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ABSTRACT

Proteomics plays a central role in understanding complex disease
mechanisms, especially since it is well known that the effec-
tors of biological functions are mostly proteins. Beside classi-
cal gel-based techniques especially Mass Spectrometry (MS) has
emerged as the standard technique for proteomics experiments.
Ms-based proteomics has evolved into several different and partly
complementary technologies. In this thesis we have analyzed
data generated by the three complementary technologies: Matrix-
Assisted Laser Desorption/Ionization (MALDI), Isobaric Tags for
Relative and Absolute Quantitation (iTRAQ) and 2D Difference
Gel Electrophoresis (DIGE). The three technologies are applied
to an obesity-induced mouse model in order to gain relevant
knowledge on biological processes involved in diabetes. The pri-
mary goal of this thesis is to develop and implement specifically
tailored data analysis methods for each technology with the aim
to improve quality and reliability of the results compared to
standard evaluation workflows.

The developed methods benefit from the fact that in proteomics
a single protein is typically represented by several peptides show-
ing more or less similar measurements. Combining this similarity
information and advanced statistical testing, we are able to iden-
tify sets of potential biomarkers that may play an important role
in diabetes disease mechanisms. The identified biomarkers are
very well suited for building a classification engine to predict
disease relations. However, peptides derived from the same pro-
tein may also show contradictory quantitations (e.g. a protein
is two-fold up regulated and two-fold down regulated at the
same time). This could be due to technical artifacts or biological
properties (e.g. protein isoforms). We try to resolve these contra-
dictions with PPINGUIN, a workflow developed for the reliable
quantitation of iTRAQ experiments. Application of the developed
methods leads to improved results compared to standard data
evaluation methods.

The three technologies have a complementary character and
therefore a direct comparison is difficult and shows only a small
overlap. But a comparison based on the more abstract level of
biochemical pathways shows a surprisingly good agreement of
the results. In order to better understand the complex processes
involved in diabetes a major challenge remains in integrating the
results with other ‘omics” technologies.
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ZUSAMMENFASSUNG

Fiir das Verstandnis von komplexen Krankheitsmechanismen
ist Proteomics von zentraler Bedeutung, besonders da biologis-
che Funktionen hauptsichlich von Proteinen ausgefiihrt werden.
Neben klassischen Gel-basierten Verfahren hat sich vor allem
Massenspektrometrie als Standardtechnologie fiir Proteomics-
Experimente etabliert. Verschiedene, zum Teil komplementire
Technologien wurden entwickelt um Proteine zu untersuchen. In
dieser Arbeit wurden drei verschiedene Technologien: MALDI,
iTRAQ, und DIGE auf ein Maus-Modell angewandt. Das Ziel
dabei ist wichtige Diabetis-bezogene biologische Prozesse zu
analysieren. Das Hauptziel der vorliegenden Arbeit ist es, fiir
jede der Technologien eine spezifische Datenanalysestrategie zu
entwickeln, um die Qualitdt und die Reliabilitdt der Ergebnisse
im Vergleich zu herkdmmlichen Auswertungen zu verbessern.

Eine wichtige Eigenschaft von Proteomics Experimenten ist,
dass ein einzelnes Protein oft durch eine Vielzahl von Peptiden
charakterisiert wird. Die entwickelten Datenanalysestrategien
machen sich diese Eigenschaft zu Nutze. Peptide, die vom sel-
ben Protein stammen, zeigen hdufig dhnliche Messwerte. Diese
Ahnlichkeit kombiniert mit statistischen Tests ermoglicht es, po-
tentielle Biomarker zu identifizieren, die eine wichtige Rolle fiir
Diabetis spielen. Die so identifizierten Biomarker sind sehr gut
geeignet, um krankheitsrelevante Assoziationen zu pradizieren.
Allerdings kommt es des Ofteren vor, dass Peptide, die vom
selben Protein stammen ein widerspriichliches Signal aufweisen
(z.B. Peptide die zweifach hoch- und andere die zweifach runter-
reguliert sind). Dieser Widerspruch kann entweder ein technis-
ches Artefakt oder aber eine biologische Eigenart (z.B. Proteiniso-
formen) sein. Um diesen Widerspruch aufzulosen wurde PPIN-
GUIN entwickelt, ein Workflow fiir die verldssliche Quantifika-
tion von iTRAQ Daten. Im Vergleich zu herkémmlichen Auswer-
tungen fithren die entwickelten Verfahren zu verlésslicheren
Ergebnissen.

Ein direkter Vergleich der drei Technologien wird durch den
komplementdren Charakter erschwert und fiithrt auch nur zu
wenigen Ubereinstimmungen. Vergleicht man die Ergebnisse
aber auf einem abstrakteren Level von molekularen Pathways, so
ist der Uberlap der unterschiedlichen Methoden erstaunlich hoch.
Dennoch liegt die wohl grofiste Herausforderung um komplexe
Krankheitsmechanismen in Zukunft besser zu verstehen in der
Integration mit anderen "Omics’-Technologien.
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INTRODUCTION

With the successful completion of the Human Genome Project[91],
the foundation for a triumphant advance of transcriptomics and
genomics was formed. Ever since a multitude of experiments
addressing various kinds of diseases have been performed aim-
ing at the characterization of disease-related transcriptomic and
genomic alterations. Genomics was supposed to meet very high
expectations:

“Within a decade, gene chips will offer a road map for
prevention of illness throughout a lifetime”."

Although reams of associated genetic loci, almost endless lists
of differentially regulated transcripts and a plethora of associated
functional annotations such pathways or Gene Ontology (GO)
terms have been reported for many diseases, these approaches
often did not meet the high expectations towards fully under-
standing the disease mechanisms. This is, however, not surprising
keeping in mind that effectors of biological functions are almost
exclusively proteins[19]. The level of protein expression not only
depends on the transcript abundance but also on translational
controls, degradation mechanisms or post-translational effects.
Therefore more recently, the biologists” attention was expanded
towards analysis of the proteome.

The shift from genomics to proteomics is clearly visible count-
ing the occurrences of the terms ‘genomics’ and "proteomics’ in
abstracts of all publications from 1996 till 2010 listed in PubMed
(see Figure 1). While in the late 1990s genomics came into fo-
cus of scientific research with a exponential increase each year,
proteomics started only at the beginning of the new millennium.
Since then, both areas continuously increased in importance but
however proteomics was trailing behind about three years. Since
2007 the number of publications for genomics seems to be rather
constant while proteomics still increases in importance.

The term proteome was initially defined as the protein comple-
ment expressed by a genome[172]. The total number of biomole-
cules encompassed by the proteome is significantly larger com-
pared to the genome. Currently, a total of ~ 56K human genes are
annotated (Ensembl[50] release 66 - February 2012), ~ 22K of which
are protein encoding. Especially due to alternative splicing (the
estimated amount of alternatively spliced genes in human varies
from 60%[26] to 94%[168]) the number of proteins is almost 5-6

1 President Bill Clinton’s State Of The Union Address Part 2 - Jan. 27, 1998
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Figure 1: Frequencies of the words 'genomics” and ’proteomics’ in
PubMed publications from 1996 to 2010. Only occurrences in
publication abstracts were counted.

times the number of known protein coding genes: UniProt Protein
Knowledgebase currently comprises ~ 125K proteins (UniProt[6]
release 2012_o2 - February 22, 2012).

The term proteomics not only refers to the study of the pro-
teome but also to the investigation of protein isoforms, Post
Translational Modifications (PTMs) or protein interactions[162].
In particular PTMs are of big interest as they can determine
activity state, localization, turnover or interactions with other
proteins[102, 117].

Beside this huge amount of biomolecules, proteomics has to
deal with more problems like limited and variable sample avail-
ability, a very high dynamic range as well as temporal and spatial
specificity[162]. Especially the latter substantiates the dynamic na-
ture of the proteome as it is not a static entity but highly variable
in time and localization.

Within the last years proteomics has been a rapidly devel-
oping area and many advances were made especially towards
quantitative proteomics. Due to these developments, in 2007 Cox
and Mann[30] argued that proteomics could become the new
genomics’:

MS-based proteomics is finally ready for systems-wide
measurement of protein expression levels. If so, many of
the powerful systems-wide approaches previously restricted
to the mRNA level could now be performed directly at the
protein level.



1.1 GOALS OF THIS THESIS

Even if proteomic approaches allow for high-accuracy pro-
tein quantification for several thousand proteins in complex
proteomes[31], it is still a long way to go for measuring the
complete proteome. The future will tell if proteomics could really
become the 'new genomics’.

1.1 GOALS OF THIS THESIS

The principal goal of the thesis is an exhaustive statistical eval-
uation of three different complementary proteomics datasets
(MALDYJ, iTRAQ and DIGE) created within the Sys-Prot project (EU
sixth framework programme for research and technical develop-
ment - Project Reference: 37457). In order to achieve this objective
we developed specifically tailored methods for data evaluation.
For each technology, state-of-the-art data analysis methods were
inspected, extended and integrated into our analysis workflow in
order to improve the quality and reliability of the results.

The experiments were performed to gain knowledge on disease
mechanisms underlying Type-2 Diabetes Mellitus (T2DM). T2DM
was chosen as the experimental objective since it is among the
most common chronic diseases in nearly all countries and subject
to intensive biomedical research.

For most of the proteomics technologies, the measurements are
performed at the level of peptides which may later be assigned
to proteins. Peptides are derived from proteins and a single
protein is typically measured by several (more or less redundant)
peptides. Peptides derived from the same protein are expected
to show similar experimental measurements or a least a similar
differential regulation. This property is a recurring element for
the evaluation of the different datasets.

MALDI

For evaluation of MALDI data, we were aiming at developing an
analysis workflow that is able to identify significant biomarkers
(peaks) characteristic for the different mouse genotypes, the differ-
ent diets or the growth of the mice. The combination of genotype
and diet is of particular interest since one of the investigated
mouse strains is resistant to obesity and diabetes, induced by
high fat diet. Therefore, a special attention is paid to the identifi-
cation of biomarkers which are characteristic for the combination
of a specific mouse genotype and the applied diet.

Proteins are often measured by several peptides resulting
in correlated peaks in the spectra. In order to group peptides
that are potentially derived from the same protein we employ
a correlation-based hierarchical clustering using experimental
measurements. Both types of information about peak similar-
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ity and peak significance are independent. The combination of
both allows to identify sets of disease associated peaks that are
potentially representing the same protein. The visualization of
the combined information in a cluster dendrogram enables the
interpretation of complex biological data in an intuitive manner.
Furthermore, this method is very well suited for the purpose of
feature selection for classification and prediction. The classifica-
tion performance based on the selected set of features is similar
to more complicated global optimization strategies.

Prior to statistical evaluation, a specialized preprocessing cover-
ing all important aspects such as baseline correction, peak picking
and peak alignment guarantees that the methods can be applied
and sample contaminations are removed.

iTRAQ

In the iTRAQ data we observed a considerable heterogeneity of
peptides assigned to the same protein. This heterogeneity was of-
ten contradictory since the peptide spectra may indicate that the
corresponding protein is (two-fold) up regulated and (two-fold)
down regulated at the same time. With the aim to resolve these
contradictions, we developed a workflow named Peptide Profil-
ing Guided Identification of Proteins (PPINGUIN). This workflow
employs a coarse-grained clustering of unidentified spectra (rep-
resenting peptides) as an early step in data processing. Similar to
the clustering used for MALDI data, this clustering was intended
to group spectra (peptides) which are potentially derived from
the same protein. Protein quantitation and identification was
performed afterwards for each of the clusters independently.

We compared the results of PPINGUIN to state-of-the-art ap-
proaches using different aspects such as heterogeneity of pep-
tides for the same protein, experimental reproducibility and ac-
cordance with prior knowledge. In result, the application of
PPINGUIN led to more homogeneous peptide profiles without
contradictions and to more reliable protein quantitation.

However, if a protein has differentially regulated isoforms
(e.g. PTMs), they may result in contradictory quantitations. For
instance, a phosphorylated protein might show an other differ-
ential regulation compared to the unphosphorylated protein. A
protein with many peptides with contradictory quantitations,
may be found in more than one cluster, which we see as a hint
for potential protein isoforms. So application of PPINGUIN also
allows the detection of potential novel protein isoforms.

DIGE

For the analysis of DIGE data, we wanted to develop a specialized
pre-processing that benefits from the common reference pool
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present on each gel. Furthermore we were investigating the ex-
istence of a protein specific dye effect that has been observed
previously for DIGE data.

The experimental objective was similar to the evaluation of
MALDI data. Our primary goal was to identify significant biomark-
ers (spots) characteristic for the different mouse genotypes or the
different diets. Again, a special attention is paid to the identifica-
tion of biomarkers, which are characteristic for the combination
of a specific mouse genotype and the applied diet.

In DIGE data, different spots may represent the same or related
proteins. We applied correlation-based hierarchical clustering in
order to identify spots potentially representing the same protein.
We found that spots in close proximity in the gel may represent
the same protein or protein isoforms. The measurements of these
spots are often correlated which may be an effect of PTMs or the
labeling process.

1.2 STRUCTURE OF THIS THESIS

Chapter 2 gives insights into technical background and general
statistical methods. The technical background of MALDI, iTRAQ
and DIGE is described in Sections 2.1.1, 2.1.2 and 2.1.3. A detailed
description of Sys-Prot project including the workflow of samples
and data of all involved partners is given in Section 2.2.3. ANOVA
as a popular method for multi-dimensional data analysis is briefly
review in Section 2.3.

The main structure of this thesis is organized according to the
three complementary proteomics approaches, which are referred
to in different chapters of this thesis: MALDI - Chapter 3; iTRAQ -
Chapter 4 and DIGE - Chapter 5. The three data analysis chapters
are structured in a similar manner. Each chapter starts with an
introduction followed by a brief description of the correspond-
ing dataset and experimental design. State-of-the-art methods
for data analysis are described in corresponding section of each
chapter. Algorithms specifically developed in this thesis are re-
ferred to in the Methods section. Results of each data analysis are
presented in the corresponding sections followed by a discussion
and conclusion of the corresponding technology.

Subsequently, in the Chapter 6 the three different approaches
are integrated and compared. Finally, Chapter 77 gives a conclu-
sion and a brief outlook.
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2.1 PROTEOMICS TECHNOLOGIES

Actually, the usage of high throughput technologies to analyze
proteins has a quite long history. Beginning from the 1970s two-
dimensional gel electrophoresis was engaged for proteomic re-
search. But this technology never fully delivered on its promise
of quantifying the proteome[30]. It was the development of
Electrospray Ionization (ESI) and MALDI that focused the attention
on MS as a versatile technique for proteomics research. The im-
portance of this breakthrough was approved as John B. Fenn and
Koichi Tanaka were awarded with the Nobel Prize in Chemistry
for development of protein ionization methods in 2002. Ever since,
MS has become the predominant technology used for proteomic
research.

For some time MS has been restricted to qualitative analysis, but,
in the last years MS turned towards quantitative investigations[118].
The capability for relative or even absolute protein quantification
allows for investigation of protein concentrations under different
conditions. Furthermore, the growing field of systems biology in-
creasingly requires data including quantitative readouts as input
for model construction and validation.
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In principle, if absolute quantification is available relative read-
outs become redundant as they can be calculated easily. But abso-
lute quantitation is difficult to achieve and more easily available
relative readouts are often the alternative. Towards quantitative
proteomics different mass spectral techniques have been devel-
oped and widely used encompassing labeling techniques such as
iTRAQ[139], Isotope-Coded Affinity Tags (ICAT)[64] and Stable Iso-
tope Labeling by Amino Acids in Cell Culture (SILAC)[119, 101]
as well as some label free approaches [115]. The different quanti-
tative techniques often play a complementary role in proteomics
research since each technique has strengths and weaknesses.

2.1.1 MALDI

MALDI was first described in 1987 by Karas et al.[79]. In 1988
MALDI MS had been used for ionization of large biomolecules such
as the bovine insulin (5733 Dalton (Da)), cytochrome-C (12384 Da)
and carboxypeptidase-A (34472 Da) by Tanaka et al.[152].

Since then, MALDI-MS, particularly in combination with Time-
of-Flight (TOF) instruments has become a promising tool for
proteomics data acquisition[33] characterized by simplicity, good
mass accuracy and high resolution[1]. It allows for processing
a significant number of samples in a short time and therefore
enables studies encompassing a multitude of samples[107, 54,
122]. MALDI-TOF MS profiling has been extensively used especially
for investigating different types of cancer like breast cancer[165],
lung cancer[54, 167], ovarian cancer[158] or colon cancer[37, 4],
to name a few.

A modern MALDI-TOF instrument is made out of 3 main com-
ponents:

1. A sample slide (containing matrix and analyst) and a pulsed
laser (typically an UltraViolet (UV) laser). The matrix con-
tains a large molar excess of chromaphores coupled with
the laser frequency, causing essentially all laser radiation
to be absorbed. Analyte molecules surrounded by matrix
and salt ions are ejected, whereas the matrix molecules
evaporate leaving the free ionized analyte.

2. A TOF analyzer accelerating ions by an electric field leading
to a separation of the ions based on their mass/charge
ratio (m/z). The essential principle is that if a cohort of ions
moving in the same direction and having a constant kinetic
energy but a distribution of masses, the resulting velocities
are inversely proportional to y/m/z [62].

3. Anion detector usually involves photographic plates, fara-
day cylinders, or array detectors in conjunction with elec-
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tron or photon multipliers to increase the intensity of the
signal.
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Figure 2: Scheme describing a modern MALDI-TOF mass spectrometer.
Image is adopted from Finnigan[48].

The ions are traveling through an electric field (with potential
V). When the ion is accelerated the ion’s potential energy (Epot =
zV; z = ion charge) is converted to kinetic energy (Exin = 1/2-
m - v?; where m = mass and v = velocity). As the ion travels with
constant velocity through the time-of-flight tube, the velocity can
be described as the tube’s length (d) divided by the travel time
(t): v = d/t. Assuming potential energy is converted to kinetic
energy and substituting velocity by v = d/t leads to the following
equation:

1 d\?

that can rearranged:

o m 4
Vz Vav

As the length of the tube d and electric field V are given by
the instrument settings the travel time of an ion through the
time-of-flight tube is proportional to \/m/z.

2.1.2 iTRAQ

Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) tech-
nology has initially been described in 2004 by Ross et al.[139].
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They developed a set of reagents making derivatized peptides in-
distinguishable in MS, but exhibiting an intense low-mass Tandem
Mass Spectrometry (MS/MS) signature. MS/MS is a sequential com-
bination of two mass spectrometers. The first mass spectrometer
(which can be similar to a MALDI-TOF - see section 2.1.1) is used to
isolate a single precursor mass of a peptide. After a fragmentation
step, the second mass spectrometer separates the fragments of
the precursor ion and generates the corresponding MS/MS spec-
trum. The MS/MS spectrum is used for peptide identification by
identification engines and protein databases.

iTRAQ isobaric reagents are placed at N termini and at the €
amino group of lysine side chains of peptides in a digested mix-
ture. Isotopic labeling is constructed in the way that the resulting
peptides are isobaric and chromatographically indistinguishable.
After Collision-Induced Dissociation (CID) the different reagents
have different signatures allowing for distinguishing individual
members of the multiplexed reagent set.

The complete reagent molecules consist of a reporter group,
a mass balance group and a peptide-reactive group (see figure
3). The overall mass of reporter group (mass range from m/z
114.1 - 117.1) and balance group (mass range 28 - 31 Da) are kept
constant (145.1 Da). This is achieved by using differential isotopic
enrichments including 3C, >N and 180, Reacting with N termini
or lysine side chains of peptides, the reagent forms an amine
linkage similar to backbone peptide bonds ensuring similar frag-
ment behavior (when subjected to CID). After fragmentation the
balance group is lost leaving the 4 reporter groups appearing
as distinct masses (114-117 Da) in the spectra. A demonstration
using an exemplarily chosen spectrum is shown in figure 4. The
complete spectrum is shown above and an excerpt of the spec-
trum zoomed to reporter region is depicted below. For each of
the four reporters (m/z 114.1 - 117.1) typically corresponding to
4 different biological samples an individual intensity signal is
obtained.

2.1.3 DIGE

Since first described in 1975 by O’Farrell[114] and Klose[85], for
a long time two-dimensional gel electrophoresis was the only
method available for simultaneously studying the abundance of
thousands of proteins. Although more recently mass spectrome-
try has become the predominant technology used for proteomics,
two-dimensional gel electrophoresis continued to be developed.
In 1997 Unlu et al.[163] initially described the method - DIGE
- allowing for multi-sample gel separation based on the two
fluorescent dyes 1-(5-carboxypentyl)-1’-propylindocarbocyanine
halide (Cy3) and 1-(5-carboxypentyl)-1-methylindocarbocyanine



2.1 PROTEOMICS TECHNOLOGIES
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Figure 3: Chemical structure of the iTRAQ reagents. Complete molecules
consist of a reporter group (left side - mass range from m/z
114.1 - 117.1), a mass balance group (middle part - mass
range 28 - 31 Da) and a peptide-reactive group (right part).
Image created following the images of Ross et al. and Boehm
et al.[139, 17].

halide (Cys). The dyes were developed according to 4 design rules:
(i) dyes must react with the same amino acid (ii) the charge of the
target must be preserved to maintain the isoelectric point (iii) the
dyes must have similar molecular mass and (iv) to separate the
dyes, they must have distinct fluorescent characteristics. Labeling
of amino acid residues unavoidably affects molecular mass of
the proteins. In order to avoid heterogeneity in protein popula-
tions, two labeling strategies are used: minimal labeling of lysine
reactive dyes (labeling an estimated < 5% of total protein[161])
or alternatively saturation labeling of cysteine residues which
shows improved sensitivity and dynamic range[144, 24].

The multiplexing capability leads to a substantial reduction of
gel to gel variance raising confidence that observed fold changes
can indeed hint to biological properties[164]. Extending this
method by adding the dye 3-(4-carboxymethyl)phenylmethyl-
3’-ethyloxacarbocyanine halide (Cyz) allows for multiplexing up
to three samples on the same gel. But instead of multiplexing
three samples Cy2 channel is often used to incorporate a pooled
internal standard[3]. A common reference helps to eliminate be-
tween gel variation, as it improves a normalization and allows
for statistical evaluation based on ratios instead of raw data
values. Furthermore, the internal standard helps to map spots
(proteins) between gels and therefore, increases comparability
between different gels[87].

For DIGE, a protein mixture (for a given sample) is labeled with
one of the three dyes which are spectrally distinct as well as
charge and mass matched. Subsequently the labeled samples are

11
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Figure 4: Exemplarily chosen spectrum. Full spectrum is drawn on
upper side. Excerpt of the spectrum with zooming to reporter
intensities (110-120 Da) - also marked in the full spectrum at
upper part.

mixed and separated using the same gel. The fluorescent readouts
are acquired by exciting each dye at the specific wavelength. Ap-
propriate image analysis software and statistical analysis enables
the selection of interesting features (e.g. differentially regulated
spots). These spots can than be extracted and finally identified
using MS/MS and database search. A schema of the complete
process is depicted in Figure 5. Minden et al.[110] claimed that
experimental design and statistical analysis were the most cru-
cial aspects of performing informative DIGE -based proteomics
experiments.

Several aspects have to be considered when performing DIGE
experiments. Since DIGE is based on 2D gel electrophoresis the
method is not suited for the detection of high or low molecu-
lar masses (> 150kDa or < 10kDa) or very basic or hydrophobic
proteins. Furthermore, the labeling affects unavoidably the molec-
ular mass leading to an electrophoretic separation of labeled and
unlabeled proteins. However, for large proteins (> 30kDa) the
effect of a single dye molecule is negligible and even for small
proteins (< 30kDa) this shift is usually less than one half diameter
of the protein spot[110]. A much bigger problem comes along
with the assignment of protein species to a gel spot, since often
multiple high confidence MS-based identifications are obtained.
In this case usually the most abundant protein species is assumed
to be the protein of interest which leads to a questionable protein
identification [157].
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Figure 5: Scheme describing a typical DIGE experiment including label-
ing, image acquisition, feature finding and spot identification.

2.2 SYS-PROT PROJECT

The System-wide analysis and modelling of protein modification
(Sys-Prot) project was funded by the European Commission, sixth
framework programme for research and technical development
(Project Reference: 37457) and involves five commercial and aca-
demic partners from three European countries. The declared aim
of the project is:

the development of a new paradigm for the integration
of proteomics data into systems biology. The goal is to
gain relevant knowledge on biological processes that are
important for human health and to use this knowledge for
the purpose of disease modelling. The strategy to achieve
this objective is an innovative, explorative systems biology
approach both on the molecular and physiological level with
a strong focus on protein function and modification [151].

For establishing and developing technologies as well as novel
and adequate data analysis strategies several complementary
proteomics approaches (DIGE, MALDI and iTRAQ) are applied to
an obesity-induced T2DM mouse model (see Figure 6). Diabetes
mellitus was chosen as the experimental objective since it is
among the most common chronic diseases in nearly all countries
and subject to intensive biomedical research. The prevalence of
diabetes will increase from 285 million in 2010 to 439 million in
2030[145]. Diabetes imposes an increasing economic burden on
national health care systems world wide as 12% of the health
expenditures are expected to be spent on diabetes in 2010. The
global costs of treatment will raise from 418 billion USD in 2010
to 490 in 2030[182].
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Figure 6: Obesity-induced T-DM mouse model (fat: NZO mouse, slim:
SJL mouse).

Multiple studies have been performed assessing the diversity of
the disease at the transcriptomic level revealing lists of candidate
genes and associated pathways[156, 131]. At the proteomic level
different techniques have been applied including gel-based[99]
and MS-based quantitative approaches[130]. The majority of the
studies follows a simple design and is restricted to the com-
parison of healthy versus diseased animal or human samples.
No comprehensive proteomics study covering multiple experi-
mental factors and comprising a multitude of samples has been
published so far.

2.2.1 Partners and Responsibilities

The Sys-Prot project was coordinated by MicroDiscovery GmbH.
The following partners are involved in the project (description of
the partners are adapted from project homepage[151]):

1. MicroDiscovery GmbH: Based on the companies” experi-
ence in proteomics MicroDiscovery supported the partners
in the analysis of the biomolecular data. A primary goal was
the implementation of flexible data integration and qual-
ity control routines for different sources of complementary
high-throughput proteomics data.

2. German Institute of Human Nutrition (DIfE): The DIfE was
responsible for generation and characterization of mouse
models for complex traits including polygenic obesity and
T2DM.

3. Functional Genomics Center Zurich (FGCZ): The FGCZ's
contribution to the project was the development and imple-
mentation of methods and tools based on iTRAQ technology.

4. The BioCentre - University of Reading: The Mass Spec-
trometry and Proteomics Unit at the BioCentre in Reading
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uses its expertise in proteomic and mass spectrometric anal-
ysis for acquisition of MALDI and DIGE data.

5. Max-Planck Institute for Molecular Genetics (MPIMG): The
MPIMG generated hybrid models based on model reposi-
tory for signalling pathways, metabolic processes and gene
regulatory pathways.

2.2.2  Project Data and Sample Workflow

The five project partners for Sys-Prot are scattered across three
different european countries. The coordination of efforts from dif-
ferent project resources results in a work-flow of samples and data
(see Figure 7). The German Institute of Human Nutrition (DIfE)
was responsible for generation of mouse models and harvesting
of the samples. After harvesting, the samples were stored in freez-
ers. Complete batches of samples were then transported on dry
ice to the BioCentre in Reading and to the Functional Genomics
Center Zurich (FGCZ). While MALDI and DIGE experiments were
performed by the BioCentre in Reading iTRAQ data was gener-
ated by the FGCZ. The measured data was sent to MicroDiscovery
and MPIMG. MicroDiscovery was responsible for evaluation and
integration of the different sources of data.

University of — .
Readlng d> « MicroDiscovery
Data Evaluation

MALDI and DIGE
Experiments MPIMG

G {} Modelling

N g c-Z

D| $ functional
genomlics

centes

zurlich

Sample Generation ITRAQ Experiments

Figure 7: Schematic illustration of sample and data work-flow within
the SysProt project. The biological samples are created by the
DIfE. Harvested and frozen samples are sent to the BioCen-
tre for MALDI and DIGE experiments and the FGCZ for iTRAQ
experiments. Experimental data is further analyzed by Mi-
croDiscovery and MPIMG.

2.2.3 Sys-Prot Experimental Design
The project is focused on the investigation of an established

obesity-induced T2DM mouse model and comprises three experi-
mental factors genotype, diet and time (see figure 8).

15



16

BACKGROUND

Figure 8: The three different experimental factors: genotype, diet and
time used for Sys-Prot project are displayed as experimental
cube. Each sub-cube (quadrant) represents a distinct combina-
tion of the three experimental factors.

Genotype

Three different mouse strains were examined: Black Six - C57BL/6]
(B6), NzO and SJL. The NZO mouse strain exhibits polygenic obe-
sity associated with hyperinsulinaemia and hyperglycaemia and
presents additional features of a metabolic syndrome, including
hypertension, and elevated levels of serum cholesterol and serum
triglycerides[120]. NZO mice are highly susceptible to weight gain
when fed a high-fat diet, resulting in the development of morbid
obesity, with fat depots exceeding 40% of total body weight and
the development of T2DM[75]. In contrast, the SJL mouse strain is
lean and resistant to diet-induced obesity and diabetes[171]. B6
mice represent an intermediary phenotype between NZO and SJL
at later age (> week 12) with respect to sensitivity to diet-induced
obesity and diabetes. While the genetic and molecular basis for
the different diabetes susceptibilities of polygenic mouse strains
is largely unknown, Chadt et al. recently identified a naturally
occurring loss-of-function mutation in the Tbcid1 gene in SJL
mice that increases lipid oxidation in skeletal muscle and as a
result confers leanness and protects from diet-induced obesity
and diabetes[23].
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Diet

After weaning at week 3, male B6, NZO and SJL mice were raised
on three different diets, a low fat diet (Standard Diet (SD); 8%
calories from fat) and two different high fat diets, one containing
carbohydrates (High Fat (HF); 35% calories from fat) the other one
a carbohydrate-free (Carbohydrate-Free Diet (CHF); 72% calories
from fat). It was shown previously that HF diet strongly induces
insulin resistance and may lead to diabetes, whereas CHF equally
induces peripheral insulin resistance but protects from diabetes
[39, 76]. At week 8, mean body weight of SJL mice was 18.81 g
(+/-1.46 g) on SD, 20.04 g (+/- 0.99 g) on HF and 21.24 g (+/- 2.31
g) on CHF. In contrast, mean values for NZO mice were 31.94 g
(+/-1.36 g) on SD, 33.72 g (+/- 4.39 g) on HF and 36.6 g (+/- 4.83
g) on CHF, respectively. Mean values for B6 mice were 20.1 g (+/-
2.56 g) on SD, 20.54 g (+/- 0.78 g) on HF and 22.32 g (+/- 1.38 g)
on CHF, respectively. The mice were sacrificed at 8 weeks of age
and tissue and blood samples were processed and analyzed.

Time

Blood samples were collected at ages of 3, 4, 6 and 8 weeks from
mouse tails. Final blood samples were taken directly from the
heart at week 8. This sample was labeled F.

2.3 ANOVA

Analysis of Variance (ANOVA) describes a collection of approaches
for statistical data evaluation. The main idea of ANOVA is to
partition the variance into subcomponents with respect to one
or more explanatory variables[73]. Similar to t-test, performing
an ANOVA requires some assumptions to be fulfilled: first nor-
mally distributed data and normally distributed errors, second
homogeneity of variance (homoscedasticity) and third indepen-
dent measurements. The following three types of ANOVA can be
distinguished[34]:

* One-way ANOVA

¢ Multi-way ANOVA

® ANOVA with mixed-effect model (nested ANOVA)

2.3.1  One-way ANOVA

One-way ANOVA is used to test for differences in one variable
describing k (two or more) independent groups, e.g. multi-stage
disease. For k = 2 one-way ANOVA is equivalent to t-test. Let p;
denote the mean of the it" group containing n; elements then

17
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ANOVA tests for the null hypothesis 1 = po = ... = py. If the
null hypothesis is rejected than at least two of the means are not
equal. The result does not provide any information about how
many and which means differ.

Performing the corresponding k - (k —1)/2 pairwise t-tests,
leads to a loss in significance due to the required multiple testing
corrections or if multiple testing corrections are neglected to an
accumulation of type I error. Furthermore pairwise t-tests would
not be independent of each other.

Standard t-test is a special case covered by one-way ANOVA.
Assuming equal variances and equal sample sizes, the t-test t-
value is calculated as:

t = W1 — U2
(vary + vary)
n

where n is the complete number of samples: n = ) ; nj.
The relation between t-value and f-value is f = t? and hence,
the f value is given as:

e — )2
fo o — o) (2.1)
(vary + vary)

Building a factor based linear model Y;; = p+ o + €15 where
i = 1,2 (number of different groups) and j = 1.n (number
of samples) the Residual Sum of Squares (RSS) of the model is
calculated as:

RSS = (xij—m)* = (vary +vary) - (n—1) (2.2)
L
The difference of means equals to the variance:

(11 —p2)?

= ui+u5—2m
=1/2- (w1 — p2)* + (12 — 11)?)

2
+ +
:1/2.<4.(M_m2uz> +4-(uz—”‘2“2>>

=2 -var(uy, u2) (2.3)

Replacing numerator and denominator of 2.1 with 2.2 and 2.3
the f value can be calculated as:

_2-n-(n—1T)-var(uy, pa)

f RSS

(2.4)
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The numerator describes the between group variability whereas
the denominator reflects the within-group variability. The for-
mula can be extended to variables with more than two groups:

k-n-(n—1) var(wy..ux)
RSS

This f value is distributed as: f ~ F(k — 1, N — k). The f distribu-
tion is the ratio of two x? distributions.

f:

(2.5)

2.3.2  Multi-way ANOVA

Multi-way ANOVA analyzes the effects of z (two or more) indepen-
dent variables each with k. (two or more) independent groups.
Figure g visualizes the typical task for ANOVA with two different
experimental factors (Genotype and Diet) each with two different
values. The four groups are distinct and not nested (no group is
subgroup of another group). The essential part is again the fitting
of a linear model minimizing the RSS for the four groups without
regarding non-linear effects due to combination of experimental
factors. The coefficients of the multi dimensional linear model
are calculated by projecting the values to each dimension. Hence
the coefficients are identical with one-way-ANOVA. The resulting
linear model is a z dimensional hyperplane - see upper part of
Figure 9. In contrast to a one-way ANOVA, for the calculation
of f-values and p-values the complete model (including all z
variables) is used for calculation of RSS.

2.3.3 ANOVA with mixed-effect model

ANOVA with mixed-effect model assesses the effects of several
(not necessarily independent) variables and also accounts for the
effects due to combinations of variables, e.g. analyzing the effect
of different genotypes for various diets. The starting point is
very similar to multi-way ANOVA but with regarding combined
effects. The calculation of the linear model is more difficult. As a
first step, coefficient for the factor combination is calculated as
the difference between the expected value due to the individual
effects and the real value. In a second step the combination effect
is subtracted from the individual effects in order to calculate the
single parameter effects. The resulting model is a more complex
surface - see lower part of Figure 9. For the calculation of f-values
and p-values, the model with feature combinations (model 1
with p; parameters) is compared to the model without feature
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combinations (model 2 with p, parameters). The first model is
nested within the second one and the f-value is calculated as:

<RSSl—RSSZ>

P2—P1

f=nw———z
RSS,
n—p:z

The f value is distributed as f ~ F(p2 —p1,n—p2).

Model: Gt + Diet

Dist2

Measurement Values

. &

Dieti 1\
GT1 GT2
Model: Gt + Diet + Gt * Diet

Measurement Values

Diet1

Figure 9: Demonstration of the linear model used for multi-way ANOVA
(upper part) and ANOVA with mixed effects (lower part). Two
variables (diet and genotype) each with two values together
with the measurements span a 3 dimensional space. Multi-
way ANOVA (upper part) considers each variable separately
and in effect the model is a plane (blue plane). ANOVA with
mixed effects (lower part) includes a combinatorial term of
both variables and in effect the models is a more complex
surface. The RSS of the linear model and the measurements is
an essential part of an ANOVA analysis.
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2.4 CLASSIFICATION AND FEATURE SELECTION

Besides biomarker identification, biological experiments are of-
ten intended for the purpose of classification, e.g. classification
of tumor and control. Classification using a high dimensional
dataset is always a challenging task as the problem of overfitting
increases with the number of variables. Proper feature selection
is essential for building a classifier that accomplishes good per-
formance without overfitting.

Feature selection methods are distinguished into three groups:
filter methods, embedded methods and wrapper methods[63].
Filter methods are independent of the classification and do not
pay attention to the correlation of the features. Filter methods are
typically statistical tests like t-test, x2-test or ANOVA. Embedded
methods include the feature selection process in the construction
of the classification system. Wrapper methods intend to find an
optimal subset of features for the given classification task by
wrapping a search algorithm around the classification model. For
wrapper methods often non-linear global optimization strategies
like genetic algorithms or swarm based intelligence approaches
are used.

Wrapper methods often succeed in optimizing classification
results but they also tend to overfitting and are computationally
expensive as they scan through a huge search space. Embedded
methods require complex algorithm adaptations for most clas-
sifiers and are therefore not applicable for many classification
algorithms. Filter methods are straight forward[177], easy to im-
plement and computationally fast but are often outperformed by
the other methods in terms of classification performance. For a
general bioinformatic review of the feature selection approaches
currently applied see Saeys et al.[140]. A comparison of feature se-
lection and classification especially with application to MALDI-MS
data was published more recently by Liu et al.[98].

2.4.1  Ant Colony Optimization

ACO, introduced in early 1990s[28, 38], is a nature-inspired meta-
heuristic approach for the solution of hard Combinatorial Op-
timization (CO) problems. Generally, metaheuristic approaches
such as simulated annealing, evolutionary algorithms or ACO
are designed to obtain ‘good enough’ solutions to hard CO prob-
lems in a reasonable amount of computation time. A CO problem
P = (S, f) is an optimization problem to find a solution of mini-
mal cost value for a given search space S (a finite set of solutions)
and an objective function f : S — R™ that assigns a positive cost
value to a given solution.
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ACO is inspired by natural foraging behavior of real ants. When
starting to search for food, ants initially explore their surrounding
in a random manner. Having located a source of nutrition, they
are carrying some of the food back to the nest. On the way back,
they are depositing a trail of pheromone in order to guide the
way for other ants of the colony. The level of pheromone depends
on the quality and quantity of the found nutrition source. Using
this indirect communication via pheromone trails, enables the
ants to find shortest paths between the nest and high quality food
sources.

The central part of the ACO algorithm is a pheromone model
used to assign pheromone values T; to components of a solution
S. Basically the algorithm consists of two iteratively applied steps:

1. Generation of a candidate solution in dependence of the
pheromone model.

2. Updating the pheromone values using the candidate solu-
tion. The updating process intends to bias future solutions
towards optimal solution.

In 2007 Ressom et al.[133] used ACO in combination with
Support Vector Machines (SVM) for peak selection from MALDI-
TOF data with 228 candidate peaks. Each of the 50 ants employed
selected 5 peaks according to the probability function:

(Ti(t))*nP
Y i(ri(t)onf

where T; is the pheromone value of feature i at time t, n; repre-
sents prior information (uniform distribution or t-statistic) and o
and {3 are used determine relative influence of pheromone values
and prior information.

With the peaks selected each ant performs a classification using
SVM and estimates accuracy of the classification using cross-
validation. These candidate solutions are then used to update the
pheromone values in such a way that high classification accuracy
results in high amount of pheromone and vice versa:

Pi(t) =

Ti(t+1) =p-Ti(t) + ATy (1)

where p is a constant between o and 1 representing decay of
pheromones and At; is an amount proportional to classification
accuracy.

This feature selection process is summarized schematically for
3 peaks in Figure 10. The goal is to identify features suited for
classification (of dark gray and light gray). The first and third
peak do not distinguish between the two groups, whereas the
middle peak is well suited. In the first iteration every peak has
an identical pheromone value and the ants choose all peaks with
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similar probability. As deposition of pheromone depends on the
accuracy of the classification result, only the pheromone level of
the second peak increases. Due to the increased pheromone value,
the ants choose the second peak more frequently and pheromone
level further increases. In the third iteration all ant choose the
middle peak due to high amount of pheromones.
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Features
(MS-Peaks)

Iteration 1
Ants  Pheromon

Figure 10: Schematic illustration of feature finding process using ant
colony optimization. The first and third feature (MS peak)
do not distinguish between the two groups (dark gray vs.
light gray), whereas the middle feature is well suited for this
task. A good classification performance of a peaks leads to
an accumulation of pheromones.
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Analysis of the Matrix-Assisted Laser Desorption/Ionization
(MALDI) data aimed at the investigation of the mutual influ-
ence of different diets and mouse genotypes on composition of
blood plasma proteins. The investigated diets and mouse geno-
types are considered as an adequate model for Type-2 Diabetes
Mellitus (T2DM). Blood plasma was selected since it is an attrac-
tive biological fluid, given its easy accessibility. Due to these
properties identification of biomarkers in blood plasma is one
of the "Holy Grails’ of proteomics[125]. MALDI is a promising
tool for proteomics data acquisition and perfectly suited for our
purpose as it allows the processing of a significant number of
samples in a short time (c.f. Section 2.1.1).

For the evaluation of MALDI data, we developed a statistical
method that exploits data correlation and integrates this method
into a comprehensive work-flow designed for the analysis of
multi-factorial MALDI-TOF MS data. Basically the work-flow for
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evaluation of the data is divided into two different parts: prepro-
cessing and biomarker discovery. The summarizing work-flow of
the complete analysis is presented in Figure 11.

1122 Spectra Lists with biomarker
32K data points candidates
( - N (=
Pre-processing Biomarker Search

Log Transform [ Classification (Random Forest) ]

Smoothing (Running Median k=9) [ Feature Selection ]

{ Baseline Correction (TopHat Filter) ] Combining Clustering & ANOVA

Heuristical Peak Alignment

[ Average linkage Clustering with ]

Peak Picking (CWT) Pearson Correlation as distance

ANOVA with mixed-effects
Second Log Transform . -
cor 9 S { (Single features and combination) ]

" y < )

1122 Spectra 155 Spectra
261 peaks 261 peaks

CD [ [ Avergaging technical Replicates ] ]C>

Figure 11: Schematic representation of the data analysis workflow devel-
oped for evaluation of MALDI data. Basically the workflow is
divided in two different parts: preprocessing and biomarker
discovery. In addition, the dimenstionality of the data is an-
notated prior to and after the main steps. Steps that have not
been reported previously are highlighted.

This Chapter is organized in the following sections: After giv-
ing an introduction to the typical application of the technology,
this chapter starts to deal with acquisition of data (Section 3.2)
and the large number of preprocessing steps required (Section
3.3). Section 3.4 describes methods for preprocessing and data
analysis particularly developed for this thesis. In the results sec-
tion (Section 3.5) we present the effects of preprocessing, the
results of biomarker discovery and results of feature selection
and classification. Finally, in the last part of this chapter we will
give a summary and conclusion.

3.1 INTRODUCTION

The multi-factorial study design encompassing the three different
experimental factors: genotype, diet and time (Section 2.2), sub-
stantiates the need for a technology capable of processing a multi-
tude of samples in a short time. More than 150 distinct biological
samples resulting in more than 1100 spectra were measured and
analyzed. MALDI is well suited for this task and is characterized
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week 3 week 4
sp | vF | cHF | s | HF | cHF

B6 36/5 | 31/4 | 12/2 | 36/5 | 40/5 | 37/5
NZO | 35/5 | 35/5 | 32/4 | 40/5 | 36/5 | 40/5
SJL 4/1 o/o | 16/3 | 12/2 | o/o | 40/5

week 6 week 8
sp | vF | cHF | sp | HE | cHF

B6 38/5 | 38/5 | 32/5 | 39/5 | 34/5 | 28/5
NZO | 37/5 | 38/5 | 40/5 | 28/5 | 34/5 | 34/5
SIL | 32/4 | 40/5 | 32/5 | 36/5 | 40/5 | 40/5

Table 1: Number of spectra and biological repeats for each factor com-
bination. The first number indicates the number of spectra, the
second states the number of biological replicates. In total there
are 155 different biological samples from 31 different mouse
individuals.

by simplicity, good mass accuracy and high resolution[1]. For
technical details of MALDI technology see Section 2.1.1.

MALDI data requires a large amount of preprocessing prior
to data analysis (smoothing, baseline correction, peak finding
or peak matching - more detailed description is given below
in Section 3.3.1). Various algorithms differing in principle, im-
plementation and performance have been proposed to address
different preprocessing steps [126, 112, 181]. For a comprehensive
review of the most important preprocessing steps see also Yang
et al. [178].

Typically the two main objectives of MALDI profiling studies
are biomarker identification and classification. Various different
methods have been applied addressing these two objectives rang-
ing for classical t-test and ANOVA two more advanced genetic
algorithm and swarm intelligence (see Section 3.3.2 for more
details).

3.2 SAMPLE PREPARATION

Over 30 different mouse individuals where used to create over
150 distinct biological samples measured in more than 1100 Ms
spectra (see table 1).

Blood samples were obtained by cutting the tip of the mouse
tail and collecting the blood from the dorsal and lateral tail
veins into a Li-heparin-coated microcuvette. Immediately after
blood collection each sample was centrifuged at 4°C for 5 min at
13,000 rpm. The blood plasma was then transferred into 20ouL-
microcentrifuge tubes, shipped on dry ice to the mass spectrome-
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try laboratory and stored at -80°C prior to further sample prepa-
ration and MS analysis.

The amount of plasma obtained at each blood collection varied
between o and 12 pl. Since 5 pl were needed for each sample
preparation, it was possible to perform up to two sample prepara-
tions. In a few cases only one or no sample preparation could be
performed. From each sample preparation 4 replicate MALDI MS
profile spectra were acquired, resulting in a total of up to 8 techni-
cal replicates per sample. MALDI MS spectra were obtained using
an Ultraflex MALDI-TOF/TOF mass spectrometer (Bruker Dalton-
ics, Bremen, Germany). Spectra were acquired automatically for
the m/z range of 700-10,000. MS profile peak identification was
achieved similarly to the methods described by Tiss et al.[159]
using a Q-TOF Premier mass spectrometer (Waters, Manchester,
UK).
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3.3 STATE-OF-THE-ART - MALDI

State-of-the-Art section describes commonly used methods for
different steps of preprocessing as well as for biomarker identifi-
cation and classification.

3.3.1 Preprocessing

The preprocessing workflow of MALDI data aims at transforming
the large number of data points in raw spectral data (typically
> 30.000) into a much smaller, statistically manageable set of
peaks and at the same time addressing noise and technical bias.
Comprising tens of thousands of data points in each spectrum,
mass spectrometry data is inherently noisy. The main sources
of noise are chemical in nature such as interference from matrix
material and sample contamination or electrical noise which de-
pends on the analytical set-up employed[88]. Furthermore, many
factors like temperature or humidity may distort the machine’s
calibration, leading to shifts in m/z direction.
The widely accepted standard preprocessing steps are:

1. Log transformation (Normalization): Logarithmic transfor-
mation is typically performed in order to convert a mul-
tiplicative error behavior into an additive one. A additive
error model with homogeneous error is required by many
statistical tests such as t-test or ANOVA.

2. Smoothing: Smoothing mainly aims at removing high fre-
quency noise. Beyond traditional signal processing tech-
niques like Savitzky Golay filter [141], Mean/Median filter
or Gaussian filters also wavelet based techniques are em-
ployed for data smoothing [29],[88].

3. Baseline correction: Baseline correction intends to remove
low frequency noise and thus eliminates the correlation of
nearby features. Typically methods like Top Hat filter[109]
(see Section 3.3.1.1 for more details), Loess derivative filters
[27], linear splines, polynomial fitting or convex hulls are
applied to estimate the baseline.

4. Peak picking: The number of proposed methods for peak
detection is immense. Most common algorithms make use
of Signal to Noise Ratio (SNR), Continuous Wavelet Trans-
form (CWT)[92, 40] or model functions like Gaussian func-
tion used as templates for peak detection.

5. Peak alignment: Peak alignment is employed to correct for
shifts in m/z direction.
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A multitude of software packages implementing the com-
plete workflow is available. Commonly used public domain
software tools are R[128] and Bioconductor[58] packages like
msProcess or PROcess[134], Matlab packages like LIMPIC[103] or
Cromwell[29] and the comprehensive C++ library OpenMS[149,

132].

Preprocessing
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Figure 12: Schematic representation of main preprocessing steps:
Smoothing removes high frequency noise; Baseline correction
corrects for baseline drifts or low frequency noise; Peak pick-
ing converts continuous spectral data into a list describing
position and intensity of identified features.

3.3.1.1 Baseline Correction: Top Hat Filter

Top Hat Filter is an effective way of baseline correction. The Top
Hat Transform - first introduced in 1979 by Meyer[109] - is a
mathematical morphology function allowing for extraction of
peaks (in 1D or 2D) by removing local background levels[137].
Top Hat filter is based on a morphological operation called open-
ing(O) that is defined as a successive application of erosion(E)
followed by dilatation(D). Given a spectrum X and a structuring
element B (with a reference point x), erosion describes all points
x of X completely containing By and dilatation describes all points
x of X touched by By:

Eg, (X) ={x[Bx € X}

Dg (X) = {x[Bx N X # 0}
Og,.(X) = Dg, o Eg, (X)

The final baseline correction is done by subtracting the spectra
from its opening.

Assuming the structuring element of the opening to be a line
(with length (width) k) than the erosion operation for a spectrum
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equals to a running minimum filter (with windows size k) and
the dilatation equals to a running maximum filter (with windows
size k). This is demonstrated in Figure 13.

Signal

Signal after Erosion

Signal after Dilatation

2

Figure 13: Schematic demonstration of erosion and dilatation. Upper
part: Schematic presentation of a mass spectrum (green).
Middle part: Signal after erosion (blue). The structuring el-
ement is a line with length 3. Erosion equals to a running
minimum filter with length 3. Lower part: Signal after di-
latation (red). The structuring element is again a line with
length 3. The original spectrum is completely included in
the dilatation. Dilatation equals to a running maximum filter
with length 3.

3.3.1.2 Peak Picking

Peak picking aims at transforming a continuous m/z intensity
signal into a list of peaks consisting of peak positions and peak
intensities (typical peak heights or peak volumes). For investiga-
tion peak picking algorithms, we further analyze three common
peak detection methods: Signal to Noise Ratio (SNR), Template
based peak detection and Continuous Wavelet Transform (CWT).
We have selected these three algorithms because they are very
popular and widely-used.
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Signal to noise ratio (SNR)

SNR is a very general approach. The essential part of this algo-
rithm lies in the definition of noise. In statistics, noise is often
defined as variance or Median Absolute Deviation (MAD) along
different samples. In signal processing noise is often defined as an
estimated background. For instance in the Bioconductor package
PROcess[134] MAD of points within a window is used for noise
estimation. Peaks are identified by searching a local maximum of
points withing a certain neighborhood (e.g. about expected peak
width) having a SNR bigger than a given threshold.

Template based peak detection

This algorithm assumes that the peaks to be detected are shaped
like some model function e.g. a Gaussian function. Peak detection
is performed by comparison with the template function using
some similarity measure (e.g. correlation). The vector of spectrum
intensities in transformed into a vector of correlation values.
Peaks are identified by searching for high correlation values
above a given threshold.

Continuous Wavelet Transform (CWT)

CWT[92, 40] is a more sophisticated approach that is used to split
the signal into different frequency ranges. Regarding the m/z
scale as generalized time scale, CWT constructs a time-frequency
representation of the spectrum by mapping it from the time
domain to the time-scale domain. The essential part of CWT is the
mother wavelet whose translated and scaled versions are used to
generate daughter wavelets.

3.3.1.3 Peak Alignment

To ensure comparability of different spectra, they must be aligned
and especially artificially created shifts in m/z direction have to
be removed. Compared to noise filtering or peak picking, an
alignment of a multitude of spectra is more challenging and
well established algorithms are missing. Furthermore this step
is also very crucial as it paves the way for subsequent statistical
analysis. Calculating the optimal alignment of a myriad of spectra
is a computationally expensive and time consuming task and a
variety of heuristic approaches have been applied[154, 129].
Beside heuristic algorithms different ideas for analytical ap-
proaches have been proposed. An attempt for analytically find-
ing an optimal alignment are dynamic programming (DP) algo-
rithms commonly used for sequence alignment (such as Smith-
Waterman algorithm). For Gas Chromatography Mass Spectro-
metry (GC-MS) experiments employed for metabolic profiling,
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Robinson et al.[135] applied a DP algorithm to find an optimal
alignment. The peak scoring function (P(i,j)) for two spectra i
and j takes care of both, peak distances and peak similarities:

)2
P(Lj) = S(i,§) - exp (—(t‘Zth’) )

whereas S(1,j) describes the similarity of the peaks (e.g. correla-
tion), t;, t; are the two retention times (distances of the peaks)
and D is some arbitrary parameter determining the importance
of retention times.

As another approach for analytical peak alignment, Liu et al.[97]
proposed an algorithm based on simple Monte Carlo Markov
Chain (MCMC). They used a Bayesian approach assuming peak
samples to be normally distributed around their true peak and di-
rectly addressed false negative and false positive peaks. However,
application of the MCMC to an open-source ovarian cancer dataset
(created by Wu et al.[174]) comprising 170 spectra (around 10%
of the size of our dataset) took several days of computational
time.

3.3.2 Biomarker Identification and Classification

MALDI profiling studies have typically two main objectives:
biomarker identification or classification. Various different meth-
ods have been applied addressing these two objectives. As for
biomarker discovery, commonly used methods range from clas-
sical t-test or Wilcoxon rank sum test[56] to more advanced
techniques such as genetic algorithms and swarm based intel-
ligence [133]. See also Section 2.4 for more details on feature
selection and classification and Section 2.4.1 for more details for
Ant Colony optimization (ACO).

As for classification virtually all of the common classification
systems such as Bayes classification, decision trees, logistic regres-
sion, Random Forest (RF) or Support Vector Machines (SVM) have
been used more or less successfully. Many papers and reviews
were published considering classification task for MALDI data.
Wau et al. [174] published a summary comparing different clas-
sification methods for ovarian cancer. In 2006, Zhang et al.[183]
compared the performance of R-SVM and SVM-RFE. More re-
cently, in 2009, Liu et al.[99] published an overview of additional
feature selection and classification approaches, both using MALDI
MS data sets.

3.3.3 ROC Curves

ROC curves are a widely used measure of performance of su-
pervised classification rules. They plot false positive rate (or
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1-specificity) versus true positive rate (or specificity). Perfect clas-
sifiers are characterized by false positive rate = 0 and high true
positive rate = 1. Analysis of ROC curves is typically used compare
different models and to select possibly optimal models. Further-
more, they are helpful to assess the trade-off between sensitivity
and specificity. They are typically created by scanning through
the parameter range of the classification system.

ROC curves are restricted to the case of two classes. For calculat-
ing a ROC curve for multi class classifier, two different approaches
have been proposed:

1-vs-rest

Calculating the ROC curve for one class vs. all other classes[111].
For n classes n ROC curves could be created. The volume under
the ROC surface could be approximated by projecting it down
to two dimensional set of curves. This set of curves can now be
averaged by weighting with the class probability.

1-0S-1

The ROC curves are calculated for each class combination. For n
classes we create n. * (n — 1) ROC curves. This set of curves could
be averaged unweightedly.[66]
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While section 3.3 describes the theoretical background of the
required analysis steps, this section rather describes algorithms
particularly developed in this thesis. For the preprocessing several
existing algorithms like Top-Hat filter and different peak picking
algorithms were adopted and implemented. Furthermore new
algorithms were developed and implemented, e.g. for peak align-
ment or the detection of artificial peaks derived by Polyethylene
Glycol (PEG). For statistical analysis a novel method was devel-
oped that combines significance information derived by ANOVA
and redundancy information assessed by unsupervised cluster-
ing. All algorithms are implemented in statistical programming
language (R[128] version 2.7.0 - 2008-04-22 and R version 2.12.1 -
2010-12-16).

3.4.1 Preprocessing

The preprocessing applied in this work is designed to address all
typical preprocessing steps (see Algorithm 1). Figure 11) shows a
complete workflow of the analysis of MALDI data including most
parts of preprocessing.

Algorithm 1 General description of the preprocessing workflow
for MALDI data. Preprocessing is basically a consecutive applica-
tion of different steps.

for all Spectra do

apply log transformation (log;)

apply median filter (k = 9)

apply adapted top hat filer (see section 3.3.1.1)

apply peak picking (see section 3.3.1.2)

apply peak alignment/matching (see section 3.3.1.3)

apply additional data transformation (see section 3.4.1.5)
end for

3.4.1.1 DPeak Picking

For investigation of peak picking algorithms, we chose to focus
on three common peak detection methods: Signal to Noise Ratio
(SNR), Template based peak detection and Continuous Wavelet
Transform (CWT) (see 3.3.1.2). SNR and template-based approach
were implemented in own R scripts while for CWT we used the R
package msProcess - version 1.0.5 2009-01-20.

For SNR the noise was estimated as the background calcu-
lated using Top Hat filter(see section 3.3.1.1) with small window
size. For template based peak detection, we scanned along the
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spectra and calculated the correlation (Pearson correlation coef-
ficient [136]) to a Gaussian function. For evaluation of CWT we
used the second derivative of a Gaussian function (Mexican Hat
Wavelet) as mother wavelet. For peak detection (using R package
msProcess) the peak candidate has to be clearly distinguishable
from the background (parameter: snr.min) and visible across at
least 7 scale domains (parameter: length.min) excluding the first
three high frequency wavelet scales (parameter: scale.min).

3.4.1.2  Reference Peaks for evaluation of Peak Picking Algorithms

For evaluation of the peak picking performance we defined a set
of reference peaks. The peak picking algorithms are evaluated in
terms of sensitivity (how many of the reference peaks are found)
and specificity (how many of the found peaks are part of the
reference set). The reference set was created in a semi-automatic
process. To this end we initially picked peaks manually (in order
not to favor any algorithm) and subsequently optimized peak
positions automatically (to correct for manual inaccuracy). All in
all the reference set contained a total of 381 peaks.

3.4.1.3 Top Hat Filter

The Top Hat filter is defined as a successive application of a
running minimum followed by a running maximum. (see sec-
tion 3.3.1.1). Following these assumptions we adapted the top
hat filter into a successive application of a running 0.1 quantile
filter, a running median filter and a running minimum filter (see
Algorithm 2).

Algorithm 2 Baseline correction using an adapted Top Hat filter.

apply running 0.1 quantile (k=101)
apply running median (k=101)
apply running min (k=201)

3.4.1.4 DPeak Alignment

Due to missing established algorithms for peak alignment and
high computational costs of analytical approaches (especially
considering the large amount of spectra in our dataset), we de-
veloped a heuristic approach suitable for our dataset. A multiple
alignment of a huge amount of spectra is challenging when com-
puting the aligning of all sequences to each other simultaneously.
To avoid this complexity the alignment can be performed against
a reference spectrum or alternatively, like used for multiple se-
quences alignment using a cluster based guide tree[gy]. However,
we prefer the first alternative and calculate the alignment to a
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reference profile. The reference profile was defined as the average
profile of all spectra.

Like in the algorithm presented by Randolph and Yasui[129],
our approach starts with the identification of very prominent
features (peaks) of the reference spectrum (RS). By applying
the correlation based peak detection (see section 3.3.1.2) with
high correlation threshold (0.8), we identified 43 reference peaks
within the RS. For every spectrum to be aligned (s;) and for
every reference peak (rp;j), we apply peak picking algorithm for
si within a given environment around rp;. If a peak (pi;) is
found we assume this peaks to be the same as rp; and calculate
the distance (di;) of pi; and rp;. If the peak is missing in a
spectrum the distance d; ; is set to Not Available (NA). Applying
this method, for a certain spectrum k we compute a vector (of
length 43) of distances (dy ;) between identified peaks of si and

ij.
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Figure 14: Distances of found peaks and reference peaks calculated
during peak alignment process. Left hand side: Histogram
of all distances. There are two groups of spectra showing
different distribution of distances: one distributes around 0
and one around —22 indices. For both groups a fitted normal
distribution is added to the histogram. Right hand side:
Vector of distances for the spectra. Again the two groups of
spectra are clearly visible. Furthermore for nearly all spectra
the shift seems to be constant (on the index scale).

Regarding the vector of distances (right hand side of Figure
14) and the distribution of the distances (left hand side of Figure
14), leads to two observations: First, the vector of distances for a
spectrum seems to be constant on the index scale, which corre-
sponds to a quadratic distortion on m/z scale. Second: there are
two groups of spectra showing different distributions of dy ;. The
majority of the spectra seems to be in good alignment with the
reference spectrum, whereas a smaller group of spectra are more
or less constantly shifted by —22 indices. These two groups are
derived from different sample preparation batches.
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As observed above, distances to reference peaks seem to be con-
stant for a particular spectra (see Figure 14), and hence the final
displacement value (for a spectrum) is calculated by averaging
the corresponding distance vector. A pseudo-code representation
of the complete peak alignment is given in the Appendix see
algorithm 5.

Having two groups of spectra (one with an index shift of ~ 0
and one with ~ —22) violates the assumption of Liu et al.[97] that
peak samples are normally distributed around their true peak.
This effect could also be a problem for our heuristic approach,
because the mean spectrum contains each peak twice. For our
dataset the group with an index shift of ~ 0 is much bigger than
the other group and the mean spectrum is not affected badly. If
both groups were equally sized the heuristic would fail to align
the peaks.

3.4.1.5 Additional Data Transform

T-Test and ANOVA, both assume data to be normally distributed
and variance to be homogeneous (c.f. section 2.3). However, even
applying all preprocessing steps does not lead to a complete sta-
bilization of the variance. Hence, in order to assure homoscedas-
ticity additional steps were required.

Obviously, for peak intensities there is still a linear dependency
between variance and intensity indicating a multiplicative error
model. The standard treatment of data with a multiplicative error
model is (another) log transformation. We added a pseudo-count
of 0.1 to avoid the singularity at 0. Finally, we added an offset for
shifting spectra to a positive scale.

3.4.2 PEG Detection

The polymer Polyethylene Glycol (PEG) has a broad range of
applications, inter alia it is often used as an internal calibration
compound in MS experiments or as stationary phase for gas chro-
matography. It is non-toxic, non-immunogenic, non-antigenic,
highly soluble in water and FDA approved. Therefore, linking of
one or more PEG molecules to a protein or peptides (known as
PEGylation) is a common method especially in drug development
because it prolongs residence in body, decreases degradation by
metabolic enzymes and reduces or eliminates protein immuno-
genicity [166, 170].

PEG shows a typical fragmentation pattern, when subjected
to MALDI MS experiment. PEG, having a mass of 44n 4 62 Da,
results in a consecutive sequence of peaks with distances of 44
Da. In order to investigate whether a typical PEG fragmentation
pattern can be found or not, we calculate all pairwise distances
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of all n identified peaks (n- (n —1)/2 distances). Figure 15 shows
a histogram of the distribution of all pair-wise peak distances
< 100 Da. The counts for the peak distances seem to be normally
distributed with one prominent outlying bar with a distance of
more than 5.5 times standard deviations from mean distance.
This bar reflects peak distances between 43.94 and 44.34 Da which
corresponds to PEG fragment distance indicating the presence of
PEG in the experimental data.
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Figure 15: Histogram of the distribution of all pair wise peak distances
< 100 Da. Horizontal dashed lines indicate the mean, and
the first, second and third standard deviation. Curve on left
hand side show the density of the counts. Counts seem to be
normally distributed.
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For further analysis we want to exclude peaks derived from
PEG since our interest is focused on biologically relevant signals.
Therefore, we developed an algorithm for identification of peaks
derived from PEG rather than from biological biomolecules. The
algorithm comprises several steps that mainly aim in identifica-
tion of consecutive peak with a peak distance corresponding to
PEG peak distance. The algorithm is presented on a high level
description in algorithm 3.

3.4.3 Handling of Technical Replicates

As shown previously in Section 3.2 for a single sample up to 8
technical replications were performed. Technical replicates have

an important effect on the data and on the statistical evaluation[82].

Thus an adequate handling of technical replicates is required. For
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Algorithm 3 High level description of the algorithm for detection
of peaks derived from PEG.

1: calculate all pair wise peak distances

2: identification of peaks with a distance of ~ 44 to another peak
3: reordering these peaks to lists of consecutive peaks

4: identifying lists of consecutive peaks with at least 3 peaks

the analysis is this dataset we use the standard approach of calcu-
lating the average of technical replicates. A detailed description
of the effects of technical replicates on the statistical evaluation
as well as alternative methods and the reasoning for choosing to
average technical replicates is given in the Appendix.

3.4.4 ANOVA with mixed effects

The ANOVA model is designed to investigate effects of the three
different experimental factors (genotype, diet and time) on blood
proteins. A special emphasis is devoted to the mutual influence
of diet and genotype. For the data evaluation presented in this
chapter a straight forward approach is a mixed-effect ANOVA of
the form:

Y ~ Genotype + Diet + Time + Genotype * Diet

This model simultaneously investigates effects derived from
all three single experimental factors as well as the combination of
genotype and diet - symbolized by the "*’ (see Section 2.3 for more
details of mixed effect ANOVA). The combination of genotype and
diet is of particular interest since SJL mice are resistant to HF diet
induced obesity and diabetes.

3.4.5 Stratification and Clustering

After preprocessing each peak should represent a peptide or
peptide combination, respectively. The concentration of a peptide
and hence the peak intensity varies in the diverse samples (de-
pendent on experimental factors such as different diet-genotype
combinations). Let an intensity profile be the list of intensities for
a certain peak across all samples.

Due to fragmentation and degradation, each protein can split
up into multiple peptides and therefore, lead to multiple peaks
in the mass spectrum. These peaks are not independent and
the corresponding intensity profiles are supposed to be corre-
lated. A high correlation between intensity profiles can hint for
related peptides such as multimer formations or PTMs. In order
to benefit from this kind of correlation various methods have
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been proposed [21]. To this end, we apply hierarchical clustering
using average linkage[68] with 1 — p as distance measure, where
p denotes the Pearson-correlation coefficient[136]. Each node in
the cluster dendrogram represents several intensity profiles and
similar intensity profiles are aggregated in close proximity.

It is useful to combine this similarity information with signif-
icance information by assigning p-values to the nodes. Using
the ANOVA model described above (Section 3.4.4), we calculate a
p-value for each peak and hence each leaf of the dendrogram. For
a node representing several peaks, the p-value is calculated from
the mean intensity profile of corresponding peaks. For technical
and biological reasons intensity profiles can be different absolute
scales. Therefore, prior to averaging intensity profiles, they are
z-transformed (centered and scaled)[68]. So each leaf and each
node of the dendrogram is annotated with p-values. The nodes
not only aggregate similar peaks but also reflect the significance
for an experimental factor. Merging both, similarity and signifi-
cance information our approach allows for the interpretation of
complex biological data in an intuitive manner.
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3.5 RESULTS

In the following, we describe the effects of preprocessing and
the results of subsequent data analysis. We will first investigate
the distinct effects of different pre- processing steps such as
Top Hat filter (section 3.5.1.1) or peak alignment (section 3.5.1.5).
Special attention is paid to evaluation and comparison of different
peak picking algorithms (Sections 3.5.1.3 and 3.5.1.4). Effects
of preprocessing on a global level of the complete dataset are
presented in Section 3.5.1.6.

Subsequently in Section 3.5.3 we present the results for identi-
fication of biomarker candidates for combination of experimental
factors genotype and diet and for the single experimental factors,
respectively. In the end of this section we present the result for
classification and prediction (Section 3.5.4).

3.5.1 Preprocessing

3.5.1.1 Top Hat Filter

Effects of the Top Hat filter (for details see Section 3.4.1.3) for 100
randomly chosen spectra are demonstrated in Figure 16. Prior
to baseline correction the different spectra show different base-
lines with shifts up to two orders of magnitude (log;). This is
particularly visible in the zoomed spectra without baseline cor-
rection (upper right part of Figure 16). Top Hat filter successfully
subtracted the baseline from each spectrum and all spectra are
much more homogeneous. Especially at the level of the complete
spectra (lower left side of Figure 16) the baseline shifts are not
visible any more.

3.5.1.2  Principles of peak picking algorithms

In order to understand the three different peak picking algo-
rithms: SNR, template based approach and CWT (see Section
3.4.1.1), we now illustrate their working principles. To illustrate
the principles and assess the different algorithms we use the set
of reference peaks (see Section 3.4.1.1).

Figure 17 gives a graphical impression of the underlying prin-
ciples of the different algorithms. The first box shows the mean
intensity spectrum of the complete data set in a mass window
of m/z 1400-1800 Da. The noise level was defined as baseline
calculated using Top Hat filter (see dashed line). The 33 peaks
from the reference set within this mass window are indicated as
vertical dashed lines.

The second part of Figure 17 shows the signal to noise ratio
along the mass window of the mean spectrum. The SNR threshold
used for peak identification was 1.75 (horizontal dashed line).
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Figure 16: Effects of the adapted Top Hat filter for 100 spectra regarding
the whole spectra (left hand side) and with a zoom (right
hand side). The upper row reflects the spectra before baseline
correction and the lower row after applying Top Hat filter.

Using SNR we identified 22 peaks in this mass range whereas
we found 69% of our reference peaks (with the SNR threshold of
1.75). With this threshold we did not find any peak that was not
part of the reference set.

The third box in Figure 17 visualizes the performance of
template-based peak detection. The correlation coefficients along
the spectrum are shown. The correlation threshold of 0.6 is shown
as horizontal dashed line. All in all we found 31 of the 33 refer-
ence peaks (94%) plotted as dots above the peaks. We also found
one peak that is not within the reference set (false positive) shown
as asterisk above the peak.

The last part of Figure 17 demonstrates the peak picking using
CWT. The first 7 daughter wavelets are depicted. Compared to
the other two methods the peak picking is complicated by the
fact that information from different time-scale domains has to be
combined. The reference peaks again appear as vertical dashed
lines and the picked peaks are marked above the peaks. Using
CWT we identified 97% of the peaks but also got two false positive
hits (marked with asterisks above the peaks).

3.5.1.3 Evaluating peak picking algorithms

We now assess the peak picking algorithms in terms of sensitivity
(how many of the reference peaks are found) and specificity
(how many of the found peaks are part of the reference set).
An optimal algorithm has high sensitivity and high specificity.
Sensitivity and specificity are used to generate the ROC curves in
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Figure 17: Comparison of the three different peak picking algorithms
for the m/z-range 1400 - 1800. A: mean spectrum and
noise/background (dashed line); B: SNR and threshold used
for peak picking (horizontal dashed line); C: correlation
coefficient and threshold (horizontal dashed line); D: first
7 wavelets. The vertical dashed lines are reference peaks.
Marks above the plot indicate identified peaks (dot = con-
tained in the reference set; asterisk = not in reference set -
false positives).

Figure 18. For more details on ROC curves see Section 3.3.3. They
are calculated by scanning the threshold values of the different
algorithms e.g. changing the correlation threshold in the template
based approach (for an illustration of the threshold operation see
tigure 17).

Furthermore, in order to evaluate the sensitivity to noise we
added different quantities of high frequency noise (white noise).
Since the observed error behavior for MS spectra indicates a
multiplicative error behavior, we added a normally distributed
noise with mean = 0 and an error of 2%, 4% and 10%. The
performances of the three methods are affected to a very different
degree (see Figure 18 for the ROC curves). The SNR is very sensitive
to noise and the ROC curve worsens dramatically. The other two
algorithms are much more robust. While on perfectly smoothed
data the template correlation approach seems to be the method
of choice, for noisy data the advantage of the template-based
approach decreases and CWT shows the best performance. In
conclusion the three presented peak picking algorithms show
a different sensitivity to noise and therefore to the number of
spectra and the choice of parameters for preprocessing steps.
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Figure 18: ROC curves for the three different peak picking algorithms
on original and noisy Data: SNR (full lines), Correlations with
Gaussian function (dashed lines) and CWT (pointed lines).

3.5.1.4 Comparing peak picking algorithms

The three different peak picking algorithms investigated here are
distinct in terms of complexity, performance and stability. But
all three methods have a common parameter: the estimated peak
width. There are different ways to estimate the optimal peak
width. For instance OpenMS[149, 132] offers the possibility to
measure the peak width manually using graphical interface or
the peak width can be estimated by the CWT algorithm itself.
For an overview of the advantages and disadvantages of the
algorithms see table 2. Signal to Noise Ratio as a universally
used signal processing technique is computationally fast, easy

to implement and shows good performance on smoothed data.

However, it is not very specific for this task as it ignores the shape
of the peak. Since the noise is an integral part of the algorithm
it is very sensitive to noise and therefore strongly depends on
the quality of the data and on the performance of previously
performed smoothing and baseline correction steps. This can be
seen in lower right part of Figure 18.

The template-based approach is much more specific for the
peak picking task assuming peaks to be shaped like a Gaussian
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Method PRO CONTRA

* depends on the definition of
* simple - easy to implement noise

SNR e fast performance * unstable - very sensitive to
noise

¢ only few parameters
* ignoring peak shape

* simple - easy to implement e detection favors Gaussian
shaped peaks

Template * only few parameters pedp

Correlation . * sensitive to high noise

e stable for small noise

. . e complicated algorithm
e stable even for massive noise

o i £
CWT ¢ internal data smoothing slow pertormance

e difficult to tune - high number

e flexible - tunable of parameters

Table 2: Summary of advantages and disadvantages of the three pre-
sented peak picking algorithms.

function. This assumption, however, might often not be exactly
applicable because peaks may show a considerable asymmetry.
Depending on the experimental parameters, particularly laser
energy, significant deviation from a Gaussian peak shape can be
obtained. Although this method has only a few parameters, it
appears rather robust for lower levels of noise. However for high
levels of noise the performance decreases.

CWT is like SNR a very universal signal processing technique
used for many different tasks. In comparison to SNR and template-
based approach CWT is more complex and computationally ex-
pensive. The large number of parameters allows for tuning CWT
to be very specific for this task taking into account the shape of
the peak. As smoothing is an intrinsic part of the algorithm CWT
is very robust even to substantial amounts of noise. On the other
hand tuning of the algorithm is difficult due to the large set of
parameters and may result in over-specific solutions.

For perfectly smoothed data all three methods show good per-
formances but CWT seems to be little worse than the other two.
For data including a substantial amount of noise CWT clearly out-
performs the other methods in terms of sensitivity and specificity.

3.5.1.5 Peak Alignment

The effect of the peak alignment is demonstrated using two ex-
emplary chosen peaks at m/z 709 and 818 both of which are
part of the 43 reference peaks used for alignment process. For
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further details about peak alignment see Section 3.4.1.4. Figure
19 shows the two peaks before and after peak alignment. Prior to
peak alignment (left hand side) some of the spectra are shifted:
Two groups of spectra are visible each a different distribution
of shifting positions: one distributes around 0 and one around
—22 indices (c.f. Section 3.4.1.4). These groups are derived from
different sample preparation batches. Without alignment statis-
tical analysis would be biased. After peak alignment all peaks
positions are homogeneous (right hand side of Figure 19).
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Figure 19: Two exemplarily chosen peaks 709.32 (upper row) and
818.51(lower row) before applying peak alignment (left hand
side) and after peak alignment (right hand side). Before peak
alignment two groups of spectra are visible: one group of
spectra shifted by -22 indices (colored in light gray) and the
other group in the center of each image (colored in dark
gray). After peak alignment peak positions of all spectra are
homogeneous and the groups are not separated by the index
shift any more.

3.5.1.6  Global Effects of Preprocessing

The effects of log transformation, baseline correction and peak
matching at the level of complete spectra as well as the corre-
sponding error plots are depicted in Figure 20.

Typically preprocessing aims at reducing technically created
bias and hence, assuring that the assumption required by sta-
tistical evaluation approaches such as ANOVA are fulfilled. For
MALDI MS, raw data has a very strong correlation between signal
intensity and variance (upper part of figure 20). After applying
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logarithmic transformation to the spectra the correlation between
variance and intensity is still strong (middle row of figure 20).
However even the combination of log transformation, baseline
correction and peak alignment does not lead to a complete sta-
bilization of the variance which is necessary for applying our
statistical analysis methods (lower part of figure 20).

=1 Raw data S Error of Raw Data
=y =3 e
Q] Genotype @ °
> = B6 O-
Bo- @ N2O| | 58
38| ’ } o s | |68
8 ¥
-~ | | 1 S
o —————ud ;LML"L,_ — e A - ol&Z i . .
2000 4000 M 6000 8000 10000 0 SOOO(IJ " 1Q?OOO 150000
ass ntensity
Log Transformed Data Error of Log Data
o 5
2"_ Genotype b % o .
25 | = 86 @ | °q -
ST @ NZO| [ O o & °3,- °
Em— v ) o SJLI [ i 4' ol
i 2o J‘ N 7 0 © °
wa . ‘\,M{k“;“’w‘ﬁ / 3 AN
2000 4000 6000 8000 10000 7 9 10 11 12
Mass Intensity
< Data after peak hing Error after peak matching
’ ‘ Genotype °
'}%w ] ‘ | Bs o
< || @ NZOo
£ ’\ I * O siL
£ | ‘ I |
O | | | 1
o | 1k ) !l Hl Lx u )\ i \ J ]
ol i &‘*M/ \‘;: Wit A s ﬁL Wbl | o
o

0 i 2 3 4
Intensity

4000 6000 8000 10000
Mass

Figure 20: Effects of preprocessing: Raw data (top), log data (middle),
after baseline correction and peak alignment (buttom). The
left column shows the effect on the spectra while the right
column shows the corresponding standard error plots in-
cluding linear fit (white line) and lowess fit (black line). The
different colors reflect different genotypes (dark gray: B,
gray: NZO, light gray: SJL). Non-aligned spectra could not be
seen on this global scale.

3.5.1.7 Additional data transform

To assure homoscedasticity a second log transformation of the
data was performed (see Section 3.4.1.5 for details). After ad-
ditional data transformation steps data are homoscedastic (see
Figure 21). Thus, the assumptions for the application of ANOVA
are fulfilled.

3.5.1.8 PEG

Prior to statistical analysis we want to exclude peaks derived from
PEG since our interest is focused on biologically relevant signals
rather than artificial contaminations. Therefore, we applied the
algorithm developed for identification of peaks derived from
PEG (see Section 3.4.2). Using this algorithm, the following five
consecutive PEG peaks lists were identified:

1. 774.76, 818.90, 861.72, 905.09, 948.54
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Error after transformation to ensure homoscedasticity
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Figure 21: Error plot after log transformation to ensure homoscedas-

4.

5.

ticity including linear fit (orange line) and lowess fit (black
line). The different colors reflect different genotypes (dark
gray: B6, gray: NZO, light gray: SJL).

2272.72, 2316.89, 2360.60, 2404.50

1112.53,1157.08, 1201.41, 1245.28, 1289.61,1333.39, 1377.73, 1421.76, 1465.97,
1509.97, 1553.89, 1598.09, 1686.09, 1730.41, 1774.35, 1818.25

1578.81, 1622.99, 1666.11, 1709.41, 1752.70

2068.82, 2112.86, 2156.51, 2200.61

all of which are discarded from further analysis.

3.5.2

Average Linkage Clustering

In parallel to ANOVA an average linkage clustering was performed
as described in Section 3.4.5. The cluster dendrogram combining
correlated peptides and ANOVA p-values is shown in Figure
22. The experimental factors have different impact on the data.
The most significant p-values are obtained for genotype (up to
10~71). The different mouse types can be easily distinguished
using the profile data. Diet and the combination of genotype
and diet seem to have much smaller but still substantial effect
on the data (p-values up to 10~'#) whereas time has an even
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greater effect (p-values up to 10723). The highly significant peaks
are also an effect of the high number of samples. Nearly one
third of all peaks - the whole right part of the dendrogram - is
associated with the experimental factor time. On this global level
the dendrogram gives an intuitive overview of the complete data
set as both, similarity and significance information are shown in
a unified representation.

Dendrogram of expression patterns
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Figure 22: Dendrogram of all peaks identified in this dataset, see meth-
ods. Every node is characterized by four ANOVA p-values
shown as a color-coded box with four fields: Diet (upper
left), Genotype (upper right), Time (lower right) and com-
bination of diet and genotype (lower left). The different
—log1o p-value colorscales for the four factors are shown at
the buttom.

3.5.3 Biomarker Identification

3.5.3.1 Factor Combination - Diet and Genotype

Table 3 provides an overview of the two most significant clusters
of peaks for the combination of experimental factors genotype
and diet. Cluster Combi:1 comprises three peaks with a mean cor-
relation coefficient of 0.81. It contains the peak m/z 4075 with the
most significant p-value for the combination of diet and genotype
(10~'%) but also the most significant result for solely factor diet
(p-value 10~ '%).The second cluster comprises the peaks m/z 6116,
4041 and 8300 with a p-value of 10~3 for combination of geno-
type and diet and significant p-values for single factor genotype
(1072%) and time 10~ 7.
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e
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A detailed illustration of the intensity profile for peak m/z
4075 as representative for cluster Combi:1 can be seen in Figure
23. This peak shows high intensities for the combination of SJL-
genotype and CHF-diet whereas it is almost constantly low for
all other factor combinations. This effect is also visible for diet
or genotype only. Looking solely at the factor diet we would
conclude that peak m/z 4075 is correlated with diabetes-protective
CHF diet[39, 76]. An extended analysis of the factor combination,
however, shows that this correlation with the CHF diet is only
given in SJL genotype, which is not visible in single factor analysis.
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Figure 23: Normalized peak intensities for peak m/z 4075 exemplary
for cluster Combi:1. Peak intensities for all 3 experimental
factors are drawn as bar plots with error of mean error bars.
Genotype and diet are given below the bars for each week.
The ANOVA method is not sensitivly affected by the missing
values due to sample harvesting problems occuring in SJL-HF
in week 3 and 4. Higher peak intensities are found only for
the combination of SJL genotype and HF diet.

3.5.3.2 Single Factor - Diet

The most significant cluster for experimental factor diet is shown
in Table 4. Compared to the other experimental factors, diet has
the smallest impact on the data. The most significant hit for diet is
identical with the most significant hit found for the combination
of diet and genotype (see table 3). A single factor analysis also
identifies this peak but, however, only multi-factorial analysis
offers detailed insights towards biological interpretation.
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Cluster mean- Peak p values
cor Diet Genotype Time Diet * Genotype
2262 o 0.00015 ® 3.8e-11 © 0.97 < 1.2€-05
7 Y 2 b
Combi:1 0.81 3618 & 6.7e-07 & 2e-08 8 0.004 ] 8.8e-13
= = c +
4075 2e-14 1.5€-29 3e-08 7.9e-14
6116 0 0.00026 I 2.6e-05 o 2.6e-13 8 0.0091
Combi:2 0.74 4041 8 1.9e-06 é)! 2e-30 o“lcf 3.1€-06 fid_ 3.2e-05
=} (o)} Ll o
8300 1.7€-06 2e-19 3.9e-14 1.2e-07
Table 3: Most significant cluster of peaks for combination of experimen-

tal factors diet and genotype. For each cluster, peaks aggregated
within this cluster, the average correlation of the peaks and
the ANOVA p-values for the three different experimental factors
and the factor combination of diet and genotype are given.
P-values are given for each peak and for the complete cluster.
Cluster Combi:1 containing the tree peaks at m/z 2262, 3618
and 4075 has the most significant effect for combination of diet
and genotype (p-value 10~'%) but also significant effect for
genotype (107'8) and diet (107'°) alone. The p-value of the
cluster for the factor combination is even sightly smaller that
the p-values of the corresponding peaks.

Cluster mean- Peak p values
cor Diet Genotype Time Diet * Genotype
2262 9 0.00015 9 3.8e-11 @ 0.97 ) 1.2€-05
Diet:1 0.81 3618 é«’; 6.7e-07 é{\ 2e-08 § 0.004 % 8.8e-13
4075 2e-14 1.5e-29 3e-08 7.9e-14
Table 4: Most significant cluster of peaks for experimental factor diet.

For each cluster, peaks aggregated within this cluster, the av-
erage correlation of the peaks and the ANOVA p-values of the
corresponding ANOVA model are reported. P-values are stated
for every peak and for the complete cluster. The most signifi-
cant result for diet is the same as received for the combination
of diet and genotype (see Table 3).
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3.5.3.3 Single Factor - Genotype

The experimental factor genotype has the strongest effects on the
data with p-values up to 10~?". Table 5 presents the two most
significant clusters of peaks for genotype, both with a p-value
of 10~74. Cluster GT'1 comprises 4 peaks m/z 5822, 6329, 4237
and 5029, all of which show high levels for NZO and SJL genotype
while the level for B6 genotype is very low (see bar plot of signal
intensity for peak 5029 in figure 24 as a representative for this
cluster). This peak perfectly distinguishes the B6 genotype from
the other two.
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Figure 24: Normalized peak intensities for peak 5029 exemplary for
cluster GT:1. Peak intensities for all combinations of 3 exper-
imental factors are drawn as bar plots with error of mean
error bars. Genotype and diet are given below the bars for
each week. The ANOVA method is not sensitively affected
by the missing values due to sample harvesting problems
occuring in SJL-HF in week 3 and 4. The measured intensities
for peak m/z 5029 are low for B6 mice but much higher for
NzO and SJL mice. The high difference together with rather
small errors and high sample size lead to very significant
p-value of 10771,

Cluster GT:2 containing the peaks m/z 3556, 3575, 2037, 2488,
3388 has very similar p-value like cluster GT:1 but shows high
signal intensities only for SJL genotype and lower intensities for
B6 and NZO mice. A bar plot of peak intensities for peak 3388 as
representative for GT:2 is shown in figure 25. Peaks aggregated
in cluster GT:2 distinguish SJL mice from the other two mouse
strains.
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Beside the clearly visible biological effect the very low p-values
are also an effect of the high number of samples.
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Figure 25: Normalized peak intensities for peak 3388 exemplary for
cluster GT:2. Peak intensities for all combinations of exper-
imental factors are drawn as bar plots with error of mean
error bars. Genotype and diet are given below the bars for
each week. The ANOVA method is not sensitively affected
by the missing values due to sample harvesting problems
occuring in SJL-HF in week 3 and 4. Peak m/z 3388 show high
intensities for SJL genotype while for NZO and Bé the intensi-
ties are lower. The intensity difference together with rather
small errors and high sample size lead to very significant
p-value of 10-74 for genotype.

The combination of both peaks (3388 and 5029) allows for a
perfect separation of all three genotypes. Figure 26 shows a scat-
ter plot of intensity values for both peaks colored by different
genotypes. For both peaks and every genotype value, an esti-
mated normal distribution is drawn on top and right hand side.
The three genotypes are perfectly distinguishable using these two
peaks.

3.5.3.4 Single Factor - Time

The experimental design included the investigation of mice at
different developmental stages and in effect many peaks are
expected to be related to biological changes in growing up of
the mice. This is most probably the reason why nearly one third
of all peaks is associated with the experimental factor time (see
figure 22 on page 50). The best two clusters are shown in table
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Figure 26: Scatter plot of peak intensity values for peaks 3388 and 5029.
On top and the right hand side are fitted normal distribu-
tions for every genotype. Peak 3388 separates SJL genotype
from the other two and peak 5029 distinguishes B6 from SJL
and Nz0. Using both peaks all three genotype can be easily
separated.

6. The most significant peak (m/z 6569) has a p-value of 10723,
This peak is part of cluster Time:1 together with peaks m/z 9061
and 31634 having an average correlation coefficient of 0.93. The
second cluster (Time:2) comprises two peaks m/z 3132 and 7058
with p-values of 1072°. The cluster has a slightly more significant
p value of 1072!. The high p-values are caused by intensity
differences together with high number of samples and rather low
variances.

All p-values are given without multiple testing correction. Ap-
plying rigid Bonferroni multiple testing correction for 261 tests,
the p-value threshold of 0.05 changes to 0.05/261 = 0.0002. Hence
all p-values discussed above remain significant.

3.5.3.5 Redundancy - Hemoglobin Peaks

Protein composition of blood is typically dominated by highly
abundant proteins such as albumin and hemoglobin. Albumin
and hemoglobin are large proteins represented by a multitude
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Cluster mean- Peak p values
cor Diet Genotype [ Time Diet * Genotype
5822 0.0023 5.7e-81 2.3e-07 0.82
-
GT1 0.96 6329 % 0.022 i’? 6.7e-50 § 0.24 E 0.19
4237 Sl 9.5e-05 - 1.1e-70 0.61 0.022
5029 0.00014 1.3e-91 0.82 0.14
3556 3.8e-07 2e-51 0.023 0.038
3575 8 5.9e-05 = 1€-60 ® 0.0042 = 0.0041
GT:2 0.82 2037 i’ 0.028 \?Ii 3.3e-35 § 0.051 § 0.017
f=2} -
2488 0.014 8.4e-40 0.29 0.95
3388 2.5e-12 1.8e-74 6e-04 0.0093
Table 5: Most significant clusters of peaks for experimental factor geno-
type. For each cluster, peaks aggregated within this cluster,
the average correlation of the peaks and the ANOVA p-values
for the corresponding ANOVA model are given. P-values are
reported for every peak and for the complete cluster. Genotype
has a very strong effect on the data with p-values up to 10774
for cluster GT:1 and GT:2. The high significance is caused by
the high number of samples and by the strong differences (see
Figure 25 for a visualization of peak intensities).
Cluster mean- Peak p values
cor Diet Genotype Week Diet * Genotype
3163 - 0.4 o 2.2e-08 9 1.3e-19 ° 0.48
Time:1 0.93 6569 s 0.32 i) 6.9e-15 i’f 6.7e-23 & 0.38
o -
9061 0.21 6.6e-12 2.7e-19 0.24
Time:2 092 3132 g 0.059 g., 0.34 i 7e-20 § 0.92
7058 ° 0.013 0.0058 o 8.7e-20 0.33
Table 6: Most significant clusters of peaks for experimental factor time.

For each cluster, peaks aggregated within this cluster, the av-
erage correlation of the peaks and the ANOVA p-values are
reported. P-values are given for every peak and for the com-
plete cluster. The most significant cluster for time (Time:1)
shows p-values up to 10722, The peaks of cluster Time:2 have
p-values for experimental factor time of 10~2° while the cluster
is slightly more significant (p-value: 10~2).
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of peptides and thus should be presented by multiple peaks in
our dataset. Assuming that these peptides have the same orig-
inating protein, the intensity profile of the spots are supposed
to be correlated. In effect, peptides derived from hemoglobin or
albumin should be located in close proximity in the dendrogram.
Ms-based profile peak identification revealed one albumin and
three hemoglobin peptides. Mapping the three hemoglobin pep-
tide peaks into the dendrogram shows that they are indeed in
close proximity (see Figure 27) supporting our assumption. In
the middle of the dendrodram (see Figure 22) there is a cluster
with a big number of peaks not associated to any experimental
factor. The peak identified as albumin is located in that big cluster.
Maybe the whole cluster presents peptides derived from albumin.

Excerpt of the Dendrogram (Hemoglobin Peaks)
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Figure 27: Excerpt of dendrogram (c.f. figure 22) with tree peaks identi-
fied as hemoglobin (colored dark gray on x-axis).

3.5.4 Feature Selection and Classification

The combination of ANOVA and similarity-based clustering es-
tablished in the previous sections, is also well-suited for feature
selection towards reliable and precise classifications and predic-
tions. In the following, this is demonstrated in an exemplary
manner for experimental factor diet. The other two experimen-
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tal factors are not suited for purpose of demonstration because
genotype classification is more or less trivial (c.f. figure 26) and
time is not a factorial variable and has more distinct values. The
classification performance is evaluated using cross validation
error and ROC curves.

Using the combination of ANOVA and clustering described
above (see Section 3.4.5) for feature selection we avoid the short-
coming of typical filter methods as clustering incorporates infor-
mation about similarity and orthogonality (see Section 2.4). It is
sufficient to use one representative feature from the cluster ob-
tained from the statistical analysis to achieve classification perfor-
mance comparable to wrapper methods. In order to demonstrate
the advantages of cluster-based ANOVA we built a classification
system with a decision tree ensemble based classifier (random
Forest)[18] for the experimental factor diet.

Since the size of the optimal feature set for classification strongly
depends on the classifier and on feature-label distribution[70],
we performed classification with different feature set sizes: 3, 5
and 8. Feature selection was done by selecting top features from:

1. ANOVA analysis without clustering: Selection of peaks with
the most significant p-values for experimental factor diet
(Peaks m/z: 1883, 3267, 3407, 4075, 4237, 5176, 5536, 8332).

2. Ant Colony optimization strategy: Using an ACO strategy
(see 2.4.1), we identified a set of features with optimized
classification results in a similar way to Ressom et al.[133]
(Peaks m/z: 3267, 3437, 3575, 4041, 4237, 4965, 6569, 7058).

3. ANOVA analysis including clustering: Selection of clusters or
peaks with most significant p-values for experimental factor
diet. For every cluster selection of the peak with the most
significant p-value as representant for the cluster (Peaks
m/z: 1883, 3267, 3407, 3556, 3943, 4075, 5176, 8332).

For ACO we used the in house implementation (see section
2.4.1) with the following parameter set: nAnts=75, nlter=100,
nFeatures=1—5 and a 10-fold cross validation for evaluation of
classification result. The feature selection algorithm took ~ 5h
with both CPUs on a Intel Corez Duo CPU (2.66GHz). Figure 28
shows the course of the pheromone values. Most of the peaks
are considered useless for classification, and therefore the level
of pheromone is quickly trickling away. On the other hand, some
features are well suited for purpose of classification represented
by high pheromone values.

To compare the classification results using the three different
feature selection methods, confusion matrices of a 10-fold cross
validated classification for experimental factor diet are shown in
table 7. Beside the classification error, we calculated a p-value
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Figure 28: History of pheromone values during feature selection pro-
cess of ACO for experimental factor diet. A line represents
one peak and the x-axis reflects the current iteration. Lines
are smoothed using lowess. For the majority of the peaks the
level of pheromone rapidly drops close to zero. After 100 it-
erations only six peaks remain with a substantial pheromone
level.

for the classification result by comparing the performance of
the selected set of features with the performance of randomly
selected sets. Since diet has three distinct values we expect the
cross validation error to be normally distributed around 66% for
randomly selected feature sets. Estimating this normal distribu-
tion by 1000 randomly selected feature sets (estimated: mean =
0.65, sd = 0.05), we were able to assign a p-value to each cross
validation error.

Using ANOVA without clustering for feature selection leads
to a 10-fold cross validation error of 53% for 3 features (p-value:
0.0028), 52% for 5 features (p-value: 0.006) and 42% for 8 features
(p-value: 1-107°°). As expected the ant colony feature selection
clearly outperforms the simple filter method with a cross vali-
dation error of 40% for 3 features (p-value: 1-107°%), 37% for
5 features (p-value: 2 - 10798) and 39% for 8 features (p-value:
5-10797). However, our improved feature selection technique
leads to performances comparable to wrapper method in terms
of cross validation errors (44%, 40%, 38% for 3, 5 and 8 features)
as well as p-values (1 - 107,7-1077,3-10"7 for 3, 5 and 8 fea-
tures).

3.5.4.1 ROC Curves

ROC curves are typically used to compare different models and to
select possibly optimal ones. Since we have three classes (HF,SD
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nFeat | Method CHE HF D Error | P-Value
CHF[HF[SD CHF[HF[SD CHF[HF[SD

ANOVA 33 14 18 17 24 24 16 16 36 0.53 0.0028

3 ACO 45 4 16 10 33 22 11 16 41 0.4 1e-08
Cl. ANOVA 40 12 13 15 28 22 9 16 43 0.44 1e-06
ANOVA 36 13 16 18 22 25 20 11 37 0.52 0.006

5 ACO 48 3 14 12 33 20 10 15 43 0.37 2.7e-08
Cl. ANOVA 40 13 12 15 38 12 4 24 40 0.4 6.7e-07
ANOVA 41 12 12 16 34 15 6 22 40 0.42 9e-06

8 ACO 45 5 15 12 30 | 23 4 18 | 46 039 | 5.5e-07
Cl. ANOVA 43 10 12 14 35 16 5 19 44 0.38 3.3e-07

Table 7: Confusion matrices for 10 fold cross validation for experimen-
tal factor diet using random forest classifier. Each lines cor-
responds to one confusion matrix. The feature selection was
done by three different methods: ANOVA, ACO and cluster based
ANOVA. The feature selection was performed three times with
different number of features: 3, 5 and 8. Cells colored in light
gray reflect true positives. ACO and Cluster ANOVA show much
lower classification errors compared to ANOVA without cluster-
ing especially for 3 and 5 features.

and HF) we use the 1-vs-rest method to calculate a ROC curve
for each diet (see Section 3.3.3 for more details). In total nine
ROC curves are calculated: three diet curves and three feature
selection approaches. The ROC curves are presented in Figure 29.
For generation of the ROC curves 10-fold cross validation was
repeated ten times in order to add error bars for sensitivity and
specificity.

Quality of a ROC curve is typically assessed by calculating the
Area Under Curve (AUC). The AUC values can range between
0.5 (random classifier) and 1 (perfect classifier). The AUC values
for the nine ROC curves are shown in the legend in Figure 29
and presented in an overview in table 8. The classification of
Standard Diet is very similar for all three methods as the curves
are rather similar and the AUC is 0.87 for all three methods. High
Fat diet is the hardest classification task for all three selected
feature sets, whereas the ANOVA based feature selection shows
the lowest values (0.75) compared to the other approaches (0.8
for cluster ANOVA and 0.86 for ACO). The best performances are
received for classification of CHF with AUC values up to 0.9.

Cross validation errors and p-values as well as the ROC curves
and AUC values demonstrate the usefulness of the cluster-based
ANOVA for feature selection. Cluster-based ANOVA performs simi-
lar well as ACO for feature selection.
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Figure 29: ROC curves for the classification of experimental factor diet.

The three different diets are given in separate plots (left hand
side: CHF, middle: HF and right hand side: SD). For every diet
we compare the ROC curves for the three different feature

selection methods.

| cur | wF | sp

ANOVA 0.8
ACO 0.9
Cluster ANOVA 0.9

0.75
0.86

0.8

0.87
0.87
0.86

Table 8: Area Under Curve values for the three distinct diets and the
three different feature selection approaches.
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36 SUMMARY MALDI MS ANALYSIS

The ANOVA model applied analyzes the effects of single experi-
mental factors as well as the combination of diet and genotype.
Before applying ANOVA we ensured that all required assump-
tions are fulfilled (e.g. homoscedasticity and normal distribution).
Hence, ANOVA is the perfect candidate for the statistical analysis
and preferable to non-parametric Kruskal-Wallis test since is has
better power.

Analyzing combinations of experimental features helps to bio-
logically interpret experimental data. For instance, looking solely
at the factor diet we would conclude that peak m/z 4075 is corre-
lated with diabetes-protective CHF diet [39, 76] with a p-value of
10~ "4 (see Table 4). However, peak m/z 4075 was also the most
significant result found for the combination of genotype and
diet (see Table 3). An analysis of the factor combination, shows
that the increased intensity of CHF diet is only visible for SJL
genotype (see Figure 23). So peak m/z 4075 is correlated with
diabetes-protective CHF diet only in SJL genotype. This biological
interpretation is not possible using single factor analysis.

Our method might also help to see weak signals because a
cluster comprising several peaks could result in more significant
p-values than single peaks. This property of our approach is
visible for experimental factor time in Combi:2 of Table 3. The
p-value for the cluster is 10717 while the most significant peak
in the cluster has a p-value of 10714

One possible reason for a cluster having so many very good
correlated peaks like the cluster in the middle of the dendrogram
(see figure 22) is a huge common protein where the peaks are
derived from. A perfect candidate for this role could be albumin
as it consists of 608 amino acids. This hypothesis is supported by
the fact that one of the peaks was indeed identified as albumin.

Table 9 shows distinctive properties of our approach compared
to other methods. Standard t-test is often the method of choice
for statistical testing and the selection of suitable features for
classification and prediction. However, standard t-test is not ad-
equate for multi-dimensional datasets since it investigates only
one variable with exact two independent groups at the same time.
F-test allows for testing multi-dimensional datasets and ANOVA
enables to investigate factor combinations. Similarity of features
is not considered by any of the statistical tests. Swarm intelligence
or genetic algorithms are a different group of algorithms aiming
at biomarker identification. Although they are applicable to multi
dimensional datasets and take data redundancy into account they
often fail in producing deterministic results and p-values. Our
work is designed to retain all capabilities of statistical testing
while considering feature similarities at the same time.
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Table 9: Comparison of different methods for biomarker identification
and feature selection.

Another advantage of our approach is the possibility to use
only one, representative peak from a cluster for further analysis.
We have seen that the peaks identified as hemoglobin are in
close proximity in the dendrogram. Hence, we can assume that
many of the surrounding peaks are also most likely derived
from hemoglobin. Nonetheless, it has to be kept in mind that
many peptides originating from the same parent protein will
often behave differently. Our approach aims at identifying co-
occuring peptides and hence leads to a reasonable reduction of
the data. More complex interaction (e.h. high abundance of a
protein causes low abundance of another peptide) would require
other processing methods.

3.7 CONCLUSION MALDI MS ANALYSIS

We have introduced a method combining ANOVA and clustering-
based redundancy reduction that is suitable for biomarker identi-
fication in multi-factorial MALDI-TOF MS profiling studies given
an appropriate preprocessing. Applying this method to our data
set we were able to identify peaks that are characteristic for the
combination of two factors as well as peaks that are significant
for single experimental factors. These results are significant even
when applying rigid multiple testing corrections. It is shown
that ANOVA is an adequate approach for the identification of
biologically interesting biomarkers from MS profiling data based
on multi-dimensional experimental design. Furthermore, classi-
fications based on features selected with our approach perform
similarly well to those generated with more complex global opti-
mization methods.
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Like the two other techniques, Isobaric Tags for Relative and
Absolute Quantitation (iTRAQ) experiments are performed with
the aim to gain insights into biological mechanisms underlying
T2DM. Compared to MALDI (see Chapter 3), iTRAQ is restricted
to a low number of samples due to high costs and experimental
complexity. Nevertheless, iTRAQ is well suited for our purpose
as it allows for simultaneous quantitation of a large number of
proteins while single MS MALDI is often restricted to qualitative
results and the number of quantified proteins is limited.

In the first part of this chapter we give a brief introduction to
the problems of iTRAQ technology and motivate the necessity for
a novel analysis workflow (Section 4.1). Sample preparation and
dataset description is referred to in Section 4.2. While Section 4.3
describes State-of-the-Art methods for protein identification and
quantitation, Section 4.4 describes the methods and the work-
flow specifically developed for this thesis. In the first part of the
results section (4.5) general results of iTRAQ data analysis such as
normalization, parameters for protein identification and search
for PTMs are presented. In the second part we describe the results
obtained for applying our novel analysis workflow.

Typically, the first step in the evaluation of iTRAQ data is pro-
tein identification and quantitation. Data mining techniques such
as clustering are typically applied afterwards (see left hand side
of Figure 30). In this thesis, we will introduce a statistical analysis
workflow for iTRAQ data employing a clustering approach as a
very early step in data processing with the aim to reduce peptide
heterogeneity (right hand side of Figure 30).

4.1 INTRODUCTION

Quantitative proteomics is becoming increasingly important and
over the last years many efforts have been made to develop and
improve methods allowing for protein quantification. Besides
gel based approaches[93, 47], mass spectral techniques encom-
passing labeling techniques such as iTRAQ[139], ICAT[64] and
SILAC[119, 101] as well as label free approaches are widely-used
for quantitative proteomics. iTRAQ has become a very popular
technique for protein quantitation. The continuing popularity of
iTRAQ requires the evaluation of the technique in terms of accu-
racy and precision[121]. Accuracy assesses the closeness to the
true quantification value. Precision in this context refers to repro-
ducibility of experiments. Since accuracy is difficult to evaluate,
precision is the most frequently applied measure for experimen-
tal quality[20, 108]. Gan et al.[55] tried to assess the precision
of iTRAQ data by analyzing technical (different channels of the
same MS run), experimental (same channel but different runs)
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Figure 30: Schematic representation of the data analysis workflow em-
ployed for evaluation of iTRAQ data and comparison with
standard workflows.

and biological variations (different biological samples). They de-
signed different iTRAQ experiments covering the different types
of replications. They found technical variation to be small (11%)
whereas experimental and biological variations where more than
twice as high. Therefore they underlined the necessity to include
a sufficient number of biological replicates in iTRAQ experiments.

In 2008, Lacerda et al.[89] compared the two software packages
MASCOT and Peaks (Bioinformatics Solutions Inc., Waterloo, ON,
Canada)[100] using a six-protein mixture as well as a complex
protein sample. They revealed significant differences in the two
packages: For a complex protein mixture, only 26% of the proteins
agreed within 20% error of quantitation ratios. These ambigui-
ties are only due to algorithmic differences since both packages
were applied to the same experimental data set. This implies that
beside biological and technical variations caused sample prepara-
tion and mass spectrometer, there is also a considerable variation
due to the software package used for evaluation. The highest
fold change measured with iTRAQ differs widely among laborato-
ries but rarely seems to exceed ten-fold, which was reported by
Casado-Vela et al.[22] in a technical survey examining more than
200 articles. These are low fold-changes compared to microarray
transcriptome profiling where a differentially expression of more
than 32-fold (log2 fold of 5) is observed frequently.

For iTRAQ - like for the majority of MS based quantitation
approaches - quantitation measurements are performed at the
peptide level. Since often multiple peptides are measured for the
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same protein, the need for some kind of summarizing strategy is
obvious. Different ideas regarding the calculation of protein quan-
titation from multiple peptides have been applied including mean
or median calculation[25, 17] and error weighted means[95]. Be-
cause of the fixed stoichiometric ratio, quantitation measurements
for peptides uniquely assigned to the same protein should be
strictly correlated[69]. But often this presumption is not fulfilled
and the quantitation values exhibit a substantial heterogeneity.
The heterogeneity is also observed for quantitation ratios and is
not due to different ionization or fragmentation efficiency. This is
illustrated in Figure 31 presenting the quantitation ratios of pep-
tides for an exemplary chosen protein 40S ribosomal protein S30.
The 117/116 log-ratio (NZO genotype high fat diet vs. SJL geno-
type standard diet) varies from -0.5 (1.4 fold down-regulation) to
1 (2 fold up-regulation).

sp|P62862|RS30_MOUSE

1.5

1.0

0.5

Log2 Quantitation Ratio
0.0

-0.5

-1.0

T T T

114/116 115/116 117/116

Figure 31: Demonstration of peptide heterogeneity for 40S ribosomal
protein S30 (RS_30). Every line represents a unique peptide
profile (peptide-spectrum-match) identified as originating
from the RS_30 protein. iTRAQ ratios are calculated using
116 channel (SJL mouse with standard diet) as reference. For
every ratio a box plot giving the lower quartile, median and
upper quartile is drawn. Especially for the 117/116 ratio
(NZO mouse with high fat diet) the quantitation ratios are
heterogeneous ranging from —0.5 to +1 (corresponding to a
1.4 fold down-regulation or 2 fold up-regulation).
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! [Nzosp [ NzoHF | SjLsD SIL_HF

Exp 1 || mouse:1 mouse:4 mouse:y mouse:10
channel:114 | channel:117 | channel:116 | channel:115

Exp 2 || mouse:2 mouse:5 mouse:8 mouse:11
channel:115 | channel:114 | channel:116 | channel:11y

Exp 3 || mouse:3 mouse:6 mouse:9 mouse:12
channel:116 | channel:115 | channel:117 | channel:114

Table 10: Experimental design and iTRAQ labeling (114 - 117) for three
experimental replications (Exp 1, Exp2 and Exp 3). The exper-
imental design combines technical and biological replications.

4.2 SAMPLE PREPARATION

Although iTRAQ is established as a reliable high throughput tech-
nology for quantitative proteomics, it is restricted to a small
number of samples. However, the use of biological replicates is
strongly recommended for statistical evaluation[55]. Considering
these two facts, the study design that can be analyzed by iTRAQ
experiments must be limited to the most relevant biological ques-
tions to keep the number of samples small. The dataset of the
Sys-Prot project is restricted to the two different diets - Standard
Diet (SD) and High Fat (HF) diet as well as the two mouse strains:
New Zealand Obese (NZO) and Swiss Jim Lambert (SJL). This
leads to a total of four distinct combinations of experimental
factors. Each of the four distinct combinations is covered by three
biological repeats (Exp 1, Exp 2 and Exp 3). The four distinct
combinations of experimental factors together with three biolog-
ical replications for each factor combination, lead to a total of
4 -3 = 12 measurements. The experimental design and iTRAQ
labeling strategy is shown in Table 10. Due to this experimen-
tal design both, technical variance (reflected by permutation of
iTRAQ channels) and biological variance (due to different mouse
individuals) are combined. Instead of trying to separate technical
and biological effects we are more interested in effective variance.

The small number of samples is particularly evident compared
to MALDI where more 30 different mouse individuals were used
to create over 150 distinct biological samples measured in more
than 1100 MS spectra (see Section 3.2). The complete experimental
design of Sys-Prot project is described in Section 2.2.3.

69



70

ITRAQ: DATA ANALYSIS AND ALGORITHMS

4.3 STATE-OF-THE-ART

For evaluation of iTRAQ data, two basic steps are necessary:
peptide/protein identification and peptide/protein quantitation.
These two aspects are more or less independent and require
different solutions.

4.3.1 Protein Identification

Protein identification is a complex process which aims to assign
mass spectra to specific peptide sequences and thus to protein ids.
Beside MS/MS peaks, a spectrum is characterized by retention time
derived from High-performance liquid chromatography (HPLC)
and precursor mass derived from the first MS (see also Sec-
tion 2.1.2). Protein identification adopts the two-stage process of
MsS/MS. The first step for protein identification is to find peptide
candidates in the protein sequence database whose mass matches
the precursor mass within a given precursor mass tolerance (first
MS). In the second step, theoretical spectra are generated for each
peptide candidate (simulating MS/MS). The theoretical MS/MS
spectra are then compared with the measured MS/MS spectra and
peaks are matched if their masses are identical within a given frag-
ment mass tolerance. This general paradigm of peptide identifica-
tion is used (in different implementations) by the common protein
identification tools such as Mascot, X!Tandem[32], Sequest[179]
or Open Mass Spectrometry Search Algorithm (OMSSA)[57]. The
process of peptide and protein identification is described in more
detail for X!Tandem.

X!Tandem calculates a matching score as the sum of intensities
of measured spectra using the matched y and b ions of the
theoretical spectrum. This score is than multiplied by the factorial
for the number of assigned b and y ions to calculate the X!Tandem
HyperScore[46]:

n
HyperScore = <Z I; - Pi> “Np!- Ny!
i=0

where [ is the vector of spectrum intensities (normalized to a
maximum of 100), P is a boolean vector indicating whether the
spectra peaks are matched to theoretical peaks and Ny and Ny
are the number of matched b and y ions. The motivation of the
factorial values is given by Fenyo and Beavis[46] assuming an
underlying hypergeometric distribution of the score (3_i* 5 I; - Py).
A score based on k y-ions compared to k — 1 y-ions should be
~ k times better. Fenyo and Beavis[46] argued that it is more
intuitive and reasonable that a spectrum matching 10 peaks is 10!
times better compared to a spectrum matching just a single peak.
Without the additional term Ny!- Ny! the spectrum matching 10



4.3 STATE-OF-THE-ART

peaks is only 10 times better compared to a spectrum matching
just a single peak.

For every peptide candidate the HyperScore is calculated and
the peptide candidate with the highest HyperScore is assumed to
be the correct peptide. The decay of HyperScores for all peptide
candidates for a spectrum is found to be exponentially distributed.
Therefore the log distribution is assumed to be linear. A log-linear
function representing the expected number of random matches is
fitted to the right-hand tail of the HyperScores distribution. This
function is used to extrapolate the Expected Value (E-value) for
the best peptide. The X!Tandem E-value is a good measure of how
good the best score is relative to the rest. A peptide is considered
correct if the E-value is below peptide E-value threshold.

After calculation of peptide E-values, the next step is to infer
protein identification. For a protein all best matching peptide
sequences (best peptide E-value) are collected. If more than one
spectrum is assigned to the same peptide sequence, then the
peptide with the best E-value is kept and the rest is discarded.
Based on the number of unique, high scoring peptides n of
a protein and their respective scores e;j, a protein e-value is
calculated:

1 S _ e
eprot:S]\]n].<n>,pn,(]p)S TL.]i[ei
i=1

where s is the number of mass spectra in the dataset, N is the total
number of tryptic peptides generated from the protein sequence,
and p is N divided by the the number of tryptic peptides that
were examined during the complete run.[44, 184] The last term
is only the product of the underlying peptide E-values. The first
terms describe the probability of random parent mass matches
calculated by binomial distribution scaled by the number of
spectra and the number of tryptic peptides for the protein to the
power of number of high scoring peptides.

The whole process is completely different for other search en-
gines. For example, Sequest calculates the XCorr score which
is defined as the ratio of direct comparison of generated and
observed spectra with the auto correlation background[59]. The
direct comparison matches generated spectrum of the peptide
candidate with the measured spectrum as the sum on overlap-
ping peaks. For the autocorrelation background the measured
spectrum is shifted backward and forward and the matching
score is calculated.

Although Mascot is among the most widely used protein
identification packages, many details of the Mascot search en-
gine and probability-based Mowse scoring algorithm are not
published.[116]
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4.3.2  Quantitation

A wide range of quantification algorithms can be found in the
literature. The most common algorithms are included in soft-
ware packages such as MASCOT, ProQUANT, OpenMS[132, 149],
i-TRACKER[143, 90], Multi-Q[180] or virtual expert mass spec-
trometrist (VEMS)[138]. In principle, iTRAQ quantitation of pep-
tides refers to the extraction of the iTRAQ reporter mass intensities
(see Chapter 2 - Figure 4). After extraction of quantitations an iso-
tope correction has to be performed according to manufacturer’s
specifications (Applied Biosystems, Foster City, CA).

In a second step peptide quantitations have to be summarized
in order to obtain protein quantitations. A typical problem in
this process is that quantitation values of peptides assigned to
the same protein often exhibit a substantial heterogeneity (c.f.
Figure 31). To counteract this heterogeneity many approaches
make use of outlier detection methods like Grubb’s test[25] or
Dixon’s test[95] prior to averaging. But for several reasons out-
lier filters are problematic: First, outlier filtering can be applied
only to proteins with a certain minimum number of peptides, a
presumption often not fulfilled in iTRAQ datasets[83]. Second,
if the heterogeneity is due to differentially regulated protein iso-
forms than the less frequent isoform is possibly regarded as an
outlier and removed leading to a loss of information. Third, if
outlier detection is applied after protein identification, peptides
are removed that contributed to the protein identification score
and hence the score is distorted a posteriori.
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4.4 METHODS
4.4.1 MASCOT

Peptide identification and quantitation were performed using
MASCOT search engine (version 2.2.04 Matrix Science, London).
Peptides identified with a MASCOT score < 50 and a significance
threshold of p > 0.05 were neglected. Parameters used for protein
identification with MASCOT are shown left hand side of Table
11.

The database used was a SwissProt derived Functional Ge-
nomics Center Zurich (FGCZ) in-house mouse database from 2009
containing 43636 mouse protein sequences (OS=Mus musculus)
and 259 additional FGCZ specific entries. All proteins are present
in normal/forward sequences and decoy/reverse sequences. Ran-
domized decoy database (reversed sequences) was used for con-
trolling False Discovery Rate (FDR)[43, 77]. For calculation of FDR
the list of proteins ordered by MASCOT ProtScore was cut if a
given FDR level was reached. Because we intend to achieve reliable
quantitation results instead of providing a comprehensive protein
list, the false discovery rate was chosen restrictively: FDR=0.1%.

4.4.2 X!Tandem and OpenMS

Peptide identification was performed using X!Tandem software[32]
version 2009.04.01.1. Parameter set used for protein identification

with X!Tandem are shown right hand side of Table 11. All param-
eters where chosen to be similar to the MASCOT method in order

to assure comparability of the results. Extraction of 4-plex iTRAQ

quantitation data and isotope correction was performed using

OpenMS[132, 149] svn revision 6265. The same decoy database

as for MASCOT analysis was used and again false discovery rate

was chosen restrictively: FDR=0.1%. For calculation of FDR the

list of proteins ordered by X!Tandem protein identification score

was cut if a given FDR level was reached.

4.4.3 Peptide Profiling Guided Identification of Proteins

In the following we will describe Peptide Profiling Guided Iden-
tification of Proteins, a novel workflow we developed for reliable
and stable protein quantitation. PPINGUIN seizes on the presump-
tion that quantitation profiles of peptides derived from the same
protein are highly correlated as they have a common source.
Pseudo-code representation for PPINGUIN is given in Algorithm
4.

We define an iTRAQ quantitation profile of a spectrum as the
ordered list of the raw quantitation values, in our case the raw
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| Mascor | X!Tandem

Enzyme/Cleavage || Enzyme: Trypsin cleavage site: [RK]|P’

Missed Cleavages || 2 2

Fixed Modifica- || Methylthio (C), | Methylthio ©),

tions iTRAQgplex (N-term), | iTRAQgplex (N-term),
iTRAQ4plex (K) iTRAQ4plex (K)

Variable Modifica- || Oxidation (M), | Oxidation ™M),

tions iTRAQ4plex (Y) iTRAQ4plex (Y)

Peptide/Precursor || 6 Part Per Million (ppm) | 6 ppm

Mass Tolerance

Fragment Mass || 0.1 Da 0.1 Da

Tolerance

Quantification iTRAQ 4 plex with | quantification with
weighted protein ratio | OpenMS and multi
and median normaliza- | lowess normalization of
tion of ratios ratios

Additional  Pa- || mass values: monoiso- | refinement of unantici-

rameters topic; instrument type: | pated cleavages
ESI-FTICR; Isotope error
mode: o;

False Discovery || 0.1% 0.1%

Rate

Table 11: Direct comparison of the most important input parameter
used for MASCOT and X!Tandem.

intensities of the four iTRAQ channels 114 to 117. As a first step
and thus without regarding protein inference, iTRAQ quantita-
tion profiles of the spectra are calculated by extracting the four
quantitation values using OpenMS (I in Algorithm 4). Spectra
with missing or incomplete quantitation profiles are discarded.
The recommended isotope correction is performed according to
manufacturer’s specifications (Applied Biosystems, Foster City,
CA) using OpenMS. Isotope correction aims at correcting for
trace levels of isotopic impurities and is done by solving a system
of equations. In addition, a complementary normalization of the
four quantitation values is performed as described in Section
4.4.5 below (I in Algorithm 4).

Logarithmic quantitation profiles of the spectra are clustered
in a coarse-grained manner using k-means algorithm[67, 148, 68]
based on Euclidean distance and randomly selected starting
points (IV in Algorithm 4). We use k-means clustering (k=5) as
it is computationally fast and well suited to show the benefit
of the pre-selection. The group size parameter k=5 was chosen
according to two internal cluster validation measures (see Section
4.4.6). Since k-means clustering depends on the selected starting
points a cluster stability analysis is performed (see Section 4.4.6.1
below).
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Clustering intends to create groups of peptides with similar
biological profiles (e.g. up-regulation for a certain combination of
genotype and diet). As subsequent analysis is focused on relative
iTRAQ ratios instead of absolute quantitation values, the profiles
are centered prior to clustering (mean is set to zero) (III in Algo-
rithm 4). In order to preserve differences between relative iTRAQ
ratios no additional scaling was performed (standard deviation
is preserved). This procedure is equivalent to a clustering using
Euclidean distances on centered logarithmic quantitation profiles.
With this procedure an explicit choice of a reference channel is
not necessary.

Every spectrum is assigned to exactly one group and for every
group the corresponding spectra show similar iTRAQ quantitation
profiles. Quantitation and identification is now performed inde-
pendently for each group with identical settings to X!Tandem
and OpenMS approach (V in Algorithm 4 and see also workflow
in Figure 30). Similar to the X!Tandem/OpenMS approach, the
FDR was calculated by cutting the list of proteins ordered by
X!Tandem protein identification score if a given FDR level was
reached. The FDR is calibrated for each group individually and
in effect, the X!Tandem threshold for protein identification differs
in each group.

Finally, log; ratio profiles are calculated using SJL genotype
with Standard Diet (SD) as reference. Following the definition
of quantitation profiles, ratio profiles are defined as the list of
3 possible iTRAQ ratios (e.g. for Exp 1: 114/116, 115/116 and
117/116).

All calculations (normalization and clustering) were performed
using R statistical programming language (R[128] version 2.7.0
- 2008-04-22 and R version 2.12.1 - 2010-12-16). Protein infer-
ence and extraction of quantitation values was performed using
X!Tandem and OpenMS as described previously.

4.4.4 PPINGUIN with random clustering

A main feature of PPINGUIN is the clustering based on quantita-
tion profiles in order to group spectra with similar quantitation
profiles. To assess the importance of the clustering, the whole
procedure is performed again but k-means clustering is replaced
by a random grouping. The rest of the workflow is performed
exactly as described for PPINGUIN in Section 4.4.3

4.4.5 Normalizing iTRAQ quantitations

Additional normalization of the 4 quantitation values is required
to correct for technical bias[121]. Karp et al.[83] observed a hetero-
geneity of variance for iTRAQ ratios where the width of the dis-
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Algorithm 4 General description of PPINGUIN. Five main steps
are labeled with Roman numerals. PPINGUIN uses k-means
clustering with k = 5.

>(I) Extract quantitation profiles for all spectra
(if available)
ListWithQPs < NA
for all MS/MS Spectra (spec) do
if ALLQUANTITATIONSAREAVAILABLE(spec) then
QPspec ¢+ EXTRACTQUANTITATIONPROFILE(spec)
IsoToPECORRECTION(QPspec)
AppToList(ListWithQPs,QPspec)
else
DiscarD(spec)
end if
end for
>(II) Normalization and Logarithmic Transformation
for all Quantitation Profiles (QPspec) in ListWithQPs do
QPspec < LOQZ(QPspec)
end for
MutrtiLowEessNORMALIZATION(ListWithQPs)
>(III) Centering
for all Quantitation Profiles (QPspec) in ListWithQPs do
QPspec QPspec_Mean(QPspec)
end for
>(IV) K-Means Clustering
ClusterList; QP KMEeanNs(ListWithQPs, k)
>(V) Apply Identification and Quantitation for each
cluster
Result + NA
fori<+ 1.k do
>retrieve original MS/MS spectra
OrigSpecs < GETORIGINALMSMSSPECTRA(ClusterList; )
>apply identification and quantitation extration
IDs < X!TaNDEM(OtigSpecs)
QPsnew < EXTRACTQUANTITATIONPROFILES(OTigSpecs)
>to store ratio profiles
RPs + NA
for all QP; in QPspew do
QPi < Log2(QPy)
RP; < GETRATIOPROFILE(QP;,ref=(SD,SJL))
ADD(RPs,RP;)
end for
Result; « MERGE(IDs,RPs)
end for
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tribution is significantly larger at low intensities. They proposed
a variance stabilizing normalization based on VSN software[72].
We apply and compare three different normalization strategies:
VSN, multi lowess algorithm - a multi dimensional extension of
lowess normalization strategy[127] and simple median correction.

4.4.6  Determining the Number of Clusters

The number of clusters is an important parameter for cluster-
ing. The preferable number of cluster is determined using two
different internal measures: gap statistic[155, 7] and Xie-Beni
index[176].

The gap statistic compares the within-cluster sum of squares
(Wi, k is the number of clusters) with its expected value a under
null reference distribution. Wy, is calculated as:

Wi=Y Y (yi—g)’

j=11i=1

where c; is the center of the jt cluster. The null reference distri-
bution reflects data without any groups. It is generated m times
with a uniform feature distribution over the range of observed
values. The expected value of the null reference distribution is
calculated as the mean log within-cluster sum of squares of the
m reference datasets. The Gap is calculated as:

M
Gap(k) = - 3 log(Wiy,) — log(Wi)
m=1

Xie-Beni index is defined as the ratio of the compactness of the
clusters and the separation between the clusters[176]. The sepa-
ration between the clusters is defined as the minimum pairwise
distance between all cluster centers.

Both measures were calculated for 25 replications.

4.4.6.1  Cluster Stability Analysis

The number of possible partitions is overwhelming and can be
calculated with a Stirling number of the second kind (see formula
in [148]). E.g. for 25 objects and 4 clusters, the number of non-
empty partitions is ~ 4.7 - 10'3. Finding the optimal partition with
Euclidean sum-of-squares clustering is np-hard[5]. K-means aims
at providing a good (hopefully optimal) partition in a reasonable
amount of time. Depending on the starting points, k-means may
get stuck at a local optimum resulting in different clusters for
different starting points.

Cluster stability analysis investigates whether k-means finds
(almost) the same partition for different starting points. Cluster-
ing is performed for 1000 replications each with different starting
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points. Starting points are selected randomly from the set of ele-
ments to be clustered. We than calculate fraction of the number of
points (quantitation profiles of the spectra) that are clustered in
the same cluster for each of the 1000 replications. If the fraction
is very high (> 99%) than the clustering is very stable since the
calculated partition is almost always the same.

4.4.7 Differential Analysis

Differentially expressed proteins are identified using a two-sided
one sample t-test. The t-test analyzes whether the log ratio (e.g.
NZO_HF/ SJL_SD) is zero (the null hypothesis: u = 0). P-values
and fold changes are calculated protein-wise. Since a big number
of tests is performed a multiple testing correction is indispensable.
Perhaps the best known procedure in multiple testing correction
is Bonferroni procedure[41]. Bonferroni correction rejects any
hypothesis H; with unadjusted p-value less than or equal to o/m
(m = number of tests performed). The corresponding single-step
Bonferroni adjusted p-values are given by p; = min(p; - m,1).
Benjamini-Hochberg[15] as a more sophisticated multiple testing
correction methods is monotone transformations and does not
change the rank of the p-values. Since the ranking of p-values is
used for further analysis, more simple Bonferroni correction is
preferred.

The number of samples for t-test is restricted to 3. The average
fold is a robust indicator for differentially regulated proteins. Top
list of differentially expressed proteins is created by selecting
proteins with mean absolute log, fold changes > 0.5 (v/2 fold
change).

4.4.8 Modification Search

Searching simultaneously for a variety of protein modifications
(almost goo are currently annotated in UniMod[35]) is not pos-
sible with standard tools (such as MASCOT or X!Tandem). E.g.
X!Tandem allows at most one modification for each amino acid
residue. So we developed a modification search strategy aiming at
the identification of relevant modifications. Protein identification
with X!Tandem search engine (see Section 4.4.2) was repeatedly
performed searching for variable modifications for every mod-
ification listed in UniMod (except iTRAQgplex and Methylthio
that are defined as fixed modifications). For every modification
we count the number of peptides with good E-values identified
from forward and reverse database. Relevant modifications are
expected to be found frequently in the forward database but less
frequently in the reverse database. Modifications are scored using
the ratio between occurrences in forward and reverse database.
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4.4.9 Calculation of CV values for Peptide Homogeneity

Let y;, be the relative quantitation ratio for a peptide j and
ratio r € R = { NZO_SD/SJL_SD, NZO_HFD/SJL_SD and
SJL_HFD/SJL_SD }. To assess peptide homogeneity, we calculate
the coefficient of variation of a protein p by using all unique
peptides for proteins:

1 O+
Cszg*anZ N

jep rer i

where n,, is the number of unique peptides for protein p and oj ,
and y; , are the standard deviation and mean of relative quanti-
tation ratios yi  of all peptides uniquely assigned to protein p.
The final coefficient of variation is calculated by averaging CV,,
for all proteins.

4.4.10 Calculation of CV values for Experimental Reproducibility

Let ye,ir be the relative quantitation ratio for experiment e €
{Exp1, Exp2, Exp3}, proteini € I = 1.n and ratior € R = {
NZO_SD/SJL_SD, NZO_HFD/SJL_SD and SJL_HFD/SJL_SD }.
In order to assess experimental reproducibility of r we calculate
the average CV of all proteins occurring in all three experiments:

1 Gir)
CVy = —- :
n Z<Hi,r

iel

where oi, and p;, are the standard deviation and mean of
relative quantitation ratios y;, for protein i and ratio r for all
three experiments:

1
Uir = g Z Ye,ir
eckE

1
Oir = E Z (y eir — Hi,r)z

eck
This value is reported together with mean standard deviation of
log; ratios:

1 .
StDev, = . Z (6ir)
i€l
where 6, is the standard deviation of log; ratios:

1
ai,r = g Z logZ(He,i,r)
eckE

A 1 )
6ir =[5 ;E (1092(ye,in) — fiir)?
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4.5 RESULTS

We have developed Peptide Profiling Guided Identification of
Proteins (PPINGUIN), a novel workflow for the quantitation of
iTRAQ data. It is based on a peptide clustering using quantitation
values followed by protein identification for each cluster inde-
pendently (see Methods). In the first part of the result section,
the effects of the different normalization strategies are presented
(Section 4.5.1). Afterwards, we optimize the parameters for pro-
tein identification and demonstrated the results for identification
of PTMs (Section 4.5.2 and 4.5.3). In section 4.5.5 we show the
effects of the clustering used within PPINGUIN.

The quantitative results of PPINGUIN are compared with stan-
dard evaluation approaches using MASCOT and X!Tandem soft-
ware. The quality is determined by three different criteria: (i)
homogeneity of peptide profiles (ii) precision and (iii) accordance
with prior knowledge (Section 4.5.7 - 4.5.9).

In section 4.5.10 we demonstrate the capability of PPINGUIN to
detect potential protein isoforms. Finally, we compare the results
obtained for proteomics with results of a selected transcriptomics
microarray experiment.

4.5.1 Normalization
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Figure 32: Box plot of raw iTRAQ data (upper left) and after application
of three different normalization strategies: vsn (lower left),
multi-lowess (upper right) and median correction (lower
right). Prior to normalization there is a difference in median
quantitation values that is removed by the normalization.
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Figure 33: Standard error plot of raw data (upper left) and after appli-
cation of three different normalization strategies: vsn (lower
left), multi-lowess (upper right) and median correction (lower
right). Bold line represents a lowess fit and black dashed line
reflect median standard deviation.

Typically, raw iTRAQ data is biased by channel effects leading
to differences in median quantitation values for each channel.
This bias is visualized in the box plot of raw iTRAQ quantita-
tion data exemplarily for the first experiment (upper left part of
Figure 32). This bias is comparable to fluorescent dye bias for
DIGE or multi-color microarray data. Without correction, these
differences lead to a systematic bias in quantitation ratio. The
medians of the iTRAQ channels span a range of 0.85 which would
correspond to 1.8-fold differential expression if not corrected. A
normalization strategy aims to remove this systematic effect. All
three normalization algorithms applied: vsn, multi-lowess and
median correction (see Section 4.4.5) successfully removed this
bias and the differences in median quantitation value vanished
(see Figure 32).

Another purpose of normalization is to assure homoscedastic-
ity: homogeneity of variance (c.f. MALDI data evaluation Section
3.4.1.5). Homoscedasticity is a prerequisite for many statistical
tests such as t-test or ANOVA. Figure 33 shows a standard error
plot prior to and after application of the different normalization
approaches. Prior to normalization the mean error of the 4 iTRAQ
channels is 42% and the variance is lower for small intensities.
After normalization the mean error of the 4 channels is only half
as high: 22% for all normalization strategies applied. Median
correction does not result in homoscedastic data since the error
is higher for smaller quantitation ratios. This observation is in
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Number of Proteins Identified (FDR = 0.1%)
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Figure 34: The number of identified proteins (z-axis) for different val-
ues of fragment mass tolerance (x-axis) and precursor mass
tolerance (y-axis). Color code for the number of proteins is

drawn left hand side.

accordance to the work of Karp et al. [83]. The other two normal-
ization approaches lead to an almost constant variance and hence
to homoscedasticity. Both, multi-lowess and VSN are very similar
in terms of error and homogeneity of variance. Further analysis
is based on multi-lowess normalized data.

4.5.2 Finding Optimal Parameter for Protein Identification

Protein identification (described in Section 4.3.1) strongly de-
pends on the input parameters. Especially the number of (sig-
nificantly) identified proteins depends on the choice of input
parameter. Two of the most important parameters are precur-
sor mass tolerance (or peptide mass tolerance in MASCOT) and
fragment mass tolerance. Precursor mass tolerance changes the
number of peptide candidates found for a spectrum. Fragment
mass tolerance alters the mapping of theoretical and observed
spectra and therefore changes the peptide HyperScore and E-
value. So especially fragment mass tolerance is assumed to have
an important influence on the number of identified proteins.
To investigate the influence of both parameters, we performed
a screening with different parameter sets. The objective function
was the number of proteins for a given FDR e.g. FDR = 0.1%. The
number of proteins as a function of both parameters is visual-
ized in Figure 34. As expected, fragment mass tolerance strongly
changes the number of peptides, whereas precursor mass tol-
erance has only minor influence (at least for the tested range).
Choosing a very restrictive value for fragment mass tolerance (be-
low mass accuracy of the instrument), the matching of theoretical
and observed spectra is hindered. In effect a peptide candidate
cannot show a high HyperScore or a low E-value respectively. On
the other side choosing a permissive value for fragment mass
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tolerance (high above mass accuracy of the instrument) leads to
many peptide candidates whose theoretical spectra are matched
almost perfectly to the observed spectra. In effect the exponential
decay of HyperScores for peptide candidates is widened and the
extrapolated E-value is less significant (see Section 4.3.1 for details
on protein identification). This effect becomes clear keeping in
mind that the E-value measures how good the best HyperScore is
relative to the rest. If the rest of the peptide candidates results in
higher HyperScores, than the distance to the best peptide shrinks
and the E-value is less significant.

The number of proteins identified can be maximized by an
optimal choice of the two input parameters. The relation between
the two parameters and the number of proteins identified is very
much the same also for different FDRs. The maximal number of
proteins was found for a fragment mass tolerance of 0.1 Da and
precursor mass tolerance of 6 ppm. We found a maximum of 680
proteins for a FDR = 0.1%, 840 proteins for FDR = 1% and 1010
proteins for FDR = 5%.

4.5.3 Post-translational Protein Modifications

The mechanism of Post Translational Modification (PTM) is known
to play a key role in many biological processes. Examination of
PTMs is critical for understanding mechanisms of these processes.
Furthermore, some modifications are artifacts of sample process-
ing. Several technical limitations hamper detection of PTM using
MS/MS[2]: First, PTMs are often present at low concentrations and
due to low sensitivity of the mass spectrometer and high dy-
namic range of proteins, the corresponding peptides may not
be detected. To overcome this obstacle especially for detection
of phosphorylations many enrichment strategies have been de-
veloped. Second, some modifications hinder enzymatic protein
cleavage. This leads to long peptides which are difficult to detect
due to the limited number of missed cleavages used by protein
identification algorithms. Third, some modifications are known
to induce unexpected fragmentation patterns which are difficult
to interpret[2].

Database search tools such as MASCOT or X!Tandem can
only screen a limited list of predefined PTMs. X!Tandem allows
one modification for each amino acid residue. If a residue is
listed multiple times, X!Tandem will use the last instance of the
residue to set the modification ( see X!Tandem API). The number
of potential peptide candidates during database search grows
exponentially with the number of modifications. E.g. considering
variable phosphate modifications at any serine, threonine or
tyrosine increases the effective search space ~15-fold[173]. Figure
35 shows the empirical CPU time needed for database search
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Figure 35: Time elapsed (in seconds) for database search including
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with an increasing number of variable modifications (Intel(R)
Core(TM)2 Duo CPU E8400 3.00GHz). As expected the time
increases exponentially (see fitted exponential function) but the
increase depends on the frequency of the corresponding amino
acid. Searching for modification of a very frequent amino acid
lysine (at position 8 in Figure 35) increases the time by almost 90%
while adding less frequent amino acid methionine (at position 9)
increases time by only 12%.

UniMod[35] - a comprehensive database of protein modifica-
tion relevant to MS - currently lists almost goo modifications. This
includes biological enzymatic modifications, modifications due
to sample preparation and modifications used for quantitation
experiments such as iTRAQ. Searching for all of these modifica-
tion is not possible with standard tools (such as MASCOT or
X!Tandem) and also not necessary because the majority is neither
biologically nor technically relevant. Due to this, we are aiming
at the identification of relevant modifications see Section 4.4.8.

Figure 36 shows a histogram of modification score (ratios be-
tween peptides from forward and reverse database) for all mod-
ifications. The most frequent modification with the best score
was oxidation of methionine which increased the number of pep-
tides by almost 10%. Oxidation of methionine, whose impact on
iTRAQ has been reported previously[153], can be caused by an
enzymatic reaction but can also be due to sample preparation in
the presence of reactive oxygen species. Apart from methionine,
oxidation of two other amino acids: aspartic acid and asparagine
are among the three most relevant modifications. Furthermore
the deamination of glutamine and the substitution of glutamine
to glutamic acid which are basically the same modification were
found with good scores.

4.5.4 Peptide E-Value distribution

The Expected Value (E-value) for a certain peptide is the estimated
probability that the peptide identification was incorrect (see Sec-
tion 4.3.1 for E-value calculation). The decoy database (reverse
database) allows for assessing peptide E-values since peptides
from the decoy database are all random hits. Figure 37 shows the
distribution of peptide E-values for the normal database (forward
database) and the decoy database as a function of peptide length.

For small peptides (length 5-6) the number of peptides and
the E-value distributions of forward and reverse databases are
rather similar. Only a very small number of peptides show good
E-values. With increasing peptide length we can see two main
effects: First, the E-value distribution for the forward database
is shifted to the left, while the reverse database distribution is
unchanged. This implies that longer peptides show an increased
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Figure 36: Histogram for modification score (ratios between peptides
from forward and reverse database) for all modifications.
The five modifications with the highest ratios are labeled.

proportion of significant E-values for the forward database. And
second, the ratio between number of peptides from forward
database and reverse database increases. The observed E-value
distribution of the forward or reverse database does not change
with an increasing number of modifications.

In effect, the E-value of X!Tandem allows a reliable assessment
of randomness since peptides from the decoy database are char-
acterized by low E-values. The E-value, however, does not fully
comply with the assumed False Discovery Rate. Actually, an E-
value of 0.1 equals a FDR of 10%. We found a total of 2752 peptides
from decoy database, 56 of which have an E-value of < 0.1. This
corresponds to a FDR of 2% instead of the expected value of 10%.

Especially short peptides (with length < 7) are often random
hits. Only a small number (17%) of peptides from the forward
database shows an E-value of < 0.1.

For MASCOT, the E-value distribution is different compared
to X!Tandem especially for short peptides (see Figure 38). For
small peptides (5 or 6 amino acids) 947 peptides from reverse
database were identified with Mascot. 420 of these 947 peptides
(44%) have an E-value < 0.1 which corresponds to a FDR of almost
50%. Apparently, the assessment of small peptides by Mascot
leads to a high amount of false positive hits. The FDR decreases
with increasing peptide length (16% for peptides with 7 or 8
residues and 5% for peptides with 9 or 10 residues).
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Figure 39: Evaluation of parameter k (number of clusters) with two
different internal measures: Gap Statistics (left hand side)
and Xie-Beni Index (right hand side). The preferred number
of groups k = 5 is marked in red.

4.5.5 Clustering

4.5.5.1  Number of Clusters

For determining the preferred number of clusters we utilized Gap
Statistics and Xie-Beni index as two internal cluster measures (see
Section 4.4.6). The results for both measures are shown in Figure
39. High values for Gap Statistics and low values for Xie-Beni
index are obtained for values of k between 3 and 7. Although
the highest Gap Statistics was obtained for k = 3, we choose
k = 5 as the preferred number of clusters. This is because we
think that three clusters are not sufficient to to group the spectra
according to their quantitation profile adequately. Five seems to
be a reasonable number of clusters and still show high values for
Gap Statistics and low values for Xie-Beni index.

4.5.5.2  Cluster Stability Analysis

Cluster stability analysis was done for 1000 cluster replications
with randomly chosen starting points (see Section 4.4.6.1 for a
description of cluster stability analysis). The clustering for k =5
was found to be very stable since > 99% of the data points are
assembled in the same group structure for all replications. This

high stability was also found for values of k = 3 and k = 4.

Stability decreases for bigger values of k.

4.5.5.3 Clustering results

In this section we demonstrate the result of the clustering which
is part of PPINGUIN. This demonstration is restricted to the first
of the three experimental replications (Exp 1). Figure 40 shows
the ratio profiles of spectra assigned to the five clusters. Spectra

aggregated within each cluster show similar ratio profiles. E.g.

cluster 5 shows higher quantitation ratios for SJL_HF/SJL_SD ratio
while cluster 3 contains spectra whose three ratios are ~ 0. Cluster
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Figure 40: Clustering of the quantitation ratios of all spectra in Exp 1.
Clustering was performed using k-means with k = 5. Mean
profiles are drawn as bold lines. Number of spectra in each
cluster are stated above the plot.

‘ Cluster Index ‘ 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘
#Spectra 2785 | 4090 | 6023 | 2522 | 476
#Peptides 88 732 429 255 7
#Proteins 6 318 152 181 38

Table 12: Sizes of the clusters created by PPINGUIN for the evaluation of
Exp 1. For every cluster the number of spectra, peptides and
proteins is stated.

sizes range between 476 spectra for cluster 5 and 6023 spectra for
cluster 3 (see Table 12). The number of identified peptides varies
from 7 for cluster 5 up to 732 for cluster 2.

The majority the proteins (77%) is identified uniquely in one
cluster. 94% of all proteins are identified in one or maximal two
clusters. Using PPINGUIN with random clustering (see Method
section 4.4.4) less than 50% of the proteins are identified uniquely
in one cluster. Clustering based on quantitation profiles employed
in PPINGUIN preferably groups peptides that belong to the same
protein.

4.5.6  Proteins identified

Proteins with stable identification (proteins identified in all three
experimental replications) are of particular interest. The number
of proteins identified in all three experiments with the same FDR
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#Proteins in Exps

Method Sum
2]

MASCOT 152 | 133 | 236 | 521

X!Tandem/OpenMS 351 | 157 | 218 726

PPINGUIN (random clustering) | 331 | 264 | 219 814
PPINGUIN 348 | 220 | 256 824

Table 13: Number of Proteins identified only in one, exactly two or all
of the three experiments (Exp 1, Exp 2 and Exp 3). The last
column gives to total number of proteins identified in at least
one experiment (sum of the three columns). The three different
methods (MASCOT, X!Tandem /OpenMS and PPINGIUN) are
compared. Additionally PPINGUIN was performed a second
time but with random clustering (see Method section 4.4.4).

differs for each method: 236 for MASCOT, 218 for X!Tandem
and OpenMS and 256 for PPINGUIN (see 13). Ambiguous protein
groups (e.g. H2B1B, H2B1C, H2B1F, ...), identified with exclu-
sively non-unique peptides, were not counted here. The number
of proteins found in all three experiments are more or less similar
for all methods but in contrast the number of proteins found
uniquely in a single experiment is much smaller for MASCOT.
PPINGUIN shows the highest number of protein accessions found
in all three experiments. Remarkably, the number of protein ac-
cessions for PPINGUIN with intensity profile clustering is much
higher compared to random clustering (256 vs. 219). This hints
for the practical benefit of the proposed clustering approach.

Most of the protein accessions received from X!Tandem were
also detected using PPINGUIN (81% - see Venn diagram in Figure
3). The overlap between MASCOT and the other two approaches
is good: 68% of the X!Tandem IDs and 58% of PPINGUIN IDs
where found with MASCOT. All three methods have their set of
unique proteins accessions: 54 for MASCOT, 17 for X!Tandem
and 55 for PPINGUIN.

Most of these 54 unique MASCOT proteins are also found
using X!Tandem but they remain below the significance threshold.
This is mostly due to differences in the assessment of short
peptides since MASCOT appears to include many small peptides
for identification that are excluded by X!Tandem. Figure 42 shows
a histogram of peptide length distribution of 54 proteins uniquely
identified with Mascot, of peptides for the 55 proteins uniquely
identified with PPINGUIN and of peptides for the 124 proteins
found with all methods. Proteins uniquely identified with Mascot
show an accumulation of short peptides (more than 25% of the
peptides have only 5 residues) while proteins identified with
all three methods preferably consist of longer peptides. This
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Figure 41: Overlap of protein identification of the three different ap-
proaches employed regarding proteins significantly identi-
fied within all three experiments.
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Figure 42: Histogram of peptide length distribution of 54 proteins
uniquely identified with Mascot, 55 proteins uniquely found
with PPINGUIN and 124 proteins found with all methods. Es-
pecially the proteins uniquely identified with Mascot show
a clear accumulation of short peptides.

observation gives further support to the impression that Mascot
is not reliable in assessing short peptides (see Section 4.5.4).

4.5.7 Homogeneity of peptide profiles

As described above, a protein represented by multiple unique
peptides should result in strictly correlated quantitation ratios
for these peptides.[69]. In practical situation, however, often het-
erogeneous ratio profiles are observed using MASCOT as well as
X!Tandem, leading to difficulties in quantitative interpretation.

In the following, we compare the three methods (i) MASCOT,
(if) OpenMS and X!Tandem and (iif) PPINGUIN in terms of homo-
geneity of peptides assigned to the same protein. Homogeneity
is assessed by calculating the Coefficient of Variation (CV) of the
quantification ratios of all peptide belonging to a certain protein
(see Section 4.4.9). For assessment of homogeneity, the first of the
three experimental replications is used (cf. Table 10).

4.5.7.1 MASCOT

Evaluation based on MASCOT results in a CV for quantitation
ratios of peptides for the same protein of 16% for 114/116 ratio,
16% for 115/116 ratio and 25% for 117/116 ratios (StDev=0.23,
0.22 and 0.36). Peptides belonging to the same protein frequently
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v 115/116 || 0.16 | 0.16 | 0.13 | 0.12
117/116 || 0.25 | 0.23 | 0.2 | 0.16
114/116 || 0.23 | 0.23 | 0.21 | 0.19
logz StDev | 115/116 || 0.22 | 0.23 | 0.2 | 0.18
117/116 || 0.36 | 0.32 | 0.3 | 0.24

Table 14: Homogeneity of peptides averaged for all identified proteins:
Variability of peptides for the same protein was calculated
for the three approaches. For the three iTRAQ ratios (114/116,
115/116 and 117/116) the coefficient of variation and the
standard deviation are stated. The three different methods
(MASCOT, X!Tandem/OpenMS and PPINGIUN) are com-
pared. Additionally PPINGUIN was performed a second time
but with random clustering (see Method section 4.4.4).

show heterogeneous ratio profiles (see profiles for three exem-
plary chosen proteins in first row of 43). For example, peptides
assigned to the protein 40S ribosomal protein S30 - RS30 (third
column of Figure 43) show log; quantitation ratios for NZO_HF
vs. SJL_SD (117/116) ranging from —0.9 to +1.3, corresponding
to 1.9-fold down-regulation and 2.5 up-regulation, respectively.
This diversity of peptide quantitation is difficult to interpret.

4.5.7.2  X!Tandem and OpenMS

The second approach encompassing X!Tandem and OpenMS
shows similar CV values of 16% for 114/116, 16% for 115/116
and 23% for 117/116 (StDev: 0.23, 0.23 and 0.32). Variability of
peptides for the same protein is only slightly smaller compared
to MASCOT (for 117/116 channel). Ratio profiles are still con-
siderably heterogeneous and many profiles are still divergent
(middle row of Figure 43). The protein 40S ribosomal protein S30 -
RS30 (c.f. middle row and third column of 43) shows very sim-
ilar peptide quantitations compared to MASCOT. Quantitative
log, ratios for NZO_HF vs. SJL_SD (117/116) range between —0.5
and +1.1 corresponding to v/2 fold down-regulation and 2.3-fold
up-regulation.

4.5.7.3 PPINGUIN

PPINGUIN shows considerably lower CV of peptides assigned to
the same protein: 13% for 114/116, 12% for 115/116 and 16% for
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Peptide Quantitation Profiles
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Figure 43: Visualization of peptide quantitation profiles for three dif-
ferent approaches employed (rows) demonstrated for 3 ex-
emplary chosen proteins (columns). Each plot shows ratio
profiles of peptides mapped to the corresponding protein.
Rows correspond to the applied method: first row = MAS-
COT, second row = X! Tandem and OpenMS, last row =
PPINGUIN. A unique feature of PPINGUIN is the separation
of peptide into different groups with distinct quantitation
profiles.
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117/116 (StDev: 0.19, 0.18 and 0.24 - see 14). The reduced vari-
ance is an expected effect since the peptides within each cluster
are similar by construction. Even for a random clustering the Cv
of peptides assigned to the same protein is lower compared to
MASCOT and X!Tandem: 14% for 114/116, 13% for 115/116 and
20% for 117/116 (StDev: 0.21, 0.20 and 0.30 - see 14). PPINGUIN
with (non-random) quantitation profiles based clustering shows
lower CV of peptides assigned to the same protein compared
to random clustering. The ratio profiles are more homogeneous
and without outliers (bottom row 43). The resulting ratio profiles
are in accordance with our assumption that peptides belonging
to the same protein have similar relative quantitation measure-
ments. A distinctive feature of PPINGUIN is demonstrated by 405
ribosomal protein S30 - RS30: inconsistent quantitation profiles are
resolved by splitting up in two groups each with homogeneous
profiles. The protein is identified in two different clusters (1 and
4) with different peptide profiles. The peptides in cluster 1 show
low relative concentration for NZO SD (114) and high relative
concentration for NZO HF (117) while peptides in cluster 4 show
the opposite behavior. This effect is described in more detail in
Section 4.5.10.

For an independent assessment of our method we now pro-
ceed to investigate experimental reproducibility (precision) and
accordance with prior knowledge.

4.5.8 Precision - Experimental Reproducibility

Experimental replicates are essential because biological systems
are inherently variable. In order to test reproducibility we per-
formed three independent experimental replications and three
independent evaluations (see Dataset section: 4.2). We investi-
gated two different mouse genotypes and two diets resulting in
4 distinct combinations. The 4 combinations define 3 ratios using
SJL genotype with standard diet (SD) as reference. Quantitation
ratios for a protein are calculated by averaging the log ratios
of the corresponding peptides. To facilitate comparability we
restrict the analysis to the set of proteins identified in all three
experimental replications with each method.

We calculated CV and mean standard deviation of log quantita-
tion ratios of all proteins (see Section 4.4.10) as popular measures
for experimental reproducibility (see Table 1 for results). The
analysis was performed separately for each of the 3 experimental
ratios: NZO_SD/SJL_SD, NZO_HF/ SJL_SD and SJL_HF/SJL_SD.

Experimental variation of the MASCOT based evaluation is
characterized by CV values ranging from 0.13 to 0.19 (see first
column in Table 15). X!Tandem/OpenMS results in CV values
ranging from o0.12 to 0.18 (second column in Table 15). Experimen-
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MASCOT
X!Tandem
OpenMS
PPINGUIN

Ratio

o
5 || Random Cl
°

'5 PPINGUIN

NZO_SD/SJL_SD 0.13 0.12
Ccv NZO_HFD/SJL_SD 0.16 | 0.16 | 0.13 | 0.13
SJL_HFD/SJL_SD 0.19 | 0.18 | 0.14 | 0.14
NZO_SD/SJL_SD 0.18 | o0.17 | 0.16 | 0.14
log; StDev | NZO_HFD/SJL_SD 022 | 022 | 0.20 | 0.19
SJL_HFD/SJL_SD 0.26 0.25 0.21 | 0.21

Table 15: Experimental reproducibility using the three different ap-
proaches. For the three experimental factors (NZO_SD/SJL_SD,
NZO_HF/SJL_SD and SJL_HF/SJL_SD) the mean CV and the
mean standard deviation for quantitation ratios of all pro-
teins are stated. The three different methods (MASCOT,
X!Tandem/OpenMS and PPINGIUN) are compared. Addition-
ally PPINGUIN was performed a second time but with random
clustering (see Method section 4.4.4).

tal variation is reduced using PPINGUIN with CV values ranging
from o0.10 to 0.14 (fourth column in Table 15). The error of PPIN-
GUIN is rather similar compared to random clustering. But the
number of proteins found in all three experiments is 15% higher
compared to random clustering (c.f. Table 13).

Different from the improved homogeneity in the previous sec-
tion, the lower error of PPINGUIN is not a trivial effect since
the complete analysis workflow is performed for every exper-
iment independently. These results demonstrate that applying
the proposed method for data evaluation leads to more stable
quantitation values compared to Mascot and X!Tandem.

4.5.9 Accordance with prior knowledge

Typically, a primary goal of quantitative proteomics is the identifi-
cation of differentially expressed proteins. In contrast to technical
aspects in previous sections, we now identify differentially ex-
pressed biomarker candidates based on evaluation with the three
different methods. To assess the results of the differential anal-
ysis, we use a reference set of gold standard genes identified in
the context of T2DM[131]. This meta-analysis reports top genes
candidates for mixture of genotypic and dietary effects based
on different transcriptomics experiments. To assure compara-
bility with the meta-analysis, differential analysis is performed
comparing NZO mice with HF diet and SJL mouse with SD diet.
Identification of differentially expressed proteins is performed
as described in Section 4.4.7. Due to the low number of repli-
cates we use the fold instead of the p-value as criterion to judge
differential expression. The fold change value of 0.5 was chosen
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035490 betaine-homocysteine methyltransferase -0.922 0.00552 33 105.1
P33267 cytochrome P450, family 2 -0.853 0.132 4 16.2

Pg7872 flavin containing monooxygenase 5 -0.71 0.0891 3 21
Qg1Vo2 ATP citrate lyase 0.694 0.257 5 15.4
Po1ggq2 Hemoglobin subunit alpha 0.68 0.358 13 24.6
Q9Z2Vy4 phosphoenolpyruvate carboxykinase -0.663 0.0824 4 10.3
Q8VCN5 cystathionase -0.615 0.0121 3 8.5
QoCPY7 leucine aminopeptidase 3 -0.6 0.0955 4 28.1
P70694 aldo-keto reductase -0.589 0.0874 9 32.7
Qo1279 epidermal growth factor receptor -0.587 0.233 3 22.6
P10649 glutathione S-transferase -0.581 0.125 9 20.7
Q55WUg acetyl-Coenzyme A carboxylase alpha 0.573 0.092 4 10.8

Table 16: Differentially  expressed  proteins  comparing  for
NZO_HF/SJL_SD ratio are shown. Proteins highlighted
in lightgrey color have previously been reported to be
associated with obesity and T2DM.[131]

as threshold since it results in a reasonable number of differen-
tially expressed proteins. For higher values the number of genes
decreases fast and no gene has an absolute log, fold > 1 - see
Table 16). For smaller threshold values the number of randomly
detected genes increases (increase in false positive rate).

Evaluation based on Mascot identifies a total of 10 differentially
regulated proteins of which 20% (2) are found in the reference.
Using X!Tandem and Open MS identifies only 8 differential pro-
teins of which 37% (3) are found in the reference set. PPINGUIN
results in 12 differentially expressed proteins, of which 42% (5)
are part of the reference set.

Of the three methods, PPINGUIN shows the highest agreement
with the reference list. This remains true for changes of the
threshold value (e.g. 0.4 or 0.7).

Figure 44 shows the volcano plot for NZO_HF/SJL_SD ratio eval-
uated using PPINGUIN. None of the proteins has a significant
p-value (the Bonferroni corrected threshold of 0.0003 is below
the scale) but some proteins show fold changes (up to 1 corre-
sponding to a 2-fold differential expression). Table 16 presents the
statistics of the differentially regulated proteins identified using
PPINGUIN (proteins of the reference set are colored in lightgrey).

4.5.10 Detecting Potential Protein Isoforms

Protein isoforms and especially Post Translational Modification
(PTM) play a key role in many biological processes. Examination
of isoforms and PTMs is critical for understanding mechanisms
of these processes. Different protein isoforms are often regulated
separately and hence show distinct quantitation profiles.
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Figure 45: Upper part: Quantitation profile of the peptides assigned to
the ribosomal protein RS30 detected in the first experiment.
Labels are representing the samples: 114 - NZO_SD; 115 -
SJL_HF; 116 - SJL_SD and 117 - NZO_HF. Colors orange
and blue correspond to clusters 1 and 4 the peptides were
identified in. Lower part: Protein sequence with positions
of mapped peptides. "Upward ticks” on the x-axis indicate
predicted trypsin cleavage sites.

In the following we want to identify potential isoforms with
PPINGUIN. A key feature of our approach is the separation of
different peptide profiles for the same protein in multiple clusters.
The peptides in each cluster exhibit distinct quantitation profiles
which may correspond to protein isoforms. Potential protein
isoforms can be detected by searching for proteins identified in
multiple clusters. The majority of the proteins is found uniquely
in a single cluster (77%) and does not show evidence for protein
isoforms.

Figure 45 and 46 show quantitation profiles of two ribosomal
proteins: 40S ribosomal proteins S30 and 60S ribosomal protein
L29. Both proteins are identified in two clusters (1 and 4) with dis-
tinct quantitation profiles. These different profiles are probably
due to protein isoforms. These isoforms are regulated differ-
entially (~ 2-fold) for NZO mouse (channels 114 and 117). The
similar behavior of two ribosomal proteins located on distinct
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Figure 46: Upper part: Quantitation profile of the peptides assigned to
the ribosomal protein RL29 detected in the first experiment.
Labels are representing the samples: 114 - NZO_SD; 115 -
SJL_HF; 116 - SJL_SD and 117 - NZO_HEF. Colors orange
and blue correspond to clusters 1 and 4 the peptides were
identified in. Lower part: Protein sequence with positions of
mapped peptides. "Upward ticks’ on the x-axis indicate pre-
dicted trypsin cleavage sites. Red colored residues indicate
found modification.
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sites suggests a possible biological mechanism and supports the
rational of our procedure.

Typical reasons for isoforms are protein modifications, splice
variants or degradation effects. For further investigation of PTMs
as a source for protein isoforms, protein identification was per-
formed anew, searching for the 20 most frequent modifications
(the most frequent for each residue - see section 4.5.3). As for
RS30 protein, we did not find further evidence for protein modifi-
cation. But RL29 protein shows one peptide with a modification:
deamidation of glutamine. This modification affects only one of
the two peptides from cluster 4 but gives further support to the
theory that protein modification is a possible reason for protein
isoforms.

Investigating splice variants as a possible explanation for pro-
tein isoforms, we found that RS30 protein is transcribed from
exon 4 and 5 of the FAU (Ensembl-ID: ENSMUSG00000038274)
gene. The peptides from different clusters are located in different
regions of the protein which also correspond to the different ex-
ons of the FAU gene, but there was no indication for differential
splicing in the database. The positions of the peptides make both,
degradation effects or splice variants possible explanations for
the observed RS30 isoforms. However, the FAU gene may have
two variants: the RS_30 protein with 59 amino acids and the
completely transcribed protein with 133 amino acids. PPINGUIN
finds two variants of the RS_30 gene. These two variants may
correspond to the two potential variants, which of cause would
require further investigation.

The RL29 protein is transcribed from Ensembl gene: ENS-
MUSGo0000048758. Two different transcripts are annotated for
this gene. Again, the peptides (of RL29 protein) from different
clusters are located in different regions of the protein. For the
RL29 isoforms all three phenomena: protein modification, splice
variants and degradation effects could be possible reason for the
different isoforms.

4.5.11  Non-unique proteins

In some cases peptides are not unique for a single protein but
instead could possibly be derived from several proteins. Typically
these peptides are removed because the originating protein can
not be determined. The clustering used in PPINGUIN may help to
resolve these ambiguities.

Figure 47 shows four exemplary cases of proteins with non-
unique and unique peptides. The first row contains peptides
assigned to proteins: Q55WU9-1, Q55WU9-2 and Q99MR8. Three pep-
tides are uniquely assigned to a single protein: one peptide to pro-
tein Q5SWU9-1 in cluster 1 and two peptides to protein Q5SWU9-2


http://www.ensembl.org/Mus_musculus/Gene/Summary?g=ENSMUSG00000038274;r=19:6057893-6059516;t=ENSMUST00000043074
http://www.ensembl.org/Mus_musculus/Gene/Summary?db=core;g=ENSMUSG00000048758;r=9:106331785-106333899
http://www.ensembl.org/Mus_musculus/Gene/Summary?db=core;g=ENSMUSG00000048758;r=9:106331785-106333899
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in cluster 2. Additionally to the unique peptides, one non-unique
peptide (dashed grey line) was found that could be derived from
three different proteins. The non-unique peptide shows a similar
profile like the peptides derived from Q55WU9-2 and are found
in the same cluster (cluster 2). The clustering suggests that the
non-unique peptide belongs to protein Q55WU9-2.

The second row (of Figure 47) shows peptides assigned to
proteins P10126 and P62631. Four peptides are found in cluster 3,
two of which are uniquely identified as protein P10126. The other
two non-unique peptides from cluster 3 are probably also derived
from protein P10126. The other six non-unique peptides from
cluster 2 show a different quantitation profile and may rather be
derived from protein P62631.

The last two rows contain proteins with a single uniquely
identified peptide. In addition, non-unique peptides with very
similar profiles are found (in the same cluster). The similarity
suggests that the non-unique peptides belong to the same protein
as the uniquely identified peptide.

Of cause there are still many ambiguous non-unique peptides
that can not be assigned to a single protein. At all, protein in-
ference leads to a total of 88 groups of non-unique proteins. For
more than 52% of these non-unique peptides PPINGUIN does not
provide any further information regarding ambiguous identifi-
cation. This is because these proteins are represented only by
non-unique peptides and do not have any unique peptide that
can be used to resolve ambiguities. However, PPINGUIN may help
to resolve ambiguities for almost 50% of the non-unique proteins.

4.5.12  Comparison with Genomics

PPINGUIN is based on the assumption that peptides derived from
the same proteins should be highly correlated. This assumption is
even more relevant in genomics or transcriptomics with microar-
ray technology. In both fields (transcriptomics and proteomics),
measurements are performed at the level of features which belong
to a common superior structure: In proteomics, quantitative mea-
surements are typically on the scale of single peptides belonging
to proteins while for transcriptomics microarrays measurements
are performed on the scale of oligonucleotides which belong
to genes. In order to quantify the superior structure (genes or
proteins), a summarization strategy is required. The summariza-
tion strategy, always assumes the summarized features (peptides,
oligonucleotides) show more or less similar quantitation values.
In the following, we will investigate whether the assumption that
biomolecules derived from a common source should be highly
correlated holds true for microarray based experiments.
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Figure 47: Four exemplary chosen proteins (rows) with non-unique

peptides (dashed lines) as well as unique peptides (bold
lines). Peptide identification is given right hand side of the
plot. Non-unique peptides are characterized by multiple pos-
sible proteins assigned. Cluster assignment may help to un-
ravel the ambiguities: E.g. the first row (proteins: Q5SWUg-1,
Q55WU9-2 and Q99MRS8) has three unique peptides one as-
signed to protein Q5SWU9g-1 (in cluster 1) and two assigned
to Q5SWU9g-2 (in cluster 3). The clustering suggests that the
non-unique peptide (dashed grey line) belongs to protein
Q55WU9-2.
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In order to optimize the comparability of the oligonucletide-
based microarray analysis and iTRAQ data evaluation, we are
interested in a microarray study with similar experimental de-
sign. The key properties of iTRAQ technology is relative quan-
tification that requires a reference channel. Therefore, a good
study candidate employs two color microarrays, with a common
pooled reference design. We searched NCBI Gene Expression
Omnibus (GEO) database[9] for a suitable study.

4.5.12.1  Microarray Study

In 2009 Tombol et al.[160] published an oligonucleotide microar-
ray study investigating four groups of human adrenocortical
tumors: normal cortex, inactive adenoma, cortisol secreting ade-
noma, adrenocortical cancer (GEO DataSet ID: GSE14922). The ex-
periment was performed using a two-color microarray designed
to compare individual samples to a uniform reference pool of
all samples. The hybridization was done using Agilent Whole
Human Genome 4x44 K microarray (GEO Platform ID: GPL6480 ).
In total, the study by Tombol et al. comprises 16 microarrays - 4
biological replicates for each of the 4 experimental groups.

Thinking in terms of iTRAQ design, the microarry experiment
corresponds to a hypothetical '5-plex iTRAQ” study resulting in
4 quantitative ratios. The microarray images where processed
using Agilent Feature Extraction Software 8.5 and original array
normalization was chosen as default normalization scenario for
Agilent 4x44 K two-colour array platforms[160].

The normalized logarithmic ratio data was downloaded from
GEO as Series Matrix File. The average ratio of all oligonucleotides
on a chip is 0 for all chips (see box plot of all 16 chips in Fig-
ure 48). In order to validate the assumption that biomolecules
derived from a common source should be highly correlated, we
investigate the homogeneity of ratio profiles of oligonucleotides
for the same gene in a similar way as done for homogeneity of
peptides (section 4.5.7).

4.5.12.2  Homogeneity of Oligonucleotide Profiles

To evaluate homogeneity of oligonucleotides, we follow similar
strategy as applied for homogeneity of peptides (section 4.5.7).
The 44K Aligent probe IDs, are mapped to the corresponding
ENSEMBL gene IDs using Bioconductor annotation package
hgug4112a.db. If multiple Aligent IDs are mapped to the same
ENSEMBL gene, we expect these probes to show correlated pro-
files as they represent the same ENSEMBL gene. For the 4 EN-
SEMBL genes with the highest number of Agilent IDs assigned,
the ratio profiles are shown in figure 49. For calculation of ratio
profiles the experimental replications were averaged. The ratio
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Figure 48: Box plot of all normalized signals from 16 microarrays of
the GSE14922 study downloaded from GEO. The 4 different
experimental groups are colored with shades of gray. All
ratios are distributed around 0.

profiles are partly heterogeneous and do show only medium
correlation (average correlation coefficient of all corresponding
genes = 0.5). Overall CV of Agilent IDs mapped to the same EN-
SEMBL ID is 22% and therefore, comparable to homogeneity of
peptides (see section 4.5.7).

The heterogeneity of oligos mapped to the same ENSEMBL
ID complicates the assignment of quantitative values for single
genes. The biological entity measured by oligo nucleotide mi-
croarrays is mRNA. A single oligo nucleotide typically represents
a single mRNA whereas a single (ENSEMBL) gene may be tran-
scribed to several different mRNAs due to alternative splicing.
The number of alternatively spliced genes was conservatively
estimated to be 40 — 60%[105, 26] but more recent estimates
suggest that > 92 — 94% of human genes undergo alternative
splicing[168]. The different mRNAs and resulting proteins pro-
duced by alternative processing often differ in structure, function,
localization and regulation. Considering these facts, the question
arises whether (ENSEMBL) gene IDs should be considered as the
common sources for oligo nucleotides. Or if, actually, (ENSEMBL)
transcripts IDs are a more adequate common source for the probe
IDs.

Following this idea, all 44K Aligent gene IDs where mapped
to the corresponding ENSEMBL transcripts (mapping tables are
included in the dataset). Similar to previous analysis, for the
4 ENSEMBL transcripts with the highest number of Agilent
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Figure 49: Ratio profiles of the 4 ENSEMBL gene with the highest
number of mapped Agilent IDs. Every plot represents one
ENSEMBL gene, and every line in a plot reflects one Agilent
gene mapped to the corresponding ENSEMBL IDs.
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Figure 50: Ratio profiles of the 4 ENSEMBL transcripts with the highest
number of mapped Agilent IDs. Every plot represents one
ENSEMBL transcript, and every line in a plot reflects one
Agilent gene mapped to the corresponding ENSEMBL IDs.

IDs, the ratio profiles are shown in figure 50. In comparison
with figure 49, the profiles for a common transcript are more
homogeneous which is also confirmed by an increased average
correlation coefficient of all transcripts (0.67 vs. 0.5). The overall
Cv of all agilent IDs for the same ENSEMBL transcript is lower
in comparison with ENSEMBL genes (18% vs. 22%).

The results presented suggest that biomolecules derived from
a common source show similar profiles in the case of oligo nu-
cleotides and transcripts.

4.5.12.3 PPINGUIN - for Transcriptomics

The motivation of PPINGUIN is that peptides (represented by
spectra) belonging to the same protein show correlated quan-
titation profiles. For transcriptomics microarray technology we
have demonstrated that mRNA probes belonging to the same
transcript often show correlated quantitations. If the clustering
employed in PPINGUIN indeed groups elements belonging to the
same superstructure, than the mRNA probes belonging to the
same transcript should be assigned to the same cluster. In con-
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sequence if a gene is found in multiple clusters, the different
clusters may correspond to different transcripts of the gene. We
now investigate whether these hypotheses are true for transcrip-
tomics data.

To maximize the comparability with the implementation of
PPINGUIN, we do not use the normalized data provided by Tombol
et al.. Instead we downloaded the raw data of the study from GEO
(see Section 4.5.12.1). For performing the clustering we followed
the implementation of PPINGUIN: The raw data was normalized
using multi-Lowess normalization. For each gene, a 5-tupel in-
tensity profile is calculated representing the average of the four
samples and the reference. The intensity profile is centered (with-
out scaling) and subsequently k-means clustering (k = 5) is
applied to the intensity profiles using Euclidean distance.

For the 214 ENSEMBL transcript IDs that are represented by
more than five agilent mRNA probe IDs, we check whether they
are pooled in one cluster or spread across multiple clusters. 159
(75%) of these transcripts are indeed pooled in a single cluster.
This proportion corresponds surprisingly well to the number of
proteins found in a single cluster (which was 77% - see Section
4.5.5.3) If the hypothesis of correlated quantitation profiles is
correct (which holds true for transcript mRNA oligos) than the
clustering employed in PPINGUIN groups together what belongs
together.

Figure 51 shows two exemplary genes ENSG00000050165 -
DKK3 and ENSGo00000108187 - PBLD that are found in two differ-
ent clusters. Both genes are measured by mRNA oligos showing
two different groups of 5-tupel intensity profiles. For some oli-
gos a mapping to the corresponding transcript is not annotated
although a gene id is given. The mRNA oligos belonging to the
same group are assigned to the same transcript if the transcript
is annotated. So the different groups reflect different isoforms
of the corresponding gene (in this case different transcriptions).
The hypothesis that oligo nucleotides which are found in dif-
ferent clusters reflect different isoforms, is true for these two
exemplarily chosen genes. If the same is true for the analysis of
iTRAQ data, than proteins which are identified by PPINGUIN in
different clusters correspond to different protein isoforms (see
section 4.5.10).
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Figure 51: Two  Genes  (ENSGoooooos0165 - DKK3 and

ENSGo0000108187 - PBLD) that are split into two dif-
ferent clusters. For each gene, the centered 5-tupel intensity
profile is (used for clustering) is shown. The different
clusters are color coded. On the right hand side the
corresponding ENSEMBL transcripts are given.
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During protein identification (with MASCOT or X!Tandem) often
multiple peptides are assigned to the same protein. The assump-
tion that these peptides are really derived from one originating
protein is questionable, if the peptides show heterogeneous quan-
titation values. This is because a specific protein (or peptides of
the same protein) can not show up- and down-regulation simul-
taneously. However, heterogeneous behavior of peptides could be
derived from biological or technical reasons. Biologically, protein
isoforms, PTMs or multimer formations could lead to heteroge-
neous peptide quantitation values. Technically, the heterogeneity
can be caused by false positive database identifications. What-
ever reason causes the heterogeneity, protein quantitations are
distorted by averaging heterogeneous peptide quantitations. The
effects of differentially regulated protein isoforms may neutral-
ize each other resulting in log fold changes of ~ 0. PPINGUIN is
specifically designed to resolve these ambiguities.

In contrast to the standard workflow, PPINGUIN employs cluster-
ing prior to protein identification as a very early step in data pro-
cessing (see workflow comparison in Figure 30). Typically, data
mining techniques are applied after protein identification and
quantitation. Recently different approaches have been proposed
to improve protein identification using peak intensities[69, 94]. In
contrast to these works, our major goal is to improve quantitation
itself based on the proven and tested identification tools.

Compared to MASCOT and X!Tandem/OpenMS, evaluation
based on PPINGUIN shows improved results regarding all three
quality control steps: First: heterogeneity of peptides for the same
proteins is strongly reduced; Second: experimental reproducibil-
ity is elevated and Third: accordance with prior knowledge is
also more conclusive.

Our approach is based on pre-selection of peptides by apply-
ing unsupervised clustering using k-means. We decided to use
k-means as it is computationally fast and sufficient to demon-
strate the benefit of the pre-selection. We have also tested affinity
propagation[51] as a more sophisticated clustering approach but
it turned out to be computationally very expensive while the main
results (decreased heterogeneity and increased reproducibility)
were similar to k-means. The value of k=5 was determined using
two cluster validation scores: gap statistic and Xie-Beni index.
Furthermore we found the clustering to be stable with respect
to different starting points for the clustering. Also for different
number of clusters within a reasonable range the results are not
changed. Altogether we think that despite its simplicity k-means
(with k=5) is well suited for our purpose.
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Due to our experimental design different experiments refer
to different biological samples combined with a permutation of
iTRAQ channels leading to a mixture of technical and biological
variations. Applying the multi-lowess normalization, the data is
homoscedastic and technical variation and biological variation are
similar to values reported by Gan et al.[55]. Applying only simple
median correction the variance is higher for smaller quantitation
ratios, which has been reported previously [83].

PPINGUIN can intrinsically identify protein isoforms if they
are expressed differentially. PPINGUIN can detect potential novel
splice variants and thus, it may help to improve protein or even
nucleotide databases. As an example PPINGUIN finds two variants
of the RS_30 gene (see Figure 45). The corresponding FAU gene
may have two variants: the RS_30 protein with 59 amino acids
and the completely transcribed protein with 133 amino acids
(see Section 4.5.10). The two isoforms found by PPINGUIN prob-
ably correspond to the two protein variants. Verification of this
hypotheses would require further in-depth investigation.

Beside detection of potential isoforms, PPINGUIN may also help
to assign non-unique peptides to the true origination protein. E.g.
if non-unique peptides for two potential proteins are clustered in
two different groups each together with unique peptides, than the
uniquely assigned peptide can hint for the true original protein
(see Figure 47). Examples of this effect are given in Section 4.5.11.

Each of the three evaluated methods shows a distinct set of
identified proteins. PPINGUIN has the highest number of proteins
(256) identified in all three experiments. This is especially an
effect of the biologically motivated clustering used by PPINGUIN
since a random clustering results in less proteins identified in all
three experiments (219 - see Table 13). A relatively large set of
found proteins is found only by PPINGUIN and not by X!Tandem.
This is due to two combined effects: First, exploiting quantitation
profile information, our clustering leads to a relative enrichment
of peptides belonging to the same protein in a cluster and second,
by splitting spectra into groups, clustering decreases the total
number of spectra in each identification process. The reduced
number of spectra per cluster alters the identification threshold
used for calibration of the false discovery rate and in effect new
proteins are identified. MASCOT also results in a large set of
uniquely identified proteins. Most of these unique MASCOT
proteins are also found using X!Tandem but they remain below
the significance threshold. This is mostly due to differences in
the assessment of short peptides since MASCOT appears to in-
clude many small peptides for identification that are excluded
by X!Tandem (see also Figure 42). In general MASCOT seems to
have problems in assessing small peptides since we have found
an increased proportion of short peptides with significant E-values
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also from the decoy database (see Figure 38). This may be an
overlapping effect of forward and reverse database, since Elias
and Gygi[43] reported that for small peptides (length 5) almost all
peptides are shared between forward and reverse database. How-
ever, testing this effect with our databases, from the 947 peptides
from the reverse database with length 5-6, only 3% are shared by
the forward database. The reason for the increased proportion of
short peptides with significant E-values from MASCOT remains
unclear.

The set of quantified protein accessions received by PPINGUIN
is characterized by an increased experimental reproducibility
compared to the other methods. This implies that using PPINGUIN
for evaluation, one experimental result is a reliable predictor for
the results of a similar experiment. Finally, the comparison with
prior knowledge showed a surprisingly high agreement of our
top proteins with the reference set, which we deem representative
for diabetes and obesity. This hints for the practical benefit of our
method.

4.7 CONCLUSION AND OUTLOOK

We proposed a novel method for evaluation of iTRAQ data moti-
vated by the observation that relative concentrations of peptides
derived from the same protein often show unexpectedly hetero-
geneous correlation patterns. Exploiting correlations of quanti-
tation ratios achieves more consistent quantitation ratios than
the standard approaches. This is demonstrated by an increased
reproducibility of independent experiments. Besides leading to a
more reliable quantitation, the method can reveal new isoform
candidates.

We see our work as a promising step towards quantitation
guided identification. In general, we recommend to use our
method in case accurate quantitation is a major objective of
research. Regarding the increasing importance of quantitative
proteomics we think that this method will be useful in practical
applications like model fitting or functional enrichment analysis.

We expect that our approach will be still more valuable with
an increasing number of parallel quantified samples (e.g. 8-plex
iTRAQ) since the importance of the clustering increases. The pro-
posed approach can also be very useful for other quantitative
proteomics technologies like, e.g., SILAC. A next step will be to
extend the algorithms to include spectra with incomplete iTRAQ
quantitations. Future versions of PPINGUIN will aim at further
refinement of protein quantitation by incorporating the rapidly
growing public knowledge on splice variants and protein iso-
forms.
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5.1 INTRODUCTION

2D Difference Gel Electrophoresis (DIGE) was initially described
in 1997 by Unlu et al.[163] as a multi-sample gel separation
method based on the two fluorescent dyes Cy3 and Cys. Ex-
tending this method by adding the dye Cy2 2D Difference Gel
Electrophoresis (DIGE) theoretically allows for multiplexing three
samples. In practice, DIGE is used for multiplexing only two sam-
ples and the Cy2 channel is often used to incorporate a pooled
internal standard[3] (see section 2.1.3). In general, pooling biolog-
ical samples is often discouraged because combining biological
distinct subjects in a single pool makes estimation of individual
biological variation more complicated or even impossible. Exper-
iments that do not allow for estimation of biological variation
should not be performed[113]. However, a common pooled refer-
ence leads to an increased comparability of the samples without
introduction of an artificial (maybe out of context) reference. An
internal standard improves the accuracy of relative quantitation
by acting as a loading control and facilitating spot matching
between gels and alleviates somewhat the inherent gel-to-gel
variation[157].
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5.2 DATASET

Analogous to iTRAQ experiments (see section 4.2), DIGE was per-
formed to investigate effects of Standard Diet (SD) and High
Fat (HF) diet on the two mouse strains New Zealand Obese (NZO)
and Swiss Jim Lambert (SJL) (see section 2.2.3 for complete ex-
perimental design of the Sys-Prot project). A total number of 10
DIGE gels where performed, see table 17 for experimental design
of DIGE experiment. Labeling of samples follows a randomized
experimental design. This helps to avoid biases often observed in
DIGE experiments leading to systematic errors in the data[80].

GelID || Cy2 S y3
Genotype ‘ Diet | Genotype ‘ Diet

869 pool NZO SD NzO HFD
870 pool NZO HFD SJL HFD

871 pool SJL SD NzZO SD
578 pool SJL HFD SJL SD
873 pool NZO SD SJL SD

874 pool SJL HFD NzZO HFD
875 pool SJL HFD NZO SD
876 pool NzO HFD SJL SD
877 pool SJL SD SJL HFD
878 pool NZO SD NZO HFD

Table 17: Description of experimental design. 10 different gels colored
with 3 different dyes (Cyz, Cy3 and Cys) were created. Labeling
of samples follows a randomized experimental design. Cyz
channel was used as a pooled mixture of all samples.

5.3 STATE OF THE ART

Since the first introduction of DIGE in 1997[163], DIGE has been ap-
plied to a broad range of research areas including cell signaling[24,
146], neuroscience[164, 53] and cancer research[52, 84].

Given suitable dyes and a sensitive imaging system, Minden
et al.[110] claimed that experimental design and statistical analy-
sis are the most crucial aspects of performing informative DIGE
experiments. Typically the whole workflow for DIGE data anal-
ysis is performed using commercial DeCyder software package
(GE Healthcare). This includes gel matching and identification
of matched spot groups, image analysis and feature quantitation
as well as subsequent statistical analysis including normalization
and detection of differential biomarker candidates.
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5.4 METHODS
5.4.1 Pre-processing / Normalization

The different dyes show distinct fluorescence properties (e.g. Cys
has a higher extinction coefficient). This dye effect leads to a
systematic shift in channel intensities (on log scale) or to an offset
after ratio calculation, respectively. A similar effect was observed
for the four different iTRAQ channels (c.f. Section 4.5.1). The nor-
malization/calibration aims at removing intensity bias within
each gel as well as bias between the gels. The easiest normaliza-
tion strategy is a linear regression using a scaling factor and a
background offset[81]. Kultima et al.[87] compared different nor-
malization strategies for DIGE data. Beside removing within and
between gel biases, they devoted a special emphasis to spacial
bias within the gel. They found only 2D loess and 2D quantile
normalization successfully removed both, intensity and spatial
bias.

For calibration/normalization we use multi lowess algorithm -

a multi dimensional extension of lowess normalization strategy[127].

The algorithm assumes the majority of the features to be ex-
pressed in similar manner regardless of expression level and as
an effect the correlation of the samples to be high. The normaliza-
tion is performed for each gel separately for two reasons: First,
between gel correlation is much lower than within gel correla-
tion and Second, the dye effect is different for each gel (see also
Jung et al.[74]). This normalization approach entails that after
normalization the gels must not be compared directly. Instead
the comparison of different gels has to be performed using ratio
data employing the common pooled channel.

5.4.2 Protein specific dye effect

A global normalization strategy aims at removing global dye
effects. Krogh et al.[86] showed that protein-specific dye effect
occurs in DIGE data that can not be removed by a global normal-
ization strategy. They analyzed three different DIGE experiments
and found 19 — 34% of the proteins to show a statistically sig-
nificant dye effect (0.001 significance level). They proposed an
analysis tool (DIGEanalyzer) using linear mixed model to re-
move protein specific dye effects that is also implemented in
Proteios[65]. Krogh et al.[86] argued that dye effects in DIGE
may result from a combination of preferential dye binding or
differences in gel migration and fluorescent properties.
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In order to investigate the existence of a protein-specific dye
effect in our dataset we used ANOVA (see chapter 2.3) with linear
mixed model regarding all single effects:

Ratio ~ Diet + Genotype + Dye

Since multiple tests are performed a multiple testing correction
has to be performed (c.f. section 4.4.7). Bonferroni correction[41]
rejects any hypothesis H; with unadjusted p-value less than or
equal to oc/m (m = number of tests performed).

5.4.3 Differential Analysis

Differential analysis investigates effects of the experimental fac-
tors genotype and diet analogous to MALDI and iTRAQ data anal-
ysis (see Chapter 3 and 4). Following the statistical analysis of
MALDI data (Section 3.4.4) we simultaneously investigate effects
derived from genotype and diet as well as the factor combination
at the same time. A good candidate for that analysis is again
ANOVA (Section 2.3). The ANOVA model employed comprises both
experimental factors genotype and diet including mixed effects:

Ratio ~ Diet + Genotype + Diet x Genotype

The dye effect is not considered here, because we can not find
evidence for a statistically significant dye effect (see Section 5.5.2).

Considering all factor combinations each combination is repre-
sented by 5 replications (c.f. Table 17). Multiple testing correction
is performed according to Bonferroni.

5.4.4 Spot Similarity

The analysis of MALDI and iTRAQ data has demonstrated the
benefit of clustering methods investigating the relation between
peptides or proteins. Following these approaches, we investigate
whether clustering is also helpful for DIGE data. Different kinds of
clustering methods of spots/proteins have been performed previ-
ously on DIGE data[142, 96, 104]. These approaches are typically
based on unsupervised learning algorithms such as hierarchi-
cal clustering or k-means using euclidean distance measure and
showed several spots/proteins with high similarities referring to
the experimental design.

For clustering we reuse the concept of quantitation profiles
introduced for analysis of iTRAQ data - Section 4.4.3. A quanti-
tation profile is the list of intensities for a certain spot across all
(20) samples. High correlation between intensity profiles hints for
common origin as e.g. multimer formations or PTMs or possibly
similar biological functions. However, correlation of spots is often



5.5 RESULTS

dominated by sample effects (effects of genotype and diet). In
order to investigate spot similarities the sample effects must be
neglected. Therefore correlation is calculated for each genotype-
diet combination separately and averaged afterwards. Average
linkage hierarchical clustering is performed using 1 —p as dis-
tance measure where p denotes the average Pearson correlation
across the samples of each genotype/diet combination.

Spots with similar intensity profiles are aggregated in close
proximity in the dendrogram. For the identification of spots with
similar intensity profiles we cut the tree at a given height level
(h = 0.15). Subsequently we select all clusters with at least three
spots.

5.5 RESULTS
5.5.1 Pre-processing / Normalization

Raw gel data (without any normalization) show medium repro-
ducibility with between gel correlation coefficients of 0.76 - 0.9
(Pearson correlation[136]). In contrast, the within gel correlation
(correlation of the three channels across all spots) is much higher
with correlation coefficients: 0.95-0.98 (see right hand side of fig-
ure 52 for correlation plot). For unnormalized data, the systematic
shift in channel intensities is clearly visible in the box plot (left
hand side of figure 52). For the majority of the gels, the red chan-
nel (Cys) shows the lowest mean intensity while the blue channel
(Cy2) has the highest average intensity. The highest channel bias
of 0.67 is observed for gel 871 which corresponds to a 1.6 fold
differential expression if not normalized. This systematic shift
substantiates the need for a normalization/calibration strategy.

Gel-based multi lowess normalization successfully removed the
systematic shift of the different dyes of each gel. But a substantial
offset between the different gels remains (see left hand side of
tigure 53). Consequently, the different gels must not be compared
at the level of the normalized data but rather on the level of
ratios.

The Cy2 channel represents a pooled reference of all samples,
that is present on every gel. Therefore, the Cy2 channel is used
as reference channel to calculate the Cy3/Cy2 and Cys/Cy2 ratios
for each gel. At the ratio level the different gels are compara-
ble because the average ratios are distributed with mean 0 and
similar variances. The correlation of the 20 ratios ordered by the
experimental factors is shown in figure 54. Most of the correlation
coefficients are close to zero showing that the majority of proteins
is not differentially expressed. The genotype effects are clearly
visible in the correlation matrix. This implies that the genotype
effects are rather strong which corresponds to results obtained

119



120 DIGE: DATA ANALYSIS AND ALGORITHMS
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Figure 52: Data prior to normalization. Left side: Box plot of all chan-
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nels of the 10 gels colored by the dye used (blue = Cy2, green
= Cy3 and red = Cys). Different dyes show different average
intensities. Right hand side: Correlation plot (Pearson Corre-
lation) of all channels of the 10 gels. The diagonal boxing is
due to high within gel correlation.
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Figure 53: Data after application of normalization. Left side: Box plot of

all channels of the 10 gels colored by the dye used (blue = Cyz,
green = Cy3 and red = Cys). After normalization different dyes
are homogeneous within the same gel. But an offset between
the different gels remains. Right hand side: Correlation plot
(Pearson Correlation) of all channels of the 10 gels. The
diagonal boxing demonstrates high within gel correlation.
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~0.038 019 031 042 054 065 0.77 0.88 1

Figure 54: Correlation plot (Pearson Correlation) of the data after ap-
plication of normalization and calculation of ratios using
Cyz channel as reference. The majority of correlation coeffi-
cients are o and within gel correlation vanished. Genotype
has a rather strong effect on the data since the NZO and SJL
genotypes samples are distinguishable while the diets are
not.

from MALDI and iTRAQ data (see Chapter 3 and 4). Furthermore,
the strong within gel correlation vanished.

5.5.2  Protein specific dye effects

We investigate the existence of a protein specific dye effect as
described in Section 5.4.2. The volcano plot of effect strength
and ANOVA p-values for protein specific dye effects is shown in
Figure 55. Regarding significance threshold after the Bonferroni
correction only 4 proteins (0.03%) show statistically significant
dye effects (see right hand side of Figure 55 for a box plot of these
four proteins). Especially spot number 1040 has a very significant
dye effect with p-value of 10~ '°. However, compared to the
results of Krogh et al.[86] who found 19 — 34% of the proteins to
show statistically significant dye effects, the protein-specific dye
effects in our dataset are rather marginal effects (2.7% of all spots
at comparable significance level of 0.001).
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Figure 55: Protein specific dye effect after global normalization. Left
side: Volcano Plot, blue vertical dotted lines reflect the log;
fold of —1 and 1, blue horizontal dotted line marks the
Bonferroni Multiple Testing corrected p-value threshold of
0.05. Right hand side: Box plot of the intensity distribution
separately for each genotype regarding the four spots with
the most significant p-values.

Since the dye has only minor effects on our dataset and due to
the randomized experimental sample design the protein specific
dye effect is neglected in the subsequent analysis.

5.5.3 Differential Analysis

The effects due to differences in genotype are stronger than the
effects due to diet (c.f. MALDI analysis in Section 3.5.3) which
is already visible regarding the correlation plot of the DIGE
ratios (figure 54). Statistical analysis is performed to investigate
the effect due to single experimental factors as well as factor
combination as described in Section 5.4.3.

5.5.3.1 Genotype

As already seen during the analysis of MALDI and iTRAQ data,
NZO and SJL mice show distinct proteomic patterns. Left hand
side of Figure 56 shows the volcano plot for experimental factor
genotype. Some spots show differential expression with log;
folds up to £3 which corresponds to a differential expression of
8 fold. ANOVA p-values are significant up to 10~'4. A box plot of
the two genotypes for the six most significant spots is presented
at the left hand side of Figure 56.

The effect of genotype is indeed strong leading to the identifica-
tion of various differently expressed spots. The 15 spots with the
most significant p-values for experimental factor genotype are
presented in Table 18 including protein identification if available.
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Spot Identification Mean | Mean | log; P-Value
ID |ID Description Score | NZO SJL | Fold
8oy P48036 | Annexin A5 429 0.492 | -0.784 | -1.03 | 4.69e-15
Q64374 | Regucalcin 265
557 0.713 | -2.25 | -2.85 | 1.04e-14
556 | Q63836 | Selenium-binding protein 2 | 514 0.641 | -2.26 | -2.94 | 6.76e-14
P38647 | Stress-70 protein, mitochon- | 1657
drial
407 | P63017 | Heat shock cognate 71 kDa | 680 0585 | -1.34 | -2.02 | 1.68e-12
protein
Po7724 | Serum albumin 465
P38647 | Stress-7o protein, mitochon- | 5099
drial
Poyy24 | Serum albumin 2540
1025 Qo2257 | Junction plakoglobin 225 0.368 | -0.399 | -0.702 | 4.05e-12
P70296 | Phosphatidylethanolamine- | 535
binding protein 1
928 -0.984 | 0.198 | 1.23 | 4.31e-12
943 -0.731 | 041 | 1.14 | 5.42e-12
330 | P63017 | Heat shock cognate 71 kDa | 750 0.485 | -1.09 | -1.61 | 6.16e-11
protein
367 | P38647 | Stress-70 protein, mitochon-| 175 -0.174 | 0.215 | 0.383 | 6.47e-11
drial
P12710 | Fatty acid-binding protein, | 503
1159 liver 0.914 | -1.48 | -2.38 | 1.34e-10
Ps2760 | Ribonuclease UK114 447
P52760 | Ribonuclease UK114 599
828 -0.489 | 0.321 | 0.752 | 7.31e-10
461 -0.559 | 0.346 | 1.02 | 2.68e-09
927 -0.866 | 0.309 | 1.12 | 2.99e-09
580 P32020 Non—.spemflc lipid-transfer | 1172 0.599 | -0.608 | -1.01 | 6.110-09
protein
P56480 | ATP synthase subunit beta, | 1084
mitochondrial
925 -0.715 | 0.273 | 0.955 | 1.02e-08

Table 18: 15 spots with the most significant p-values for the exper-
imental factor genotype. If available protein identification

information is given.
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Figure 56: Effects of the experimental factor genotype. Left side: Vol-
cano Plot, blue vertical dotted lines reflect the log, fold of
—1 and 1, blue horizontal dotted line marks the Bonferroni
Multiple Testing corrected p-value threshold of 0.05. Right
hand side: Box plot of the intensity distribution separately
for each genotype regarding the six spots with the most
significant p-values.

5.5.3.2 Diet

Compared to experimental factor genotype, the different diets
have only poor effect on the data. The most significant p-value
of ANOVA for diet is only 107°. Some folds are up to 1.5 but
none of which is significantly changed. However, the best folds
of the most significant spots are ~ +0.5. For the volcano plot see
left hand side of Figure 57. The box plots of the the six most
significant spots are shown on the right hand side of Figure 57.
Some spots are differentially expressed but these effects are poor
compared to the genotype effects. The 15 most significant spots
for the experimental factor diet are presented in Table 19.

5.5.3.3 Factor Combination

Analogous to the analysis of MALDI data we analyze the mutual
effect of feature combination genotype and diet (see section 5.4.3
for ANOVA model). The volcano plot for factor combination
is depicted left hand side of figure 58. None of the resulting
p-values is significant regarding the multiple testing corrected
threshold of 0.05. Furthermore the folds for the most significant
spots are small (~ £0.5). Fold in the case of ANOVA reflects the
coefficient of the linear model used within ANOVA which can
be interpreted like an effect strength. The box plot of the six
most significant spots for each distinct combination is shown on
right hand side of figure 58. Spots 14, 61, 62 and 68 all show a
similar pattern: HF/SJL is lower than the rest. Spot 482 shows
higher signals only for the combination of SD/NZO. The 15 most
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Figure 57: Effects of the experimental factor diet. Left side: Volcano Plot,
blue vertical dotted lines reflect the log, fold of —1 and 1,
blue horizontal dotted line marks the Bonferroni Multiple
Testing corrected p-value threshold of 0.05. Right hand side:
Box plot of the intensity distribution separately for each diet
regarding the six spots with the most significant p-values.

Spot Identification Mean | Mean | log; P-Value
ID |ID Description Score | NZO SJL Fold
67 -0.223 | 0.0504 | 0.142 | 1.71e-06
68 -0.225 | 0.0164 | 0.0604 | 2.32e-06
62 -0.198 | 0.0466 | 0.0735 | 2.39e-06
1029 0.54 | -0.00314 | -0.754 | 4.02€-06
56 -0.183 | 0.0658 | 0.108 | 8.94e-06
953 -0.249 | 0.221 0.443 | 1.06e-05
461 -0.345 0.132 0.595 | 1.24e-05
367 | P3864y | Stress-7o0 protein, mito-| 175 -0.0574 | 0.0987 0.15 | 1.58e-05
chondrial
61 -0.193 | 0.0415 | 0.0428 | 2.46e-05
499 0.17 -0.111 | -0.246 | 2.92e-05
89 -0.191 0.146 0.164 | 3.85e-05
73 -0.461 | -0.067 | 0.288 | 4.19e-05
405 0.131 -0.163 -0.21 | 4.22€-05
14 -0.232 | 0.00169 | 0.0449 | 6.23e-05
794 0.0874 | -0.225 |-0.0767 | 6.5€-05

Table 19: 15 spots with the most significant p-values for the experimen-
tal factor diet. If available protein identification information is
given.
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Figure 58: Effects of the combination of experimental factors diet and
genotype. Left side: Volcano Plot, blue vertical dotted lines
reflect the log, fold of —1 and 1, blue horizontal dotted
line marks the Bonferroni Multiple Testing corrected p-value
threshold of 0.05. Right hand side: Box plot of the inten-
sity distribution separately for each distinct combination of
genotype and diet regarding the six spots with the most
significant p-values.

significant spots for the factor combination are presented in table
20.

5.5.4 Spot Similarity

A heatmap[42] (clustering of samples and genes) of the best 50
differentially expressed spots for genotype is shown in Figure 59.
Spots in close proximity in the dendrogram are characterized by
correlated intensity profiles (similar color pattern of the rows).
Mainly two different types of spots/proteins are discernible one
with up-regulation in SJL and the other with down-regulation,
respectively.

The dendrogram of the spots on left hand side of the heatmap
is dominated by genotype effects. In order to investigate spot sim-
ilarities the sample effect must be removed. Therefore correlation
is calculated for each genotype-diet combination separately and
averaged (see Section 5.4.4). Similar spots are detected by cutting
the tree at a given height level (h = 0.15) - see Figure 60 for a vi-
sualization. Table 21 shows all identified clusters of similar spots
including average and minimal correlation coefficients. Cutting
the tree at a height of 0.15 corresponds to a minimal correlation
coefficient of 0.85 when using minimal linkage clustering (see
table 21).

The majority of the clusters contains spots in close spatial
proximity on the gel (see x,y coordinates in table 21). Spots in
close proximity on a gel might reflect identical proteins due to two
reasons. First, labeling itself leads to an electrophoretic separation
of labeled and unlabeled protein which is more evident in the
lower mass range[60, 157] but usually less than one half diameter
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Spot Identification Mean Fold | P-Value
ID [ID | Description | Score | HF/NZO | HF/SJL | SD/NZO | SD/SIL
68 -0.125 -0.325 | -0.0649 | 0.0978 | 0.363 | 6.39e-05
8oy P48036 | Annexin A5 | 429 0.405 -0.629 0.578 -0.939 |-0.483 | 6.85e-05
Q64374 | Regucalcin | 265
482 0.0713 0.157 0.335 -0.0286 | -0.45 | 8.77e-05
62 -0.0942 | -0.302 | -0.0207 | 0.114 | 0.343 |0.000133
61 -0.0593 | -0.327 | -0.0165 | 0.0994 | 0.384 |0.000203
14 -0.105 -0.359 | -0.0605 | 0.0639 | 0.378 |0.000506
563 -0.276 | -0.0816 | -0.0699 | -0.367 |-0.491 | 0.000553
69 -0.168 -0.454 -0.155 | -0.0274 | 0.413 | 0.000667
213 -0.207 | -0.0467 | -0.137 -0.245 |-0.269 | 0.000717
258 -0.133 -0.44 -0.116 -0.127 | 0.296 | 0.000904
58 -0.00163 | -0.218 0.0168 0.28 | 0.479 | 0.000922
794 -0.126 0.3 -0.202 -0.249 | -0.472 | 0.000951
282 0.0145 -0.119 | -0.0898 | 0.0958 | 0.319 | 0.0016
336 -0.127 -0.0575 | 0.0848 -0.294 |-0.448 | 0.00179
56 -0.115 -0.251 | -0.00748 | 0.139 | 0.282 | 0.00227

Table 20: 15 spots with the most significant p-values regarding the com-
bination of experimental factor diet and genotype. If available
protein identification information is given.
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Figure 59: Heatmap of the best 50 differential spots (spots with best
fold) for experimental factor genotype. The two genotypes
are clearly visible. Clustering was performed using 1 - Cor-

relation as distance measure.
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Figure 60: Excerpt of the cluster dendrogram. Every leave reflects one
spot (Spot ID not annotated). The spots are clustered using
1 - Correlation as distance measurement. The clusters are
colored according to the minimal correlation coefficient off all
spots belonging to this cluster. The red vertical line indicate
the height used to cut the tree.

of the protein spot[110]. Second, PTMs cannot only change the
mass of a protein but they can also affect the charge of the
protein which leads to a horizontal shift in the gel[45]. Hence
proteins present with multiple isoforms might be found in spatial
proximity on the gel. Different protein isoforms that are not
differentially expressed should be highly correlated[45].

5.6 SUMMARY AND DISCUSSION

We have developed and applied a pre-processing workflow specif-
ically tailored for DIGE data created within the Sys-Prot project.
Statistical evaluation reveals several differentially expressed spots
for different experimental factors. Especially forthe factor geno-
type we found several differentially expressed spots. A protein
specific dye effect as seen by Krogh et al.[86] was not observed in
our dataset.

Protein identification based on MS revealed a total number of 22
proteins belonging to 24 spots. Among the 24 spots identified, the
spots: 330, 407, 556, 580, 807, 1025, 1159 are found differentially
expressed for experimental factor genotype (see Section 5.5.3.1).
All spots showed very similar intensity profiles: up-regulation for
NZO and down-regulation for SJL - see left hand side of Figure
61.
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1 603 (817,474), 610 (816,481), 613 (803,483) 0.97 | 0.96
2 1155 (1306,1550), 1162 (639,1572), 1160 (729,1566) 0.93 | 0.91
3 506 (883,369), 634 (1412,505), 786 (1235,711) 09 | 085
4 246 (597,185), 213 (1104,166), 430 (451,303) 0.89 | 0.87
5 1170 (1598,1616), 1169 (1585,1616), 1172 (1630,1616) | 0.89 | 0.86

Table 21: Spots with very similar intensity profiles. The cluster dendro-
gram of all spots was cut at height of 0.15. All clusters with at
least 3 spot are presented here including average and minimal
correlation coefficients.
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Figure 61: Left hand side: Phylogenetic tree of the protein identified
within cluster 3. Sequences are obtained from UniProt and
a multiple alignment was performed using ClustalW. Right
hand side: Intensity patterns of the spots of cluster 3. The
ratios have been scaled as the correlation intrinsically uses
scaled data.

In contrast to the majority of identified groups (c.f. Table 21),
this set of spots is neither in spatial proximity of the gel, nor are
they derived different protein isoforms. They all show similar
intensity patterns but they do not show these similarities on se-
quence level (see 61). Furthermore they do not seem to have a
similar biological function as they are not annotated in similar
KEGG or Reactome pathways. The reason for the similar pro-
files remains unclear. One possible explanation could be some
common upstream regulatory mechanism.

Often multiple high confidence MS-based identifications were
obtained for the same spot. In this case usually the most abundant
protein species is assumed to be the protein of interest which is
often not true[157].
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5.7 CONCLUSION

A specialized pre-processing benefits from the common reference
pool present on each gel and increases between-gel comparability.
Towards biomarker identification ANOVA is well suited to analyze
DIGE data. We were able to detect spots that are differentially
expressed for single experimental factors and combination of
genotype and diet. Spot correlation is very useful for DIGE data.
Due to labeling process or PTMs, spots in close proximity in the
gel may represent the same protein or protein isoforms and are
therefore often correlated.
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6.1 COMPARING THE APPROACHES

Three proteomics technologies: MALDI, DIGE and iTRAQ were em-
ployed for analyzing T2=DM mouse models. The three different
technologies are distinct in motivation, methodological proper-
ties and results. Although all three technologies are employed
for biomarker identification, the results are scarcely comparable.
iTRAQ provides large numbers of protein quantitations including
protein identifications, while for MALDI and DIGE the number of
identified proteins is limited (typically < 20) and depends on
follow-up experiments. Especially for the MALDI data analyzed
in this thesis, none of the most significant differential peaks has
been identified in an experimental follow-up yet.The missing
identification hinders a direct comparison of MALDI with one of
the other two technologies. Furthermore, the three analysis strate-
gies developed in this work are suited for different tasks. MALDI
and DIGE data evaluation primarily aimed at the identification of
biomarker candidates and classification of experimental factors.
In the iTRAQ data we observed a high degree of ambiguities and
therefore we developed PPINGUIN, a method allowing for stable
and reliable protein quantification. Compared to MALDI and DIGE,
identification of biomarker candidates was not the primary goal
of PPINGUIN.

Even with an increasing number of identified proteins the
overlap is excepted to be rather small. This is because the differ-
ent technologies select proteins according to different physico-
chemical properties.

6.1.1  Common Properties of the three Approaches

Despite these differences, all three approaches have several prop-
erties in common. First of all, the three proteomics experiments
are performed to investigate the effects of T2DM. All data are
based on similar experimental designs using the same mouse
samples (see Section 2.2). Second, all developed approaches em-
ploy signal correlation (either protein-wise or peptide-wise) to
improve results although the correlation is used for a different
purpose: For MALDI clustering of quantitation profiles especially
in combination with ANOVA was used for feature selection for
classification. On the other hand, clustering of quantitation pro-
files of iTRAQ spectra improved reproducibility and reliability of
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protein quantitations. Third, all three analyses commonly showed
very clear results (identified peaks/spots show highly significant
p-values even after rigid multiple testing correction). Fourth, in
all three analyses the different mouse genotypes have the most
significant effect on the data while diet has only minor effects:
In our MALDI data we found differentially expressed peaks with
p-values up to 10~7! for genotype (very low p-values are also an
effect of the large number of samples), while the best p-values
for other experimental factors was only 10723 (see Section 3.5.3).
Analyzing the DIGE data, spots with p-values up to 10~ '* were
identified for genotype while the most significant spot for diet
had a p-value of 107 (see Section 5.5.3). For iTRAQ data the top
differential protein had a log, fold for genotype of 1.8 while the
best log; fold for diet was 0.6 (p-value is not a reliable criterion
for our iTRAQ data because only three experimental repeats are
available).

6.1.2 Comparing biomarkers

iTRAQ allows for the identification of a large number of proteins.
For DIGE and MALDI identification of proteins requires additional
follow up experiments. For the MALDI data analyzed in this
thesis, none of the most significant differential peaks has been
identified at the current stage. However, for DIGE some of the most
differential spots have been identified. Hence, at least protein
identifier obtained from the analyses of iTRAQ and DIGE can
be compared. For the analysis of the DIGE experiments, protein
identification was restricted almost exclusively to proteins with
high genotype effects (see Table 18 in Chapter 5). To assure
comparability of DIGE and iTRAQ data, the statistical evaluation
of iTRAQ data as described in section 4.4.7 and 4.5.9 in Chapter 4
was repeated. The repeated evaluation aimed at the identification
of genotype effects without dietary effects (comparing NZO_SD
with SJL_SD).

The overlap between differential proteins found with DIGE and
differential proteins found with iTRAQ (for the same experimental
comparison) is low (see Venn diagram in Figure 62). From the 17
differentially expressed proteins from DIGE experiments only 3
(FABPL, NLTP and METK1) where also detected with X!Tandem
in iTRAQ data. However, an overlap of 3 proteins a significant ef-
fect (fisher test p-value: 10~7; using all available UniProt identifier
as reference - which is also used later for pathway identification).

A small overlap of differentially expressed proteins identified
by DIGE and iTRAQ is in accordance with other studies. E.g. Wu
et al.[175] reported only a single protein identified with DIGE and
iTRAQ investigating HCT-116 cell lysates. Wu et al. argued that
the small overlap supports the hypothesis that both technologies
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are complementary in nature. Joining iTRAQ and DIGE results a
total of 39 differentially regulated protein ids were identified for
experiment factor genotype.

Venn Diagram of Protein IDs
for ITRAQ and DIGE

Figure 62: Venn diagram comparing protein identifiers found to be dif-
ferentially expressed for mouse genotype with DIGE and
iTRAQ data. For iTRAQ data, differential search was com-
bined from the results of all three used methods: Mascot,
X!Tandem/OpenMS and PPINGUIN. Details for differential
search are described in Section 4.4.7. Only three protein iden-
tifier are found with both technologies: FABPL, NLTP and
METK1.

6.1.3 Pathways

Instead of inspecting (large) lists of gene identifiers, it is often
easier to interpret found biomarkers in their functional context.
Cellular processes often affect sets of biomolecules at the same
time. A rather small alteration of all biomolecules in a metabolic
pathway may dramatically alter the flux through the pathway
and may be more important than high alterations of a single
biomolecule[150]. Many different tools have been developed to
search for associated pathways (68 tool have been surveyed by
Huang et al.[71]). Huang et al. et al.[71] divided the tools into
three different classes:
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(i) Singular enrichment analysis tools based on a list of genes
and a set of reference genes. These tools are based on hy-
pergeometric distribution and Fisher’s exact test[49].

(ii) Gene set enrichment analysis based on a list of genes and
their experimentally measured expression values. Statis-
tics is mostly based on t-test or wilcoxon test and resam-
pling /permutation tests.

(iif) Modular enrichment analysis which is similar to singular
enrichment but with consideration of gene-gene and term-
term relationships.

Since for DIGE data the number of identified proteins is limited,
the first class of enrichment tools (Singular enrichment analysis)
is favorable for the detection of associated pathways. For pathway
enrichment we adopted gossip[16] and implemented the whole
functionality in R. The big advantage of gossip is an exact de-
termination of the expected Number of False Discoveries (NFD).
Multiple testing corrected p-values of gossip are more reliable
compared to Bonferroni or Benjamini-Hochberg correction.

For the detection of metabolic pathways, we used the 39 differ-
entially regulated proteins identified with at least one technology
as test set and all available UniProt proteins are reference set.
We included three different pathway repositories: KEGG[78],
Reactome[106] and WikiPathways[124]. The best 8 pathways with
the most significant p-values for each pathway repository are
shown in Table 22. All three repositories result in similar path-
ways: Metabolic pathways, especially pathways related to amino
acids metabolism are found with highly significant p-values.

As seen in the previous section (6.1.2) the overlap of differ-
entially expressed proteins found with DIGE (17 proteins) and
iTRAQ (25 proteins) is small (overlap of 3 proteins). Searching for
pathways from Reactome using the 17 DIGE proteins the most
significant pathway is Metabolism with a p-value of 2.2- 10795
(pFDR = 0.0037). Searching for Reactome pathways using the 25
iTRAQ proteins, the most significant pathway is also Metabolism
with a p-value of 1.53- 107! (pFDR = 1.9 - 10~7). Similar results
are obtained for KEGG pathways. For both lists of identifiers,
the most significant pathway is Metabolic pathways. Although the
overlap at the level of protein ids is small, the overlap on the
functional level is bigger since the most significant pathway is
identical.

6.2 GENERALLY DETECTED PROTEINS

In 2008 Petrak et al.[123] published a review about repeatedly
identified differentially expressed proteins. Therefore they ana-
lyzed 186 different 2D PAGE studies with various experimental



H Pathway ‘ n test ‘ n ref ‘ pValues pFDR ‘ NFD ‘

Metabolic pathways 17 986 | 3.681e-12 1.86e-10 | 1.86e-10
Arginine and proline metabolism 4 53 7.197e-06 | 0.0002298 | 0.00046
Pentose phosphate pathway 3 25 3.11e-05 | 0.0006423 | 0.00193
Cysteine and methionine metabolism 3 32 6.148e-05 | 0.0009477 | 0.00379
KEGG Pathways Legionellosis 3 48 0.000191 0.00249 0.0124
PPAR signaling pathway 3 64 0.0004289 | 0.004926 0.0296
Ascorbate and aldarate metabolism 2 18 0.00088 0.008147 0.057
Amoebiasis 3 85 0.000952 0.00746 0.0597
Metabolism 17 814 1.747€-13 | 2.046e-11 | 2.05e-11
Metabolism of amino acids and derivatives 5 145 1.809e-05 | 0.001849 0.0037
Bile acid and bile salt metabolism 3 29 4.68e-05 0.002801 0.0084
ChREBP activates metabolic gene expression 2 4 7.084e-05 | 0.003718 0.0149
Reactome Pathways Metabolism of carbohydrates 4 99 7.501€-05 | 0.003045 0.0152
Metabolism of lipids and lipoproteins 5 207 | 9.443e-05 0.00277 0.0166
Fatty Acyl-CoA Biosynthesis 2 6 0.0001319 0.0042 0.0294
Pentose phosphate pathway (hexose monophosphate shunt) 2 7 0.0001693 | 0.004298 0.0387
Amino Acid metabolism 6 75 2.07e-08 7.865e-07 | 7.86e-07
One Carbon Metabolism 3 27 3.843e-05 | 0.000815 | 0.00163
One carbon metabolism and related pathways 3 41 0.0001227 | 0.001516 | 0.00455
Pentose Phosphate Pathway 2 7 0.0001693 | 0.001838 | 0.00735
Wiki Pathways Selenium metabolism/Selenoproteins 2 16 0.0007106 | 0.005766 0.0288
Urea cycle and metabolism of amino groups 2 19 0.0009713 | 0.006366 0.0382
Fatty Acid Biosynthesis 2 20 0.001067 | 0.006046 0.0423
MAPK signaling pathway 3 136 0.00352 0.01976 0.158

Table 22: Best 8 pathways for each of the three used pathway repositories: KEGG, Reactome and WikiPathways. As test set we used the 39 differentially
regulated proteins identified with at least one technology. As reference we used all available UniProt proteins. Significance (corrected for multiple
testing) of the pathways is given by pFDR values. NFD gives the expected number of false discoveries.
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objectives. They identified a list of proteins that are repeatedly dif-
ferentially expressed regardless of tissue, species or experimental
objective.

Independently one year later Wang et al.[169] published a
paper with similar results. They identified a list of generally
detected proteins in comparative proteomics involving both, 2-
D gels and MALDI MS experiments. They used 66 proteomics
studies including different species, tissues and experimental ob-
jectives. The list of proteins found differentially expressed in
many studies from Wang et al. is in good agreement with the list
of Petrak et al..

6.2.1 1TRAQ proteins

During the analysis of the iTRAQ data we have identified a list
of 12 proteins differentially expressed for the combination of
genotype and diet (see Section 4.5.9). From these 12 proteins two
are part of the list of generally detected proteins:

¢ aldo-keto reductase

¢ glutathione S-transferase

6.2.2 DIGE proteins

In the DIGE analysis we identified 17 proteins differentially ex-
pressed for genotype. From these proteins 5 are part of the lists
of Petrak et al. or Wang et al.:

* Heat shock cognate 71 kDa

ATP synthase

Annexin As

Serum albumin

fatty acid binding protein 1, liver

Pathway results as seen previously in section 6.1.3 are not
changed if these 7 generally detected proteins are excluded. The
top results of each pathway repository remain the same.

6.2.3 Consequences

The ubiquitous differential identification of proteins implies that
they are not related to a specific study condition like species, tis-
sue and experimental objective. Consequently it is questionable
if they are specifically related with the experimental factors of
the Sys-Prot project. Both, Petrak et al. and Wang et al. conclude
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that cellular stress response might be a universal reason for these
proteins to be generally expressed differentially. Besides biologi-
cal explanation, in the case of DIGE a protein specific dye effect
might be a technical cause for proteins to show up differentially
expressed in many studies (e.g. if experimental design does not
include randomized sample design or dye swap). However, as
investigated in Section 5.4.2, the dye had only minor effects on
our data.
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CONCLUSION

This thesis comprehensively described the data analysis strate-
gies we developed to evaluate complementary proteomics data
acquired within the Sys-Prot project. The primary objective of
the project was the investigation of obesity induced Type-2 Di-
abetes Mellitus (T2DM) mouse model at proteomic level. To this
end, the three complementary proteomic technologies Matrix-
Assisted Laser Desorption/Ionization (MALDI), Isobaric Tags for
Relative and Absolute Quantitation (iTRAQ) and 2D Difference Gel
Electrophoresis (DIGE) were used. All technologies were applied
to the same mouse individuals and a similar experimental design
is used for each experiment. The primary goal of this thesis was
to develop, apply and assess specifically tailored approaches for
data evaluation for each technology. Compared to standard strate-
gies for data evaluation, the approaches developed in this work
show more convincing results for the specific problems of our
three data sets. Application of our methods facilitates the inter-
pretation of the results and allows to draw adequate conclusions.
Although the developed approaches are specifically tailored for
our three data sets, they are still applicable to a broader range
of data analysis problems. Therefore they might help to improve
the results of other experiments as well.

7.1 MALDI

For evaluation of multi-factorial MALDI-TOF MS data we developed
a method for biomarker identification and feature selection. Our
approach combines ANOVA and clustering-based redundancy
reduction. An appropriate pre-processing was developed and
applied in order to guarantee that all requirements for statis-
tical evaluation are fulfilled. Applying out method, we were
able to identify peaks that are characteristic for the combination
of genotype and diet as well as peaks that are significant for
a single experimental factor. These results are significant even
when applying rigid multiple testing corrections. We showed
that ANOVA is an adequate approach for the identification of
biologically interesting biomarkers from Ms profiling data based
on multi-dimensional experimental design. Furthermore, classi-
fication based on features selected with our approach performs
similarly well to those generated with more complex global opti-
mization methods.

139



140

CONCLUSION

The method can easily be applied to other MALDI MS datasets
or in general to all kinds of classification problems. The com-
bination of cluster based redundancy reduction and ANOVA is
very promising and is certainly helpful for a variety of feature
selection tasks.

7.2 ITRAQ

As for the evaluation of iTRAQ data we developed Peptide Pro-
filing Guided Identification of Proteins (PPINGUIN). This method
exploits correlation of quantitation profiles of spectra to address
the problem that in contrast to our expectations relative concen-
trations of peptides derived from the same protein are often not
correlated. It proceeds by first clustering MS spectra based on
their quantitation profiles. Protein identification is performed
afterwards for each cluster independently. The quality of our
approach is assessed in terms of increased reproducibility of in-
dependent experiments and better accordance with prior knowl-
edge. Besides leading to a more reliable protein quantitation,
PPINGUIN can reveal new protein isoform candidates. PPINGUIN
can detect potential novel splice variants and thus it may help
to improve protein or even nucleotide databases. We see our
work as a promising step towards quantitation guided identifi-
cation. We expect that our approach will be still more valuable
with an increasing number of parallel quantified samples (e.g.
8-plex iTRAQ). An increased multi-plexing capability leads to
an increase in covered experimental states that leads to gain in
specificity.

The proposed approach can also be very useful for other quan-
titative proteomics technologies like e.g. SILAC. In general, we
recommend to use our method in case accurate quantitation is a
major objective of research. Regarding the increasing importance
of quantitative proteomics we think that this method will be
useful in practical applications like model fitting or functional
enrichment analysis.

7.3 DIGE

For the analysis of DIGE data, a specialized pre-processing was
developed that benefits from the common reference pool present
on each gel. This preprocessing increases between-gel compara-
bility. We showed that ANOVA is well suited to detect biomarker
candidates in DIGE data. We were able to detect spots that are
differentially expressed for single experimental factors and com-
bination of genotype and diet. Some of the spots were identified
and assigned to protein ids. Correlation between spots was used
to cluster spots according their quantitation profile. Spots in the
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same cluster are often in close proximity in the gel, which may
be caused by labeling process or PTMs. The other way around this
implies that spots in close proximity in the gel may represent the
same protein or protein isoforms.

7-4 CHOICE OF TECHNOLOGY

The results presented in this work underline that the three tech-
nologies MALDI, iTRAQ and DIGE are complementary proteomic
approaches. Each technology has certain advantages and disad-
vantages.

iTRAQ is certainly the most advanced technology. It allows for
simultaneous quantitation and identification of a large number of
proteins. But iTRAQ is often limited to a small number of samples
due to high experiment efforts and costs (only 3 iTRAQ experi-
ments with a total of 12 different mice where performed). The
low number of samples also hampers the statistical assessment.

On the other hand, MALDI and DIGE are characterized by sim-
plicity and allow for a large number of samples to be processed.
More than 150 distinct biological samples were used to create
more than 1100 MALDI spectra. But MALDI and DIGE are often re-
stricted to qualitative results or the number of identified proteins
is limited.

The choice of technology clearly depends on the experimental
goal. If the experimental objective is to quantify the proteome
(or at least a large number of proteins) iTRAQ is very well suited
for this task. If the experimental objective is to find (only a few)
biomarkers e.g. for a certain disease state using as much samples
as possible to guarantee a reasonable statistical assessment than
MALDI most suitable.

7.5 POSSIBLE IMPROVEMENTS

Although the developed methods are specifically tailored for the
corresponding experimental technique, the basic ideas are appli-
cable to many different problems. E.g. it would be very interesting
to validate the performance of the feature selection technique
developed for the MALDI data also with other classification tasks
(e.g. classification of different cancer types based on microarray
data). PPINGUIN may be also very interesting for the analysis of
metabolite data because the basic situation is comparable. Many
metabolites are very similar (e.g. simple derivatives from each
other) eventually leading to similar expression patterns. PPIN-
GUIN might also help to resolve ambiguities in the analysis of
metabolite data.

Beside the application of the methods to other data sets or
other problems, each techniques has several critical points.
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7.5.1 MALDI

One of the most critical aspects of the MALDI data evaluation
chapter is certainly the missing evidence in terms of protein
identification. Only a very limited number of peaks has been
identified in an follow-up experiment. Still, we have seen that
tree peaks identified as hemoglobin are located in close proximity
in the cluster dendrogram. This supports our hypothesis that
peaks (peptides) derived from the same protein show similar
intensity profiles and are located in close proximity in the den-
drogram. However, to really validate this hypothesis, additional
identification of the peaks in a cluster would be necessary.

Furthermore we have found many peaks with interesting bio-
logical patterns (e.g. peaks that are only present in SJL mice). But
none of the most significant peaks has been assigned to protein
identifiers. So we do not know which proteins are responsible
for the observed biological pattern. At the end, for an adequate
biological interpretation especially in terms of pathways or mod-
eling the most significant peaks have to be identified. A direct
comparison with the results of the other two techniques will
require further protein identification.

7.5.2 iTRAQ

The central element of PPINGUIN workflow is the clustering of not
yet identified spectra. We have applied k-means clustering since
it is a well established clustering technique and sufficient for our
needs. K-means allocates each point (in our case each spectra) to
exactly one cluster. Alternatively, a fuzzy clustering allocates each
point (spectra) with a certain probability to all clusters. Such a
strategy would certainly improve our results because there might
be some spectra located between two clusters. If these spectra
are considered simultaneously in different clusters than protein
quantitation might be improved.

Furthermore, for the results presented in this thesis we have
used a rather restrictive FDR of 0.1%. For a more permissive FDR
of 1% or 5% the number of identified proteins would be higher.

During the analysis of the DIGE data we have seen that a com-
mon reference pool is very helpful for the analysis especially
considering normalization and ratio calculation. Such a common
reference pool can also be used for iTRAQ experiments. A common
pooled reference would facilitate data normalization strategy and
ratio calculation and would increase experimental comparability.

As already discussed, PPINGUIN is certainly more effective with
an increasing number of channels (e.g. 8-plex iTRAQ). Application
of PPINGUIN to such a dataset would be very promising.
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7.5.3 DIGE

The number of DIGE gels is rather small since only 10 different
gels were analyzed. Especially compared to the > 1100 MALDI
spectra this number is very small. With an increasing number of
samples the significance of the statistical evaluation increases.

Similar to MALDI the number of spots with identified proteins
is limited. At least the most significant spots for mouse genotypes
were identified enabling the comparison between DIGE and iTRAQ.
However, an increasing number of associated protein accessions
also for experimental factor diet facilitates the biological inter-
pretation and increases the comparability with the other two
proteomic techniques.

76 FUTURE PERSPECTIVE

The three technologies MALDI, iTRAQ and DIGE are only parts of
the complete spectrum of proteomic technologies. There are, of
cause, many other promising proteomics technologies such as
microarray based proteomics, label-free MS/MS approaches or
metabolic labeling by SILAC. Especially the latter has proven to
be capable of identifying and quantifying several thousands of
proteins simultaneously.

However, towards fully understanding complex disease mech-
anisms such as Type-2 Diabetes Mellitus (T2DM), proteomics is
surely essential but other ‘'omics’ technologies (genomics, tran-
scriptomics or metabolics) are required as well. The concurrent
investigation from multiple points of view is indispensable to
understand complex diseases. In the recent years especially ge-
nomics approaches based on next generation sequencing showed
a great potential. But also the investigation of metabolites gained
more attention. However, a major challenge for the future is the
combination and integration of all the different aspects in order
to see the whole picture. A starting point for this integration
of multi-omics sources may be given by biochemical pathways
since they already incorporate metabolites, proteins and genes.
Furthermore, we have seen that the overlap between DIGE and
iTRAQ is very limited at the level of protein IDs while at the level
of pathways we obtained similar results.

143






APPENDIX

EXPERIMENTAL REPLICATES

Two main types of experimental replicates are typically per-
formed: replicated measurements from the same biological sam-
ple (technical replications) and measurements of different biolog-
ical samples with identical combination of experimental factors
e.g. same treatment group (biological replications). Both types
of replications are a distinct source of noise and as an effect, the
observed experimental variance is composed of technical and
biological variance. This holds true even if no replicates were
performed. The type of replicate affects the outcome of statistical
analysis[82] which is discussed in more detail in the following
sections.

Impact of Technical Replicates

In this section we describe the effects of technical replicates on
the outcome of statistical tests using standard t-test. Let g; be a
hypothetical gene that is differentially expressed in two different
disease states (e.g. healthy vs. diseased). The group means of g;
are different: Upeatthy — Hdisease = At # 0. Knowing the group
mean difference (Ap), variances and group size (n), the t-value
can be calculated using the t-test formula (for equal variances
and equal group sizes):

Ap

2 2
\/ 0-healthy + Odisease
7 *

t =

=3

The calculated t-value follows a t-distribution with 2n — 2 de-
grees of freedom which can be used to define the correspond-
ing p-value. For example g; has the following measurements:
(2,3,2,3,2,3) for healthy group and (3,4, 3,4,3,4) for disease

group. Then Ap =1, 0 = 1/0.52 - g = (.55, the t-value = 3.16 and
the corresponding p-value = 0.01.

But how does the kind of replication affect the t-test? T-test as-
sumes the sample measurements to be independent and normally
distributed. Using technical replicates, the samples are correlated
and therefore not independent anymore. Considering the case of
Otech < Obio and low number of biological repeats, the resulting
distribution is a multi-modal distribution with peaks around the
biological repeats. So using technical replicates the data is neither
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independent nor distributed normally and hence, t-test must not
be applied.

The effects of technical replicates on t-test p-values is demon-
strated in a small simulation experiment. We simulate a differ-
entially regulated gene (Au = 1) with 10 biological (opio = 1)
and 10 technical replicates (0tech = 0.1,0.5,1,2,5) and perform
a standard t-test. A box plot of p-values for 1000 replications is
shown in Figure 63.

The expected t-value for biological samples can be calculated
using the t-test formula from above:

t=— =223

With the degree of freedom = 18, the expected p-values = 0.038
(horizontal dashed line in Figure 63). Considering only biological
replicates (first bar of Figure 63) the simulation experiment is
consistent with the expected p-value. For low and medium tech-
nical variance the t-test p-value is underestimated strongly. This
little simulation shows that the technical replicates indeed affect
the statistical tests and substantiates the need for an adequate
treatment of technical replicates.

Handling Technical Replicates

The standard approach of handling technical replicates is to cal-
culate the mean value in order to reduce the technical noise.
Unfortunately, this can lead to loss of information[147]. We will
discuss two different strategies for handling of technical repli-
cated without the loss of information. At first we develop a
method to directly calculate the proportion of the variance that is
derived from biological variability. Second, we present a standard
approach based on mixed models.

Assessing biological Variance

Typically a biologist is interested in biological variance with-
out the technical noise. For assessing biological variance we
tirst investigate the mutual influence of biological and techni-
cal variances. Assuming a two-staged process where the bio-
logical intensity of the gene g; is distributed as N({pio, Obio)
followed by a technical measurement adding an error distributed
as N(0, Otech), the measured (effective) intensity of g; is dis-

tributed as N(upio, 1/ crlzji ot Gfe -n)- The intensity values for g;

can be written as m x n matrix with m = number of technological
replicates and n = number of biological samples with every row
reflecting a replicated experimental run and a column reflecting
a mouse individual (see figure 64).
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T-Test P-Values; Mean Group 1: 2; Mean Group 2: 4
Biological Rep: 10; Technical Rep: 5; sdBio: 1

Only
biological

Replicates
sdTech: 0.1 -
sdTech: 0.5 -
sdTech: 1 -
sdTech: 2 -
sdTech: 5

Figure 63: Box plot of simulations of t-test p-values for a differentially
regulated gene (Ap = 1) with 10 biological (opio = 1) and 10
technical replicates (0tech = 0.1,0.5,1,2,5). The horizontal
line shows the expected p-value (= 0.038) for biological sam-
ples. First box refers to biological samples without technical
replicates. The p-value is disturbed by technical replicates
and depends on the ratio of biological and technical vari-
ance. Especially for low technical variance the p-values are
estimated too optimistically.

The technical variance can be estimated from the data by cal-
culating the mean of column-wise standard deviation:

sdiech(gi)? = mean (var (gi )

n m
sdtecn(9i1)” = nm—1) Z Z (9iix — Hgi,k)z

where j k refer to a row or a column in the intensity data matrix
for g; (figure 64). To estimate the biological variance we estimate
the overall variance and subtract the technological variance:

1
sdbio(g1)” = (sd (mean (gi k) — — *sdrecn(g1)

n

1 2
sdpio(gi)? = (n—] Z (giy — Hgy) ) —sdecn(gi)?
k=1

This allows for assessing the biological variation. But if the
technological variance is much bigger than the biological, the esti-
mation of the biological variance becomes critical. The difference
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9999999

run1 — —> N(lyi:0)*N(0,0,,.,)
run 2 — > N(l‘lbwo' b|o)+N(0 GteCh)
run 3 —> —> N(W,,,0,,)*N(0,0,)
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Figure 64: Measurements for a single gene displayed in a matrix of bio-
logical (columns) and technical replicates (rows). We assume
that 0¢ecn is similar for each experiment and independent of
the mouse individual. Technical repeats for a given mouse,
e.g. mp, are distributed ~ N(xXm,, Otech), Whereas xm, is the
real intensity of the gene in mouse m;. Biological repeats
are composed of biological variance and technical variance:

~ N(Ubio, Obio) + N(0, 0tech)-

of overall and technical variance is close to 0 and the estimated
biological variance might even be estimated as negative. On the
contrary, a very high technical variance makes the effective vari-
ance to be dominated by the technological error and therefore
the biological effect is more or less invisible.

Mixed-effect Model

A more sophisticated way to handle technical replicates with-
out loss of information are mixed-effects models, incorporating
tixed-effects parameters applied to the entire population and
random effects applied to particular experimental units or sub-
units (e.g. technical replicates). Mixed effect models have al-
ready been applied for a variety of data analysis tasks including
proteomics[108, 36]. The 1me4 package[10, 11] for the open-source
language and environment for statistical computing R[128] offers
fast and reliable algorithms for parameter estimation and model
evaluation. For theoretical background of mixed effect models
and exemplary application of 1me4 package see Baayen et al..

Comparing the different Methods
We will compare the three methods presented above:

1. averaging technical replicates (mean)
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2. mixed models (R package lme4)

3. directly assessing biological variance as presented in Section
A.

To compare the three methods we continued the simulation ex-
periment (c.f. section A) of a differentially expressed biomolecule,
evaluated using the three methods. Simulations were performed
with 1000 replications with the following properties: 10 biologi-
cal replicates, 5 technical replicates, mean difference of Ax = 2,
biological variance of sdBio = 1 and three different technical
variances: sdTech ={0.5, 1, 2}.

Using mean difference, biological variance and the number of
biological samples, the expected p-value (for the biological effect)
can be calculated. Figure 65 shows a box plot of the calculated p-
values of the three methods for three different technical variances
(low, medium and high technical variance). The horizontal dashed
line represents the expected p-value of the biological effect. For
low technical variance all three methods are similar and the mean
p-value for every method is close to the expected value. For higher
technical variances the resulting p-values of the three methods
rather are different. Averaging technical replicates and mixed
models result in more conservative p-values while the direct
estimation of biological variance seems to result in a good average
p-values close to the expected p-value. However, variance of the
p-values is strongly increased when trying to estimate biological
variances which leads to an increased number of too optimistic p-
values. Furthermore, this method is vulnerable to higher technical
variances as the estimated biological variance might become
negative, which makes the statistical test impossible. This effect
occurred 3 times (0.3%) for medium technical variance and 54
times (5.4%) for high technical variance.

This simulation experiment suggests that the standard ap-
proach of handling technical replicates by averaging is rather
similar to more sophisticated approaches like mixed models. Al-
though the p-values estimation is too conservative especially for
high technical variance, averaging technical replicates is prefer-
able to a direct estimation of biological variance since the latter
leads to a high variance of p-values and thus increases the num-
ber of false positive hits. Due to these reasons and because of the
simplicity of the approach, technical replicates are averaged prior
to statistical testing in any statistical evaluation presented in this
thesis.

IMPLEMENTATION OF ACO

The feature selection approach using ACO by Ressom et al.[133]
was implemented in MATLAB. Following this ACO approach
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P-Values for 3 different Approaches, nTech: 5
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Figure 65: Comparison of the three different methods to handle tech-
nical replicates: 1. averaging technical replicates (mean), 2.
mixed models (R package lme4), 3. directly assessing biolog-
ical variance as presented in Section A. Box plot of p-values
for 1000 simulation experiments with 10 biological replicates,
5 technical replicates, mean difference of Ax = 2, sdBio =1
and three different technical variances: 0.5, 1 and 2. Hori-
zontal dotted line represents the correct p-value for biologi-
cal effect without considering technical variance. The third
method of directly estimating biological variance results in
a good average p-values while the other two methods show
more conservative p-values especially for high technical vari-
ance. But the third methods leads to an increased range of
p-values and an increased number of too optimistic p-values.

we implemented ACO-based feature selection in an in-house R-
package. Basically our implementation is similar to Ressom et al.
but beside SVM classification can be performed using RF or Bayes
classifier as well as logistic regression. The header of the R func-
tion and input parameter description extracted from package
documentation is given below:

performFeatureSelection (data,classes,
cv=1:length(classes), classifier = "randomForest",
decay=0.5, nFeatures=1:min(5,ncol(data)), nAnts=100,
nIter=50, cpus=NULL)

data Feature matrix.

classes A vector with class identifiers.
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cv This influences the cross-validation. The cross validation
will be performed according to cv vector. Default: leave one
out

classifier The used classifier. Possible values are: randomForest, svm,
bayes, plr, LogitBoost. Default: randomForest

dacay The percentage of the pheromone that remains after decay
after each iteration.

nFeatures Vector with number of features for classification. Every ant
decides how much features it takes by taking one value
of this vector. A single number forces to a fixed feature
Number.

nAnts Number of ants
nIter Number of iterations

cpus Enables multi cpu usage via snowfall package

ALGORITHM FOR PEAK MATCHING
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Algorithm 5 Algorithm for peak matching of MALDI data. The
peaks are aligned to a reference profile (mean spectrum). The
alignment is performed by an index shift.

1
2
3
4
5:
6.
7
8
9

10:
118
128

13:

function GETMEANSPECTRUM(SpectraMati—1 n,1=1.m)

RefSpec < SpectraMaty,

fori=2ton do > every spectrum
forl=1tomdo > length of a spectrum
RefSpecy < RefSpecy + SpectraMat; 1
end for
end for

forl=1tomdo

RefSpecy < RefSpecy/m
end for
return RefSpec

end function

14: function GETALIGNEDSPECTA(SpectraMati—1 n,1=1.m)

15:
16:
17:
18:
19:
20:
21:
22!
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:

51:

> calculation reference peaks and distances to reference peaks
RefSpec <~ GETMEANSPECTRUM(SpectraMat)
RefPeakListy n,p ¢ GAUSSCORPEAKPICKING(RefSpec) > 43 peaks

Distancesi—1.nj=1.nrp < NA > Store Distances
fori=1tondo > every spectrum
forj =1tonrp do > every reference peak

peak < GaussCorPEAKPICKING(SpectraMatij_q.j+a)
> d reflects a small environment around the peak (d = 40)
if peak # NA then
Distances; j < peak — RefPeakList;
end if
end for
end for

> calculating average of distances for every spectra

Displacementsj—j . < 0 > Displace indices for each spectrum
maxDis « 0 > maximal Distance
fori=1ton do > every spectrum
forj=1tonrp do > every reference peak
Displacements; < Displacements; + Distances;
end for
end for
fori=1tondo > every spectrum

Displacements; < Displacements;/npr
if Displacements; > maxDis then
maxDis <— Displacements;
end if
end for

> index shift according to displacements
AHgnedMati:].,n,l:1‘.(m+2-maxDis) +— NA

fori=1ton do > every spectrum
forl=1tomdo > length of a spectrum
AlignedMati 11 maxDis+Displacements; < SpectraMat;
end for
end for

return RefSpec

52: end function
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