stay stable within a certain temperature range

[13]. Typically, the liquid electrolytes are com-

posed of an organic liquid media (e.g. DEC) to-

gether with dissoluble Li-contained salts. The

solid electrolyte interphase (SEI), which is a

heterostructure layer, forms on both electrodes

(mainly on the anode) as a result of the chemi-

cal decomposition of electrolyte during first cy-

cles of charging and discharging. The forma-

tion of a SEI is essential in LIB since this layer

prevents further decomposition of electrodes by

partially blocking the electron transport [14,

15]. Due to the nature of its structure, the ionic conductivity of the SEI layer is typi-

cally low. Since in this thesis the electrolyte part is not the subject of the studies, hence,

a detailed discussion of electrolyte and the SEI is not provided.

Li-S batteries

There have been significant progresses in Li-S batteries, a type of LIB which offers large

specific capacity, low production cost and environmentally-friendly features [10, 16].

Usually in this type of batteries, the materials for anode and cathode are metallic Li and

sulfur (S8) (or its combination with carbon), respectively, as shown in Fig. 2-a. Recently,

direct use of Li2S as cathode together with a Li-free anode (e.g. silicon) has increasingly

received attentions [16, 17, 18]. The advantage of the latter is related to the large theoret-

ical capacity of Li2S (1166 mAhg−1) which potentially makes it an excellent cathode mate-

rial [16]. The second reason is the fact that Li-free anodes do not suffer from the formation

2



of dendrites which is a common problem in Li and Li-based anodes [16, 17]. In batteries

(a)

(b)

Figure 2: (a) Schematic of Li-S battery with

sulfur cathode as well as the crystal structure

of Li2S. (b) TEM image from the reference [19]

of a Li-S cell during the discharge process. For-

mation of Li2S as a shell around S8 as a core is

evident.

with S8 cathode, formation of Li2S crust around

the S8 core or Li2S clusters as the final prod-

uct of the lithiation process has been reported

(see Fig. 2-b) [19, 20]. Due to the low ionic

and electronic conductivity in Li2S and also the

shuttle effect (formation and diffusion of sol-

uble polysulfides, i.e. Li2S8, Li2S6, Li2S4 and

Li2S2, through the electrolyte into the anode),

the commercialization of Li-S batteries is still a

challenge. However, it has been proposed that

using nanosized Li2S or mixed compositions of

Li2S with carbon-based materials as the cath-

ode can greatly overcome the issue of low con-

ductivity in Li2S [16, 18, 21].

One of the differences between Li-S and Li-

ion batteries is the distinct Li diffusion mecha-

nisms in the electrodes. In Li-S batteries with

Si anode and Li2S cathode, three-dimensional

(3D) Li diffusion together with the formation of

a new phase in the anode and 3D diffusion of Li

ions in single Li vacancies without any chem-

ical reaction (for low defects concentration) in

the cathode are the dominant processes for the ionic transport [10, 16, 18, 22, 23]. On

the other hand, in Li-ion batteries with LiCoO2 cathode, 2D diffusion of Li ions in Li

divacancies takes place in such a way that Li ions (or vacancies) move laterally between

octahedral planes of O-Co-O [11, 12, 24]. In the following sections, charge transport

phenomena during the lithiation/delithiation processes in some electrode materials are

discussed. The selected materials are Si and Li2S as promising candidates for anode and

cathode in Li-S batteries, respectively, as well as LiCoO2 as the most widely used cath-

ode material in Li-ion batteries. Mechanisms of Li diffusion and the key factors in the

transport phenomenon, i.e. thermodynamics or kinetics, in each case are different.
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1.2 Anode materials

1.2.1 Si anode

In the current generation of LIB, carbon in the form of graphite is used as the common an-

ode material. The structure of graphite consists of carbon atoms in a hexagon form which

are linked in a layer by layer fashion [25]. As a result, graphite has the potential to store Li

Figure 3: Top: SEM images from reference [26]

of fully lithiated silicon nanowires which show

the orientation-dependent anisotropic swelling.

Bottom: Schematic of anisotropic expansion

along three different orientations.

ions within its layered structure. In spite of

various advantages of graphite as anode ma-

terial, such as large reversible capacity and

good mechanical stability during the lithia-

tion/delithiation processes [27, 28, 29], due to

its very low theoretical capacity of 372 mAhg−1,

there have been many efforts to find its replace-

ments. Recently, silicon (Si) has been intro-

duced as a promising anode material with a

theoretical capacity of ∼4140 mAhg−1, which is

more than 10 times larger than that of graphite

[30]. In contrast to graphite, lithiation process

in crystalline silicon (c-Si) takes place in 3D and is accompanied by chemical reactions

leading to the formation of amorphous Li2Si (a-Li2Si) phase [23]. Due to the poor cyclabil-

ity and irreversible capacity fading, which are mainly related to the large lattice expansion

and volume changes during the lithiation/delithiation processes (up to ∼ 300 %), silicon

as anode has not been commercialized yet [31]. It has been reported that using silicon

nanostructures or mixed compounds of carbon and silicon can significantly rectify this

problem [30, 32]. Further studies also indicated that during the lithiation process in

silicon nanowires, by formation of the two-phase system of a-Li2Si/c-Si, an anisotropic

swelling appears which is more significant along the <110> direction (see Fig. 3) [26,

33, 34]. In fact, the growth process is controlled by the movements of the interfaces be-

tween a-Li2Si and c-Si. The origin of this peculiar volume change, which can eventually

lead to the fracture of silicon nanowires, is not well understood. In this thesis, using

density functional theory calculations, the lithiation at the three most stable surfaces of

c-Si as the first cycle of lithiation is studied. Furthermore, by creating a realistic two-

phase model with c-Si as core and a-Li2Si as shell, the thermodynamic and kinetic of the

lithiation process at the interfaces of a-Li2Si/c-Si are evaluated (see publication A1) [35].
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1.3 Cathode materials

1.3.1 Li2S cathode

As mentioned earlier, Li2S as an important specie in Li-S batteries, i.e. either directly

used as cathode material or created as a by-product, has a very low ionic and electronic

conductivity [17]. Since there is limited knowledge on the transport properties of Li2S,

in the second section of the results chapter, defect chemistry, i.e. thermodynamic and

kinetic of defects, as well as various Li diffusion mechanisms in Li2S are studied using

density functional theory calculations (see publication A2) [22]. In this study, calculated

defect formation energy (∆Ei,qF ) as function of chemical potential of Li (µLi) for all possible

defect types is plotted. Using this plot, the most energetically favorable defect type in

Li2S at various cell voltages can be predicted. Moreover, Li diffusion energy barriers for

single and divacancy as well as knock-off interstitial mechanisms are computed. Finally,

the activation energy for the Li transport in bulk-Li2S is estimated which is then used

by my colleagues in another study [36] to estimate the ionic conductivity by means of

Nernst-Einstein and Arrhenius type relationships presented by Eqs. 2.2.1 and 2.2.2 in

section 2.2.

1.3.2 LiCoO2 cathode

LiCoO2 (LCO) was first proposed by Mizushima et al. [37] for the cathode application.

LCO with the R3̄m space group and a theoretical capacity of ∼ 274 mAhg−1 [38] consists

of CoO2
−2 octahedrals arranged in layers with Co in the center and Li ions located be-

tween these layers (see Fig. 1). To improve the rate of charging/discharging processes

in LCO, nanosizing as a promising approach has been proposed [39]. The reason of this

effect can be explained by shorter diffusion length for Li ions as a result of nanosizing

which increases the charging/discharging rates [39]. On the other hand, weaker bond-

ing between topmost Co and O on the surface of LCO nanoparticles can decrease the

energy barrier for Li intercalation/deintercalation at the topmost surface layer [24]. In

the present thesis, the mechanisms of Li diffusion in bulk and one of the most stable sur-

faces, i.e. (101̄4), of LCO are studied. In addition, effect of magnetic and non-magnetic

defects states as well as using PBE and PBE+U functionals on the Li migration in both

bulk and (101̄4) surface are investigated (see publication A3) [24].
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1.4 Effect of stress on ionic and electronic conductivity

One of the important factors that can affect the conductivity (ionic, electronic or even

thermal) is stress/strain fields [40, 41, 42, 43]. The stress/strain in batteries can origi-

nate from various sources. For example, it can be applied externally during the packing

of a battery cell. It may also be generated in bulk of materials as a result of the lithia-

tion/delithiation processes or in general from the chemical reactions. In this case, phase

transition and formation of a two-phase system within the bulk, similar to the lithiation

of silicon anode, leads to changes in the lattice parameters of the structures. Conse-

quently, stress/strain due to lattice mismatches between different phases may appear.

The stress/strain can also appears on surfaces or at interfaces. For instance, in batteries

with solid electrolyte, again due to lattice mismatches between electrodes and solid elec-

trolyte, interfacial stress/strain can be observed. Another example can be the interfacial

stress/strain between electrodes and SEI in the case of batteries with liquid electrolyte

[44, 45, 46, 47]. Therefore, investigation of the effect of stress/strain on ionic mobility in

LIB is imperative. In the third section of the results chapter, the effect of stress/strain

on the ionic conductivity in LiCoO2 using the “elastic dipole tensor (EDT)” method (sec-

tion 2.3.2) is discussed [48]. In this study, finite unit cell size effect on the calculation of

elastic dipole tensor (Gij) is investigated. Moreover, it is aimed at showing that the results

obtained from the computationally efficient EDT method can be in agreement with the

conventional computationally-demanding approach where the conductivity as a function

of strain should be computed at each strain regime separately. (see publication A4).

A wide variety of the materials that are used as electrodes in LIB are semiconductors.

In highly polar semiconductors, due to the interactions between extra electrons (or holes)

and positive (or negative) ions in a crystal “virtual phonons” are created and the overall

sets form quasiparticles referred to as “polarons”. Since the formation of a polaron is

energetically favorable, it is occurred spontaneously and thus is referred to as a “self-

trapped” condition [49, 50]. By means of the transition state theory and in case of

adiabatic electron transfer, it is possible to calculate the energy barrier and hence the

electronic conductivity for the migration of an electron- (or hole-) polaron [49]. In the

last section, the electronic conductivity in the case of bulk LiCoO2 is calculated using

the concept of small hole-polaron hopping. Moreover, the effect of stress/strain on the

electronic conductivity is evaluated using both the direct and the EDT methods (see

publication A5) [51].
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2 Theory

2.1 Quantum Mechanical Calculation Methods

Following by the efforts of Thomas, Fermi and Dirac in expressing the total energy of a

many body system as a functional of its electron density, density functional theory (DFT)

was introduced by P. Hohenberg and W. Kohn [52] and afterwards developed further by

W. Kohn and L.J. Sham [53]. This theory enables us to predict the ground state energy

(and hence other ground state properties) of a system as a functional of its electron

density (ρ(~r)). In the following sections, the many body problem including important

wave function as well as electron density based approaches for the calculation of ground

state energy in a system of atoms or molecules will be explained.

2.1.1 Schrödinger Equation

The total energy of a system can be calculated by means of the Schrödinger equation

which in its time-independent and non-relativistic form can be written as [54, 55]:

ĤΨi(~r1, ~r2, ..., ~rn, ~R1, ~R2, ..., ~Rm) = EiΨi(~r1, ~r2, ..., ~rn, ~R1, ~R2, ..., ~Rm). (2.1.1)

In this eigenvalue equation, Ĥ is the Hamiltonian operator for any atomic and/or molec-

ular system consisting of n electrons and m nuclei, ~rn and ~Rm represent coordinates of

electron and nuclei, respectively, Ψi is the overall wave function of the system and Ei are

the energy eigenvalues, which results from the Hamiltonian operator acting on the wave

function of the system. Practically, calculating the exact wave function of a system is

not feasible, however, using high level quantum chemistry approaches for small systems,

obtaining a very good (almost exact) approximation of the wave function is possible. The

above-mentioned Hamiltonian can be written in atomic unit as the following expression:

Ĥ = −1

2

n∑
i=1

∇2
i︸ ︷︷ ︸

Te

− 1

2

m∑
A=1

1

mA
∇2

A︸ ︷︷ ︸
Tnu

−
n∑
i=1

m∑
A=1

ZA

riA︸ ︷︷ ︸
Ve−nu

+

n∑
i=1

n∑
j>i

1

rij︸ ︷︷ ︸
Ve−e

+

m∑
A=1

m∑
B>A

ZAZB

rAB︸ ︷︷ ︸
Vnu−nu

. (2.1.2)

In the above Hamiltonian, mA, ZA, riA, rij and rAB are the mass of nuclei, atomic num-

ber, distance between electron-nuclei, distance between electron-electron and distance

between nuclei-nuclei, respectively. T and V stand for the kinetic and potential energies,

respectively. “e” and “nu” subscripts refer to electrons and nuclei, respectively.
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2.1.2 Born-Oppenheimer Approximation

In order to simplify the general Hamiltonian in Eq. 2.1.2, the following assumption is

considered. Since the mass of nucleus is in general much larger than that of electron

(e.g. mA ≈ 1,800 for hydrogen and mA ≈ 20,000 for carbon), the movement of nuclei

in an atom is much slower than that of electrons. As a result, in order to simplify the

Hamiltonian of Eq. 2.1.2, Born and Oppenheimer suggested [56] that the electrons mo-

tions can be considered in the field of static nuclei. In fact, by semi-separating (not an

exact separating) of variables, we can assume that the total wave function of Ψi(~rn, ~Rm) is

approximately equal to the product of nuclear and electronic wave functions, which leads

to the decoupling of the total wave function into two parts. This approach is referred to

as the Born-Oppenheimer approximation. Therefore, the general form of the total wave

function for any system of atoms and molecules can be expressed as:

Ψi(~rn, ~Rm) = ψelec(~rn; ~Rm)ψnuc(~Rm). (2.1.3)

In this equation, ψelec(~rn; ~Rm) is the electronic part including the static electron-nuclei

interactions and ψnuc(~Rm) is the pure nuclei part. The general Hamiltonian of Eq. 2.1.2

for the electronic part can then be written as the following expression:

Ĥelec = −1

2

n∑
i=1

∇2
i −

n∑
i=1

m∑
A=1

ZA

riA
+

n∑
i=1

n∑
j>i

1

rij
, (2.1.4)

where Ĥelec is the electronic Hamiltonian. Thus, by operating Ĥelec on the system, Eelec

will be obtained as:

Ĥelecψelec(~rn; ~Rm) = Eelec(~Rm)ψelec(~rn; ~Rm), (2.1.5)

The electronic energy term obtained from the Eq. 2.1.5 has a contribution to the motion

of nuclei as:

Ĥnucψnuc(~Rm) =

{
− 1

2

m∑
A=1

1

mA
∇2

A + Eelec(~Rm) +
m∑

A=1

m∑
B>A

ZAZB

rAB

}
ψnuc(~Rm) = Etotψnuc(~Rm).

(2.1.6)

Hence, the total energy of the system (Etot) can be calculated using Eq. 2.1.6. The

imperative task is then to solve Eq. 2.1.5 and afterwards, using the Born-Oppenheimer

approximation, the nuclei parts can be added to the total energy of the electronic part as

parameter.

2.1.3 Hartree-Fock approximation

In order to construct a reasonable eigenstate (wave function of the n-electron system),

Hartree proposed to use a simple approximation which consists of the multiplication of
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n orthogonal spin orbitals χ (Hartree product [57]) as:

Ψ(~r1,ms;~r2,ms; ...;~rn,ms) ≈ ΨHP = χ(~r1,ms)χ(~r2,ms)...χ(~rn,ms). (2.1.7)

In this formula, χ(~r,ms) consists of a spatial orbital (φ(~r)) and one spin function (σ(s)

which could be α(s) or β(s), denoted by ms). However, since this approximation does

not satisfy the Pauli exclusion principle, i.e. antisymmetry principle, it is not physically

logical. Later for the initial wave function, Slater proposed a physically meaningful an-

tisymmetric wave function which is known as the Slater determinant [58] and can be

expressed as:

Ψ(~r1,ms;~r2,ms; ...;~rn,ms) ≈ ΦSD =
1√
n!

∣∣∣∣∣∣∣∣∣∣∣∣

χi(~r1,ms) χj(~r1,ms) . . . χk(~r1,ms)

χi(~r2,ms) χj(~r2,ms) . . . χk(~r2,ms)
...

... . . . ...
χi(~rn,ms) χj(~rn,ms) . . . χk(~rn,ms)

∣∣∣∣∣∣∣∣∣∣∣∣
(2.1.8)

In ΦSD, the exact wave function of all n interacting electrons are replaced by n one-

electron spin orbitals in which they only feel a Coulomb repulsive potential resulted from

the average positions of other electrons. Moreover, there exists a non-classical concept

of exchange which is resulted from the antisymmetric nature of ΦSD. Since no electron-

electron correlation is defined in this model, it is also referred to as a mean field approach

as each electron interacts with an effective potential from all other electrons in the system.

Using the “variational principle” the best approximation of the true eigenstate corre-

sponding (within the given ansatz) to the minimum energy eigenvalue can be calculated.

According to this method, any suggested eigenstates (Ψtrial) will be an upper bound cor-

responding to the eigenvalues of the ground state energy which can be shown by the

following relationship:

〈Ψtrial|Ĥ|Ψtrial〉 = Etrial ≥ E0 = 〈Ψ0|Ĥ|Ψ0〉 , (2.1.9)

with Ψ0 and E0 as the exact wave function and the minimum energy of the system, respec-

tively. In other words, to find the closest answer to the true eigenvalue (minimum energy

of the system, E0), Eq. 2.1.9 should be solved starting with a reasonably suggested eigen-

state (Ψtrial, which will be explained in section 2.1.12) and keep being solved iteratively

until a certain convergence criterion is fulfilled. The reasonably suggested eigenstates is

referred to a selection from all possible eigenstates, with certain criteria such as to be

continuous in space and to be quadratic integrable, by the use of which, Etrial within the

variational method could become as close as possible to its minimum value. Therefore,
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using Eq. 2.1.9, it is feasible to find the best approximation to the true ground state

eigenstate (Ψ0) and then the minimum energy of the system (E0) can be determined.

In order to explain the Hartree-Fock method, the concept of the Fock (F̂ ) operator [59,

60] is elaborated. F̂ is an effective one-electron operator which acts on the χi(~rn,ms) used

in the Slater determinant as:

F̂ |χi(~rn,ms)〉 = εi|χi(~rn,ms)〉. (2.1.10)

In this equation, the Fock operator is defined as:

F̂ = h1e +
∑
j 6=i

(Ĵj − K̂j)︸ ︷︷ ︸
VHF

= −1

2
∇2 −

∑
A

ZA

r1A
+
∑
j 6=i

(Ĵj − K̂j)︸ ︷︷ ︸
VHF

, (2.1.11)

where the first term (h1e) refers to the kinetic energy of one electron and the potential

energy from the interaction of that electron with all nuclei. The last term (VHF) deals with

the interaction of one electron with the other electrons (mean field interaction). In the

VHF expression, the first term is referring to the operator for classical Coulomb interaction

between electrons. This concept for electron a between two electrons a and b in orbitals i

and j, respectively, can be written by the following notation:

Ĵij = 〈ij|ij〉

Ĵj(a)χi(~ra,ms) =

[ ∫
d~rbχ

∗
j (~rb,ms)

1

rab
χj(~rb,ms)

]
χi(~ra,ms).

(2.1.12)

The second term of the Hartree-Fock potential is the exchange integral with a non-

classical nature and can be written via the following notation:

K̂ij = 〈ij|ji〉

K̂j(a)χi(~ra,ms) =

[ ∫
d~rbχ

∗
j (~rb,ms)

1

rab
χi(~rb,ms)

]
χj(~ra,ms).

(2.1.13)

It should be noted that if electrons a and b would have antiparallel spin, since the spin

orbitals become orthogonal, the exchange integral becomes zero.

By referring to Eq. 2.1.10, the orbital eigenenergies for the n electron system can be

written as:

εi = 〈χi|F̂ |χi〉 = 〈χi|ĥ1e(i)|χi〉+
∑
j

〈χi|Ĵj |χi〉 −
∑
j

〈χi|K̂j |χi〉. (2.1.14)

Finally, the total energy of the electronic part (E0) in terms of the eigenenergies can be

expressed as:

E0 =
n∑
i

εi −
1

2

(∑
i,j

〈χi|Ĵj |χi〉 −
∑
i,j

〈χi|K̂j |χi〉
)
. (2.1.15)
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It is shown that the Hartree-Fock method [59, 60] is a wave function-based approach in

which the orthonormal single-particle spin orbitals in the form of Slater determinant is

treated as the total wavefunction. Since in the Slater determinant the Pauli principle is

considered, the exchange interaction of electrons with the same spins within the Hartree-

Fock scheme is included. However, due to the fact that the correlation interactions for

electrons with opposite spins is disregarded, EHF is always larger than the exact total

energy. The popular methods in the framework of wave function-based approaches for

taking the correlation effects into account are configuration interaction (CI) [61], coupled

cluster (CC) [62] and perturbation theory (MP2 and MP4) [63, 64, 65].

2.1.4 Density Functional Theory

In density functional theory (DFT), instead of using the wave function as the primary

variable, the electron density (ρ(~r)) which itself is a function of coordinate, is used as

a functional in the calculation of the ground state energy. As mentioned at the begin-

ning of this chapter, DFT is the result of two main theorems which were developed by P.

Hohenberg and W. Kohn and then became practical with the formalisms introduced by

W. Kohn and L. J. Sham. However, the starting point and idea of DFT originates from

the Thomas-Fermi model. Hence, before further discussions on the details of DFT, the

Thomas-Fermi model is explained.

Thomas-Fermi Model

The electron density in a volume element (d~r1) for a n-electron system over the spin coor-

dinates is defined as:

ρ(~r1) = n

∫
· · ·
∫
|Ψ{(~r1), (~r2), ..., (~rn)}|2ds1d~r2...d~rn. (2.1.16)

This definition is the core of density based methods which is reflected in the calculation

of ground state energy. Based on the Eq. 2.1.16, the total number of electrons in the

system (n) over the entire space can be obtained by:

n =

∫
ρ(~r)d~r. (2.1.17)

In the first steps towards DFT, Thomas and Fermi [66, 67] used this concept to develop

their model for the calculation of the ground state energy as a functional of electron

density. They assumed that the kinetic energy of electrons can be estimated using the
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kinetic energy of the homogeneous electron gas. The formulation for the kinetic energy

was then proposed as:

TTF[ρ(~r)] =
3

10
(3π2)

2
3

∫
ρ

5
3 (~r)d~r. (2.1.18)

By combining Eq. 2.1.18 with the attractive nuclei-electron and repulsive electron-electron

interactions, the total ground state energy of a system as a functional of its electron den-

sity can be obtained as:

ETF[ρ(~r)] =
3(3π2)

2
3

10

∫
ρ

5
3 (~r)d~r − Z

∫
ρ(~r)

r
d~r +

1

2

∫ ∫
ρ(~r1)ρ(~r2)

r12
d~r1d~r2. (2.1.19)

Despite the fact that Eq. 2.1.19 is the building block of modern DFT, it suffers from

significant crude approximations, such as the description of kinetic energy and also dis-

regarding the exchange and correlation effects. The exchange interaction effects for the

homogeneous electron gas were introduced into the Eq. 2.1.19 later by Dirac as:

ED
x = −3

4

(
3

π

) 1
3
∫
ρ(~r)

4
3d~r. (2.1.20)

As the result of this contribution (the model is then referred to as Thomas-Fermi-Dirac),

the total energy decreases due to the negative sign of Dirac exchange term. Nevertheless,

because of massive approximations, this model fails to yield the correct calculations of

the total energy in most systems.

2.1.5 The Hohenberg–Kohn Theorems

Hohenberg and Kohn [52] developed the idea of Thomas-Fermi model in a more detailed

and accurate approach. In their first theorem, Hohenberg and Kohn proved that the

electron density of a system can uniquely determine the Hamiltonian and consequently

the ground state energy and other properties of that system. In other words, they stated

that “the external potentials of electrons and nuclei is a unique functional of ρ0(~r)” [52].

Therefore, the following relation can be concluded:

ρ0(~r)→ Ĥ → E0. (2.1.21)

Based on this theorem, the total energy as a functional of electron density can be written

as:
E0[ρ0(~r)] = T [ρ0(~r)] + Ee−nu[ρ0(~r)] + Ee−e[ρ0(~r)],

E0[ρ0(~r)] =

∫
ρ0(~r)Vext(~r)d~r︸ ︷︷ ︸

particular system

+T [ρ0(~r)] + Ee−e[ρ0(~r)]︸ ︷︷ ︸
every system=FHK[ρ0(~r)]

. (2.1.22)
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FHK[ρ0(~r)] (Hohenberg-Kohn functional), which is a system independent energy term, in-

cludes the contributions of kinetic and electron-electron repulsion energies. If we were

able to exactly solve this problem, we could obtain the exact answer to the Schrödinger

equation. The repulsive electron-electron term can be written as:

Ee−e[ρ0(~r)] =
1

2

∫ ∫
ρ0(~r1)ρ0(~r2)

~r12
d~r1d~r2︸ ︷︷ ︸

J [ρ0(~r)]

+Eqm[ρ0(~r)], (2.1.23)

in which the term Eqm[ρ0(~r)] refers to all the quantum mechanical contributions including

the electron-electron correlations, exchange and self interactions, while J [ρ0(~r)] is the

classical Coulomb interaction.

The second theorem of Hohenberg and Kohn is basically another description of vari-

ational principle. It states that Eq. 2.1.22 for any electron density of ρ(~r) results in an

upper bound to the ground state energy (E[ρ(~r)] ≥ E0[ρ0(~r)]). Clearly, the preliminary

conditions for electron density to be a valid value (i.e. ρ(~r) ≥ 0 and
∫
ρ(~r)d~r = n) are still

required. It can be seen that DFT is a ground state theory which cannot deal with excited

states. Despite the fact that so far the formulation is reasonable, it is still not possible to

obtain the universal description for Hohenberg and Kohn functional, i.e. FHK[ρ0(~r)]. In

the following section, it is shown how the formalism of Kohn-Sham leads to a practical

method for dealing with quantum mechanical concepts of electron-electron exchange and

correlation functionals.

2.1.6 The Kohn-Sham Approach

Kohn and Sham [53] proposed a method to deal with Eq. 2.1.22 derived from the Ho-

henberg and Kohn theorems. In fact, they focused on how to consider the kinetic energy

part since it can introduce large deviations in the total energy. The most distinguished

assumption by Kohn and Sham was the fact that since it is not possible to obtain the

exact true kinetic energy of an interacting system (T [ρ0(~r)]), this term can be divided into

two parts: One part is the kinetic energy of a non-interacting system (TS) and the other

is the remaining effects corresponding to the interacting system (T − TS). Therefore, the

proposed kinetic energy part by Kohn-Sham can be written as

TS = −1

2

n∑
i=1

〈φKS
i |∇2|φKS

i 〉, (2.1.24)

in which n is the number of electrons in the system and φKS
i represents one-electron

Kohn-Sham spin orbitals. Therefore, the Hohenberg-Kohn functional, FHK[ρ(~r)], can be

14



written as:

FHK[ρ(~r)] = TS[ρ(~r)] + J [ρ(~r)] + EXC[ρ(~r)]. (2.1.25)

In this important formalism, EXC[ρ(~r)] is the sum of (T − TS), electron-electron self-

interaction, exchange and correlation effects, all of which are unknown quantities. There-

fore, the total energy can be written as:

E[ρ(~r)] = TS[ρ(~r)] + J [ρ(~r)] + EXC[ρ(~r)] +

∫
ρ(~r)Vext(~r)d~r︸ ︷︷ ︸
Ee−nu[ρ(~r)]

. (2.1.26)

Now the Veff should be defined in such a way that the resulting one-electron Kohn-

Sham spin orbitals exactly provide the density of the real system. For this, we refer

to Eqs. 2.1.24 and 2.1.26 and expand Eq. 2.1.26 as:

E[ρ(~r)] = −1

2

n∑
i=1

〈φKS
i |∇2|φKS

i 〉︸ ︷︷ ︸
TS[ρ(~r)]

+
1

2

n∑
i=1

n∑
j=1

|φKS
i (~r1)|2 1

r12
|φKS
j (~r2)|2d~r1d~r2︸ ︷︷ ︸

J [ρ(~r)]

+ EXC[ρ(~r)]−
n∑
i=1

∫ m∑
A=1

ZA
r1A
|φKS
i (~r1)|2d~r1︸ ︷︷ ︸

Ee−nu[ρ(~r)]

.

(2.1.27)

Finally, the variational principle is applied to the total Hamiltonian and minimum energy

eigenvalues (εi) can be obtained as:

[
− 1

2
∇2 +

Veff︷ ︸︸ ︷(∫
ρ(~r2)

r12
d~r2 −

M∑
A=1

ZA

r1A︸ ︷︷ ︸
Vext

+VXC(~r1)

)]
φKS
i = εiφ

KS
i , (2.1.28)

where the electron density of the real system can be expressed from the Kohn-Sham spin

orbitals as:

ρ(~r) =
n∑
i=1

|φKS
i (~r)|2, (2.1.29)

with n equals to the number of electrons. Eqs. 2.1.28 and 2.1.29 are referred to as the

Kohn-Sham equations. In Eq. 2.1.28, Veff is the effective potential in which only VXC(~r)

(potential due to the exchange-correlation energy equal to
δEXC[ρ(~r)]

ρ(~r)
) term is unknown.

Unlike the Hartree-Fock scheme where the approximations are entered from the first step

because of the nature of the Slater determinant, in the Kohn-Sham formulations it is only

after Eq. 2.1.28 where the approximations are introduced. If finding the exact value for

EXC were possible, the ground state energy obtained from DFT would be close to the exact

value. Finding the exact value for EXC has not been successful so far while development
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in this area is an ongoing field of research. To sum up, the overall procedure to solve the

Kohn-Sham equations for a fixed geometry (single-point calculation) is as the following

sequence:

• Starting with an initial ρ(~r),

• Obtaining the Veff and determining a new ρ(~r) using Eqs. 2.1.28 and 2.1.29,

• Using the obtained Kohn-Sham orbitals from Eq. 2.1.28 to calculate the kinetic

energy via Eq. 2.1.24,

• Continuing this cycle until ρ(~r) is converged within a certain criterion and then total

energy can be calculated using Eq. 2.1.27.

In the next section, various approaches for finding the exchange correlation energy

functional are discussed and it is shown how each of them can be beneficial for a specific

system (metallic, insulator, semiconductor etc).

2.1.7 Exchange-Correlation Energy Functionals

A simple approach to deal with the XC energy functional is the local density approxi-

mation (LDA). In the LDA, based on the homogeneous electron gas model, it is assumed

that in the XC energy of an inhomogeneous system, the electron density can be treated

locally as the electron density of a homogeneous electron gas [68]. The homogeneous

electron gas model is defined as a hypothetical system where the electrons move in the

field of a uniform positive background charge (atomic nuclei) which prevails the charge

neutrality condition while the electron density is uniform. Hence, the XC energy using

the LDA description can be written as:

ELDA
XC [ρ(~r)] =

∫
ρ(~r)εXC[ρ(~r)]d3~r, (2.1.30)

in which, εXC[ρ(~r)] is the exchange-correlation energy per particle of a uniform electron

gas. This expression can be divided into two parts, namely exchange and correlation as:

εXC[ρ(~r)] = εX[ρ(~r)] + εC[ρ(~r)]. (2.1.31)

The exchange part which is in fact derived from the HF scheme was given by Dirac [69]

as:

εX[ρ(~r)] = −3

4

(
3

π

) 1
3
∫
ρ

3
4 (~r)d3~r. (2.1.32)
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The correlation part was calculated for the homogeneous electron gas by Ceperly and

Alder using numerical calculations in quantum Monte Carlo simulations [70]. An accu-

rate description of Coulomb correlation within the LDA was given by Perdew and Wang

[71]. It is known that the LDA delivers rather reasonable results in case of prediction

of equilibrium structures or frequencies. When it comes to binding and cohesive ener-

gies, however, it usually fails. Especially in case of structures with highly non-uniform

electron densities, the LDA is rather a poor approximation [72, 73].

In order to deal with more complex and non-homogeneous electron densities, gener-

alized gradient approximation (GGA) was introduced [74, 75]. This approach, which is

an improvement over the LDA, is widely used in surface science and solid states physics

due to its accuracy and efficiency. The key aspect in the GGA is the addition of density

gradient to the LDA description. Therefore, it can be written as the following expression:

EGGA
XC [ρ(~r)] =

∫
f

[
ρ(~r),∇ρ(~r)

]
d3~r = EGGA

X [ρ(~r)] + EGGA
C [ρ(~r)]. (2.1.33)

One of the popular forms of the GGA functional is the one proposed by Perdew, Burke, and

Ernzerhof (PBE) [75], which is widely used in theoretical material science. The exchange

term of the PBE functional is written as:

EGGA
X [ρ(~r)] =

∫
ρ(~r)FX(sσ)εunif

X [ρ(~r)]d3~r, (2.1.34)

in which, εunif
X [ρ(~r)] is the exchange energy of the homogeneous gas per particle which is

defined as:

εunif
X [ρ(~r)] =

−3e2kF
4π

, ρ(~r) =
3

4
πr3

s =
k3
F

3π2
, rs = local Seitz radius. (2.1.35)

In Eq. 2.1.34, the FX(sσ) function is described as:

FX(sσ) = 1 + κ− κ

1 + µs2

κ

, κ ≈ 0.804 , µ ≈ 0.219, (2.1.36)

in which s is a dimensionless density gradient as:

s =
|∇ρ(~r)|

2× (3π2ρ(~r))
1
3 × ρ(~r)

. (2.1.37)

The correlation part of the energy is also obtained using the following equation:

EGGA
C [ρ(~r)] =

∫
ρ(~r)

[
εunif
C [ρ(~r)] +H[ρ(~r), w]

]
d3~r. (2.1.38)

In this equation, H[ρ(~r), w] is defined by:

H[ρ(~r), w] = γ × ln

(
1 +

βw2

γ

[
1 +Aw2

1 +Aw2 +A2w4

])
, (2.1.39)
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where,

γ ≈ 0.031, β ≈ 0.066, w =
|∇ρ(~r)|

2ρ(~r)

√
4(3π2ρ(~r))

1
3

π

, A =
β

γ[exp(
−εunif

C
γ )− 1]

. (2.1.40)

The sum of EGGA
C [ρ(~r)] and EGGA

X [ρ(~r)] yields the PBE-GGA exchange correlation func-

tional.

Although the GGA is one of the most successful exchange-correlation energy func-

tionals for DFT, it still has few drawbacks. One of the most dramatic ones is referred

to the highly delocalized nature of this approximation. A famous example in which DFT

and conventional band theory fail to predict is the Mott insulators [76]. According to the

conventional band theory and DFT predictions, Mott insulators are “expected” to be elec-

trically conductive, however, they practically behave as insulators. This can be explained

by considering the fact that in these highly correlated systems, where electron-electron

correlations are highly dominant, due to the over-delocalizing of the valence electrons

and over-stabilizing of the metallic ground states with the LDA or GGA, Mott insulators

are incorrectly predicted to be conductive [77]. This is also related to the fact that in the

LDA and GGA, electron self interaction is not canceled out hence a massive delocalization

is introduced in the Kohn-Sham orbitals. Besides computationally demanding methods

such as DFT plus dynamical mean field theory (DFT+DMFT) [78] or reduced density ma-

trix functional theory (RDMFT) [79] which can solve problems raised in cases such as

Mott insulators, a simple yet effective method based on the Hubbard model, namely the

LDA+U was developed which is very popular in case of the systems with highly correlated

electronic structures [80]. The Hubbard model which is based on the tight-binding ap-

proach, introduces two main assumptions, namely the kinetic or hopping integral (shown

by t) and on-site repulsive Coulomb interaction of electrons. The Hubbard Hamiltonian

is formulated as [81]:

ĤHub = −t
∑
〈i,j〉,ms

(c†i,ms
cj,ms + c†j,ms

ci,ms) + U
N∑
i=i

ni↑ni↓ − µ
∑
i

(ni↑ + ni↓). (2.1.41)

In this Hamiltonian, 〈i, j〉 refers to the nearest-neighbor sites which implies that the hop-

ping is only allowed between two adjacent sites. c†i,ms
, cj,ms and ni,ms represent the elec-

tronic creation, annihilation and number operators of electrons with spin ms on site i. In

fact the first term represents the kinetic energy, the second term refers to the interaction

energy (if one site is doubly occupied, it adds an energy value of U) and the last term

controls the filling of orbitals and corresponds to the chemical potentials (µ).
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The LDA+U (which is the same for GGA+U), based on the Hubbard model can then be

formulated as:

ELDA+U(ρ) = ELDA(ρ) + EHub

[
nIms
mm′

]
− EDC

[
nIms

]
, (2.1.42)

in which, EHub is the energy term derived from the Hubbard Hamiltonian and EDC is the

energy term that cancels out the terms that are already contained in the ELDA in order

to avoid double counting. After few mathematical steps, the final form of the LDA+U

exchange correlation functional energy based on the refined model presented by Dudarev

[82] (which is the one used in this thesis) is written as:

ELDA+U(ρ) = ELDA(ρ) +
(Ū − J̄)

2

∑
ms

[(∑
j

ρms
jj

)
−
(∑

j,l

ρms
jl ρ

ms
lj

)]
, (2.1.43)

where ρms
jl is the density of d-orbital electrons. Ū and J̄ are the averaged matrix elements

of the Coulombic electron-electron interaction (in eV). In the Dudarev formulation, Ū and

J̄ values alone are not meaningful and (Ū − J̄) should be considered.

In this thesis, the LDA (mostly for comparison and benchmark), the PBE and the

PBE+U exchange correlation energy functionals are used. The first two are implemented

in SeqQuest [83] while all three are available in VASP [84].

2.1.8 Schrödinger Equation for Periodic Systems

Up to now, the methods and approximation techniques for solving the Schrödinger equa-

tion in a system of atoms are presented. In the following section, it is demonstrated how

to apply same approaches for the extended solids (crystals). The key concept to deal

with these periodic systems is the Bloch theorem. Before going into the details of Bloch

theorem, a few remarks in the context of periodic systems should be explained.

In this thesis, for 3D modeling of bulk solids periodic supercells are applied. This

approach implies that a supercell is wrapped around itself in such a way that when one

particle goes out from one side, it immediately comes back from the other side. One

drawback of the supercell approach is the finite unit cell size effect which is extensively

dealt with in this thesis. For 2D modeling of surfaces the slab technique (Fig. 4) is

employed. A slab has the immediate periodicity in x and y directions but in the z direction

a vacuum level (normally with about 14
◦
A thickness) is defined in order to mimic the

surface condition while keeping the structure in a 3D periodic format at the same time.
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Figure 4: 3D view of a slab model in case

of LiCoO2(101̄4) surface. Li, O and Co ions

are shown with light green, red and blue

colors, respectively.

Therefore, it is possible to apply the Bloch theorem

in a slab as well. For modeling an isolated atom

(0D) a large box including the desired atom is con-

sidered and only a single-point calculation is per-

formed. In this thesis, 1D modeling of a system is

not performed.

Ideal crystals are formed by a 3D ordering of

atoms and are constructed from unit cells (smallest

repeating unit in a crystal). In crystals, depending

on the degree of crystallinity, there can be long- or

short-range order between unit cells. An ideal crys-

tal is composed of a basis and a lattice. Basis is

referred to each of the identical group of atoms that

form an ideal crystal. A lattice is a group of points

which are extended in space based on a mathemat-

ical description. The basis vectors, ~a1, ~a2 and ~a3,

form lattice vectors, T , as [85]:

~T = u1 ~a1 +u2 ~a2 +u3 ~a3 with u1, u2, u3 as integers.

(2.1.44)

In a crystal and according to the Bloch theorem, the

Kohn-Sham effective potential (Veff , see Eq. 2.1.28)

can be written as a periodic potential acting on the

electrons:

Veff(~r + ~T ) = Veff(~r). (2.1.45)

This periodic potential can then be introduced in the Hamiltonian of the Kohn-Sham

formalism (Eq. 2.1.28) as:

ĤφKS
i =

(
− 1

2
∇2 + Veff(~r + ~T )︸ ︷︷ ︸

Veff(~r)

)
φKS
i = εiφ

KS
i . (2.1.46)

2.1.9 Bloch Theorem

As it was demonstrated in the previous part, the Kohn-Sham effective potential can be

written as a periodic function and for crystals can be directly introduced in the Kohn-

Sham equations. Now it is shown how this concept can be transfered to the wave func-

tions.
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Within the Bloch theorem [86] it can be proved that the electronic eigenstates of Eq.

2.1.46 (Kohn-Sham orbitals, φKS, also shown in Eq. 2.1.29) can be written in the form of

a plane wave multiplied by a function with the periodicity of the Bravais lattice. Therefore,

φKS can be written as:

φKS
n,~k

(~r) = ei
~k·~rv

n,~k
(~r), (2.1.47)

in which, n is the band index, ~k is the wave vector within the first Brillouin zone and

v
n,~k

(~r + ~T ) = v
n,~k

(~r). Another formulation of the Bloch theorem can be presented as:

φKS
n,~k

(~r + ~T ) = ei
~k.~TφKS(~r). (2.1.48)

The periodic potential v
n,~k

(~r) can also be written as a set of plane waves:

v
n,~k

(~r) =
∑
G

c
n,~k

ei
~k.~r · ~G with ~G · ~T = 2πm, (2.1.49)

where ~G and ~T are the reciprocal and real space lattice vectors, respectively. m is an inte-

ger and c
n,~k

are the plane wave expansion coefficients. Finally, the electronic eigenstates

of Eq. 2.1.46 can be written as a linear combination of plane waves as:

φKS
n,~k

(~r) =
∑
G

c
n,~k

~G · ei(~k+ ~G).~r. (2.1.50)

It should be noted that by expanding the electronic wave function in the form of plane

waves basis set, Kohn-Sham equations become simpler and more adoptable to Bloch

theorem [85].

2.1.10 Sampling of the Brillouin Zone

To obtain the properties of a solid (e.g. charge density or density of states), integration of

the Brillouin zone in reciprocal space is necessary. However, since it is computationally

impossible to integrate over all the points in space, numerical integration (weighted sum)

using the sampling of the Brillouin zone is a practical approach to deal with this problem.

Therefore, the electron density can be expressed as the following expression:

ρ(~r) =

occupied∑
i=1

∫
BZ
|φKS
n,~k

(~r)|2 d
3~k

ΩBZ
≈

occupied∑
i=1

Nkpt∑
j=1

ωn|φKS
n,~k

(~r)|2. (2.1.51)

In this equation and in the framework of DFT, φKS
n,~k

(~r) are the Kohn-Sham orbitals, ΩBZ

is the cell volume and ωn are the weighting factors (or “importance” factors adopted from

the weighted sum model). To reduce error, dense k-points sampling is preferred at the

expense of computational cost. Therefore, convergence tests are always necessary to
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create a balance between the accuracy of data and the computing time. One of the

popular methods for sampling the Brillouin zone is the approach proposed by Monkhorst

and Pack [87] in which homogeneous k-points in the Brillouin zone and along the three

axes of reciprocal space are considered.

2.1.11 Pseudopotential Method

In order to minimize the computational efforts, instead of considering all of the electrons

in atoms, only the valence ones are explicitly treated and the rest (inner electrons and

nuclei) are replaced by an effective potential. This effective potential is referred to as pseu-

dopotential. In general, Kohn-Sham orbitals near the nuclei regions show significantly

large and sharp oscillations which are caused by the requirement of orthogonality. In

order to describe this behavior correctly, using large plane wave sets (or a fine real-space

mesh grid for the numerical integration) is necessary. However, since using large plane

wave sets is computationally expensive, it can be replaced by a smooth effective potential

near the core regions. In fact, while the core electrons are “frozen”, the chemically-active

valence electrons are treated by pseudo-wave functions with fewer nodes [88]. As a re-

sult, the pseudo-wave functions can be expressed with fewer Fourier transforms (see

Eq. 2.1.49). There are several methods for the development of pseudopotentials, such

as norm-conserving, ultrasoft, projector-augmented wave method which in the follow-

ing sections are briefly discussed. In this thesis, the norm-conserving and projector-

augmented wave (PAW) methods are employed which are implemented in SeqQuest and

VASP, respectively.

Norm-Conserving Pseudopotentials

One type of pseudopotentials is the norm-conserving which is used in both atomic or-

bitals and plane-wave DFT codes [89]. Norm-conserving pseudopotentials must have the

following criteria:

• Pseudo and real eigenvalues of the valence electrons for an specific atom match each

other.

• Norm of each pseudo-wave function beyond a chosen cut-off radius (rc) (valence

electrons) matches its corresponding real wave function.

• The integrals of the pseudo and real charge densities from 0 to r (r > rc) of each

valence state (norm conservation) should be in agreement.
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Nevertheless, in this type of pseudopotentials due to large oscillations of wave function

around the core regions, many plane waves are still needed to fulfill the above require-

ments which makes it computationally demanding [89].

Projector Augmented Wave Method

An accurate and efficient method for creating pseudopotentials is based on the method

developed by Blöchl [90] which is referred to as Projector augmented-wave (PAW). In this

method, by defining a linear transformation operator (T̂ ), the true all-electron Kohn-Sham

wave function (φKS
n,~k

(~r)) can be converted to an auxiliary smooth wave function (φ̃KS
n,~k

(~r)) by:

|φ̃KS
n,~k

(~r)〉 = T̂ |φKS
n,~k

(~r)〉. (2.1.52)

In fact using this approach, the original Kohn-Sham wave function is split into a fully-

expanded smoothed auxiliary wave function and a confined rapid-oscillating contribution

(only in certain areas in space). The former can be treated with coarse grids which

significantly accelerates the calculations.

2.1.12 Basis Sets

In the present thesis, DFT calculations are performed using VASP and SeqQuest codes with

two different basis sets, namely plane wave and localized atomic orbital, respectively. In

the following a brief overview of these basis sets is presented.

In Eq. 2.1.28, beside using numerical methods, another approach to make the calcu-

lations computationally feasible is to expand the Kohn-Sham orbitals via a linear com-

bination of analytic functions, χLCAO, called linear combination of atomic orbitals

(LCAO) [91]:

φKS
i =

Nbasis∑
j=1

cijχ
LCAO
j , (2.1.53)

where Nbasis and cij are the number and coefficients of basis functions, respectively. In

principle, if an infinite number of basis functions could be used, the exact Kohn-Sham

orbitals would be obtained. Nevertheless, usually a certain number of basis functions

is employed which balances between both accuracy and computational speed. Using the

LCAO method, the Kohn-Sham equations can be converted from a non-linear to a linear

eigenvalue problem as [91]:

F̂KSC = ŜCεi, (2.1.54)
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where C is the expansion coefficient matrix, εi is the diagonal matrix of Kohn-Sham

orbital energies and the two operators of F̂KS (Kohn-Sham matrix) and Ŝ (overlap matrix)

are defined as below [91]:

F̂KS
ij =

∫
χ∗LCAO
i (~r)

[
− 1

2
∇2 + Veff(~r)

]
χLCAO
j (~r)d~r,

Ŝij =

∫
χ∗LCAO
i (~r)χLCAO

j (~r)d~r.

(2.1.55)

Figure 5: Plots of STO and GTO basis func-

tions.

Usually, in most of the density- and wave

function-based methods, the basis functions

have the general form of Gaussian-type-

orbitals (GTO) which in the cartesian coordi-

nate (x, y, z) are given by [91]:

χGTO(~r) = Nxlymzne−αr
2
, (2.1.56)

where N is a normalization factor, α is the or-

bital exponent and L = l+m+ n is the angular

quantum number. Since there are many efficient algorithms to solve eigenvalue prob-

lems using the GTO basis functions, these basis sets are popular. Another popular set of

basis functions are referred to as Slater-type-orbitals (STO) since they reflect an exact

representation of the hydrogen atomic orbital. Moreover, their functions show a correct

cusp behavior as a discontinuous derivative at r = 0 with an exponential decay while the

GTO has a zero slope at r = 0 point with a rather steeper decay (see Fig. 5). The STO

basis functions in spherical coordinates (r, θ, φ) have the following form:

χSTO = NYlm(θ, φ)rn−1e−αr, (2.1.57)

where Ylm(θ, φ) represents the spherical harmonics for the angular momentum part and

the rest are similar to the GTO. It has been shown that in order to achieve reliable re-

sults, the number of basis functions in the form of the GTO must be 3 times larger than

the STO [92]. Due to lack of analytical integrals for the STOs, however, they have to be

dealt with numerically. In order to have the advantages of both of these basis functions,

contracted Gaussian functions (CGF) consisted of several Gaussian functions were in-

troduced. The contraction coefficient can be chosen in a way that the whole basis sets

mimic the features of STOs. The SeqQuest DFT code which is used in several parts of this

thesis, employs CGF basis functions. In particular, its basis orbitals are real spherical

harmonics multiplied by CGF basis functions.
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It is also well established to employ non-localized plane wave basis sets which are ex-

panded through the whole space. The general and extended form of plane wave are

provided in section 2.1.9, Eqs. 2.1.47 and 2.1.50. In principle, an infinite number of

plane waves is required for the expansion of Bloch wave function. However, in real ap-

plications, it is limited to a certain number of plane waves which can be determined in

such a way that includes only those with kinetic energies smaller than a desired specific

energy cutoff (in eV) according to:

Ecutoff ≥
~2

2m
|~G|2. (2.1.58)

Many of the calculations in the present thesis were performed using VASP DFT code which

employs plane wave basis sets.

2.2 Ionic Conductivity

Figure 6: Four most common defect types in

solids in the case of Li2S. (a) Li vacancy (b) in-

terstitial Li (c) Li Frenkel pair and (d) Schottky

defects. Li, S and Li-vacancy are shown with vi-

olet, yellow and white, respectively.

As mentioned earlier, ionic and electronic con-

ductivity play an important role in determin-

ing the performance of battery systems. In this

section, an overview of the mechanisms of for-

mation and migration of defects is presented

and it is discussed how using ab initio-based

calculations, these properties can be evalu-

ated. In fact via multiscale modeling, macro-

scopic properties such as conductivity can be

estimated using the inputs which are obtained

from ab initio-based calculations.

In a defective crystal, ions (or defects) migra-

tion can mainly take place via the vacancy or

the interstitial hopping mechanisms [4]. In

the vacancy mechanism, due to thermal driven

vibrations, an ion from a defect-free crystal is

removed and a vacant site is created. Another

nearby ion can then hop to this vacant site and fill it, while leaving its original position

empty. This is also considered as vacancy diffusion, although the actual movement be-

longs to the ion. In the interstitial mechanism, thermal vibrations of ions may cause

another ion to move out from its equilibrium position, occupies an interstitial site and
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finally hops to the next nearest interstitial site. If the original site becomes empty (for-

mation of vacancy), the combination of these two defects (vacancy and interstitial) forms

a Frenkel pair defect and is usually referred to as the Frenkel mechanism. This type

usually forms in solids in which anions are much larger than cations (e.g. ZnS). In the

Schottky mechanism, which is in fact formation of vacancies, a pair of cation and anion

is missing from the lattice. This type often appears in solids in which the sizes of anions

and cations are similar (e.g. KCl) (see Fig. 6). An especial form of an interstitial mecha-

nism, which occurs in a cooperative multi-particle manner with a synchronized fashion

and is usually observed in solid electrolytes, is referred to as the “knock-off” mechanism

[93]. Depending on the type and nature of a crystal, any of the mentioned mechanisms

might have lower activation energy, i.e. sum of the formation and migration energies,

and thus could be the determining mechanism for ionic transport [4].

Ionic conductivity as a function of diffusivity, carrier concentrations and tempera-

ture can be obtained using the Nernst-Einstein relationship [3]:

σ =
∑
i

q2
i F

2

kBT
ciDi, (2.2.1)

where qi is the charge of the carrier, F and kB are the Faraday and Boltzmann constants,

respectively, T is the absolute temperature (in Kelvin), ci is the concentration of charge

carriers (defects) and Di is the diffusion coefficient (with a SI unit of
m2

s
). The summation

runs over all available types of charge carriers. It can be seen that the conductivity (σ) is

influenced by two main factors, namely the diffusivity (Di) and the carrier concentrations

(ci). The diffusivity (Di) in solids , which represents the kinetic of the system, is described

by means of an Arrhenius-type relationship as [3]:

Di = D0e
−

∆EiM
kBT , (2.2.2)

in which, D0 is the exponential pre-factor (or maximal diffusion coefficient and is temper-

ature independent) and ∆EiM represents the migration energy (diffusion energy barrier)

of charge carriers (or defects). The carrier concentrations (ci) is determined by the

thermodynamic of the defects (as the charge carriers) which is represented by the defect

formation energy (∆EiF) and maximum concentration (c0) as [3]:

ci = c0e
−

∆EiF
kBT . (2.2.3)

The activation energy, i.e. sum of the formation and migration energies of defects, can

be obtained using ab initio-based calculations. This is where the defect formation energy
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(Zhang-Northrup) equation for obtaining the ∆EiF [94, 95] and transition state theory for

formulating the ∆EiM [96, 97] are employed.

In the following sections, first the methods for estimating the stability of surfaces and

interfaces are discussed and then the approaches for calculations of defects formation

and migration energies are explained.

2.2.1 Thermodynamics of Surfaces and Interfaces

In the first section of the results chapter, stability of the surfaces and interfaces in the

case of crystalline Si surfaces and amorphous-Li2Si/crystalline-Si interfaces are stud-

ied. Therefore, it is necessary to provide a short overview of the basic thermodynam-

ics. As DFT only covers the microscopic scale while thermodynamic properties are nor-

mally classified in macroscopic scale, a general connection has to be established between

them. Moreover, as it can also be seen from the Kohn-Sham formalisms, DFT is a zero-

temperature and -pressure method for the calculation of the ground state energy. In the

following section, it is explained how these two subjects can be linked.

The key concept to connect micro and macro scales in which the DFT output can be

employed as the thermodynamic input is the Gibbs free energy (G) [98]:

G(T, P ) = (Epot + Ekin)− T (Svib + Sconfig) + PV = U − TS + PV. (2.2.4)

In this equation, Epot is the potential energy (total energy) of the system with respect to its

constituent nuclei and electrons in a steady state, Ekin is the kinetic energy of the system

(sum of the vibrational, transitional and rotational energies of atoms or molecules in the

system), T is the temperature and Svib, Sconfig, P and V are vibrational and configurational

entropy, pressure and volume, respectively. In a system which consists of n species, a

change in the Gibbs free energy can be written as [98]:

dG = −SdT + V dP +

n∑
i=1

µidNi, (2.2.5)

in which, µi and N are the chemical potential and number of atoms for i th species. If

pressure and temperature are kept constant then the above equation is simplified to:

dG|T,P =

n∑
i=1

µidNi, (2.2.6)

which shows that under these conditions, only a change in the chemical potential can

lead to a change in Gibbs free energy of the system. If the system is in equilibrium,
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which can exchange particles with its environment, the change in Gibbs free energy is

zero (dG = 0), thus the following expression holds:

n∑
i=1

µidNi = 0. (2.2.7)

Therefore, the chemical potential is given by:

µi =
∂G

∂N
|T,P . (2.2.8)

So far, the properties related to bulk phases without any contributions from surfaces

and/or interfaces are shown. Now it is explained how to deal with the thermodynamics

of surfaces and interfaces. This is important because if we aim to study, for example,

nanostructures, stability of surfaces and interfaces play an important role. Therefore, a

description should be presented with which we could show whether or not a surface or

an interface can be formed from thermodynamic point of view. To do so, the definition

of surface free energy, which is obtained from the following equation, can be evaluated

[98]:
γsurface(T, P ) =

1

2A

[
Gsurface(T, P,Ni)−

n∑
i=1

µiNi(T, P )

]
. (2.2.9)

Figure 7: Example of an asymmetric in-

terface in a metallic system. Interface re-

gion is indicated with a red rectangular.

In this equation, Gsurface is the Gibbs free energy of

the surface (which can be modeled by a slab, see

section 2.1.8) and µi is the chemical potential of i th

specie. Ni is the total number of atoms for the i th

specie. In this expression, γsurface is normalized with

respect to the surface area (A) of the slab model,

thus it has the unit of energy per area. The 1/2

factor in Eq. 2.2.9 rises from the fact that the sym-

metric slab model has two identical sides. In case

of asymmetric slabs, the value of surface free en-

ergy will be in fact the average of both surfaces. A

smaller value of γsurface shows more stability of that

surface. Usually in the ab initio modeling of materials, it is common to use the DFT total

energy instead of Gibbs free energy, since other contributions in Eq. 2.2.4 in case of

solids can be disregarded, however, it is possible to introduce them as well. Therefore,

Eq. 2.2.9 can also be written as:

γsurface =
1

2A

[
Esurface − nEbulk

]
. (2.2.10)
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In Eq. 2.2.10, Esurface is the total energy of a slab model consisting of n unit formula and

Ebulk is the total energy of bulk per unit formula. With the same procedure, the interface

free energy (γint) (see Fig. 7) is also given using the equation below:

γint =
1

2A

[
Eint − n1E

a
bulk − n2E

b
bulk

]
. (2.2.11)

where Eint is the total energy of the interface model and Eabulk and Ebbulk are the total

energies of bulk materials where the surfaces are truncated from. Both Eqs. 2.2.10 and

2.2.11 can be applied for stoichiometric surfaces. In publication A1, stability of surfaces

and interfaces using the presented approaches in this section are estimated.

2.2.2 Atomistic Thermodynamic: Defect Formation Energy

In the second section of the results chapter, i.e. publication A2, formation and migra-

tion of different types of defect (both in charged and neutral states) are evaluated. The

discussion of defect migration is covered in section 2.2.3 while in this section it is first

shown how to deal with the calculation of defect formation energy.

Formation energy of defects in a neutral system (supercell) can be calculated using

the following equation [94, 95]

∆EiF = Eitot − E
pr
tot ±

∑
i

niµi. (2.2.12)

In this equation, Eitot and Epr
tot are the total energies of the defective and defect-free (pris-

tine) systems, respectively. Also, ni and µi are number and chemical potential of each

defect type, respectively. The
∑
i

runs over all type of defects. Obtaining the ∆EiF using

Eq. 2.2.12 for the neutral supercells is straight-forward, however, since in this thesis

bulk Li2S is modeled using periodic charged supercells as well, special procedures in

this case must be considered due to the three following problems:

1. If the defects (more accurately, the supercells) would be charged, a neutralizing

background charge (jellium) must be defined which makes the electrostatic energy

per unit cell to be finite. Without this background charge, due to a strong charge-

charge repulsion between two adjacent cells, the total energy calculation diverges

and supercell collapses. As the result of the unphysical interactions between the

charged defects in periodic cells (images) with each other and with the jellium back-

ground charge, an energy correction (Ecor) term has to be introduced in Eq. 2.2.12.
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2. In charged-supercells calculations, the charge states of the pristine and defective

systems are not the same. Therefore to have a proper description, the chemical

potential of electrons (Fermi energy, εF) should be introduced in the Eq. 2.2.12.

3. The electrostatic potentials (∆Vq/0) of pristine and defective cells have to be

aligned.

Thus, the general form of Eq. 2.2.12 is written as:

∆Ei,qF = Ei,qtot − E
pr
tot ±

∑
i

niµi + q(εF + εVBM + ∆Vq/0) + Ecor. (2.2.13)

In this equation, q, εF , εVBM, ∆Vq/0 andEcor are the charge of defects, Fermi energy, valence

band minimum, potential alignment and the energy correction, respectively. The second

problem is already addressed in Eq. 2.2.13 (with the fourth term). In order to tackle the

first and third issues mentioned above, the method of correction developed by Freysoldt,

Neugebauer and Van de Walle, referred to as FNV [99, 100], is briefly explained.

One of the drawbacks of the supercell approach is the finite unit cell size effect. This

means that in the case of defective systems, an isolated defect in the bulk is in fact re-

peated infinitely in 3D and this causes the defect concentration to artificially and largely

increases. Therefore, across adjacent cells, there is substantial interaction between de-

fects, such as overlap of wavefunctions and strain fields (is discussed in section 2.3).

If these defects have a positive or negative charge, electrostatic interaction will also be

added to the mentioned defect-defect interactions. For the wavefunction and strain field

overlap between two defects, the remedy is to increase the size of the supercell to min-

imize the undesired image-image interactions. In the case of electrostatic interactions,

however, small increase in the cell size is not always the solution because both the long-

range defect-defect interaction and the interaction between the charged defect and the

background charge will not vanish easily, unless there would be special conditions such

as being in the very dilute limit and/or extremely large supercells [48, 101]. Therefore

for the calculation of the defect formation energy in charged state, a correction based on

the FNV method is employed which is defined as:

EFNV
cor = Elatt − q∆Vq/0. (2.2.14)

In this equation, Elatt for a point charge is equal to
q2α

2εL
in which q, α, ε and L are the

defect charge, Madelung constant (depends on the Bravais lattice), dielectric constant and

linear dimension of the supercell, respectively. In the Eq. 2.2.14, ∆Vq/0 is the potential
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alignment term (see Eq. 2.2.13) and can be obtained using the following equation at a

position far from the defect:

∆Vq/0 =
1

Ω

∫
Vsr(r)d

3r = (V DFT
q − V DFT

0 )|far − V model|far, (2.2.15)

where V DFT
q , V DFT

0 and V model are the potentials of defect charge, neutral case and model

charge, respectively. For localized defects, usually a Gaussian function with a small width

is chosen as the model charge. However, as long as the defect charge is well localized

within the supercell, regardless of the form of the model charge, a converged value for

the EFNV
cor is obtained. Due to the presence of a defect in supercell, local effects which

lead to differences between the DFT potential and the model potential appear. These

effects are mostly considered in the FNV scheme via an energy term, which can be mainly

disregarded if the model supercell is large enough (usually more than 10
◦
A).

In the second section of the results chapter, the above mentioned procedure is used to

study the defect chemistry in bulk Li2S (publication A2). An important fact that should be

noted is that the FNV method is very sensitive to the values of Fermi energy (εF), valence

band maximum (VBM) and dielectric constant (ε), therefore, the mentioned properties

should be computed with great precision.

2.2.3 Atomistic Kinetic: Transition State Theory and Diffusion

Figure 8: Example of a random potential

energy surface adopted from Matlab database

[102]. Points “A” and “B” show the global and

local minima while solid circle points “1” and “2”

indicate the saddle points, respectively.

Atoms in a crystal show thermal vibrations,

which increase at elevated temperatures. How-

ever, not all of these vibrations will lead to

successful jumps which contribute to charge

transfer and hence chemical reactions. In

fact, only a small number of these jumps

will contribute to the total conductivity in

solids. Therefore, a method should be applied

so that the successful jumps can be distin-

guished from the others. Transition state

theory (TST) solves this problem by exclud-

ing those successful contributing events from

all other unimportant vibrations. Before going

into more details, the concept of a potential

energy surface (PES) is explained [103]. The mathematical description which expresses
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the energy of a system of atoms as a function of their geometries (E(~r)) is referred to as the

potential energy surface (PES). This potential energy does not change in cases of transla-

tion and/or rotation of the system and it only depends on the internal coordinates of the

atoms. Therefore, it depends on 3N − 6 coordinates, where three translations and three

rotations are excluded (N is the number of atoms) [103]. In this representation which is

similar to a topographical map, the status of the system is assumed to be similar to a

small ball moving on this topography. If there is not enough energy, for example, at point

“B” in Fig. 8 and the ball is expected to move towards point “1”, it will permanently stay

in basin “B” [97, 103, 104]. What TST in fact provides, is the estimation of the rate at

which system is required to move from basin “B” towards point “1” at a fixed temperature.

The effect of temperature is similar to kicking the ball. If the kick is strong enough, it

will cause the ball to move forward [97, 103, 104]. Transition state theory can not be

used to calculate the amount of energy which is needed to move a particle from one basin

to another in case any additional factor such as temperature is involved [97, 103, 104].

Therefore, without considering the effect of temperature, the energy barrier, which the

reaction needs to overcome, can be calculated using the following relationship:

∆EM = ES
tot − EI

tot, (2.2.16)

where ES
tot is the total energy of the system in the saddle point (or transition state, e.g.

point “1” in Fig. 8) and EI
tot is the total energy in the initial state (e.g. point “B” in Fig. 8).

As it can be seen from Fig. 8, finding the correct path and transition point between two

basins with minimum energies is not a trivial task since there could be many ways to

move from the initial to the final state [105].

One common technique for finding the diffusion mechanism and pathway is called

the nudge elastic band (NEB) method [97, 104]. In the NEB method, the whole reaction

path is established between the initial and the final states. In this method, a string of

images between initial and final states is created. For these images, one spring between

successive points is assumed to keep the distance between the images equally fixed [97,

104]. Thus, it acts similar to an elastic band. All these images receive two sources of

force, one from the hypothetical spring between them and one due to the potential energy

acting on them, which they try to minimize. The nudging (force projection) approach is

then divided into two parts, one along the images (band) coming from the spring and the

other on the images from the potential energy in all directions perpendicular to the path

[97, 104].
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In some cases where the normal NEB method fails to point out the true saddle point,

a modified NEB may be applied. This scheme is called climbing nudge elastic band

(Cl-NEB). In this method, the shape of the minimum energy path is conserved and

Figure 9: Comparison between NEB and Cl-NEB

methods for the dissociation of CH4 on Ir(111) surface

from reference [97]. The NEB method results in a lower

energy barrier due to the inaccurate saddle point.

other images help to find the reaction co-

ordinates around the saddle point. By

converging the energies in the Cl-NEB

method, the image with the highest en-

ergy will converge to the energy of the sad-

dle point. Fig. 9 (from reference [97])

shows the difference between the regular

and climbing NEB schemes. In Fig. 9, the

dissociated H+ and CH−3 radicals on a top-

site position over Ir(111) surface and CH4

molecule with 4
◦
A distance from the Ir(111)

surface correspond to 0.0 and 1.0 reaction

coordinates, respectively. Since the num-

ber of images in both methods are the same and equal to 8 (first and last points are the

initial and final state), the reaction coordinates and pathways are the same. However,

since in the Cl-NEB method one image is shifted to the right side of the saddle point, it

actually shows the transition state much more precisely [97].

Both NEB and Cl-NEB methods are implemented in most DFT-codes. In this thesis

and within all publications, the calculations for determining the energy barrier of Li and

hole-polaron migrations are performed using both NEB (as the initial step) and Cl-NEB

(as the complementary step) implemented in VASP and SeqQuest.

2.3 Effect of Stress/Strain on Conductivity

2.3.1 Stress/Strain Relationship

The mechanical definition of stress (σ) is the applied force over a specific area (σ =
F

A
with

the SI unit of
N

m2
). From the atomistic point of view, stress is referred to as the interatomic

forces, which are transferred between atomic species, per unit area and are eventually

applied to the unit cell (or supercell) boundaries. Fig. 10-a shows a schematic view of

the general definition of stress. Three main forms of stress are compression, tension and

shear as shown in Fig. 10-b. Usually in battery materials, the appearance of the first two
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types of stress is more common. When any type of stress is applied to a material, depend-

ing on its elastic modulus (also called Young’s modulus or tensile modulus), a certain

(a)

(b)

(c)

Figure 10: (a) Schematic of applied force at

the cross-section and the resulted stress. (b)

Schematic of three different types of stress. (c)

Stress/strain plot for a ductile material [106,

107].

amount of strain appears in that material. If

this stress (or strain) does not exceed a cer-

tain limit so that the material is not perma-

nently deformed, i.e. the material stays in the

reversible elastic regime and will return to its

initial shape when the stress is removed, the

following relationship for a uniaxial stress will

be established as [106, 107]:

E =
σ

ε
, (2.3.1)

where elastic modulus (E) and stress (σ) have

the same unit of pressure (e.g. Pa), thus strain

(ε) is a dimensionless property and is defined

as:

ε =
dl

l0
, (2.3.2)

in which dl is the change in length and l0 is

the initial dimension. Stress/strain, similar to

most of the materials properties, are direction

dependent, thus they cannot be expressed as

scalars but have to be dealt with in the form of

tensors. Generally stress/strain can be shown

in a second-rank tensor with 9 components

and if they can be mapped in a space where

all the points can be corresponded to a spe-

cific component of stress/strain, they are also

referred to as stress/strain fields [108].

Fig. 10-c shows the deformation of a ductile

system as a function of an uniaxial load. This

plot consists of several zones. The first part,

from the origin up to the point P, is the linear

elastic region where stress and strain are proportional to each other and Eq. 2.3.1 is

applied. From point P to S is referred to as the non-linear elastic region. Beyond point S,
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if the load on material is removed, it will not return back to its original shape. The max-

imum load that a material can tolerate before permanently entering the plastic region is

called the yield strength. From point S to fracture point is the plastic region where the

corresponding load causes permanent deformation to the material. Ultimate strength

is the maximum amount of load that a material can tolerate before it breaks. In bat-

tery materials, the generated stress/strain during the lithiation/delithiation processes

should be in the elastic region (up to the point S), otherwise, destruction of the battery

is expected.

The stress/strain relationship in the elastic region for a continuous medium obeys the

Hook’s law. In the Hook’s law, the force and displacement of a spring are related through

a spring constant (k). In a continuous medium, it is also established that the applied

stress and generated strain are related through the elastic constants or stiffness tensor

(c). Opposite to the case of a spring where k is defined by a one-dimensional vector, c for

a material is described by a fourth-order tensor. The continuous form of Eq. 2.3.1 in the

elastic region is then expressed by [106, 107]:

σij =
3∑

k=1

3∑
l=1

cijklεkl with i & j = 1, 2, 3. (2.3.3)

In this equation, stress (σij) and strain (εkl) are second-order tensors. In general, the

stiffness tensor (cijkl) is represented by a tensor with 81 components and due to the

symmetry of crystals, the number of these components can be reduced. For example

in the case of hexagonal systems (e.g. in LiCoO2), full elastic constants are defined by

only five independent components (namely, c11, c12, c13, c33, c55, shown with Voigt notation).

Finally, The change in the energy of a system due to the applied strain, which is referred

to as the elastic energy, is given by [106, 107]:

E(V, ε) = E(V0, 0) +
1

2
V0

(∑
αβ

cαβεαεβ

)
, (2.3.4)

where εα and εβ are second-order strain tensors and V0 is the initial volume. The elastic

energy (E(V, ε) in Eq. 2.3.4) is in fact the area under the curve of Fig. 10-c within the

linear elastic region.

2.3.2 Elastic Dipole Tensor

Creation of point defects causes two phenomena. The first one is a short-range local

distortion (strain) around the defect site and the second one is a long-range lattice dis-

tortion. The latter induces changes in the cell parameters which result in a volume
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change, called “formation volume”. One theoretical approach to calculate the formation

volume is using the concept of “elastic dipole tensor (G )”. The name comes from the

analogy of the interaction between an electric field and electric dipole moment. Here, the

interaction is between a strain field and a defect. For the calculation of the elastic dipole

tensor, Taylor expansion of the free energy per unit volume and density of defects (nd) is

considered. By disregarding the entropy contributions at 0 K, the following expression is

established [109, 110, 111]:

E(nd, εij) =Ep ± ndµd +
∂E

∂nd
nd +

1

2

∂2E

∂n2
d

n2
d + . . .+

∑
i,j

∂E

∂εij︸︷︷︸
σij≈0

εij

+
1

2

∑
i,j

∂2E

∂εij∂εkl
εijεkl + . . .+

∑
i,j

∂2E

∂nd∂εij
εijnd.

(2.3.5)

In this equation, Ep is the total energy of the strain- and defect-free system, µd is the

chemical potential of defect,
∂E

∂nd
= ∆EF is the strain-free defect formation energy,

∂2E

∂n2
d

=

Edd is the strain-free interaction energy between two defects,
∂E

∂εij
= σij is the stress of

the system and vanishes in the absence of a defect,
∂2E

∂εij∂εkl
= cijkl is the stiffness tensor

of the material and finally
∂2E

∂nd∂εij
=
∂σij
∂nd

= −Gij is the elastic dipole tensor. Therefore, it

can be seen that Gij describes the interaction of a defect with a strain field and depends

on the density of defects.

To calculate the elastic dipole tensor in this thesis, the strain-controlled method is used

where the first derivative of E(nd, εij) (from Eq. 2.3.5) with respect to a fixed strain is

considered:

σij ≡
∂E(nd, εij)

∂εij
=
∑
kl

Cijklεkl − ndGij = σ0
ij − ndGij . (2.3.6)

For a given supercell and density of defects, the elastic dipole tensor can then be calcu-

lated using the following equation [109, 110, 111]:

Gij = −∂σij
∂nd

∣∣∣∣
εij

= − 1

nd
(σd
ij − σ0

ij) = −V0∆σd
ij , (2.3.7)

in which V0 is the volume of the supercell, σd
ij is the stress of the defected cell and σ0

ij

is the stress of the defect-free cell (which is almost equal to zero). An important result

obtained from this description is the change in the energy due to the interaction between

a defect and applied external strain (disregarding the bulk contributions) by means of Gij

which can be written as [109, 110, 111]:

∆E = −
∑
ij

Gijεij = −tr(G · ε). (2.3.8)

36



This equation can then be used to reformulate the previous equation for the calculation

of diffusion energy barrier (∆EM) in the presence of strain. By referring to Eq. 2.2.16:

∆EM = ES
tot − EI

tot,

ES
tot is the total energy of the system in the saddle point and EI

tot is the total energy in the

initial state. For a system under strain, the energy barrier can be calculated using one

of the following approaches:

(1) Direct evaluation by applying a particular strain to the simulation cell, recalculating

the total energies for the two states with the new cell geometries and using Eq. 2.2.16 or,

(2) Using Eq. 2.3.8 to reformulate Eq. 2.2.16 as the following form [112]:

∆EM(εij) = ∆EM(ε = 0) + ∆E = [ES
tot − EI

tot]− [GS
ijεij −GI

ijεij ]

= ∆EM(ε = 0)−∆GM
ij εij .

(2.3.9)

The second approach is computationally much more efficient, especially if there is a

complicated strain field involved since there are only a few DFT calculations are needed:

First, the energy barrier for the unstrained case using NEB method has to be calculated

(∆EM(ε = 0)). Second, using the coordinates obtained from the NEB calculation of the

unstrained case, elastic dipole tensor at initial and transition state is computed and

finally using Eq. 2.3.9 we can analytically predict the variation of energy barrier as a

function of strain.

The formation energy of defects as a function of strain can also be predicted using

this approach. The strain-free equation for the calculation of defect formation energy

(Eq. 2.2.13 from section 2.2.2) is reminded:

∆Ei,qF (ε = 0) = Ei,qtot(ε = 0)− Epr
tot(ε = 0)±

∑
i

niµi + q(εf + εV BM + ∆Vq,0) + EFNV
cor .

Considering Eq. 2.3.8, Eq. 2.2.13 for the strained case can be written as the following

form:

∆Ei,qF (ε) = ∆Ei,qF (ε = 0)− nd
∑
ij

Gijεij . (2.3.10)

To sum up, it is demonstrated how using the elastic dipole tensor (EDT) method,

computationally demanding calculations for the coupling between applied external strain

and defect formation and migration energies can be evaluated. In the publications A4

and A5, the EDT method is employed to first obtain the Gij and afterwards to estimate

the influence of strain on conductivity of the charge carriers in bulk LiCoO2.
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2.4 Electronic Conductivity

The origin of electronic conductivity in materials is diverse and system-dependent. In

metals, according to the Drude’s model, the electronic conductivity is assumed as a clas-

sical pinball model and caused by the constant movements of the “electrons sea” which

hits and bounces off the heavy immobile particles (positive ions) [113]. In intrinsic semi-

conductors, since the number of free electrons is much smaller than metals, they are

generally poor electronic conductors. The position of the Fermi level in intrinsic semicon-

ductors lies in the middle of the band gap. Nevertheless, their electronic conductivity can

increase by adding certain impurities, which turns them into extrinsic semiconductors,

or by increasing the temperature. In fact, by doping intrinsic semiconductors with impu-

rities (either n- or p-type), electrons may be added to conduction band or holes to valence

Figure 11: Schematic of band filling for

different types of materials. From left to

right, metals, p-type, intrinsic and n-type

semiconductors and insulators are shown.

band, respectively (see Fig. 11) [114].

In the case of highly polar semiconductors, when

a dopant (e.g. electron donor) is introduced in a

crystal, it interacts with the positive and negative

ions in the structure of the host material. Conse-

quently, due to the Coulomb interactions, the extra

electrons coming from the dopant will locally polar-

ize the host material in such a way that positive ions

are attracted to the extra electrons while negative

ions are repelled from them. Therefore, the intro-

duced electrons are surrounded by a cloud of vir-

tual phonon as a result of such polarization. The

combination of one electron and its virtual phonon is called a polaron (together are re-

ferred to as electron-polaron) [49, 50]. Depending on the size of the polarization cloud,

being smaller or larger than the structural units, “small or large polarons” are defined

[49, 50].

In the present thesis, the polaron formation is investigated in bulk-LiCoO2 which is

a highly polar semiconductor. In materials such as LiCoO2, due to the strong electron-

lattice coupling, immobilization of charge carrier (electron- or hole-polaron) occurs. In

fact, the very slow movement of electron (or hole) through the ions leads to ionic dis-

placements and creation of a potential well and eventually results in the trapping of

polaron in this potential well. This temporary immobilization is called self-trapped and

under certain condition (i.e. providing the required energy barrier) electron- (or hole-)
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polaron can jump from one self-trapped state to another [49]. It should be noted that in

(a)

(b)

(c)

Figure 12: (a) Schematic of polaron hop-

ping between two molecules A and B. (b)

Corresponding energy profile for electron-

polaron transfer for the same species of

part (a). (c) Mechanisms of adiabatic

and non-adiabatic (diabatic) charge trans-

fer [49, 115, 116].

spite of the fact that the generated strain due to

the atomic displacements can be energetically un-

favorable for the system, the self-trapped condition

causes a reduction in the total energy and makes it

energetically more favorable (compared to the case

where the particle is not self-trapped). The concept

of self-trapped small polarons is very helpful in ma-

terials modeling since it can be employed to predict

the electronic conductivity of semiconductors.

Before the details of polaron hopping are ex-

plained, which can eventually be used to calcu-

late the electronic conductivity, two main mech-

anisms of charge transfer, namely adiabatic and

non-adiabatic shown in Figs. 12-a to 12-c, are

discussed. Fig. 12-a shows the system in two

states. State A shows that electron-polaron is local-

ized on the left molecule and state B shows the sys-

tem after electron-polaron transfers [50, 115, 117].

The difference between these two mechanisms is re-

lated to the form an electron hops between the two

states. In the adiabatic process, the electron trans-

fers smoothly and without any quantum jump. In

the diabatic process, however, electron hops from

one state to the excited state and after oscillation,

it may jump to either side, depending on the energy

barrier. In Fig. 12-b, the dashed curve between

the two states shows the adiabatic transfer result-

ing from the overlap of the two states. ∆Ep
M is the

energy barrier of electron (or hole) hopping and t is

the transfer integral (electron coupling) which is a

measure for the degree of the orbitals overlap. In

the adiabatic process, the transfer integral decreases the energy barrier and results in a

successful electron transfer. During this process, the oxidation state of the central atom,
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where electron-polaron is formed, changes. Due to the absence of excited state and the

mentioned smooth transfer of electron-polaron, the transition state theory within the

framework of the DFT in the case of adiabatic process can be employed. In other words,

NEB method can be utilized to determine the migration energy of the adiabatic process

[49, 50, 117].

After the energy barrier for the electron- or hole-polaron migration is determined,

using the following equation, electronic conductivity can be calculated for most of the

semiconductors:

σ = neµd(T ), (2.4.1)

where n is the concentration of electrons (or holes), e is the charge of an electron and

µd(T ) is the electron (or hole) temperature-dependent mobility. To calculate the mobility

of electron- or hole-polaron in the adiabatic regime, the following Arrhenius equation is

used:

µd(T ) =

[
ega2ν0

kBT

]
exp

(
−∆Ep

M

kBT

)
, (2.4.2)

in which, a, g, ν0 and kB are the hopping distance, geometric factor determined by vector

analysis, characteristic phonon frequency and Boltzmann constant, respectively. T and

∆Ep
M are temperature and polaron hopping energy barrier.

The above method is employed in the publication A5 in order to estimate the electronic

conductivity in bulk LiCoO2. In addition, coupling between stress/strain and migration

of polaronic defect is performed using the elastic dipole tensor method.
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3 Results and Publications

In this chapter, after literature review and summary of the results, five publications

within the context of “charge transport in Li-based batteries” are provided. The results

presented in this chapter are categorized into the following three main sections:

1. Lithiation of silicon (A1),

2. Defect chemistry in Li2S (A2),

3. Mechanism of Li diffusion in bulk and the most stable surface of LiCoO2 as well as

investigation of the effect of stress/strain on the ionic and electronic transport in

bulk LiCoO2 using the concept of “elastic dipole tensor” (A3, A4 and A5).

3.1 Literature Review

Publication A1

In the previous studies, lithiation of (111) and (100) surfaces of c-Si [118, 119], as well as

amorphous bulk [120, 121], Li-Si alloy [23, 122] and nanostructures of silicon [123, 124]

have been investigated. My colleagues, Rohrer et al., in a theoretical study have shown

that the lithiation of c-Si results in the formation of a two-phase model consisting of c-

Si/a-Li2Si [23]. Formation of Li2Si is in agreement with the work of Kim et al. [122]. In

a study by Chan et al. [125], lithiation of c-Si and formation of LixSi phase using density

functional theory calculations have been reported. However, due to the small size of their

model, the amorphous nature and stoichiometry of LixSi can not be correctly evaluated.

Publication A2

A study of defect chemistry using ab initio-based calculations in Li2S has not been per-

formed so far. In a comprehensive experimental study, Xu et al. have reported the for-

mation of Li2S around S8 molecule as a two-phase shell/core structure [19]. They have

shown that the formation of Li2S as a crust around S8 will hinder further lithiation of

sulfur. Yang et al. have discussed the decrease in discharge capacity in Li-S batteries

due to the formation of solid Li2S and Li2S2 precipitation on the cathode side [20]. Both

these studies imply the low ionic conductivity in Li2S.
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Publications A3-A5

In several experimental and theoretical studies, the phase stability in bulk [126], for-

mation and stability of different surfaces [127] and Li migration in bulk and thin films

of LiCoO2 (LCO) [128, 129] have been reported. However, lithiation/delithiation of LCO

at its most stable surfaces, effects of the magnetic and non-magnetic defect states as

well as DFT functional corrected with an onsite Hubbard term for Co on Li migration

and effect of stress/strain on the electronic and ionic conductivity of LCO have not been

deeply investigated so far. Li diffusion in bulk-LCO has already been investigated using

DFT calculations in the study by Van der Ven et al. [128], however in their work, mag-

netic properties of LCO upon lithiation/delithiation and effect of spin polarization and XC

functionals on migration energy barrier of Li have not been discussed. Moreover, Kramer

et al. using theoretical methods have investigated various surfaces of LCO-nanoparticles

and found that in a reasonable chemical potential range of Li and O, (0001) and (101̄4)

surfaces are the most stable ones [127]. However, based on its crystal structure, only

the (101̄4) surface of LCO is active for Li migration which is not investigated so far.

The effect of strain on Li ion migration in bulk-LCO has been studied by Ning et al.

[130]. They have shown that Li ion migration barrier decreases significantly when ten-

sile stress is applied along the c-axis direction and changes the diffusion coefficient by

several orders of magnitude at room temperature. However, they have only employed the

conventional method (NEB at each strain regime) which is computationally demanding.

Although, they have not discussed the effect of strain on the defect formation and hence

the total activation energy. Electronic conductivity of LCO and effect of strain on it have

also not been studied so far.

3.2 Summary of the Results

By using silicon nanostructures, it is feasible to greatly overcome the problem of low

mechanical stability in silicon anodes during the lithiation process [30, 32]. Lithiation

of crystalline silicon nanowires (c-Si) is initially accompanied by the formation of amor-

phous Li2Si (a-Li2Si) which leads to the existence of a core/shell two-phase structure.

Further lithiation of c-Si takes place through the movements of a-Li2Si/c-Si interfaces.

Further studies indicated that in silicon nanowires, an anisotropic expansion occurs at

the interfaces of the mentioned core/shell structure during further lithiation process

which is orientation dependent (see Fig. 3 in chapter 1) [26, 33, 34]. The origin of this
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orientation dependent mobility of interfaces which can eventually lead to the deformation

of silicon nanowires is not well understood. In publication A1, using density functional

theory calculations, first the lithiation of the three most stable surfaces of crystalline

silicon (c-Si) is studied. It is found that the Li adsorption initially starts on the (110)

surface of clean c-Si. The minimum energy barrier for the Li diffusion also belongs to

the (110) surface at high Li concentration. Afterwards, by creating an explicit two-phase

core/shell model with c-Si as core and a-Li2Si as shell, thermodynamic and kinetic of the

further lithiation of silicon nanowires are evaluated [35]. Results show that the origin of

the orientation-dependent lithiation of silicon nanowires is not due to a faster Li diffusion

at the interfaces of a-Li2Si/c-Si but rather is the consequence of various interface forma-

tion energies. It is shown that since a-Li2Si/c-Si(110) interface has the highest formation

energy among the others, it is less stable, i.e. more mobile, and therefore the growth of

silicon nanowire during the lithiation process occurs faster along (110) direction. It is

also revealed that the values of the energy barrier for Li migration at all of the three

interfaces, opposite to their corresponding c-Si surfaces, are non-uniformly distributed

which is related to the amorphous nature of Li2Si phase.

In the publication A2, defect chemistry and various mechanisms of 3D Li diffusion

in Li2S using density functional theory calculations together with thermodynamic and

kinetic considerations are investigated [22]. The aim is to unveil the origin of the low

ionic conductivity in Li2S which has been observed in experiments [16, 17, 19]. In this

study, calculated formation energies of all possible defect types in Li2S as a function of the

chemical potential of Li (or cell voltage) are plotted. Using the defect stability diagram,

it is found that the most stable defect type in Li2S is a Frenkel pair (combination of

a charged vacancy and interstitial) with a very high formation energy of about 2.2 eV.

The most favorable migration mechanism is conducted by a single Li vacancy hopping

with the energy barrier of 0.27 eV, while the energy barrier of the exchange mechanism

(via interstitial Li) is found to be 0.45 eV. As a result, the high activation energy for Li

transport, i.e. ∆Hi = 1.42 eV which is the sum of the formation and migration energies

of a single Li vacancy, explains the reason behind the low ionic conductivity in Li2S.

In the third section of the results chapter, ionic and electronic migration together with

the effect of stress on the charge carriers mobilities in LiCoO2 cathode material are in-

vestigated. At first in the publication A3, the mechanisms of Li diffusion in bulk and the

most stable and diffusion-active, i.e. (101̄4) surface, of LiCoO2 are studied [24]. More-

over, the effect of using the PBE and PBE+U XC functionals as well as spin polarization
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are investigated. Results reveal that the most favorable Li diffusion mechanism in both

bulk and (101̄4) surface of LiCoO2 is the hopping of Li ions into a divacancy of lithium on

a curved pathway. It is observed that the spin polarization does not significantly affect

the Li migration energy. Furthermore, it is demonstrated that the PBE+U XC functional

provides contributions of both ionic and polaronic diffusion energy barriers. It is shown

that the Li diffusion on the topmost layer of (101̄4) surface due to a weaker Co-O bonding

takes place with almost zero energy barrier. However, by moving deeper into the layers

of (101̄4) surface, the Li migration energy increases.

As the last part of the results chapter, in publications A4 and A5, the effect of stress/strain

on the ionic and electronic conductivity in bulk LiCoO2 is discussed using DFT calcula-

tions together with the computationally efficient “elastic dipole tensor” approach [48,

51]. As the first step and in the publication A4, the unit cell size dependence of the

elastic dipole tensor in bulk LiCoO2 is investigated. It is shown that there is a massive

unit cell size effect for the computation of elastic dipole tensor in the dilute limit of defect

concentration. However, a uniform lattice extension towards the dilute limit can result

in a minimum coupling between the lateral and longitudinal components of stress which

leads to minimization of the unit cell size effect. Furthermore, effect of strain on both

formation and migration of Li vacancy with a specific concentration is estimated. It is

observed that the impact of strain on migration energy is dominant and opposite of that

on the formation energy. Moreover, it is revealed that the effect of stress on the ionic

conductivity in bulk LiCoO2 is significant. It is shown that by only 1% lateral tensile

strain, up to about 3 times increase in the ionic diffusivity and hence the conductivity

can be achieved. Effect of longitudinal strain on conductivity is even stronger.

In the publication A5, the electronic conductivity in bulk-Li0.98CoO2 using the small hole-

polaron hopping concept is estimated at 300 K to be 2.3-2.7× 10−4 which is in agreement

with experimental values of 1.0-3.3×10−4 [131, 132]. The effect of strain on the electronic

conductivity (polaron hopping) is also found to be significant but it is less pronounced

than that of the ionic one. It is proved that the elastic dipole tensor method for studying

the effect of strain on conductivity can be used for both cases, i.e. electronic and ionic

transports. In general, it is shown that independent of the type of the defect, in any sys-

tem with defect-induced stress, EDT method can be applied. The obtained results using

this method for both cases are in good agreement with the conventional computationally-

expensive method where the energy variations for each strain regime should be computed

separately.
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3.3 Contributions in the Publications

In the first publication (A1), I was the second author and responsible for all the DFT

calculations and analysis of structures, formation and migration energies at crystalline

Si surfaces as well as a-Li2Si/c-Si interfaces. The amorphous Li2Si was modeled by my

colleague, Dr. Rohrer, using DFT calculations in his previous work [23]. The atomic

structures of the crystalline silicon were prepared by me and the interfaces were con-

structed by Dr. Rohrer and then were given to me. In this manuscript, Figs. 1 to 4 and

table 1 were prepared by me and Figs. 5 and 6 by Dr. Rohrer. The idea of this work

belongs to Dr. Kaghazchi, Dr. Rohrer and Prof. Albe. The writing task was conducted by

Dr. Kaghazchi and Dr. Rohrer and commented by me and Prof. Albe.

The DFT calculations and preparation of figures and tables for the second and third

publications (A2 and A3) were completely conducted by me. The data analysis and inter-

pretation of the results were conducted by both me and Dr. Kaghazchi. The idea of both

works belongs to Dr. Kaghazchi. The writing task of both manuscripts were performed

mainly by him and partly by me.

The forth publication (A4) is a joint research. The idea belongs to Prof. Albe. It is

fully conducted and written by me at TU Darmstadt. Prof. Albe edited this manuscript

and Dr. Rohrer and Dr. Kaghazchi commented on it. In this work, Dr. Rohrer and Dr.

Kaghazchi also helped me with scientific discussions. At the time this thesis is being

submitted, publication (A4) was already reviewed by the referees and minor revisions are

requested. DFT calculations related to their comments are now being performed and the

new results will be added to the resubmitted version.

The idea of the fifth publication (A5) was proposed by Dr. Kaghazchi. It was completely

performed and prepared by me and he helped me with scientific discussions and data

analysis. This publication was written both by me and him.
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Section I:

– Lithiation of silicon
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3.4 Publication A1

“On the origin of anisotropic lithiation of silicon”

Jochen Rohrer, Ashkan Moradabadi, Karsten Albe and Payam Kaghazchi

Journal of Power Sources 293 (2015), pp. 221-227.

DOI: 10.1016/j.jpowsour.2015.05.057

URL: http://doi.org/10.1016/j.jpowsour.2015.05.057
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Section II:

– Defect chemistry in Li2S
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3.5 Publication A2

“Thermodynamics and kinetics of defects in Li2S”

Ashkan Moradabadi and Payam Kaghazchi

Applied Physics Letters 108 (2016), p. 213906.

DOI: 10.1063/1.4952434

URL: http://dx.doi.org/10.1063/1.4952434
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Section III:

– Li diffusion in bulk and the most stable surface of LiCoO2

– Effect of strain on the ionic and electronic transport in bulk

LiCoO2
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3.6 Publication A3

“Mechanism of Li intercalation/deintercalation into/from the surface of LiCoO2”

Ashkan Moradabadi and Payam Kaghazchi

Physical Chemistry Chemical Physics 17 (2015), pp. 22917-22922.

DOI: 10.1039/c5cp02246k

URL: https://dx.doi.org/10.1039/C5CP02246K
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3.7 Publication A4

“Influence of elastic strain on the thermodynamics and kinetics of lithium vacancy in

bulk LiCoO2”

Ashkan Moradabadi, Payam Kaghazchi, Jochen Rohrer and Karsten Albe

Submitted to Physical Review Materials in June 2017. Requested for minor revision

URL: https://arxiv.org/abs/1706.01709
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3.8 Publication A5

“Effect of strain on polaron hopping and electronic conductivity in bulk LiCoO2”

Ashkan Moradabadi and Payam Kaghazchi

Physical Review Applied 7 (2017), p. 064008.

DOI: 10.1103/PhysRevApplied.7.064008

URL: https://doi.org/10.1103/PhysRevApplied.7.064008
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4 Conclusion and Outlook

In this thesis, I employed density functional theory calculations in conjunction with ther-

modynamic and kinetic considerations to study mechanisms of charge transport and

conductivity in selected electrode materials for Li-ion batteries.

This dissertation consists of the following three different types of ionic migration: i. 3D

Li diffusion accompanied by chemical reactions in the case of Si anode (publication A1),

ii. 3D Li diffusion in low defect concentration without chemical reactions in the case of

Li2S cathode (publication A2) as well as iii. 2D Li diffusion in the dilute limit of defects

concentration without chemical reactions in the case of LiCoO2 cathode (publication A3).

The concept of elastic dipole tensor (Gij) and the effect of finite unit cell size on the compu-

tation of Gij in the dilute limit were explored in bulk-LiCoO2 (publication A4). Electronic

conductivity via hole-polaron migration was computed in bulk LiCoO2 using the concept

of self-trapped small polarons (publication A5). In addition, the effect of stress/strain on

both ionic and electronic conductivities were explored in bulk-LiCoO2 using the elastic

dipole tensor method (publications A4-A5).

In the publication A1, the origin of the experimentally reported anisotropic expansion

of silicon nanowires during the lithiation process was evaluated. In order to accomplish

this, thermodynamic and kinetic of Li migration at the surfaces of crystalline Si and at

the interfaces of an explicit two phase model between crystalline silicon (c-Si) and amor-

phous Li2Si (a-Li2Si) were investigated. This two phase core-shell (c-Si as core and a-Li2Si

as shell) system forms at the beginning and evolves during the lithiation process in sili-

con nanowires. The lithiation process and the corresponding anisotropic swelling occurs

through the non-uniform motion of the interfaces between a-Li2Si and c-Si. It is found

that Li is initially adsorbed on the (110) surface of c-Si and its diffusion energy barrier

on the fully covered (110) surface is less than that of (111) and (100) surfaces. Due to

the amorphous nature of the Li2Si phase, a range of values was obtained for the diffu-

sion energy barriers corresponding to the incorporation of Li from a-Li2Si into c-Si, i.e.

at the interfaces of the core/shell system. Results showed that the interface formation

energy of a-Li2Si|c-Si(110) is less favorable than a-Li2Si|c-Si(111) and a-Li2Si|c-Si(100) in-

terfaces. Therefore, it is concluded that the experimentally-observed anisotropic swelling

of silicon nanowires during the lithiation process is governed by thermodynamic factor,

i.e various interface formation energies, which are orientation dependent. In this study,

it was shown that the contribution of the 3D Li diffusion (kinetic) to the growth process
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is minimal.

In the publication A2, the stability of all possible types of defects in Li2S was evaluated

in both charged and neutral states by plotting the calculated defect formation energies as

function of the chemical potential of Li (cell voltage). It was shown that for a wide range

of cell voltages, Frenkel pair (combination of charged lithium vacancy and interstitial

lithium) with the lowest defect formation energy is the most stable defect type. In the next

step, the diffusion energy barriers for single vacancy, divacancy and interstitial knock-off

mechanisms were calculated. It was found that the migration of a single Li vacancy is the

most favorable diffusion mechanism in bulk Li2S. As a result, formation and migration of

single Li vacancies are responsible for the ionic conductivity of Li2S. The large activation

energy obtained in this study explains the reason behind low ionic conductivity of Li2S

and confirms the experimentally-observed hindering of further lithiation of sulfur due

to the formation of Li2S in Li-S batteries. Since the formation energies of vacancy and

interstitial defects in Li2S are almost the same, due to the lower migration energy of single

Li vacancy hopping, kinetic is the dominant factor in determining the conductivity.

In the publications A3, A4 and A5, 2D Li diffusion in bulk and (101̄4) surface as well

as polaron hopping in bulk of LiCoO2 were studied. Moreover, the effect of strain as an

important factor to manipulate the conductivity in bulk LiCoO2 was explored using the

elastic dipole tensor method. First it was shown that the ionic diffusion energy barrier

is independent of the spin polarization of the system. In addition, it was demonstrated

that the curved migration pathway of the Li diffusion into a divacancy of Li which is valid

for the bulk can be detected on the (101̄4) surface as well. It was revealed that the en-

ergy barrier for this mechanism on the topmost layer of the (101̄4) surface is almost zero.

Furthermore, for both bulk and (101̄4) surface, it was found that PBE+U XC functional

for Li vacancy migration calculations presents contributions of both ionic and polaronic

diffusion energy barriers while with PBE functional only the ionic migration energy was

obtained. This last finding was a motivation to further study the electronic conductivity

in bulk LiCoO2 using small-polaron hopping mechanism. In order to evaluate the effect

of stress/strain on conductivity, the concept of elastic dipole tensor was introduced. The

aim was to prove that this concept can be used to analytically predict the behavior of

strained system with much less computational efforts. As a result, for a specific defect

concentration, elastic dipole tensor was calculated and then formation and migration

energies of single Li vacancy in LiCoO2 as a function of strain was evaluated. It was

shown that this approach is in a good agreement with the computationally-demanding
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direct method in which formation and migration energies were calculated at each strain

regime. Moreover, it was revealed that even a small amount of strain in bulk LiCoO2

can change the activation energy and hence the ionic conductivity up to one order of

magnitude (depending on the type of strain) which is also in agreement with experi-

mental observations. Finally, using the concept of self-trapped small polarons and NEB

calculations, the energy barrier of polaron hopping and electronic conductivity in bulk

LiCoO2 were estimated. It was demonstrated that the effect of strain on the electronic

conductivity can also be predicted using the elastic dipole tensor method. This effect on

electronic conductivity is less pronounced than the ionic one. Using the elastic dipole

method, it is possible to achieve a much higher efficiency in the investigation of the effect

of complicated and multi-component strain fields on charge carriers mobilities.

Ab initio-based calculations of conductivity in selected battery materials revealed that

thermodynamic and kinetic factors can be unevenly decisive. Therefore, in order to ma-

nipulate the conductivity in battery materials, the first step is to find the dominant factor

and then for example by changing the stress/strain or concentration of defects, conduc-

tivity and hence performance of a battery system can be engineered. These approaches

can be used to study similar systems. As the future studies, using our knowledge from the

first and second sections of the results chapter, in similar systems with two phase reac-

tion mechanisms, the interface between the two phases can be modeled and investigated.

Moreover, the interfaces between electrodes and electrolyte (specially solid electrolytes),

which are very important in the charging/discharging processes and are determining in

the performance of battery systems, can be explored. In addition, effect of strain in the

solid electrolytes and at the mentioned interfaces between electrode and electrolytes can

be studied using the elastic dipole tensor approach. As an extension to the third section

of the results chapter, investigation of the effect of strain on conductivity together with

the coupling between the polaronic and ionic defects and high defects concentration can

be studied in the future.
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[89] D. R. Hamann, M. Schlüter, and C. Chiang. “Norm-conserving pseudopotentials”.

Physical Review Letters 43.20 (1979), pp. 1494–1497.
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