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Abstract

This thesis documents our study of Einstein’s vacuum equations in spherical polar
coordinates. Open questions in this setting concern applications like the under-
standing of gravitational collapse and conceptual matters such as the handling
of the occurring coordinate singularity. We answer the conceptual aspects and
demonstrate how they can be implemented numerically.

Our choice of coordinates allows a spectral approach. As basis functions we em-
ploy spin-weighted spherical harmonics. For most derivations and applications we
assume hypersurface-orthogonal axisymmetry. This assumption leads to compu-
tational simplifications but is not a conceptual limitation.

We examine the eigenfunctions of the Laplace operator in spherical coordinates for
quantities with different spin-weights and derive the consequences. A systematic
investigation of the scalar wave equation in these coordinates leads to helpful
insights for the regularization of the coordinate singularity at the origin and we
confirm this numerically.

We show that a common gauge choice in axisymmetry is inappropriate for the
expansion in spin-weighted harmonics and discuss alternatives. We derive Ein-
stein’s equations in axisymmetry in an appropriate gauge and solve the linearized
equations exactly.

A recent formulation of Einstein’s constraint equations regards them as an evolu-
tionary system. We analyze the full set of equations and introduce modifications
that allow us to derive two sets of locally well-posed problems.

Our numerical implementation uses a hybrid discretization consisting of finite dif-
ference techniques and the pseudo-spectral method. We simulate the derived equa-
tions and present a successful implementation of the parabolic-hyperbolic formula-
tion of the nonlinear constraints. To do so we derive several possibilities to obtain
initial data at the regular origin. We demonstrate further that our implementation
is able to reproduce the exact linear solution in a fully constrained scheme.

The results obtained in this thesis offer a possible solution how to simulate Ein-
stein’s vacuum equations numerically in spherical polar coordinates with a regular
origin. We present one of the first numerical studies of an evolutionary constraint
solver.
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1. Introduction and overview

General relativity revolutionized our understanding of gravity and our paradigms
of space, time and gravitation and, hence, represents a scientific revolution,
according to the doctrine of Thomas Kuhn (1974). At present it seems to be the
best-working model of gravity in reality. In its formulation many mathematical
disciplines are involved including differential geometry, the theory of partial
differential equations and geometric analysis. In the present thesis we want to
gain a deeper understanding of its fundamental properties and to explore novel
techniques to find solutions. Therefore these investigations are placed in the field
of applied mathematics even though their major asset is in theoretical physics1.

Similar as our characterization of mathematics and theoretical physics the
following classification might not be unique but reflects our personal tendency.
We want to characterize mathematical relativity as the mathematical field in
which fundamental questions arising in general relativity are addressed with
mathematical techniques, see Chruściel et al. (2010) for a sampler. On the other
hand numerical mathematical relativity describes the application of numerical
techniques in mathematical relativity. Under numerical relativity we understand

1There is no unique definition or characterization of mathematics but we want to advertise
mathematics as an abstract science based on logical deductions and the application to fields
like theoretical physics. In contrast to mathematics we want to interpret physics, in particular
theoretical physics, as the natural science aiming to build models of reality and extracting
predictions. Let us cite a few quotes in favor of our argumentation and supporting our point
of view. We remark that there are also different standpoints. According to the Oxford
dictionary (https://en.oxforddictionaries.com/definition/mathematics) mathematics is “[t]he
abstract science of number, quantity, and space, either as abstract concepts (pure mathemat-
ics), or as applied to other disciplines such as physics and engineering (applied mathematics)”.
Courant et al. (1996, preface to the 2nd edition): “[. . .] mathematics is nothing but a system
of conclusions drawn from definitions and postulates that must be consistent but otherwise
may be created by the free will of the mathematician.” Richard Feynman (1994, page 49):
“Mathematicians are only dealing with the structure of reasoning, and they do not really care
what they are talking about. They do not even need to know what they are talking about
[. . .]. But in physics you have to have an understanding of the connection of words with the
real world.” Karl Popper (1972, page 246) on natural science: “It is the task of the natural
scientist to search for laws which will enable him to deduce predictions.” Albert Einstein
(1996, page 77): “Physics is an attempt conceptually to grasp reality as something that is
considered to be independent of its being observed.”

1
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1. Introduction and overview

the numerical investigations of a relativistic theory including astrophysical
applications. We discuss some aspects of numerical relativity and give references
in sections 3.3 and the following. Accordingly, mathematical numerical relativity
is the mathematical analysis of numerical relativity. It is not always possible to
place a strict boundary between these fields, see Garfinkle (2017) for a recent
review. We consider this thesis on that borderline between numerical
mathematical and mathematical numerical relativity.

General relativity admits a very elegant and beautiful formulation as a
geometrical theory, see chapter 3. Einstein’s field equations are at the heart of
the theory and we can write them in a very concise form, see section 3.2.2.
Nevertheless in the standard formulation they are not accessible to the usual
analytical and numerical techniques in a straightforward way. General relativity
is reformulated in terms of the Cauchy formulation in section 3.3, such that
standard theory of partial differential equations and its numerical techniques are
applicable to the field equations.

Einstein’s equations split into two sets of equations, evolution equations and
constraints. All equations as a full set have the character of an overdetermined
set of equations, i.e. not all equations need to be employed. There are different
schemes depending on the amount of constraints that are incorporated in the set
of equations applied. The system of constraint equations on the other hand is
highly underdetermined. There is some freedom which variables are prescribed
and which are to be solved for. Very common is to arrange the constraints as an
elliptic system, see Cook (2000), Bartnik and Isenberg (2002). Quite recently a
complementary approach was established where the constraints are formulated as
evolutionary problem, see Rácz (2016a). We follow mainly the latter path and
investigate the constraints as evolutionary system.

Einstein’s equations relate gravity and matter2. There is a lot of interest in the
case of pure gravitational interaction, both in astrophysics and in mathematical
relativity. The field equations are nonlinear. The vacuum case without any kind
of matter source is a demanding problem as such and is far from being
understood completely. For example there are open questions concerning the
gravitational collapse, especially its critical phenomena, see
Gundlach and Mart́ın-Garćıa (2007). We restrict our considerations in the thesis
to the vacuum case, which allows us to focus on fundamental questions in the
formulation.

2In the words of John Wheeler (1998, page 235): “Spacetime tells matter how to move; matter
tells spacetime how to curve.”
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We use spherical polar coordinates in this thesis. For many applications in
astrophysics or gravitational collapse the assumption of a spherical shape is
intuitive. In addition the coordinates are beneficial for the use of adaptive
methods, the implementation of horizon finders and they were employed in the
first reported study Abrahams and Evans (1993) on critical vacuum collapse, see
also the discussion in section 3.5. Another advantage of spherical coordinates and
our main motivation is a different aspect though. Spherical polar coordinates
allow for a spectral expansion in spherical harmonics as basis functions. For a
tensor theory such as general relativity the spin-weight has to be taken into
account for a correct formulation. We work out its explicit form and
consequences in sections 2.2.4 and 2.4. A general disadvantage when using
non-Cartesian coordinates is the occurrence of coordinate singularities even
though we assume the spacetime to be fully regular. Especially from the
numerical perspective such singularities become demanding.

We will show in section 2.5 how to tame and solve the problem. The key for the
solution is an understanding of the mode structure of the eigenfunctions of the
Laplace operator in spherical polar coordinates. We investigate the issue for the
Laplacian applied to scalars, vectors and tensors. As a toy model we study the
scalar wave equation in spherical coordinates in section 2.6 and show how the
obtained insights are helpful for the numerical regularization.

In the main part of the thesis we assume axisymmetry. This assumption is not a
fundamental restriction, but rather practically motivated. In our setting we are
able to effectively reduce the problem by one dimension. Especially for the
numerical implementation we save recourses, but also the analytical calculations
become more manageable. The essential results are generalizable to the situation
without symmetry but from the conceptual point of view the assumption is
beneficial. We face the same problems as on the full 3+1-dimensional level and
show how to solve them in the reduced example. Axisymmetry is the
intermediate step between spherical symmetry and full general relativity. In
vacuum the case of spherical symmetry is completely understood. Our
framework allows to study the same phenomena as in the full theory including
gravitational waves.

In the Cauchy formulation of general relativity the coordinate freedom is
encoded in a so-called gauge choice for several free functions. The difference
between a clever and a naive choice has a large influence on the mathematical
structure and nature of the final set of equations. In section 4.3 we discuss the
issue to some extent and show in particular that a very common and
well-understood gauge for our situation is unfortunately incompatible with the

3



1. Introduction and overview

desired spectral expansion in spin-weighted harmonics. We introduce different
gauge choices that are appropriate for our needs. Here we benefit from our
already published results in Schell and Rinne (2015).

The linearization of a nonlinear problem about known solutions allows already
some insights into the conceptual difficulties. Especially from the computational
perspective it is beneficial to start with simpler and easier to understand
situations. In our case we face already the essential difficulties of the
implementation on the linear level and show how to tackle them. In addition we
are able to solve the linearized problem exactly. We address the derivation of a
general solution to the linearized problem in section 4.6.

In the novel evolutionary approach to the constraints the corresponding set of
equations forms an initial value problem. Hence a way to prescribe initial data is
needed. We explore several methods to obtain them at the regular origin in
chapter 5.

A very important issue for evolutionary sets of equations is their well-posedness
as initial value problem. It requires to simulate systems that are not just weakly
but strongly hyperbolic. There are positive results in the literature. For our
entire system of evolution and evolutionary constraint equations it becomes a
non-trivial task again. We show in section 4.7 how to arrange and modify the
equations in our setting such that they result in a system consisting of a strongly
hyperbolic and a parabolic-strongly hyperbolic system. So with an appropriate
choice of initial data the problem looks promising from the mathematical
perspective.

In section 5.2.1 we explain in more detail matters related to our code that we
developed for the numerical implementation from scratch. In that situation it is
important to check and to demonstrate that the numerical results are reliable.
We perform and document these tests in chapter 5.

In the numerical studies it is one aim to show that our code is able to reproduce
the exact solution. The spectral approach allows us to further reduce the linear
equations to a 1+1-dimensional scheme where we model single modes. We
demonstrate that we are indeed able to reproduce numerically the exact mode
solution in section 5.3 and show the essentials of the simulations on the linear
level in section 5.4. We describe our regularization procedure that is required to
stabilize the formally singular evolution equations.

For the nonlinear level we build a solver for the constraints that uses the
parabolic-hyperbolic formulation of the constraints. We demonstrate in
section 5.5 that it is possible to use our techniques for obtaining initial data for

4



the solver at the regular origin and to integrate the constraints. It seems to be
for the first time that the parabolic-hyperbolic formulation is successfully
implemented numerically.

We organize the thesis in the following way. In chapter 2 we review some
necessary ingredients for differential equations for later use, including numerical
issues and derive several components for the implementation. Of significant
importance are our investigations concerning the eigenfunctions of the Laplacian
and the numerical regularization of the wave equation, both in spherical polar
coordinates. In chapter 3 we consider general relativity with a special focus on
the aspects of interest for our thesis, in particular the evolutionary approach to
the constraints. Chapter 4 presents our derivation of Einstein’s vacuum
equations in axisymmetry. We analyze certain aspects in detail, including
implications of axisymmetry, gauges, the character as set of partial differential
equations and derive an exact solution to the linearized problem. Our
implementation of the resulting equations is discussed and the results are
presented in chapter 5. We include our derivation of initial values for the
constraint solver and demonstrate the successful numerical solution of the
nonlinear constraints as parabolic-hyperbolic set of equations. We conclude and
give an outlook in chapter 6. The appendix contains supplementary material, in
particular lengthy expressions of our derivations that might disturb the flow of
reading in the main text.
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2. Differential equations and numerical methods

2.1. Introduction

We begin with considerations of one of the essential mathematical ingredients for
this thesis, which are differential equations, both ordinary and partial ones and
some of their numerical techniques to obtain solutions. We briefly review some
standard material and describe two numerical techniques applied by us, finite
differences and the (pseudo-)spectral method. It is included in the thesis because
it helps to fix the used notation and to clarify concepts that are used later. We
derive spin-weighted harmonics and calculate expressions that are essential for
further investigations. We also discuss issues related with code validation for
later use. Our review of partial differential equations has a special focus on
hyperbolic systems because it is essential for our further analysis. We also
introduce our hybrid discretization. To apply it we derive explicit expressions for
our angular derivatives and explain their implementation.

In the later part of the chapter we investigate certain issues and derive results
related to partial differential equations which are essential for the remainder of
the thesis. We examine in section 2.5 the eigenfunctions of the Laplace operator
on R≥0 × S2 for quantities with different spin-weights. These insights are
essential for the implementation. In section 2.6 we deal with the scalar wave
equation in spherical polar coordinates and derive techniques to tame the
coordinate singularity at the regular origin. We also demonstrate our
regularization scheme numerically.

2.2. Ordinary differential equations and their

numerical methods

As a subclass of partial differential equations we start with the discussion of
ordinary differential equations. Also we introduce techniques that are needed for
the numerical implementation. Even though Einstein’s equations form a coupled
set of nonlinear partial differential equations there exist techniques which allow
us to solve numerically essentially ordinary differential equations. The fact is
very beneficial from the computational point of view.

There exists a huge amount of literature dealing with the general topic of this
section, including textbooks on numerical analysis and computation. As good
examples we list Press et al. (2007), Butcher (2003) and give more specialized
references below.
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2.2. Ordinary differential equations

2.2.1. Classification of ordinary differential equations

Definition 2.2.1. An ordinary differential equation F is a functional for a
variable (a map u : R → R, x 7→ u(x)1), that depends continuously on a
coordinate, say x, where a derivative of u with respect to x may occur,

F : R× R → R,

(x, u) 7→ F (x, ∂nxu, . . . , ∂
1
xu = ∂xu, ∂

0
xu = u) = 0. (2.1)

Definition 2.2.2. It is very common to classify the ordinary differential
equation(2.1) with respect to several properties including the following.

• The highest derivative of u in equation (2.1) with non-vanishing
contribution determines the order of the ordinary differential equation.
Often in physics, including the field of general relativity, it is sufficient to
limit oneself to order two.

• There are several levels of linearity

– F is linear in u if it is so in u and all derivatives. That means that all
derivatives ∂ixu, i = 0, 1, . . . form a linear basis and therefore F can be
written as F = g + c0u+ c1∂xu+ c2∂

2
xu+ . . . = 0 where g (see below)

and all ci might be x-dependent but do not depend on the solution
itself. The superposition principle can be applied for linear
ordinary differential equations.

– F is quasilinear if it is linear in the highest-order derivative. The
coefficients may depend (even nonlinearly) on lower order derivatives
though. For instance ∂xu ∂

2
xu+ (∂xu)

2 = 0 is quasilinear.

– F is semilinear if it is quasilinear and the coefficients of the highest
derivative do not depend on the solution u and its derivatives. Lower
order terms might contain derivatives though. For instance
x2∂2xu+ (∂xu)

2 = 0 is a semilinear ordinary differential equation.

– F is (fully) nonlinear in u if it is so with respect to the highest
derivative.

1It could be an interval in R as well, say x ∈ [x0, xend]. This is true in all considerations but
will not be mentioned explicitly in the following.

9



2. Differential equations and numerical methods✬
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Figure 2.1.: A pictorial illustration of the concepts of linearity.

• We can separate the part of F in equation (2.1) that does not depend on u
and its derivatives in the form

F = g(x) + f(x, ∂nxu, . . . , ∂
1
xu = ∂xu, ∂

0
xu = u) = 0, (2.2)

where f = 0 for u = 0. The ordinary differential equation F is called
homogeneous if g ≡ 0, otherwise inhomogeneous.

• Usually one is interested in the solution u for known F . The integration of
equation (2.1) provides us with a “multi-parameter-family” of solutions,
one parameter for each order. Therefore there remains some freedom which
may be fixed. We call equation (2.1) an initial value problem if in
addition to equation (2.1) some information at one “initial instance” x0 of
x is given2, usually u and its derivatives are prescribed and called initial
data. We call (2.1) a boundary value problem if in addition to (2.1)
some information at the boundary of the domain x ∈ [x0, xend] ⊂ R is
given. These might be a boundary conditions, for example of the form of

– Dirichlet: some concrete value u0 of the variable u is prescribed at
the boundary in the form u(x0) = u0,

– Neumann: some value u0 for the derivative3 for the variable u is
prescribed at the boundary in the form ∂xu|x0 = u0,

– Robin: a combination of the above boundary conditions is given in
the form u(x0) + f(x)∂xu|x0 = u0,

2Often the coordinate labels the time and is denoted by t then. It need not necessarily be the
case to have a physical time parameter for an initial value problem. It will be demonstrated
later in the thesis.

3For general nontrivial domains the derivative along the normal of the boundary but we do not
need to specify that issue here.
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2.2. Ordinary differential equations

but can be replaced by other requirements like regularity for instance. We
will later benefit from some concept like an “outgoing condition” that
allows only information to leave the domain but prohibits any kind of
reflection from the boundary.

Note that it is not an unambiguous notion. For example a first-order
ordinary differential equation of the form F = ∂xu+ f(x, u) = 0 with some
additional information u(x0) which can be interpreted both as initial data
or as (Dirichlet) boundary value. We discuss that issue further section 2.2.2.

• Usually differential equations, ordinary differential equations as well as
partial differential equations, are formulated as equations for some field on
a given fixed background, the domain R or a subset of it for instance. In
that way the equations are also open for standard computational methods
and techniques. In the theory of general relativity the quantities or
variables in the equations, so the physical fields, describe the geometry
itself. There is no preferred background. Strictly speaking the solutions in
the form of the basic fields are not unique solutions but a whole equivalence
class of solutions. We will come back to that issue in definition 3.2.2. The
resulting equations are called geometric differential equations. Even
though quite often, as in general relativity, the field equations can be
formulated in a very elegant way, they are usually not directly accessible to
standard tools in numerical analysis but need to be “de-geometrized”. We
will discuss these issues later in the thesis. The mathematical field that is
concerned with topics on the interface between analytical techniques like
differential equations and differential geometry is called geometric
analysis.

Remarks 2.2.1. • The definition 2.2.1 includes in particular algebraic
equations where only the “0th derivative” (no derivative) occurs.

• For the theory of ordinary differential equations one usually reduces the
order of the ordinary differential equation to a first-order system of
ordinary differential equations. It is always possible, due to the
introduction of more variables though. We will make use of comparable
reductions later on. Therefore one can consider the equivalent expression
instead of equation (2.1)

f : R× R
n → Rn, u : R → R

n

∂xu = f(x, u(x)) (2.3)

which should be understood as a system now and the variable u is a vector
of possibly several variables.

11



2. Differential equations and numerical methods

A key result in the theory of ordinary differential equations is that for an initial
value problem ∂xu = f(x, u) with given initial data a solution exists under
relatively mild conditions (continuity assumptions, Peano’s existence theorem).
If in addition the Lipschitz condition

||f(x, u1)− f(x, u2)|| ≤ L||u1 − u2|| (2.4)

in the second argument with Lipschitz constant L ∈ R<∞ is satisfied for all
u1, u2, x, the solution is also unique (Picard–Lindelöf theorem). For a proof see
the initial chapter of Hörmander (1997) (or Butcher (2003)) which can also be
consulted for a very concise review of results for ordinary differential equations.

Definition 2.2.3. We call an initial value problem stiff if the Lipschitz constant
L takes high values ≫ 1, otherwise non-stiff.

It can happen that standard numerical methods (explicit, non-adaptive) result in
instabilities even though the solution to a stiff problem is smooth. Stiffness can
be associated with perturbations of a given solution, see Butcher (2003, section
112) for further discussions.

Example 2.2.1. Consider

f : [ǫ, xend > ǫ]× R → R, ǫ > 0, g : R → R, u : R → R,

∂xu = f(x, u) =
g(u)

x
(2.5)

where f denotes the right-hand side in general and g is of order O(x) for x→ 0.
Because of the x−1 in the function f it is clear that the Lipschitz constant L has
to grow arbitrarily large (only limited by ǫ which we shall assume to be
arbitrarily small as usual) when x approaches 0. Hence equation (2.5) is a stiff
equation (in the neighborhood of x = 0).

2.2.2. Cauchy problem

We have already seen that in addition to the actual differential equation (2.1) as
such one should provide in general more information.

Definition 2.2.4. The additional initial data are called Cauchy data for a
Cauchy problem (the problem of finding a solution for the equation with the
provided data). They are prescribed on a Cauchy (hyper-)surface.

12



2.2. Ordinary differential equations

Interesting follow-up questions, in particular from the computational perspective,
include

• if a solution u to F in equation (2.1) exists subject to possible Cauchy
data,

• if so, if the solution u is unique4 (that means that a particular member is
chosen in the “multi-parameter-family” (compare definition 2.2.2) of
solutions),

• and if so, if the solution u is “stable” with respect to the given data.

If we perturb the ordinary differential equation or the Cauchy data slightly the
solution will be perturbed as well. It is of certain interest to know if the
perturbations in the solution remain small or if they might lead to dramatic
effects. This question is of particular interest if one considers a “real world
problem”, a problem that has some actual relevance in physics reality. All the
data one obtains are not precise to an arbitrary degree. There are always
inaccuracies of all kinds. To obtain a general statement about the situation one
benefits from a formulation that is indeed stable. It is beneficial to know in
advance if “small5” perturbations in prescribed data result in small perturbations
of the solutions. Not all problems in nature are stable and form an interesting
field of study as such.

Definition 2.2.5. A Cauchy problem is well-posed (otherwise ill-posed), iff

• there exists a solution (at least one),
• it is unique (at most one),
• it depends continuously on the Cauchy data.

The significance of well-posedness of the Cauchy problem is due to Hadamard
(1902), see also Hadamard (1915, 1952).

2.2.3. Discretization and difference equation

The general finite difference technique is a standard procedure for the numerical
integration. Huge parts of the current section are contained in many textbooks,
see for example Press et al. (2007), Pang (2006). Some techniques based on the

4Here we state simply unique. Depending on the problem (for instance one might consider
“geometric partial differential equations”, see definition 2.2.2, like in general relativity) there
might be a good reason that uniqueness is not desirable but one might be interested in “unique
up to diffeomorphisms” in that context.

5The notion of “small” needs some further clarification of course.
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2. Differential equations and numerical methods

standard one are also used in the numerical implementation and hence it makes
sense to give a more or less self-contained and complete presentation here.

Consider a continuous map R× R, x 7→ u(x) depending on a continuous
coordinate x ∈ [x0, xI ] ⊂ R. A way to model it, in particular on the computer, is
to discretize it on a lattice6 xi, i = 0, . . . , I by assigning ui = u(xi). In this
chapter we restrict considerations to a uniform grid with step size h ≡ ∆x, then

xi = x0 + ih. (2.6)

Expressions for the difference operators

The basics for the centered finite difference scheme were already known in the
19th century. They were written down in a systematic way in Sheppard (1899)
for instance, see also Fornberg (1988).

We need the derivative stencils only up to O(h2). If interested in higher
derivatives or higher orders the techniques explained below to obtain the stencils
are directly generalizable. Basically one just need to take more grid points and
higher Taylor expansions into account. One can get a flavor of it below when we
consider one-sided stencils.

Proposition 2.2.1. For a smooth (or sufficiently often differentiable, so a
member of the corresponding differentiability class) variable u(x) (map R 7→ R)
one approximates the first two derivatives in the centered difference stencil as

∂xu
∣

∣

xi
≡ ∂xu

∣

∣

i
=
u(xi + h)− u(xi − h)

2h
+O(h2), (2.7)

∂2xu
∣

∣

xi
≡ ∂2xu

∣

∣

i
=
u(xi + h)− 2u(xi) + u(xi − h)

h2
+O(h2) (2.8)

and the approximation is accurate up to a discretization error O(h2).

Proof. We switch frequently between the notation u(xi) ≡ ui, u(xi + h) ≡ ui+1

and therelike. Because of the smoothness we make use of the Taylor expansion in
(both direction) at a given point xi

ui+1 = ui + ∂xu
∣

∣

i
h+

1

2
∂2xu
∣

∣

i
h2 +

1

6
∂3xu
∣

∣

i
h3 +O(h4), (2.9)

6This notation implies that the endpoints are explicitly included in the scheme. If one chooses
a staggered grid one explicitly avoids to have a grid point at the boundary, in contrast to
the cell-centered grid. Many options and combinations are possible for the boundaries.
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2.2. Ordinary differential equations

ui−1 = ui − ∂xu
∣

∣

i
h+

1

2
∂2xu
∣

∣

i
h2 − 1

6
∂3xu
∣

∣

i
h3 +O(h4). (2.10)

Now taking the difference of both equations gives

2∂xu
∣

∣

i
h = ui+1 − ui−1 +O(h3) (2.11)

and adding both relations leads to

∂2xu
∣

∣

i
h2 = ui+1 + ui−1 − 2ui +O(h4) (2.12)

and hence both claimed results are shown.

Definition 2.2.6. The one-sided forward/backward difference operator
(upper sign for forward, lower one for backward) of a variable u with respect to a
coordinate x and of order O(h) (proven below in proposition 2.2.2) is defined as

Dh±
x ui =

∓ui ± ui±1

h
. (2.13)

The same operator of order O(h2) (proven below in proposition 2.2.2) is

Dh2±
x ui =

∓3ui ± 4ui±1 ∓ ui±2

2h
. (2.14)

The h or h2 as index in the operator D will be skipped in the labeling of the
operator in the following and should be understood implicitly.

Proposition 2.2.2. Assume sufficiently smooth quantities. The operators in
definition 2.2.6 are indeed of the claimed order. Further the second derivatives
(denoted by the “2” in D2±

x ) read explicitly (here the order h or h2 is already
skipped)

D2±
x ui =

ui − 2ui±1 + ui±2

h2
+O(h), (2.15)

D2±
x ui =

2ui − 5ui±1 + 4ui±2 − ui±3

h2
+O(h2). (2.16)

Proof. We prove the statement only for the forward operator. The verification
for the backward operator is obtained in a completely analogous way. Use the
Taylor expansion

ui+1 = ui + ∂xu
∣

∣

i
h+O(h2) (2.17)

and

D+
x ui = ∂xu

∣

∣

i
=
ui+1 − ui

h
+O(h) (2.18)
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immediately follows. Consider the Taylor expansions at the two points

ui+1 = ui + ∂xu
∣

∣

i
h+

1

2
∂2xu
∣

∣

i
h2 +O(h3), (2.19)

ui+2 = ui + ∂xu
∣

∣

i
2h+

1

2
∂2xu
∣

∣

i
(2h)2 +O(h3)

= ui + 2∂xu
∣

∣

i
h + 2∂2xu

∣

∣

i
h2 +O(h3). (2.20)

Take four times equation (2.19) and subtract equation (2.20) to obtain

4ui+1 − ui+2 = 3ui + 2∂xu
∣

∣

i
h+O(h3) (2.21)

and hence the result for Dh2+
x ui is shown. To obtain the result in equation (2.15)

we can either take eight times equation (2.19) and subtract equation (2.20) or
alternatively just take the composition

D2+
x ui = D+

x

(

D+
x ui
)

(2.22)

to get the result. Therefore we also know how to prove the rest and higher (in
order of derivatives or accuracy in powers of h) results (either taking Taylor
expansion with more and more points and terms or just compose the basic
operators), in particular equation (2.16).

Ghost-point techniques and boundary issues

It is clear that the techniques discussed above only work in the region of the grid
where the boundary grid points are not involved. If the grid points on the
boundaries are involved the discretization of the derivatives breaks down. Our
strategy is to use one-sided finite difference approximations of the same order
at the outer boundary (which corresponds to large radial distance at the “right
side” of our computational domain) with the one-sided stencils defined in
definition 2.2.6. The inner boundary is located at the origin r = 0, corresponding
to x0 = 0 in the current notation. There we make use of a different technique.
We assume that our variables can be expanded in an appropriate basis. Then we
are able to deal with a set of mode functions instead. The modes will have a
definite parity and we can add artificial “ghost points”. These are formal
extensions of the domain with (in this case) negative grid numbers and the values
at these points are determined by the parity. We have the following lemma.
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2.2. Ordinary differential equations

Lemma 2.2.1. The value at the origin and at the first ghost points (labeled
with u−1 and u−2 below) of a variable u with definite parity7 and discretization
ui is given as

u0 =

{

u0, if u even,

0, if u odd,
(2.23a)

u−1 =

{

u1, if u even,

−u1, if u odd,
(2.23b)

u−2 =

{

u2, if u even,

−u2, if u odd.
(2.23c)

Proposition 2.2.3. We summarize our finite difference stencils for the
derivatives of a variable of definite parity u(x) for a grid ui and i = 0, . . . , N with
step size h.

(∂xu)i, i=2,...,N−1 =
−ui−1 + ui+1

2h
, (2.24a)

(∂xu)0 =

{

0, if u even,
u1

h
, if u odd,

(2.24b)

(∂xu)1 =

{

−u0+u2

2h
, if u even,

u2

2h
, if u odd,

(2.24c)

(∂xu)N =
uN−2 − 4uN−1 + 3ui+1

2h
, (2.24d)

(

∂2xu
)

i, i=2,...,N−1
=
ui−1 + 2ui − ui+1

h2
, (2.24e)

(

∂2xu
)

0
=

{

−2u0+2u1

h2 , if u even,

0, if u odd,
(2.24f)

(

∂2xu
)

1
=

{

u0−2u1+u2

h2 , if u even,
−2u1+u2

h2 , if u odd,
(2.24g)

(

∂2xu
)

N
=
−uN−3 + 4uN−2 − 5uN−1 + 2uN

h2
. (2.24h)

Proof. Straightforward application of the one-sided stencil at the outer and
lemma 2.2.1 at the inner boundary.

7We call a variable u(x) at x0 even if u(−x) = u(x) and odd if u(−x) = −u(x) for x close
to x0.
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Dissipation operator

For the implementation of several partial differential equations we will make use
of a numerical technique of “artificial dissipation” which is added on the one
side of the equation, see section 2.3.3, also for the reference. At this point we are
in the position to define the corresponding dissipation operator and its boundary
behavior. Its use and meaning will be discussed later. We are using a method of
second order and therefore are after an operator of fourth order as will be
discussed later. Recall the operators introduced in definition 2.2.6.

Definition 2.2.7. The dissipation operator Qr of order r (the exponent
denotes the power) is given as

Qr = (−)r−12−2rh2r−1D+r
x D−r

x (2.25)

where h denotes the step size of the lattice in x-direction.

At the outer boundary we will set the dissipation to zero. If dissipation is applied
at the innermost grid points we make use of ghost points there.

Proposition 2.2.4. For order r = 2 we have the following action of the
dissipation operator applied to a variable u with lattice step size h (outermost
point at N) for i = 2, . . . , N − 2

(Q2u)i = −2−4h3D+2D−2 = −ui−2 − 4ui−1 + 6ui − 4ui+1 + ui+2

16h
. (2.26)

and application of ghost points at the innermost points,

(Q2u)0 = − u−2 − 4u−1 + 6u0 − 4u1 + u2
16h

=

{

−6u0−8u1+2u2

16h
, if u even,

0, if u odd,

(2.27a)

(Q2u)1 = − u−1 − 4u0 + 6u1 − 4u2 + u3
16h

=

{

−−4u0+7u1−4u2+u3

16h
, if u even,

−5u1−4u2+u3

16h
, if u odd,

(2.27b)

(Q2u)2 = − u0 − 4u1 + 6u2 − 4u3 + u4
16h

=

{

−u0−4u1+6u2−4u3+u4

16h
, if u even,

−−4u1+6u2−4u3+u4

16h
, if u odd.

(2.27c)

Proof. It is a direct application of definition 2.2.7 and the technique of ghost
points as indicated.
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2.2. Ordinary differential equations

Euler discretization and simple integrators

Consider an initial value problem

∂xu = f(x, u), (2.28)

u(x0) = u0. (2.29)

The right-hand side is discretized as fi = f(xi, ui) with step-size h.

Definition 2.2.8. The Euler method for the integration of the initial value
problem (2.28) is given as

ui+1 = ui + hfi. (2.30)

Such a method is conventionally (see for example Press et al. (2007, section
17.1)) called to be of order p if its local truncation error is of order O(hp+1).

Remarks 2.2.2. • The Euler method is a first-order method (as can be seen
with the Taylor expansion in the proof of proposition 2.2.2).

• Even though it is relatively simple and intuitive it is not very often applied
in practice. That is due to the low accuracy and problematic behavior for
several types of ordinary differential equations (in particular stiff ones, see
Press et al. (2007, section 17.1) and Butcher (2003, section 21 and
following) for example).

Higher order integration and Runge-Kutta-Heun integration

In principle we can use for the numerical integration higher order stencils of
higher order as derived at the beginning of this section, consult in particular
definition 2.2.6 and generalizations of it. An often applied alternative (also by us
in the numerics) are “predictor-corrector” methods where intermediate time
steps are used. These are subsequently reached by Euler steps. Then one
interpolates between the different primary integration steps to obtain an overall
update. The Euler method is unsymmetric in the sense that the discretization is
performed in one direction only (in equation (2.28) the forward discretization).
The use of intermediate time steps symmetrizes the method and leads to a
cancellation of the error terms.

The generalization of the previously discussed Euler method were worked out at
the turn of the 19th century, see Runge (1895), Heun (1900), Kutta (1901), see
Butcher (2003) for a textbook devoted essentially to that topic.
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2. Differential equations and numerical methods

Definition 2.2.9. A generalization of the Euler integration for an ordinary
differential equation is to take intermediate time steps into account, evaluate it
there and then interpolate to obtain results of higher accuracy. Those schemes
are generally called Runge-Kutta(-Heun) integration. A prominent
second-order scheme uses (in the notation introduced in connection to
equation (2.28))

ui+1 = ui + hf

(

xi +
h

2
, ui +

h

2
fi

)

. (2.31)

The error term O(h2) of the Euler steps cancels and the method has an
truncation error of O(h3) and is therefore of second-order, see again Press et al.
(2007, section 17.1) and Butcher (2003, section 23 and following)

Remarks 2.2.3. • There exist a huge amount of integrators of the type of
Runge-Kutta-Heun, see the cited literature.

• Actually we implemented the generalization due to Shu (1998). For our
interests the difference between the ordinary Runge-Kutta integrator and
the one by proposed by Shu is negligible. Usually one performs a half step
in time and updates with the knowledge of the quantities there by doing
another half step of the variables. Shu suggested to do instead a full time
step and evolve with the knowledge there to the next full time step. Then
one averages between the partial results. It has advantages for the
application for conservation laws. For our purposes we should consider the
Runge-Kutta and the Shu integrator as equivalent.

• We concentrated our discussion on explicit schemes. There exist also
implicit ones which are slightly more involved from the point of view of the
implementation. They are also discussed in the given literature.

• In this line we should also mention a partially implicit scheme, see
Cordero-Carrión and Cerda-Duran (2012) which we also used for numerical
experiments. It seems to be better suited for stiff problems for example.

2.2.4. Spectral method for ordinary differential equations

We now turn to a different technique to tackle differential equations, for
references consult for example Fornberg (1998), Boyd (2001),
Grandclément and Novak (2009), Press et al. (2007)8. The very basic ideas of the
expansion of quantities in certain basic functions and therefore a transformation

8For Press et al. (2007) make sure that it is a recent version.
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2.2. Ordinary differential equations

to a different underlying space can be traced back at least to Fourier. The
application to ordinary differential equations seems to go back to Lanczos even
though more systematically only from the 1970s on, see the introduction of
Fornberg (1998) for more historic discussions. In the field of numerical relativity
it was presumably used for the first time in Bonazzola and Marck (1986, 1990).
Nowadays there are many projects in numerical relativity using spectral methods
including Bonazzola et al. (1999), Csizmadia et al. (2013), Szilágyi (2014).

We want to solve an ordinary differential equation of the form

F (u(x)) = g(x) (2.32)

where F is a differential operator, usually subject to some boundary conditions.
We require that the solution u is smooth.

Remark 2.2.1. Actually we should really assume smoothness (or better
analyticity) here, so u should be infinitely often differentiable. “Discontinuities
like shocks are bad – don’t even try spectral methods” (Press et al. (2007, p.
1083)), even though other groups are more optimistic using multi-domain
methods. Also discontinuities in higher derivatives are reported to cause
problems.

In section 2.2.3 the variables and its derivatives were discretized locally to
approximate the equation we wanted to solve to obtain a solution. Another
approach is to approximate the solution globally by expanding it in a complete
basis {φℓ(x)} as

u(x) ≈ u(L)(x) =

L−1
∑

ℓ=0

ûℓφℓ(x). (2.33)

Definition 2.2.10. The representation (2.33) is called spectral expansion and
gives rise to the so-called spectral method with spectral coefficients ûℓ. We
call the real physical space where the u(x) “live” configuration space and the
one of the ûℓ spectral space.

The spectral coefficients ûℓ are independent of x, ∂xûℓ = 0. Both descriptions are
equivalent (bijective) and if one manages to transform easily (computationally
speaking) between both spaces one may choose either of them depending on the
purpose one has in mind; taking all kinds of nonlinear operations can easily be
done for u(x) while taking derivatives is straightforward in the coefficient space.
Derivatives are written as

∂xu(x) ≈ ∂xu(L)(x) =
L−1
∑

ℓ=0

ûℓ∂xφℓ(x). (2.34)
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Since {φℓ(x)} is a basis the derivative in equation (2.34) can also be re-expressed
in that basis with different coefficients v̂ℓ as

∂xu(L)(x) =
L−1
∑

ℓ=0

v̂ℓφℓ(x). (2.35)

The relation between both kinds of coefficients is

v̂m =

L−1
∑

ℓ=0

Dmℓûℓ (2.36)

with the differentiation matrices Dmℓ (and similar for higher derivatives).
The task is then to calculate those difference matrices.

The choice of appropriate basis functions is obviously one of the first tasks. It
would be desirable if those approximated the solution well (rapid convergence of
the sum (2.33) such that a moderate value of L is sufficient), the quantities like
the difference matrix are easy to compute and that the transformation between
the real physical configuration space where u(x) lives and the spectral space
of ûℓ is easy and fast. The choice is problem-depended, or nicely formulated in
Boyd (2001, p. 10): “Geometry chooses the basis set”. As a rough guideline we
should take9:

• For periodic problems trigonometric functions are suitable, so expansion in
a Fourier series. For the transformation so-called “fast Fourier
transformations” exists.

• For non-periodic problems orthogonal polynomials of Jacobi type do a very
good job. Prominent candidates are Chebyshev and Legendre polynomials
discussed in section 2.2.5.

Another task is to find a technique to determine the expansion coefficients ûℓ.
Basically the aim of the game is to minimize the residual

R(x) = F (u(x))− g(x) (2.37)

of equation (2.32) while the boundary conditions are satisfied. The expansion
coefficients of the residual are obtained with the difference matrices. The
boundary conditions provide some requirements on the residual already.
Therefore there remain less than L (let us assume more than zero boundary
conditions) further relations for L coefficients ûℓ of the solution. There are three
main techniques how to minimize the residual,

9Not following the moral principle Boyd (2001, p. 10) where Chebyshev polynomials are ad-
vertised.
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• the Tau method satisfies the boundary conditions and makes the residual
orthogonal10 to as many of the basis functions as possible,

• the Galerkin method combines the chosen basis functions into a new set
that automatically satisfies the boundary conditions and then makes the
residual orthogonal to as many functions of the new set as possible,

• the collocation method requires that the boundary conditions are
satisfied (as in the Tau method) and makes the residual zero at as many
collocation points as possible.

The collocation method is also called pseudo-spectral method since it
minimizes the residual at the collocation points in the configuration space and
not in the spectral space. Therefore it is also very efficient in handling
nonlinearities, so in particular a prominent option for nonlinear sets of equations
like in general relativity. The value of the nonlinear expressions are just
calculated on the collocation points in the configuration space. We will use a
pseudo-spectral approach and therefore concentrate on that option, see the cited
literature for the other choices. The task that remains is to choose a proper
lattice of collocation point. There are again various options, see Press et al.
(2007), Grandclément and Novak (2009) including

• Gaussian quadrature collocation point lattice, which are the roots of
the Chebyshev polynomials (if Chebyshev polynomials are used as basis
functions) and basically given by a cosine-distribution, the end-points are
not included,

• Gauss-Lobatto quadrature collocation point lattice, which are
extrema of the Chebyshev polynomials (if Chebyshev polynomials are used
as basis functions) and also given by a cosine-distribution, here the
end-points are included,

• an equidistant lattice.

In fact we will use an equidistant staggered grid in ϑ and Legendre-polynomials
(see section 2.2.5) in cos ϑ. Therefore we use equidistant collocation points in ϑ.

Remarks 2.2.4. • Usually spectral methods show exponential convergence
properties for smooth settings.

• Pseudo-spectral methods can be interpreted as a kind of finite difference
technique as well, see Fornberg (1998, chapter 3).

10Where the integral over the whole domain of the product of the residual with the basis poly-
nomial multiplied with a certain weight is required to vanish.
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2.2.5. Spin-weighted spherical harmonics

We will use in our setting spherical polar coordinates and in the angular
directions a pseudo-spectral approach. Therefore we need an adapted set of basis
functions living on the sphere S2. General relativity is a tensor theory (see
chapter 3.2) and so particular care should be taken. We will use quantities to
which a spin-weight11 can be assigned. The quantities take values in a complex
bundle. From the computational perspective it is of advantage to use recursive
derivations though and that is the approach we will follow here.

Jacobi polynomials

For the following derivation we mainly refer to Fornberg (1998). Jacobi
polynomials play an important role in the Gaussian quadrature, see previously
cited literature, in particular Press et al. (2007), Grandclément and Novak
(2009). But also for the purpose of the spectral expansion and pseudo-spectral
method they are an important ingredient. The most important examples of the
general class of Jacobi polynomials are the Legendre and Chebyshev polynomials.
While the latter are very popular as basis polynomials in general pseudo-spectral
considerations. The former are key for spherical harmonics and therefore for this
thesis. There are various ways to define those polynomials, for instance as a
solution of a differential equation or using the orthogonality relation together
with some normalization condition (see Fornberg (1998, Appendix A)). Here we
take a very pragmatic point of view and define them using recursion relations.
For the implementation this is a very straightforward approach.

Definition 2.2.11. Let α, β ∈ R>−1 fixed. The Jacobi polynomials P αβ
n are

maps (a different interval in R than [−1, 1] could be chosen as well)

P αβ
n : [−1, 1] → R, (2.38a)

x 7→ P αβ
n (x) (2.38b)

defined recursively. The first two polynomials are given as

P αβ
0 (x) = 1, (2.39a)

P αβ
1 (x) =

(2 + α + β)x+ α− β

2
. (2.39b)

11Very roughly speaking a scalar theory is connected with spin-weight 0, a vector theory (like
electrodynamics) with spin-weight 1 and a theory like (linearized) gravity with spin-weight 2.
There exist generalizations of that concept to “higher-spin theories” even though their phys-
ical significance is not that clear.
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The remaining ones satisfy the formula

2(n+ 1)(n+ α + β + 1)(2n+ α + β)P αβ
n+1 +

[

(2n+ α + β + 1)(α2 − β2)

+(2n+ α + β)(2n+ α + β + 1)(2n+ α + β + 2)x]P αβ
n

+2(n+ α)(n+ β)(2n+ α+ β + 2)P αβ
n−1 = 0. (2.40)

Hence with known P αβ
n−1 and P αβ

n we can calculate P αβ
n+1. In the special case

α = β = −1
2
they are called Chebyshev polynomials, in the case α = β = 0

Legendre polynomials.

Lemma 2.2.2. • The polynomials are orthogonal to each other, thus for
n 6= m they satisfy

∫ 1

−1

(1− x)α(1 + x)βP αβ
n (x)P αβ

m (x)dx = 0 (2.41)

with weights α and β.

• They satisfy the ordinary differential equation in x

(1− x2)∂2xP
αβ
n (x) + [(β − α)− (α + β + 2)x] ∂xP

αβ
n (x)

+n(n + α + β + 1)P αβ
n (x) = 0. (2.42)

Proof. Both relations can be simply verified by plugging in the definition.

Scalar spherical harmonics (spin-weight 0)

Scalar spherical harmonics play a particular role in quantum mechanics for the
angular momentum and are discussed in atomic theory, see for example Weyl
(1950), Louck (2006). The definition of spherical harmonics (especially of higher
weight) is far from unique, there exist many conventions, see Sandberg (1978),
Thorne (1980). We will follow the one in Sarbach and Tiglio (2001), Rinne
(2009). The computations are essential for the implementation and hence
included explicitly here.

Definition 2.2.12. The (scalar) spherical harmonics (spin-weight 0) are
defined as a map

Yℓm(ϑ, ϕ) : [0, π]× [0, 2π], (ϑ, ϕ) 7→ Yℓm(ϑ, ϕ) (2.43)
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with the use of the previously introduced Legendre polynomials

Yℓm(ϑ, ϕ) = (−)m
√

2ℓ+ 1

4π

√

(ℓ−m)!

(ℓ+m)!

√

(1− x2)meimϕ dm

dxm
Pℓ(x)|x=cosϑ. (2.44)

The Pℓ are the Legendre polynomials in definition 2.2.11 where the indices
α = β = 0 are skipped.

The following lemma is particularly beneficial if one wants to implement the
functions and we will make use of these relations.

Lemma 2.2.3. The recursion relation for the Legendre polynomials in
definition 2.2.12 are given as

P0(x) = 1, (2.45a)

P1(x) = x, (2.45b)

Pℓ≧2(x) =
(2ℓ− 1)xPℓ−1(x)− (ℓ− 1)Pℓ−2(x)

ℓ
. (2.45c)

For m = 0 the recursion relations for the scalar harmonics

Yℓ(ϑ) =

√

2ℓ+ 1

4π
Pℓ(cos ϑ), (2.46)

are

Y0(ϑ) =

√

1

4π
= const., (2.47a)

Y1(ϑ) =

√

3

4π
cos ϑ, (2.47b)

Yℓ≧2(ϑ) =

√

2ℓ+ 1

4π

(2ℓ− 1) cosϑ
√

4π
2ℓ−1

Yℓ−1(ϑ)− (ℓ− 1)
√

4π
2ℓ−3

Yℓ−2(ϑ)

ℓ
. (2.47c)

The recursion relation for the first derivatives in ϑ read

∂ϑY0(ϑ) =0, (2.48a)

∂ϑY1(ϑ) =−
√

3

4π
sinϑ, (2.48b)

∂ϑYℓ≧2(ϑ) =
1

ℓ

[

−(2ℓ− 1) sinϑ

√

4π

2ℓ− 1
Yℓ−1(ϑ) + (2ℓ− 1) cosϑ

√

4π

2ℓ− 1
∂ϑYℓ−1(ϑ)

−(ℓ− 1)

√

4π

2ℓ− 3
∂ϑYℓ−2(ϑ)

]

. (2.48c)
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2.2. Ordinary differential equations

Proof. For the Legendre polynomials one uses definition 2.2.11, for the scalar
harmonics definition 2.2.12 and for the derivatives
∂ϑPℓ(cosϑ) = − sinϑ∂xPℓ(x)

∣

∣

x=cosϑ
(chain rule).

Higher spin harmonics

Spherical harmonics with non-trivial spin-weight as required for a theory like
general relativity and the authors below introduced handy k-operators in the
1960s, see Newman and Penrose (1966), Goldberg et al. (1967). For a discussion
of the k-formalism with spin-weighted spherical harmonics and its impact for
numerical relativity see Gomez et al. (1997) and because it is in relation with the
later used formulation of the constraints we refer also to the notes by
Rácz and Winicour (2016). Our conventions follow Rinne (2009). For the
higher-order spin-weights it makes particular sense to be specific because of the
mentioned ambiguities in the conventions in the literature.

As already stated in the definition 2.2.12 the ordinary spin-weighted harmonics
are Yℓm(ϑ, ϕ) ≡ Yℓm = 0Yℓm where we dropped the angular dependency for
simplicity but label the spin-weight 0 explicitly here.

Lemma 2.2.4. We just calculate the second partial derivative in ϑ of the
spin-weight zero harmonic for later use

∂2ϑY = −cos ϑ

sin ϑ
∂ϑY − ℓ(ℓ+ 1). (2.49)

Proof. The Legendre polynomials satisfy the differential relation

∂2xPℓ(x) =
2x

(1− x2)
∂xPℓ(x)−

ℓ(ℓ+ 1)

(1− x2)
Pℓ(x). (2.50)

Hence we calculate (prefactor
√

(2ℓ+ 1)/4π ignored)

∂ϑY = ∂ϑPℓ(cosϑ) = − sinϑ∂xPℓ(x), (2.51)

⇔ ∂xPℓ(x) = − 1

sin ϑ
∂ϑY, (2.52)

∂2ϑY = ∂2ϑPℓ(cosϑ) = − cosϑ∂xPℓ(x) + sin2 ϑ∂2xPℓ(x),

(2.50)
= −cosϑ

sin ϑ
∂ϑY − ℓ(ℓ+ 1)Y. (2.53)
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2. Differential equations and numerical methods

Definition 2.2.13. The “eth”-operators12 k and k̄ are defined as

ksYℓm :=

[

−∂ϑ −
i

sinϑ
∂ϕ + s

cos ϑ

sin ϑ

]

sYℓm, (2.54a)

k̄sYℓm :=

[

−∂ϑ +
i

sin ϑ
∂ϕ − s

cos ϑ

sin ϑ

]

sYℓm (2.54b)

with imaginary unit i in front of the ϕ-derivative. They are used to lower or raise
the spin-weight (can also be seen as definition of the spin-weight)

s+1Yℓm = [(ℓ− s)(ℓ+ s+ 1)]−1/2 k sYℓm, (2.55a)

s−1Yℓm =− [(ℓ+ s)(ℓ− s+ 1)]−1/2 k̄ sYℓm. (2.55b)

A parity transformation on the sphere is a map (ϑ, ϕ) 7→ (π − ϑ, π + ϕ). It
flips the sign of one Cartesian coordinate as can be verified by a drawing.
Therefore it corresponds to a space inversion. We call a quantity f(ϑ, ϕ) even
(or polar) if it behaves as f(π − ϑ, π + ϕ) = (−)ℓf(ϑ, ϕ) under parity
transformation and odd (or axial) if the factor is (−)ℓ+1 instead.

Definition 2.2.14. For the angular indices A, B ∈ {ϑ, ϕ} we define the gradient
YA = ▽̂AY = ∂AY (we denote here the derivative on the sphere with the hat ,̂ the
angular indices are raised and lowered with the metric on the sphere). With the
two-dimensional Levi-Civita tensor on the sphere its dual SA = ǫ̂BAYB (indices
ℓ, m suppressed but implicitly implied). We explicitly calculate some quantities
on the sphere in appendix A.1.2. Further consider the trace-free part of the

second covariant derivative YAB =
[

▽̂A▽̂BY
]tf

(“tf” denoting trace-free) and
second covariant derivative of the dual SAB = 1

2
(▽̂ASB + ▽̂BSA) which has

vanishing trace by construction. Note that the defined quantities carry indices
ℓ,m like Yϑϑ,ℓm for example (which are suppressed sometimes for readability).

We call the quantities

• Yℓ(ϑ) =0 Yℓm the scalar harmonics,

• Yϑ,ℓ(ϑ) the vector harmonics and

• Yϑϑ,ℓ(ϑ) the tensor harmonics.

Proposition 2.2.5. For m = 0 (⇔ the quantities are independent of ϕ and we
suppress the index m = 0) all spherical harmonics are given as

• the scalar harmonics Yℓ(ϑ) =0 Yℓm,

12The lower case old-English respectively Icelandic letter k was chosen to represent the derivative
of the spin-weight and we follow that convention.
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2.2. Ordinary differential equations

• the vector harmonics Yϑ,ℓ(ϑ) = ∂ϑYℓ(ϑ) = −1
2

√

ℓ(ℓ+ 1)(1Y − −1Y ) and

• the tensor harmonics Yϑϑ,ℓ(ϑ) = − cosϑ
sinϑ

∂ϑYℓ(ϑ)− ℓ(ℓ+1)
2

Yℓ(ϑ) =
1
4

√

(ℓ− 1)ℓ(ℓ+ 1)(ℓ+ 2)( 2Y + −2Y ).

Proof. The relation to the spin-weighted harmonics follows by direct calculation
using definition 2.2.13 and the action ∂ϕ = 0. We will calculate the explicit
formulas for the spherical harmonics and show in particular that the odd (under
parity transformation) harmonics vanish. Some calculations of quantities on S2

(denoted again by aˆ) are given in appendix A.1.2.

Then the even vector harmonics, the gradient YA = ▽̂AY = ∂AY are explicitly

Yϕ = ∂ϕY = 0, (2.56a)

Yϑ = ∂ϑY. (2.56b)

and the odd ones are the duals of the gradient, SA = ǫ̂BAYB and hence (B
!
= ϑ)

Sϕ = ǫ̂ϑϕYϑ = sinϑ∂ϑY, (2.57a)

Sϑ = ǫ̂ϑϑYϑ = 0. (2.57b)

For the tensor harmonics we start again with the even ones. The trace-free part
of the second covariant derivative,

YAB =
[

YAB = ▽̂A▽̂BY
]tf

= ▽̂A▽̂BY +
1

2
ℓ(ℓ+ 1)ĝABY

= ∂A∂BY − Γ̂C
AB∂CY +

ℓ(ℓ+ 1)

2
ĝABY. (2.58)

Hence we have

Yϑϑ = ∂2ϑY +
ℓ(ℓ+ 1)

2
Y

(2.49)
= −cos ϑ

sin ϑ
∂ϑY − ℓ(ℓ+ 1)

2
Y, (2.59a)

Yϑϕ = Yϕϑ = 0, (2.59b)

Yϕϕ = cosϑ sin ϑ∂ϑY +
ℓ(ℓ+ 1)

2
sin2 ϑY = − sin2 ϑYϑϑ. (2.59c)

The odd ones are the symmetrized covariant derivative of the odd vector
harmonics,

SAB =
1

2
(▽̂ASB + ▽̂BSA) =

1

2
(∂ASB + ∂BSA)− Γ̂C

ABSC . (2.60)
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2. Differential equations and numerical methods

It immediately follows for the first term B = ϕ and hence A = ϑ for
non-vanishing contribution. The other way around for the second term. In the
third term we need C = ϕ and then A 6= B. Therefore

Sϑϑ = Sϕϕ = 0, (2.61a)

Sϑϕ = Sϕϑ =
1

2
∂ϑSϕ − Γ̂ϕ

ϕϑSϕ =
1

2
cosϑ∂ϑY +

1

2
sinϑ∂2ϑY − cosϑ∂ϑY

=
1

2
sinϑ∂2ϑY − 1

2
cos ϑ∂ϑY

(2.49)
= − cosϑ∂ϑY − ℓ(ℓ+ 1)

2
sin ϑY = sinϑYϑϑ.

(2.61b)
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Figure 2.2.: The first few Legendre polynomials P (x) for the argument x = cosϑ
and spherical harmonics of the discussed types Y (ϑ) (spin-weight 0),
Yϑ(ϑ) (spin-weight 1) and Yϑϑ(ϑ) (spin-weight 2).
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2.2. Ordinary differential equations

We will speak in the remainder often just of scalar, vector and tensor quantities
if their angular part expands in the corresponding way. The reader should keep
in mind that they are in fact (combinations of positive and negative)
spin-weighted quantities, see definition 2.2.13.

2.2.6. Validation of the numerical method

For the implementation of differential equations on the computer we have to
approximate the data. We discussed already two ways of doing so, the method of
finite differences in section 2.2.3 where variables and differential operators are
evaluated on a discrete grid with finite step size and the spectral method in
section 2.2.4 where the solution is approximated by a discrete set of coefficients
for given basis functions. There exist more techniques, which are in some sense
related to the finite difference method such as the finite volume method (see
LeVeque (1992) for example) or the finite element method (see for example
Johnson (1982)). We will not discuss these approaches here.

As already mentioned spectral methods usually have a very good convergence
behavior. In our simulations the error will be dominated (for reasonable choices
of parameters) by the one caused by using finite differences. The analysis of
numerical errors is a standard topic in numerical analysis, for a good source
consult for example Richtmyer and Morton (1967).

In general there are several kinds of numerical errors. One aim for a numerical
analyst is to understand those different sources of inaccuracies. Here we will list
some of them following Rezzolla and Zanotti (2013, chapter 8) which can be
consulted for more details.

• Error of machine precision: the computer uses a different representation
for floating-point numbers than we use in the thesis. Label a floating-point
representation of a rational number α on the computer as fp(α). Then the
inaccuracy can be represented as fp(α) 7→ fp(α) + ǫmp. In the scripting
language Python the error ǫmp is usually of the order of 10−16.

• Round-off error: Due to an accumulation of machine-precision error when
performing several floating-point operations one gets this kind of error.
Usually it is related or can be estimated with the machine precision error.

• Truncation error: This is an error of different nature than the ones
discussed above. Due to the discretization one truncates quantities to a
prescribed order, see section 2.2.3. It exists in a local and a global version
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2. Differential equations and numerical methods

and is of high importance in the validation of the numerical computation
and discussed in more detail in the following.

Definition 2.2.15. Consider a differential equation which is supposed to be
satisfied on the continuum level and its discretized version obtained by taking
finite differences. The discretized version has a local truncation error due to
the Taylor expansion, see section 2.2.3. The global truncation error is defined
as the norm13 of the local error over the whole domain. It is
resolution-dependent (⇔ step size-dependent) and denoted by ǫh for step size h.
The solution to the equation is said to be consistent if

limh→0 ǫh = 0. (2.65)

The global error err(h) is the norm of the difference between discrete and
continuum14 solution. The discretization is convergent if the global error tends
to zero with hp for a pth-order scheme.

It was shown already in Richardson (1911) that for uniform step size h and a
centered stencil of second order the global error for an equation which is
supposed to vanish on the continuum level (a vanishing constraint or the
difference between numerical and exact solution) behaves as

err(h) = ch2 + higher even powers of h (2.66)

13Let us briefly discuss several issues related to norms. We restrict to the one-dimensional case
but generalizations are straightforward. The p-norm of a continuum quantity u(x) in the
interval x ∈ [a, b] is

||u||p :=

(

1

b− a

∫ b

a

|u(x)|pdx
)1/p

. (2.62)

Its discrete analog reads (for N grid points)

||u||p :=

(

1

N

N
∑

n=0

|un|p
)1/p

. (2.63)

Of particular importance is the discrete 2-norm

||u||2 :=

√

√

√

√

1

N

N
∑

n=0

|un|2. (2.64)

and often in the remainder of the thesis it is implicitly understood that the discrete case
p = 2 is implied.

14Of course in practice the solution on the continuum level is not always known. If it is the
numerical solution is more of theoretical interest.

32



2.3. Partial differential equations

with some h-independent constant c. In general the exponent 2 is replaced by p
for a pth-order system. The expansion is known as Richardson expansion.

Proposition 2.2.6. Consider for a system with Richardson expansion two
resolutions for the same spatial domain, namely the original one and one with
twice the number of grid points. They correspond to step sizes h and h/2. For a
2nd-order scheme the numerical implementation is convergent if four times the
global error of the doubled resolution is not larger than the error of the ordinary
resolution,

4× err

(

h

2

)

≥ err(h). (2.67)

Otherwise the convergence regime is not (yet) reached and the code is not (yet)
convergent.

Proof. In general the global error behaves like err(h) = chα for
resolution-independent constants c and α ∈ R (analytically ≡ 2 for a 2nd-order
scheme). Then

4× err

(

h

2

)

= 4c

(

h

2

)α

= 22−αerr(h). (2.68)

Hence it converges if α ≥ 2 and it fails to do so for α < 2. Therefore a 2nd-order
scheme should have a global error that must decrease by at least a factor of four
when doubling the resolution.

We will make use of these convergence tests in form of residual tests later on to
show that the code works as it should.

If there is no vanishing relations because, for instance, the exact solution is not
known, one can use three resolutions to perform a “self-convergence test” instead,
see for example Baumgarte and Shapiro (2010), Rezzolla and Zanotti (2013).

2.3. Partial differential equations and their

numerical methods

Quite some of the techniques to solve ordinary differential equations can be
generalized to partial differential equations as we will see. Also conceptual issues
like the notion of well-posedness can be applied.
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2. Differential equations and numerical methods

There exist a huge amount of general literature about partial differential
equations that were helpful for the current chapter including John (1982),
Copson (1975), Courant and Hilbert (1962), Evans (2010), Renardy and Rogers
(1993) and from the numerical perspective Tveito and Winther (2005), Thomas
(1995, 1999). With a focus on the application in general relativity see Rendall
(2008), Geroch (1996). We also mention Alinhac (2009) as a good introduction of
hyperbolic partial differential equations with an emphasis on recent techniques
applied for the study of general relativity and Hörmander (1997) where nonlinear
hyperbolic equations are discussed. We refer to more specialized literature in the
corresponding sections.

2.3.1. Classifications of partial differential equations

Recall definition 2.2.2 for the classification of ordinary differential equations.

Definition 2.3.1. A partial differential equation F is a functional for a
variable, say u (or more variables), that depends continuously on coordinates,
say x and y (or more coordinates), where derivatives of the variables with respect
to the coordinates may occur in various combinations (with respect to order,
linearity and similar properties). As example to generalize equation (2.1) (here
only up to second order which is an usual restriction in physics and enough for
our purposes)

F (x, y, u, ∂xu, ∂yu, ∂
2
xu, ∂x∂yu, ∂

2
yu) = 0 (2.69)

In general one deals with systems of partial differential equations again.

All the statements given in definition 2.2.2 for ordinary differential equations can
be transfered to partial differential equations as well.

Definition 2.3.2. A general form of a semilinear (note that is in particular
quasilinear) second-order partial differential equation in two coordinates x and y
for only one variable u(x, y) is

A∂2xu+B∂x∂yu+ C∂2yu+ “lower-order terms” = 0 (2.70)

where A,B,C do not depend on the solution u (put presumably on the
coordinates x and y) and “lower-order terms” refers to all kinds of terms of order
less or equal one including the inhomogeneity. The symbol of equation (2.70) is
then defined as

F (x, y, u, ξ, η) = Aξ2 +Bξη + Cη2 + “lower order terms” = 0. (2.71)
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2.3. Partial differential equations

The principal part of the symbol is defined as the terms in equation (2.71)
without the lower-order terms,

Fpp(x, y, u, ξ, η) = Aξ2 +Bξη + Cη2

repr.
= (ξ η)

(

A B/2
B/2 C

)(

ξ
η

)

≡ v†Mv. (2.72)

We call the equation (2.70)

• elliptic if M is strictly definite (both eigenvalues of M come with the same
sign) ⇔ B2 − 4AC < 0,

• parabolic if M is degenerate (eigenvalue 0 of M occurs) ⇔ B2 − 4AC = 0,
• hyperbolic if M is indefinite (both eigenvalues of M have different signs)
⇔ B2 − 4AC > 0

in the corresponding domain in x, y.

Remarks 2.3.1. • Ordinary differential equations are also partial
differential equations. They are of hyperbolic type. This does not become
obvious in the definition 2.3.2 but can be deduced with the fact that an
ordinary differential equation has the maximal number of characteristics
and the application of the equivalent of proposition 2.3.1 below.

• Often in the literature the symbol is complexified. We do not follow that
convention but use the real version instead.

• Equations can be of several types for different values of the coefficients.

• The motivation for the particular names are connected to the conic sections
which becomes quite obvious in the definition above. In alternative
concepts which are used for the definition that aspect is sometimes lost.

• Equations of either parabolic or hyperbolic type are also called
evolutionary equations.

We also give an alternative but essentially equivalent definition which makes use
of the concept of characteristics. These are basically special curves determining
the solution. The speed of propagation of information of the equation is related
to the eigenvalues of the principal part. So it is possible to map the
determination of the type of equation to an eigenvalue problem. Here we are just
interested in the existence of the eigenvalues and its number. We will consider
coupled systems of equations soon. There we will use that approach to refine the
theory.
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Definition 2.3.3. A solution u(x, y to a partial differential equation of the form
(2.69) can be given as a parametrized curve in the x-y-plane as a solution
curve y(x). With characteristics of the partial differential equation we identify
the family of curves y(x) along which the solution u is constant.

In the cited standard literature the equivalent to the following proposition can be
found.

Proposition 2.3.1. At a point (x, y) a second-order quasilinear partial
differential equation in two variables has either zero, one or two characteristics.
The equation is

• hyperbolic if it has two characteristics,
• parabolic if it has one characteristic and
• elliptic if there are no characteristics.

The solution curves are determined by

dy

dx
=

B

2A
± B

2A

√
B2 − 4AC. (2.73)

Depending on the discriminant D := B2 − 4AC there exists zero, one or two
characteristics. Consider the discriminant D and observe that the cases listed in
the proposition and in definition 2.3.2 coincide.

Examples 2.3.1. Because it is helpful later on let us include a few linear
standard examples. Here we give them in two dimensions, generalizations are
straightforward. The Laplace operator ∆ (see definition 2.5.1 for the general
case, here it is an abbreviation for the second derivative ∆ = ∂2y or in two
dimensions ∆ = ∂2x + ∂2y) will be examined in section 2.5 but is used already here
for convenience.

• Poisson equation:

∆u = ∂2xu+ ∂2yu = f(u). (2.74)

If the inhomogeneity f(u) ≡ 0 the equation is called Laplace equation.
The matrix representation in definition 2.3.2 of the principal part is
M = diag(1, 1) and hence the equation is elliptic. It is an example for a
“timeless” equation (infinite speed of propagation) and is typical for
equilibrium phenomena. It does not make sense to discuss it as an
evolutionary Cauchy problem.
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2.3. Partial differential equations

• Heat equation:

∆u− ∂x = ∂2yu− ∂xu = 0. (2.75)

The matrix representation of the principal part is M = diag(1, 0) and hence
the equation is parabolic. The equation is typical for transport phenomena.
The described process is irreversible (and hence marks a “direction of
time”).

• Wave equation

�u := ∆u− ∂2xu = ∂2yu− ∂2xu = 0. (2.76)

The matrix representation of the principal part is M = diag(1,−1) and
hence the equation is hyperbolic. It is typical for reversible evolutionary
phenomena and has a finite speed of propagation (here 1).

So far we have considered for the characterization of the type in definition 2.3.2
equations in one variable u only. The classification can be extended to coupled
systems of equations. Let us generalize the definition of the type of a partial
differential equation to systems of two variables. This is sufficient for the thesis
but can be further generalized of course. Following again the standard references
we can state the following proposition.

Proposition 2.3.2. The solution curves y(x) of a coupled system of quasilinear
partial differential equations of first order for two variables u1 and u2 in two
coordinates x and y have either zero, one or two characteristics.

The part of the system leading to the principal part can be written in a matrix
representation for a vector15 u = (u1, u2)

† as

Fpp = Ax∂xu+ Ay∂yu (2.77)

with x, y-dependent matrices Ax, Ay ∈ M(2× 2,R). The solution curve are
determined by a quadratic equation. The number of characteristics is given by
the sign of the discriminant

D := (Ax,11Ay,22 −Ax,21Ay,12 + Ax,22Ay,11 − Ax,12Ay,21)
2

− 4 (Ax,11Ax,22 −Ax,12Ax,21) (Ay,11Ay,22 −Ay,12Ay,21) . (2.78)

15We denote throughout the thesis the transposed vector or matrix with a superscript †. Fre-
quently the symbol refers in addition to the complex conjugation and the transposed object is
denoted with superscript T . Since we are usually dealing with real quantities these operations
coincide.
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Definition 2.3.4. A coupled system of quasilinear partial differential equations
of first order for two variables u1 and u2 in two coordinates x and y is called

• hyperbolic if it has two characteristics ⇔ D > 0 in equation (2.78),

• parabolic if it has one characteristic ⇔ D = 0 in equation (2.78) and

• elliptic if there are no characteristics ⇔ D < 0 in equation (2.78).

2.3.2. Some statements and techniques about systems of

partial differential equations

While it is a rather feasible task to understand a single partial differential
equation the development of a solid theory for coupled systems of partial
differential equations is a more involved issue. In general it is hard to find a
complete theory concerning systems. The classification of the type of the system
was already given in section 2.3.1. In the current section we just give an selection
of statements which are used later and point to some literature for further results.

For the discussion of evolutionary problems there exist some valuable sources
including Gustafsson et al. (1995), Kreiss and Busenhart (2001),
Kreiss and Lorenz (2004), Ascher (2008). Systems in a first-order formulation
with constant coefficients and periodic boundary conditions are quite well
understood, also their numerical properties. The more general the system is the
harder it is to prove statements about it.

General relativity, the topic of interest in this thesis, is a geometric system of
coupled partial differential equations of second order. Therefore there is quite
some freedom in the formulation of equations. Its full analysis and the obtaining
of results, in particular statements about well-posedness, is a highly non-trivial
task. Having well-posedness statements for a formulation of Einstein’s equations
as an initial boundary value problem is a desirable aim but usually hard to
achieve. Some methods and results for general relativity are reviewed in Reula
(1998), Stewart (1998) and more recently in Reula and Sarbach (2011),
Choquet-Bruhat (2009).

For a few specific formulations in general relativity there are results (positive as
well as negative). Especially if boundary conditions are taken into account as
well it is even harder to obtain results. It is an active field of research in
mathematical relativity, reviews include Sarbach and Tiglio (2005, 2012). In the
field of numerical relativity there is some experience with that issue. There exist
attempts with formulations that turned out to be highly unfortunate for the
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implementation. A lot of effort, time and computational power was spent.
Essential was a lack of mathematical understanding of the underlying equations
and their consequences.

The fact that standard formulation of general relativity, the so-called ADM
formulation (see Arnowitt et al. (1962, 2008)), is not well-posed was only shown
around the turn of the millenium. Kreiss and Ortiz (2002) show analytically that
the equations are not well-posed when linearized about a flat background.
Numerically it became clear that their might be a serious problem already in the
1990s. See Kidder et al. (2001), Calabrese et al. (2002), Sarbach et al. (2002),
Bona et al. (2003) where these numerical issues are discussed and analytically
understood and also working alternatives are introduced. One difficulty in the
analysis is that the equations are first-order in the time parameter but usually
second-order in the spatial coordinates. Often an additional first-order reduction
is introduced, see Gundlach and Mart́ın-Garćıa (2006), Hilditch and Richter
(2015). Consider in this respect also the latest edition of Gustafsson et al. (1995).

Our strategy later on will be to analyze and understand as much as possible with
the discussed methods.

For the discussion of Einstein’s equations (but not only there) the notion of
constraints is important.

Definition 2.3.5. Given a set of partial differential equations that contain
evolutionary equations (of parabolic or hyperbolic type in the time variable t) of
order m. Those partial differential equations in the set which do not contain time
derivatives of mth order are called constraints for obvious reasons. The
remaining equations (with mth time derivative) are connected with the evolution
of the system. If the constraints are preserved under the time evolution (⇔ if
satisfied initially they remain satisfied) we say “the constraints propagate”.

As we will show later on the Cauchy formulation of general relativity is dealing
with a constrained system of partial differential equations. In fact there are more
equations than variables (the set of equations will be called overdetermined, see
definition 2.3.8). So there is some liberty to replace some evolution equations by
solving constraints instead (or vice versa). Clearly the initial data set has to
satisfy the constraints. Since at least analytically the constraints indeed
propagate there are several options for the evolution.

Definition 2.3.6. For a constrained system of partial differential equations and
initial data that satisfy those constraints we call the time evolution a

• free scheme if no constraints are solved during the evolution,
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• fully constrained scheme if all constraints are explicitly solved during
the evolution,

• partially constrained scheme if some but not all constraints are
explicitly solved during the evolution.

We should mention that even though one can use the Bianchi identity to show
that the constraints are propagated on the analytical level the argument is not
necessarily true on the numerical level. There are so-called constraint-violating
modes which can lead to a blow-up and ultimately to a crash of the code. It is a
serious issue in numerical relativity. A prominent and often applied method to
circumvent that problem is to use some way of constraint damping. Already
Detweiler (1987) pointed out that violations in the constraints might be
controlled by additional terms in the evolution equations, Frittelli (1997)
investigates the addition of constraints further. See in addition Bona et al.
(2003) for the introduction of the so-called “Z4-formulation” where constraints
(or its covariant derivative) are added to Einstein’s equations. In a fully
constrained scheme constraint violations are obviously no problem at all. The
evolution equations which are not explicitly employed can be used to monitor the
accuracy of the scheme.

There exist all version of schemes in definition 2.3.6 in the numerical relativity
community. See Bardeen and Piran (1983), Stark and Piran (1985) for early
attempts of partially constrained formulations and Evans (1989) for a fully
constrained evolution. Cordero-Carrión et al. (2008), Bonazzola et al. (2004)
describe a fully constrained scheme for full general relativity without symmetries.

In the following paragraph we will explicitly label the time coordinate with t.
Afterwards for the discussion of the parabolic system (actually just for a
parabolic equation) we switch back to the more general x-y-notation. The reason
will become clear later on.

Hyperbolic systems

We consider a system of partial differential equations of hyperbolic form
(according to definition 2.3.4). Again we just concentrate on the part leading to
the principal part, so the equation looks like the one in equation (2.77). If the
matrices which are now denoted as At and Ax are of full rank it can equivalently
be written with a single matrix A = −A−1

t Ax as

∂tu = A∂xu. (2.79)

The generalization to more than a single spatial direction is straightforward, see
equation (2.80). Hyperbolicity as such as in definition 2.3.4 (called “weak” in the
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following) just depends on the principal part, so is completely determined by the
highest derivatives. To guarantee that the lower-order terms can indeed be
ignored a stronger version of hyperbolicity is required. That the ignored terms do
not spoil the behavior is needed for a stable evolution.

Definition 2.3.7. Let u ∈ Rm be a vector of m variables. The d spatial
coordinates in addition to the time coordinate t (so all in all a d+ 1-dimensional
situation) are given by x ∈ Rd (with derivatives ∂i in the direction xi). Consider
the system

∂tu =

d
∑

i=1

Ai∂iu (2.80)

with constant matrices Ai ∈ M(m×m,R). Take a d-dimensional real unit
vector16 denoted by ω. Define the linear combination of coefficient matrices
P = ωiAi.

• The system (2.80) is (weakly) hyperbolic if for all linear combinations
(∀ω) the matrix P has real eigenvalues17.

• The system (2.80) is strongly hyperbolic if ∀ω the matrix P is
diagonalizable (with corresponding matrix S) with real eigenvalues and
both S and the inverse S−1 depend smoothly on ω. An equivalent
statement is that ∀ω there is a complete set of eigenvectors.

• The system (2.80) is strictly hyperbolic if it is strongly hyperbolic and
all eigenvalues are distinct.

• The system (2.80) is symmetric hyperbolic if ∀ω∃H which is Hermitian18

and positive definite (called “symmetrizer”) such that the matrix HP is
Hermitian in any direction, so for all possible ω we have HP = (HP)†.

For a higher-order system we assign the same characterization if it admits a
first-order reduction that has the corresponding property. We do not require that
all arbitrary reductions come with the same behavior.

16That means ω ∈ Rd such that |ω| =
√

∑d
i=1 ω

2
i = 1.

17It is quite easy to see that this notion is equivalent to the notion of hyperbolicity in definition
2.3.4. The discriminant resulting from the characteristic polynomial for equation (2.79) is
identical to the discriminant D in (2.78)

18That means H̄T = H (equivalently “self-adjoint”) which reduces to HT = H for real coefficient
matrices, so just being symmetric and hence in our convention H† = H . The requirement
of symmetry in the definition is in fact just the demand that the product will be Hermitian,
HP = (HP)†. The right-hand side can be written as (HP)† = P†H† = P†H which justifies
the name symmetrizer for H .
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strictly and
symmetric
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Figure 2.3.: For the illustration of the concepts of hyperbolicity, highly influenced
by figure 4.3.1 in Gustafsson et al. (1995).

Clearly if we only have one spatial direction everything becomes simpler because
there is just one direction for the unit normal.

Remark 2.3.1. Here we define symmetric hyperbolicity by the existence of a
symmetrizer which makes the system symmetric. Often this is just called
symmetrizable hyperbolic which is, strictly speaking, correct. There is no unique
way in the literature to define the concept. We mainly choose the definition
above for aesthetic reasons.

The definition implies that for a hyperbolic system where the coefficient
matrix P is diagonalizable the system is in fact strongly hyperbolic. Strong
hyperbolicity guarantees well-posedness for an initial value problem as explained
in the cited literature about evolutionary problems. As already mentioned that
means in particular for strongly hyperbolic systems that the lower-order terms
which are not contained in the principal part do not cause problems. Therefore it
is possible to ignore those terms in the analysis. The essential problem for weakly
hyperbolic systems is that even though they are hyperbolic in nature one can find
lower-order terms that make the system totally ill-posed. Therefore it is always
desirable to have a strongly hyperbolic system, especially for the numerical
implementation. The nice feature for symmetric hyperbolic systems is that they
allow for the definition of an energy (not necessarily of physical meaning) in a
natural way. The notion of strict hyperbolicity has a more formal character.

The eigenvalues are also called “characteristic speeds” and their properties are
closely related to the classification of partial differential equations in
proposition 2.3.1. If there are non-real eigenvalues the equation cannot be
hyperbolic at all. If all of them are real, so we have the maximum number of
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characteristics, the equation is hyperbolic, at least in the weak sense. On the
other hand that does not imply that the initial value problem is well-posed. If it
is strongly hyperbolic it admits a well-posed initial value problem. The
eigenvalues and their reality are a manifestation of the finite speed of
propagation that is inherent in a hyperbolic equation.

As we will see Einstein’s equations are of second order. The standard Cauchy
formulation splits the equations into first-order in time evolution equations and
constraints (consequently zeroth-order time derivatives). In general the set of
evolution equations for a set of variables u has therefore the form

∂tu = Qij(u)∂i∂ju+Ri(u)∂iu+ S(u). (2.81)

For a constant-coefficient system the matrices Q and R are independent of the
solution. In the theory of such a second-order in space system there are quite
some results but it is by far not as developed as first-order systems. Therefore
one possibility (and taken for instance in Gundlach and Mart́ın-Garćıa (2006),
Hilditch and Richter (2015)) is to reduce the second-order system to one of first
order only. That increases the number of variables and introduces further
“auxiliary” constraints but brings the system closer to solid theory of systems of
partial differential equations. Therefore we will consider in the analysis a system
(or at least its principal part) again in the first-order reduction, see the end of
definition 2.3.7.

We already discussed at the beginning of the current section the impact of
several notions of hyperbolicity on the Cauchy formulation in general relativity.
We will analyze the hyperbolicity in chapter 4 for our set of equations and
discuss here the 2+1-dimensional wave equation in spherical coordinates because
it is helpful for the later understanding.

Example 2.3.1. We show that the (2+1)-dimensional scalar wave equation in
spherical coordinates is strongly (even symmetric and strictly) hyperbolic
for r ≥ 0.

The equation has the principal part

∂2t φ = ∂2rφ+ r−2∂2ϑφ. (2.82)

The equation admits a first-order reduction with the auxiliary variables Π := ∂tφ,
W := ∂rφ and V := r−1∂ϑφ and becomes therefore a system of coupled equations.
There is some advantage to include the r−1 in the definition (remember r 6= 0)19.

19At the end it can be boiled down again to the difference between the already symmetric system
and symmetrizable ones. Since we decided to choose a definition of symmetric hyperbolicity
that basically ignores these differences it is of rather cosmetic nature though.
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Therefore we have then the system

∂tΠ = ∂rW + r−1∂ϑV, (2.83a)

∂tW = ∂rΠ, (2.83b)

∂tV = r−1∂ϑΠ. (2.83c)

So we write it with the vector u† = (Π,W, V ) as

∂tu = Ar∂ru+ Aϑ∂ϑu (2.84)

with coefficient matrices

Ar =





0 1 0
1 0 0
0 0 0



 and Aϑ =





0 0 r−1

0 0 0
r−1 0 0



 . (2.85)

With the unit vector ω = (ωr, ωϑ)
† we define the matrix

P = ωrAr + ωϑAϑ =





0 ωr r−1ωϑ

ωr 0 0
r−1ωϑ 0 0



 (2.86)

The eigenvalues and corresponding eigenvectors of P are

λ1 =
√

ω2
r + r−2ω2

ϑ :

(

1,
ωr

λ1
,
r−1ωϑ

λ1

)†

, (2.87a)

λ2 = 0 : (0,−ωϑ, rωr)
† , (2.87b)

λ3 = −
√

ω2
r + r−2ω2

ϑ = −λ1 :
(

1,
ωr

λ3
,
r−1ωϑ

λ3

)†

. (2.87c)

The eigenmatrix reads

S =





1 0 1
ωr

λ1
−ωϑ

ωr

λ3
r−1ωϑ

λ1
r2ωr

r−1ωϑ

λ3



 (2.88)

and S−1PS diagonalizes the matrix in a continuous manner. Because of the
normalization of ω all eigenvalues are distinct and real. Both coefficient matrices
are real and symmetric and therefore Hermitian. Hence all kinds of requirements
for (strict and symmetric) hyperbolicity are satisfied. Therefore the wave
equation can be formulated in such a way that it lies in the central oval of
figure 2.3, so in the overlap of strict and symmetric hyperbolicity.
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Parabolic equations

We briefly consider also parabolic systems, in fact only systems consisting of a
single equation. This restriction is sufficient for our purposes.

Appropriate sources are basically the same as for hyperbolic systems, see for
example Gustafsson et al. (1995), Kreiss and Lorenz (2004). In chapter 4 we will
analyze Einstein’s equations and formulate the Hamiltonian constraint as a
parabolic equation, the momentum constraint as hyperbolic system. We will see
in section 4.7 that the principal parts of momentum and Hamiltonian constraint
decouple. Therefore the separate results can be combined.

Often parabolic equations play no role in the discussion of Einstein’s equations,
even though there are also numerous exceptions. As will be discussed in section
3.4.1 the constraints are often formulated as elliptic equations which makes the
full set of equations (the constraints and the evolution equations for the
remaining variables) an elliptic-hyperbolic system. We employ a hyperbolic-
parabolic formulation of the constraints. The “time”-coordinate will be the
radial direction r then. So even though it sounds unfamiliar to discuss an
evolutionary problem (a parabolic equation) in purely spatial coordinates we will
do so in the following.

Consider a parabolic equation of second order in two coordinates for the variable
u = u(x, y) of the form

∂xu = k∂2yu+ “lower-order terms”, (2.89)

so its principal part is just the heat equation, see example 2.3.1. We will show
the irreversible character of the heat equation which means that parabolic
equations usually suggest intuitively a direction of the “arrow of time”.

Proposition 2.3.3. Given equation (2.89) and appropriate initial values. For
k > 0 the initial value problem is well-posed, for k < 0 the solution to
equation (2.3.3) blows up.

Proof. We prove the statement for the heat equation which follows more or less
directly John (1982, chapter 7). Consider the wave solution exp i(λx+ ξy) for
λ, ξ ∈ R 6=0 which is a solution for equation (2.89) if iλ+ kξ2 = 0. So the solution
reads u = exp(−kξ2x+ iξy). Therefore the amplitude is
|u| =

√
uū = exp(−kξ2x). Consider the positive x-direction, so initial data given

at x0 and then the evolution continues in x > x0-direction. Therefore for k < 0
the amplitude decays and for k > 0 the amplitude grows without bounds and
blows up (k = 0 trivial). The general case is again obtained by superposition in
Fourier series.
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Technique of frozen coefficients

In general systems do not have constant coefficients in front of the derivatives of
the variables. Again the theory of partial differential equations is less developed
for systems with variable coefficients. Since we are (fortunately) only dealing
with quasilinear systems the principal part is at least linear in the highest
derivatives of the solution. Nevertheless the equations might contain
dependencies on the coordinates for example, even on the linear level.

If the coefficients of A in front of the part leading to the principal part of an
equation like equation (2.79) are not constant but variable one can consider the
coefficient matrix A as a single point (x0, y0, . . .), hence “freeze” the coefficients.
Therefore we expect local statements only. Those are based on the theory for
constant coefficient problems.

In the nonlinear case the variable coefficients might in addition depend on the
solution (in a quasilinear way though). It is possible to freeze again with a
known solution and to obtain local statements in a neighborhood of the known
solution. Since our formulation of Einstein’s equations later on suggests a
foliation of the flat spacetime in spherical polar coordinates freezing about that
solution seems appropriate. Hence the analysis should be the same as considering
the linearization about flat spacetime (and then freezing the remaining variable
coefficients r and ϑ). Of course we expect only local results.

The general idea is that if all frozen coefficient problems are well-posed, the
variable coefficient problem is so as well, see again Gustafsson et al. (1995),
Kreiss and Lorenz (2004) for discussions and more solid formulations, also
Kreiss and Winicour (2006) for an application to Einstein’s equations. On the
other hand, as for example discussed in Ascher (2008, chapter 5.1), stability of
the frozen coefficient problem does not necessarily imply stability of the variable
coefficient problem. While from the rigorous point of view the issue is more
involved the more pragmatic one gives some hope that freezing helps indeed.

Elliptic systems

In principle elliptic equations play a prominent role in most formulations of
Einstein’s equations as can be seen in many discussions in numerous publications
on general relativity. For instance the Newtonian limit for weak-field gravity
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results in Newton’s equation for the gravitational potential20. As we will discuss
at several instances in the remainder of the thesis many gauge choices result in
elliptic equations for the constraints. Early results towards the well-posedness
statements of general relativity use elliptic equations and its regularity theory.
Also in numerical relativity gauge conditions resulting in elliptic equations are
very prominent and probably the most frequently used ones.

Since we use in this thesis a different approach without elliptic equations at all we
basically refer to the literature for the theory of elliptic equations and systems.
Except most textbooks on partial differential equations which contain material
about elliptic equations we explicitly mention Gilbarg and Trudinger (2001) for a
whole textbook devoted to elliptic problems, and with a focus on ellipticity in
general relativity the textbook Rendall (2008) and the review Dain (2006).

Under- and overdetermined systems

Another issue concerning systems of partial differential equations deserves
attention because it also is important for Einstein’s equations.

Definition 2.3.8. We call a system of partial differential equations with more
(less) variables than equations underdetermined (overdetermined).

Example 2.3.2. Consider the linear scalar equation in two coordinates
(x, y) ∈ R2

(∂2x + ∂2y)u1 + (∂2x − ∂2y)u2 + (∂x − ∂2y)u3 + u4 = 0. (2.90)

To obtain a solution for one of the variables we have to prescribe the remaining
three variables and possibly initial or boundary conditions.

According to the classification in definition 2.3.1 the equation (2.90) is elliptic if
we solve it for u1 and prescribe u2, u3 and u4 (it is the Poisson equation, see
example 2.3.1). To obtain a solution, boundary conditions for u1 need to be
given in addition.

The equation (2.90) is hyperbolic if we solve for u2 and prescribe u1, u3 and u4
(it is the wave equation, see example 2.3.1). To be able to integrate it, boundary
conditions in one variable, say y need to be given and initial conditions in the
other variable, then x, are required. x plays the role of a “time” variable.

20It is a (if not the) Poisson equation, so an inhomogeneous scalar Laplace equation, see exam-
ple 2.3.1. The proportionality factor in Einstein’s equation is chosen such that the Newtonian
limit turns out correctly.
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Solving equation (2.90) for u3 the equation is parabolic with “time” variable x
and we need to prescribe u1, u2 and u4 (it is the heat equation, see example
2.3.1). Boundary conditions for u3 in y need to be given and in addition initial
condition at some x0 are required. For a stable integration the “evolution”
should be outward in x then (see proposition 2.3.3).

Finally if we interpret equation (2.90) as equation for u4 it is algebraic (of zeroth
order) and we need to prescribe u1, u2 and u3. u4 is then completely determined
by these variables.

We will see that in the Cauchy formulation of general relativity there are in fact
more variables than equations due to the coordinate freedom. Therefore we are
dealing in principle with an underdetermined system. Because of the coordinate
freedom one has the liberty to make additional choices, later on called “gauge
choices” which might help to bring the system in a desired form from the point
of view of the theory of partial differential equations. On the other hand the
constraint system as such extracted from Einstein’s equations is a highly
overdetermined as we will also discuss later.

2.3.3. Numerics for partial differential equations

There are several issues and techniques we should discuss concerning the
numerical implementation of partial differential equations. Note that we make
use of techniques allowing the reduction to ordinary differential equations.
Therefore the statements in section 2.2.6 should also be taken into account.

Stability analysis In numerical analysis the stability of a difference scheme is
an important topic. Here we are just able to scratch the surface, more material is
given for example in the references cited at the beginning of the section. We are
already aware of the fact that for the continuous problem convergence of the
solution to the true solution is of huge importance for well-posedness. For the
discretized problem stability takes a comparable role. That those are essentially
equivalent concepts is shown by the Lax theorem (or Lax-Richtmyer
theorem Lax and Richtmyer (1956)). It says that for a consistent21

discretization scheme and a well-posed initial (boundary) value problem both
issues (convergence and stability) are equivalent, see Richtmyer and Morton
(1967) for instance.

21This means that the truncation error goes to zero for decreasing step size(s).
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Explicit stability analyses are included in most textbooks on numerical
investigations for partial differential equations and on numerical relativity (see
beginning of section 2.3 and section 3.3 for references). For example in
Baumgarte and Shapiro (2010, chapter 6.2.3) the von Neumann stability analysis
for the linear advection equation on a uniform grid with step sizes ∆t and ∆x
is explicitly given. Here we just state the result.

The von Neumann stability analysis reveals the necessary stability criterion

c∆t

∆x
≤ 1. (2.91)

Definition 2.3.9. The necessary condition (2.91) is called CFL condition22

and the factor ∆t/∆x is usually called Courant factor.

In our numerical simulation we choose usually a Courant factor of the order
1/10, the spatial resolution is determined by the number of grid points and the
outer boundary (the inner one is r = 0). Hence the time step is determined as

∆t =
1

10
∆x. (2.92)

Numerical dissipation Our aim is to solve continuous problems. We already
discussed in section 2.2.3 the issue of discretization of the continuous variables
and their derivatives on a grid. The discretization of the derivatives in two
spatial dimension, our “hybrid approach” and consequences for the derivative
will be discussed afterwards.

For the numerical evolution of hyperbolic equations it is a very common feature
that for a large class of discretization schemes the high-frequency components are
not accurately propagated. Because of the finite difference approximation there
are solutions with low wavelengths (low with respect to the spatial grid size that
is again denoted by h here) which have no physical origin. The suppressing of
those high-frequency modes from the numerical solution is the task of the
artificial dissipation which acts as a low-pass filter.

We use the so-called Kreiss-Oliger dissipation, see Kreiss and Oliger (1973, in
particular chapter 9).

Definition 2.3.10. The making use of the Kreiss-Oliger dissipation is to
map the evolution equation to a modified equation,

∂tu = f(u) 7→ ∂tu = f(u) +Qr(u). (2.93)

22After Richard Courant, Kurt Friedrichs and Hans Levy who introduced the concept in
Courant et al. (1928).
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The dissipation operator Qr of order 2r was introduced already in
definition 2.2.7. Formally it might look like the type of equation has
changed.This is not the case because the dissipation operator Qr contains the
step size h, see definition 2.2.7 and vanishes in the continuum limit. Therefore it
is just a “numerical trick” to block high frequencies and the type of equation is
not affected.

Since we are using a second-order accurate scheme we need an operator of
4th order, hence r = 2. The consequences and the finite difference properties are
worked out in proposition 2.2.4 in section 2.2.3.

Method of lines

In the numerical implementation we will make use of the so-called method of
lines. It is a very powerful method and of great value in that field. We have seen
already in example 2.3.1 that it also simplifies the wave equation.

Consider a general partial differential equation of first order in (at least) one
coordinate (the “temporal one”, here x) for the variable u(x, y) of the form
(generalizations to higher orders in y and other coordinates is straightforward)

∂xu(x, y) = f(x, y, u, ∂yu, ∂yu). (2.94)

If we have knowledge of all quantities at one instance in x (at one “line” in the
x-y-plane), say at xn, we can completely determine the values of the right-hand
side of equation (2.94), so fn, with all derivatives in y. Then we can consider
equation (2.94) as an ordinary differential equation for x and use an integrator
like those discussed in 2.2.3. For instance we can use an Euler integrator (or
better more sophisticated ones like Runge-Kutta)

un+1 = un +∆xfn (2.95)

to obtain the values for u(xn+1, y) at the next instance of the x-coordinate.
Therefore we decomposed the problem of finding a solution to u(x, y) of partial
differential equations to solving ordinary differential equations “line by line”,
thus the name method of lines.

Hybrid disrectization

Our aim is to solve Einstein’s equations in axisymmetry with vanishing twist.
Even though we start of course with the full 3+1-dimensional theory we have,
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due to the assumed symmetry, effectively a dimensional reduction to 2+1
dimensions. Hence in adapted coordinates we will not have the ϕ-dependence any
more, see our derivation in chapter 4. We will choose spherical polar coordinates
(see A.1.2) for the formulation, so our variables are of the form u(t, r, ϑ). For the
ϑ-direction we will use a spectral expansion and the implementation of the
pseudo-spectral method. On the two-sphere S2 an appropriate expansion basis
are the spherical harmonics as discussed in section 2.2.5.

Since we will not deal with a scalar theory but general relativity, which is a
tensor theory, the harmonics look slightly more complicated but are numerically
tractable. In principle it is also possible to choose a spectral expansion in t and r
as well, for attempts see for example Hennig (2013), Panosso Macedo and Ansorg
(2014). An obvious disadvantage is that the number of grid points for those
coordinates are significantly higher than in the ϑ-direction. It implies that the
approximations do not converge fast enough to the real variables in the whole
interval. These disadvantages can be overcome by using “domain
decompositions”, see Grandclément and Novak (2009).

We decided to follow a different approach, namely use an hybrid
discretization. That means that we use a (pseudo-)spectral method in ϑ and
finite differences as discussed in section 2.2.3 in t and r. In section 2.4 we will
derive the consequences for the derivatives.

2.4. The spatial derivatives

As previously discussed in section 2.3.3 we will use a hybrid discretization for the
implementation. Therefore we assume that our variables admit a spectral
expansion in eigenfunctions of the Laplace operator on the sphere S2 (that issue
will be addressed in more detail in section 2.5). In this section we derive the
consequences for the derivatives and the matrix representations for all derivative
operations as needed for the implementation. Here we focus on the spatial part
in r and ϑ.

2.4.1. The derivatives in ϑ

The expansion in spherical harmonics allows us to express the angular derivatives
explicitly. We should discuss the different quantities (scalar harmonics Yℓ(ϑ),
vector harmonics Yϑ,ℓ(ϑ) and tensor harmonics Yϑϑ,ℓ(ϑ), see section 2.2.5)
separately. We saw in proposition 2.2.5 that for the mode number m = 0 (as we
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will consider) there are only these three kinds of harmonics. In section 4.4 we
will arrange all variables such that they have a definite expansion in one of these
types.

We introduce an additional notation. Let us denote by Yℓ(ϑ) a general set of
basic functions which corresponds to one of the mentioned cases. Sometimes we
omit the ϑ-dependence and the index ℓ but it is always implicitly understood.

The tensor harmonics Yϑϑ are a specific combination of scalar Y and vector
harmonics Yϑ, namely

Yϑϑ = −ℓ(ℓ+ 1)

2
Y − cosϑ

sin ϑ
Yϑ. (2.96)

Hence any variable can be written as a specific combination of Y and Yϑ. An
arbitrary variable u (restricting to the spatial part only) expands as

u(r, ϑ) =
L−1
∑

ℓ=0

ûℓ(r)Yℓ(ϑ) =
L−1
∑

ℓ=0

ûℓ(r)Yℓ(ϑ) =
L−1
∑

ℓ=0

[v̂ℓ(r)Yℓ(ϑ) + ŵℓ(r)Yϑ,ℓ(ϑ)] ,

(2.97)

where v̂ℓ and ŵℓ are to be determined in the following.

In the following we just state the propositions without proofs. They can be
varified by direct calculation.

Scalar quantity

Proposition 2.4.1. For a scalar quantity (implies ŵℓ = 0 in equation (2.97))

u(r, ϑ) =
L−1
∑

ℓ=0

ûℓ(r)Yl(ϑ) =
L−1
∑

ℓ=0

[ûℓ(r)Yℓ(ϑ) + 0Yϑ,ℓ(ϑ)] (2.98)

the derivatives are

∂ru(r, ϑ) =
L−1
∑

ℓ=0

[∂rûℓ(r)Yℓ(ϑ) + 0Yϑ,ℓ(ϑ)] , (2.99a)

∂2ru(r, ϑ) =

L−1
∑

ℓ=0

[

∂2r ûℓ(r)Yℓ(ϑ) + 0Yϑ,ℓ(ϑ)
]

, (2.99b)

∂ϑu(r, ϑ) =
L−1
∑

ℓ=0

[0Yℓ(ϑ) + ûℓ(r)Yϑ,ℓ(ϑ)] , (2.99c)
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∂2ϑu(r, ϑ) =

L−1
∑

ℓ=0

[

−ℓ(ℓ + 1)ûℓ(r)Yℓ(ϑ)−
cosϑ

sin ϑ
ûℓ(r)Yϑ,ℓ(ϑ)

]

≡
L−1
∑

ℓ=0

ûℓ(r) [S1 +V1] , (2.99d)

∂r∂ϑu(r, ϑ) =

L−1
∑

ℓ=0

[0Yℓ(ϑ) + ∂rûℓ(r)Yϑ,ℓ(ϑ)] . (2.99e)

Here and in the following S1, V1 and similar expressions stand for the specific
combination of the prefactor and the (scalar or vector) spherical harmonic that
was calculated. So for example we have

S1 = − ℓ(ℓ+ 1)Yℓ(ϑ) (2.100a)

and V1 = − cosϑ

sinϑ
Yϑ,ℓ(ϑ). (2.100b)

Vector quantity

Proposition 2.4.2. For a vector quantity (implies v̂ℓ = 0 in equation (2.97))

u(r, ϑ) =

L−1
∑

ℓ=0

ûℓ(r)Yϑ,ℓ(ϑ) =

L−1
∑

ℓ=0

[0Yℓ(ϑ) + ûℓ(r)Yϑ,ℓ(ϑ)] (2.101)

the derivatives are

∂ru(r, ϑ) =

L−1
∑

ℓ=0

[0Yℓ(ϑ) + ∂rûℓ(r)Yϑ,ℓ(ϑ)] , (2.102a)

∂2ru(r, ϑ) =

L−1
∑

ℓ=0

[

0Yℓ(ϑ) + ∂2r ûℓ(r)Yϑ,ℓ(ϑ)
]

, (2.102b)

∂ϑu(r, ϑ) =
L−1
∑

ℓ=0

[

−ℓ(ℓ+ 1)ûℓ(r)Yℓ(ϑ)−
cosϑ

sinϑ
ûℓ(r)Yϑ,ℓ(ϑ)

]

≡
L−1
∑

ℓ=0

ûℓ(r) [S1 +V1] , (2.102c)

∂2ϑu(r, ϑ) =
L−1
∑

ℓ=0

[

+ℓ(ℓ+ 1)
cosϑ

sinϑ
ûℓ(r)Yℓ(ϑ)
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+

(

1− ℓ(ℓ+ 1) + 2
cos2 ϑ

sin2 ϑ

)

ûℓ(r)Yϑ,ℓ(ϑ)

]

≡
L−1
∑

ℓ=0

ûℓ(r) [S2 +V2] , (2.102d)

∂r∂ϑu(r, ϑ) =

L−1
∑

ℓ=0

[

−ℓ(ℓ + 1)∂rûℓ(r)Yℓ(ϑ)−
cosϑ

sin ϑ
∂rûℓ(r)Yϑ,ℓ(ϑ)

]

≡
L−1
∑

ℓ=0

∂rûℓ(r) [S1 +V1] . (2.102e)

Tensor quantity

Especially from the computational point of view a tensor quantity can be seen as
a specific combination of the previously discussed scalar and vector ones.

Proposition 2.4.3. A tensor quantity is (here we have in general both
contributions v̂ℓ and ŵℓ non-vanishing in equation (2.97))

u(r, ϑ) =

L−1
∑

ℓ=0

uℓ(r) (Yϑϑ)l (ϑ) =

L−1
∑

ℓ=0

[

−ℓ(ℓ+ 1)

2
ûℓ(r)Yℓ(ϑ)−

cosϑ

sin ϑ
ûℓ(r)Yϑ,ℓ(ϑ)

]

.

(2.103)

In the notation of equation (2.97) we can identify

v̂ℓ = − ℓ(ℓ+ 1)

2
ûℓ, (2.104a)

ŵℓ = − cosϑ

sin ϑ
ûℓ. (2.104b)

The derivatives are

∂ru(r, ϑ) =
L−1
∑

ℓ=0

[

−ℓ(ℓ+ 1)

2
∂rûℓ(r)Yℓ(ϑ)−

cosϑ

sin ϑ
∂rûℓ(r)Yϑ,ℓ(ϑ)

]

, (2.105a)

∂2ru(r, ϑ) =

L−1
∑

ℓ=0

[

−ℓ(ℓ+ 1)

2
∂2r ûℓ(r)Yℓ(ϑ)−

cosϑ

sin ϑ
∂2r ûℓ(r)Yϑ,ℓ(ϑ)

]

, (2.105b)

∂ϑu(r, ϑ) =
L−1
∑

ℓ=0

[

ℓ(ℓ+ 1)
cosϑ

sinϑ
ûℓ(r)Yℓ(ϑ)
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+

(

1− ℓ(ℓ+ 1)

2
+ 2

cos2 ϑ

sin2 ϑ

)

ûℓ(r)Yϑ,ℓ(ϑ)

]

≡
L−1
∑

ℓ=0

ûℓ(r) [S2 +V3] , (2.105c)

∂2ϑu(r, ϑ) =

L−1
∑

ℓ=0

[(

ℓ2(ℓ+ 1)2

2
− 3ℓ(ℓ+ 1)

cos2 ϑ

sin2 ϑ
− 2ℓ(ℓ+ 1)

)

ûℓ(r)Yℓ(ϑ)

+
cosϑ

sinϑ

(

3ℓ(ℓ+ 1)

2
− 5− 6

cos2 ϑ

sin2 ϑ

)

ûℓ(r)Yϑ,ℓ(ϑ)

]

(2.105d)

≡
L−1
∑

ℓ=0

ûℓ(r) [S3 +V4] , (2.105e)

∂r∂ϑu(r, ϑ) =

L−1
∑

ℓ=0

[

ℓ(ℓ+ 1)
cosϑ

sinϑ
∂rûℓ(r)Yℓ(ϑ)

+

(

1− ℓ(ℓ+ 1)

2
+ 2

cos2 ϑ

sin2 ϑ

)

∂rûℓ(r)Yϑ,ℓ(ϑ)

]

≡
L−1
∑

ℓ=0

∂rûℓ(r) [S2 +V3] . (2.105f)

Sometimes the following proposition is of use.

Proposition 2.4.4. The vector harmonics vanish for ℓ = 0 as do the tensor
harmonics for ℓ = 0 and 1.

Proof. We calculated in section 2.2.5 that for ℓ = 0 the scalar harmonics Yℓ=0 are
a constant, hence the vector harmonics are Yϑ,ℓ=0 = 0. We use equation (2.103)
as the formula for tensor harmonics. For ℓ = 1 we have also seen that the
ϑ-dependence is Yℓ=1 ∼ cosϑ and therefore the vector harmonics are
Yϑ,ℓ=1 ∼ − sin ϑ with the same prefactor. Those facts lead easily to the
conclusion that the tensor harmonics for both ℓ = 0 and ℓ = 1 have to vanish.
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2.4.2. The transformation between point and spectral space

A general variable u (we restrict here to the spatial part in r and ϑ again) is in
general given in the physical point space as u(r, ϑ). On a finite lattice in r (N + 1
points) and ϑ (L points, called collocation points, see section 2.2.4) we represent
it as matrix

u = uij ∈ M(N + 1× L,R). (2.106)

In the previous section 2.4 we calculated the spatial derivatives explicitly. For
that purpose the representation in modes in the spectral space is of advantage. It
is given as (remember the notation Yℓ(ϑ) for a general harmonic, see section 2.4)

u(r, ϑ) =
L−1
∑

ℓ=0

ûℓ(r)Yℓ(ϑ) =
L−1
∑

ℓ=0

(ûℓi)
†Mℓj . (2.107)

The dagger † needs some explanation. We prefer to write the modes as ûℓ(r).
That suggests in a matrix representation the index ℓ before i (the latter
corresponding to the (N + 1)-lattice in the coordinate r). For the multiplication
in equation (2.107) we need the transposed of that quantity though (and since we
are working in the real field the operation can be denoted by †).
We write the mode decomposition as a matrix equation

u = û† ·M, (2.108)

where û = ûℓi ∈ M(L×N + 1,R) the matrix where the modes (each dependent
on r) are stored in (and with the transposed matrix û† ∈ M(N + 1× L,R) of
course) and M =Mℓj = Yℓ(ϑj) ∈ M(L× L,R) the matrix representation for the
spherical harmonics.

If we are interested in the modes ûℓ(r) we just calculate

û = û†† =
(

û†MM−1
)†

=
(

u ·M−1
)†
. (2.109)

For given spectral cutoff L the matrix M and its inverse can be calculated, see
the following. In the implementation those matrices need only be calculated
once, afterwards they are just recalled.

We are interested in obtaining the modes from a given variable u we calculate
the transpose of

û† = uM−1. (2.110)
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2.4. The spatial derivatives

u is a fully ranked matrix, in general all entries non-vanishing, û† the transposed
entries of the mode decomposition, M−1 (with entries (M−1)jℓ) has to take care
of some properties coming from the spherical harmonics (compare
proposition 2.4.4 and the following discussion);

• if the ℓ = 0 mode vanishes, (M−1)j0 ≡ 0 (0th column),

• if the ℓ = 0 and ℓ = 1 modes vanish, (M−1)j0 = M−1)j1 ≡ 0 (0th and 1th

column),

• if ϑ0 should be ignored, (M−1)0ℓ ≡ 0 (0th row),

• if ϑL−1 should be ignored, (M−1)L−1,ℓ ≡ 0 ((L− 1)th row).

There might be situations (see below) where we have more grid points in
ϑ-direction than freedom to reduce the residuum, compare the discussions for the
(pseudo-)spectral approach in section 2.2.4. Hence it does make sense in those
situations to “ignore” a grid point for one ϑ-value for the minimization of the
residual.

Transformation matrices

In the following we calculate the transformation matrices M and the inverse
explicitly. As discussed in section 2.2.3 we take a staggered grid in ϑ with L
collocation points (j = 0, . . . , L− 1);

ϑj =

(

j +
1

2

)

π

L
=

1

2

π

L
,
3

2

π

L
, . . . ,

(

L− 1

2

)

π

L
= π

(

1− 1

2L

)

. (2.111)

Our transformation matrices are of the form (L× L),

Mℓj = Yℓ(ϑj) =











Y0(ϑ0) Y0(ϑ1) · · · Y0(ϑL−1)

Y1(ϑ0)
. . .

...
...

. . .
...

YL−1(ϑ0) · · · · · · YL−1(ϑL−1)











. (2.112)

Remember the notation introduced in section 2.4 where Yℓ(ϑ) represents either a
scalar Yℓ(ϑ), a vector Yϑ,ℓ(ϑ) or a tensor Yϑϑ,ℓ(ϑ) spherical harmonic.

The inverse is (M−1)jℓ. From proposition 2.4.4 we know that (∂ϑY )ℓ=0 = 0 and
(Yϑϑ)ℓ=0 = (Yϑϑ)ℓ=1 = 0. Hence our three different transformation matrices for
the transformation from point space to configuration space are given as follows.
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Scalar quantity

Mℓj = Yℓ(ϑj) =











Y0(ϑ0) Y0(ϑ1) · · · Y0(ϑL−1)

Y1(ϑ0)
. . .

...
...

. . .
...

YL−1(ϑ0) · · · · · · YL−1(ϑL−1)











. (2.113)

The matrix has rank L, thus full rank and inversion is possible, leading again to
a L× L matrix (M−1)jℓ.

Vector quantity

Mℓj =











0 0 · · · 0
(∂ϑY )1(ϑ0) (∂ϑY )1(ϑ1) · · · (∂ϑY )1(ϑL−1)

...
...

. . .
...

(∂ϑY )L−1(ϑ0) (∂ϑY )L−1(ϑ1) · · · (∂ϑY )L−1(ϑL−1)











. (2.114)

The matrix has rank L− 1, it is in principle not invertible. For the application of
M in equation (2.108) the individual modes ûℓ ↔ xli are given. By the structure
of the matrix multiplication the zeroth row in M takes automatically care of
ignoring every entry of the zeroth mode. So technically, the entries can be
arbitrary. We mention that the ℓ = 0-mode of the vector quantity has zero-mean.

The inversion (needed in equation (2.110) when a two-dimensional variable is
given and we are interested in the decomposition in modes) is more involved.
The fact that the zeroth mode vanishes for the vector harmonics means that we
have “more grid points than contributing modes”. This implies we can just
ignore one grid point and obtain a (L− 1)× (L− 1) submatrix which should
have full rank and be invertible. There is an ambiguity in the choice of that grid
point for the pseudo-spectral approach. Let us simply choose the last one, ϑL−1.

We obtain the submatrix

M̃ℓj =







(∂ϑY )1(ϑ0) · · · (∂ϑY )1(ϑL−2)
...

. . .
...

(∂ϑY )L−1(ϑ0) · · · (∂ϑY )L−1(ϑL−2)






. (2.115)

The submatrix has itself full rank and is therefore invertible. Inverting it
(numerically) gives a (L− 1× L− 1) matrix M̃−1 with entries (M̃−1)jℓ. Building
the full “pseudo-inverted” matrix requires to embed M̃−1 into a L× L matrix
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M̂−1. There we set the Lth row equals zero. It means the values u(r, ϑL−1) are
ignored in the mode decomposition. M̃−1 has the form (∗ stands for some entry
that is in general non-vanishing)

(M̂−1)jℓ =











0 ∗ · · · ∗
...

...
. . .

...
0 ∗ · · · ∗
0 0 · · · 0











. (2.116)

Hence the “pseudo-unity matrix” reads 1 = M ·M−1 = diag(0, 1, . . . , 1).

Tensor quantity

Mℓj =















0 0 · · · 0
0 0 · · · 0

(Yϑϑ)2(ϑ0) (Yϑϑ)2(ϑ1) · · · (Yϑϑ)2(ϑL−1)
...

...
. . .

...
(Yϑϑ)L−1(ϑ0) (Yϑϑ)L−1(ϑ1) · · · (Yϑϑ)L−1(ϑL−1)















. (2.117)

The matrix has rank L− 2 and is not invertible. Exactly in parallel to the vector
transformation the (L− 2)× (L− 2) submatrix which is obtained by ignoring
(for instance) the first and the last column (equivalently grid points ϑ0 and
ϑL−1), namely

M̃jℓ =







(Yϑϑ)2(ϑ1) · · · (Yϑϑ)2(ϑL−2)
...

. . .
...

(Yϑϑ)L−1(ϑ1) · · · (Yϑϑ)L−1(ϑL−2)






. (2.118)

has full rank, can be inverted and gives M̃−1.

Again, the full “pseudo-inverted” matrix is obtained by setting the 0th and
(L− 1)th row equals zero (hence the values at ϑ0 and ϑL−1 of u are ignored in the
mode decomposition).
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M̃−1 has the form

(M̂−1)jℓ =















0 0 0 · · · 0
0 0 ∗ · · · ∗
...

...
...

. . .
...

0 0 ∗ · · · ∗
0 0 0 · · · 0















. (2.119)

Hence the “pseudo-unity matrix” reads 1 = M ·M−1 = diag(0, 0, 1, . . . , 1).

2.4.3. The derivatives in the spatial coordinates

Here we give some explicit formulas for spatial derivatives for our 2-dimensional
(in r and ϑ) variable u(r, ϑ) represented as matrix with entries uij. We state
again just the propositions, the proofs can be easily obtained by direct
calculation. Compare with sections 2.2.3 and 2.2.5.

Derivatives in r

We have for r ∈ [0, R] the grid points ri = i∆r, i = 0 . . . N , so N + 1 points. We
know that each individual spherical harmonic Yℓ implies a definite parity in r at
the origin for the modes ûℓ(r). Therefore we can use on the mode level the parity
property at the inner boundary r = 0. In general we consider superpositions of
modes. Hence we have no parity information and cannot make use of it.
Therefore we use at the inner boundary a one-sided stencil of the same accuracy
as the centered stencil for the rest of the grid.

Proposition 2.4.5. The derivative of u in r is given by the centered stencil
which is accurate up to O(∆r2) as

∂ruij =
ui+1,j − ui−1,j

2∆r
, i = 1, . . . , N, (2.120a)

∂ru0j =
−3u0j + 4u1j − u2j

2∆r
, (2.120b)

∂ruNj =
uN−2,j − 4uN−1,j + 3uNj

2∆r
. (2.120c)

The second derivatives are

∂2ruij =
ui−1,j − 2uij + ui+1,j

∆r2
, i = 1, . . . , N, (2.121a)
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∂2ru0j =
2u0,j − 5u1j + 4u2,j − u3j

∆r2
, (2.121b)

∂2ruNj =
−uN−3,j + 4uN−2,j − 5uN−1,j + 2uNj

∆r2
. (2.121c)

Derivatives in ϑ

We use the relation u = û†M and û = (uM−1)† ⇒ û† = uM−1 (recall equations
(2.108) and (2.109) in section 2.4.2 above).

Proposition 2.4.6. We have the following scheme for the derivatives of u in ϑ

∂ϑu = ∂ϑ(û
†M) = û†∂ϑM = uM−1∂ϑM, (2.122a)

∂2ϑu = ∂2ϑ(û
†M) = û†∂2ϑM = uM−1∂2ϑM, (2.122b)

∂ϑ∂ru = ∂ϑ∂r(û
†M) = (∂rû

†)(∂ϑM) = ∂r(uM
−1)∂ϑM = (∂ru)M

−1∂ϑM.
(2.122c)

In the following we determine for each quantity the matrices which determine the
derivatives. For a given variable in the point space the matrices calculate and
return the point values of the derivatives. They are supposed to be implemented
for the numerical studies. It is a simple calculation and the corresponding proof
is in some sense included already in the expression.

1st derivative in ϑ: ∂ϑu = uM−1∂ϑM

Proposition 2.4.7. For a scalar quantity u the corresponding matrix is

(Yℓ)
−1∂ϑYℓ = (Yℓ)

−1(Yϑ)ℓ (2.123)

where the last object are just the vector harmonics. For a vector quantity u the
matrix reads

((Yϑ)ℓ)
−1∂ϑYϑ = ((Yϑ)ℓ)

−1(S1 +V1). (2.124)

Recall the notation on pages 53 and following for the quantities as S1. The
tensor quantity u has the matrix

((Yϑϑ)ℓ)
−1∂ϑYϑϑ = ((Yϑϑ)ℓ)

−1(S2 +V3). (2.125)
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2nd derivative in ϑ: ∂2ϑu = uM−1∂2ϑM

Proposition 2.4.8. For a scalar quantity u the corresponding matrix is

(Yℓ)
−1∂ϑYℓ = (Yℓ)

−1(S1 +V1). (2.126)

For a vector quantity u the matrix reads

((Yϑ)ℓ)
−1∂ϑYϑ = ((Yϑ)ℓ)

−1(S2 +V2). (2.127)

The tensor quantity u has the matrix

((Yϑϑ)ℓ)
−1∂ϑYϑϑ = ((Yϑϑ)ℓ)

−1(S3 +V4). (2.128)

Derivatives in r and ϑ: ∂ϑ∂ru = (∂ru)M
−1∂2ϑM For the implementation this

derivative is quite easy. Because of the product structure of the variable both
derivatives can be calculated successively.

2.5. Laplace operator for R≥0 × S2

A central assumption of our formulation is that we require that our variables
admit a spectral decomposition in eigenfunctions of the Laplace operator on the
sphere S2. In this section we show that for a non-scalar theory the spin-weight is
important, compare section 2.2.5. In the following we do not consider quantities
on the sphere but in the full ball R≥0 × S2. That allows us to derive the leading
r-behavior at the origin which will be beneficial for the implementation. Some
results of this section seem to be known in principle as they are listed in Thorne
(1980, Part 1, section II F) even though it is hard to find any explicit
calculations23. In the respect of the the current section also Nakamura (1984) is
of interest, see also Nagar and Rezzolla (2005).

We consider the Laplace equation on the sphere in spherical polar coordinates,
see appendix A.1.2. Given the orthogonal basis (∂r, ∂ϑ, ∂ϕ) the components of the
metric tensor are fij = diag(1, r2, r2 sin2 ϑ). Its non-vanishing Christoffel symbols
are calculated in appendix A.1.2 as well. In the following we restrict to
hypersurface-orthogonal axisymmetry, see section 3.5, so we suppress basically
the ϕ-dependence.

23The group in Meudon published similar calculations as the ones we present here, see
Bonazzola et al. (2004), Grandclément and Novak (2009), Novak et al. (2010). They use a
different basis, (∂r, r

−1∂ϑ, (r sinϑ)
−1∂ϕ). The advantage is that the metric tensor then reads

fij = diag(1, 1, 1), so the basis is even orthonormal. The disadvantage is that it might be a
less common choice. Therefore their results differ from ours and are not directly comparable.

62



2.5. Laplace operator for spherical coordinates

Definition 2.5.1. For an n-dimensional manifold the Laplace operator or
Laplacian ∆ is defined as top-dimensional second covariant derivative,

∆ := ∇2 = f ij∇i∇j , (2.129)

summation over i, j = 1, . . . , n is implied. The Laplace equation for some
quantity ψ is ∆ψ = 0. A solution of the Laplace equation is called harmonic.
The Laplace-Beltrami operator is the Laplace operator for the
(n− 1)-dimensional hypersurface, also denoted by ∆.

Proposition 2.5.1. In Cartesian coordinates (here in general n dimensions,
usually we restrict to n = 3) the Laplace operator reads

∆ :=
n
∑

i=1

∂2xi

n=3
= ∂2x + ∂2y + ∂2z . (2.130)

In n spherical polar coordinates (so in R× Sn−1) the Laplace operator can be
written by using the Laplace-Beltrami operator ∆Sn−1 and a radial contribution
as

∆R≥0×Sn−1 = ∂2r + (n− 1)r−1∂r + r−2∆Sn−1 . (2.131)

The Laplace-Beltrami operator can be written in a recursive way

∆Sn−1 = ∂2ϑ + (n− 2)
cosϑ

sin ϑ
∂ϑ +

1

sin2 ϑ
∆Sn−2 . (2.132)

In the case of n = 3 the Laplace operator is

∆R≥0×S2 = ∂2r +
2

r
∂r +

1

r2
∆S2 (2.133)

with Laplace-Beltrami operator

∆S2 = ∂2ϑ +
cosϑ

sin ϑ
∂ϑ +

1

sin2 ϑ
∂2ϕ. (2.134)

The Laplace equation is elliptic.

Proof. In Cartesian coordinates it is trivial and we refer to example 2.3.1. For
other coordinates we can make use of the transformations as given in
appendix A.1.2.

In the following we investigate the Laplace operator for a scalar, vector and a
symmetric two tensor. We restrict ourself to the three-dimensional case, so to
R× S2 and assume hypersurface-othogonal axisymmetry, see section 3.5. This is
not a conceptual limitation but just easier in the calculation and sufficient for
our needs in the remainder. Its generalization to the case without axisymmetry
or to higher dimensions is straightforward.
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2.5.1. Scalar Laplace equation

Proposition 2.5.2. The regular solutions to the scalar Laplace equation (in
axisymmetry) are given by the solid spherical harmonics

L−1
∑

ℓ=0

rℓφ̄ℓYℓ(ϑ) (2.135)

with (scalar) Yℓ (see section 2.2.5) and L constants φ̄ℓ.

Proof. In spherical polar coordinates the Laplace equation for a scalar function φ
can be calculated as

∆R≥0×S2φ = f ij∇i∂jφ = f ij∂i∂jφ− f ijΓk
ij∂kφ

= ∂2rφ+ 2r−1∂rφ+ r−2

[

∂2ϑφ+
cosϑ

sin ϑ
∂ϑφ

]

. (2.136)

Making the product ansatz

φ(r, ϑ) =

L−1
∑

ℓ=0

φ̂ℓ(r)Yℓ(ϑ) ≡ φ̂ℓYℓ (2.137)

gives

[

∂2r + 2r−1∂r + r−2∆S2

]

φ̂ℓYℓ

=
[

∂2r + 2r−1∂r − r−2ℓ(ℓ+ 1)
]

φ̂ℓYℓ = 0. (2.138)

The ordinary differential equation in r has the general solution for φ̂ℓ in the form

φ̂ℓ = φ̄+
ℓ r

ℓ + φ̄−
ℓ r

−(ℓ+1). (2.139)

Regularity at the origin requires φ̄−
ℓ to vanish and therefore the regular solution

looks like the one claimed above (where we dropped the superscript +).
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2.5. Laplace operator for spherical coordinates

2.5.2. Vector Laplace equation

Since we are more interested in a one-form with components βi than in a vector
βi we consider directly the covariant components.

Proposition 2.5.3. The regular solutions of the vector Laplace equation in
hypersurface-orthogonal axisymmetry (βϕ = 0) are given by the
spin-one-weighted components

βr =
(

β̄1r
ℓ+1 + β̄2r

ℓ−1
)

Yℓ(ϑ), (2.140a)

βϑ =
(

β̄1r
ℓ+2 + β̄2r

ℓ
)

Yϑ,ℓ(ϑ) (2.140b)

with constants β̄1 and β̄2 (and β̄2 vanishes for ℓ = 0).

Proof. Straightforward calculation of the covariant derivatives of the components
of the one-form leads24 to

∆R≥0×S2βr = ∂2rβr + 2r−1∂rβr + r−2

[

∂2ϑ +
cos ϑ

sin ϑ

]

βr

− 2r−2βr − 2r−3

[

∂ϑ +
cos ϑ

sin ϑ

]

βϑ, (2.141a)

∆R≥0×S2βϑ = ∂2rβr + r−2

[

∂2ϑ +
cosϑ

sin ϑ

]

βr − r−2

(

1 +
cos ϑ

sin ϑ

)

βϑ + 2r−1∂ϑβr,

(2.141b)

∆R≥0×S2βϕ = 0. (2.141c)

Again with the product ansatz

βr(r, ϑ) =

L−1
∑

ℓ=0

β̂r,ℓ(r)Yℓ(ϑ) ≡ β̂r,ℓYℓ, (2.142a)

βϑ(r, ϑ) =

L−1
∑

ℓ=0

β̂ϑ,ℓ(r)Yϑ,ℓ(ϑ) ≡ β̂ϑ,ℓYϑ,ℓ, (2.142b)

βϕ(r, ϑ) = 0 (2.142c)

we arrive at a coupled set of linear ordinary differential equations for the
components

∂2r β̂r + 2r−1∂rβ̂r − ℓ(ℓ+ 1)r−2β̂r − 2r−2β̂r + 2ℓ(ℓ+ 1)r−3β̂ϑ = 0, (2.143a)

24Here we see the problems if we compare with the results obtained by the group in Meudon
cited at the beginning of the section. Their choice results in different factors which makes
the comparison unpleasant.
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2. Differential equations and numerical methods

∂2r β̂ϑ − ℓ(ℓ+ 1)r−2β̂ϑ + 2r−1β̂r = 0. (2.143b)

One way to solve the coupled system is to decouple it which gives one ordinary
differential equation of fourth order,

−(ℓ− 1)ℓ(ℓ+ 1)(ℓ+ 2)

2
r−3β̂ϑ +

ℓ(ℓ+ 1)

r
∂2r β̂ϑ − 2∂3r β̂ϑ −

r

2
∂4r β̂ϑ = 0 (2.144)

with solution

β̂r,ℓ = −c1(ℓ+ 1)r−(ℓ+2) + ℓc2r
−ℓ − (ℓ+ 1)c3r

ℓ+1 + ℓc4r
ℓ−1, (2.145a)

β̂ϑ,ℓ = c1r
−(ℓ+1) + ℓc2r

−(ℓ−1) + c3r
ℓ+2 + c4r

ℓ−1. (2.145b)

Regularity requires c1 = 0 and c2 = 0 (for ℓ ≥ 1) and therefore leads to the
claimed result. In addition we can read off that β̂r,ℓ = O(rℓ−1) for ℓ 6= 0 and

O(r1) for ℓ = 0 and β̂ϑ,ℓ = O(rℓ) close to the origin.

2.5.3. Tensor Laplace equation

Theorem 2.5.1. Consider a symmetric two-tensor Mij in
hypersurface-orthogonal axisymmetry (in particular Mϕr = 0 =Mϕϑ) which is
harmonic (solution of the Laplace equation). The components of the solution of
the Laplace equation can be combined such that its angular part expands (see
section 2.2.5 for the definition of the spherical harmonics) in

• two scalar components with Yℓ = Yℓ,
• a vector component with Yℓ = Yϑ,ℓ,
• and a tensor component with Yℓ = Yϑϑ,ℓ

and each of these quantities, say u, expands in contributions of spin-weight 0 and
spin-weight ±2 as

u =
∑

(

ūℓr
ℓ−2 + v̄ℓr

ℓ + w̄ℓr
ℓ+2
)

Yℓ (2.146)

with constants ūℓ, v̄ℓ and w̄ℓ.

Proof. Calculating the second covariant derivatives for the two-tensor gives (here
we skip the subscript R≥0 × S2 of the Laplacian)

∆Mrr = ∂2rMrr + 2r−1∂rMrr + r−2

[

∂2ϑ +
cosϑ

sin ϑ
∂ϑ

]

Mrr − 4r−2Mrr
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− 4r−3

[

∂ϑ +
cosϑ

sinϑ

]

Mϑr + 2r−4

[

Mϑϑ +
Mϕϕ

sin2 ϑ

]

, (2.147a)

∆Mϑr = ∂2rMϑr + r−2

[

∂2ϑ +
cosϑ

sin ϑ
∂ϑ +

cos2 ϑ

sin2 ϑ

]

Mϑr − 4r−2Mϑr

+ 2r−1∂ϑMrr − 2r−3

[

∂ϑMϑϑ +
cosϑ

sinϑ

(

Mϑϑ −
Mϕϕ

sin2 ϑ

)]

, (2.147b)

∆Mϑϑ = ∂2rMϑϑ − 2r−1∂rMϑϑ + r−2

[

∂2ϑ +
cos ϑ

sin ϑ
∂ϑ

]

Mϑϑ

− 2r−2 cos
2 ϑ

sin2 ϑ
Mϑϑ + 4r−1∂ϑMϑr + 2Mrr + 2r−2 cos

2 ϑ

sin2 ϑ

Mϕϕ

sin2 ϑ
, (2.147c)

∆Mϕϕ = ∂2rMϕϕ − 2r−1∂rMϕϕ + r−2

[

∂2ϑ − 3
cosϑ

sin ϑ
∂ϑ

]

Mϕϕ

+ 2r−2 Mϕϕ

sin2 ϑ
+ 4r−1 sinϑ cosϑMϑr + 2 sin2 ϑMrr + 2r−2 cos2 ϑMϑϑ

(2.147d)

and ∆Mϕr = 0 = ∆Mϕϑ. The remaining components follow from symmetry. We
expand the components in equation (2.147) in eigenfunctions on the two-sphere
S2, referring to section 2.2.5 for the notation of our harmonics,

∆Mrr(r, ϑ) = A(r)Y (ϑ), (2.148a)

∆Mϑr = rB(r)Yϑ(ϑ), (2.148b)

∆Mϑϑ = r2
(

−A(r)
2

Y (ϑ) + C(r)Yϑϑ(ϑ)

)

, (2.148c)

∆Mϕϕ = r2 sin2 ϑ

(

−A(r)
2

Y (ϑ)− C(r)Yϑϑ(ϑ)

)

(2.148d)

where we make use of the notation and abbreviations (for example summation is
automatically understood) as above. Considering further ∆Mϑr and the
combinations ∆Mϑϑ ±∆Mϕϕ/ sin

2 ϑ (alternatively ∆Mrr instead of the
combination with “+”) the Laplace equation leads to

{

r2∂2rA(r) + 2r∂rA(r)− [6 + ℓ(ℓ+ 1)]A(r) + 4l(ℓ+ 1)B(r)
}

Y (ϑ) = 0, (2.149a)
{

r2∂2rB(r) + 2r∂rB(r)− [4 + ℓ(ℓ+ 1)]B(r) + 3A(r)

+[(ℓ+ 1)− 2]C(r)}Yϑ(ϑ) = 0, (2.149b)
{

r2∂2rC(r) + 2r∂rC(r)− [−2 + ℓ(ℓ+ 1)]C(r) + 4B(r)
}

Yϑϑ(ϑ) = 0. (2.149c)

To find a solution of equation (2.149) we use the ansatz A(r) = rαĀ, B(r) = rβB̄
and C(r) = rγC̄ with constants in r (for each ℓ-mode) denoted with a bar. Then
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2. Differential equations and numerical methods

equation (2.149) becomes (without the angular part, but still for each ℓ-mode a
separate set of equations)

4ℓ(ℓ+ 1)B̄rβ + [−6 − ℓ(ℓ+ 1) + α(α + 1)]Ārα = 0, (2.150a)

3Ārα + [−4− ℓ(ℓ+ 1) + β(β + 1)]B̄rβ + [−2 + ℓ(ℓ+ 1)]C̄rγ = 0, (2.150b)

4B̄rβ + [2− ℓ(ℓ+ 1) + γ(γ + 1)]C̄rγ = 0. (2.150c)

We are just interested in non-trivial solutions which implies α = β = γ. Only a
few values for the exponents lead to consistent solutions, let us list the regular
ones25:

• α = β = γ = ℓ implies Ā = 2ℓ(ℓ+ 1)B̄/3 and C̄ = −2B̄,
• α = β = γ = ℓ− 2 implies Ā = ℓB̄ and C̄ = B̄/(ℓ− 1),
• α = β = γ = ℓ+ 2 implies Ā = −(ℓ+ 1)B̄ and C̄ = −B̄/(ℓ+ 2).

Therefore the relation (2.146) is shown which completes the proof.

Corollary 2.5.1. Close to the origin the regular solutions to the tensor Laplace
equation consist of only very few modes. In particular up to O(∆r2) we have for
the first two grid points the relations (with notation as in theorem 2.5.1),

at r = 0 : u = v̄0Y0 + ū2Y2, (2.151)

at r = ∆r : u = v̄0Y0 + ū2Y2 + (v̄1Y1 + ū3Y3)∆r +O(∆r2). (2.152)

For vector and tensor quantities the expressions even simplify further because of
the vanishing of the lowest spherical harmonics, see proposition 2.4.4.

Proof. Using theorem 2.5.1 we write the variable in the form of a series

u =
L−1
∑

ℓ=0

ûℓYℓ =
∑

ℓ

(

ūℓr
ℓ−2 + v̄ℓr

ℓ + w̄ℓr
ℓ+2
)

Yℓ

=
(

ū0r
−2 + v̄0r

0 + w̄0r
2
)

Y0 +
(

ū1r
−1 + v̄1r

1 + w̄1r
3
)

Y1

+
(

ū2 + v̄2r
2 + w̄2r

4
)

Y2 +
(

ū3r
1 + v̄3r

3 + w̄3r
5
)

Y3

+
(

ū4r
2 + v̄4r

4 + w̄4r
6
)

Y4 + . . . . (2.153)

Regularity at the origin requires that ū0 = 0 = ū1. Therefore close to the origin
we can write

u = v̄0Y0 + w̄2Y2 + (v̄1Y1 + w̄3Y3) r +O(r2) (2.154)

and the claimed relations follow.
25It is interesting to note that there are formal solutions with exponents ℓ ± 1 as well. They

come with a negative sign in the exponent and are thus irregular.
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2.6. Wave equation in spherical coordinates

Therefore in the numerics it is always possible to apply a filter that makes use of
corollary 2.5.1 which means that all the other modes can be set to zero at the
innermost grid points in the (pseudo-)spectral formulation.

Note in particular that the variables may be ϑ-dependent at the origin which is
just a single point at r = 0. This is due to the tensorial character of the
equation. For a scalar equation for example (see section 2.5.1 there is just a
single contribution (for each mode) proportional to rℓ. Therefore at r = 0 the
only possible ϑ-dependence is in Y0 which turns out (see section 2.2.5) to be
ϑ-independent though.

2.6. Axisymmetric scalar wave equation in spherical

polar coordinates

The aim for this thesis is the study of Einstein’s equations in spherical polar
coordinates. A subset of these equations have some wave-like character. They
can be seen as a nonlinear generalization of the wave equation. In this section we
study the scalar wave equation in these coordinates where one is faced with some
similar problems. The results derived here and its generalizations are very helpful
for later studies of Einstein’s equations. See also Frauendiener (2002) where the
discretization in axisymmetry and the stability of the wave equation is examined.

2.6.1. Some analytical considerations and consequences for the
numerical implementation

Following Gundlach et al. (2013) where the first steps of this section are already
included we consider now the more general situation of n spatial dimensions
(usually n = 3 and Sn−1 = S2). Let us consider the n+ 1-dimensional wave
equation26 in spherical coordinates (t, r, ϑ, ϕ, . . .) for a scalar27 quantity φ (see for
the Laplacian also definition 2.5.1),

2M(1,1)×Sn−1φ =
(

∂2r + (n− 1)r−1∂r + r−2△Sn−1 − ∂2t
)

φ = 0. (2.155)

26In equation (2.155) we introduced already the d’Alembert operator 2M(1,1)×Sn−1 :=
[

△R≥0×Sn−1 − ∂2
t

]

.
27It would be interesting to extend the analysis to more sophisticated quantities than scalars

like those we considered in section 2.5.
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Let φ be regular at the origin and analytic28. We make use of the eigenfunctions
and -values of the Laplace operator on Sn−1, n ≥ 2,

△Sn−1Yℓm... = −ℓ(ℓ + n− 2)Yℓm.... (2.156)

That suggests an expansion in (spin-weight 0) spherical harmonics, see
section 2.2.5,

φ(t, r, ϑ, ϕ, . . .) =
∑

ℓm...

φ̂(t, r)ℓm...Yℓm... (2.157)

and the wave equation reads on the mode level

2M(1,1)×Sn−1φ =
∑

ℓm...

2̂M(1,1) φ̂ℓm...Yℓm... = 0 (2.158)

where

2̂M(1,1) φ̂ℓm... =
[

−∂2t + △̂Sn−1

]

φ̂ℓm...

=

[

−∂2t + r−(n−1)∂r
(

rn−1∂r
)

− ℓ(ℓ+ n− 2)

r2

]

φ̂ℓm... = 0 (2.159)

must be satisfied for each mode. In the standard case (n = 3, S2) we are dealing
with the equation

[

−∂2t + r−2∂r
(

r2∂r
)

− ℓ(ℓ+ 1)

r2

]

φ̂ℓm = 0. (2.160)

Proposition 2.6.1. φ̂ℓm... is regular at the origin if and only if φ̂ℓm... = rℓφ̄ℓm...

and φ̄ℓm... =
∑

k≥0,k even ckr
k.

Proof. We use the wave equation (2.158) and insert a general Taylor expansion of
φ̂ (analyticity and regularity at the origin required), φ̂ =

∑

k
ak
k!
rk where the ak

dependent on t only. We demand the coefficients of the resulting power series in r
to vanish. It gives the result in the proposition. The other direction is trivial.

Making explicit use of a stencil for the derivative in r allows us to determine the
first few grid-points algebraically. So instead of applying the field equation at
the first few innermost grid points we can determine their value equivalently by
using some algebraic relations instead. This seems to be beneficial when the field
equation turns out to be formally singular. In some sense we push the inner
boundary further out. This needs to be done mode by mode since the relations
are not the same for all modes.
28Analyticity means that there is a neighborhood where its Taylor series converges.
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2.6. Wave equation in spherical coordinates

Proposition 2.6.2. For the zeroth grid point we have the algebraic relation

u0 =

{

4u1−u2

3
, ℓ = 0,

0, ℓ 6= 0.
(2.161)

Proof. Since the modes are u = O(rℓ) at the origin the statement u0 = 0 is
obviously true ∀ℓ ≥ 1. The mode for ℓ = 0 has an even expansion at the origin,
u = ar0 + br2 + . . . for some constant numbers a, b ∈ R. If we denote the step
size by ∆r we conclude (up to higher powers in ∆r)

u0 = a → a = u0, (2.162a)

u1 = a + b∆r2 → b =
u1 − u0
∆r2

, (2.162b)

u2 = a+ 4b∆r2. (2.162c)

The claimed result follows.

Alternatively one could use a one-sided stencil of the same order for the
derivative at the origin and since, as we will show shortly, the first derivative
vanishes for ℓ = 0 the same result follows.

Remark 2.6.1. Going further one can also use a higher-order approximation,
namely at the origin u = ar0 + br2 + cr4 + . . ., then taking into account the first
three grid points to determine the zeroth one. Then we obtain

u0 =
15u1 − 6u2 + u3

10
. (2.163)

If the numerical division by r is required in the equations it is absolutely
necessary to algebraically determine the zeroth grid point (if the grid is
vertex-centered, for a staggered grid it might be possible to use the field equation
though).

As an example for the algebraic relations for the grid points in the neighborhood
of the origin let us take a second-order accurate stencil. Therefore the first
derivatives at the zeroth grid point read

∂ru|0 =
u1 − u−1

2h
, (2.164a)

∂2ru|0 =
u1 − 2u0 + u−1

h2
, (2.164b)
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∂3ru|0 =
−u−2 + 2u−1 − 2u1 + u2

2h3
, (2.164c)

∂4ru|0 =
u−2 − 4u−1 + 6u0 − 4u1 + u2

h4
. (2.164d)

Proposition 2.6.3. As long as the Taylor expansion is valid and we use a
second-order accurate scheme we have the following hierachy

∀ℓ ≥ 1 : u0 = 0, (2.165a)

∀ℓ ≥ 3 : u1 = 0, (2.165b)

∀ℓ ≥ 5 : u2 = 0, (2.165c)

. . . .

Proof. In proposition 2.6.1 we saw that the modes behave as u = O(rℓ) close to
the origin. Therefore the derivatives behaves as ∂ru = O(rℓ−1) there and vanishes
at the origin for ℓ ≥ 1. For higher derivatives we have similar statements for
higher ℓ.

Further we use the fact that we know the parity of the mode function and
together with the ghost-point-technique (see section 2.2.3) we can express the
first few grid points with negative index by their positive pendant, u−i = ±ui.

Combining the vanishing of the derivatives at the origin and the stencil for the
derivative gives the desired result.

Remark 2.6.2. We should compare our results with the ones obtained in
Csizmadia et al. (2013). The basic statement (“replace innermost grid points by
algebraic relations”) is equivalent. They use the regularity of the Laplacian and
parity of the modes to derive u|0 = 0 ∀ℓ ≥ 1 and ∂ru|0 = 0 ∀ℓ 6= 1. Together with
their fourth-order stencil it results in conditions for the zeroth (origin), first
(next to origin) and second grid point.

2.6.2. Numerical confirmation of a stable evolution

Concerning the coding and the implementation consider also the remarks in
section 5.2.1.

For the implementation we use (similarly as in example 2.3.1) a first-order in
time formulation for the wave equation and n = 3, m = 0 (scalar wave equation
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in axisymmetry), with φ̂ ≡ γ (observe the similarity with the Cauchy formulation
of general relativity in section 3.3),

∂tγ = − 2K, (2.166a)

∂tK = − 1

2

[

∂2r +
2

r
∂r −

ℓ(ℓ+ 1)

r2

]

γ. (2.166b)

Proposition 2.6.4. For the posed problem we can even give the exact solution
with the ansatz (superscript + for ingoing solution and − for outgoing)

φ±(t, r) =
ℓ
∑

j=0

rj−ℓ−1cjG
(j)(x) and cj =

(−2)j−ℓ(2ℓ− j)!

(ℓ− j)!j!
(2.167)

and generating function G(x), x = r ± t and jth derivative G(j). Compare with
the exact solution we obtain for linearized Einstein’s equations in section 4.6.

Proof. We just have to plug the ansatz in the wave equation and see that it is
indeed a solution. The regular solution γ is given as γ = φ+ − φ−. It simplifies
the choice of initial data and the convergence tests.

The term ℓ(ℓ+ 1)/r2 in the time evolution of K becomes problematic for high ℓ
(and high spatial resolution). If we just use the necessary (for a vertex-centered
grid) condition (2.161) the simulation quickly (usually after just a few time
steps) leads to a blow up in the origin (the points very close to the origin).

Controlling some innermost grid points with algebraic relations in
equation (2.165) stabilizes the origin. As an example (we choose to display ℓ = 5
and ℓ = 11) consider figure 2.4. Since we are using a second-order stencil we
expect the error to reduce with a factor of four if we double the resolution. This
seems to be more than achieved. Observe that the scale is significantly different
for the higher ℓ-mode.
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(a) For ℓ = 5.
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(b) For ℓ = 11.

Figure 2.4.: We show the convergence plots for the wave equation. We display the
L2-norm of the difference between numerical and exact solution for
two resolutions. The higher resolution is multiplied with four (second-
order scheme).

We can also calculate the quotient between the norms of different resolutions.
For a second-order scheme we expect the quotient to be at least four for a
convergent implementation. In figure 2.5 we see that the factor of four is indeed
more than achieved. We just plot the quotient for ℓ = 5, the plot for ℓ = 11 looks
very similar. The code is in fact overconverging.
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In these simulation it is in fact enough to determine the zeroth, first and second
grid point algebraically (setting it to zero). Going higher, say ℓ = 37 for instance,
already requires the third grid point to be included in the considerations. This
again fails for some higher ℓ which, for example, requires the controlling of the
fourth grid point for ℓ = 47. One should remark that the last statements with
some particular ℓ are not at all sharp. For instance the stencil and the particular
formulation of the problem should have some influence.
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Figure 2.5.: The quotient between the L2-norms plotted in figure 2.4, here for
ℓ = 5.

2.6.3. Generalizations, in particular to situations without parity

Let us generalize the results obtained in section 2.6.1 to the situation that we
will consider in chapter 5. The major difference is that we have no parity
information any more.

Nevertheless we can derive a statement how to express the zeroth grid point at
the origin algebraically with the values of the variable at neighboring grid
points close to the origin instead of applying the formally singular evolution
equations.

Proposition 2.6.5. The value u0 at the zeroth grid point for a variable u can be
expressed algebraically. With step size ∆r up to an error O(∆r2) we have

u0 = u2 − 2u1, (2.168)
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up to an error O(∆r3) it reads

u0 = 3u1 − 3u2 + u3 (2.169)

with ui denoting the value at the ith grid point.

Proof. Consider the Taylor expansion at the origin of the variable u up to O(∆r),

u(r = 0) = u0 = a, (2.170a)

u(r = ∆r) = u1 = a + b∆r + . . . , (2.170b)

u(r = 2∆r) = u2 = a + 2b∆rh+ . . . . (2.170c)

Up to O(∆r) we have

u(r = 0) = u0 = a, (2.171a)

u(r = ∆r) = u1 = a+ b∆r + c∆r2 + . . . , (2.171b)

u(r = 2∆r) = u2 = a+ 2b∆rh + 4c∆r2 + . . . , (2.171c)

u(r = 3∆r) = u3 = a+ 3b∆r + 9c∆r2 + . . . . (2.171d)

We cut the expressions and neglect the indicated further terms. With these
relations we express the grid point u0 as in the equations in the proposition.

So we are always able to use that relation to determine the innermost point u0
without using the (formally singular) field equations. Generalizations of the
proposition 2.6.5 are possible.

Actually from the numerical point of view we have better experience with a filter
correcting the variables close to the origin. The filter decomposes the variable
into modes and determines the innermost point on the mode level before
transforming back. According to section 2.5 we know the behavior in r close to
the origin of our variables. Most points can be controlled with proposition 2.6.3.
Nevertheless for the simulation of Einstein’s equations we can also apply an
additional trick.

Proposition 2.6.6. For mode functions û that behave close to the origin like
O(r1) (i.e. for a tensor quantity the modes with mode number ℓ = 1 and ℓ = 3,
see section 2.5) we set the zeroth grid point to zero, u0 = 0, and the first one to
(satisfied up to an error O(∆r2) in step size ∆r)

u1 =
1

2
u2 (2.172)

or (satisfied in fact up to O(∆r2))

u1 =
4u2 − u3

5
. (2.173)
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Proof. The vanishing of u0 follows from parity. For u1 we proceed as for the
proof of proposition 2.6.2. û is an odd function and expands close to the origin as
û ≈ ar1 + br3 for some constant numbers a, b ∈ R. Therefore with step size ∆r
we have (up to O(∆r3))

u1 = a∆r + . . . , (2.174a)

u2 = 2a∆r + . . . . (2.174b)

Up to O(∆r3) these relations imply the result

u1 =
u2
2
. (2.175)

Generalizing up to O(∆r5) we write

u1 = a∆r + b∆r3 + . . . , (2.176a)

u2 = 2a∆r + 8b∆r3 + . . . , (2.176b)

u3 = 3a∆r + 27b∆r3 + . . . . (2.176c)

Hence up to O(∆r5) we have the remaining result

u1 =
4u2 − u3

5
. (2.177)

Again generalizations are possible in a straightforward way, for instance to other
modes to determine the first non-vanishing grid point there.

2.6.4. Boundary conditions for the wave equation

The situation of interest is the one of isolated systems where the solution is
supposed to be asymptotically flat (will be addressed in section 3.3.2). It
corresponds to an unbounded domain. Hence no boundary conditions are
required. Nevertheless since for a numerical study an infinite domain is
troublesome one approach is to assume an artificial boundary at a finite
distance29 which requires to choose some boundary conditions there.

29An alternative is the use of conformally compactified techniques, see Frauendiener (2004)
for a review. A recent approach was developed by Moncrief and Rinne (2009), numeri-
cally confirmed in Rinne (2010) and applied for example in Baake and Rinne (2016). See
Reula and Sarbach (2011), Sarbach and Tiglio (2005, 2012) for reviews on boundary condi-
tions in numerical relativity.
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Remark 2.6.3. Already in section 2.2.1 we discussed several possible boundary
conditions. Since we are mainly interested in the transition of a wave package
through the origin we could for the numerical confirmation above use a
homogeneous Dirichlet condition at the outer boundary, i.e. just set it to zero.
This method would obviously fail if some information (the outgoing wave
package) reached the boundary. Since we have the exact solution to the
simulated problem we use an inhomogeneous Dirichlet condition at the outer
boundary, namely we just take the value from the exact solution.

Since it is of advantage for Einstein’s equations we discuss another method as
well. The Bjørhus projection method was introduced in Bjørhus (1995), see
in addition Sarbach and Tiglio (2012). Absorbing boundary conditions are
examined in Sarbach (2007), Rinne et al. (2009).

The aim is to allow the information to travel out but there are no artificial or
spurious reflections. Since the information travels, as discussed in section 2.3.2,
on characteristics with the characteristic speed we need to transform to those
directions and impose the boundary conditions there (and then transform back
to obtain the boundary conditions for our fields).

In the current section we will demonstrate the technique for the wave equation
for a scalar field φ. Both for the wave equation in spherical coordinates as above
and for Einstein’s equations we have to derive boundary conditions for large
distances in the r-direction. The fall-off behavior in r is determined independent
of the angle ϑ. Consider the contribution ℓ = 0 in equation (2.160). We do not
have to consider the angular part of the wave equation (2.160) and restrict to the
equation

∂2t φ = ∂2rφ+
2

r
∂rφ. (2.178)

We perform a first-order reduction with Π := ∂tφ and ξ := ∂rφ such that

∂tΠ = ∂rξ +
2

r
ξ. (2.179)

The time derivatives of the auxiliary variables read ∂tξ = ∂rΠ and
∂tΠ = ∂rξ + 2ξ/r. Consider the eigenfunctions v± := Π± ξ with derivatives
∂tv± = ±∂rv± + 2ξ/r. We require that the scalar field is purely outgoing at the
outer boundary, say at R (equations on the boundary are here denoted by =̂).
The general solution for ℓ = 0 to the wave equation is given by
φ(t, r) = r−1f(t± r) (see the literature cited at the beginning of section 2.3).
Therefore we allow at the boundary only rφ =̂ f(t− r). That implies
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∂t(rφ) + ∂r(rφ) =̂ 0. Taking the time derivative of that relation and reexpressing
variables to v+ gives the relation

∂tv+ =̂ − π

r
=̂ − π

R
. (2.180)

We keep v− as it is but replace the derivative of v+ at the boundary accordingly.
Therefore we have the following relations at the outer boundary

∂tϕ =̂ Π, (2.181a)

∂tΠ =̂ − 1

2

Π

R
+
∂rξ

2
+
ξ

R
− ∂rΠ

2
, (2.181b)

∂tξ =̂ − 1

2

Π

R
− ∂rξ

2
− ξ

R
+
∂rΠ

2
. (2.181c)

We will use a first-order in time but second-order in space reduction later on
(similar to the one discussed in the numerical verification of the wave equation),
so the boundary conditions need to be chosen accordingly.
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3. General relativity and its Cauchy
formulation
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3.1. Introduction

The central aim of the thesis is a better understanding of certain aspects in
general relativity. Therefore it is of some value to discuss its basics and
fundamentals at least to a small extent. We give a very concise introduction into
the main ingredients, in particular the Cauchy formulation. To obtain sets of
equations that are accessible for the theory of partial differential equations as
discussed in chapter 2 we need to perform so-called gauge choices. Several gauge
conditions are also discussed. Even though we rely on well-known facts from the
literature the material and sketched derivations are fundamental for the
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3. General relativity and its Cauchy formulation

understanding of the thesis. There exists a large amount of literature dealing
with several parts of the content of the chapter in much more detail. The goal is
that the presentation helps the trained reader to get familiar with the used
notation and to guide the unfamiliar reader through the literature to understand
the scientific contribution in the remainder of the thesis.

A substantial part of the thesis deals with the analysis and implementation of
the constraint solver. It is needed to obtain initial data for Einstein’s equations.
Therefore we discuss known results in some more detail and present some of our
own calculations and attempts. Most of our calculations in that direction are
postponed to the next chapter though. In the last part we provide a review on
symmetry-reduced situations in general relativity with a focus on numerical
simulations and critical phenomena. It is intended to guide the unfamiliar reader
through the literature.

As a convention we label spacetime indices (running from 0 till 3) with Greek
letters µ, ν, λ, . . . and spatial indices (running from 1 till 3) with Latin indices
i, j, k, . . .. Often the dimension as superscript for the metric tensor such as 4g, 3γ
is omitted. We do not distinguish carefully between the line element and the
metric tensor but follow the usual convention to use these phrases
interchangeably. We adopt “Einstein’s summation convention”1, saying that we
imply summation over repeated covariant (subscript) and contravariant
(superscript) index in one term, for example for a spatial two-tensor M

M i
i ≡

3
∑

i=1

M i
i . (3.1)

3.2. General relativity

We already mentioned a large amount of literature2 that is devoted to general as
well as particular aspects of general relativity. We refer to these sources for more
details and restrict ourselves to absolutely fundamental issues.

1It was introduced by Einstein himself as simplification in Einstein (1916, equation (7)), see
also Gutfreund and Renn (2015, page 59 and 97).

2Let us in the footnote give some standard and helpful references concerning the theory of
general relativity. They include Weinberg (1972), Hawking and Ellis (1973), Misner et al.
(1973), Schutz (1980), Wald (1984), Stewart (1991), Choquet-Bruhat (2009, 2015). From
the mathematical perspective we recommend in particular Nakahara (2003), O’Neill (1983).
We mention also the more historic accounts Weyl (1952), Pauli (1981), Bergmann (1976),
Schrödinger (1950) which are still good introductions and interesting from the historic per-
spective and in this respect Schouten (1954) for the corresponding calculus.
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3.2. General relativity

3.2.1. Spacetime

Definition 3.2.1. A spacetime is a 4-dimensional time-orientable (usually even
globally hyperbolic) Lorentzian manifold (index (3, 1), see appendix A.1.1) with
torsion-free connection that is compatible with the metric.

Remarks 3.2.1. • The definite choice of dimension four is not necessary
mathematically but physically motivated. Considerations with more than
four dimensions are not unpopular in several fields of research. Relativistic
toy theories with less dimensions are far easier to understand but seem to
be ruled out empirically.

• Historically the “causal requirement” of time-orientability was not included
in the definition of a spacetime. We do it here because time-orientability is
necessary for the Cauchy formulation of general relativity in section 3.3, see
O’Neill (1983) or literature cited later. Often global hyperbolicity
(introduced generally by Leray (1952) and discussed in general relativity in
Geroch (1971)), so the existence of a Cauchy hypersurface, is assumed
additionally. For a discussion of different causal concepts and the “causal
ladder” see Minguzzi and Sánchez (2006).

• A Lorentzian manifold is a pseudo-Riemannian manifold. Therefore
we have some necessary structure (topology, differentiability, metric, etc.)
in our space. We try to illustrate the path from a topological space to the
concept of a spacetime by adding several levels of structure in figure 3.1.

topological manifold

differential manifold M✬

✫

✩

✪

(pseudo-)

Riemannian
manifold (M, g)

✬

✫

✩

✪

differential

manifold M
with connection

spacetime

(M, g)

Figure 3.1.: An illustration how structure is added to a very general manifold and
it becomes a spacetime eventually.
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• The requirements on the connection restrict it uniquely to the Levi-Civita
connection, so in a coordinate representation to the Christoffel symbols
(see appendices A.1.1 and A.1.2). For extended theories in that respect, in
particular theories with torsion see the review Hehl et al. (1995).

• Non-Eulcidean geometry has a long and interesting history, nicely
recounted for example in Bonola (2007). Its systematic development in the
nineteenth century culminated in the seminal work by Bernhard Riemann
(1868). The foundation for the tensor calculus (necessary structure for a
theory like general relativity) was only developed at the turn of the
twentieth century. When Einstein worked on the theory of general relativity
the calculus was not yet on a solid basis. The fact that the underlying
mathematical theory was in its infancy in those days should be seen as one
of the major difficulties of finding the correct field equations. It was a lucky
coincidence that Einstein had several competent colleagues and supporters
assisting him in that respect, see also the remarks in section 3.2.2. Reich
(1994) recounts the history of the development of tensor calculus.

We cite an interesting result that is of some importance, in particular in respect
to our later gauge choice, see section 4.3.

Proposition 3.2.1. A globally hyperbolic spacetime admits a “Cauchy
orthonormal splitting”, that implies that the spacetime (M,4 g) is representable
in a product structure

M = R× Σ, g = −α2dt2 + γ (3.2)

with some function α and spatial Cauchy hypersurface (Σ,3 γ).

Proof. For a more precise statement and the proof see Minguzzi and Sánchez
(2006), Müller and Sánchez (2011).

3.2.2. Einstein’s field equations

So far we have introduced the notion of a spacetime. Essential for the theory of
general relativity are in addition the field equations.

Definition 3.2.2. Einstein’s field equations are

Ric− 1

2
gR = 8πT (3.3)
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With stress-energy tensor T and components Tµν (symmetric two-tensor
describing all non-gravitational fields). In coordinates the components of the field
equations read

Rµν −
1

2
gµνR = 8πTµν . (3.4)

Some of the quantities in the expressions above are defined in appendix A.1.1.

The theory of general relativity is Einstein’s equations on a spacetime. The
physical field is the metric tensor, which determines the spacetime structure. The
motion of test particles follows geodesics (extremal curves in spacetime).

The field equations are geometric partial differential equations. A solution of
Einstein’s equations is given by an equivalence class [g] (equivalent up to
diffeomorphism). Often a representative of the class, i.e. the metric tensor gµν , is
considered to be the solution (this not completely correct usage will be adopted
in the remainder).

Remarks 3.2.2. • Instead of postulating the field equations there are
several ways to motivate or derive Einstein’s equations:

– They can be derived with an action principle (see textbooks at the
beginning of the chapter), which is very appealing for physicists.

– They can be motivated slightly heuristically with the use of the
equivalence principle. That follows more the historic line and is
also applied in many of the cited textbooks.

– David Lovelock (1969, 1971) showed (generalizing ideas in Weyl
(1952)) that Einstein’s equations are the unique field equations under
mild conditions (second order equations in four spacetime dimensions
that are covariantly constant3, assumptions that can all be easily
motivated) when a cosmological constant4 is added.

• Since the field equations in definition 3.2.2 are so central for the topic of
the thesis we give a few comments on its history:

3In that ansatz the covariant constancy is postulated (and motivated by the fact that the
energy-momentum tensor is covariantly constant and therefore it should also hold for the
left-hand side). If the field equations are derived or postulated in a different way one can
easily show that ∇µG

νµ = 0 holds. This identity is referred to as Bianchi identity.
4We assume the cosmological constant to vanish, which is also a plausible assumption in our
setting.
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– Albert Einstein published the field equations5 (3.4) in a small note
Einstein (1915) in November 1915. From the historic perspective very
important is the highly extended version Einstein (1916) though (see
also the translations Lorentz et al. (1952), Gutfreund and Renn
(2015)6).

– It took Einstein roughly a decade (it depends where one puts the start
of the search) to find the correct field equations. The development is
sketched in Norton (1989), Gutfreund and Renn (2015). After the
establishment of the special theory of relativity in 1905 the next
mentionable progress came in 1907 while Einstein prepared a review
article about his 1905 theory. He realized a central idea of the general
theory referred to as equivalence principle. In the following years till
1912, in particular during his appointment in Prague (his time in
Prague is reviewed in Bičák (2014)), Einstein worked out the essential
ingredients for the foundation of general relativity. In particular the
necessity of the covariant formulation and the dual role that is played
by the ten components of the metric tensor (its components describe
both the spacetime geometry and are the gravitational potential). In
the following years Einstein transformed these insights into the final
theory. Important steps include the “Zurich notebook” (where he
learns the basics of tensor calculus, see Straumann (2011)) and the
“Entwurf theory” together with Grossmann (for a translation see
Klein et al. (1995, page 151–188)) which was continued by Einstein to
the “formal foundations of general relativity” (see Einstein (1914))
where the correct vacuum equations are already included.

– Einstein finalized the search for the field equations in November 1915.
Exactly at the same time David Hilbert found the field equations from
an action principle as well, see Hilbert (1916). It is still under debate
how they influenced each other (the fact that they did is out of
question) and who should be given credit for finding the equations
first. While Mehra (1974), Corry et al. (1997) seem to favor Einstein,

5In Einstein (1915) the field equations have a slightly different but equivalent form as in equa-
tion (3.4) (essentially the “trace-term” is on the right-hand side with the matter contribution).
Only in 1918 Einstein adopted the more common form (3.4), see Gutfreund and Renn (2015,
page 103).

6Observe that in the translation Lorentz et al. (1952), which has some importance because
a previous edition was already published in 1923, the abstract is missing. There Einstein
refers to other scientific work for the mathematical foundation. In the annotated translation
Gutfreund and Renn (2015) the authors include the abstract and give background informa-
tion.
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Wuensch (2005) exonerate Hilbert from copying essential ideas from
Einstein. It is not clear if the questions will be resolved by historians
of science but the debate forms an interesting story.

– The research in general relativity in the following years has an
interesting history. The theory was almost immediately confirmed but
it was not a mainstream field of science for a long time. Only late
after the second world war a community formed that more or less
systematically examined the theory further. Eisenstaedt (2006, 1989),
Blum et al. (2015) tell some of the history.

• The theory seems to be an excellent model of reality describing
gravitational phenomena and passed numerous verifications experimentally
and observationally (see Ashtekar et al. (2015) for relatively recent
surveys). Also the long desired direct detection of gravitational waves and
the existence of black holes is claimed to be given and in excellent
agreement with predictions of general relativity, see Abbott et al. (2016)
which belongs to the recent highlights in the whole field of science.

• Even though there are hardly any violations of general relativity known we
should mention that as such general relativity does not seem to be in
agreement with the theory of quantum mechanics (which also seems to be
necessary for a description of reality). This can be seen in the different
roles of time in both theories for instance. The theory of quantum
gravity is concerned with the marriage of both fields but is not the topic
of this thesis, see Kiefer (2012) for a review of ideas in that field.

3.2.3. Comments on perturbation theory and linearized gravity

Quite often one is interested in perturbations about a given solution. If
everything in the theory behaves sufficiently smoothly, perturbatively derived
results deliver already some insights about the behavior of the solution. Consult
Breuer (1975), Chandrasekhar (1983) for elaborated introductions into the topic
and results for general relativity. Here we will focus on some technical aspects
that we will apply in chapter 4.

Definition 3.2.3. A perturbation of a solution of Einstein’s equations is given
as

gµν 7→ gµν + ǫg̃µν (3.5)

where g̃µν is the perturbation and we explicitly introduced the strength or
amplitude ǫ. In this way we constructed a one-parameter family of solutions.
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Given the perturbed solution one can insert it and derive the behavior of all
further geometric quantities, see standard textbooks at the beginning of the
section. In general we get expressions with various powers of the amplitude ǫ.
Restricting to terms of the order ǫ0 gives back the original unperturbed results.
Just keeping terms up to the linear order ǫ1 gives results of the linearized theory.
Quite a lot of the difficulties, especially for the implementation, are already
present on the linear level. Therefore it is very beneficial to consider and solve
these conceptual problems already on the linear level. We will follow that
strategy in the remaining chapters of the thesis.

The major part of the thesis deals with perturbations about flat spacetime. That
means that all quantities are given in the form

u = uflat + ǫũ (3.6)

with (possibly nonlinear) perturbation ũ.

When deriving the equations one deals also with functions of these quantities, say
f(u). As a general rule for the perturbation of f one uses for a small parameter ǫ

f(u) = f(uflat) + ǫ
∂f

∂u

∣

∣

∣

∣

uflat

ũ. (3.7)

For example for uflat ∈ {0, 1} the inverse quantity u−1 is perturbed as

u−1 = uflat − ǫũ. (3.8)

Remark 3.2.1. In the implementation it makes sense to store just the
perturbations of flat spacetime, the part ǫũ. The flat contribution (which will be
either 1 or 0, see section 4.4) will be added when evaluating the equations.

3.3. Cauchy formulation of general relativity

General relativity as introduced in section 3.2 is a geometric theory of spacetime
with field equations determining the geometry itself. The equations are an
example of a set of geometric partial differential equations (see definition 2.2.2).
There is no preferred concept of “space” or “time” any more, only some notion of
“spacelike” and “timelike” remains. On the other hand our intuition in physics
teaches that we have some instance where we prescribe some initial data. The
data are integrated in some direction of time to obtain the whole physical
spacetime picture. Seen from the point of view of partial differential equations,
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in particular from the computational perspective, we seek for some definite,
non-geometric formulation in equations that can be (numerically) integrated in
“time” starting from an “initial surface” (“space”).

The present section sketches the derivation of the formulation. Spacetime is
decomposed into “space” and “time” and Einstein’s equations are written as a
first-order in time set of differential equations. Not for all geometric settings of
spacetimes is the foliation possible and hence meaningful. One basically has to
require that it is indeed possible. It means that there should exist a continuous
timelike vector field along which spacetime is decomposable into a level-set of
non-intersecting spacelike hypersurfaces. This is the case if the spacetime is
time-orientable. Then one chooses one orientation which assures that the
timelike vector field exists. For every globally hyperbolic spacetime the Cauchy
formulation can be obtained, see Minguzzi and Sánchez (2006),
Müller and Sánchez (2011). Usually the “zeroth” coordinate x0 acts as timelike
coordinate t.

In a series of publications reviewed in Arnowitt et al. (1962) the decomposition
of the field variables was established for the canonical formulation of general
relativity. We follow here more the review York (1979). Further consult
Gourgoulhon (2012), Alcubierre (2008), Baumgarte and Shapiro (2010), Poisson
(2004), Rezzolla and Zanotti (2013), Shibata (2016), Bona et al. (2009) for more
material on this section. From the mathematical perspective see
Friedrich and Rendall (2000), Ringström (2009, 2015) for the Cauchy formulation
of general relativity, its origin and achievements. The (early) history of the
Cauchy problem is reviewed in Stachel (1992), Choquet-Bruhat (2014).

While the Cauchy formulation is the standard framework for numerical relativity
we should mention that there are alternatives. For example consider the
characteristic formulation in Stewart and Friedrich (1982), Winicour (1998).

Proposition 3.3.1. Four of the ten Einstein’s equations are constraints, that
means that those four equations do not contain highest (here second) time
derivatives.

Proof. Let the time coordinate be x0 ≡ t. With the Bianchi identity we have

0 = ∇µG
νµ = ∂µG

νµ + Γν
λµG

λµ + Γµ
λµG

νλ. (3.9)

The first term on the right-hand side of equation (3.9) can be separated into

∂µG
νµ = ∂0G

ν0 + ∂iG
νi (3.10)
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where we recall that the Latin indices are spatial only. Therefore

∂tG
ν0 = −∂iGνi − Γν

λµG
λµ − Γµ

λµG
νλ. (3.11)

Since ∂i denotes a spatial derivative and Gµν only contains second derivatives we
see that the right-hand side of equation (3.11) contains at most second
derivatives in t, hence also the left-hand side. Therefore Gν0 cannot have second
time derivatives. Hence the relations given in the zeroth row/column in the
matrix representation are constraints.

3.3.1. Foliation of spacetime and decomposition of Einstein’s
equations

In this section we are very brief and only sketch the derivations, the unfamiliar
reader is referred to the given literature at the beginning of the section.

• Let us label the zeroth coordinate x0 as time t. Its normal nµ is orthogonal
to t = constant hypersurfaces. Essentially it describes our time evolution.
The lapse function α := −||∇µt|| encodes the freedom in the choice of the
time parameter.

• nµ allows to define the completely spatial 3-metric7 (or first
fundamental form)

γµν := gµν + nµnν (3.12)

where g is the spacetime metric. It is used for the projection of spacetime
tensor field into the spatial hypersurface.

• The purely spatial extrinsic curvature (or second fundamental form)
is a symmetric tensor

Kµν := −γ λ
µ γ

κ
ν ∇λnκ = −1

2
Lnγµν . (3.13)

It is essentially the “time derivative” of the spatial metric. The mean
curvature K is the trace of the extrinsic curvature,

trK := tr(Kµν) = tr(Kij) = γijK
j

i = −Ln ln
√

det γ. (3.14)

7It is by definition an object in the spacetime. Its contraction with the normal vector field nµ

vanishes. Therefore it is a completely spatial tensor field in the three-dimensional Rieman-
nian manifold which justifies to switch from spacetime indices µ, ν . . . to spatial ones i, j, . . .
and explains the name. This transition from Lorentzian (spacetime) indices to Riemannian
(spatial) ones will also be applied in the following.
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Therefore (and since
√
γd3x is the volume element on the Riemannian

hypersurface) trK is a measure of the change of proper volume along the
unit normal

• With the equations by Gauss, Codazzi, Mainardi and Ricci we project the
spacetime quantities into spatial ones and along nµ. We denote the
connection compatible with γij with Di. The constraints (see
proposition 3.3.1), given by the G0µ-components of Einstein’s equations are
the so-called

Hamiltonian constraint R + (trK)2 −KijK
ij = 16πρ and the (3.15)

momentum constraint Dj

(

Kij − γijtrK
)

= 8πSi (3.16)

with matter sources defined as the corresponding projections of the
stress-energy tensor as measured by a normal observer, ρ := nµnνT

µν and
Sµ := −γ ν

µ n
λTνλ (also Sµν := γ λ

µ γ
ρ

ν Tλρ). Note that we used purely spatial
indices because the projection of the equations along the timelike vector
field vanishes. The evolution equations along the general timelike vector
field nµ are given as (here Rij is the spatial Ricci tensor)

Lnγij = − 2Kij, (3.17a)

LnKij = − 1

α
DiDjα +Rij − 2KikK

k
j + trKKij

− 8π

[

Sij −
1

2
γij(trS − ρ)

]

(3.17b)

with matter sources given above and trS := trSµν = S µ
µ .

• Choosing a coordinate basis there is some further freedom in the choice of
the timelike vector field (as can be seen as tµ∇µt = 1),

tµ = αnµ + βµ (3.18)

where βµ is an arbitrary purely spatial vector field (hence in the following
with spatial index βi) called the shift vector. The line element in the
chosen coordinates reads

ds2 = −α2dt2 + γij
(

dxi + βidt
) (

dxj + βjdt
)

(3.19)

and the evolution equations

∂tγij = − 2αKij +
1

2
D(iβj), (3.20a)

∂tKij = α
(

Rij − 2KikK
k

j + trKKij

)

−DiDjα
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− 8πα

[

Sij −
1

2
γij(trS − ρ)

]

+ βk∂kKij +Kik∂jβk +Kkj∂iβk, (3.20b)

∂tK = γijDiDjα+ α
[

KijK
ij + 4π(trS + ρ)

]

+ βiDitrK, (3.20c)

∂t ln
√

det γ =− αtrK +Diβ
i. (3.20d)

Note that the last two evolution equations are not independent of the
former ones.

Therefore we can summarize Einstein’s equations in the Cauchy formulation as
the Hamiltonian (3.15) and momentum constraint (3.16) together with the
evolution equations (3.20).

3.3.2. Comments on asymptotic flatness

For a large class of objects in general relativity (not for cosmological spacetimes
though) the concept of isolated objects is important. Mathematically
formulated the concept implies some statement about the asymptotic structure,
namely that sufficiently far away (there exists the concept in either the null or
the spacelike direction) from the system of interest the space approaches the flat
one. “Flat” corresponds to Minkowskian spacetime for a Lorentzian manifold
and the Euclidean space for a Riemannian manifold. For the notion of
“approaches” one defines some fall-off rate of the metric towards the flat one,
usually it is required to behave in Cartesian coordinates for large distance r like

gµν = diag(−1, 1, 1, 1) +O(r−1). (3.21)

There exist different definitions of asymptotically flat, usually not equivalent to
each other.

For the 3+1-foliated spacetime picture we follow the coordinate approach and
prescribe for our variables some specific fall-off condition, see
Jaramillo and Gourgoulhon (2011), Gourgoulhon (2012).

Definition 3.3.1. Given a globally hyperbolic spacetime (M, g) foliated by a
family of spacelike hypersurfaces (Σt, γt, Kt), t ∈ R. It is asymptotically flat if
∀ spatial slices Σt ∃ a Riemannian background metric f such that

• f is Riemann-flat (Riemf = 0) on Σt \ B where B is a compact ball, the
strong field region,
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3.3. Cauchy formulation of general relativity

• on Σt \ B ∃ a Cartesian-like coordinate system (xi) = (x, y, z) such that
fij = diag(1, 1, 1) and the radial distance r :=

√

x2 + y2 + z2 can grow
arbitrary large, the region r → ∞ is called spatial infinity8 i0,

• at spatial infinity the variables show the following fall-off behavior,

γij = fij +O(r−1), γij,k = O(r−2), (3.22)

Kij = O(r−2), Kij,k = O(r−3), (3.23)

α = 1 +O(r−1), ∂iα = O(r−2), (3.24)

βi = O(r−1), ∂iβj = O(r−2). (3.25)

Remarks 3.3.1. • The asymptotic behavior of the gauge quantities α and
βi is not always included in the definition but included here to accomodate
the requirement (3.21), see also Beig and Ó Murchadha (1987).

• The fall-off behavior of the derivatives makes sure that there are no
gravitational waves at spatial infinity i0.

• The discussed structures are related to the (problem of the) definition of
energy, mass and angular momentum in general relativity, see the review
Szabados (2004).

3.3.3. Gauge conditions

In the derivation of the decomposed Einstein’s equations, the constraints in
equations (3.15) and (3.16) and the evolution equations in equation (3.20), we
encoded the coordinate freedom in the liberty to choose the “gauge functions”,
the lapse α and the components of the shift vector βi.

The constraints are independent of the gauge parameters but to evolve from one
spacelike slice to the next we have to impose coordinate conditions. One choice
for the time coordinate is free, the “slicing” condition, and three choices of the
spatial coordinates, the spatial gauges. Numerous options are available.

Algebraic choices for some components are possible as well as more geometric
alternatives leading to partial differential equations. In the following only a small
selection is picked emphasizing different characters of the gauge choices. For
more choices consult the literature given at the beginning of the section.

8There are other concepts of infinity in general relativity as well, the infinite future (or past)
in the light-like direction is denoted as future (or past) null infinity I ± and the in-
finite future (or past) in the time-like direction is denoted as future (or past) timelike
infinity i±.
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3. General relativity and its Cauchy formulation

We should mention that the term “gauge freedom” might be misleading. It
encodes the coordinate independence of general relativity. General relativity can
be formulated as a gauge theory though, see for example Göckeler and Schücker
(1987).

Slicing conditions

Definition 3.3.2. Setting the proper time of a normal observer equal to the
coordinate time,

dτ

dt
= α = 1 (3.26)

is called geodesic slicing.

Often geodesic slicing is applied together with the geodesic gauge condition, see
definition 3.3.4. The observer is freely falling. This means that she follows
timelike geodesics. In the presence of gravity the geodesics tend to focus, which
lets them run into a singularity. The coordinates are tied to the geodesics and
form a coordinate singularity. At the singularity the equations break down. That
makes this gauge unpopular at least for strong gravitational fields.

Definition 3.3.3. Requiring that the trace of the extrinsic curvature, the mean
curvature trK, remains constant,

trK = K j
i = const, ∂ttrK = 0, (3.27)

is called constant mean curvature slicing. The particular choice of vanishing
constant,

trK = 0 = ∂ttrK, (3.28)

is called maximal slicing.

Proposition 3.3.2. Constant mean curvature slicing leads to an elliptic
equation for the lapse α.

Proof. We use the vacuum evolution equation in (3.20) for the mean curvature

∂ttrK = −D2α + αKijK
ij + βiDitrK

!
= 0

⇔ D2α = αKijK
ij + βiDitrK. (3.29)

This is a scalar Poisson equation and hence elliptic, see example 2.3.1. Inclusion
of matter results in an additional source term.
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3.3. Cauchy formulation of general relativity

Remarks 3.3.2. • In the case of maximal slicing equation (3.29) reduces to
D2α = αKijK

ij = αR where the vacuum Hamiltonian constraint (3.15)
with maximal slicing is used in the last step.

• The elliptic equation for the lapse is of second order and needs boundary
conditions.

• The name is due to the fact that the slicing maximizing the volume (it was
called “minimal” in Lichnerowicz (1944) though).

• There is also the possibility to introduce an approximate maximal slicing in
the sense that trK might be non-vanishing but is “driven back” to zero by
requiring

∂ttrK = −ctrK, c ∈ R 0. (3.30)

Together with the evolution equation for trK it leads to an “evolutionary”
equation for α, actually an parabolic equation. This gauge is called
K driver condition, see Balakrishna et al. (1996).

Spatial gauge

Definition 3.3.4. The requirement of vanishing shift is called geodesic gauge
(or canonical gauge9). Together with geodesic slicing the resulting coordinates
are called Gaussian normal coordinates.

Remarks 3.3.3. • This condition implies that the coordinates stay at rest
with respect to the normal observer.

• The results concerning the Cauchy orthogonal splitting in proposition 3.2.1
should be taken into account for geodesic slicing.

• It is possible to require elliptic gauge conditions for the shift vector (see
also section 3.4.1). The minimal strain (basically the time-derivative of
the spatial metric) or minimal distortion (trace-free part of the strain)
are prominent examples. Again they can be cast into an evolutionary
scheme as well (Gamma driver condition, with a similar approximate
requirement and an “artificial” evolutionary equation for the shift βi, see
Alcubierre and Brügmann (2001).

Some gauges which are more relevant in symmetry-reduced situation, in
particular in axisymmetry, are discussed in section 4.3.

9It was called “canonical form of the space-time metric” in Christodoulou and Klainerman
(1993, page 5).
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3. General relativity and its Cauchy formulation

3.4. Initial data for Einstein’s constraint equations

We saw in section 3.3 that Einstein’s equations can be split into two
fundamentally different sets of equations, the (spacetime) evolution equations
and the constraint equations (no time derivatives). In the present section we
concentrate on the system of constraint equations itself on the Riemannian
Cauchy hypersurface. We restrict our considerations to vacuum spacetimes, so
we set the matter terms in equations (3.15) and (3.16) to zero. In principle the
inclusion of matter is a straightforward exercise and just leads to additional
source terms in the equations. See Isenberg (2014) for a review.

Proposition 3.4.1 (Vacuum constraints). Every spacelike hypersurface in the
3+1-vacuum decomposition has to satisfy the Hamiltonian and momentum
constraint,

H := R +K2 −KijK
ij = 0, (3.31a)

Ci := Dj

(

Kij − γijK
)

= 0. (3.31b)

Remarks 3.4.1. • The gauge parameters α and β do not appear in the
constraints. This is clear by construction (they describe the lapse between
proper and coordinate time and the spatial shift between different
hyperspaces, but are not responsible to determine the geometry of the
spatial slices) and can also be seen in the decomposed Lagrangian
formulation of the theory where the quantities appear as Lagrange
multipliers, see Arnowitt et al. (1962).

The disappearance of the gauge parameters is not true for all formulations.
For example they appear in the constraints in the conformal thin-sandwich
formulation (see York (1999)).

• The Hamiltonian constraint (3.31a) contains the components of the
extrinsic curvature only algebraically (without derivatives), but non-
linearly ⇒ in some sense naturally the Hamiltonian is an equation for the
components of the spatial metric (those components come with second
spatial derivatives due to the spatial Ricci scalar R).

• The momentum constraint (3.31b) is essentially the divergence of the
extrinsic curvature, hence a first-order equation in the components of Kij.

• Both constraints in theorem 3.4.1 as such (without the remaining evolution
equations) form a (coupled) system of four equations involving 12 variables
(the components of γij and Kij). In that respect it is a highly
underdetermined system. The discussions in section 2.3.2 indicate that
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3.4. Initial data for Einstein’s constraint equations

the character of the system of partial differential equations is not
automatically fixed but subject to several possible interpretations. An
essential question is which data should be prescribed (for the constraint
solver) and which data should be determined.

Even though the constraints are given in a geometric fashion and the type of the
equations is not fixed, they are quite often arranged and considered as an elliptic
system which we will discuss next. We used an elliptic formulation of the
constraints for some time and gained some experience in the numerical
implementation of the solver. Therefore we developed the techniques for our
situation which are discussed in the following.

3.4.1. Constraints as elliptic system

There are many ways to obtain elliptic equations from the constraints, see in
particular section 4.7.2 where the possibility of elliptic constraints is discussed for
the formulation used in this thesis. For convenience we discuss in the current
section one particular way which deals as a prototype for the very famous
“elliptic method”. This method has a long history in the discussion of the
Cauchy problem in general relativity. It was initiated by the French school with
the Hamiltonian constraint as an elliptic equation and was later extended to the
momentum constraint which culminates in the “Bowen-York” method, see
Bowen and York (1980). Good sources for the following section include
Bartnik and Isenberg (2002) for a mathematical treatment and Cook (2000),
Alcubierre (2008), Baumgarte and Shapiro (2010) for a more numerical
perspective. We also discuss the method formulated in spherical coordinates, see
as possible sources papers by the group in Meudon, for example Bonazzola et al.
(1999, 2004).

A disadvantage of the elliptic method is that there are not many results for
spacetimes without constant mean curvature slicing. This is problematic for
instance for the Kerr spacetime, see Garat and Price (2000). In
Dain and Friedrich (2001) the existence of solutions to the constraint equations is
shown for a large class of spacetimes assuming maximal slicing. See for example
Andersson and Moncrief (2003) for a mathematical analysis of a well-posed
elliptic-hyperbolic formulation in general relativity.
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3. General relativity and its Cauchy formulation

Hamiltonian constraint

The systematic study of the Hamiltonian constraint was initiated by the French
school in Paris. Charles Racine considered in his thesis Racine (1934) the
constraints in maximal slicing and with a conformally related metric. His choice
was an Euclidean reference metric. That result was later generalized by André
Lichnerowicz in Lichnerowicz (1944) to a Riemannian reference metric and the
resulting equation is therefore often called “Lichnerowicz equation”.

The Hamiltonian constraint is essentially a differential equation for one
component of the spatial metric, the remaining components (as well as the
extrinsic curvature if the Hamiltonian constraint is considered as a single
equation) have to be prescribed. It is not immediately obvious which component
is the desired one to be solved for. We will discuss several choices in section 4.7
and see that the type of the equation is highly dependent on that choice.

Let us consider in general the possibility to prescribe a reference metric γ̄ij which
is conformally related to the physical metric γij as

γij = ψ4γ̄ij ⇔ γ̄ij = ψ−4γij (3.32)

with conformal factor ψ which is an arbitrary non-vanishing function of the
coordinates. Usually the conformal reference metric is a well-known metric
adapted to the physical situation. The conformal method itself is a famous
technique in general relativity for dealing with the whole set of Einstein’s
equations, see for example Frauendiener (2004) or the recent textbook
Valiente Kroon (2016) for reviews.

Proposition 3.4.2. The vacuum Hamiltonian constraint becomes a non-linear
(but semilinear) elliptic equation for the conformal factor ψ,

8D̄2ψ − ψR̄ + ψ5
(

KijK
ij − trK2

)

= 0. (3.33)

Proof. The relation (3.32) allows us to calculate the metric connection Γ̄i
jk of γ̄ij

(hence the covariant derivative D̄ is known), the Riemann tensor R̄i
jkl and the

Ricci quantities R̄ij and R̄ with respect to the conformal metric γ̄ and to express
the physical unbarred quantities in terms of the barred conformal ones. The
principal part of the equation is given by the conformal Laplacian D̄2 and thus
the ellipticity follows with example 2.3.1.
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3.4. Initial data for Einstein’s constraint equations

Momentum constraint

Early studies of the system of constraints where usually restricted to maximal
slicing. It was in the early 1970s that James York (1974) realized that constant
mean curvature slicing results in a linear momentum constraint DjK

ij = J i

with source J i = 0 in vacuum leading to a semilinear elliptic system for the
constraints. Together with Jeffrey Bowen he formulated the so-called
Bowen-York method Bowen and York (1980) which will be discussed in the
following. It is based on the tensor decomposition as derived by York (1974)
which is based itself on studies concerning the spacetime decomposition by Deser
(1967). Besides being successful for numerical implementations and
well-understood mathematically one disadvantage of the method is that only
very limited results exist for a slicing beyond constant mean curvature.

We consider the momentum constraint (3.31b) as an equation for three
components of the extrinsic curvature. Usually one considers again a conformally
related tensor. The discussion is basically analogous to the one presented here
and can be followed in the cited literature.

Proposition 3.4.3. The vacuum momentum constraint can be cast into an
elliptic system of equations of second order.

Proof. We present the proof in a constructive way. Introduce the trace-free part
of the extrinsic curvature

Aij := Kij − 1

3
γijtrK. (3.34)

Quite often the “elliptic method” comes with maximal slicing as a gauge
condition. In that case Aij is identical to Kij . Following York (1974) we split the
symmetric, trace-free tensor into its transverse-traceless and a longitudinal part10

as

Aij = Aij
TT + Aij

L . (3.36)

10A tensor Aµν is called transverse if it is purely spatial (Aµ0 = 0) and the spatial compo-
nents are divergence-free in space (∂iA

ij). The conditions imply that Aij is also transverse
to its direction of propagation (see for example Misner et al. (1973)). The part of the tensor
after subtracting its transverse contribution and the spatial trace is called longitudinal ten-
sor Aµν

L . Therefore any tensor can be decomposed into transverse-traceless and longitudinal
part and its spatial trace trA = A i

i ,

Aµν = Aij
TT +Aµν

L + trA. (3.35)
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3. General relativity and its Cauchy formulation

Often the TT-part of the tensor is prescribed and we have to solve for Aij
L . To do

so we introduce a vector potential W i such that Aij
L can be written as its

vector gradient (or longitudinal operator)

Aij
L = (LW )ij :=

1

2
D(iW j) − 2

3
γijDkW

k. (3.37)

Inserting into the vacuum momentum constraint (3.31b) leads to

DjK
ij = D2W i +

1

3
DiDjW

j + γikRkjW
j = 0 (3.38)

where D2 is the Laplace operator D2 = DiD
i and we used the relation for the

Ricci tensor. This leads to a vector Poisson equation (therefore the ellipticity is
shown) of the form

D2W i +
1

3
DiDjW

j = Si := DjK
ij − γikRkjW

j (3.39)

The source term Si in the Poisson equation explicitly depends on the
solution W i. Therefore computationally an iterative solver should be applied.
The final equations (3.39) form a coupled set of partial differential equations for
the components of W i, even in Cartesian coordinates.

With the introduction of the vector potential we managed to write the
momentum constraint in a manifestly elliptic form. To solve it numerically one
would benefit from writing it in a decoupled form. The price one has to pay is
the introduction of additional scalar potentials. In Cartesian coordinates it is
sufficient to introduce only one more scalar potential which implies that four
scalar elliptic equations have to be solved.

There are at least two schemes to decouple the constraint, see
Grandclément et al. (2001). Historically Bowen and York (1980) were the first to
propose a suitable scheme. Another scheme, slightly different but conceptually
comparable, was used in Oohara and Nakamura (1997) and is also discussed and
analyzed in Grandclément et al. (2001). As long as the Laplacian operator and
the (dual) gradient operator commute, [Di, D2] = 0, for a scalar field one can
decouple relation (3.39) and iteratively solve the momentum constraint. The
commuting [D2, Di]χ = 0 in Cartesian and spherical polar coordinates can be
verified by direct calculation. For the method in Oohara and Nakamura (1997)
one needs in addition the commuting of these operators for a vector field,
[D2, Di]X i = 0 which is also satisfied for both Cartesian and spherical
coordinates as can be verified by computation.
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3.4. Initial data for Einstein’s constraint equations

Bowen York We decompose the vector field W i into two parts W i = X i +Diχ
with

D2χ = −1

4
DiX

i and (3.40a)

D2X i = Si. (3.40b)

This is equivalent to equation (3.39) since

D2W i +
1

3
DiDjW

j = D2X i +
1

3
DiDjX

j +D2Diχ+
1

3
DiDjD

jχ

[D2,Di]χ=0
= Si +

1

3
DiDjX

j +
4

3
DiD2χ

(3.40a)
= Si (3.41)

and therefore one has the iterative scheme

0. calculate the initial source Si = DjK
ij − γikRkjW

j, for example on a flat
background,

1. solve equation (3.40b) D2X i = Si for X i,

2. solve equation (3.40a) D2χ = −1
4
DiX

i for χ,

3. obtain W i = X i +Diχ,

4. obtain Aij
L = 1

2
D(iW j) − 2

3
γijDkW

k, Aij = Aij
TT + Aij

L and

Kij := Aij − 1
3
γijtrK (the trace trK and Aij

TT were prescribed in this
scheme),

5. calculate the new source term and start with point 1 again until some
abortion condition is reached.

There remains one obvious problem though, namely in point 1 of the iterative
scheme where we have to solve the Poisson equation D2X i = Si for the vector
field X i. It obviously decouples in Cartesian coordinates since the Laplace
operator is diagonal there.

In a different coordinate system, in particular in spherical polar coordinates,
cross-terms appear in equations like equation (3.40b) where one solves the vector
Poisson equation D2X i = Si in those coordinates, which cause a problem. The
vector Laplace operator might contain cross-terms in non-Cartesian coordinates.
Therefore one can sometimes read, e.g. in Grandclément et al. (2001), that the
process is only applicable in Cartesian coordinates. This statement is not
completely true though. There are situations where the introduction of
additional scalar potentials allows to decouple the corresponding equation in a
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way that just scalar elliptic equations need to be solved. See Bonazzola et al.
(2004) for a general discussion on a spherically symmetric background.

Also for our situation (hypersurface-orthogonal axisymmetry in spherical
coordinates) we have positive experience in the process of decoupling.
Nevertheless the introduction of the vector potentials is problematic concerning
the correct number of degrees of freedom. Therefore we decided to abandon that
approach.

3.4.2. The constraints as evolutionary system

As already said the constraints as such form an underdeterminded system of
partial differential equations. In section 2.3.2 we discussed a general example
with the help of a single scalar equation. It is clear that the previously discussed
“elliptic method” is not the only possibility, even though it might be the most
popular one and it is an often used scheme in the numerical relativity
community. The constraints were studied systematically as an evolutionary
system of equations only in recent years in a series of papers by István Rácz, see
Rácz (2014a,b, 2015, 2016a), even though the idea of the constraint system as
non-elliptic equations might be older.

There are various motivations to study alternatives to the elliptic method. For
example the implementation is slightly more straightforward for evolutionary
partial differential equations and the issue of boundary conditions is also
different in those formulations as will be discussed below. Large collaborations in
numerical relativity report on “spurious gravitational junk radiation” that is
believed to be caused by the initial data, see Chu (2014) for example. Besides its
mathematical and numerical attractiveness and the curiosity to explore some
alternatives there are also some researchers who hope that a (in parts drastically)
different formulation might also bring some clarification concerning such issues.
Nevertheless even though there are some nice mathematical properties concerning
these formulations there is no guarantee that the resulting formulation is
well-behaving with respect to the full set of Einstein’s equations (with including
spacetime evolution). The lack of understanding might be related to the fact that
this particular subfield is rather new and far less developed than the traditional
elliptic-hyperbolic formulation of Einstein’s equations. In the standard approach
some solid understanding took several decades and significant human resources.

The aim of this section is to review ideas and some central results, see Rácz
(2015) for a source of some parts of it. In the literature quite often the slightly
more general situation of the general n+ 1-dimensional (n ≥ 3) either
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Riemannian or Lorentzian case11 is discussed. For our purposes it is sufficient to
concentrate on the 3+1-dimensional Lorentzian case since that is the one of
interest in general relativity. The Riemannian hypersurface (initial slice) Σ is
further decomposed into a one-parameter family of homologous surfaces
Σ = R× Sρ, which gives an additional (n− 1) + 1-split of the n-dimensional
spatial hypersurface. The parameter called ρ in publications like Rácz (2015)
(which corresponds to the radial coordinate r in the current thesis) plays the role
of the “time” parameter in the evolutionary scheme. The remaining variables
(which are not dealt with in the constraint solver) are called “freely specifiable”
and are prescribed for the solver (for instance they can be obtained by the
(spacetime) evolution equations of Einstein’s equations).

Two schemes for solving the constraints are slightly distinct and particularly
attractive and therefore discussed in more details. They allow for (at least local)
well-posedness statements as “initial value problems” which sounds alluring for
the implementation.

The parabolic-hyperbolic scheme

In this scheme the Hamiltonian constraint is cast into a parabolic differential
equation for the quantity that is connected with the lapse of the additional
(n− 1) + 1-decomposition of the Riemannian surface (the rr-component of the
metric in the spacetime formulation). The momentum constraint can be
formulated as a set of equations of the form

Aρ∂ρu+
∑

k=x2,x3

Ak∂ku+B = 0 (3.42)

where u is a vector of components of the extrinsic curvature tensor of the
(n− 1) + 1-decomposition (and ρ the radial coordinate). The momentum
constraint is solved for the components of u. The matrices Aρ, Ax2 , Ax3 are the
coefficient matrices for the partial derivatives in ρ and the remaining spacelike
directions x2 and x3, B the inhomogeneity of the set of equations. Both A and B
are determined by the freely specifiable data. Remarkable is that the coefficient
matrices are symmetric and Aρ is in addition positive definite for ρ ≥ ρ0 > 0.
Therefore the system (3.42) is in the form of a first order symmetric
hyperbolic system. “Initial values” need to be chosen at ρ0.

Theorem 3.4.1 (Theorem 4.1 in Rácz (2015)). Under suitable assumptions
(basically some smoothness requirements) the parabolic-hyperbolic system

11Concerning the spacetime, the n-dimensional hypersurface is Riemannian, of course.
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provides locally in an interval [ρ0, ρ0 + ǫ] for some ǫ > 0 a unique smooth solution
and the solution together with the freely specifiable data satisfy the vacuum
constraint equations in proposition 3.4.1 in the corresponding interval.

For the purpose of this thesis it is interesting to remark that we can extract the
information that nonlinear perturbations of Minkowski spacetime form a (locally)
well-posed system when suitable initial data are given. A proposal to use the
formulation to obtain initial data for a spacetime with a binary system of Kerr
black holes is given in Rácz (2016b) and continued in Rácz (2016c). As far as we
are aware there is no successful implementation of that proposal yet. For an
example of a parabolic-hyperbolic formulation of a constraint system in practice
see sections 4.5 and 4.7 and for the implementation section 5.5.

The algebraic-hyperbolic scheme

The Hamiltonian constraint can also be considered as an algebraic equation for a
component, say κ, of the extrinsic curvature (basically κ is, except for some
prefactor, the rr-component of the extrinsic curvature). Note that, since in the
Hamiltonian constraint (3.31a) the extrinsic curvature components appear
quadratically, it should be expected that in the linearization about the flat
spacetime (where the extrinsic curvature vanishes) the procedure fails.

More precisely it becomes clear that equation (2.8) of Rácz and Winicour (2015)
(which is a stability condition for components of the extrinsic curvature that
needs to be satisfied by it) is not satisfied for the flat Minkowski space. If it was
we would have a first-order strongly hyperbolic system for components of the
extrinsic curvature and similar well-posedness results would be applicable.

Jeffrey Winicour (2017) addresses the problem in more detail. He shows that for
a large class of applications in numerical relativity the algebraic-hyperbolic
approach carries a lot of risk or is even impossible. Therefore one should either
change the setting (for example use non-spherical coordinates, assume the
existence of spacetime singularities) or, as we will do in the following, avoid that
method in those situation.

As we will see explicitly in section 4.7 the nonlinear Hamiltonian constraint can
be interpreted as an algebraic equation for the rr-component of the extrinsic
curvature which will correspond to a variable that will be called Ks1 in our
formulation. The linearized equations do not even contain quantities of the
extrinsic curvature (as it should be due to the quadratic appearence as discussed
above). Therefore in the remainder of the thesis we will not consider the
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algebraic-hyperbolic formulation but remark that it seems to be an interesting
possibility in general and for instance for perturbations about a Schwarzschild
background it seems to be an attractive alternative, see Rácz and Winicour
(2015). Remarkably the “initial values” for the solver can also be given at the
outer boundary (so they can be obtained for an isolated system by making use of
asymptotic flatness and therefore some fall-off condition) and the integration
goes inwards. Hence the more subtle issue of finding appropriate initial values at
the inner boundary (typically an event/apparent horizon or the origin itself) is
avoided.

In a recent paper Beyer et al. (2017) nonlinear axisymmetric perturbations of the
Schwarzschild black hole are considered. Since the reference spacetime is given
by the Schwarzschild metric the results in Winicour (2017) do not apply and the
origin is avoided. The authors prescribe initial data at the horizon and study the
evolutionary solver numerically. They report problems to reproduce
asymptotically flat data in the generic case. If these problems are avoided when
starting at the origin is left open.

3.5. Symmetry-reduced situations in general

relativity

Quite often one is, especially for more conceptual studies like the one reported in
this thesis, first interested in “symmetry-reduced situations”. It means that one
assumes some symmetry that is admitted by the spacetime (and/or the
corresponding tensor fields on it, see discussion below). It leads to computational
simplifications, both for analytical considerations and the numerical
implementation. Nevertheless the spacetime is, as always in our considerations, a
4-dimensional Lorentzian manifold. Symmetry-reduction has nothing to do with
lower-dimensional gravity, even though the resulting problem is sometimes also
reduced by some dimension.

Basically the material of this section is covered quite well by Hawking and Ellis
(1973), Chandrasekhar (1983), Wald (1984), Stewart (1991) for example, in parts
also by more mathematically orientated literature like Nakahara (2003), O’Neill
(1983) for instance.

Definition 3.5.1. A spacetime has an isometry if its metric tensor is invariant
(“symmetric”) under displacement along integral curves of a smooth vector
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field ξ, hence if the Lie derivative12 satisfies

Lξgµν = 0. (3.43)

Proposition 3.5.1. For a spacetime with Levi-Civita connection (see section
3.2) the condition Lξgµν = 0 is equivalent to the so-called Killing’s equation

∇(µξν) = 0. (3.44)

A solution ξν (or rather ξµ = gµνξν) is called Killing vector field.

Proof.

0 = Lξgµν = ξλ∇λgµν + gµλ∇νξ
λ + gλν∇µξ

λ metricity
= 2∇(µξν). (3.45)

Definition 3.5.2. A spacetime that admits a time coordinate t with
corresponding everywhere timelike vector field ∂t such that ∂t generates an
isometry, L∂tgµν = 0, is called stationary. A stationary spacetime which is
orthogonal to each hypersurface t = constant (gta = 0 for a any spatial index) is
called static.

Definition 3.5.3. Consider the x-y-plane (in Cartesian coordinates and the
azimuthal angle ϕ = arctan y/x (see appendix A.1.2 for comments on the
division when x becomes zero) and the vector field ξ = ∂ϕ = x∂y − y∂x. The
orbit of ξ is the collection of events resulting from the action of the
transformation. If ξ is a Killing vector field with closed orbits13,

L∂ϕgµν = 0, (3.46)

then we call the spacetime axisymmetric. An axisymmetric spacetime whose
Killing vector field is orthogonal to each hypersurface ϕ = constant (i.e. gϕA = 0
for A any non-ϕ-component, so gϕA = δϕAgϕϕ) is called
hypersurface-orthogonal axisymmetric.

Remark 3.5.1. The components of the Killing vector field ξ in definition 3.5.3
vanishes at the origin ξ = x∂y − y∂x = 0 in Cartesian coordinates. This is not the
case in spherical coordinates, ξ = ∂ϕ 6= 0.

12We do not discuss the the Lie derivative here. It is done in most textbooks on general relativity
and we recommend in particular Schutz (1980).

13Sometimes this requirement is dropped. It prohibits for example the existence of discontinuities
in the orbits as it might occur for objects like cosmic strings. We will not go into further
details.
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The following definitions are due to Geroch (1971) (there in more generality) and
the decomposition where one “divides out” the spacelike orbits of an isometry is
usually called Geroch-decomposition. In section 3.3 we discussed the
3+1-decomposition and there is some similarity with a “Riemannian version” of
the Geroch reduction, here in one dimension less (in Rinne (2005)[chapter 3] both
decomposition are considered together which was introduced in Maedaetal80).

Definition 3.5.4. Consider a spacetime (M, g) with isometry. The isometry
transformations (symmetries of the metric tensor) form a group. If this isometry
group contains a subgroup that is (at least isomorphic to) SO(3) and the orbit of
the subgroup are two-spheres14, then the spacetime is called spherically
symmetric.

Proposition 3.5.2 (Birkhoff Jebsen theorem). For a smooth spherically
symmetric spacetime the vacuum solution to Einstein’s equations (with vanishing
cosmological constant) is diffeomorphic to the exterior Schwarzschild solution15.

Proposition 3.5.2 is often called Birkhoff’s theorem even though Jørg Tofte
Jebsen (2005) should be given credit for the discovery, see the historic note
Johansen and Ravndal (2006) for a discussion. The proof is very elementary and
included in many courses and textbooks on general relativity, see
Choquet-Bruhat (2009, pages 74, 75).

Proposition 3.5.2 implies that for spherical symmetric general relativity in
vacuum every solution of the system is diffeomorphic to a representative of the
Schwarzschild family, so basically completely determined by one number, the
mass parameter. So in spherical symmetry the whole dynamics is given by the
matter field, for instance gravitational collapse is driven by the matter source in
that situation. In particular there is no gravitational radiation in spherical
symmetry. Thus if we are interested in vacuum general relativity the assumption
of spherical symmetry is “too strong”, the situation is automatically static and
hence understood. Therefore in vacuum one should study situations with less
symmetry, for instance axisymmetry.

In fact it was shown in Bičák and Pravdová (1998) that it is not possible to
assume any further reasonable symmetry in vacuum when demanding

14The requirement concerning the orbits being two-spheres might be relaxed. Then one gets
quotients of two-spheres (including the projective plane) as solutions as well. One might use
some asymptotic condition or an orientability requirement to exclude these “exotic” cases.

15The (exterior) Schwarzschild metric is named after Karl Schwarzschild Schwarzschild
(1916). It should better be called “member of the Schwarzschild one-parameter family of
metrics”, depending on the value of the constant which is a mass parameter of the spacetime.
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gravitational radiation in axisymmetric vacuum16 spacetime. Therefore
axisymmetry is the “least” symmetric situation when studying gravitational
radiation in vacuum general relativity.

The definitions and properties we discussed above for the whole spacetime,
therefore for symmetries of the metric, can be translated to arbitrary tensor
fields (in particular including scalar and vector fields). So for example we define
an axisymmetric tensor field in the following way.

Definition 3.5.5. Given a general tensor field Mµν . Mµν is axisymmetric if
the Lie-derivative along ξ = ∂ϕ vanishes,

LξMµν = ξλ∇λMµν +Mµλ∇νξ
λ +Mλν∇µξ

λ = 0. (3.47)

We will make use of these properties of tensor fields in section 4.2.

Numerical implementations in spherical symmetry and critical phenomena in
general relativity The assumption of spherical symmetry is very attractive
from the computational point of view, essentially due to the fact that in adapted
coordinates (spherical polar coordinates are appropriate, see appendix A.1.2) the
originally 3+1-dimensional equations are reduced to a 1+1-dimensional system.
Calculations become tractable and the numerical implementation is easier and
cheaper (measured in computational time, electricity, occupation of computer
resources or similar quantities).

As we have seen the dynamical situation in vacuum is trivial though. Therefore
an introduction of some matter field is inevitable if one is interested in the
dynamical situation. There are numerous possibilities including (scalar) fields,
fluids, collisionless particles discussed in the corresponding literature.

Here we should put special emphasis on the toy model of a scalar field because it
is of special importance, even though physically of limited relevance in reality. Its
simplicity makes it very prominent in numerical relativity.

An important breakthrough in the field of numerical relativity was achieved by
Matthew Choptuik (1993) where he considers a collapsing massless scalar field in
spherically symmetric general relativity. In the following we will say a few words
about his discovery and about critical phenomena in gravitation in general. See
in addition the reviews Choptuik (1992, 1994) with far more details than in
Choptuik (1993), especially concerning the implementation, and the review
Gundlach and Mart́ın-Garćıa (2007) for critical collapse in general relativity.

16Actually the authors assume electrovacuum.
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It is a well-known fact that there are at least two endstates for perturbations
(gravitational or matter perturbations) of Minkowski spacetime. It was proven in
Christodoulou and Klainerman (1993) that weak perturbations (see the cited
book for a mathematically precise definition) of perturbations decay. They
disperse to null infinity17 and decay which results in the statement that the
Minkowski space is nonlinearly stable. On the other hand it is well known that
sufficiently strong perturbations will form a black hole due to the universal
attractive nature of general relativity. Therefore there should be an intermediate
point between those cases at the onset of black hole formation. This is the point
of interest for critical studies in general relativity18.

Essential was the high accuracy that was obtained with the help of adaptive
mesh refinement to zoom into regions of interest, which was applied in numerical
relativity for the first time for this project. Nowadays it is a widely used tool in
numerical relativity. Also the introduction of numerical dissipation (discussed in
section 2.3.3) was important.

Choptuik considered a one-parameter family of massless scalar fields coupled to a
spherically symmetric gravitational field. He used polar slicing (implying for the
components K ϑ

ϑ = K ϕ
ϕ = 0, see definition 4.3.2). Because of the high accuracy

he was able to determine the critical value very precisely and studied sub- as well
as supercritical solutions.

The analysis of the subcritical simulations revealed the existence of a universal
critical solution at the onset of black hole formation. In the vicinity of that
critical solution there is a finite number of echos. The echos are scale-periodic
with again an universal “echoing exponent”. The critical solution is discretely
self-similar19 which means there exists an invariance of the solution under
rescaling of time and the radial coordinate.

17This dispersion is due to the asymptotic structure of Minkowski space and very essential for
the proof. This is in contrast to the so-called anti-de Sitter space (which has a bound-
ary) which is believed to be basically unstable, see Bizoń and Rostworowski (2011), and
Maliborski and Rostworowski (2013) for an example of an “island of stability”.

18As the (unconfirmed) story goes the mathematician Demetrios Christodoulou asked the nu-
merical relativist Matt Choptuik in the late 1980s: “Matt, what happens at the threshold?”
which initiated this important study. Some statements in this direction are included in the
introduction of Choptuik (1994) which confirms that a question in pure mathematical rela-
tivity led with the help of numerical mathematical relativity to a very important contribution
in numerical relativity. This might be the first result where numerical tools were absolutely
indispensable in mathematical relativity and a milestone in numerical relativity. In the fol-
lowing years some (semi-)analytical understanding (basically using perturbative techniques
and the theory of dynamical systems) was achieved as well, in large parts due to Carsten
Gundlach, see Gundlach and Mart́ın-Garćıa (2007).

19There exist also continuously self-similar solutions.
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If a black hole is formed in the supercritical regime an infinitesimally small mass
of the black hole is possible. Its mass is determined by

mbh ∼ (p− p∗)
γ (3.48)

with parameter p of the one-parameter family of scalar fields (and critical
value p∗) and universal exponent γ (whose numerical value is ≈ .37) which is
independent of the particular family of initial data.

This type of critical collapse was later called “type II” critical collapse, see
Gundlach and Mart́ın-Garćıa (2007). Consequently there is also a “type I”
critical collapse, now with stationary critical solutions with time-periodicity. It
occurs if a mass scale in the field equations is relevant. In that case there exist a
finite black hole mass and a mass gap.

For completeness let us mention that there exists also an additional “type III”
critical collapse discovered in Choptuik et al. (1999) with a critical solution being
an unstable (due to a coupling to a Yang-Mills matter field) static black hole, see
also Rinne (2014) for more recent investigations.

Due to the Jebsen-Birkhoff theorem 3.5.2 it is obvious that in spherical
symmetry the collapse is driven by the coupling to the matter contribution, the
“right-hand side” of Einstein’s equation (3.3). It is not so clear which role is
played by the “left-hand side” as such, so by gravity itself with vanishing matter
field20. Also the investigations of the role of angular momentum in the critical
collapse is of huge interest and cannot be studied in spherical symmetry21. There
is some recent progress in that direction, see Baumgarte and Gundlach (2016),
Gundlach and Baumgarte (2016).

There are a number of immediate follow-up questions, including

1. are the phenomena in the critical collapse a curiosity of the high symmetry
assumption?

2. are the phenomena in the critical collapse a curiosity of the scalar field?
3. is the matter relevant for the critical collapse or can it occur as a pure

gravitational effect as well?

20On https://alanrendall.wordpress.com/2009/04/25/respecting-the-matter-in-general-relativity/
one can read: “Einstein himself is often quoted as having said that the left hand side of his
equations is made of marble while the right hand side is made of wood”. We also failed to
find sources for Alan Rendall’s quote.

21We only mention the possibility of a charged scalar field that might act as a toy model for
angular momentum.
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The answer to points 1 and 2 was basically found in the last two and a half
decades and is basically in the negative. There are a few studies showing critical
phenomena in less symmetry and driven by a matter field. Also a large number
of simulations with different matter models. Concerning these points consult
Gundlach and Mart́ın-Garćıa (2007) for a fairly complete review until 2007, in
particular about the matter sources, and Choptuik et al. (2015) for a more recent
review where references concerning point 1 are included. That the answer to
point 3 is in the affirmative was shown in the same year as Choptuik (1993) by
Andrew Abrahams and Charles Evans in Abrahams and Evans (1993) who
considered vacuum collapse and found critical phenomena as well. It is
remarkable (and will be discussed below) that since then further attempts to this
problem remained unsuccessful22. Therefore there is some justification to
consider point 3 in the list above to be open. Further attempts in that direction
are considered in the paragraph below.

Numerical implementations in axial symmetry Between the highly idealized
situation of spherical symmetry and the full 3+1-dimensional framework the
study of axisymmetry is suitable. We discussed above that, under certain
assumptions, axisymmetry23 is the least symmetry one should assume when
departing from spherical symmetry. Actually axisymmetry is of immense
importance in mathematical relativity in the study of a single isolated system.
The two-parameter family of Kerr solutions24 is believed to be the final state of
all (uncharged) black holes, even though a manifest proof of that conjecture is
one of the major open problems in mathematical relativity and subject of recent
research.

Especially from the numerical point of view axisymmetry is attractive because it
is possible to reduce the dimension effectively by one. One results in a
2+1-dimensional situation.

Therefore it is not surprising that the celebrated “birth of numerical relativity”

22The code was never published and also details about the implementation are difficult to find
in the literature. Nevertheless consider Evans et al. (1986) for some details on earlier imple-
mentations that led to the one used for Abrahams and Evans (1993).

23Along that line it is obvious that hypersurface-orthogonal axisymmetry can be considered as
the “simplest” situation (in some respect) one has to consider when studying gravitational
perturbations in vacuum spacetimes.

24Discovered in 1963 by Roy Kerr (1963) and discussed in basically all textbooks on general rela-
tivity, for a solid mathematical treatment (even though slightly outdated) see Chandrasekhar
(1983).
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Hahn and Lindquist (1964)25 was an axisymmetric study. In the following two to
three decades the focus of the field of numerical relativity was on axisymmetrical
simulations. A central reason is that the computational resources were so limited
that it seemed beneficial to concentrate on the reduced version first. For reviews
on early successes in axisymmetric numerical relativity like head-on collisions
and the evolution of so-called Brill waves26 see for example the contributions of
Eardley, Smarr, Eppley in Smarr (1979) and the early review on axisymmetric
numerical relativity Bardeen and Piran (1983). Also the results by the Japanese
group, reviewed in Nakamura et al. (1987), should be mentioned here.

The focus switched to “full general relativity” (in the sense of no symmetry
assumption), in particular simulations with the aim of the extraction of
gravitational waves of binary systems (black holes as well as neutron stars) in the
1990s. Numerical relativity groups combined forces in projects like the “Binary
Black Hole Alliance”, a High-Performance Computing and Communications
Grand Challenge project founded by the National Science Foundation, see
Matzner et al. (1995)27. Finally we have large successful numerical relativity
collaborations28.

Only a subfield remained interested in axisymmetric simulations until today and
some particular results are discussed below. Nowadays a large motivation for
studying axisymmetric general relativity is to test and demonstrate conceptual
issues and to develop new tools with potential applications in full general
relativity. It is usually easier to handle and to implement. Also the simulations
are faster and therefore cheaper. As will be demonstrated in this thesis
axisymmetry is a well-suited testbed for new techniques and fundamental
studies. It deals as appropriate “intermediate step” between the sometimes
oversimplifying spherical symmetry and general relativity without symmetries.
Basically all results in this thesis are restricted to vacuum

25One should remark here that the pioneering paper marks indeed the beginning of the era
of numerical relativity and it is justified to be celebrated but actually their simulations are
unstable and, as the history of numerical relativity taught us, their conclusion that “the
numerical solution of the Einstein field equations presents no insurmountable difficulties” is
incorrect to a very large degree.

26Brill waves are pure gravitational waves as introduced in Brill (1959) (there for time-symmetric
initial data) and were the system studied in Abrahams and Evans (1993).

27While the aim of the project was to tackle the full 3+1-dimensional problem of the coalescence
and merger of a binary black hole they report here on a successful head-on collision of two
black holes which assumes axisymmetry. Also a mentionable result is the numerical confirma-
tion of the “pair of pants”, the non-time-symmetric horizon structure of two merging black
holes.

28We list SpEC (https://www.black-holes.org/code/SpEC.html), Einstein toolkit
(https://einsteintoolkit.org/), Cactus (http://cactuscode.org/) for examples.
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hypersurface-orthogonal axisymmetry but are more or less directly generalizable
to the 3+1-dimensional situation. On the other hand it allows for the
implementation and demonstration of new techniques, even offside large
collaborations and with moderate effort. It will be interesting to see these
techniques in action in situations with less symmetry.

Gravitational collapse in vacuum Since critical collapse simulations seem to
be out of range of full vacuum general relativity it is appropriate to discuss
attempts in that direction in axisymmetry. Spherical symmetry is not suited for
the discussion because in vacuum the situation is already understood and there is
no dynamics, see proposition 3.5.2. As already mentioned in discussions above on
page 111 pure gravitational collapse is not completely understood yet (there are,
as we will discuss below, exceptional papers but as we argued basically the
situation of critical vacuum collapse can be considered to be open). The results
of this thesis might be seen as a step towards that direction.

Pure gravitational waves in vacuum, the already mentioned Brill waves, were
numerically studied in the late 70s, see Eppley (1979) for a review from those
days. There he discusses their studies using cylindrical coordinates with
quasi-isotropic gauge and maximal slicing. The simulations are restricted to the
subcritical case, i.e. with a low amplitude of the initial wave. The aim is rather
to address conceptual issues. For example they aim to understand the numerical
calculation of an energy flux or a mass of such spacetimes.

Shoken Miyama (1981) seems to be the first who describes both the sub- and
supercritical evolution of numerical vacuum collapse correctly. He uses
cylindrical coordinates as well and geodesic slicing but a non-vanishing shift. The
resolution and accuracy does not allow to investigate the critical regime though.

Very interesting are the studies of Richard Stark and Tsvi Piran (James Bardeen
seems to be involved as well) who consider axisymmetric spacetimes in spherical
coordinates for vacuum as well as matter. In Appendix A of Bardeen and Piran
(1983) they derive regularity conditions for the origin which seems to be used in
the numerical simulations. In Stark and Piran (1985) both sub- and supercritical
configurations for vacuum waves are suggested as test cases for the code29.
Nevertheless in a more detailed paper Stark and Piran (1987) only weak

29The possibility to investigate the critical regime is not suggested though and the main part of
the letter deals with spacetimes with matter. Interesting to remark is that they even observe
some kind of universality of the wave form (see footnote 22 in Stark and Piran (1985)).
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gravitational waves are successfully evolved. It would be interesting to know if
their code was also able to handle the formation of a collapse to a black hole and
if the critical regime could be investigated.

The already mentioned letter by Abrahams and Evans (1993) reports on critical
phenomena in vacuum spacetimes. Hints to the existence of critical phenomena
in vacuum collapse were already included in Abrahams and Evans (1992), so the
first critical simulations for a scalar field and vacuum were really performed in
parallel. The authors developed their axisymmetric code over many years and
had apparently a very strong implementation at that time. They use spherical
polar coordinates and a quasi-isotropic spatial gauge condition together with
maximal slicing. A key point in the implementation is their moving mesh
algorithm which allows for higher accuracy in the important areas of the
simulation. Therefore they are not just able to simulate sub- and supercritical
configurations but also to investigate the critical regime. They find a similar
mass scaling (3.48) with same exponent .37 as for the collapse of the scalar field.
Also the echoing of solutions is observed and further, in the follow-up paper
Abrahams and Evans (1994), evidence for universality is given30. It is remarkable
that up to now there is no known independent confirmation of their studies and
reported results. In view of the increased computational power between the
machines in the early 90s and today and the number of people working in
numerical relativity this is somewhat surprising.

At the turn of the millennium full 3+1-dimensional codes became available. In
Alcubierre et al. (2000) the authors use the Cactus code to investigate
gravitational collapse. They use cylindrical coordinates and a combination of
maximal slicing and vanishing shift. They find that strong waves form a black
hole and weak ones disperse. They give a rough estimate of the critical
amplitude between sub- and supercritical configurations but are not able to
investigate that regime further and to find critical phenomena.

Garfinkle and Duncan (2001) study axisymmetric gravitational waves in
cylindrical coordinates with maximal slicing and in the quasi-isotropic spatial
gauge. For the evolution they introduce regularized variables in the form of
special combinations of several quantities to deal with the coordinate singularity
at the axis and they compactify the spacetime which allows to include spatial
infinity in the computational domain. Their formulation is partially constrained.
The resolution only allows a rough estimate of the critical value. They do not see
indications for the formation of naked singularities.

30And the critical exponent is reported to be .36 now.
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Also in cylindrical coordinates Choptuik et al. (2003) investigate axisymmetric
spacetimes. Again they apply maximal slicing and quasi-isotropic coordinates.
A fully constrained formulation is used. They use a similar regularization
procedure as in Garfinkle and Duncan (2001). The authors do not really
investigate critical collapse but postpone it to possible future studies.

Both Garfinkle and Duncan (2001) and Choptuik et al. (2003) solve the
Hamiltonian constraint. In Rinne (2008) it was pointed out that their
formulations have some problems concerning uniqueness and that issue was
corrected. Similarly as the other two projects Rinne (2008) uses cylindrical
coordinates and the combination of maximal slicing and quasi-isotropic
coordinates. While in a previous study Rinne (2005) (which was not necessarily
restricted to vacuum) uses a free evolution it is now performed in a fully
constrained scheme. The possibility of a collapse to a black hole is confirmed but
similarly as in previous studies the simulations are not able to explore the critical
regime.

A very different approach to vacuum collapse was presented by Evgeny Sorkin in
Sorkin (2011). There Brill waves are evolved in axisymmetry using cylindrical
coordinates and the generalized harmonic formulation of general relativity. He
focuses on the subcritical regime and reports on the possibility to approach the
critical value to a high degree. He reports on a similar scaling behavior for
curvature invariants as for the mass in (3.48) in supercritical simulations. Also
echoing of solutions seem to be present as well as universality with respect to the
choice of initial data and specific coordinate conditions. Nevertheless the critical
solution seems to be different than the one in Abrahams and Evans (1993). It is
not completely ruled out that the observations are due to an unphysical
coordinate effect.

In a more recent investigation Hilditch et al. (2013) study vacuum spacetimes in
axisymmetry in “moving puncture” coordinates. They obtain their results with
two basically independent codes, one with spherical polar coordinates and one
with cylindrical coordinates with “1+log slicing” and “Gamma driver shift” (see
remark 3.3.3). In Hilditch et al. (2013) they focus on the issue of the moving
puncture coordinates and do not address numerically the issue of critical
collapse. In Hilditch et al. (2016) some of the previous authors present a new
implementation of a pseudo-spectral code. Inspired by the SpEC code they use
quite similar techniques, for example generalized harmonic coordinates. Even
though the implementation is able to handle situations without symmetry they
focus on axisymmetry for applications. The authors demonstrate that they can
evolve the supercritical regime and that their excision technique works but the
investigations of critical collapse are postponed to forthcoming work. Recently
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the same group published a preprint Hilditch et al. (2017) where they determine
the critical parameter but cannot investigate the critical regime to the accuracy
that is needed. They use again cylindrical coordinates.

To summarize there are quite a lot of attempts to the collapse of gravitational
waves in vacuum. Most work is devoted to cylindrical coordinates with little
success concerning the exploration of the critical regime. There is basically just
one remarkable exception. On the other hand it seems to make sense that for the
collapse of vacuum perturbations the use of spherical coordinates should be
favored since it sounds more promising from the physical perspective. At least
the earliest critical vacuum simulations were performed in spherical coordinates.

It seems intuitive to use spherical polar coordinates for collapse scenarios. If
using adaptive methods they are also more natural. One can benefit from results
from large collaborations that do not use cylindrical coordinates. This thesis
should also be seen as a contribution to a deeper understanding of the
background that is needed to implement spacetime simulations in spherical
coordinates with a regular origin. We promote the use of spherical polar
coordinates.
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4.1. Introduction

The present chapter contains some of the main results of the thesis. Its focus is
the formulation and analysis of Einstein’s vacuum equations in axisymmetry.
Some aspects of the general axisymmetric framework (including the definition)
and the discussion of some published results in the literature were already
addressed in section 3.5. Here we explicitly derive Einstein’s nonlinear equations
in spherical polar coordinates. The aim is to adapt the situation such that an
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expansion in spin-weighted spherical harmonics is suitable as discussed in section
2.2.5. The mathematical analysis, which we prepared in chapter 2, is a major
issue of this chapter.

We use spherical polar coordinates. They imply a coordinate singularity for
ϑ = 0 and ϑ = π, so on the coordinate axis in adapted coordinates. Even though
not necessary conceptually, we assume for computational reasons axisymmetry,
so the coordinate axis is the axis of symmetry. We work out and derive its
consequences. While known in cylindrical coordinates the relations seem to be
unpublished for spherical polar coordinates. Their derivation has consequences
on the definition of our variables in section 4.4.

Our approach to use a spectral expansion in spin-weighted harmonics has an
influence on possible gauge choices. We work out the consequences and present
our results in section 4.3. Our derivation of Einstein’s field equations in the
considered situation is presented in section 4.5, including its linearization about
the flat solution and the reduction to the 1+1-dimensional mode equations. We
present our derivation of the exact solution of the linearized problem in
section 4.6.

We present our analysis of the derived equations in section 4.7, an eminent part
of the current chapter. We discuss several optional possibilities and present our
modifications that allow a formulation of the equations consisting of a strongly
hyperbolic and a parabolic-strongly hyperbolic subset.

4.2. Axisymmetry and implications

We assume hypersurface-orthogonal axisymmetry, hence the existence of a
Killing vector field ∂ϕ, see section 3.5. While a lot of the results of the thesis are
general or straightforwardly generalizable this is obviously not the case for the
current section. We will see that the assumption of axisymmetry already reveals
some information about the behavior of the variables. The aim is to keep the
framework as general as possible (concerning the generalization to a situation
without symmetry). We will not have to use the results of the current section in
the numerical studies in section 5. On the other hand we benefited during the
development of the code from having the relations. Further there might be
situations where one is just interested in axisymmetry and the relations are of
use. Also in the general case the knowledge of the leading term r (radial
coordinate) in the corresponding power series close to the origin is of
considerable value.
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4.2. Axisymmetry and implications

The essential step was performed for cylindrical coordinates and published in
2005 in Rinne (2005), Rinne and Stewart (2005). For spherical polar coordinates
the calculations are similar. The basic ingredient is “elementary flatness” which
is used on the axis to derive conditions for the variables. These allow then to
deduce a power series for the variables close to the axis.

Some similar considerations can be already found in Garfinkle and Duncan
(2001) and Choptuik et al. (2003) and ideas in that direction are already in
Miyama (1981). See also Ruiz et al. (2008). We are not aware of these results
being transformed to spherical polar coordinates which might be caused by the
fact that most formulations use cylindrical coordinates, see the discussions in
section 3.5.

Recall the definition 3.5.3 of axisymmetry. The following definition of regularity
on the axis incorporates the essential idea of elementary flatness, see
Wilson and Clarke (1996) and Synge (1964, chapter VII) for more details.

Definition 4.2.1. Given an axisymmetric tensor field T . It is regular on the
axis if it is so in Cartesian coordinates, that means if it has a convergent Taylor
expansion with respect to x and y close to the axis of symmetry. In particular
this defines regularity at the origin.

Proposition 4.2.1. A symmetric tensor field M on a spacetime (M, 4g) which
is axisymmetric and regular on the axis has, close to the axis of symmetry, the
following behavior in cylindrical coordinates (t, ρ, ϕ, z)

Mµν =









A ρD ρ2F B
ρD H + ρ2J ρ3K ρE
ρ2F ρ3K ρ2(H − ρ2J) ρ2G
B ρE ρ2G C









(4.1)

and close to the origin the following behavior in spherical polar coordinates
(t, r, ϑ, ϕ). The components of the corresponding matrix Mµν are

Mtt = A, (4.2a)

Mtr = cosϑB + sin2 ϑrD, (4.2b)

Mtϑ = cosϑ
(

−rB + sinϑr2D
)

, (4.2c)

Mtϕ = sin2 ϑr2F, (4.2d)

Mrr = cos2 ϑC + sin2 ϑH + 2 sin2 ϑ cosϑrE + sin ϑ cosϑr2J, (4.2e)

Mrϑ = sinϑr
[

cosϑ(H − C) + (cos2 ϑ− sin2 ϑ)rE − 2 sin2 ϑ cos ϑr2J
]

, (4.2f)

Mrϕ = sin2 ϑ
(

cosϑ+ sin2 ϑr
)

G (4.2g)

Mϑϑ = − 2 sin2 ϑ cos ϑrE + sin ϑ cosϑr2J + sin2 ϑr2C + cos2 ϑr2H. (4.2h)
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4. Vacuum axisymmetry in spherical coordinates

Mϑϕ = sin3 ϑr3(−1 + cosϑr)G (4.2i)

Mϕϕ = sin2 ϑr2
(

H − 2 sin2 ϑr2J
)

(4.2j)

All functions denoted by a capital letter are functions dependent on higher
powers in r or ρ respectively. Note that there exist a special relation for some of
the coordinates close to the axis/origin. That relation reads

• in Cartesian coordinates

(x2 − y2)(Mxx −Myy) + 4xyMxy = O
(

(x2 + y2)2
)

, (4.3)

• in cylindrical coordinates

ρ2Mρρ −Mϕϕ = O
(

ρ4
)

(4.4)

• and in spherical polar coordinates

sin4 ϑr2Mrr + 2 sin3 ϑ cosϑMrϑ + sin2 ϑ cos2 ϑMϑϑ −Mϕϕ = O
(

r4
)

. (4.5)

Proof. The essential calculations where performed in Rinne (2005, Chapter 2) for
the cylindrical coordinates which we essentially copy here. We assume
elementary flatness so locally close to the axis we use Cartesian coordinates. The
transformations to spherical coordinates are explicitly given in appendix A.1.2.
The Killing vector field reads

∂ϕ = −y∂x + x∂y (4.6)

which is defined in the whole R
2-plane. Then that expression is inserted into the

Killing equation L∂ϕM = 0 in Cartesian coordinates. Because M is axisymmetric
we can determine the Taylor expansion. For further details see Rinne (2005). In
Cartesian coordinates (t, x, y, z) the components of M need to behave close to
the axis as

Mtt = A, Mtx = xD − yF, Mty = yD + xF, Mtz = B (4.7a)

Mxx = H + (x2 − y2)J − 2xyG, Mxy = 2xyJ + (x2 − y2)G, Mxz = xE − yG
(4.7b)

Myy = H − (x2 − y2)J + 2xyG, Myz = xG + yE, Mzz = C (4.7c)

where the capital letters A,B, . . . J denote functions of (t, x2 + y2, z). The
remaining entries follow by symmetry. We notice immediately that the “special
relation” (4.3) holds.
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4.3. Gauges in axisymmetry

For the transformation from one coordinates system (xA, xB, . . .) to another one
(xi, xj, . . .) we use the formula (summation implied)

Mij =
∂xA

∂xi
∂xB

∂xj
MAB. (4.8)

Therefore in cylindrical coordinates (t, ρ, ϕ, z) we get exactly equation (4.1) and
the “special relation” (4.4).

The transformation from Cartesian to spherical polar coordinates results in
equation (4.2) and the “special relation” (4.5) holds.

Remark 4.2.1. The leading order behavior in ρ (or r) of the metric may be
obtained in a slightly easier way as derived in Ruiz et al. (2008). The authors use
some invariance properties at the axis in the x-y-plane to find the leading order
of the components there. Then the results can be transformed into the desired
coordinate system. It does not seem to be possible to obtain the specific behavior
as with the method in Rinne (2005) and the “special relation” with that method
though.

Remark 4.2.2. The results in proposition 4.2.1 cannot be applied for the case
without symmetry. As already said there is some motivation to keep the
formulation as general as possible. The motivation for axisymmetry has basically
computational reasons. In section 4.6 we will derive the exact solution to
Einstein’s linearized equations in axisymmetry. We can confirm that the
analytical solution satisfies the behavior in proposition 4.2.1.

4.3. Gauges in axisymmetry

We discuss a few possible gauge choices suitable for axisymmetry in the
following, including the one we will use in the remainder and motivate our choice.
We considered the gauges in spherical polar coordinates (see appendix A.1.2)
even though they can be considered in the form of cylindrical coordinates as well.
Symmetry reduction was discussed in section 3.5 and the current section can be
seen as kind of continuation of that one. Further gauge conditions which are not
particular for symmetry-reduced situations are discussed in section 3.3.3. Some
of the presented material is covered in Baumgarte and Shapiro (2010).
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4. Vacuum axisymmetry in spherical coordinates

4.3.1. The quasi-isotropic gauge

Axisymmetry is a symmetry with respect to the Killing vector field ∂ϕ, see
section 3.5. In spherical symmetry isotropic coordinates can be used. Then the
spatial metric is conformal to the flat one. Since this is not possible in
axisymmetry the idea is to choose a gauge that models the isotropic gauge “as
good as possible”.

Definition 4.3.1. In spherical symmetry we call coordinates where the spatial
part is conformal to the flat Euclidean space,

dl2 = ψ4(r)
(

dr2 + r2dΩ2
)

with dΩ2 = dϑ2 + sin2 ϑdϕ2 (4.9)

and conformal factor ψ(t, r) (where the exponent is just chosen for convenience)
isotropic coordinates. The quasi-isotropic gauge is defined by conditions for
the components of the spatial metric

γrϑ = 0 = γrϕ, ∂tγrϑ = 0 = ∂tγrϕ, (4.10a)

(r2γrr − γϑϑ)γϕϕ + γ2ϑϕ = 0, ∂t
(

(r2γrr − γϑϑ)γϕϕ + γ2ϑϕ
)

= 0. (4.10b)

One can easily see that in spherical symmetry the quasi-isotropic gauge reduces
to the use of isotropic coordinates. In hypersurface-orthogonal axisymmetry, so
without twist and rotation, the component γϑϕ vanishes. Then the aim of the
gauge condition, namely to separate γϕϕ, is achieved completely.

This is a widely used gauge in axisymmetric simulations, see
Abrahams and Evans (1993), Garfinkle and Duncan (2001), Choptuik et al.
(2003), Rinne (2008) and also analytically well studied, see Dain (2011) for a
review.

Proposition 4.3.1 (Schell and Rinne (2015)). When using the expansion of the
metric variables in spin-weighted spherical harmonics in hypersurface-orthogonal
axisymmetry the quasi-isotropic gauge is unfortunate in the sense that it is only
compatible with spherical symmetry and should therefore be abandoned.

Proof. The expansion of the relevant components of the spatial metric γij is
(compare section 2.2.5)

γrr = HY, (4.11a)

γϑϑ = r2
(

K − ℓ(ℓ+ 1)

2
G

)

Y − r2
cosϑ

sin ϑ
GYϑ = r2 (KY +GYϑϑ) , (4.11b)
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4.3. Gauges in axisymmetry

γϕϕ = r2 sin2 ϑ

(

K +
ℓ(ℓ+ 1)

2
G

)

Y + r2 cos ϑ sinϑGYϑ

= r2 sin2 ϑ (KY −GYϑϑ) , (4.11c)

where H,K and G are functions of t and r only and a sum over the mode
number ℓ is implicitly implied. Applying the expansion of the metric
coefficients (4.11) to the quasi-isotropic condition (4.10), one finds

r2
(

H −K +
ℓ(ℓ+ 1)

2
G

)

Y + r2
cosϑ

sin ϑ
GYϑ = 0, (4.12)

which implies G = 0 and hence H = K. Thus only one degree of freedom for the
spatial metric remains. Therefore the only situation that is compatible with this
choice is the one of spherical symmetry.

The result can also be understood on a conceptual level. The gauge tells you to
separate γϑϑ and γϕϕ but the spin-weighted harmonics combine those
components. That sounds like a contradiction and is confirmed by the
calculation above. In order to repair this issue we came up with a new gauge
condition in Schell and Rinne (2015).

Proposition 4.3.2. If we keep the diagonal gauge as before but use as
remaining condition

γϑϑ = r4 sin2 ϑ γϕϕ(γrr)
2 = r4 sin2 ϑ

(γrr)
2

γϕϕ
(4.13)

(and its preservation under time evolution) the situation is well-suited together
with the expansion in spherical harmonics.

Proof. The proposed gauge contains a nonlinear condition. In order to apply the
expansion in spherical harmonics we linearize condition (4.13) about a flat
background,

γϑϑ = 2r2γrr −
γϕϕ
sin2 ϑ

(4.14)

and hence, again by using the expansion (4.11),

2r2(K −H)Y = 0. (4.15)

Therefore H = K and G arbitrary are two remaining degrees of freedom, which
shows that these conditions are indeed well suited.
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4. Vacuum axisymmetry in spherical coordinates

Therefore this new gauge condition sounds quite attractive for the numerical
implementation. In the development of the code and also as guiding element for
analytical considerations one highly benefits from the knowledge of an exact
solution of the problem. We will derive it in section 4.6. In the derivation, more
precisely in equations (4.71) below and also discussed there, one has to solve
integrals. The solution of the integrals can be written down in closed form if
there are some vanishing components of the shift. Since the exact solution was so
essential for the project we decided to abandon this gauge choice as well even
though we are convinced that it is suitable for a pseudo-spectral implementation
of the situation.

For the remainder of the thesis we use the geodesic (or canonical) gauge,
discussed in section 3.3.3. That implies that we take vanishing shift βi = 0 and
set the lapse α = 1. Therefore there is no further freedom for putting conditions
on the spatial metric.

4.3.2. Radial gauge and polar slicing

We mention a related gauge condition and polar slicing here, see for example
standard textbooks on numerical relativity cited at the beginning of section 3.3.
It was used in Choptuik (1993) in spherical symmetry where it implies also
vanishing shift.

Definition 4.3.2. The radial gauge requires

γrϑ = 0 = γrϕ, ∂tγrϑ = 0 = ∂tγrϕ, (4.16a)

γϑϑγϕϕ − γ2ϑϕ = r4 sin2 ϑ, ∂t
(

γϑϑγϕϕ − γ2ϑϕ
)

= 0. (4.16b)

Polar slicing is given as

K ϑ
ϑ +K ϕ

ϕ = 0. (4.17)

Another reason to refer to it is that it would be interesting to explore its
consequences for our general setting (expansion in spin-weighted spherical
harmonics). The disadvantage is that the shift vector does not vanish for the
radial gauge which presumably implies that there are problems to write down the
exact solution in a closed form, see the discussions in section 4.6. The exact
solution is of great value for the implementation and development of the code
but in general not necessary of course. A very interesting observation concerning
the polar slicing is that the given combination of extrinsic curvature components
transforms as a scalar quantity concerning the spherical harmonics
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4.4. Choice of variables

(spin-weight 0), see section 4.4. Its vanishing by gauge allows to remove one of
the evolution equations that will turn out to be formally singular at the origin,
see section 4.5. Of course we should also mention that the radial gauge seems to
be unfortunate for the study of black hole spacetimes.

4.4. Choice of variables

The variables in our gauge consist of the non-vanishing components of the spatial
metric γij and the extrinsic curvature Kij, the gauge quantities α and βi are
trivial (α = 1 and βi = 0). It is beneficial to arrange the variables in a clever way
for the derivations of the equations which should be implemented later. There
are two major demands the choice should match;

• the perturbation part of the variables should expand in an appropriate way
in spherical harmonics as derived in sections 2.2.5 and 2.5, the
eigenfunctions of the Laplacian operator for the quantity,

• close to the axis the variables should behave in a certain way, namely the
leading order should be O(r0) close to the axis, as derived in section 4.2.

The first item in the list of demands implies that the components should be
combined in a specific way (namely such that their linearization expands in
spherical harmonics), the second item determines the power of r in the definition.

Definition 4.4.1. For hypersurface-orthogonal axisymmetry (in particular the
contributions in ϑϕ and rϕ vanish) we define our variables in the following way,

γs1 = γrr, (4.18a)

γs2 =

√
γϑϑγϕϕ

r2 sinϑ
, (4.18b)

γv =
γrϑ
r
, (4.18c)

γt = sin ϑ

√

γϑϑ
γϕϕ

= sin ϑ
√
γϑϑγϕϕ, (4.18d)

Ks1 = −1

2
K r

r , (4.18e)

Ks2 =
1

2

(

K ϑ
ϑ +K ϕ

ϕ

)

, (4.18f)

Kv = r−1K r
ϑ , (4.18g)

Kt =
1

2

(

K ϑ
ϑ −K ϕ

ϕ

)

. (4.18h)
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4. Vacuum axisymmetry in spherical coordinates

Proposition 4.4.1. All quantities in equation (4.18) are O(r0) close to the
origin r = 0. Their flat contribution is either 0 or 1. Further, as the labeling
intuitively suggests, the variables are arranged such that the ones called “scalar”
have a linearization that expands in scalar harmonics, and the corresponding
statements for the “vector” and “tensor” labels. Maximal slicing corresponds to
Ks1 = Ks2. The transformations back is obvious or reads for the angular
components of the spatial metric

γϑϑ = r2γs2γt, (4.19a)

γϕϕ = r2 sin2 ϑ
γs2
γt
. (4.19b)

Proof. The O(r0) behavior follows from the results in section 4.2. The flat metric
(see appendix A.1.2) in spherical coordinates with basis (∂r, ∂ϑ, ∂ϕ) is given as
ηij = diag(1, r2, r2 sin2 ϑ). Inserting that metric in equation (4.18) shows that the
flat contribution of γs1, γs2 and γt is indeed 1, the rest vanishes. Linearization as
discussed in section 3.2.3 (write all variables as u = uflat + ǫũ with the
linearization ũ and keep just terms up to O(ǫ1)) about flat background shows
that the variables behave as

γs1 = 1 + ǫγ̃s1 = 1 + ǫγ̃rr, (4.20a)

γs2 = 1 + ǫγ̃s2 = 1 +
ǫ

2

(

γ̃ϑϑ
r2

+
γ̃ϕϕ

r2 sin2 ϑ

)

, (4.20b)

γv = 0 + ǫγ̃v =
ǫ

r2
γ̃rϑ, (4.20c)

γt = 1 + ǫγ̃t = 1 +
ǫ

2

(

γ̃ϑϑ
r2

− γ̃ϕϕ

r2 sin2 ϑ

)

, (4.20d)

Ks1 = 0 + ǫK̃s1 = ǫK̃rr, (4.20e)

Ks2 = 0 + ǫK̃s2 =
ǫ

2

(

K̃ϑϑ

r2
+

K̃ϕϕ

r2 sin2 ϑ

)

, (4.20f)

Kv = 0 + ǫK̃v =
ǫ

r
K̃ϑr, (4.20g)

Kt = 0 + ǫK̃t =
ǫ

2

(

K̃ϑϑ

r2
− K̃ϕϕ

r2 sin2 ϑ

)

. (4.20h)

With the expansion as in section 2.2.5 the correct expansion in the claimed
spherical harmonics follows. The trace of the extrinsic curvature reads

trK = K r
r +K ϑ

ϑ +K ϕ
ϕ = 2 (Ks2 −Ks1) (4.21)
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4.5. Formulation of Einstein’s equations

and therefore the statement about maximal slicing is shown. The relations (4.19)
follow by inserting them into the expressions in equation (4.18).

For later convenience we calculate the determinant of the spatial metric in the
defined variables.

Proposition 4.4.2. The determinant for the spatial metric is in our variables

det γ = r4 sin2 ϑ
(

γs1γ
2
s2 − γs2γ

2
vγ

−1
t

)

(4.22)

and its linearization about flat spacetime

det γ̃ = r4 sin2 ϑ (γ̃s1 + 2γ̃s2) . (4.23)

Proof. Straightforward calculation of the determinant of a 3× 3-matrix with
some vanishing entries leads to det γ = γrrγϑϑγϕϕ − γ2rϑγϕϕ and therefore, by
plugging in, to the nonlinear result. Linearization leads to the second
formula.

4.5. Formulation of Einstein’s equations

4.5.1. Nonlinear equations

With the definition 4.4.1 of the nonlinear variables we can derive Einstein’s
equations in the Cauchy formulation (section 3.3) in these variables. A few
remarks are in order concerning the momentum constraint. In the Cauchy
formulation it reads

Ci = Dj

(

Kij − γijtrK
)

= 0. (3.31b rev.)

We will see later in section 4.7.2 that it is indeed possible for the original
momentum constraint to be cast in a hyperbolic form. Unfortunately it is not
hyperbolic for the variables we desire it to be solved for. Therefore we will derive
a modification in theorem 4.7.3 which behaves exactly as we like it to do. In the
following derivation we refer with the modified version of the momentum
constraint to the relation (note the index µ)

Ci,µ := Dj

(

Kij + (µ− 1)γijtrK
)

= µγijDjtrK. (4.24)

We will basically only consider the original version with µ = 0 and the case µ = 2,

Ci,µ=2 = Dj

(

Kij + γijtrK
)

= 2γijDjtrK. (4.25)

The meaning will become clear in section 4.7.2.
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4. Vacuum axisymmetry in spherical coordinates

Theorem 4.5.1. The Cauchy formulation of hypersurface-orthogonal
axisymmetric Einstein’s equations for the variables in definition 4.4.1 with
vanishing shift βi = 0 and lapse α = 1 (geodesic gauge, see section 3.3.3) results
in four evolution equations for the components of the spatial metric

∂tγs1 = 4 Ks1 γs1 − 2 Kv γs1 γ
−1
s2 γ−1

t γv − 4 Ks1 γ
−1
s2 γ−1

t γ2v
−2 Ks2 γ

−1
s2 γ−1

t γ2v − 2 Kt γ
−1
s2 γ−1

t γ2v, (4.26a)

∂tγs2 = −2 Ks2 γs2 −Kv γ
−1
t γv, (4.26b)

∂tγv = −2 Kv γs1 − 2 Ks2 γv − 2 Kt γv, (4.26c)

∂tγt = −2 Kt γt −Kv γ
−1
s2 γv, (4.26d)

and four evolution equations for the extrinsic curvature components. We write
the latter in the form (all components have structurally the same behavior,
therefore a specific coefficient is skipped in the following equation)

∂tK =
K
κ

(4.27)

and list, because they are rather lengthy, the corresponding K in appendix A.2.1.

The prefactor is the same in all cases and reads

κ = r−4γ2ϑϑ
(

γrrγϑϑ − γ2rϑ
)2

= r2 γ2s2 γ
2
t

(

γs1 γs2 γt − γ2v
)2
. (4.28)

We get two further (not independent) evolution equations for the trace of the
extrinsic curvature,

∂ttrK = 4 K2
s1 + 2 K2

s2 + 2 K2
t

+
2 Kv [Kv γs1 + (2Ks1 +Ks2 +Kt) γv]

γs2 γt
(4.29)

and the determinant of the spatial metric,

∂t ln
√

det γ = 2(Ks1 −Ks2) (4.30)

Further we get three nontrivial constraints1. In fact we are not interested in the
original momentum constraint but in the modified versions according to
theorem 4.7.3 with factor µ = 2. The constraints and their modifications are
listed in appendix A.3.

1The fourth one, the ϕ-component of the momentum constraint is identically satisfied due to
the axisymmetry assumption.
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4.5. Formulation of Einstein’s equations

Proof. Starting point are the equations which are listed in section 3.3 that need
to be transformed to the variables in definition 4.4.1. The evolution equations for
the spatial metric with vanishing shift are

∂tγij = −2Kij . (4.31)

Using the definition 4.4.1 and the usual rules for the derivatives. For example we
have

∂tγs2 =
1

r2 sin2 ϑ

(√

γϕϕ
γϑϑ

∂tγϑϑ +

√

γϑϑ
γϕϕ

∂tγϕϕ

)

(4.32)

results in the listed evolution equations. For the source-free (vacuum) evolution
equations for the extrinsic curvature with vanishing shift we calculate

∂tKij =
(

Rij + 2KikK
k
j + trK Kij

)

. (4.33)

All tensor components need to be written in the form of the variables used in
definition 4.4.1. Therefore we have to express the purely covariant and
contravariant components of the extrinsic curvature tensor in terms of the mixed
components. For example

Krr = γrrK r
r + γrϑK r

ϑ . (4.34)

The components of the spatial metric have to be expressed in covariant form. For
example we get

γrr =
γϑϑ

γrrγϑϑ − γ2rϑ
. (4.35)

Taking these rules into account for all components and writing the resulting
equations in the defined variables leads to the claimed equations. The evolution
equation for trK can be calculated as

∂ttrK = KijK
ij = (K r

r )2 + (K ϑ
ϑ )2 + (K ϕ

ϕ )2

+2
γrr
γϑϑ

(K r
ϑ )2 − 2

γrϑ
γϑϑ

K r
r K

r
ϑ + 2

γrϑ
γϑϑ

K r
ϑ K

ϑ
ϑ (4.36)

The Hamiltonian constraint (3.15)

H = R + trK2 −KijK
ij = 0 (4.37)

needs to expressed in the defined variables as well. The original (µ = 0) and the
modified momentum constraint in equation (4.119) with µ = 2 read (the upper
sign for the original, the lower one for the modified constraint)

Ci,µ = Dj

(

Kij ∓ γijtrK
)

= ∂iK
ij + Γi

jkK
kj + Γj

jkK
ik ∓ γij∂jtrK = 0. (4.38)
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4. Vacuum axisymmetry in spherical coordinates

We have the spectral expansion in spherical harmonics in mind. It is beneficial to
express the momentum constraint in the covariant version Cµ

i = γijCj,µ. We are
free, since the constraint equations are supposed to vanish, to multiply them
with some factor. For the equations claimed in theorem 4.5.1 we multiply

• the Hamiltonian constraint with

1

2
r−4γ2ϑϑ

(

γrrγϑϑ − γ2rϑ
)2

=
r2

2
γ2s2 γ

2
t

(

γs1 γs2 γt − γ2v
)2
, (4.39)

• the r-component of the momentum constraint with

r−5γ2ϑϑ
(

γrrγϑϑ − γ2rϑ
)

= r γ2s2 γ
2
t

(

γs1 γs2 γt − γ2v
)

, (4.40)

• and the ϑ-component of the momentum constraint with

−r−6γ2ϑϑ
(

γrrγϑϑ − γ2rϑ
)

= −γ2s2 γ2t
(

γs1 γs2 γt − γ2v
)

. (4.41)

Note that the factor is basically the same as the prefactor in front of the time
evolution of the extrinsic curvature in equation (4.28). The explicit expressions
for the Hamiltonian constraint and both versions (µ = 0 and µ = 2) of the
momentum constraint are explicitly listed in appendix A.3.

4.5.2. Linear equations

The nonlinear equations are supposed to be solved as perturbations about the
Minkowski spacetime. For many purposes it makes sense to consider the linear
problem first. The equations are far shorter and hence comprehensible and easier
to handle, both from the analytical and the numerical point of view. When
developing the code it is reasonable to start with the easier model before going to
the more complicated situation. Therefore we will derive the linearized version of
the equations in theorem 4.5.1 in this section.

Theorem 4.5.2. The linearization about the flat Minkowski background of the
equations in theorem 4.5.1 are given as follows. The evolution equations are

∂tγ̃s1 = 4 K̃s1 (4.42a)

∂tγ̃s2 = − 2 K̃s2 (4.42b)

∂tγ̃v = − 2 K̃v (4.42c)

∂tγ̃t = − 2 K̃t (4.42d)

∂tK̃s1 = −
cosϑ
sinϑ

γ̃v

2 r2
+

cosϑ
sinϑ

∂ϑγ̃s1

4 r2
− ∂ϑγ̃v

2 r2
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+
∂2ϑγ̃s1
4 r2

− ∂rγ̃s1
2 r

+
∂rγ̃s2
r

−
cos ϑ
sinϑ

∂rγ̃v

2 r

− ∂r∂ϑγ̃v
2 r

+
1

2
∂2r γ̃s2 (4.42e)

∂tK̃s2 =
γ̃s1
r2

− γ̃s2
r2

− γ̃t
r2

+
3 cosϑ

sinϑ
γ̃v

2 r2

−
cos ϑ
sinϑ

∂ϑγ̃s1

4 r2
−

cosϑ
sinϑ

∂ϑγ̃s2

2 r2
+

3 cosϑ
sinϑ

∂ϑγ̃t

2 r2

+
3 ∂ϑγ̃v
2 r2

− ∂2ϑγ̃s1
4 r2

− ∂2ϑγ̃s2
2 r2

+
∂2ϑγ̃t
2 r2

+
∂rγ̃s1
2 r

− 2 ∂rγ̃s2
r

+
cos ϑ
sinϑ

∂rγ̃v

2 r

+
∂r∂ϑγ̃v
2 r

− 1

2
∂2r γ̃s2 (4.42f)

∂tK̃v = − γ̃v
r2

+
∂ϑγ̃s1
2 r2

+
cosϑ
sinϑ

∂rγ̃t

r

− ∂r∂ϑγ̃s2
2 r

+
∂r∂ϑγ̃t
2 r

(4.42g)

∂tK̃t = −
cos ϑ
sinϑ

γ̃v

2 r2
+

cosϑ
sinϑ

∂ϑγ̃s1

4 r2
+
∂ϑγ̃v
2 r2

− ∂2ϑγ̃s1
4 r2

− ∂rγ̃t
r

−
cosϑ
sinϑ

∂rγ̃v

2 r

+
∂r∂ϑγ̃v
2 r

− 1

2
∂2r γ̃t, (4.42h)

∂ttrK̃ = 0, (4.42i)

∂t det γ̃ = 0. (4.42j)

The linear Hamiltonian constraint reads

H̃ = γ̃s1 − γ̃s2 − γ̃t + 2
cosϑ

sin ϑ
γ̃v − 1

2

cosϑ

sin ϑ
∂ϑγ̃s1

−1

2

cosϑ

sin ϑ
∂ϑγ̃s2 +

3

2

cosϑ

sinϑ
∂ϑγ̃t + 2 ∂ϑγ̃v − 1

2
∂2ϑγ̃s1

−1

2
∂2ϑγ̃s2 +

1

2
∂2ϑγ̃t + r ∂rγ̃s1 − 3 r ∂rγ̃s2

+r
cos ϑ

sin ϑ
∂rγ̃v + r ∂r∂ϑγ̃v − r2 ∂2r γ̃s2 = 0, (4.43)

the r-component of the original linear momentum constraint is

C̃µ=0
r = −4 K̃s1 − 2 K̃s2 +

cosϑ

sinϑ
K̃v
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+∂ϑK̃v − 2 r ∂rK̃s2 = 0 (4.44)

and the ϑ-component gives

C̃µ=0
ϑ = 2

cosϑ

sin ϑ
K̃t + 3 K̃v + 2 ∂ϑK̃s1

− ∂ϑK̃s2 + ∂ϑK̃t + r ∂rK̃v = 0. (4.45)

The modified version (with µ = 2) of the momentum constraint reads in the
r-component

C̃µ=2
r = −4 K̃s1 − 2 K̃s2 +

cosϑ

sin ϑ
K̃v

+∂ϑK̃v − 4 r ∂rK̃s1 + 2 r ∂rK̃s2 = 0 (4.46)

and for the ϑ-component

C̃µ=2
ϑ = 2

cosϑ

sin ϑ
K̃t + 3 K̃v − 2 ∂ϑK̃s1

+3 ∂ϑK̃s2 + ∂ϑK̃t + r ∂rK̃v = 0. (4.47)

Proof. We simply have to linearize all variables about the flat background in the
form u = uflat + ǫũ (with flat contributions as in proposition 4.4.1), insert those
in the nonlinear equations of theorem 4.5.1 and ignore all nonlinear contributions
O(ǫ≥2).

4.5.3. Equations on the mode level

One of the purposes of the definition of our variables in definition 4.4.1 was that
we can expand them in eigenfunctions of the Laplace operator on the sphere (see
section 2.5), thus in the corresponding spherical harmonics. We have seen that
we can expand all linear variables in the following way,

ũ(t, r, ϑ) =
L−1
∑

ℓ=0

ûℓ(t, r)Yℓ(ϑ) ≡ ûℓYℓ (4.48)

where we cut the series after L contributions and Yℓ are the spherical harmonics
as given in section 2.2.5, so either the scalar, vector or tensor harmonics. We
take the liberty to skip the dependencies on coordinates and the sum in most of
the following expressions on the mode level. We hope that the equations become
more readable but the meaning should be unambiguous.
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4.5. Formulation of Einstein’s equations

Theorem 4.5.3. The expansion of Einstein’s linear equations in the
corresponding spherical harmonics lead to a set of decoupled (in the ℓ-modes)
1+1-dimensional equations for each ℓ-mode. Explicitly the evolution equations
read

∂tγ̂s1 = 4K̂s1, (4.49a)

∂tγ̂s2 = − 2K̂s2, (4.49b)

∂tγ̂v = − 2K̂v, (4.49c)

∂tγ̂t = − 2K̂t, (4.49d)

∂tK̂s1 =
1

r2

[

−
(

ℓ(ℓ+ 1)

4

)

γ̂s1 +
ℓ(ℓ+ 1)

2
γ̂v

]

+
1

r

[

−1

2
∂rγ̂s1 + ∂rγ̂s2 +

ℓ(ℓ+ 1)

2
∂rγ̂v

]

+
1

2
∂2r γ̂s2, (4.49e)

∂tK̂s2 =
1

r2

[(

1 +
ℓ(ℓ+ 1)

4

)

γ̂s1 +

(

−1 +
ℓ(ℓ+ 1)

2

)

γ̂s2

−1

2

(

ℓ+
ℓ2

2
− ℓ3 − ℓ4

2

)

γ̂t −
3ℓ(ℓ+ 1)

2
γ̂v

]

+
1

r

[

1

2
∂rγ̂s1 − 2∂rγ̂s2 −

ℓ(ℓ+ 1)

2
∂rγ̂v

]

− 1

2
∂2r γ̂s2, (4.49f)

∂tK̂v =
1

r2

[

1

2
γ̂s1 − γ̂v

]

+
1

r

[

−1

2
∂rγ̂s2 +

1

2

(

1− ℓ(ℓ+ 1)

2

)

∂rγ̂t

]

(4.49g)

∂tK̂t =
1

r2

[

−1

2
γ̂s1 + γ̂v

]

+
1

r
[−∂rγ̂t + ∂rγ̂v]−

1

2
∂2r γ̂t, (4.49h)

∂ttrK̂ = 0, (4.49i)

∂t det γ̂ = 0. (4.49j)

The Hamiltonian constraint is

Ĥ =

(

1 +
ℓ(ℓ+ 1)

2

)

γ̂s1 +

(

−1 +
ℓ(ℓ+ 1)

2

)

γ̂s2

−1

2

(

ℓ+
ℓ2

2
− ℓ3 − ℓ4

2

)

γ̂t − 2ℓ(ℓ+ 1)γ̂v + r∂rγ̂s1

−3r∂rγ̂s2 − ℓ(ℓ+ 1)r∂rγ̂v − r2∂2r γ̂s2 = 0 (4.50)

and the original momentum constraint has the components in r

Ĉµ=0
r = −4 K̂s1 − 2 K̂s2 − ℓ(ℓ+ 1) K̂v − 2 r∂rK̂s2 = 0 (4.51)
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and ϑ

Ĉµ=0
ϑ = 2 K̂s1 +

(

1− ℓ(ℓ+ 1)

2

)

K̂t − K̂s2 + 3 K̂v + r∂rK̂v = 0. (4.52)

The modified momentum constraint (as always we choose µ = 2) has the
components in r

Ĉµ=2
r = −4 K̂s1 − 2 K̂s2 − ℓ(ℓ+ 1) K̂v − 4 r∂rK̂s1 + 2 r∂rK̂s2 = 0 (4.53)

and ϑ

Ĉµ=2
ϑ = −2 K̂s1 +

(

1− ℓ(ℓ+ 1)

2

)

K̂t + 3 K̂s2 + 3 K̂v + r∂rK̂v = 0. (4.54)

Proof. One just has to perform the expansion in equation (4.48) for each
variable, insert it in the linear equations in theorem 4.5.2 and one gets the
claimed equations. The decoupling of each mode is obvious.

4.6. Exact solution to the linear problem

For the actual numerical implementation it is very beneficial to have some
analytical knowledge of an exact solution to the problem. It simplifies
comparisons and demonstrations of convergence, allows to localize problems
when making use of that knowledge and deals as a guide for the implementation.
We will show that it is possible to solve the problem for the linearized
perturbations analytically and to give the solution in closed form.

There are basically two major approaches to perturbation theory in general
relativity. One, the Regge Wheeler Zerilli formalism is based on the analysis
of perturbations of non-rotating spacetimes like the Minkowski and
Schwarzschild solution. Perturbations in the metric coefficients are studied. The
perturbations fall in two different classes or sectors, see Chandrasekhar (1983).
Some induce a dragging of the inertial frame and are therefore connected with
rotations. They are called odd (or axial). The other class impart no such
rotations and the perturbations are called even (or polar). It was initiated for
the odd sector in Regge and Wheeler (1957) and later continued for the even
sector in Zerilli (1970).

A second and complementary approach is the Teukolsky formalism in
Teukolsky (1973). Here perturbations in the Weyl and Maxwell scalars are
studied in the Newman Penrose formalism. It is naturally applicable to rotating
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spacetimes but it is harder to extract the metric perturbations. It is suited for
the study of so-called algebraically special spacetimes (including rotating black
holes) but will not be considered further. Consult Chandrasekhar (1983) for a
detailed monograph concerning these topics, see also Nagar and Rezzolla (2005).

In this section we concentrate on non-rotating perturbations of the Minkowski
spacetime in the Regge Wheeler Zerilli formalism as were considered in
Sarbach and Tiglio (2001). The purpose of the current section is to follow closely
Rinne (2009) where the formalism was used to generalize the ℓ = 2 solution by
Teukolsky (1982)2 to arbitrary higher ℓ and to apply the techniques developed
there to the situation we consider in this thesis. See in that respect also the
less-known paper Nakamura (1984) for an alternative derivation with general ℓ
and m.

Since we assume axisymmetry and hypersurface-orthogonality we can
concentrate on the even (or polar) sector. This is a “closed sector” in the sense
that there is no coupling or mixing with the odd sector. Extensions to the odd
sector are straightforwardly possible following Sarbach and Tiglio (2001), Rinne
(2009) though.

This section is organized in a rather pragmatic way and retraces to some extent
the actual computation as we implemented it with the help of computer algebra.
The example ℓ = 2 (essentially Teukolsky’s solution in our choice of variables) is
explicitly included.

We assume a background structure M4 = M2 × S2 of the Minkowski space with
Minkowski metric ηµν = diag(−1, 1, r2, r2 sin2 ϑ). The general metric in “TT
gauge”3 with even perturbations (see also section 3.2.3) about the flat
background in spherical polar coordinates reads

g = η + g̃ (4.55)

2Note the difference between the Teukolsky solution in Teukolsky (1982), which is a solution
for the ℓ = 2-mode of perturbations of Minkowski spacetime and the Teukolsky equation in
Teukolsky (1973) which is an essential ingredient in the second approach to the perturbation
theory in general relativity that was mentioned above.

3The transverse-traceless gauge is characterized by g̃tµ = 0 (transverse) and vanishing spatial
trace trg̃ = ηij g̃ij = 0 and has numerous applications in general relativity, see also footnote 10
on page 99.
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with (compare Rinne (2009, equation (4)))

g̃µν =









0 0 0 0
0 AY rBYϑ r sin ϑBYϕ
0 rBYϑ r2

(

−1
2
AY + CYϑϑ

)

r2 sinϑCYϑϕ
0 r sinϑBYϕ r2 sin ϑCYϑϕ r2 sin2 ϑ

(

−1
2
AY − CYϑϑ

)









.

(4.56)

Here we use a rather abstract notation for the spherical harmonics as introduced
in section 2.2.5 and label with capital letters A, B, C, . . . functions of t and r.

Regge Wheeler Zerilli scalar Φ

Definition 4.6.1. The generalized Regge Wheeler Zerilli scalar Φ is a
solution of the “master equation” (equation (28) in Sarbach and Tiglio (2001)
and equation (14) in Rinne (2009)), which is for the flat spacetime obtained by a
wave equation for a scalar function ψ := r−1Φ ⇔ Φ = rψ.

The wave equation in spherical polar coordinates on the mode level for a scalar
function ψ in t and r reads (see section 2.6)

∂2t ψ − ∂2rψ − 2r−1∂rψ + r−2ℓ(ℓ+ 1)ψ = 0 (4.57)

and with ψ := r−1Φ we have the master equation

r−1
[

∂2tΦ− ∂2rΦ + r−2ℓ(ℓ+ 1)Φ
]

= 0. (4.58)

It is easy to verify that for arbitrary ℓ ≥ 2 the Regge Wheeler Zerilli scalar can
be built from a “generating function” G± ≡ G(r ± t) which depends just on
either x = r − t (outgoing) or x = r + t (ingoing) and takes the form

Φ(t, r) =
ℓ
∑

j=0

cjr
j−ℓG

(j+2)
± (x) (4.59)

for cj :=
(−2)j−1(2ℓ− j)!

(ℓ− j)!j!
(4.60)

and G
(j)
± = ∂jxG±(x) and x = r ± t. Of course the Regge-Wheeler-Zerilli scalar is

not unique. Every superposition is again a solution which is clear because of the
linearity of the equation.
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Example 4.6.1. For ℓ = 2 and general generating function G(x) (with x = r + t
for the ingoing contribution and x = r − t for the outgoing one) the Regge
Wheeler Zerilli scalar (4.59) for even perturbations is

Φ(t, r) =
3

r2
G(2)(x)− 3

r
G(3)(x) +G(4)(x). (4.61)

In the remainder of the section we follow closely Rinne (2009, section 3.3). Since
we use capital letters from the beginning of the alphabet for the angular
coordinates on the sphere S2 we use here M, N, . . . to denote t and r in M2.

Zerilli one-form From the Regge Wheeler Zerilli scalar we build the Zerilli
one-form which is basically the corresponding component of the gradient
multiplied with λ := (ℓ− 1)/(ℓ+ 2),

ZM := λ∆MΦ (4.62)

Example 4.6.2. For ℓ = 2 we continue with example 4.6.1 and the components
of the Zerilli one-form read

Zt = −12

r2
G(3)(x) +

12

r
G(4)(x)− 4G(5)(x), (4.63a)

Zr = −24

r3
G(2)(x) +

24

r2
G(3)(x)− 12

r
G(4)(x) + 4G(5)(x). (4.63b)

Gauge-invariant potential K(inv) The gauge-invariant potential (compare
Sarbach and Tiglio (2001, section II B 1) for the introduction of the invariant
amplitudes) is defined to be

K(inv) = −ℓ(ℓ + 1)

r
Φ− 2

λ
Zr. (4.64)

Example 4.6.3. With the previous calculations the potential in our example is

K(inv) = − 6

r3
G(2)(x) +

6

r2
G(3)(x)− 2G(5)(x). (4.65)

One-form built from Zerilli one-form and K(inv) In an intermediate step we
define the one-form CM built with the Zerilli one-form and the gradient of K(inv),

CM := ZM + r∇MK
(inv). (4.66)
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Example 4.6.4. With the calculations above the two components are

Ct = − 6

r2
G(3)(x) +

6

r
G(4)(x)− 4G(5)(x) + 2rG(6)(x), (4.67a)

Cr = − 6

r3
G(2)(x) +

6

r2
G(3)(x)− 6

r
G(4)(x) + 4G(5)(x)− 2rG(6)(x). (4.67b)

Gauge-invariant potentials H
(inv)
MN The relation between the just defined

one-forms CM and the perturbations H
(inv)
MN is

CM = H
(inv)
MN ∇Nr. (4.68)

We require by gauge the trace of the perturbation to vanish, hence the tensor
H

(inv)
MN should be trace-free. Thus H

t(inv)
t +H

r(inv)
r = −H(inv)

tt +H
(inv)
rr = 0 implies

the relations

H
(inv)
tt = H(inv)

rr = Cr, (4.69a)

H
(inv)
tr = H

(inv)
rt = Ct. (4.69b)

Gauge parameters pM The perturbations HMN are related with the
gauge-invariant perturbations H

(inv)
MN by the gauge parameters pM as

HMN = H
(inv)
MN + 2∇(MpN). (4.70)

The transverse gauge-condition g̃0µ = 0 implies Htt = Hrr = 0.

Remark 4.6.1. We intend to write down the solution in closed form. To do so it
is important that we choose the transverse gauge and hence (at least) βr = 0
(which corresponds to the tr-component of the metric). Otherwise the following
integrals cannot be expressed in closed form and the final expressions would
contain integrals. In fact this is a major motivation for the application of the
geodesic (or canonical) gauge, besides its frequent use in mathematical relativity
and the fact that it is rather well understood mathematically.

The remaining relations can be expressed as

pt = −1

2

w
H

(inv)
tt dt = −ℓ(ℓ+ 1)

2r

w
Φdt +

w
∂rΦdt+ r

w
∂2rΦdt, (4.71a)

pr = −
w
(H

(inv)
tt + ∂rpt)dt =

2Φ + 2r∂rΦ− ℓ(ℓ+ 1)

2r2

x
Φdtdt +

ℓ(ℓ+ 1)

2r

x
∂rΦdtdt

−2
x

∂2rΦdtdt− r
x

∂2rΦdtdt. (4.71b)
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Example 4.6.5. With the Regge Wheeler Zerilli scalar calculated in
example 4.6.1 for ℓ = 2 the gauge parameters are

pt =
3

r3
G(1)(x)− 3

r2
G(2)(x) +

3

r
G(3)(x)− 2G(4)(x) + rG(5)(x), (4.72a)

pr =
9

r4
G(0)(x)− 9

r3
G(1)(x) +

3

r
G(3)(x)− 2G(4)(x) + rG(5)(x). (4.72b)

Gauge quantities G, QM , K and HMN The TT-gauge implies Qt = 0 and we
already derived Htt = Hrr = 0 above. The remaining gauge quantities are4

G = − 2

r2

w
prdt =

ℓ(ℓ+ 1)

r3

x
Φdtdt− 2

r2

x
∂rΦdtdt− 2

x
∂2rΦdtdt, (4.73a)

Qr = pr +
r2

2
∂rG, (4.73b)

K = K(inv) +
2

r
pr −

ℓ(ℓ+ 1)

2
G, (4.73c)

Hrr = H(inv)
rr + 2∇rpr. (4.73d)

Example 4.6.6. For ℓ = 2 the gauge quantities are

G = − 6

r5
G(0)(x) +

6

r4
G(1)(x)− 6

r3
G(2)(x) +

4

r2
G(3) − 2

r
G(4)(x) + rG(5)(x),

(4.74a)

Qr =
24

r4
G(0)(x)− 24

r3
G(1)(x) +

12

r2
G(2)(x)− 4

r
G(3), (4.74b)

K =
36

r5
G(0)(x)− 36

r4
G(1)(x) +

12

r2
G(2)(x), (4.74c)

Hrr = −72

r5
G(0)(x) +

72

r4
G(1)(x)− 24

r2
G(2)(x) (4.74d)

Translation of metric perturbation to the used variables Combing the
obtained results and the general even perturbation of the metric (4.56) for the
TT-gauge results in the ℓ-modes of our variables as defined in definition 4.4.1,

γ̂s1 = Hrr, γ̂s2 = K, (4.75a)

γ̂t =
Qr

r
, γ̂t = G, (4.75b)

4In difference to Sarbach and Tiglio (2001), Rinne (2009) we use K instead of K for the gauge
amplitude. We hope to avoid confusion because we use K to denote the extrinsic curvature.
There should be no clash of notation for the invariant amplitude K(inv).
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K̂s1 =
∂tHrr

4
, K̂s2 = −∂tK

2
, (4.75c)

K̂v = −∂tQr

2r
, K̂t = −∂tG

2
. (4.75d)

Note that we use explicitly the notation with hat for the modes.

Proposition 4.6.1. The examples can lead to a regular solution to Einstein’s
linearized equations in section 4.5.2.

Proof. The calculations in the examples result in a mode solution for ℓ = 2 as

γ̂s1 = −72

r5
G(0)(x) +

72

r4
G(1)(x)− 24

r3
G(2)(x), (4.76a)

γ̂s2 =
36

r5
G(0)(x)− 36

r4
G(1)(x) +

12

r3
G(2)(x), (4.76b)

γ̂t =
24

r5
G(0)(x)− 24

r4
G(1)(x) +

12

r3
G(2)(x)− 4

r2
G(3)(x), (4.76c)

γ̂t = − 6

r5
G(0)(x) +

6

r4
G(1)(x)− 6

r3
G(2)(x) +

4

r2
G(3)(x)− 2

r
G(4)(x), (4.76d)

K̂s1 =
18

r5
G(1)(x)− 18

r4
G(2)(x) +

6

r3
G(3)(x), (4.76e)

K̂s2 =
18

r5
G(1)(x)− 18

r4
G(2)(x) +

6

r3
G(3)(x), (4.76f)

K̂v =
12

r5
G(1)(x)− 12

r4
G(2)(x) +

6

r3
G(3)(x)− 2

r2
G(4)(x), (4.76g)

K̂t = − 3

r5
G(1)(x) +

3

r4
G(2)(x)− 3

r3
G(3)(x) +

2

r2
G(4)(x)− 1

r
G(5)(x). (4.76h)

Note that K̂s1 = K̂s2 which reflects the vanishing of the trace of K in the linear
situation. Clearly the variables are singular at the origin r = 0 (as well as the
Regge-Wheeler-Zerilli scalar in example 4.6.1). For the linear problem at hand
we apply the superposition principle. We consider a combination of in- and
outgoing solution5. One easily confirms that the combination with opposite
relative sign turns out to be regular (as can be shown using Taylor expansion),
both for the scalar Φ and a mode of a variable, ûℓ,

Φ = Φ− − Φ+, (4.77a)

ûℓ = u−ℓ − u+ℓ . (4.77b)

Inserting the solution into the equations in theorem 4.5.2 shows that it is indeed
a solution.
5This also makes sense from the physical point of view: everything that is “going into the
center” (which is a totally regular point of the spacetime) has to “go out” again.
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The full linear 2+1-dimensional solution therefore is

ũ =
∑

ℓ

ûℓ(t, r)Yℓ = û2(t, r)Y2 (4.78)

with the multiplication with the corresponding spin-weighted spherical harmonics
(which represents here either scalar, vector or tensor contribution, compare
section 2.2.5). Extensions to all higher modes are possible in a straightforward
manner. We recommend to use computer algebra (see footnote 4 on page 169 for
our choice).

Having all modes the linear variables are obtained as

u(t, r, ϑ) = ûℓYℓ =
L−1
∑

ℓ=0

ûℓ(t, r)Yℓ(ϑ) (4.79)

with spin-weighted spherical harmonics Yℓ and those form a regular solution of
the linear system.

The technique to find the solution is only valid for ℓ ≥ 2. See again
Sarbach and Tiglio (2001) for comments on the static and stationary modes
ℓ = 0, 1.

Even though the solution can be shown to be regular it contains formally
singular terms. In particular for the implementation one benefits from a different
representation close to the origin. Using Taylor expansion there shows that all
variables behave like O(rℓ) close to the origin. We arranged the variables in
definition 4.4.1 accordingly. Further the knowledge of a manifestly regular
representation close to the origin helps for the comparison between exact and
numerical solution.

We will explicitly show the formula for the Teukolsky example (ℓ = 2) including
the Taylor expansion close to the origin. Because it is rather lengthy we
postpone it to the appendix A.4. For growing ℓ the scheme outlined above is
applicable in exactly the same way. The expressions become longer though and
therefore they are not explicitly included in the thesis.

We see in appendix A.4 that the modes for ℓ = 2 show a behavior of
O(r0) = O(rℓ−2) close to the origin. With the insights from section 2.5 we
conclude that the exact solution as derived here corresponds to a spin-2
(gravitational) contribution of the perturbation (there we discussed also spin-0
solutions going with O(rℓ) that is encoded in the eigenfunctions of the Laplacian
applied to a symmetric two-tensor, which is not represented by the derived
solution).
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4.7. Some analysis of Einstein’s equations

For the analysis of the resulting equations we start with the least complicated
situation, the 1+1-dimensional mode equations. This chapter should be seen
highly connected with the numerical studies in chapter 5. The analytical basics
are settled here, which are supposed to be confirmed later. When doing
numerics, especially when developing your own code, it makes sense to start with
the easiest model problem and then to explore more advanced options. We follow
that route also in the current chapter for the analytical developments.

4.7.1. Analysis on the mode level

In principle we do not need the 1+1-dimensional analysis when the results for
the 2+1-dimensional situation are known. Nevertheless there are some different
statements since on the mode level there is no ϑ-dependence and some problems
appear only in that direction. On the mode level the constraints are just
ordinary differential equations. Hence the analysis is simpler for that situation.
The analysis for the 1+1-dimensional evolution equations (derivatives in t and r)
gives already some intuition for the 2+1-dimensional analysis in section 4.7.2.

The evolution equations

We want to implement the evolution equations as given in equation (4.49) in
theorem 4.5.3 by using the method of lines as described in section 2.3.3. The
essential part in that method is to integrate an inhomogeneous ordinary
differential equation. The inhomogeneity (the right-hand side of equation (2.94))
is calculated with the quantities of the previous time step as discussed there. The
evolution equations for the components of the spatial metric are rather simple in
the sense that they are all of the form ∂tγ̂ ∼ K̂ for some specific components of
the spatial metric and the extrinsic curvature. In particular those equations are
manifestly regular. Therefore the numerical implementation, which consists of
simple assignments in the end, is expected to cause no numerical problems at all.
The same is true for the evolution equation for the trace of the extrinsic curvature
which is trivial on the linear level and hence also for the mode equations.

The situation is different for the equations for the components of the extrinsic
curvature. Those equations contain a coordinate singularity. The equations are
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all of the form

∂tK̂ =
f

r2
+
g

r
+ h (4.80)

where the quantities f , g and h can be read off in theorem 4.5.3. Even though
Einstein’s equations are regular (except if an event or apparent horizon forms
which is a priori not the case in our studies) the equations become singular. The
choice of coordinates is responsible for that feature, similarly as the wave
equation becomes singular in non-Cartesian coordinates as seen in section 2.6.
Also the exact solution of the linear system shows that all the variables are in fact
regular, see section 4.6. It is obvious that one has to deal with that issue when
implementing the equations on the computer. We discuss it further in section 5.3.
Here we examine the mathematical structure of the continuum equations.

Analysis of the evolution equations Our aim is to use a fully (or at least
partially) constrained scheme, see definition 2.3.6. Therefore some of the
variables are obtained by the constraints and do not have to be updated
explicitly by the evolution equations6. We will see that we obtain either the
variables {γ̂s1, K̂s2, K̂v} or {γ̂s1, K̂s2, K̂v} from solving the constraints, the other
updates should be taken from the evolution equations. We examine first that the
evolution equation for K̂s1 should better not be taken into account.

Proposition 4.7.1. The evolution equations for the set {γ̂s2, γ̂v, γ̂t, K̂s1, K̂t}
form a weakly hyperbolic system which fails to be strongly hyperbolic in the
standard reduction.

Proof. As discussed in section 2.3.2 we perform a first-order reduction for the
analysis. Therefore we introduce two additional variables (and two constraints as
subsidiary system), Ŵs2 := ∂rγ̂s2 and Ŵt := ∂rγ̂t. We restrict to the principal
part and analyze the system

∂tγ̂s2 = 0, (4.81a)

∂tγ̂v = 0, (4.81b)

∂tγ̂t = 0, (4.81c)

6Nevertheless one can apply a free evolution and then, on the next time level, overwrite those
variables explicitly with the solutions of the constraint solver. That might have advantages if
one uses an iterative constraint solver for instance and the initial guess for that solver is then
presumably closer to the solution as the possible guess from the previous time step. Usually
the constraint solver is much more involved from the computational perspective (solving
elliptic partial differential equations or, as in our case, stiff evolutionary equations). The
solution to the evolution equations is obtained by an assignment which is numerically easier.
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∂tK̂s1 =
1

2
∂rŴs2, (4.81d)

∂tK̂t = − 1

2
∂rŴt, (4.81e)

∂tŴs2 = 0, (4.81f)

∂tŴt = − 2∂rK̂t. (4.81g)

The system represented in a form such that definition 2.3.7 can be used with a
coefficient matrix A and a vector u = (γ̂s2, γ̂v, γ̂t, K̂s1, K̂t, Ŵs2, Ŵt)

† is

∂tu =





















0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1

2
0

0 0 0 0 0 0 −1
2

0 0 0 0 0 0 0
0 0 0 0 −2 0 0





















∂ru. (4.82)

The matrix A has the five times degenerate eigenvalue 0 and both 1 and -1 and is
not diagonalizable. According to definition 2.3.7 this system is therefore only
weakly hyperbolic but fails to be strongly hyperbolic in the given reduction.

Thus one should not directly implement these equations. We want to obtain
some positive statements though and try to understand where the problematic
contribution comes from.

It is easy to show that the evolution equations for the subsystem {γ̂t, K̂t} only or
the subsystem {γ̂s2, K̂s2} only are strongly (even strictly and symmetric)
hyperbolic. Also adding γ̂v does not change the property of strong hyperbolicity.
For the implementation we aim to formulate the set of evolution equations in a
way that is in fact strongly hyperbolic. The following proposition is true on the
1+1-dimensional level but will not be generalizable to the 2+1-dimensional level.

Proposition 4.7.2. The evolution equations for the set
{γ̂s2, γ̂v, γ̂t, K̂s2, K̂t, Ŵs2, Ŵt} form a strongly (actually also symmetric but not
strictly) hyperbolic system.

Proof. Again we perform a first-order reduction for the analysis. Therefore we
introduce two additional variables (and two constraints as subsidiary system),
Ŵs2 := ∂rγ̂s2 and Ŵt := ∂rγ̂t. Restricting to the principal part the system reads

∂tγ̂s2 = 0, (4.83a)
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∂tγ̂v = 0, (4.83b)

∂tγ̂t = 0, (4.83c)

∂tK̂s2 = − 1

2
∂rŴs2, (4.83d)

∂tK̂t = − 1

2
∂rŴt, (4.83e)

∂tŴs2 = − 2∂rK̂s2, (4.83f)

∂tŴt = − 2∂rK̂t. (4.83g)

Again we rewrite it in a form such that definition 2.3.7 can be used for a
coefficient matrix A and a vector u = (γ̂s2, γ̂v, γ̂t, K̂s2, K̂t, Ŵs2, Ŵt)

†. The equation
reads

∂tu =





















0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 −1

2
0

0 0 0 0 0 0 −1
2

0 0 0 −2 0 0 0
0 0 0 0 −2 0 0





















∂ru. (4.84)

The coefficient matrix has the following eigenvalues and corresponding
eigenvectors:

0 : (1, 0, 0, 0, 0, 0, 0)†, (4.85a)

0 : (0, 1, 0, 0, 0, 0, 0)†, (4.85b)

0 : (0, 0, 1, 0, 0, 0, 0)†, (4.85c)

1 : (0, 0, 0, 1, 0,−2, 0)†, (4.85d)

1 : (0, 0, 0, 0, 1, 0,−2)†, (4.85e)

−1 : (0, 0, 0, 1, 0, 2, 0)†, (4.85f)

−1 : (0, 0, 0, 0, 1, 0, 2)†, (4.85g)

which form a complete set of vectors. As we recognize the matrix A has
degenerate eigenvalue and therefore the system cannot be strictly hyperbolic.
Consider the Hermitean matrix H = diag(1, 1, 1, 4, 4, 1, 1). We easily calculate
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HA† = A†H (4.86)

and therefore, according to definition 2.3.7, the system is symmetric
hyperbolic.

Remark 4.7.1. It is important to note that this scheme is unfortunately not
generalizable to the 2+1-dimensional (linear) situation. There the ϑ-derivatives
spoil the strong hyperbolicity of the evolutions as we will see in section 4.7.2
(just in r-direction the analysis remains valid). Therefore the well-posedness is
an artifact of the use of the spectral expansion for the 1+1-dimensional level.

With regard to the remark 4.7.1 we do the analysis as well for a different set of
variables even though there does not seem to be any particular need for that
choice on the 1+1-dimensional level. We will motivate the choice in connection
with theorem 4.7.2.

Theorem 4.7.1. Define the variables

γ̂ϕ := γ̂s2 − γ̂t, (4.87a)

K̂ϕ := K̂s2 − K̂t. (4.87b)

The evolution equations for the set {γ̂ϕ, γ̂v, γ̂t, K̂ϕ, K̂t} form a strongly (actually
also symmetric but not strictly) hyperbolic system.

Proof. Again we perform a first-order reduction for the analysis. Therefore we
introduce two additional variables (and two constraints as subsidiary system),
Ŵϕ := ∂rγ̂ϕ and Ŵt := ∂rγ̂t. Concentrating on the principal part the system
reads

∂tγ̂ϕ = 0, (4.88a)

∂tγ̂v = 0, (4.88b)

∂tγ̂t = 0, (4.88c)

∂tK̂ϕ = − 1

2
∂2r γ̂ϕ, (4.88d)

∂tK̂t = − 1

2
∂rŴt, (4.88e)

∂tŴϕ = − 2∂rK̂ϕ, (4.88f)

∂tŴt = − 2∂rK̂t. (4.88g)

Here we recognize exactly the same structure as for the choice of variables in
proposition 4.7.2, namely two wave equations. Therefore the remaining proof
follows exactly the lines of the one for proposition 4.7.2.
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Outer boundary conditions for the evolution equations There are several
choices for the outer boundary conditions of the evolution equation. We want to
model an isolated system, which implies that all variables are asymptotically flat,
see the discussion in section 3.3.2. In the ideal situation we would set the outer
boundary R to r → ∞ and do not need any condition there, compare the
discussion at the end of section 2.6.4. We will cut the spatial domain instead and
introduce an artificial boundary and therefore need to choose boundary
conditions.

If boundary conditions are needed the probably easiest possibilities are Dirichlet
conditions – either the homogeneous one by just setting the variable to zero there
or, since we have the exact solution for the linear system, the inhomogeneous
Dirichlet condition by setting the variable equal to the value of the exact
solution. Since one is primarily interested in ingoing wave packages and the
transition through the origin those choices are not that bad for some test runs.
Nevertheless for a long term evolution one should do better, for instance apply
the Bjørhus (1995) projection method (as discussed in section 2.6.4 for the wave
equation) to our situation.

We will need boundary conditions for K̂t and the auxiliary variable K̂ϕ (see
theorem 4.7.1). Both sets of equations are wave-like and have the same structure
in the r-direction. Therefore we will discuss them in the same manner, namely
consider the first-order in time and second-order in space system

∂tγ̂ = − 2K̂, (4.89a)

∂tK̂ =
f

r2
+
g

r
− 1

2
∂2r γ̂ (4.89b)

where we denote our variables collectively with γ̂ and K̂.

In an analogous way as in section 2.6.4 we define an auxiliary variable7 ξ̂ := ∂rγ̂
and do the same steps in the derivation as before. As in section 2.6.4 we project
on the eigenfunctions v± := K̂ ± ξ̂. We leave the evolution equations for v− as it
is and replace at the outer boundary the one for v+ by the condition of an
outgoing wave. The result of the projection method is that we should keep the
evolution equation for γ̂ as it is (no special boundary condition) and at the outer
boundary r = R set (again denoted by =̂)

∂tK̂=̂− K̂

2R
+

f

2R2
+

g

2R
− ∂2r γ̂

4
− ∂rK̂

2
. (4.90)

7In section 2.6.4 we used another auxiliary variable for the time derivative of γ̂ because we
also reduced the second-order equation in time. We do not have to do the reduction in time
because our formulation is already first-order in time.
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The constraints

The Hamiltonian constraint is an equation only for components of the spatial
metric and the momentum constraint forms a set of equations only for
components of the extrinsic curvature. They decouple and hence we can discuss
them separately. This remains true on the 2+1-dimensional level.

The momentum constraint On the 1+1-dimensional level the constraints (the
whole system of equations is first-order in time and consequently the constraints
have no time derivatives) are just ordinary differential equations in r. We will
postpone the analysis essentially to the linear level in section 4.7.2. Here we will
just give a few comments on numerical experiments with the equations on the
mode level, in particular because we spent a considerable amount of time and
effort on these experiments.

The momentum constraint (in the original and the modified version) are derived
in section 4.5.3. We use the parameter µ = 2 (see section 4.5.3) throughout.
Since on the linear level the trace vanishes, the added inhomogeneity on the
right-hand side of the momentum constraint vanishes though.

maximal slicing Maximal slicing (see definition 3.3.3) implies an equality of the
two scalar components of the extrinsic curvature, K̂s1 = K̂s2 ≡ K̂s. The
components of the momentum constraint on the mode level are then

Ĉr = −6 K̂s − ℓ(ℓ+ 1) K̂v − 2 r∂rK̂s = 0 (4.91a)

and Ĉϑ = K̂s +

(

1− ℓ(ℓ+ 1)

2

)

K̂t + 3 K̂v + r∂rK̂v = 0. (4.91b)

We will see in section 4.7.2 that solving the momentum constraint for
u† = (K̂s, K̂v) corresponds to elliptic partial differential equations on the
2+1-dimensional linear level. The expansion in spherical harmonics is basically
just a numerical technique for solving the equations.

It might be interesting to remark that we were able to obtain positive numerical
results on the mode level (and unfortunately only there) for the elliptic choice
and maximal slicing. For the solution of the elliptic equation we used a
Newton-Raphson solver, see for example Press et al. (2007). Since the equations
(4.91a) and (4.91b) are coupled we used two different schemes. Both seemed to
be working:
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• We can decouple explicitly the two components and solve a second-order
equation with the solver and an algebraic assignment. This procedure is
valid on the linear level but the decoupling does not work in general on the
nonlinear level.

• We can use an iterative scheme, so first the single equation (4.91a) is solved
for K̂s with fixed K̂v, then equation (4.91b) for K̂v with fixed K̂s and the
process is iterated. Since one takes as “initial guess” the solution of the
previous time step there is some hope that the guess is not that far away
from the correct solution and the iterative solver converges. Remarkably
that is exactly what we were able to observe on the 1+1-dimensional mode
level. Since the convergence on the 2+1-dimensional level was
unfortunately problematic we had to give up that attempt finally.

The second option for the momentum constraint that we will discuss for maximal
slicing in section 4.7.2 leads on the 2+1-dimensional level to a system for the
variables {K̂v, K̂t}.
We will see in section 4.7.2 that for this interpretation the momentum constraint
is parabolic. It is evolutionary in the “time” coordinate ϑ on the linear level.
After expansion in spherical harmonics the equations translate into assignments
for the mode coefficients of the corresponding variables. The scalar component of
the equation is solved for the vector component of the extrinsic curvature, the
vector component of the equation for the tensor component of the extrinsic
curvature. This sounds a little uncommon.In addition special care is needed for
the lowest modes.

Having just assignments instead of differential equations to solve sounds
attractive of course. Even though we do not really feel comfortable with these
issues we have, just on the linear level, positive results (not just in 1+1
dimensions but also in 2+1 dimensions8). Nevertheless it is far from clear if the
scheme is generalizable to the nonlinear level. In fact there does not seem to be a
straightforward procedure to achieve it and therefore this approach was dropped
by us as well.

We should add that it might be more than just a curiosity that this choice leads
to some drastically simplified procedures, not just as a conceptual example of the
freedom of underdetermined systems, but also with some potential applications.

8We should remark that on the linear level it is still possible to benefit from the mode equations
on the 1+1-dimensional level and their decoupling. In some sense one just has to solve a huge
set of equations instead of single equations, one for each mode, and then to transform between
configuration and spectral space. In fact, if one is just interested in the linear level one could
decide to work entirely in the spectral space. The situation is drastically simplified if one
restricts to the linear level but many interesting effects and features are lost then.
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Non-maximal slicing For this possibility the modification of the momentum
constraint becomes important. The hyperbolic choice for the momentum
constraint is the most interesting one for the remainder of the thesis. We
explicitly deal with two scalar components of the extrinsic curvature tensor and
we saw in the previous discussion that it is indeed important that we did not
combine them by demanding maximal slicing. So we consider the momentum
constraint as a coupled set for the variable u† = (K̂s1, K̂v) or u

† = (K̂s2, K̂v). On
the mode level those equations reduce to a coupled set of stiff ordinary
differential equations in the coordinate r. In principle they can be directly
integrated. For the determination of initial values for this process and numerical
results we refer to section 5.3.

Hamiltonian constraint The linear Hamiltonian constraint is an equation
involving all components of the spatial metric and only them (no mixing with the
extrinsic curvature). In section 4.5.3 we will analyze the equation for each
component of the spatial metric and realize that several different choices exist.
On the 1+1-dimensional level equation (4.50) is just a single ordinary differential
equation. Depending on the choice of variable it is on the mode level either

1. a second-order ordinary differential equation for γ̂s2 (elliptic in general) or

2. a first-order ordinary differential equation for γ̂s1 (parabolic in general) or

3. a first-order ordinary differential equation for γ̂v (hyperbolic in general) or

4. an algebraic assignment for γ̂t (an ordinary differential equation in general).

The last point is remarkable. On the full linear level it will be an ordinary
differential equation in the coordinate ϑ (of second order). Our numerical
technique – expanding in a spectral basis (spherical harmonics) in the coordinate
ϑ – reduces the actual equation that is to solve to a (set of decoupled, one for
each mode) equation which is just an assignment at the end, hence numerically
cheap. Nevertheless, similarly as the discussion for the momentum constraint as
a parabolic system, there are some features which seem to be odd. For the modes
ℓ = 0 and 1 the component γ̂t drops out of the equation (4.50) so it cannot be
solved for these components.

In the successful implementation of the system on the linear level (1+1 as well as
2+1 dimensions) that was mentioned above the algebraic choice for γ̂t was
actually taken. In addition the first two modes were solved for γ̂s2 as elliptic
equations (using the equations on the mode level). Remarkably it produced
convergent results even though we lack a fundamental understanding of it. Since
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we could not see an immediate way to generalize the attractive numerical
technique to the nonlinear situation we decided to drop the choice as well.

The elliptic choice, i.e. consider the Hamiltonian constraint as an equation for
γ̂s2, sounds quite intuitive (or at least common) from the point of view of a
numerical relativist. It led to positive results with the Newton-Raphson solver on
the linear 1+1-dimensional mode level and seemed also to be promising on the
2+1-dimensional linear level. Nevertheless we were not able to build, on the
2+1-dimensional level, a convergent solver for all the constraints. Most probably
the non-convergence of the coupled system in the momentum constraint caused
these problems. Also there is no proof of the constraint system to be well posed
in our formulation. Therefore we decided to continue with the parabolic choice of
the Hamiltonian constraint for γ̂s1 which corresponds to solve a first-order
ordinary differential equation in the “time” coordinate r. It sounds more
reasonable to solve a scalar equation (that expands in scalar spherical harmonics)
for a component that expands as a scalar quantity as well. In particular the
choice is in agreement with the suggestions in Rácz (2016a) as the
parabolic-hyperbolic solver.

4.7.2. Analysis on the linear level

If we consider the constraint equations in 4.5.2 we recognize easily that the
Hamiltonian constraint is an equation for all components of the spatial metric
and the momentum constraint forms a coupled system involving all components
of the extrinsic curvature. There is, in the constraints, no coupling between those
sets of variables on the linear level. On the linear level the coupling only appears
through the evolution equations. We will see in section 4.7.3 that this essentially
does not change on the nonlinear level. Recall that the constraints as such form
an underdetermined system, see the discussions in section 3.4. We start again
with the examination of the evolution equations.

Evolution equations

We are aiming for a fully or partially constrained formulation of Einstein’s
equations which implies that the constraints or parts of them are to be solved on
each time level and therefore give an update of, in our axisymmetric situation,
up to three variables. In the discussion of the section we obtain promising
statements for two sets of variables, both in the parabolic-hyperbolic
formulation. Therefore, as we will see, we want to solve the constraints for either
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{γ̃s1, K̃s1, K̃v} or {γ̃s1, K̃s2, K̃v}. The remaining variables are supposed to be
updated by the evolution equations.

In some sense it seems to be natural to expect the spacetime dynamics to be
governed by the gravitational, spin-two-weighted perturbations, so the angular
part of the variables, compare with section 2.5. These are encoded in our
formulation by a scalar and the tensor contribution, namely the s2 and tensor
components of the spatial metric and extrinsic curvature. Another argument for
this choice is that, since we want to solve the Hamiltonian constraint for γ̃s1, we
would include both evolution equations for the canonical pair of variables. We
will see another motivation for this set in the analysis below.

In the rest of the discussion of the evolution equations we will assume r > 0 and
hence exclude the origin explicitly. From the numerical perspective it seems to be
justified because we deal with the grid point at r = 0 in an algebraic manner. It
implies that all statements below are valid everywhere except at the origin.

We can show that the evolution equations for the canonical pair {γ̃s2, K̃s2} form a
strongly hyperbolic (even symmetric and strictly) system. The principal part of
the evolution equations for the pair {γ̃s1, K̃s1} does not contain r-derivatives.
Even though it has the character of a wave equation in the ϑ-direction the
missing r-derivatives prohibit the continuous diagonalizability and the system is
not strongly hyperbolic. The same is true for the pair {γ̃t, K̃t} with interchanged
roles of the coordinates. We show next that the coupling of more evolution
equations for components of the extrinsic curvature tensor can be problematic.

Proposition 4.7.3. The coupled system of evolution equations for s1 and tensor
components is weakly hyperbolic, but in the standard reduction not strongly
hyperbolic. The same is true for the evolution equations for s2 and tensor
components.

Proof. Consider the usual first-order reduction W̃t := ∂rγ̃t and Ṽs1 := r−1∂ϑγ̃s1.
The principal part for the vector u† = (K̃s1, K̃t, W̃t, Ṽs1) can be written as

∂tu = Ar∂ru+ Aϑ∂ϑu (4.92)

with coefficient matrices

Ar =









0 0 0 0
0 0 −1

2
0

0 −2 0 0
0 0 0 0









and Aϑ = −r−1









0 0 0 1
4

0 0 0 −1
4

0 0 0 0
4 0 0 0









. (4.93)
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To show that the system is strongly hyperbolic we have to consider all linear
combinations

P = ωrAr + ωϑAϑ (4.94)

and show that all those matrices are diagonalizable. In other words if we can find
one linear combination such that the matrix is not diagonalizable the system
cannot be strongly hyperbolic. Choose ωr = ωϑ = 1/

√
2 (which guarantees that

the normalization condition is satisfied). Then the matrix reads

P =
1√
2









0 0 0 1
4
r−1

0 0 −1
2

−1
4
r−1

0 −2 0 0
4r−1 0 0 0









. (4.95)

Therefore P is not diagonalizable even though the eigenvalues are real. Hence in
the given standard reduction the system is only weakly but not strongly
hyperbolic.

For the second system we perform again the usual first-order reduction
Ṽs2 := r−1∂ϑγ̃s2, Ṽt := r−1∂ϑγ̃t and W̃s2 := ∂rγ̃s2, W̃t := ∂rγ̃t. The principal part
for the vector u† = (K̃s2, K̃t, Ṽs2, Ṽt, W̃s2, W̃t) can be written as

∂tu = Ar∂ru+ Aϑ∂ϑu (4.96)

with coefficient matrices

Ar =

















0 0 0 0 −1
2

0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−2 0 0 0 0 0
0 −2 0 0 0 0

















and Aϑ = r−1

















0 0 −1
2

0 0 0
0 0 0 1

2
0 0

−2 0 0 0 0 0
0 −2 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















.

(4.97)

Similar as above we need to find one linear combination such that

P = ωrAr + ωϑAϑ (4.98)

is not diagonalizable. Here ωϑ = 1 and ωr = 0 does the job. Therefore in the
standard reduction the system is not strongly hyperbolic.

Now we are after a complete set of remaining variables that form a strongly
hyperbolic set of evolution equations. Even though some single pair of
canonically conjugated variables might form as such a promising system, it need
not be the case when coupled to another set. The art is to formulate it such that
the coupled system has the desired properties.
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Remark 4.7.2. Observe that the term that spoils strong hyperbolicity seems to
be connected to the second ϑ-derivatives in the evolution equation of K̃s2.
Similar terms are contained in the principal part of the Hamiltonian
constraint (4.43). Repairing the issue by subtracting the Hamiltonian constraint
from the evolution equation actually results in an elliptic system for the s2 terms
which is not what we want for the evolution equations.

Hyperbolization of evolution system As we have seen there is no direct and
straightforward choice of variables that guarantees a strongly hyperbolic
evolution on the 2+1-dimensional level. A strongly hyperbolic evolution scheme
is necessary in order to have a promising set of equations for the numerical
evolution. We will demonstrate in the following a procedure that results in a
strongly hyperbolic set of equations.

The key step is to transform the variables for the evolution to a different set of
variables which is indeed strongly hyperbolic. The disadvantage is that the
introduced variables do not have a definite expansion in spherical harmonics.
That should not be any problem since we basically need the expansion in
spherical harmonics for the calculation of the derivatives. For the evolution we
have to add the corresponding terms together, regardless of their expansion
behavior in spherical harmonics. We can do this at the collocation points in the
configuration space. We have seen above that the offending term for the strongly
hyperbolic evolution seems to be the ϑ-derivative of the scalar component which
“comes with the wrong sign”. When considering instead of the s2 components
new variables which correspond to the ϕϕ-components we can repair that issue.

Theorem 4.7.2. We define the following variables (a combination of definite
spin-weights)

γ̃ϕ := γ̃s2 − γ̃t, (4.99a)

K̃ϕ := K̃s2 − K̃t. (4.99b)

In these variables the evolution equations for {γ̃v, γ̃ϕ, γ̃t, K̃ϕ, K̃t} form a strongly
(even symmetric) hyperbolic system.

Proof. In the new variables the principal part of the evolution equations of
interest are

∂tγ̃v = − 2K̃v, (4.100a)

∂tγ̃ϕ = − 2K̃ϕ, (4.100b)

∂tγ̃t = − 2K̃t, (4.100c)
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∂tK̃ϕ = − 1

2
∂2r γ̃ϕ − 1

2
r−2∂2ϑγ̃ϕ, (4.100d)

∂tK̃t = − 1

2
∂2r γ̃t +

1

2
r−1∂r∂ϑγ̃v. (4.100e)

As usual we perform a first-order reduction by introduction of auxiliary variables
as

W̃ϕ := ∂rγ̃ϕ, (4.101a)

W̃t := ∂rγ̃t, (4.101b)

Ṽϕ := r−1∂ϑγ̃ϕ, (4.101c)

Ṽv := r−1∂ϑγ̃v. (4.101d)

Then we can write the system for the vector u = (K̃ϕ, K̃t, W̃ϕ, W̃t, Ṽϕ, Ṽv)
† in the

form

∂tu = Ar∂ru+ Aϑ∂ϑu (4.102)

with coefficient matrices

Ar =

















0 0 −1
2

0 0 0
0 0 0 −1

2
0 1

2

−2 0 0 0 0 0
0 −2 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















and Aϑ =

















0 0 0 0 −1
2
r−1 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−2r−1 0 0 0 0 0
0 0 0 0 0 0

















.

(4.103)

We consider all linear combinations in the form

P := ωrAr + ωϑAϑ. (4.104)

The eigenvalues and corresponding eigenvectors of P are

λ0 = 0 : (0, 0, ωϑ, 0,−ωr)
†, (4.105a)

λ1 = −
√

ω2
r + r−2ω2

ϑ :

(

1, 0,
2ωr

λ1
, 0,

2ωϑ

λ1

)†

, (4.105b)

λ2 =
√

ω2
r + r−2ω2

ϑ :

(

1, 0,
2ωr

λ2
, 0,

2ωϑ

λ2

)†

, (4.105c)

λ3 = ωr : (0, 1, 0,−2, 0)† , (4.105d)

λ4 = −ωr : (0, 1, 0, 2, 0)† , (4.105e)

λ5 = 0 : (0, 0, 0, 0, 0, 1)†. (4.105f)
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The eigenvectors form the columns of the eigenmatrix S and we can diagonalize
the system as S−1PS = diag(0, λ1, λ2, ωr,−ωr, 0). Since the diagonalization is
continously dependent on the parameters of the unit normal ω = (ωr, ωϑ) the
system is strongly hyperbolic. On the other hand the eigenvalues are not
necessarily distinct, consider for example ωr = 1 and ωϑ = 0. Consider further
the Hermitian matrix

H =

















4 0 0 0 0 0
0 4 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 −1
0 0 0 0 1 0
0 0 0 −1 0 1

















(4.106)

wich is obviously Hermitian. By direct computation one can show that it is a
symmetrizer by calculating

HP = P†H. (4.107)

Therefore the system is symmetric hyperbolic.

Outer boundary conditions for the evolution equations The discussion of the
outer boundary conditions for the 2+1-dimensional simulations is essentially
exactly the same as for the 1+1-dimensional equations in section 4.7.1. Except of
homogeneous and inhomogeneous Dirichlet conditions we also implemented the
Bjørhus projection method in Bjørhus (1995).

Since the derivation is exactly the same we just state the result. Again we denote
by K̃ either K̃t or K̃ϕ and correspondingly for γ̃. The outer boundary condition
reads as in section 4.7.1

∂tK̃ = − K̃

2R
+

f

2R2
+

g

2R
− ∂2r γ̃

4
− ∂rK̃

2
. (4.108)

There are again no special boundary conditions for γ̃.

The constraints

We obtained in theorem 4.7.2 a set of strongly hyperbolic evolution equations. It
is not obvious that one can extend the set to a larger one by including further
variables (or new combinations of them) and to find a first-order reduction such
that the system is still strongly hyperbolic. To update the remaining variables we
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can use the constraints instead in a partially or fully constrained scheme. In line
with the discussions in section 2.3.2 the type of the constraints depends on the
choice of variables we want to solve them for. It would be particularly good if we
were able to obtain the variables Kv and Ks1 since those evolution equations
seem to be problematic.

The Hamiltonian constraint The linear Hamiltonian constraint reads

H̃ = γ̃s1 − γ̃s2 − γ̃t + 2
cosϑ

sin ϑ
γ̃v −

1

2

cos ϑ

sin ϑ
∂ϑγ̃s1

−1

2

cosϑ

sinϑ
∂ϑγ̃s2 +

3

2

cosϑ

sinϑ
∂ϑγ̃t + 2 ∂ϑγ̃v −

1

2
∂2ϑγ̃s1

−1

2
∂2ϑγ̃s2 +

1

2
∂2ϑγ̃t + r ∂rγ̃s1 − 3 r ∂rγ̃s2

+ r
cosϑ

sinϑ
∂rγ̃v + r ∂r∂ϑγ̃v − r2 ∂2r γ̃s2 = 0. (4.43 rev.)

Proposition 4.7.4. Depending for which variable the Hamiltonian constraint is
solved for, it has a different character, namely

• for γ̃s2 it is an elliptic equation,
• for γ̃s1 it is a parabolic equation,
• for γ̃v it is a hyperbolic equation and
• for γ̃t an ordinary differential equation.

Proof. The linear Hamiltonian constraint is a second-order equation in r and ϑ.
We write the principal part as A∂2ru+ 2B∂r∂ϑu+ C∂2ϑu.

Considered as an equation for γ̃s2 the highest derivatives in ϑ and r come with
the same sign (-), hence A = −r, C = −1/2 and B = 0 and the equation is a
scalar elliptic equation.

On the other hand considered as an equation for γ̃s1, the highest derivative
(second order) appears with a prefactor of 0 in ∂2r (⇔ there is no ∂2r γ̃s1-term).
Therefore A = B = 0 and C = −1/2 and it is a scalar parabolic equation for γ̃s1.

Taking it as an equation for γ̃v the only second-order derivatives come with ∂r∂ϑ
and therefore A = C = 0 and B = r and it is a scalar hyperbolic equation for γ̃v.

The last option is to consider it as an equation for γ̃t. We recognize that there
are no r-derivatives of γ̃t in equation (4.43). It is a second-order ordinary
differential equation in the coordinate ϑ.
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Momentum constraint In our axisymmetric setting we have two non-vanishing
components of the momentum constraint, in r and in ϑ.

Proposition 4.7.5. The original momentum constraint forms a symmetric
hyperbolic system for the components Ks2 and Kv. If we assume maximal slicing
it appears naturally as an elliptic system for the scalar and vector component of
the extrinsic curvature. At the origin the set degenerates to a parabolic one.

Proof. Consider the principal part of equations (4.44) and (4.45),

∂ϑK̃v − 2r∂rK̃s2 = 0, (4.109a)

−∂ϑK̃s2 + r∂rK̃v = 0. (4.109b)

For u† = (Ks2, Kv) we write the set in the form

Ar∂ru+ Aϑ∂ϑu = 0 (4.110)

with

Ar =

(

−2r 0
0 r

)

, Aϑ =

(

0 1
−1 0

)

. (4.111)

Therefore the quantity D = B2 − 4AC in definition 2.3.2 reads D8r2 > 0 and the
system is hyperbolic for all values of r 6= 0 (we freeze the variable coefficient r
and consider the cases r = 0 and r > 0 separately) and parabolic at the origin.
Written in the form

∂ru = B∂ϑu =

(

0 1
2
r−1

r−1 0

)

∂ϑu (4.112)

the matrix B has the following eigenvalues and corresponding eigenvectors,

−r−1 1√
2
: (1,−

√
2)†, (4.113a)

r−1 1√
2
: (1,

√
2)†. (4.113b)

We can consider the case r = 0 separately and in the following r 6= 0. The
eigenvalues are real and distinct and therefore the system is strictly hyperbolic.
Consider H = diag(2, 1), then one can calculate

HB = B†H (4.114)

and hence H is a symmetrizer and the system is also shown to be symmetric
hyperbolic.
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In the case of maximal slicing by definition trK̃ = 0 and it implies (as seen in
proposition 4.4.1) K̃s1 = K̃s2 ≡ K̃s. The principal part of the momentum
constraint is

∂ϑK̃v − 2rK̃s = 0, (4.115a)

∂ϑK̃s + r∂rK̃v. (4.115b)

The matrices in the representation (4.111) are now

Ar =

(

−2r 0
0 r

)

, Aϑ =

(

0 1
1 0

)

. (4.116)

Hence D = −8r2 < 0 and according to definition 2.3.2 (consider the cases r = 0
and r > 0 separately) the system is elliptic for r > 0 and parabolic at the
origin.

We show a lemma before starting with the next part of the analysis.

Lemma 4.7.1. For the component K ϑ
r (observe that we want to use the “other

order” of indices K r
ϑ in definition 4.4.1 for Kv) we have the relation

K ϑ
r =

γrϑγrrK
r

r + γϑϑγrrK
r

ϑ + γϑϑγrϑK
ϑ

ϑ

1− γrϑγϑr
. (4.117)

If we are just interested in the principal part (for K-components) and linearize
about the flat solution it simplifies to K̃ ϑ

r = r−2K̃ r
ϑ .

Proof. It is essentially a straightforward calculation

K ϑ
r = γϑiγrjK

j
i = γrϑγrrK

r
r + γϑϑγrrK

r
ϑ + γϑϑγrϑK

ϑ
ϑ + γϑrγrϑK

ϑ
r (4.118)

which leads to the result. Inserting the flat contribution for the γ-quantities gives
the further result.

According to the analysis of the evolution equations above we would like to solve
the momentum constraint for the components Ks1 and Kv though because Ks2

might be obtained by the evolution equations while that looks troublesome
for Ks1.

To do so we add multiples of the gradient of the trace of the extrinsic curvature
to both sides of the momentum constraint. On the one side it will change the
character of the equation for some variables, on the other side it will be
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considered as an inhomogeneity. We included the modification for the derivation
of the equations in theorem 4.5.2 and provide the motivation for it now. In
addition we derived an evolution equation for trK̃ which allows us to update its
value by the evolution. Since, as we will see, that equation does not contribute to
the principal part, it does not spoil the analysis for the evolution equations in
theorem 4.7.2, but we will benefit from it in the momentum constraint. The
dealing with the already determined right-hand sight of the equation as source
term reminds of the driver gauge conditions, see Balakrishna et al. (1996) and
section 3.3.3.

For the next important theorem we start in fact with the more general nonlinear
constraint and use for the analysis a linearization about the known flat solution.
Therefore the result is only locally valid for the nonlinear setting but globally for
the linear level.

Theorem 4.7.3. Consider for a real number µ ∈ R the modified momentum
constraint

Cµ
i := γijDk(K

jk − γjktrK) + µγijDk

(

γjktrK
)

= µγijDk(γ
jktrK). (4.119)

On the left-hand side the additional trace-term will be used to modify the
momentum constraint and its character. On the right-hand side it will be
calculated as a source term where the trace is updated by some evolution
equation. Therefore the source will not contribute to the principal part.

Depending on the value of µ the character of the system changes. At the origin
the system degenerates to a parabolic one. Considered as a system for {Ks1, Kv}
it is parabolic for µ ∈ {0, 1}, elliptic for µ ∈ (0, 1) and hyperbolic elsewhere.
Considered as a system for {Ks2, Kv} it is parabolic for µ = 1 and hyperbolic for
all other choices. The term on the right-hand side is just µ times the gradient of
the trace.

Proof. We again calculate the principal part of the modified momentum
constraint (with the right-hand side of equation (4.119) as inhomogeneity ⇒ no
contribution to the principal part) and linearize about the flat solution,

γijDk(K
jk − γjktrK) + µγijDk

(

γjktrK
)

pp
= ∂kK

k
i + (µ− 1)γijγ

jk∂ktrK
lin
= ∂kK

k
i + (µ− 1)∂itrK. (4.120)

In components we have (making use of lemma 4.7.1 and multiplication of the
first component with r)

in r : r∂rK
r

r + r−1∂ϑK
ϑ

r + (µ− 1)r∂rK
r

r + (µ− 1)r∂r(K
ϑ

ϑ +K ϕ
ϕ )
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pp
= −2µr∂rKs1 + 2(µ− 1)r∂rKs2 + ∂ϑKv (4.121a)

in ϑ : ∂rK
r

ϑ + ∂ϑK
ϑ

ϑ + (µ− 1)∂ϑK
r

r + (µ− 1)∂ϑ(K
ϑ

ϑ +K ϕ
ϕ )

pp
= r∂rKv + (2µ− 1)∂ϑKs2 − 2(µ− 1)∂ϑKs1. (4.121b)

We write the system again in the form

Ar∂ru+ Aϑ∂ϑu = 0. (4.122)

For u = (Ks1, Kv)
† the matrices read

Ar =

(

−2µr 0
0 r

)

, Aϑ =

(

0 1
−2(µ− 1) 0

)

. (4.123)

Therefore the quantity D in the classification 2.3.2 reads D = 16µ(µ− 1)r2. We
can again discuss the cases r = 0 and r > 0 separately. Then all the single cases
considered in the theorem immediately follow.

Now we consider the modified momentum constraint as system for
u = (Ks2, Kv)

†. The corresponding matrices now read

Ar =

(

2(µ− 1)r 0
0 r

)

, Aϑ =

(

0 1
2(µ− 1) 0

)

. (4.124)

Therefore we have D = 16(µ2 − 2µ+ 1)r2 which is positive except for the
mentioned cases.

Since the connection should be compatible with the metric and the trace trK is a
scalar the covariant derivative is equal to the ordinary one we have for the
right-hand side of the modified momentum constraint

µγijDk(γ
jktrK) = µγijγ

jkDktrK = µγki ∂ktrK = µ∂itrK. (4.125)

Therefore we are able to manipulate the momentum constraint such that it is a
hyperbolic system for a proper choice of the parameter µ. Throughout we will
consider the case µ = 2. The modified momentum constraint is hence hyperbolic
for the desired variables Ks1 and Kv except at the origin.
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Summary

According to the theorem 4.7.2 we should aim for the following scheme for the
update from time level n 7→ n+ 1:

• Start with the given set of variables
{

γ̃s1, γ̃s2, γ̃v, γ̃t, K̃s1, K̃s2, K̃v, K̃t

}

at

time n.

• Transform to the auxiliary variables γ̃ϕ and K̃ϕ as defined in
equation (4.100).

• Apply the evolution equations for
{

γ̃ϕ, γ̃v, γ̃t, K̃ϕ, K̃t

}

to update those

variables from n 7→ n+ 1.

• Transform back to γ̃s2 and K̃s2.

• Apply the constraint solver with the already updated variables at n+ 1 to

obtain the quantities
{

γ̃s1, K̃s1, K̃v

}

at n + 1.

• Start again to evolve from n + 1 7→ n+ 2.

Final system We showed above that the evolution equations admit a
formulation that is strongly hyperbolic. In addition the constraints form a
well-posed hyperbolic-parabolic system. Therefore the suggested constrained
scheme looks very promising for the numerical implementation.

Nevertheless we will see in section 5.3 that the numerical integration of the
parabolic Hamiltonian constraint is troublesome. If the freely specifiable data for
the constraints are taken from the exact linear solution the constraint solver
converges. Since the real data from the evolution which form the source terms for
the constraints are obtained numerically they have some inaccuracies. Even
though those deviations converge away in the continuum limit they are
responsible for some spurious oscillations in the solution of the stiff parabolic
equation using a direct solver as discussed in section 5.3.

Supplementary observations In the development of the code we benefited
from several further observations. For completeness we list them here as well.

Lemma 4.7.2. On the linear level the spatial slices are in fact maximal for all
times on the analytical level. This is equivalent to K̃s1 = K̃s2.
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Proof. Because of the definition of the variables and its consequences, see
proposition 4.4.1, trK̃ = 2(K̃s2 − K̃s1). The evolution equation for the trace in
theorem 4.5.2 implies trK̃ = const. under time evolution. Since initially the
exact solution sets that constant to zero the trace vanishes for all times.

Lemma 4.7.3. On the linear level the relation γ̃s1 + 2γ̃s2 = 0 is always satisfied.

Proof. The evolution equation involving the determinant of the metric in
theorem 4.5.2 reads ∂t ln

√
det γ̃ = −trK̃ = 0 according to lemma 4.7.2. By the

chain rule we have det γ̃ = const. in time. Since the constant is initially zero from
the exact solution it is conserved in the evolution and therefore vanishes for all
times. The linearization of the determinant was calculated in proposition 4.4.2 to
be det γ̃ = r4 sin2 ϑ (γ̃s1 + 2γ̃s2).

Remark 4.7.3. Both results in the lemmata 4.7.2 and 4.7.2 can be confirmed by
the exact solution derived in section 4.6 (in that case for the mode functions but
it directly translates when multiplying the functions with the spherical
harmonics), see also appendix A.4.

4.7.3. Some remarks on the nonlinear level

We performed the essential steps for the nonlinear equations already in
section 4.7.2. Here we just summarize our findings from the analysis there for
completeness.

For the analysis of the linear equations in section 4.7.2 we were able to consider
the Hamiltonian constraint as equation involving the spatial metric only and the
momentum constraint as equations for the extrinsic curvature only. Also the
right-hand sides of the evolution equations for the spatial metric were entirely
given by the extrinsic curvature and vice versa. The next lemma shows that
these considerations basically remain true.

Lemma 4.7.4. The evolution equations of the spatial metric only contribute
trivially to the principal part and the only relevant principal part contribution to
the evolution equations for the extrinsic curvature comes from the Ricci tensor.
For the Hamiltonian constraint only the Ricci scalar contains derivatives and is
the only contribution to the principal part. For the momentum constraint
γijDk(K

jk − γjktrK) = 0 both terms have to be taken into account.

Proof. These statements follow directly from the final equations in the Cauchy
formulation in section 3.3. Since the shift vanishes there are no derivatives on the
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right-hand side of ∂tγij . Vanishing shift also reduces the terms for the evolution
equations of the extrinsic curvature. The Ricci tensor contains second derivatives
of the metric and hence gives the only contribution to the principal part of the
evolution equations, the same is true for the Ricci scalar in the Hamiltonian
constraint.

The Ricci tensor is not multiplied with any component of the extrinsic curvature
in the evolution equations. Thus lemma 4.7.4 implies that we should not expect
any quantity of the extrinsic curvature tensor K to be multiplied with derivatives
of γ.

For the nonlinear equations we consider nonlinear perturbations of the flat
solution. Therefore in a neighborhood of the known solution we linearize about
flat spacetime. The global results for the linear equations are then directly
generalizable to the nonlinear setting but are only valid locally. Actually we did
the analysis for the modified momentum constraint in theorem 4.7.3 already
along these lines.

Hence the analysis reveals that the constraints solved for the set {γs1, Ks1, Kv}
and the evolution equations solved for the set {γv, γt, γϕϕ, Kt, K

ϕ
ϕ } form two

locally well-posed sets of evolutionary equations and are therefore promising for
the implementation. The missing s2 variables can be obtained by algebraic
relations involving the angular contributions of the corresponding evolved
variables (the ϕϕ and tensor quantities).

At the end of section 4.7.2 we derived some supplementary relations. For
completeness let us generalize these findings as well. On the nonlinear level the
trace of the extrinsic curvature is not constant in time anymore. The
corresponding evolution equation is given in equation (4.5.1).

Proposition 4.7.6. There exists an additional evolution equation for the
determinant of the spatial metric.

Proof. In the evolution equations (3.20) we also have an evolution equation
essentially for the determinant of the spatial metric. With the chain rule it can
be written as

∂t det γ = −2 det γ trK. (4.126)

The trace trK is algebraically given as K r
r +K ϑ

ϑ +K ϕ
ϕ = 2 (Ks2 −Ks1). In

proposition 4.4.2 we calculated the determinant to be

det γ = γrrγϑϑγϕϕ − γ2rϑγϕϕ = r4 sin2 ϑ
(

γs1γ
2
s2 − γs2γ

2
vγ

−1
t

)

. (4.127)

164



4.7. Some analysis of Einstein’s equations

Its time derivative contains derivatives of the components of the metric. Those
can be expressed with the evolution equations (3.20) or (4.26) respectively. Note
that for different gauge conditions spatial derivatives of the shift vector would
appear (which vanishes for the geodesic gauge).

Remarks on the boundary condition of the evolution equations The
treatment of the outer boundary conditions for the nonlinear evolution equations
is basically exactly the same as for both (2+1- and 1+1-dimensional) linear
evolution equations in sections 4.7.1 and 4.7.2. Hence the Bjørhus projection
method is again applicable.

Since the structure of the derivation is exactly the same we only state the result
here. With K we denote either Kt or Kϕ and correspondingly for γ. The outer
boundary condition reads (there are again no special boundary conditions for γ
itself)

∂tK = − K

2R
+

f

2R2
+

g

2R
− ∂2rγ

4
− ∂rK

2
. (4.128)

Here the terms f and g have to be adapted to the nonlinear situation. Therefore
they are more complicated from the computational perspective but similar from
the conceptual one. Conceptually they can be considered in the same manner as
in section 4.7.2 and are compatible with the outgoing characteristics.
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5.1. Introduction

In chapter 4 we analyzed Einstein’s vacuum equations in axisymmetry and
proposed a promising scheme. It consists of a strongly hyperbolic subset of
evolution equations and the constraints as a strongly hyperbolic-parabolic set for
the remaining variables. It remains to verify that it is indeed possible to actually
implement the equations and to obtain numerically solutions to Einstein’s
equations in this setting. We address this point in the current chapter.

We start with some remarks on the code and implementation itself and the
verification of the essentials of the implementation. The tests are of significant
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5. Numerical studies in vacuum axisymmetry

importance for an implementation that was developed from scratch. Then we
discuss separately the linear 1+1- and the essentials of the 2+1-dimensional
situation and principal aspects of the nonlinear equations.

We split the set of equations in evolution equations and the constraints. The
constraint solver delivers the initial values for the spacetime evolution. In the
evolutionary formulation of the constraints we need to provide also initial values
at the origin for the integration of the constraints. We discuss several
possibilities to derive these initial data and demonstrate that the full
parabolic-hyperbolic initial value solver is working “everywhere” as it is supposed
to do on all levels. For these simulations we take the freely specifiable variables
from the exact analytical solution.

Finally the spacetime evolution equations are taken into account. We
demonstrate that our code is able to reproduce essentially the known exact linear
solution numerically. The handling of the coordinate singularity in the evolution
equations is a serious issue and we show how we address the problem.

5.2. Some remarks on the implementation and basic

code verifications

5.2.1. General remarks on the implementation

The code that was used for our simulations was developed and written by us from
scratch. As language for the implementation we chose the scripting language
Python1. We will indicate when special (public) libraries and packages2 are used.

The code was developed as single core application. Smaller runs were performed
on an ordinary workstations but quite often we made use of a cluster3.

1There is a huge number of valuable sources and introductions. We particularly benefited
from the ones designed for its scientific use, see Langtangen (2008), Stewart (2014), and
online documentations. While it might be true that Python is not the ultimately optimal
language concerning the final simulation time it is extremely elegant. Time needed for the
development is shorter, at least that is our experience. This makes Python a good choice for
more conceptual and fundamental studies like the ones presented in the thesis.

2In general we made use of the packages NumPy (http://www.numpy.org/), SciPy
(https://www.scipy.org/) and for the visualization Matplotlib (https://matplotlib.org/).

3Mainly we used the cluster “Datura” run by the Albert Einstein Institute for Gravitational
Physics (http://www.aei.mpg.de/).

168

http://www.numpy.org/
https://www.scipy.org/
https://matplotlib.org/
http://www.aei.mpg.de/


5.2. Implementation and basic verification

Even though there are good and strong arguments to do so it is not our intention
to make the code public. In general we agree that even not perfectly documented
or well-developed codes or snippets can help others for their further development.
There are also scientific reasons that prevent publication. It is never certain that
there are no bugs, typos or flaws included. In general the probability is higher the
smaller the number of people developing and maintaining the code. There is the
tendency to “black-box” tools (using them without the detailed understanding of
their function). This makes perfectly sense if those tools are well tested but
might become problematic if the number of developers is (very) small. We see it
in these cases as the scientific duty to explain as detailed as meaningful how
things are implemented and which crucial tools and parameters are used but to
encourage other researchers to imitate (or to do better based on the given
achievements or further developments) the implementation independently.

Even though all derivations in the thesis can be done without, we highly
benefited from the use of computer algebra packages4.

5.2.2. Some essential verifications and numerical tests

In the following we confirm that our numerical implementation of the derivative
operators works as expected. For the r-derivatives we work on the linear mode
level and construct an equation that is supposed to vanish in the continuum
limit, compare with the discussion in section 2.2.6. For example for some variable
u we consider

∂kr u
∣

∣

num
− ∂kru

∣

∣

exact
, k ∈ {1, 2}. (5.1)

To have a non-trivial test case we choose for u an arbitrary variable from the
exact solution, say u = γ̂s1 for ℓ = 2 as given explicitly in appendix A.4. We can
also simply calculate the exact derivatives in r, ∂1ru|exact and ∂2ru|exact, and check
that the residuals of equation (5.1) converge to zero in the continuum limit.
Since we are using a second-order formulation we expect quadratic convergence.
The results for several resolutions are listed in table 5.1 where the L2-norm of
equation (5.1) is given. The expected factor of four is achieved when doubling
the resolution.

4We use mainly Mathematica (Wolfram (1999)) including xAct (http://www.xact.es/) and Sage
(http://www.sagemath.org/).
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5. Numerical studies in vacuum axisymmetry

N ∆r 1st derivative 2nd derivative
100 .2 257.2× 10−6 297.3× 10−6

200 .1 65.0× 10−6 75.0× 10−6

400 .05 16.3× 10−6 18.8× 10−6

800 .025 4.1× 10−6 4.7× 10−6

Table 5.1.: The norms of the errors of the derivative operators in equation (5.1) for
different step sizes. One can see that in the continuum limit ∆r → 0
the values converge to zero with the expected quadratic convergence.

We should also verify that the analytic solution is indeed the exact solution for
the derived linear equations. Since the essential part of the exact solution is
given in t and r we perform the convergence test on the 1+1-dimensional level. If
we show that the exact solution inserted in the field equations results in residuals
that converge away in the continuum limit we give a strong indication that both
the exact solution is correct and the implementation of the equations (in
particular the derivatives) are behaving as they should. The spatial
discretization in r is of second order and therefore should converge quadratically
with decreasing step size. To test the evolution equations as well we use for the
time discretization also a second-order discretization, here a forward stencil (see
section 2.2.3). Therefore we consider the relation

(∂tu)
n − rhsnu =

−3un + 4un+1 − un+2

2∆t
− rhsnu → 0 (5.2)

at time step n where rhsnu denotes the right-hand side of the evolution equation
for the variable u at time step n. The evolution equations for the spatial metric
should converge in a trivial way, for the extrinsic curvature also the spatial
derivatives are involved. We test everything with the exact solution for ℓ = 2 as
derived in section 4.6 with peak localized at r = 10. Throughout our Courant
factor (see definition 2.3.9) is 1/10 which determines the time step when the
spatial grid spacing is prescribed.
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5.2. Implementation and basic verification

N ∆r ∆t ∂tγ̂s1 ∂tγ̂s2 ∂tγ̂v ∂tγ̂t ∂tK̂s1 ∂tK̂s2 ∂tK̂v ∂tK̂t

100 .2 .02 5.70 2.85 20.96 259.5 232.7 223.1 1322.5 9127.4
200 .1 .01 1.43 .71 5.25 65.0 59.0 56.5 335.0 2306.
400 .05 .005 .36 .18 1.31 16.3 14.8 14.2 84.1 578.
800 .025 .0025 .09 .04 .33 4.1 3.7 3.6 21. 145.
1600 .0125 .00125 .02 .01 .08 1. .9 .9 5. 36.

Table 5.2.: The norm of the residuals (multiplied by 10−6) of the field equations
with respect to the exact solution for different resolutions for the test
of the evolution equations. One sees that in the continuum limit the
residuals converge to zero with the expected quadratic convergence.

N ∆r ∆t Ĥ Ĉµ=0
r Ĉµ=0

ϑ

100 .2 .02 43.0 2.95 12.37
200 .1 .01 10.9 .74 3.13
400 .05 .005 2.7 .18 .79
800 .025 .0025 .7 .05 .20
1600 .0125 .00125 .2 .01 .05

Table 5.3.: The norm of the residuals (multiplied by 10−3) of the field equations
with respect to the exact solution for different resolutions for the con-
straints. We see that in the continuum limit the residuals converge to
zero with the expected quadratic convergence.

We see in tables 5.2 and 5.3 that all relations converge quadratically with
increasing resolution (and hence decreasing step size). We notice that the
residuals of the evolution equations for γ̂s1 and γ̂s2 in table 5.2 differ only by a
factor of two. This is no surprise because of the relation derived in lemma 4.7.2.
That the residuals for the evolution equations for K̂s1 and K̂s2 differ (even
though we derived in lemma 4.7.2 that they are equal analytically) is caused by
different expressions on the right-hand sides of the evolution equations. The
constraint equations converge in the continuum limit but it is remarkable that
the residuals for the constraints converge with a factor that is larger. For
reasonable resolutions the error is still quite large (the values in table 5.3 are
only multiplied with 10−3, not with 10−6 as for the evolution equations).
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5.2.3. Test with the exact solution in the nonlinear constraints

In the process of the numerical implementation it is of huge advantage if one has
knowledge of the exact solution of the problem and one can aim to reproduce
known results. It shows that the implementation is indeed correct. We derived in
section 4.6 the exact solution to the linearized problem, which allowed us to do
some consistency checks.

Also the knowledge of the exact solution allows us to verify that the coding of
the nonlinear equations is correct and one solves the correct equations. We write
the nonlinear variables in the form

u = uflat + ǫupert (5.3)

with an amplitude ǫ determining the strength of the perturbation. It is usually
considered to be small, ǫ≪ 1, see also section 3.2.3. Inserting the exact linear
solution ũ in the expansion (5.3), i.e. u = uflat + ǫũ, and evaluating the nonlinear
equations (abbreviated as nonlin) with these variables results in relations of the
form

nonlin(u) = Aǫ0 +Bǫ1 + Cǫ2 + . . . (5.4)

with contributions A, B, C . . .. If the coding of the equations is correct we
expect the following behavior:

• The flat contribution A is based on the flat values and should vanish up to
roughly machine precision for equations that are supposed to vanish.

• The linear contribution B is solved by the exact solution and therefore
should vanish analytically. Numerically it will cause some contribution due
to the truncation error but it should converge to zero with decreasing step
size as discussed above. The nonlinear errors are suppressed with ǫ2

provided ǫ is small enough. Hence in this regime we expect a linear
convergence for ǫ→ 0.

• In the intermediate regime for ǫ the nonlinear contribution C (and possible
higher terms) are expected to give the dominant contribution. Even
analytically they do not vanish since we inserted the solution to the linear
problem only. In that regime we expect a quadratic (with respect to ǫ)
convergence to zero. Therefore a (double-)logarithmic plot is well suited to
test the described behavior.
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5.2. Implementation and basic verification

We implemented the modified momentum constraint with parameter µ = 2 in
theorem 4.7.3. The right-hand side of those equations is proportional to the
derivative of the trace of the extrinsic curvature. Since we insert the linear
solution where the trace is exactly zero the inhomogeneous part of the modified
momentum constraint vanishes exactly.
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(a) The norm of the residuals of the constraints versus ǫ for a spatial resolution N = 800.
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(b) The norm of the residuals of the constraints versus ǫ for a spatial resolution N =
1600.

Figure 5.1.: The exact linear solution ũ inserted in the form u = uflat + ǫũ in
the nonlinear constraints (the Hamiltonian constraint H and the two
components of the modified momentum constraint, Cµ=2

r and Cµ=2
ϑ ) for

decreasing ǫ for two resolutions.

Our expectations and the results in figure 5.1 match and we observe that the
numerics satisfy the predictions. The transition between the two regimes is
visible in figure 5.1. The results are improving with growing resolution. At some
instance for the amplitude ǫ (between ǫ = 10−12 and 10−16) we observe that the
machine error seems to prohibit further improvements. This is due to the
(nonlinear) combination of several terms.
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5. Numerical studies in vacuum axisymmetry

To summarize we provide evidence that the numerical implementation of the
derivatives and the equations behave as expected on the 1+1-dimensional level
and we are ready to discuss the numerics of the solution of the field equations.

5.3. The linear mode level

Our aim is to use a fully constrained evolution. In any case we need to solve all
the constraints on the initial slice. Therefore we will first demonstrate that we
are able to solve the constraints as an evolutionary system “everywhere” (that
means for an arbitrary initial time) when we take the freely specifiable variables
from the exact solution. Then we will turn to the full spacetime evolution.

Even though a standard solver seems to be able to solve the equations we
experienced some difficulties in solving the Hamiltonian constraint when the
source terms are not given by the exact analytical solution. The numerical
integration of a stiff parabolic equation is apparently non-trivial. We will address
these problems and also a possible solution in the following.

5.3.1. The constraint solver

We want to solve the constraints as an evolutionary system as discussed in
section 3.4.2. On the linear level the Hamiltonian and momentum constraint
completely decouple. The former is an equation for the components of the spatial
metric, the latter for the components of the extrinsic curvature. We solve the
Hamiltonian constraint (4.50) as a parabolic equation for γ̂s1 and the modified
momentum constraint as a coupled hyperbolic system for either {K̂s2, K̂v} or
{K̂s1, K̂v}.

We take the freely specifiable data from the exact solution as derived in
section 4.6 with a generating function5 G(t, r) = G(x) = A exp(−x2/2), x = r ± t
and amplitude A = 1. We choose for the demonstration the mode ℓ = 2 and
hence we can use the quantities given explicitly in appendix A.4.

5In the simulations we are interested in a wave package evolving through the origin. Usually
the radial domain is r ∈ [0, R = 20]. To determine an ingoing package we have to choose a
negative time in the regular exact solution. If initially t = −10 it implies that the outgoing
terms are almost entirely suppressed and only the ingoing contributions remain. For t > 0
the ingoing contributions are suppressed and the outgoing ones are of significant value. These
observations are important for the determination of the exact solution. In the plots we show
the simulation time. Therefore the plots have always a positive time axis.
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5.3. The linear mode level

The constraints form in a neighborhood of the origin a stiff (see definition 2.2.3)
set of ordinary differential equations. For its integration we make use of the
SciPy solver ODEint6. It is basically a wrapper for lsoda from the FORTRAN
library odepack, see Hindmarsh (1983). That is a collection of solvers for
systems of ordinary differential equations that can handle stiff and non-stiff
systems. It uses in parts adaptive methods for the step size and (a combination
of) explicit and implicit integrators. For the inclusion of the inhomogeneous part
we use the SciPy package interp1d7 for the interpolation to arbitrary grid points
(required by ODEint). On the 1+1-dimensional mode level we are successful
already with the default settings of the solver, which have to be modified later.

In addition we need to find a way to prescribe “initial data” close to the origin.
As seen in section 4.7.1 the solver is supposed to start at r = ǫ > 0 and we need
also the value at the origin since we are using a vertex-centered grid. Hence we
need to determine initial data at the grid points r = 0 and r = ∆r.

Remark 5.3.1. The parabolic equation only allows an integration outwards. In
a partially constrained scheme where we only solve the hyperbolic momentum
constraint or for a separate solver for the Hamiltonian constraint it would be an
alternative to start the integration for the momentum constraint at the outer
boundary. There one can use asymptotic flatness (see definition 3.3.1) to
determine initial data. Then the integration can be performed inwards. It would
be interesting to see if the solution reproduces regular data at the origin. Since
we have a proper way to determine initial values at the regular origin we will
apply the integration outwards.

In general we distinguish two cases. We show that the solver converges for both
sets of variables, for {γ̂s1, K̂s2, K̂v} and for {γ̂s1, K̂s1, K̂v}

5.3.1.1. Initial data for the constraint solver from Taylor expansion

For the initial values we make use of the Taylor expansion of the variables close
to the origin. We discussed two promising formulations of the momentum
constraint in section 4.7.1. Depending on which scalar component of the extrinsic
curvature the equations are solved for, we have to compute the Taylor expansion
using the remaining ones. The aim is to express the first two grid points of the
desired variables in terms of the freely specifiable data to obtain a value at the
origin where the equation is degenerate. These are the initial values for the
evolutionary solver.

6See https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.integrate.odeint.html.
7See https://docs.scipy.org/doc/scipy-0.19.0/reference/generated/scipy.interpolate.interp1d.html.

175

https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.integrate.odeint.html
https://docs.scipy.org/doc/scipy-0.19.0/reference/generated/scipy.interpolate.interp1d.html


5. Numerical studies in vacuum axisymmetry

Proposition 5.3.1. For even modes (↔ mode parameter ℓ is even) the first two
values for γ̂s1 are given as

γ̂s1
∣

∣

0
=

1

2 + ℓ(ℓ+ 1)

{

4ℓ(ℓ+ 1)γ̂v
∣

∣

0

+[2− ℓ(ℓ+ 1)]γ̂s2
∣

∣

0
+

(

ℓ+
ℓ2

2
− ℓ3 − ℓ4

2

)

γ̂t
∣

∣

0

}

, (5.5a)

γ̂s1
∣

∣

∆r
= γ̂s1

∣

∣

0
+

∆r2

6 + ℓ(ℓ+ 1)
{[8− ℓ(ℓ+ 1)]γ̂s2|∆r

(

ℓ+
ℓ2

2
− ℓ3 − ℓ4

2

)

γ̂t|∆r + 8ℓ(ℓ+ 1) γ̂v|∆r

}

, (5.5b)

(5.5c)

The momentum constraint as equation for K̂s2 and K̂v has initial values

K̂s2

∣

∣

0
=

1

3ℓ(ℓ+ 1)− 6

{

[12 + 2ℓ(ℓ+ 1)]K̂s1

∣

∣

0

−
(

ℓ+
ℓ2

2
− ℓ3 − ℓ4

2

)

K̂t

∣

∣

0

}

, (5.6a)

K̂v

∣

∣

0
=

1

6

{

−2K̂s2

∣

∣

0
+ [ℓ(ℓ+ 1)− 2] K̂t

∣

∣

0

}

, (5.6b)

K̂s2

∣

∣

∆r
= K̂s2

∣

∣

0
+ K̂s1|∆r∆r

2, (5.6c)

K̂v

∣

∣

∆r
= K̂v

∣

∣

0
+

∆r2

5

{

−K̂s1|∆r +

[

ℓ(ℓ+ 1)

2
− 1

]

K̂t|∆r

}

. (5.6d)

Considered as an equation for K̂s1 and K̂v the corresponding quantities read

K̂s1

∣

∣

0
=

1

2 [ℓ(ℓ+ 1) + 6]

{

3[ℓ(ℓ+ 1)− 2]K̂s2

∣

∣

0

+
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ℓ+
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2
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2

)

K̂t

∣

∣

0

}

, (5.7a)

K̂v

∣

∣

0
=

1

ℓ(ℓ+ 1) + 6

{

−8K̂s2

∣

∣

0
+ [ℓ(ℓ+ 1)− 2] K̂t

∣

∣

0

}

, (5.7b)

K̂s1

∣

∣

∆r
= K̂s1

∣

∣

0
+

∆r2

2 [ℓ(ℓ+ 1) + 30]

[

(10 + 3ℓ(ℓ+ 1)) K̂s2

∣

∣

∆r
+

(

ℓ+
ℓ2

2
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2

)

K̂t|∆r

]

,

(5.7c)

K̂v

∣

∣

∆r
= K̂v

∣

∣

0
+

∆r2

ℓ(ℓ+ 1) + 30

[

−16K̂s2

∣

∣

∆r
+ 3 [ℓ(ℓ+ 1)− 2] K̂t|∆r

]

. (5.7d)
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For odd modes (↔ mode parameter ℓ is odd) the first two values of γ̂s1 and the
value at the origin of the extrinsic curvature are

γ̂s1
∣

∣

0
= 0, (5.8a)

K̂s2

∣

∣

0
= 0, (5.8b)

K̂v

∣

∣

0
= 0, (5.8c)

γ̂s1
∣

∣

∆r
=

∆r

4 + ℓ(ℓ+ 1)
{[8− ℓ(ℓ+ 1)]γ̂s2|∆r

(

ℓ+
ℓ2

2
− ℓ3 − ℓ4

2

)

γ̂t|∆r + 6ℓ(ℓ+ 1) γ̂v|∆r

}

. (5.8d)

If the constraint is solved for K̂s2 and K̂v we have

K̂s2

∣

∣

∆r
= − 8∆r

ℓ(ℓ+ 1)
K̂s1|∆r, (5.9a)

K̂v

∣

∣

∆r
=

∆r

6

{

4K̂s1|∆r + [ℓ(ℓ+ 1)− 2] K̂t|∆r

}

. (5.9b)

The momentum constraint considered for K̂s1 and K̂v gets initial values

K̂s1

∣

∣

∆r
=

∆r

2 [16 + ℓ(ℓ+ 1)]

{

3ℓ(ℓ+ 1)K̂s2|∆r +

(

ℓ+
ℓ2

2
− ℓ3 − ℓ4

2

)

K̂t|∆r
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(5.10a)

K̂v

∣

∣
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=

∆r

16 + ℓ(ℓ+ 1)

{

−12K̂s2|∆r + [2ℓ(ℓ+ 1)− 4] K̂t|∆r

}

. (5.10b)

Proof. It follows from proposition 4.4.1 that even modes expand as
û = u0 + u2r

2 + . . . and odd ones as û = u1r + . . . close to the origin. Inserting
these expansions in the constraints in theorem 4.5.3 on the mode level leads to
the relations above. On the mode level it is clear that we can explicitly express
the variables by decoupling the equations.

As discussed we prescribe data (the freely specifiable data for the constraint
solver) with support away from the origin r = 0 and also from the outer
boundary (here r = R = 20), we start with the exact solution for ℓ = 2, see
section 4.6 and appendix A.4. As generating function we choose
G = A exp(−x2/2) for x = r ± t and amplitude A = 1 an localize the Gaussian
initially at r = 10 (or r = 12), see also footnote 5 on page 174. At that time
instance we give the exact linear solution for those variables which are not
supposed to be solved by the constraints (but are instead intended to be updated
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by the evolution equations later). Then we solve the constraints with initial data
near the origin as derived before. Afterwards we proceed to the next time level
and start again with the scheme, exactly in the same manner as before. So there
is no time evolution yet, even though the plots might suggest the opposite. The
aim is to show that the residuals of the constraints vanish in the continuum
limit, see the discussion in section 2.2.6.

5.3.1.1.1. Constraint solver for {γ̂s1, K̂s2, K̂v}
We plot the results in figure 5.2. There we solve the constraints for ℓ = 2 at each
time instance for γ̂s1, K̂s2 and K̂v, the remaining variables are taken from the
exact solution. We obtain the initial values for the evolutionary solver with the
Taylor expansion in proposition 5.3.1 for the momentum constraint and the
Hamiltonian constraint. We see that already for moderate resolutions (the
dash-dotted blue line) the quotient is not too far away of the desired curve (the
solid turquois line), even though probably not yet in the convergent regime. For
higher resolution (dotted green and dashed red lines) the curves approach the
desired value.
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Figure 5.2.: We show the quotients of the L2-norms of the residuals of the con-
straints (Hamiltonian constraint Ĥ and the components of the mod-
ified momentum constraint, Ĉµ=2

r and Ĉµ=2
ϑ ). We calculate the quo-

tient between two resolutions, one having twice as many grid points
(hence half of the step size). Therefore we expect that the quotient
approaches four (solid turquois line in the plots).
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||Ĉµ=2

r ||

0 2 4 6 8 10 12
t

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045
||Ĉµ=2
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Figure 5.3.: We plot the norm of the residuals of the constraints for N = 400 (blue
solid line) and four times the residuals for N = 800 (dashed green
line). The superscript µ = 2 is omitted for the presentation. The
curves are almost indistinguishable and therefore show convergence.

For high resolutions there are several outliers. These are due to the
representation showing the convergence factor where division by small numbers is
involved. Observe that we chose the scale of the axis such that we plot only a
rather small region significantly away from zero. As a further demonstration we
display in figure 5.3 the norm of the residuals of the constraints for two
resolutions. Since we multiply the value of the higher resolution (corresponding
to a finer grid) with a factor four we expect that the two plotted curve coincide.
This is indeed the case in figure 5.3.

5.3.1.1.2. Constraint solver for {γ̂s1, K̂s1, K̂v}

We show the convergence plots in figure 5.4. Both the discussion and the results
are absolutely analogous as in the case where we solved the constraints for γ̂s1,
K̂s2 and K̂v presented in figures 5.2 and 5.3 and discussed there. Hence we are
brief for the current case. In the Hamiltonian constraint the value at the
transition through the origin (corresponding to the simulation time t = 10 in the
plot) is indistinguishable from zero for N = 800 and therefore the division
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produces a useless result. Hence we should ignore the value at t = 10 and
therefore the spike in the red dashed curve. The constraint solver convergences in
the continuum limit.
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Figure 5.4.: We show the quotients of the L2-norms of the residuals of the con-
straints. The quotient is calculated for two resolutions, one having
twice as many grid points. We expect that the quotient approaches
four (solid line in the plots).

5.3.1.1.3. Taylor expansion and evolution equation for initial data

If we want to use the fully constrained scheme in the nonlinear case as well we
have, at least for the Hamiltonian constraint, to use a different approach to
obtain initial data. The nonlinearity of the Hamiltonian constraint does not
allow us to obtain the value of the corresponding variable on the first grid points
from the Taylor expansion. The momentum constraint is in fact semilinear (see
definition 2.2.2) in the components of the extrinsic curvature. Therefore a similar
procedure using the Taylor expansion can be applied for the momentum
constraint even in the nonlinear case. For the initial values for γ̂s1 we can use the
free time evolution instead. Since the corresponding equation is free of
coordinate singularities (this is also true on the nonlinear level) we expect no
serious problems for the free evolution at the 0th and 1st grid point in that
equation. The corresponding evolution equation (4.49) reads ∂tγ̂s1 = 4K̂s1.
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5.3. The linear mode level

We just mention here (and use it later on) that it is also possible to use only for
the first two grid points the evolution equations for γ̂s1. In contrast to the
equations for the extrinsic curvature components the evolution equation is fully
regular for the spatial metric (this remains true on the nonlinear level).

5.3.1.2. Using the decoupling of the constraints
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Figure 5.5.: We show the quotients of the L2-norms of the residuals of the con-
straints. Since the Hamiltonian constraint is satisfied identically (see
the discussion in the main text) we display instead the convergence of
the corresponding variable γ̂s1 to the exact solution. The quotient is
shown for two resolutions, one having twice as many grid points, and is
expected to approach four (solid turquois line in the plots). The spike
at the transition through the origin (at t = 10) for the convergence
plot for γ̂s1 can be ignored for the same reason as discussed above.

On the linear level the constraints decouple into two independent sets. The
Hamiltonian constraint is an equation for the components of the spatial metric
only, the momentum constraint forms a coupled system for the components of
the extrinsic curvature. One can make use of it and solve the momentum
constraint as hyperbolic equations with the solver ODEint and the Hamiltonian
constraint separately. We experimented for the Hamiltonian constraint with an
iterative Newton-Raphson solver (see for example Press et al. (2007)). It is only
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5. Numerical studies in vacuum axisymmetry

a single equation and implicit solvers for parabolic partial differential equations
are not uncommon. For a linear equation we expect that the solver solves the
equation already in the first iteration.

As a demonstration we show in figure 5.5 the convergence of the independent
solvers. The results are basically the same as above, the only difference is that
the Hamiltonian constraint is satisfied up to the desired accuracy (it is a linear
equation, hence it is satisfied after one iteration already and its violation is
indistinguishable from zero). Nevertheless we keep in mind that the decoupling
of the constraints is not satisfied any more on the nonlinear level.

Summary

We can conclude that our constraint solver works as desired on the
1+1-dimensional mode level. This is true for reasonable spatial resolution of at
least N = 200. For a spatial domain of r ∈ [0, R = 20] it corresponds to a step
size of maximally ∆r = 1/10. On the 1+1-dimensional mode level we presented
several different choices for the obtaining of initial data close to the origin and
numerical solvers.

5.3.2. The fully constrained evolution

All evolution equations are implemented using the method of lines, see
section 2.3.3. It implies that an integration scheme for ordinary differential
equations is suitable for the time integration. Our choice is a version of the
Runge-Kutta algorithm of second order, namely the integrator by Shu (1998)
(see the discussion in section 2.2.3). We use a fully constrained formulation
where the constraints are explicitly solved on each time slice. Thus it makes
sense to implement the solver explicitly from scratch instead of using an already
implemented integrator like the ODEint integrator discussed above.

In principle quite a number of other integrators should be working as well,
including higher-order methods. We experimented with some different
possibilities without noticing any substantial difference that is worth to be
mentioned. Therefore for all the numerical results presented in the following we
use the Shu integrator. We remark that it is for our applications essentially the
Runge-Kutta integrator of second order.

The evolution equations split into two sets of equations. For the components of
the spatial metric they are fully regular. The ones for the extrinsic curvature
contain a coordinate singularity at the origin.
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5.3. The linear mode level

Applying the formally singular evolution equations for the components of the
extrinsic curvature requires to divide by r in the limit r → 0. This is problematic
for the vertex-centered lattice with grid point at r = 0. Instead of applying the
field equations at the origin we make use of proposition 2.6.5 and determine the
zeroth grid point algebraically. In proposition 2.6.5 we derived for the modes
ℓ = 0 and ℓ = 2 the relations

u0 = u2 − 2u1 (2.168 rev.)

and u0 = 3u1 − 3u2 + u3 (2.169 rev.)

up to an error of O(∆r2) and O(∆r3) respectively (for step size ∆r). For all the
other modes we can just set the value at u0 to zero (up to the same accuracy).

5.3.2.1. Failure of the ODEint solver for the parabolic equation

We derived in section 4.7.1 a promising formulation consisting of strongly
hyperbolic evolution equations together with a well-posed (for suitable initial
data as discussed above) evolutionary constraint system. The latter one is a
parabolic-hyperbolic system on the linear level.

We know that the constraint solver as such converges everywhere. In the fully
constrained scheme we consider a similar situation as above. Instead of taking
the exact solution as source terms in the constraint solver, we employ the set of
evolution equations to evolve the remaining variables. When the evolution
equations are used the source terms for the solver contain naturally some
discretization errors.

For the constraint solver (hyperbolic-parabolic system) we use ODEint with
initial data determined by the Taylor expansion for all equations (see discussion
above). As we can see in the snapshots of the evolution in figure 5.6 there is
some problem after the wave package transited through the origin. The visible
oscillations are responsible for non-convergent results. The reason for the failure
is caused by the Hamiltonian constraint. Apparently solving a stiff parabolic
equation is more involved and results in the oscillations when the source terms
contain some numerical error.

We remark that if, instead of solving the Hamiltonian constraint, the quantity
γ̂s1 is taken from the exact solution the convergence results are looking good.
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Figure 5.6.: We show some snapshots for the fully constrained scheme as desired.
We choose an outer boundary at R = 20 and a resolution of N =
400 points. The initial (t = 0) peak is located at r = 10, directed
inwards and determined by the exact solution for ℓ = 2. Therefore
the transition through the origin corresponds to simulation time t = 10
and the displayed snapshots are taken after the transition.

5.3.2.2. Convergent fully constrained evolution

To circumvent the problems in the evolution we switch to the alternative solvers
for the constraints. We keep using the ODEint solver for the momentum
constraint (we obtain the initial data with the Taylor expansion) and apply the
Newton-Raphson solver for the Hamiltonian constraint (compare with the
discussion for the results in figure 5.5). On the 2+1-dimensional level the
Hamiltonian constraint is a parabolic equation. It is not uncommon to use an
implicit solver for a parabolic equation.
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5.3. The linear mode level

For the simulations the outer boundary is again at R = 20 (we use the Bjørhus
projection method to implement the boundary condition for the evolution
equations, see section 4.7.1). We initialize the wave package at r = 10 and direct
it inwards. As initial data (concerning the full spacetime evolution) we use the
exact solution. Otherwise we take the exact solution only for comparison in the
convergence tests and it plays no role for the numerics any longer.
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Figure 5.7.: At each time instance (horizontal axis labels time t) we show the L2-
norm of the difference between the numerically calculated variable and
the exact solution. The values for the higher resolution (solid green
line) are multiplied with four. Hence we expect for convergence the
solid green line to lie below or on top of the dashed blue line.

In figure 5.7 we see the results and observe that the numerical values of the
variables converge to the exact solution. As long as four times the values for the
higher resolution are less or equal than the values for the lower resolution
(factor 1/2) it is a verification that the numerical solution converges to the exact
solution in the continuum limit. In fact the convergence seems to be even slightly
faster than the desired factor.
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Ĉµ=2
r

100/200

200/400

400/800

ideal curve

0 5 10 15 20

t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
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Figure 5.8.: We show the quotients of the L2-norms of the residuals of the momen-
tum constraint. The Hamiltonian constraint is satisfied due to the
application of the iterative solver. The quotient is calculated for two
resolutions, one having twice as many grid points. Ideally the quotient
would be equal to four (solid turquois line in the plots).

The violations in the Hamiltonian constraint are indistinguishable from zero,
hence the Newton-Raphson iteration solves that equation appropriately. We
display the momentum constraint in figure 5.8. Observe that the displayed
violations are significantly larger than for the constraint solvers with exact
inhomogeneities above. Nevertheless the figure shows that in the continuum limit
the momentum constraint converges to zero and hence it is satisfied in the fully
constrained scheme as well.

5.4. The linear 2+1-dimensional level

5.4.1. The constraint solver

The constraints form close to the origin a stiff (see definition 2.2.3) system of
partial differential equations in the “time” direction r. We use a spectral
expansion in known basis functions in the ϑ-direction and have knowledge of the
action of the derivatives with respect to ϑ. Hence we can implement the
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5.4. The linear 2+1-dimensional level

constraints with a solver for ordinary differential equations with respect to the
coordinate r. Similar as for the 1+1-dimensional case in section 5.3 we make use
of the ODEint solver explained already there. We remark that we had to
experiment with the tolerance of the solver and found that for the
2+1-dimensional situation decreasing the default value (roughly 10−8) to 10−10

improved the solution substantially.

Again we mention that we are working with the modified version of the
momentum constraint with parameter µ = 2 in theorem 4.7.3. Since the trace of
the extrinsic curvature vanishes on the linear level and the exact solution is used
for the freely specifiable data, the inhomogeneity of the modified momentum
constraint vanishes.

To test the constraint solver, we take all the remaining variables (either the set
{γ̃s2, γ̃v, γ̃t, K̃s1, K̃t} or {γ̃s2, γ̃v, γ̃t, K̃s2, K̃t}), the “freely specifiable data”, from
the exact solution. We excite one mode, say the ℓ = 2-mode (and use the explicit
form in appendix A.4). We generate ûℓ=2(t, r) with a generating function
G(t, r) = G(x) = A exp(−x2/2), x = r ± t and amplitude A = 1 and build the
exact linear solution as ũ(t, r, ϑ) =

∑L−1
ℓ=0 ûℓ=1(t, r)Yℓ(ϑ), see again footnote 5 on

page 174.

For the demonstration that the constraint solver does the task as expected we
give at each point in the r-direction the freely specifiable data and apply the
constraint solver for the remaining variables, similarly as in the 1+1-dimensional
situation.

No matter if one is interested in a free or (partially or fully) constrained scheme,
on the initial slice all constraints need to be satisfied. We encountered several
problems with the Hamiltonian constraint, which is a stiff parabolic equation.
Nevertheless it is important to demonstrate that wherever the spacetime
evolution is supposed to start we are able to apply the full constraint solver. We
show that we can solve the initial constraints as evolutionary equations
everywhere with the ODEint solver.

In the evolutionary approach one needs to find a way to obtain initial values for
the solver. There are several ways to obtain initial values at the origin (strictly
speaking the evolutionary scheme starts at r = ǫ > 0 but the methods also give
the value at r = 0).

The first possibility on the linear level is to obtain the values by explicitly using
the mode structure. There we used the Taylor expansion in the mode equations
as described in section 5.3. This approach will not be generalizable (since we do
not have the explicit mode equations on the nonlinear level) and we will not
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consider it in full detail. To obtain positive results with this approach is no
surprise since the modes decouple on the linear level.

Secondly, we can use the special mode structure of the gravitational
perturbations derived in section 2.5 which is due to the spin-weighted structure.
We will discuss and demonstrate the method for the solution of one set of
variables, here for {γ̃s1, K̃s2, K̃v}.

The third and most promising option is the Taylor expansion at the origin of the
full linear constraints. That option will be generalized to the nonlinear level and
we will show it for both sets of variables for which the parabolic-hyperbolic
formulation forms a well-posed formulation.

The initial value for γ̃s1 can be obtained by applying the corresponding evolution
equation, see theorem 4.5.2. Since it is fully regular we do not expect any
problems. This remains true on the nonlinear level as well. Therefore we apply
the technique in the following numerical experiments when we use an
evolutionary solver.

5.4.1.1. Initial data – using mode equations

On the linear level we can obtain, as on the mode level in section 5.3, the initial
data with the help of the constraints on the mode level. With ûℓ(r = 0) and
ûℓ(r = ∆r) obtained there we build as usual with the multiplication of the
corresponding spherical harmonics the variable ũ. Unfortunately the method is
not generalizable to the nonlinear situation since the equations of the constraints
cannot be given in terms of the individual modes there. Therefore we will not
consider the method further but remark that we obtained positive results on the
linear level.

5.4.1.2. Initial data – using structure of eigenfunctions of the Laplacian

In section 2.5 we examined the eigenfunctions of the Laplace operator in
spherical polar coordinates for spin-weighted quantities. We use the fact that the
variables have the following structure

ũ =
∑

ℓ

ûℓYℓ =
∑

ℓ

(

ūℓr
ℓ−2 + v̄ℓr

ℓ + w̄ℓr
ℓ+2
)

Yℓ (2.146 rev.)
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with constant (in r and ϑ, not in t) coefficients ūℓ, v̄ℓ, w̄ℓ. Because of regularity at
the origin ū0 and ū1 should vanish. Hence (see corollary 2.5.1)

ũ(r = 0) = v̄2Y2 + v̄0Y0, (2.151 rev.)

ũ(r = ∆r) = v̄2Y2 + v̄0Y0 + (v̄1Y1 + v̄3Y3)∆r +O(∆r2). (2.152 rev.)

On the linear level the aim is to reproduce the exact solution derived in
section 4.6. Hence we restrict to the gravitational perturbation with
spin-weight 2,

ũ(r = 0) = v̄2Y2, (5.11a)

ũ(r = ∆r) = v̄2Y2 + v̄1Y1∆r +O(∆r2). (5.11b)

Thus we have to solve at r = 0 the linear momentum constraint (interpreted as
equations for K̃s2 and K̃v),

for C̃µ=2
r : K̄s2,ℓ=2

∣

∣

0
+ 3K̄v,ℓ=2

∣

∣

0
= − 2K̄s1,ℓ=2

∣

∣

0
, (5.12a)

and for C̃µ=2
ϑ : 3K̄s2,ℓ=2

∣

∣

0
+ 3K̄v,ℓ=2

∣

∣

0
= 2K̄s1,ℓ=2

∣

∣

0
+ 2K̄t,ℓ=2

∣

∣

0
. (5.12b)

We write it as

a1K̄s1,ℓ=2

∣

∣

0
+ a2K̄v,ℓ=2

∣

∣

0
= y (5.13)

with a1 = (1, 3)†, a2 = (3, 3)† and y = (−2K̄s1,ℓ=2

∣

∣

0
, 2K̄s1,ℓ=2

∣

∣

0
+ 2K̄t,ℓ=2

∣

∣

0
)†. The

coefficient matrix has full rank in the linear case and should therefore give a
unique solution.

We write equation (5.13) in the form

Ax = y (5.14)

where y as in equation (5.13) and x = (K̄s1,ℓ=2

∣

∣

0
, K̄v,ℓ=2

∣

∣

0
)†. We know explicitly

the coefficient matrix A which consists of a1 = (1, 3)† and a2 = (3, 3)† and hence
reads

A =

(

1 3
3 3

)

. (5.15)

To solve the linear system (5.14) we have to invert A,

A−1 =
1

6

(

−3 3
3 1

)

. (5.16)
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On the nonlinear level the matrix inversion cannot be written out that easily
because the coefficients are not constant as in the linear case. There we make use
of a numerical routine. If we want to use a numerical inversion on the linear level
as well we can use the SciPy module lstsq8 for the matrix inversion. It is a
routine that solves equation (5.14) iteratively by minimizing the L2-norm of
||y− Ax||.
For r = ∆r we take the r-derivative of the momentum constraint and then
consider the resulting relations at r = 0, so we have

for C̃µ=2
r :

cos ϑ

sin ϑ
∂rK̃v + ∂ϑK̃v − 8∂rK̃s1 = 0, (5.17a)

and for C̃µ=2
ϑ : 3∂r∂ϑK̃s2 + 4∂rK̃v − 2∂r∂ϑK̃s1

+ 2
cosϑ

sinϑ
∂rK̃t − 2∂r∂ϑK̃t = 0. (5.17b)

Again the equations are evaluated at r = 0 where all the variables only have
contributions in several particular modes, see section 2.5. Therefore we can
consider the equations on the mode level, namely just in ℓ = 0 and ℓ = 2 (in
particular ℓ is even). The finite-difference expression up to the order of interest is
(see section 2.2.3)

∂rûℓ
∣

∣

i
=
ûℓ
∣

∣

i−1
− 2ûℓ

∣

∣

i
+ ûℓ

∣

∣

i+1

2∆r
+O(∆r2) (5.18)

and will be evaluated at r = 0. Hence we can use the parity for the modes (see
proposition 4.4.1), so ûℓ

∣

∣

−1
= ûℓ

∣

∣

1
since ℓ is even. Therefore we have

∂rûℓ
∣

∣

0
=
ûℓ
∣

∣

1
− ûℓ

∣

∣

0

∆r
+O(∆r2). (5.19)

The equations for the momentum constraint at r = ∆r then read

for C̃µ=2
r : 3K̄v,ℓ=2

∣

∣

1
= 3K̄v,ℓ=2

∣

∣

0
− 4

(

K̄s1,ℓ=2

∣

∣

1
− K̄s1,ℓ=2

∣

∣

0

)

, (5.20a)

and for C̃µ=2
ϑ : 3K̄s2,ℓ=2

∣

∣

1
+ 4K̄v,ℓ=2

∣

∣

1
= 3K̄s2,ℓ=2

∣

∣

0
+ 4K̄v,ℓ=2

∣

∣

0

+ 2
(

K̄t,ℓ=2

∣

∣

1
− K̄t,ℓ=2

∣

∣

0

)

+ 2
(

K̄s1,ℓ=2

∣

∣

1
− K̄s1,ℓ=2

∣

∣

0

)

. (5.20b)

It can again be written as a matrix equation like (5.14) for
x = (K̄s1,ℓ=2

∣

∣

1
, K̄v,ℓ=2

∣

∣

1
)†, here the matrix is

A =

(

0 3
3 4

)

. (5.21)

8See https://docs.scipy.org/doc/scipy-0.19.0/reference/generated/scipy.integrate.odeint.html.

190

https://docs.scipy.org/doc/scipy-0.19.0/reference/generated/scipy.integrate.odeint.html


5.4. The linear 2+1-dimensional level

The explicit inverse reads

A−1 =
1

9

(

−4 3
3 0

)

(5.22)

or can be obtained numerically again with the help of lstsq for example. The
system can be solved in the same way as for r = 0.

As already discussed we take initial data (concerning the spacetime evolution) at
some instance such that the wave package is located away from the origin r = 0
and also from the outer boundary (which we place at r = R = 20), we start at
r = 10. At that time instance we solve the constraints in the full spatial domain.
Afterwards we proceed in a similar fashion as in section 5.3 for the mode
equations. We repeat the process at the next time step where the peak of the
wave package is located slightly closer to the origin. The aim is to show that the
residuals of the constraints vanish in the continuum limit, see section 2.2.6.
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Figure 5.9.: We show the result after we solve the constraints at each time instance
for {γ̃s1, K̃s2, K̃v}, taking the remaining variables from the exact so-
lution. We obtain the initial data for the evolutionary solver ODEint
with the special mode structure as discussed in the main text. For
similar considerations as in section 5.3 we show the quotients between
several resolutions. The spectral cutoff is at L = 12, the tolerance of
the solver is set to 10−10.
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We see in figure 5.9 that the described constraint solver produces convergent
results. Actually, especially for the Hamiltonian constraint, some results seems to
be over-converging.

5.4.1.3. Initial data – using Taylor expansion

We obtain the initial data close to the origin for the momentum constraint as
hyperbolic set of equations from the Taylor expansion of the linear equations.
This option looks like the most promising approach and will be discussed and
numerically demonstrated for both sets of variables, i.e. when solving the
constraints for either {γ̃s1, K̃s2, K̃v} or {γ̃s1, K̃s1, K̃v}. We use the evolution
equation for γ̃s1 for the first innermost grid points. It provides us with the initial
data for the Hamiltonian constraint.

We will demonstrate that the parabolic-hyperbolic solver works and produces
convergent results “everywhere” (i.e. wherever the initial solver is supposed to
produce the initial values) in the cases when the momentum constraint is
interpreted as a set of equations for K̃s2 and K̃v and for K̃s1 and K̃v.

We make use of the Taylor expansion of the variables close to the origin. All
variables are arranged such that (see proposition 4.4.1) close to the origin they
and their derivatives have a behavior in r like

u = uflat + upert = uflat + u0 + u1r +O(r2), (5.23a)

∂ru = u1 + 2u2r +O(r2), (5.23b)

∂2ru = 2u2 + 6u3r +O(r2), (5.23c)

all coefficients ui are r-independent. Inserting these expansions in the linear
momentum constraint in theorem 4.5.2 leads to equations close to the origin of
the form (again the coefficients are r-independent)

C̃µ=2
r = C̃r0 + C̃r1r +O(r2) (5.24a)

and C̃µ=2
ϑ = C̃ϑ0 + C̃ϑ1r +O(r2). (5.24b)

These are enough relations to determine the missing values of K̃s2 and K̃v (or of
K̃s1 and K̃v respectively) at the grid points r = r0 = 0 and r = r1 = ∆r.
Evaluating equation (5.24a) at the origin r = 0 leads to the relations

C̃r0 = −4 K̃s1|0 − 2 K̃s2|0 +
cosϑ

sin ϑ
K̃v|0 + ∂ϑK̃v|0 = 0 (5.25a)
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5.4. The linear 2+1-dimensional level

and C̃ϑ0 = 2
cosϑ

sin ϑ
K̃t|0 + 3 K̃v|0 − 2 ∂ϑK̃s1|0 + 3 ∂ϑK̃s2|0 + ∂ϑK̃t|0 = 0.

(5.25b)

The second set of relations for the terms proportional to r is

C̃r1 = −8 K̃s1|1 +
cosϑ

sin ϑ
K̃v|1 + ∂ϑK̃v|1 = 0 (5.26a)

and C̃ϑ1 = 2
cosϑ

sin ϑ
K̃t|1 + 4 K̃v|1 − 2 ∂ϑK̃s1|1 + 3 ∂ϑK̃s2|1 + ∂ϑK̃t|1 = 0.

(5.26b)

5.4.1.3.1. Momentum constraint as system for K̃s2 and K̃v

We write the system of equations that need to be solved as

a1 + b1K̃s2|0 + c1K̃v|0 + d1∂ϑK̃s2|0 + e1∂ϑK̃v|0 = 0, (5.27a)

a2 + b2K̃s2|0 + c2K̃v|0 + d2∂ϑK̃s2|0 + e2∂ϑK̃v|0 = 0, (5.27b)

a3 + b3K̃s2|1 + c3K̃v|1 + d3∂ϑK̃s2|1 + e3∂ϑK̃v|1 = 0, (5.27c)

a4 + b4K̃s2|1 + c4K̃v|1 + d4∂ϑK̃s2|1 + e4∂ϑK̃v|1 = 0 (5.27d)

with a1 = −4K̃s1|0, a2 = 2 cosϑ
sinϑ

K̃t|0 + ∂ϑK̃t|0 − 2 K̃s2|0, a3 = −8 K̃s1|1,
a4 = 2 cos ϑ

sinϑ
K̃t|1 + ∂ϑK̃t|1 − 2 K̃s2|1, b1 = −2, c1 = c3 =

cosϑ
sinϑ

, c2 = d2 = d4 = 3,
c4 = 4, e1 = e3 = 1 and the remaining coefficients vanish. Therefore the
equations have the form

Au = b (5.28)

with linear operator A build with coefficients b, . . . , e.

For the solution we use the Python solver bicgstab9. Conjugate gradient
methods are iterative methods to solve linear systems Au = b for unknown u and
require the matrix A to be symmetric and positive definite. Biconjugate gradient
methods are a generalization to non-symmetric matrices A. Both are discussed in
Press et al. (2007). The improvement to a stabilized biconjugate gradient
method (abbreviated “bicgstab”) was suggested in van der Vorst (1992). It has
faster and smoother convergence properties.

An advantage of the Python solver is that the matrix A does not need to be
hardcoded as a matrix. It is implemented as an object called “linear operator”10,

9See https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.sparse.linalg.bicgstab.html.
10See https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.sparse.linalg.LinearOperator.html
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5. Numerical studies in vacuum axisymmetry

i.e. a map x 7→ Ax, which is easier to code than the nonconstant matrix itself. A
has no constant coefficients but is computed during the runtime with the variable
coefficients of that instance in the simulation.
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Figure 5.10.: We show the result after we solve the constraints at each time in-
stance for {γ̃s1, K̃s2, K̃v}, the remaining variables are taken from the
exact solution. We use the discussed Taylor expansion for the ini-
tial data for the momentum constraint and the free evolution of γ̃s1
for the Hamiltonian constraint. We solve the whole system with the
ODEint solver. Again we plot the quotient between different resolu-
tions. The spectral cutoff is again at L = 12, the tolerance of the
solver is set to 10−10.

Using the discussed scheme to obtain initial values and solving all the constraints
with ODEint results in the residuals in figure 5.10. It is remarkable that the
results are indistinguishable from the ones obtained before with the use of the
special structure of the modes and plotted in figure 5.9. On the other hand the
solver as such is identical, only the techniques to determine the initial values at
the origin differ. We interpret the similarities in the results as numerical evidence
that both procedures work fine.
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5.4. The linear 2+1-dimensional level

5.4.1.3.2. Momentum constraint as system for K̃s1 and K̃v

The momentum constraint interpreted as a system for K̃s1 and K̃v results
essentially in a very similar system as the one in equation (5.27), only some
variables are switched and the coefficients are slightly changed. Namely we have
the system

a1 + b1K̃s1|0 + c1K̃v|0 + d1∂ϑK̃s1|0 + e1∂ϑK̃v|0 = 0, (5.29a)

a2 + b2K̃s1|0 + c2K̃v|0 + d2∂ϑK̃s1|0 + e2∂ϑK̃v|0 = 0, (5.29b)

a3 + b3K̃s1|1 + c3K̃v|1 + d3∂ϑK̃s1|1 + e3∂ϑK̃v|1 = 0, (5.29c)

a4 + b4K̃s1|1 + c4K̃v|1 + d4∂ϑK̃s1|1 + e4∂ϑK̃v|1 = 0 (5.29d)

with a1 = −2K̃s2|0, a2 = 2 cosϑ
sinϑ

K̃t|0 + ∂ϑK̃t|0 + 3 K̃s2|0, a3 = 0,

a4 = 2 cos ϑ
sinϑ

K̃t|1 + ∂ϑK̃t|1 + 3 K̃s2|1, b1 = −4, b3 = −8, c1 = c3 =
cosϑ
sinϑ

, c2 = 3,
c4 = 4, d2 = d4 = −2, e1 = e3 = 1 and the remaining coefficients vanish. Again
the equations can be written in the same form as above,

Au = b (5.28 rev.)

We can apply the same routine to solve the system.
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Figure 5.11.: We show the result as before after we solve the constraints at each
time instance for {γ̃s1, K̃s1, K̃v}. Except for the different variable we
solve for everything else is the same as for the situation in figure 5.10.
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We show the results in figure 5.11. Clearly the situation is essentially the same as
in the discussion for figure 5.10 above. There is absolutely no difference
concerning the (on the linear level) decoupled Hamiltonian constraint. The
curves for the momentum constraint are slightly different than in figure 5.10 due
to the fact that we consider a different set of variables. The overall picture, the
convergence of the constraint solver in the continuum limit, remains.

5.4.1.3.3. Using the decoupling of the constraints

On the 1+1-dimensional level we experienced some problems with the ODEint
solver for the parabolic equation. On the linear level the Hamiltonian and
momentum constraints decouple. We can use this fact and apply the ODEint
solver for the momentum constraint and the Newton-Raphson method for the
Hamiltonian one. On the nonlinear level the equations do not decouple. As
generalization for this case we propose to use an iterative routine that solves first
the Hamiltonian constraint and then the momentum constraint (or the other way
around). The process is then iterated until a prescribed abortion is reached.
Since the quantities should not differ drastically from one time level to the next
we expect that the procedure should converge.

In figure 5.12 we display the results for the solver that uses the decoupling of the
Hamiltonian and momentum constraints. We observe that for the momentum
constraint the result is exactly as above and hence it shows convergence in the
continuum limit. This is clear because we applied the same solver for the
completely decoupled equations.

The Hamiltonian constraint is solved by the Newton-Raphson method at the first
iteration. It is a linear equation and therefore the constraint is satisfied up to the
numerical threshold after one application of the routine. Therefore we plot the
convergence of the variable γ̃s1 again. We see again a spike at the transition
through the origin and some small oscillation (observe that we display only a
region close to the desired value of four), increasing with decreasing step size.
Both effects are due to the representation in the plot where a division is involved.
We conclude that the independent constraint solver converges in the continuum
limit.
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Figure 5.12.: We show the result after we solve the constraints at each time in-
stance for {γ̃s1, K̃s1, K̃v}. Since the violations in the Hamiltonian
constraint are indistinguishable from zero (Newton-Raphson solver)
we display again the convergence factors of the variable γ̃s1. The
spectral cutoff is again at L = 12, the tolerance of the ODEint solver
is set to 10−10.

Summary

For the constraints regarded as parabolic-strongly hyperbolic system we can
state that several versions of the solver work fine. The solvers are fed with the
exact linear solution for the freely specifiable source terms and solve the
constraints correctly everywhere. This statement is true for both sets of variables
{γ̃s1, K̃s2, K̃v} and {γ̃s1, K̃s1, K̃v}. We discussed two possible options for the
solver of the Hamiltonian constraint as parabolic equation, the ODEint solver and
the application of the Newton-Raphson method. For the momentum constraint
as strongly hyperbolic set of equations we discussed several successful options to
obtain initial values close to the origin.

5.4.2. The fully constrained evolution

With the experience of the 1+1-dimensional simulations in section 5.3 we intend
to implement a fully constrained evolution. The analysis in section 4.7.2 suggests
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to apply the evolution equations for the set
{

γ̃ϕ, γ̃v, γ̃t, K̃ϕ, K̃t

}

. The variables

{γ̃s2, K̃s2} can be obtained by algebraic assignments. The constraints should
therefore be solved as a parabolic-strongly hyperbolic set of equations for
{γ̃s1, K̃s1, K̃v}.
We try to benefit from earlier results for the simulation of the wave equation, see
the discussion in section 2.6. There we derived some “filter” properties for grid
points at or in the neighborhood of the origin, which were justified by the
knowledge that the ℓth mode has a behavior to O(rℓ) close to the origin. In
section 2.5 we derived a similar behavior for the eigenfunctions of the Laplace
operator on the sphere (which applies for our variables by assumption). The ℓth

mode has contributions O(rℓ) and O(rℓ±2) close to the origin with corresponding
spin-weight. Since we want to reproduce the exact solution (with spin-weight 2
since it is a gravitational perturbation) we know that the leading contribution
close to the origin from the modes is O(rℓ−2) for ℓ ≥ 2 (we expect for ℓ = 0 and
ℓ = 1 close to the origin only contributions O(r0) and O(r1) from different
spin-weight).

The fully regular evolution equations for the components of the extrinsic
curvature tensor have a coordinate singularity at the origin, even though they are
fully regular. It is recommendable to take care of it explicitly. The structure of
the evolution equations is (compare with the equations in theorem 4.5.2)

∂tγ̃ ∼ K̃, (5.30a)

∂tK̃ =
f

r2
+
g

r
+ h. (5.30b)

We made good experience with the use of the following lemma.

Lemma 5.4.1. Close to the origin we write the evolution equation for the
extrinsic curvature as

∂tK̃ =
1

2
∂2rf + ∂rg + h. (5.31)

Proof. Since the equation is regular we know that f approaches zero in the limit
r → 0 (multiply equation (5.30b) with r2 and set r = 0). Therefore we can apply
L’Hôpital’s rule and get

∂tK̃ =
1
2
∂rf + g

r
+ h (5.32)

close to the origin. Again using the same regularity argument implies that we
can apply L’Hôpital’s rule once more and we obtain the claim.
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5.4. The linear 2+1-dimensional level

Remark 5.4.1. With the exact solution (see section 4.6) we can confirm that
f = O(r2) and g = O(r).

All variables u are arranged such that they have the following Taylor expansion
close to the origin (see section 4.4 and proposition 4.4.1)

u = a + br + cr2 + dr3 + . . . (5.33)

with r-independent coefficients a, b, c, d, . . .. Evaluating the variable u at the
first grid points at r = 0, ∆r, 2∆r and 3∆r allows us to determine the
coefficients for all variables. The derivatives have the following form,

∂ru = b+ 2cr + 3dr2 + . . . , (5.34a)

∂2ru = 2c+ 6dr + . . . . (5.34b)

With lemma 5.4.1 we write the right-hand sides of the evolution equations for
the extrinsic curvature close to the origin as (on the linear level the right-hand
side only contains quantities of the spatial metric, hence we can unambiguously
label the coefficients for γ̃s1 as as1, bs1, . . . and the same for the other variables)

∂tK̃s1|0 = − cs1 + 3cs2 −
cos ϑ

2 sinϑ
cv +

cosϑ

4 sinϑ
∂ϑcs2 −

3

2
∂ϑcv +

1

4
∂2ϑcs1 (5.35a)

∂tK̃s2|0 = 2cs1 − 6cs2 − ct +
5 cosϑ

2 sinϑ
cv −

cosϑ

4 sinϑ
∂ϑcs1 −

cosϑ

2 sinϑ
∂ϑcs2

+
3 cosϑ

2 sin ϑ
∂ϑct +

5

2
∂ϑcv −

1

4
∂2ϑcs1 −

1

2
∂2ϑcs2 +

1

2
∂2ϑct (5.35b)

∂tK̃v|0 =
2 cosϑ

sin ϑ
cv − cv +

1

2
∂ϑcs1 − ∂ϑcs2 + ∂ϑct (5.35c)

∂tK̃t|0 = − 3ct −
3 cosϑ

2 sinϑ
cv +

cosϑ

4 sinϑ
∂ϑcs1 +

3

2
∂ϑcv −

1

4
∂2ϑcs1 (5.35d)

for the zeroth grid point. For the first grid point we perform the same expansion
and get equations of the general form

∂tK̃|1 = C +D∆r (5.36)

with terms C and D to be determined. We calculated the contribution C already
in equation (5.35). We intend to calculate D in the same manner (here for
simplicity just for K̃s1 and K̃t, say Ds1 and Dt),

1

6
Ds1 = ds1 − 3ds2 −

1

2
dt +

5 cosϑ

4 sinϑ
dv −

cosϑ

8 sinϑ
∂ϑds1 −

cosϑ

4 sinϑ
∂ϑds2
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+
3 cosϑ

4 sinϑ
∂ϑdt +

5

4
∂ϑdv −

1

8
∂2ϑds1 −

1

4
∂2ϑds2 +

1

4
dt (5.37a)

1

6
Dt = − cosϑ

sin ϑ
dv −

3

2
dt +

cosϑ

4 sinϑ
∂ϑds1 + ∂ϑdv −

1

4
∂2ϑds1. (5.37b)

Th quantities ∂tK̃s2|1 and ∂tK̃s2|1 follow then with equation (5.36).
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Figure 5.13.: We show the convergence results for the fully constrained scheme.
The constraints are solved for {γ̃s1, K̃s1, K̃v} at each time step. In
addition the numerical evolution of the tensor components is used.
We take the remaining variables from the exact solution. The spectral
cutoff is again at L = 12, the tolerance of the ODEint solver is set to
10−10.

As demonstration we show the results in figures 5.13 and 5.14. This is the fully
constrained scheme, so the constraints (with ODEint solver for K̃s1 and K̃v and
Newton-Raphson solver for γ̃s1) are solved for on each time step. In addition we
evolve the tensor components numerically. The plots show that the numerical
solution converges to the exact one.
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Figure 5.14.: We demonstrate the convergence of the constraints (for
{γ̃s1, K̃s1, K̃v}) in the fully constrained scheme, corresponding
to the situation in figure 5.13. Since the violations in the Hamilto-
nian constraint are indistinguishable from zero (Newton-Raphson
solver) we skip the corresponding convergence plot.

5.5. The nonlinear level

On the full nonlinear level we demonstrate that the evolutionary constraint
solver can be applied in a similar way as for the linear level. For the purpose of
illustration we restrict ourselves to the set {γs1, Ks2, Kv}. The remaining
variables are taken from the exact linear analytical solution.

For the following simulations we excite again the ℓ = 2-mode for the perturbation
which has an amplitude A = 10−5, see section 3.2.3.

5.5.1. The constraint solver

5.5.1.1. Initial data for the constraint solver

For the nonlinear constraint solver we aim to use exactly the same procedure as
for the linear situation. A very straightforward generalization of the linear
scheme is to use one of the methods described in section 5.4. We use the Taylor
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expansion in r at the origin for the variables, insert them in the momentum
constraint and obtain, for each of the two components of the constraint, two
relations which allow us to determine the required initial data.

The form of the relations for the momentum constraint is exactly the same as in
equation (5.29), just the coefficients are nonlinear in the remaining variables and
slightly more complicated. The corresponding coefficients a1, . . . , e4 are listed in
appendix A.5.

As already mentioned in section 5.4 the evolution equation for γs1 is completely
regular and we shall therefore use it to obtain initial values for γs1 with the free
evolution of the first few grid points.

5.5.1.2. Numerical results

The basic task in obtaining the initial data for the solver is to solve a linear
system

Au = b (5.28 rev.)

for u. We use the same Python routine (bicgstab, see its discussion in section
5.4) as for the linear equations. It turns out that the routine works well if the
wave package is somewhere close to the origin and therefore the absolute values
of the entries of A and b are significantly different from zero. Also if the
perturbation is far away the procedure produces reliable results. Far away the
absolute values of the entries of A and b are very close to zero. In fact they are
usually below the machine precision of the order 10−16. Actually the routine
gives the value 0 for the components of u, which is correct up to that threshold.

There is an intermediate regime though. In that regime the absolute values in A
and b are already very small (usually somewhere below 10−10) but in fact the
zero-solution for u is not an appropriate solution. Nevertheless the routine seems
to favor a vanishing u quite often. That problem can be solved by the simple
observation that

Au = b ⇔ αAu = αb (5.38)

for some amplification factor11 α ∈ R. The statement remains true of course if
this α is different for the applications of the solver at different points in
r-direction. Numerical experiments show that a proper choice is an r-dependent
amplification factor α with values

11Here we choose the letter α but remark that there is no relation to the lapse function, which
we also denoted with α.
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• α = 105 for the initial value solver at the origin (for the 0th grid point),
• α = 102 for the initial value solver at r = ǫ (for the 1st grid point) if the
perturbation is not too close (< r = 3) to the origin,

• α = 100 for the initial value solver at r = ǫ (for the 1st grid point) if the
perturbation is close (< r = 3) to the origin12.

In the numerics we fix the values for the amplification factor α by hand. An
improvement would be to implement a routine that determines α dynamically.

After we obtain the initial values, we use the ODEint solver to obtain the solution
of the ordinary differential equations as described in section 5.3 and already used
for the 2+1-dimensional linear situation in section 5.4 as well.
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Figure 5.15.: The constraints are solved at each time instance, the remaining vari-
ables are taken from the exact linear solution. The solid blue curve
represents the norm of the residual for spatial resolution in r of
N = 100, the dash-dotted green curve four times the residual of
N = 200. The spectral cutoff is again L = 12, the tolerance of the
solver 10−10. The amplitude of the perturbation is A = 10−5.

As result we show in figure 5.15 the residuals of the constraints and observe that
they converge. As illustration for the convergence properties we shown figure
5.15. We observe that the numbers are rather small (notice that the values on
the vertical axis are multiplied with 10−7). The representation of the values is

12The experiments show that α = 100 is in fact a good choice there. Keeping the value of 102

leads to improper results.
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slightly inaccurate, for the nonlinear constraints the effect turns out to be larger
than on the linear level. In the considered case it appeared that the division of
two minor inaccuracies increased the effect. Therefore we decided to show the
convergence in the representation of figure 5.15 and not with the quotient.

We already see that for a resolution of N = 100 and N = 200 the convergent
regime (corresponding to coinciding curves) is basically reached already. Hence
with some minor modifications there seems to be no essential difficulty in the
application of the constraint solver in the parabolic-hyperbolic formulation.
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6. Conclusion and outlook

In the thesis we examined certain aspects concerned with the analytical and
numerical understanding of Einstein’s vacuum equations in spherical polar
coordinates with a regular origin.

The choice of coordinates comes with many benefits but a major difficulty is the
occurrence of coordinate singularities. The use of spherical harmonics is of
computational advantage and regularizes the singularities almost everywhere.
The origin remains formally singular. General relativity is a tensor theory and
hence we need to employ spin-weighted spherical harmonics as basis functions.
After the introduction of some necessary analytical and numerical tools we
derived the explicit expressions of our basis functions in chapter 2. The
elaboration of the eigenfunctions of the Laplace operator in spherical polar
coordinates for quantities with spin-weight allowed us to understand the mode
structure and to draw conclusions for the behavior at the origin. Furthermore we
studied the scalar wave equation in spherical coordinates and derived a scheme
to numerically regularize it at the origin.

We want to apply our achievements to the theory of general relativity. Therefore
we discussed several aspects of the theory in chapter 3. We focused on the
Cauchy formulation that is well suited for the application of techniques of the
theory of partial differential equations. The equations constrain the choice of
initial data. We discussed several interpretations including a recent approach to
the constraints as evolutionary system. Because of its importance for the
presented project we also considered the issue of gauge choices and symmetry
reduction.

Our main interest lies in Einstein’s vacuum equations in spherical polar
coordinates. For the actual computations we restricted the problem to
axisymmetry. The situation is of interest as such and we face the same problems
as in the situation without symmetry assumption. This makes it a good setting
to test new techniques and formulations. We started out in chapter 4 by
understanding particular consequences in axisymmetry. These together with the
intention to expand quantities in spin-weighted harmonics motivated our choice
of variables. Further we derived the nonlinear equations in our setting, linearized
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them about the flat background, and derived the mode equations, arising after
explicit expansion in harmonics. Our formulation allows to solve the linear
problem analytically and we presented the derivation of our solution. In a main
part of chapter 4 we analyzed the equations from the point of view of partial
differential equations. We discussed several variations. We introduced a
modification that allows us to achieve a formulation consisting of the constraints
as parabolic-strongly hyperbolic set of equations in the time coordinate r and the
evolution equations as strongly hyperbolic set of equations in the time
coordinate t. Strong hyperbolicity is of significant importance because it is
required for (local) well-posedness if appropriate initial data are provided. Our
formulation allows us to investigate a recent approach to the constraints as
evolutionary problem as well.

In chapter 5 we tackled the numerical implementation of the resulting equations.
We implemented the code from scratch and documented validation tests. For the
evolutionary approach we need to obtain initial values at the regular origin. We
discussed several options how to derive them on the individual levels. One aim
was to reproduce the exact solution numerically for the linearized equations. We
started with the 1+1-dimensional mode level and showed that the constraint
solver provides us with the correct initial data for the spacetime evolution at any
initial slice. Together with the evolution equations we showed a successful
implementation of the constrained evolution. Also on the full linear level we
demonstrated the working of the constraint solver, as well as the essentials of the
fully constrained evolution. Further we implemented the nonlinear constraint
solver and showed that it solves the nonlinear constraints at any initial slice in
the spacetime with initial data obtained from a regular origin.

There are several issues that deserve further investigations in the future, some of
analytical and some of numerical nature.

We examined the scalar wave equation in spherical polar coordinates. It provides
us with insights how to regularize the origin. With our knowledge gained for the
Laplace operator it would also be of interest to complete and proper document
the analysis of the homogeneous wave equations for spin-weighted quantities,
including their numerical implementation.

We discussed several possibilities for the gauge in the thesis. For the derivation,
analysis and implementation we chose the geodesic gauge. It might be interesting
to examine different gauge choices. This includes a non-vanishing shift (even
though it might not be possible any more to write down the exact solution in
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closed form) and the polar slicing which restricts the number of components of
the extrinsic curvature. Since the evolution equations for the extrinsic curvature
contain coordinate singularities in the current approach it might be beneficial for
the implementation.

For the numerical implementation we desire to complete the full linear scheme
and to continue to work on the nonlinear level. For the linear level we considered
the constraint solver for two sets of variables and applied different numerical
techniques. On the nonlinear level we demonstrated successfully one possibility
of the constraint solver. Further options require to derive, in an analogous way,
the initial data at the origin and to implement the solver. The inclusion of the
spacetime evolution is of considerable interest in physics. It would be desirable to
investigate gravitational collapse scenarios numerically, which seems to be
possible in principle in our formulation. The presented framework permits
subcritical evolutions in a straightforward way. For supercritical evolutions we
expect the formation of a black hole. Therefore the implementation of an
apparent horizon finder would be helpful, see Thornburg (2007).

We restricted our studies to hypersurface-orthogonal axisymmetry. Another
interesting modification is the inclusion of twist in axisymmetry, see Rinne
(2005). It allows to study rotating spacetimes with its numerous applications.
Having mentioned departure from non-twisting spacetimes a significant
generalization of our results concerns the removal of the axisymmetry
assumption. The motivation to assume it was computational simplification, not a
conceptual limitation. Similar techniques should be working on the full
3+1-dimensional level without symmetries at all. For the implementation further
improvements seem to be necessary including the parallelization of the code.
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A. Appendix

A.1. Some supplementary mathematical material

A.1.1. Some curvature quantities

For general relativity we need several special tensor fields. In particular in
section 3.2.2 we make use of them (we also refer to the literature cited at the
beginning of section 3.2 for additional material). They can be derived from the
fundamental physical field, i.e. the metric tensor g with components gµν . As
always we employ Einstein’s summation convention, see section 3.1.

We use a special affine connection (covariant derivative ∇), the Levi-Civita
connection (see section 3.2.1) with components

Γµ
νλ =

1

2
gµρ (∂νgρλ + ∂λgνρ − ∂ρgλν) , (A.1)

called Christoffel symbols of second kind (The Christoffel symbols of first
kind are Γµνλ = gµρΓ

ρ
νλ.

Definition A.1.1. The Riemannian curvature tensor Riem has components

Rµ
νλρ = ∂λΓ

µ
νρ − ∂ρΓ

µ
νλ + Γµ

σλΓ
σ
νρ − Γµ

σρΓ
σ
νλ. (A.2)

The Ricci tensor Ric is the contraction of Riem and has components

Rµν = Rλ
µλν . (A.3)

The Ricci scalar R is the further contraction of Ric and reads in components

R = gµνRµν . (A.4)

Remarks A.1.1. • It is important to note the structure of the quantities. In
the Riemannian curvature tensor second derivatives of the metric, the
physical field, only occur in a quasilinear way (see definition 2.2.2). It is
nonlinear only in lower derivatives. Contraction does not change this
property.
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• There are many different conventions in the literature, see for example the
very beginning of Misner et al. (1973) for a collection. We follow them
(“MTW conventions”).

A.1.2. Some coordinate systems

We list some special coordinate system. They are defined for arbitrary
dimensions of course but usually we are just interested in the case that they
cover a 3-dimensional space or 3+1-dimensional spacetime (which just means
that a fourth coordinate −∂t is “added”). Generalization to higher dimensions is
straightforward.

Cartesian coordinates Quite intuitive are Cartesian coordinates
(x, y, z) ∈ R

3. They are defined globally in R
3 and are everywhere orthonormal1

for the basis (∂x, ∂y, ∂z). They are named after René Descartes. For the
Lorentzian index (3, 1) an orthonormal Cartesian basis is (−∂t, ∂x, ∂y, ∂z), see
Nakahara (2003).

Cylindrical coordinates Even though one of the aims of the thesis is to
formulate Einstein’s equations in spherical coordinates we list cylindrical
coordinates as well. The usual basis is given by (−∂t, ∂ρ, ∂ϕ, ∂z) and the
coordinate functions are defined on the following domains

• timelike coordinate t ∈ [t0, tend] ⊂ R,
• radial (in the x-y-plane) coordinate ρ ∈ [0, R] ∈ R≥0,
• ϕ ∈ [0, 2π),
• z ∈ R which defines (as in Cartesian coordinates) the axis of symmetry.

The transformation between Cartesian coordinates and these cylindrical ones is
given as

x = ρ cosϕ
y = ρ sinϕ
z = z







↔







ρ =
√

x2 + y2

ϕ = arctan y/x
z = z

. (A.5)

1That means that the vectors are perpendicular to each other (vanishing inner product) and
normalized to 1.
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Spherical polar coordinates Mostly in this thesis we are interested in
spherical polar coordinates for the spatial part. A very common choice and
used by us is a basis (−∂t, ∂r, ∂ϑ, ∂ϕ)2. That means the coordinates are (t, r, ϑ, ϕ)
and they are defined on the following domains

• timelike coordinate t ∈ [t0, tend] ⊂ R,
• radial coordinate r ∈ [0, R] ∈ R≥0,
• ϑ ∈ [0, π],
• ϕ ∈ [0, 2π).

These coordinates are used for example on the flat background spacetime of
topology R× Σ = R× R× S2 (the flat Minkowski spacetime). The
transformation between Cartesian coordinates (restricted to the spatial part)
(x, y, z) ∈ R

3 and those coordinates is given as

x = r cosϕ sinϑ
y = r sinϕ sinϑ
z = r cosϑ







↔











r =
√

x2 + y2 + z2

ϑ = arccos z
r
= arccos z√

x2+y2+z2

ϕ = arctan y
x

.3 (A.6)

Examples A.1.1. As an example we calculate for S2 and R× S2 the Christoffel
symbols because we make use of them in the main body of the thesis.

• We need in section 2.2.5 some quantities on the sphere S2, so for the metric
(we denote these quantities for the sphere with a hatˆ)
ĝ = dϑ2 + sin2 ϑdϕ2 = diag(1, sin2 ϑ) and its inverse
ĝ−1 = diag(1, (sin2 ϑ)−1). The non-vanishing Christoffel symbols are

Γ̂ϑ
ϕϕ = − sinϑ cosϑ, (A.7a)

Γ̂ϕ
ϕϑ = Γ̂ϕ

ϑϕ =
cos ϑ

sin ϑ
. (A.7b)

2Even though this basis is probably the most used one for spherical coordinates it is only or-
thogonal. One could also use the orthonormal basis (−∂t, ∂r, r

−1∂ϑ, (r sinϑ)
−1∂ϕ) as favored

by the group in Meudon, see Bonazzola et al. (2004), Grandclément and Novak (2009). In
principle the calculations are similar but hard to compare with those in the current thesis
because of the different basis choices.

3One should take more care for the transformation from Cartesian in spherical coordinates. At
the origin (x = y = z = r = 0) the angle ϑ is not defined and the expression for ϕ is only
correct for x > 0. For x = 0 we set ϕ = ±π/2, for x < 0 one has to add or subtract π
(depending on the sign of y) to obtain a value in the desired domain. Those considerations
will usually not play a role for us and are consequently ignored in the remainder of the thesis.
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The non-vanishing entries of the two-dimensional Levi-Civita tensor on the
sphere are

ǫ̂ϑϕ = −ǫ̂ϕϑ = sin ϑ, (A.8a)

⇒ǫ̂ϑϕ = ĝϑϑǫ̂ϑϕ = sinϑ, (A.8b)

ǫ̂ϑϑ = ĝϑϑǫ̂ϑϑ = 0 = ǫ̂ϕϕ, (A.8c)

ǫ̂ϕϑ = ĝϕϕǫ̂ϕϑ = − 1

sin ϑ
. (A.8d)

• For R3 in spherical polar coordinates as are introduced on page 211 the
non-vanishing Christoffel symbols are

Γr
ϑϑ = −r, Γr

ϕϕ = −r sin2 ϑ, (A.9a)

Γϑ
rϑ = Γϑ

ϑr = r−1, Γϑ
ϕϕ = − sinϑ cosϑ, (A.9b)

Γϕ
rϕ = Γϕ

ϕr = r−1, Γϕ
ϑϕ = Γϕ

ϕϑ =
cosϑ

sin ϑ
. (A.9c)

A.2. Nonlinear evolution equations

A.2.1. Evolution equations for the extrinsic curvature

components

In section 4.5.1 the nonlinear evolution equations for the components of the
extrinsic curvature where just mentioned but, because of their length, not
explicitly written down. We do it in the current appendix. In theorem 4.5.1 the
evolution equations for a component K of the extrinsic curvature have the form

∂tK =
K
κ

(A.10)

and the part K is listed here for the single components.

κ∂tKs1 = −2 r2 K2
s1 γ

2
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A.3. Nonlinear constraints

Similar as for some evolution equations the nonlinear constraints are just
mentioned in theorem 4.5.1 in section 4.5.1, but actually listed only here in the
appendix.
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A.3.2. Modified momentum constraint Cµ=2
r

As discussed in theorem 4.7.3 solve the modified momentum constraint with an
additional inhomogeneity on the right-hand side. Our choice for the parameter is
µ = 2.
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+
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2
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3
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v ∂ϑγv − 4 r γs1 γ

3
s2 γ
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v ∂rKs1 + 2 r γs1 γ

3
s2 γ

3
t ∂rKs2 − 2 r γ2s2 γ

2
t γ

2
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2
t ∂rγv = 2∂rtrK. (A.16)

A.3.3. Modified momentum constraint Cµ=2
ϑ

Again we consider the modified constraints and refer to theorem 4.7.3 for the
corresponding discussion. We choose µ = 2.

Cµ=2
ϑ = 2
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sinϑ
Kt γs1 γ
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s2 γ

3
t + 3 Kv γs1 γ

3
s2 γ
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2
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3
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2
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+
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Kt γ
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s2 γ
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1

2
Kv γ

2
s2 γ

2
t γv ∂ϑγs1 +Kt γs1 γ

2
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t ∂ϑγs2

+
1
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Kv γs1 γs2 γ
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t γ
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1
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Kt γs2 γ
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v ∂ϑγs2 −Kt γs1 γ
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t ∂ϑγt +

1

2
Kv γs1 γ
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s2 γt γv ∂ϑγt
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s2 γt γ
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v ∂ϑγt +

1
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Ks2 γ
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s2 γt γ

2
v ∂ϑγt +
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2
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2
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2
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−Kt γ
2
s2 γ

2
t γv ∂ϑγv + r γs1 γ
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t ∂rKv − r γ2s2 γ
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t γ
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3
s2 γ

3
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s2 γ

2
t γv ∂rγv = 2∂ϑtrK. (A.17)

A.3.4. Original momentum constraint Cµ=0
r

For completeness we also give the original momentum constraint (corresponds to
µ = 0 in theorem 4.7.3).

Cµ=0
r =

cosϑ

sinϑ
Kv γ

2
s1 γ

2
s2 γ

2
t − 4 Ks1 γs1 γ

3
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3
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sin ϑ
Kt γs1 γ

2
s2 γ

2
t γv

−cosϑ

sin ϑ
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sin ϑ
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v ∂ϑγs2

+
1

2
Ks2 γt γ

3
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Kt γt γ
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2
s1 γ

2
s2 γt ∂ϑγt
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2
s2 γt γv ∂ϑγt −Ks2 γs1 γ

2
s2 γt γv ∂ϑγt −Kt γs1 γ

2
s2 γt γv ∂ϑγt
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2
Kv γs1 γs2 γ
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v ∂ϑγt + 3 Ks1 γs2 γ

3
v ∂ϑγt +

3

2
Ks2 γs2 γ
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v ∂ϑγt
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Kt γs2 γ
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v ∂ϑγt + 2 Ks1 γs1 γ

2
s2 γ
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t ∂ϑγv +Ks2 γs1 γ
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s2 γ
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t ∂ϑγv

+Kt γs1 γ
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+r Ks2 γs2 γ
2
t γ

2
v ∂rγs2 − r Kt γs1 γ

3
s2 γ

2
t ∂rγt +

1

2
r Kv γs1 γ

2
s2 γt γv ∂rγt

+r Kt γ
2
s2 γt γ

2
v ∂rγt − r Kv γs1 γ

2
s2 γ

2
t ∂rγv = 0. (A.18)

A.3.5. Original momentum constraint Cµ=0
ϑ

And the same for the other non-vanishing component,

Cµ=0
ϑ = 2

cosϑ

sinϑ
Kt γs1 γ

3
s2 γ

3
t + 3 Kv γs1 γ

3
s2 γ

3
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1
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3
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+
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Kt γ
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Kv γ
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s2 γ
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t γv ∂ϑγs1 +Kt γs1 γ
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s2 γ

3
t ∂ϑγs2

+
1
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t γv ∂ϑγs2 +Ks1 γs2 γ

2
t γ

2
v ∂ϑγs2 +

1

2
Ks2 γs2 γ

2
t γ

2
v ∂ϑγs2

−1

2
Kt γs2 γ

2
t γ

2
v ∂ϑγs2 −Kt γs1 γ

3
s2 γ

2
t ∂ϑγt +

1

2
Kv γs1 γ

2
s2 γt γv ∂ϑγt

+Ks1 γ
2
s2 γt γ

2
v ∂ϑγt +

1

2
Ks2 γ

2
s2 γt γ

2
v ∂ϑγt +

3

2
Kt γ

2
s2 γt γ

2
v ∂ϑγt

−Kv γs1 γ
2
s2 γ

2
t ∂ϑγv − 2 Ks1 γ

2
s2 γ
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t γv ∂ϑγv −Ks2 γ
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s2 γ

2
t γv ∂ϑγv

−Kt γ
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t γv ∂ϑγv + r γs1 γ
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s2 γ
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1

2
r Kv γ
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s2 γ

3
t ∂rγs1 + r Kv γs1 γ

2
s2 γ

3
t ∂rγs2 − 1

2
r Kv γs2 γ

2
t γ

2
v ∂rγs2
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2
r Kv γ

2
s2 γt γ

2
v ∂rγt − r Kv γ

2
s2 γ

2
t γv ∂rγv = 0. (A.19)

A.4. Explicit form of the exact regular solution

for ℓ = 2

In section 4.6 we calculated explicitly a solution for the mode ℓ = 2. Here we
continue that example.

Example A.4.1. For ℓ = 2 we give a concrete example with a generating
function G = A exp(−x2/2) for x = r ± t (ingoing package for positive sign,
outgoing for negative one). G is a Gaussian with uniform variance σ = 1 and
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amplitude A (which is assumed to be 1 in the following). The regular solution
then reads (see footnote 5 on page 174 for a remark on the ingoing and outgoing
properties of the regular exact solution).

γ̂s1|ℓ=2 = −72

r5
e−(r−t)2/2 +

72

r5
e−(r+t)2/2 − 48

r3
e−(r−t)2/2 +

48

r3
e−(r+t)2/2

−24

r
e−(r−t)2/2 +

24

r
e−(r+t)2/2 +

72t

r4
e−(r−t)2/2 +

72t

r4
e−(r+t)2/2

+
48t

r2
e−(r−t)2/2 +

48t

r2
e−(r+t)2/2 − 24t2

r3
e−(r−t)2/2 +

24t2

r3
e−(r+t)2/2, (A.20a)

γ̂s2|ℓ=2 =
36

r5
e−(r−t)2/2 − 36

r5
e−(r+t)2/2 +

24

r3
e−(r−t)2/2 − 24

r3
e−(r+t)2/2

+
12

r
e−(r−t)2/2 − 12

r
e−(r+t)2/2 − 36t

r4
e−(r−t)2/2 − 36t

r4
e−(r+t)2/2

−24t

r2
e−(r−t)2/2 − 24t

r2
e−(r+t)2/2 +

12t2

r3
e−(r−t)2/2 − 12t2

r3
e−(r+t)2/2, (A.20b)

γ̂v|ℓ=2 =
24

r5
e−(r−t)2/2 − 24

r5
e−(r+t)2/2 +

12

r3
e−(r−t)2/2 − 12

r3
e−(r+t)2/2

+4re−(r−t)2/2 − 4re−(r+t)2/2 − 12te−(r−t)2/2 − 12te−(r+t)2/2

−24t

r4
e−(r−t)2/2 − 24t

r4
e−(r+t)2/2 − 12t

r2
e−(r−t)2/2 − 12t

r2
e−(r+t)2/2

+
12t2

r3
e−(r−t)2/2 − 12t2

r3
e−(r+t)2/2 +

12t2

r
e−(r−t)2/2 − 12t2

r
e−(r+t)2/2

−4t3

r2
e−(r−t)2/2 − 4t3

r2
e−(r+t)2/2, (A.20c)

γ̂t|ℓ=2 = − 6

r5
e−(r−t)2/2 +

6

r5
e−(r+t)2/2 + 8re−(r−t)2/2 − 8re−(r+t)2/2

−2r3e−(r−t)2/2 + 2r3e−(r+t)2/2

−12te−(r−t)2/2 − 12te−(r+t)2/2 +
6t

r4
e−(r−t)2/2 +

6t

r4
e−(r+t)2/2

+8r2te−(r−t)2/2 + 8r2te−(r+t)2/2 − 6t2

r3
e−(r−t)2/2 +

6t2

r3
e−(r+t)2/2

−12rt2e−(r−t)2/2 + 12rt2e−(r+t)2/2 + 8t3e−(r−t)2/2 + 8t3e−(r+t)2/2

+
4t3

r2
e−(r−t)2/2 +

4t3

r2
e−(r+t)2/2 − 2t4

r
e−(r−t)2/2 +

2t4

r
e−(r+t)2/2, (A.20d)

K̂s1|ℓ=2 = −6e−(r−t)2/2 − 6e−(r+t)2/2 +
18t

r5
e−(r−t)2/2 − 18t

r5
e−(r+t)2/2

−18t

r3
e−(r−t)2/2 − 18t

r3
e−(r+t)2/2 +

18t

r
e−(r−t)2/2 − 18t

r
e−(r+t)2/2

−18t2

r4
e−(r−t)2/2 − 18t2

r4
e−(r+t)2/2 − 18t2

r2
e−(r−t)2/2 − 18t2

r2
e−(r+t)2/2
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+
6t3

r3
e−(r−t)2/2 − 6t3

r3
e−(r+t)2/2, (A.20e)

K̂s2|ℓ=2 = −6e−(r−t)2/2 − 6e−(r+t)2/2 +
18t

r5
e−(r−t)2/2 − 18t

r5
e−(r+t)2/2

−18t

r3
e−(r−t)2/2 − 18t

r3
e−(r+t)2/2 +

18t

r
e−(r−t)2/2 − 18t

r
e−(r+t)2/2

−18t2

r4
e−(r−t)2/2 − 18t2

r4
e−(r+t)2/2 − 18t2

r2
e−(r−t)2/2 − 18t2

r2
e−(r+t)2/2

+
6t3

r3
e−(r−t)2/2 − 6t3

r3
e−(r+t)2/2, (A.20f)

K̂v|ℓ=2 = 6e−(r−t)2/2 + 6e−(r+t)2/2 − 2r2e−(r−t)2/2 − 2r2e−(r+t)2/2

+
12t

r5
e−(r−t)2/2 − 12t

r5
e−(r+t)2/2 +

6t

r3
e−(r−t)2/2 − 6t

r3
e−(r+t)2/2

−6t

r
e−(r−t)2/2 +

6t

r
e−(r+t)2/2 + 8rte−(r−t)2/2 − 8rte−(r+t)2/2

−12t2e−(r−t)2/2 − 12t2e−(r+t)2/2 − 12t2

r4
e−(r−t)2/2 − 12t2

r4
e−(r+t)2/2

−6t2

r2
e−(r−t)2/2 − 6t2

r2
e−(r+t)2/2 +

6t3

r3
e−(r−t)2/2 − 6t3

r3
e−(r+t)2/2

+
8t3

r
e−(r−t)2/2 − 8t3

r
e−(r+t)2/2 − 2t4

r2
e−(r−t)2/2 − 2t4

r2
e−(r+t)2/2, (A.20g)

K̂t|ℓ=2 = 6e−(r−t)2/2 + 6e−(r+t)2/2 − 8r2e−(r−t)2/2 − 8r2e−(r+t)2/2

+r4e−(r−t)2/2 + r4e−(r+t)2/2 − 3t

r5
e−(r−t)2/2 +

3t

r5
e−(r+t)2/2

+
3t
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e−(r−t)2/2 − 3t

r3
e−(r+t)2/2 + 22rte−(r−t)2/2 − 22rte−(r+t)2/2

−5rt3e−(r−t)2/2 + 5rt3e−(r+t)2/2 − 18t2e−(r−t)2/2 − 18t2e−(r+t)2/2

+
3t2

r4
e−(r−t)2/2 +

3t2

r4
e−(r+t)2/2 − 3t2

r2
e−(r−t)2/2 − 3t2

r2
e−(r+t)2/2

+10r2t2e−(r−t)2/2 + 10r2t2e−(r+t)2/2 − 3t3

r3
e−(r−t)2/2 +

3t3

r3
e−(r+t)2/2

+
2t3

r
e−(r−t)2/2 − 2t3

r
e−(r+t)2/2 − 10rt3e−(r−t)2/2 + 10rt3e−(r+t)2/2

+5t4e−(r−t)2/2 + 5t4e−(r+t)2/2 +
2t4

r2
e−(r−t)2/2 +

2t4

r2
e−(r+t)2/2

−t
5

r
e−(r−t)2/2 +

t5

r
e−(r+t)2/2. (A.20h)

One immediately sees that the quantities in equation (A.20) are singular at the
origin. In fact they are just formally singular as will be shown with the following
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lines. Calculating the Taylor expansion at the origin shows (here
0
= explicitly

refers to equality in a neighborhood of the origin)

γ̂s1|ℓ=2
0
= −16

5
aγ(t)−

8

35
bγ(t)r

2, (A.21a)

γ̂s2|ℓ=2
0
=

8

5
aγ(t) +

4

35
bγ(t)r

2, (A.21b)

γ̂v|ℓ=2
0
= −8

5
aγ(t)−

44

105
bγ(t)r

2, (A.21c)

γ̂t|ℓ=2
0
= −8

5
aγ(t)−

4

21
bγ(t)r

2, (A.21d)

K̂s1|ℓ=2
0
=

4

5
aK(t) +

2

35
bK(t)r

2, (A.21e)

K̂s2|ℓ=2
0
=

4

5
aK(t) +

2

35
bK(t)r

2, (A.21f)

K̂v|ℓ=2
0
= −4

5
aK(t)−

2

21
bK(t)r

2, (A.21g)

K̂t|ℓ=2
0
= −4

5
aK(t)−

22

105
bK(t)r

2 (A.21h)

with

aγ(t) = t
(

15− 10t2 + t4
)

e−t2/2, (A.22a)

bγ(t) = t
(

−105 + 105t2 − 21t4 + t6
)

e−t2/2, (A.22b)

aK(t) =
(

−15 + 45t2 − 15t4 + t6
)

e−t2/2, (A.22c)

bK(t) =
(

105− 420t2 + 210t4 − 28t6 + t8
)

e−t2/2. (A.22d)

This shows regularity, parity of the modes and the behavior of O(r0) = O(rℓ−2).
Note in equations (A.20) and (A.21) the relations K̂s1 = K̂s2 and γ̂s1 = −2γ̂s2 and
compare with the discussions at the end of section 4.7.2.

A.5. Nonlinear initial data for the momentum

constraint

Here we list coefficients of the initial data for the solver of the nonlinear
constraints as was missing in section 5.5.1.1. The lower index of the variables (to
the right of the vertical bar) denotes the position in the Taylor expansion. If
there is an upper index as well it denotes the power of the quantity.
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e2 = 0, (A.32)
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A.5. Nonlinear initial data for the momentum constraint
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A.5. Nonlinear initial data for the momentum constraint
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Zusammenfassung

Die vorliegende Dissertation dokumentiert unsere Studien von Einsteins
Vakuumgleichungen in sphärischen Polarkoordinaten. Offene Fragen dieser
Situation betreffen sowohl Anwendungen wie gravitativer Kollaps als auch
konzeptionelle Belange wie die Handhabung der auftretenden Koordinaten-
singularität. Wir beantworten die konzeptionellen Aspekte und zeigen, wie diese
numerisch implementiert werden können.

Unsere Koordinatenwahl erlaubt einen spektralen Ansatz. Als Basisfunktionen
verwenden wir Kugelflächenfunktionen mit Spin-Gewichtung. Für die meisten
Ableitungen und Anwendungen nehmen wir hyperflächen-orthogonale Axial-
symmetrie an. Die Annahmen führen zu rechnerischen Vereinfachungen, stellen
aber keine konzeptionelle Limitierung dar.

Wir untersuchen die Eigenfunktionen des Laplace-Operators in sphärischen
Koordinaten für Größen mit verschiedenen Spin-Gewichtungen und leiten die
Konsequenzen ab. Eine systematische Erforschung der skalaren Wellengleichung
in diesen Koordinaten führt zu hilfreichen Einsichten zur Regularisierung der
Koordinatensingularität am Ursprung, und wir bestätigen diese numerisch.

Wir zeigen, weshalb eine gängige Eichwahl in Axialsymmetrie ungeeignet für die
Entwicklung in spin-gewichteten Kugelflächenfunktionen ist und diskutieren
Alternativen. Wir leiten die axialsymmetrischen Einsteingleichungen in
geeigneter Eichung her und lösen die linearisierten Gleichungen analytisch.

Eine neuartige Formulierung von Einsteins Zwangsbedingungen stellt diese als
evolutionäres System dar. Wir analysieren das gesamten System an Gleichungen
und führen Modifikationen ein, die uns erlauben, zwei Sätze an lokal wohl-
gestellten Problemen zu formulieren.

Unsere numerische Implementierung benutzt eine hybride Diskretisierung beste-
hend aus Techniken der finiten Differenzen und der Pseudo-Spektralmethode.
Wir simulieren die hergeleiteten Gleichungen und präsentieren eine erfolgreiche
Implementierung der parabolisch-hyperbolischen Formulierung der nichtlinearen
Zwangsbedingungen. Dafür leiten wir mehrere Möglichkeiten her, um die
Anfangswerte am regulären Ursprung zu erhalten. Wir demonstrieren weiterhin,
dass unsere Implementierung in der Lage ist, die exakte lineare Lösung unter
Berücksichtigung aller Zwangsbedingungen zu reproduzieren.

Die in dieser Dissertation erhaltenen Resultate weisen eine mögliche Lösung auf,
wie Einsteins Vakuumgleichungen numerisch in sphärischen Polarkoordinaten mit
regulärem Ursprung simuliert werden können. Wir präsentieren eine der ersten
numerischen Studien eines evolutionären Lösers der Zwangsbedingungen.
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Birkhäuser, Boston, 1992. ISBN 0817634797.

Kenneth Eppley. Pure Gravitational Waves. In Smarr (1979), pages 275–291,
1979.

Charles R. Evans. Enforcing the momentum constraints during axisymmetric
spacelike simulations. In Evans et al. (1989), pages 194–205, 1989.

Charles R. Evans, Larry L. Smarr, and James R. Wilson. Numerical Relativistic
Gravitational Collapse with Spatial Time Slices, pages 491–529. Springer
Netherlands, Dordrecht, 1986. ISBN 978-9400947542. URL
http://dx.doi.org/10.1007/978-94-009-4754-2_15.

251

http://dx.doi.org/10.1103/PhysRevD.35.1095
http://dx.doi.org/10.1007/978-94-009-4754-2_15


Charles R. Evans, Lee S. Finn, and David W. Hobill. Frontiers in Numerical
Relativity. Cambridge University Press, Cambridge, 1989. ISBN 0521366666.

Lawrence C. Evans. Partial Differential Equations. American Mathematical
Society, Province, 2nd edition, 2010. ISBN 0821807722.

Richard Feynman. The Character of Physical Law. The Modern Library, New
York, 1994. ISBN 0679601279.

Bengt Fornberg. Generation of finite difference formulas on arbitrarily spaced
grids. Math. Comp. 51 (1988), 699-706, 51:699–706, 1988. URL
http://dx.doi.org/doi.org/10.1090/S0025-5718-1988-0935077-0.

Bengt Fornberg. A Practical Guide to Pseudospectral Methods. Cambridge
University Press, Cambridge, 1998. ISBN 0521645646.

Jörg Frauendiener. Discretizations of axisymmetric systems. Phys. Rev. D, 66:
104027, 2002. URL http://dx.doi.org/10.1103/PhysRevD.66.104027.

Jörg Frauendiener. Conformal infinity. Living Rev. Rel., 3:4, 2004. URL
http://dx.doi.org/10.12942/lrr-2004-1.

Helmut Friedrich and Alan D. Rendall. The Cauchy problem for the Einstein
equations. In Schmidt (2000), volume 540, pages 127–224, 2000.

Simonetta Frittelli. Note on the propagation of the constraints in standard (3+1)
general relativity. Phys. Rev. D, 55:5992–5996, 1997. URL
http://dx.doi.org/10.1103/PhysRevD.55.5992.

Alcides Garat and Richard H. Price. Nonexistence of conformally flat slices of
the Kerr space-time. Phys. Rev. D, 61:124011, 2000. URL
http://dx.doi.org/10.1103/PhysRevD.61.124011.

David Garfinkle. Numerical Relativity Beyond Astrophysics. Rept. Prog. Phys.,
80(1):016901, 2017. URL
http://dx.doi.org/10.1088/0034-4885/80/1/016901.

David Garfinkle and G. Comer Duncan. Numerical evolution of Brill waves.
Phys. Rev. D, 63:044011, 2001. URL
http://dx.doi.org/10.1103/PhysRevD.63.044011.

Robert P. Geroch. A Method for generating solutions of Einstein’s equations. J.
Math. Phys., 12:918–924, 1971. URL
http://dx.doi.org/10.1063/1.1665681.

252

http://dx.doi.org/doi.org/10.1090/S0025-5718-1988-0935077-0
http://dx.doi.org/10.1103/PhysRevD.66.104027
http://dx.doi.org/10.12942/lrr-2004-1
http://dx.doi.org/10.1103/PhysRevD.55.5992
http://dx.doi.org/10.1103/PhysRevD.61.124011
http://dx.doi.org/10.1088/0034-4885/80/1/016901
http://dx.doi.org/10.1103/PhysRevD.63.044011
http://dx.doi.org/10.1063/1.1665681


Robert P. Geroch. Partial differential equations of physics. In General relativity.
Proceedings, 46th Scottish Universities Summer School in Physics, NATO
Advanced Study Institute, Aberdeen, UK, July 16-29, 1995, 1996.

David Gilbarg and Neil S. Trudinger. Elliptic Partial Differential Equations of
Second Order. Springer Verlag, Berlin, 2001. ISBN 3540411607.
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