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Chapter 1

Theory of the STM

Introduction

Since the invention of the scanning tunneling microscope (STM) in 1983 by Binnig and

Rohrer [1] and atomic force microscope  nearly two decades ago, these instruments have

established themselves as the most important techniques in surface investigations. Moreover,

they have been used to fabricate surface structures ranging from  ~ 100 nm down to the

atomic dimensions. In this paragraph the principal way of working, the underlying theory and

aspects of resolution and tip condition are discussed.

In the technique of STM a sharp metal tip is brought very close ( < 10
o

Α ) to a conducting

surface (Fig.1). When a bias voltage is placed across the tip – sample junction, electrons

quantum mechanically tunnel across the gap and produce a measurable tunneling current

(typically from 10pA to 10nA). This current has an exponential dependence on the tip –

sample separation, resulting in atomic resolution of surface features.
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Fig.1

Scheme of an STM.

During image acquisition, the tip scans across the sample using xy piezoelectric elements (the

tip can be moved in all dimensions with a precision better than 0.01 
o

Α ), and a feedback loop

adjusts the tip height (z piezoelectric element) in order to maintain a constant current.

Fig.2

Schematic presentation of the constant-current mode.

Then the tip height signal is displayed resulting in an STM image, which contains both

topographic and electronic information.

The corrugation amplitude measured in STM is a quantity which is defined as the difference

between the largest and smallest tip-sample distances in a constant-current experiment. Due to

the exponential dependence of the tunneling current on the width of the barrier, i.e. of the tip-

sample distance, such an experimental setup allows a high resolution vertical to the surface.

Combined with the high accuracy of the positioning of the tip parallel to the surface, images

with a corrugation amplitude smaller than 0.01
o

Α  can be obtained. Steps and islands are

mapped easily and if the experimental setup is stable enough one can achieve atomic
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resolution. In images with atomic resolution single atoms in the surface topmost layer are

observed.

As a first approximation a single electron approach to the tunneling problem will be used. In

the simplest 1D model the electron with mass m  is considered to be incident on a rectangular

potential barrier (Fig.3).

Fig.3

Wave function tunneling through 1D rectangular potential barrier of width α.

One needs to calculate the probability for the electron to penetrate from the right side of the

barrier. For this the Schrödinger equation needs to be solved:
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The wave function solutions can be written for the regions I, II and III for the energy of the

electron E lower than the barrier potential 0V  :
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The coefficients R, T, A, B are determined from the boundary conditions and the

requirements that the wave function and the derivatives should be continuous.

One  can define the current density (flux) as
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When the model is used to describe the STM tunnel junction, the barrier height is of the order

of the work function and the barrier width corresponds to the tip-sample distance. For a

barrier of typically 4eV height and 
o

Α5  width, one finds that the sinh term dominates, leading

to ωα2−≈ eD .  This means that the transmission is very sensitive to the barrier width and

height. The exponential dependence on the barrier width is common to all tunneling problems

(for small enough width).

The exponent is a measure for the apparent barrier height and can be determined with STM by

recording the tunneling current as a function of tip – sample distance. Measurements of the

apparent height e.g. on the Au (110) surface can be found in [2]. Spatial variations of the

apparent barrier height on steps, defects, and adsorbates are of current research interest. Here

we present I-Z spectroscopy data taken with a low temperature STM. The measurements were

performed on Ni (111) and Ag (111) surfaces. These measurements revealed for the first time

a discontinuous change of the apparent barrier height in vacuum tunneling junction on Ni
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(111) surface. Both Ni (111) and Ag (111) surfaces were cleaned with sputter and anneal

cycles before transferring them in the low temperature STM. The measurements were taken at

5 K.  On the Ni (111) surface mechanically cut Au and Pt.8Ir.2 tips were used. The tip apex

was formed in situ by the repeatingly touching the surface with 1.5 V until a sharp tip was

created. It turned out that in both cases material was transferred to the surface. From this one

can conclude that the measurements were done with metallic Au or PtIr tips. On the Ag (111)

surface only PtIr tips were used.

These measurements were performed by choosing an initial height and then retracting the tip

while recording the current with a constant voltage. Then the voltage was varied and another

spectrum was taken, and so on. The initial height at each spectrum was either the same or

determined by the chosen voltage and the set current. From the I-Z spectra the slope

  was determined (see Fig.4).

Fig.4

I-Z spectrum taken on a Ag (111) surface with a PtIr tip at U=50 mV.

The slope κ as a function of energy on Ni (111) surface is shown in Fig.5.  In the spectrum

one can see a discontinuous change across the Fermi energy.  The gap is observed in both

cases: in the case of the constant initial height measurements and voltage dependent initial

height measurements.
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Fig.5

κ as a function of voltage on Ni (111) surface measured with an Au tip.

From Fig.5 one can conclude that the gap size depends on the initial height, but a clear

tendency could not be observed reproducibly (further experimental data needs to be taken).

Such kind of a gap was observed in most cases on Ni (111) surface but never on Ag (111)

surface. The gap is sensitive to the tip apex, in some cases even an inverse gap was observed.

Fig.6 shows a number of results taken on the Ni (111) and Ag (111) surface with different tips

and different tip materials over a wide energy range. At high voltages field emission

resonances can be observed. There is a small signature at the Fermi level also in Ag (111)

measurements, but this is due to the low current which can not be resolved properly by the

A/D converter with this gain setting. The gap has been observed reproducibly with the

different tips and on different sample locations. It is also possible to observe it on dI/dV

spectra, although it is difficult to resolve it since it is only a  5-10% effect.
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Fig.6

κ as a function of voltage measured on Ni (111) and Ag (111) surfaces with PtIr and Au tips.

To conclude the measured values for κ  are within the expected range and show the expected

voltage dependence. The discontinuity at the Fermi level on the Ni surface has to be

considered as unique and requires a detailed theoretical analysis.

In this section a general formula for elastic tunneling will be derived. A well known result

from first-order time-dependent perturbation theory is Fermi`s golden rule, which states that

the transmission rate from the initial state i   to a final state f   is given by

( )fififi MR Ε−Ε=→ δπ 22

h
                                                                                                    (7)

Here fiM  is the matrix element of the perturbation potential between the initial and final

states, theδ -function ensures energy conservation.
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Fig.7

Schematic tip-sample energetics. Energy scheme of tip and surface for the case of a positive

voltage applied to the surface.

According to Fermi’s golden rule one can write the current flowing from the tip to the sample

and correspondingly from the sample to the tip as:
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Here ( ) ( )( )[ ] 11/exp −+−= TkEEEf BF  denotes the Fermi-Dirac distribution, ( )EN  denotes

the density of states. The occupied states ( )tt fN ,  can tunnel into unoccupied sample states

[ ]( )ss fN −1 . The common energy scale is chosen to be that of the sample, and thus the tip

energy scale is shifted by eVE =∆ .

The total current flowing from the tip to the sample is:
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At T=0 the Fermi-Dirac distribution is a step function and one can write the total current

flowing from the tip to the sample as:
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Depending on the polarity of the voltage, filled tip states tunnel into empty sample states

(V>0), or filled sample states tunnel into empty tip states (V<0). In general, the energy levels

can change in the case when the bias voltage is increased.

The Bardeen approach

The next step in calculating the tunneling current will be to evaluate the matrix element tsM .

This evaluation must be related to the overlap of tip-sample wave functions, which have the

exponentially decaying tails in the barrier, leading to the exponential dependence of tip-

sample distance (barrier width).

Bardeen´s approach [3] first applies time dependent perturbation theory to the problem and

then makes some additional approximations. In this scheme the system consists of two

independent regions: One for the tip and the other for the sample.
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Fig.8

Setup of the Bardeen approach. The two regions: tip region and sample region are separated

by the separation surface. In the sample region the tip potential is zero and correspondingly

in the tip region the sample potential is zero.

The total separation of the tip and sample systems leads to the two independent Schrödinger

equations for both of the systems:

( ) ssss EUT Ψ=Ψ+                                                                                                                 (12)

( ) tttt EUT Ψ=Ψ+                                                                                                                  (13)

T is the operator of the kinetic energy of the single electron, tU  and sU  are the potentials of

tip and sample respectively. The single-particle wave function of the entire system is

determined by the total Hamiltonian.

st UUT ++=Η                                                                                                                      (14)

The actual wave function Ψ can be expanded in any of the basic sets SΨ  or TΨ , like

∑ Ψ=Ψ
t

tta . One can apply time-dependent perturbation theory to describe the tunneling of

an electron from the sample to the tip. The case of an electron tunneling from the tip to the

sample may be treated completely analogously. This is used in a time-dependent perturbation

calculation, where the electron at initial time 0=τ  is taken to be in a sample state. The wave

function at the time τ  then is written in the form:
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where ( ) 00 =ta  and ωh=E . Now one can insert Ψ in a time-dependent Schrödinger

equation:
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( ) Ψ=Ψ++=ΗΨ hiUUT st                                                                                                  (16)

From these calculations the effective matrix element tsM  is

∫ ΨΨ=ΨΨ= ∗ drUUM sttsttts                                                                                           (17)

To evaluate the matrix element, Bardeen introduced an additional approximation. He assumed

the potential sU  should be zero in the tip region of space. Similar a tip potential should be

zero in the sample region (Fig.8). A separation surface S was introduced. This surface

separates the regions in which the two potentials differ from zero. In any region of space it

can be written down as 0=stUU .  In general, the approximation will become better if the

potentials tU  and  sU  are reasonably small at and beyond the separation surface. This will be

the case if the separation surface is located far out in the vacuum. So one can say that

Bardeen’s approximation is valid for tunneling processes through a wide barrier (large tip-

sample distances) and becomes invalid for very small barriers (very small tip-sample

distances).

Since 0=tU  outside the tip region, the integration needs to be performed only in the tip

region volume tΩ , and assuming that 0=sU  in this region one obtains:
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Finally, integrating partially this volume integral can be rewritten as a surface integral
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where S is the surface separating tip and sample regions. To evaluate the effective matrix

element tsM  one must know the tip and sample wave functions. But the exact atomic

structure of the tip and usually also the chemical nature of the tip apex is unknown, so one

needs to assume a model tip wave function which is done in the following section.
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Tersoff and Hamann’s model

The task of calculating Bardeen’s matrix element tsM  from ab initio results can be extremely

simplified if one makes some assumptions regarding the tip. This method was suggested by

Tersoff and Hamann in 1983 and it is still widely used in the interpretation of the STM

images [4]. Tersoff and Hamann suggested to replace the unknown electronic structure of the

tip by a simple model.

Fig.9

Tip center 0r and tip radius of curvature R defined by Tersoff and Hamann.

In the system suggested by Tersoff and Hamann the wave function of the outermost tip atom

is assumed to be an atomic s-wave-function. Since the tunneling current depends on the

overlap of the wave-functions of the tip and the sample, and since the wave-function decays

exponentially into the vacuum, only the orbitals localized at the outermost tip atom will be of

importance for the tunneling process.

In the limit of low (or zero) temperature and low bias voltage the total current flowing from

the tip to the sample can be written as (compare to equation (11)):
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To calculate the matrix element, the surface wave function is written as a 2D Bloch

expansion:
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where K is a 2D reciprocal lattice vector. After inserting the wave function into the

Schrödinger equation and assuming that the potential V is independent of r, it was found that

the wave function can be rewritten as:
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φκ m= ,  φ  is the work function of the surface.

The main point of the Tersoff and Hamann theory is the choice of the wave function of the

tip. Since there is usually no particular knowledge of the exact tip structure, it can be

modelled as a locally spherical potential (Fig.9), with curvature R about the center 0r . So

asymptotically the tip wave function is chosen to have the form of an s-wave:
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If to write the tip wave function as a 2D Fourier sum and let the separation surface S be a

plane parallel with the surface, then one finds that the matrix element is proportional to the

sample wave function evaluated at the tip center of curvature:

( )0rM sts Ψ∝                                                                                                                           (24)

Then the total current flowing from the tip to the sample can be written as:

( ) ( ) ( )∑ −Ψ∝
s

FssFt EErEVNI δ2

0                                                                                       (25)

In this expression the sum is the local density of states of the sample (LDOS) at the Fermi

level evaluated at the tip center. Then the last expression can be rewritten as
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( ) ( )FFt ErLDOSEVNI ,0∝                                                                                                     (26)

This equation gives an easy tool for interpretation of the STM images. The basic quantity

which is imaged is the local density of states of the sample. Even though this model has been

very successful it fails in some cases. It turns out that the corrugation amplitudes of closed

packed metal surfaces predicted by this model are too small to explain the measured atomic

corrugations. Chen [5] pointed out that this is partially due to the restriction to s-like tip

orbitals.

Fig.10

Chen [3] showed that a tip apex wavefunction with d-character greatly enhances the

measured corrugation.

It is quite intuitive to assume that a more directed tip state like a 2Z
d -state pointing towards

the sample might lead to the higher values of the corrugation amplitude. Chen used this idea

to extend the Tersoff-Hamann model (for other tip states, not only for s-wave tip).

He showed that other tip states can also be related to the Greens’ function of the Schrödinger

equation. This finally leads to the ‘derivative rule’ which gives the simple dependence of the

matrix element tsM  from the tip orbital. The sample wave function essentially have the form:

z
s e κ−∝Ψ                                                                                                                                 (27)

Here z is the coordinate perpendicular to the surface.
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For several tip orbitals matrix elements are listed in the Table 1.

Table1

Matrix elements obtained by use of Chens’ derivative rule.

Tip wave function orbital type Matrix element ∝tsM
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Including tip orbitals which are directed towards the sample ( zp  or 
3

2
2 r

z
d

−
) will lead to matrix

elements which are still proportional to the wave function at the position of the tip. However,

the prefactor is changing resulting in a higher current. This means that by including different

tip states, theoretical values of corrugation amplitudes are closer to the experimentally

measured ones. On layered materials the elastic deformation of  the surface by the tip is

known to lead to much higher corrugations (see Addition 2), a mechanism is not included so

far in this discussion.

Recently extensive ab initio calculations explained the remaining discrepancy of experiment

and theory for metal surfaces by elastic deformation of tip and surface [6]. In the

measurement in this work (see Chapter 2) the enhanced corrugation amplitudes are explained

with a chemically modified tip which is weakly bounded and therefore easily deformed.
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