
Chapter 4

A new Localization Method Using

Shape Information

In this section, we develop a new method for robot self-localization in the RoboCup

environment using the field lines.

4.1 Three Layers for Robot Self-Localization

Localization is achieved in three layers, which are summarized in table 4.1.

At the bottom layer we have dead-reckoning. Here, odometric information supplies

information about the wheel rotations, yielding an estimate of the robot’s movement. The

sensor delay is approximately 8 ms, which is quite small. For small distances, odometric

information is very precise. When the robot moves only 1 centimeter, this movement can

typically be resolved. However, errors in odometric information accumulate, in particular,

when the robot rotates. Even if the rotation is measured with a very small error, this

error has a big influence. For instance, when the robot moves straight ahead after a

rotation, the initial error in the robot’s heading direction will result in a completely

wrong position estimation of the robot. Thus, odometric information is fast and precise

for small distances, but accumulates to unbounded positional error in the long term.

The second layer, relative correction, compensates for this problem. It assumes that

an initial estimate of the robots pose is available and it is able to correct small errors

using visual information. As visual information we use the field lines as extracted by the

previously described region tracking method. When the initial pose estimate is slightly
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Layer 1 Odometric information by measuring the wheel rotations
Layer 2 Relative correction by matching the field lines to a model
Layer 3 Feature recognition by detecting features like the center circle

Table 4.1: The three layers of localization

wrong, the extracted field lines do not fit precisely to a model of the lines. The second

level calculates how to correct the pose in order to achieve the best fit. The delay of the

visual information is typically between 60 and 100 milliseconds. Thus, when the world

changes, the visual input will not reflect changes before 60 milliseconds, which is quite

long if compared to the odometric delay. Thus, while the first layer is fast but accumulates

errors, the second layer is not that reactive, but can correct positional errors.

The first two layers are sufficient to correctly localize the robot for a long time period,

provided that an initial correct pose is available. However, when the robot is manually

placed in another position (the kidnapped robot problem), when wheel slippage is too

large (i.e because of a collision with the ball or another robot) or at the very beginning,

when the system is started, this initial position is not available. Therefore, when the

initial estimate is wrong, localization fails if solely established on the first two layers.

Thus, a third layer exists.

The third layer, recognition, performs a feature detection on the extracted line con-

tours. The method is able to detect features, which we refer to as high-level features,

because recognizing such a feature immediately yields the unique position of the robot

in a global coordinate system. Here, “unique” is not completely true, because the line

structures on the playing field are symmetric and each high-level feature yields two sym-

metric positions on the respective sides of the field. However, the correct position can be

selected by considering recent valid positions of the robot, or, if these are not available,

by considering the goal colors. It is this last layer which makes the proposed localization

method robust.

When all the visual tasks including the region tracking, line extraction, and three

levels of localization are performed in each frame, 24 frames per second can be processed.

However, we discovered that it is not necessary to process all tasks with the same frame

rate. We use the following setup: The green regions are tracked with 30 frames per

second, because their boundaries are important for ball detection and the ball should be

tracked with a high frame rate. This occupies only 2-8 percent of the processing power
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(Pentium III 800 MHz). The field lines are extracted only every third frame, resulting in

a rate of 10 frames per second. Layers 2 and 3 of the localization also run with this frame

rate. Layer 1 uses only odometric information, which is triggered 50 times per second,

independent of visual processing.

The remainder of this chapter is organized as follows: Before we start to describe

the individual layers, we first describe the general framework for fusing the results of

the layers. This fusion process is done by a Kalman filtering approach. It requires the

definition of a system state, a dynamic model and a measurement model of the robot.

In this context, we also describe specific coordinate transformations that will be used

by all three layers. The data fusion is not trivial, since the sensor measurements of the

individual layers are subject to different time delays. We explain how these measurement

delays are coped with using an explicit modeling of time.

We begin with layer 1, the process of dead-reckoning. Before describing layer 2 and 3,

we describe the visual input for these layers: the line contours as extracted by the region

tracking algorithm. The line contours are distorted due to the catadioptric mapping

and we describe how this distortion is corrected and how the contours are transformed

into world coordinates. Then we describe layer 2, relative correction, and layer 3, the

recognition process.

4.2 The Robot’s System State

We specify the robot’s position in a cartesian coordinate system whose origin is located

at the center of the playing field (see figure 4.1). The cartesian x, y-position together

with the orientation φ is referred to as the robot’s pose. The orientation φ ∈ [0, ..., 2π[

is the angle between the x-axis and the heading direction of the robot. Later, when we

use a dynamic model of the robot to fuse the results of the three localization layers, three

further variables specifying the tanslational (vx, vy) and rotational (ω) velocities become

important. The robot’s pose together with these velocities will be referred to as the

robot’s system state x.

x =
(
x y φ vx vy ω

)T

(4.1)

However, when describing the three layers of localization, we only consider the first three

components of x which represent the robot’s pose. We will also refer to this vector as the
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reduced system state x̆.

x̆ =
(
x y φ

)T

(4.2)

x-axis

y-axis

heading direction

x

y

Figure 4.1: The robot’s position is represented in a global coordinate system whose origin
is at the center of the playing field. The cartesian x, y-position together with the ori-
entation φ is referred to as the robot’s pose. The orientation φ ∈ [0, ..., 2π[ is the angle
between the x-axis and the heading direction of the robot.

4.3 Coordinate Systems and Transformations

The vector x̆ is the robot’s pose in the global coordinate system. A corresponding lo-

cal coordinate system can be uniquely derived from this pose whose relationship to the

robot’s geometry is illustrated in figure 4.2. The local coordinate system of the robot

corresponding to x̆ = (x y φ)T is given by the triple (P,u,v) where P = (x y)T is the

Cartesian position in the global system, and u,v, the local x- and y-axis, are given by:

u =

(
sinφ

− cosφ

)
(4.3)

v =

(
cosφ

sinφ

)
(4.4)

74



global coordinate system

x

y

0

local coordinate system

v

u

 P

Figure 4.2: The x-axis of the local coordinate system of the robot is directed towards
vector u, the y-axis towards vector v, which is the heading direction of the robot. P
specifies the Cartesian position of the robot in the global system.

There are four types of entities which can be represented in either coordinate system,

the local or the global: Points, vectors, poses and movements. Both, points and vectors

are specified in the form p ∈ IR2. Poses and movements are three-dimensional vectors

with the third component being an angle. A pose p̆ is used to specify a position together

with an orientation and it uniquely defines a local coordinate system with the y-axis

directed towards the specified orientation, given as a polar angle.

p̆ =


x

y

φ

 (4.5)

A movement is the difference between two poses, typically between two poses of the same

robot and we refer to a movement ∆m ∈ IR3 in the form

∆m =


∆x

∆y

∆φ

 . (4.6)

However, movements will also occur later in layer 3 for describing how a feature has to
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be translated and rotated in order to match a corresponding model feature. When the

movement is considered as a change of the robot’s pose, ∆φ is the change of the robot’s

heading direction. We allow ∆φ to have any value in IR, that is we do not delimit ∆φ to

[−π, ...π[.

If an entity is given in the local system, we will denote it with the superscript “r” for

“robot”. If an entity is specified in the global system, then no subscript is used. Next,

we describe how to transform points, vectors, poses and movements from one system to

the other. Using homogenous coordinates, transformations for points and vectors can be

expressed by matrix multiplications. However, poses and movements which have an angle

in the last component cannot be expressed easily by them. Moreover, the matrices would

be sparse and it is more efficient to directly implement the transformations without the

need for matrix multiplications. For these reasons, we have chosen not to use homogeneous

coordinates. Instead, we use a set of transformation functions. In order to specify them

correctly we first have to define P := IR× IR× [0, ..., 2π[, the set of robot poses. With x̆,

the robot’s pose, table 4.2 defines the transformations from the local to the global system.

point−→: P × IR2 −→ IR2 x̆
point−→ pr = p

vector−→ : P × IR2 −→ IR2 x̆
vector−→ tr = t

pose−→: P × IR3 −→ IR3 x̆
pose−→ p̆r = p̆

movement−→ : P × IR3 −→ IR3 x̆
movement−→ ∆mr = ∆m

Table 4.2: Transforming the point pr, the vector tr, the pose p̆r and the movement ∆mr

from the local system at x̆ into the global coordinate system.

point←−: P × IR2 −→ IR2 x̆
point←− p = pr

vector←− : P × IR2 −→ IR2 x̆
vector←− t = tr

pose←−: P × IR3 −→ IR3 x̆
pose←− m̆ = m̆r

movement←− : P × IR3 −→ IR3 x̆
movement←− ∆m = ∆mr

Table 4.3: Transforming the point p, the vector t, the pose p̆ and the movement ∆m
from the global system into the local system at x̆.

With (P,u,v) being the local system corresponding to the pose x̆, pr = (pr
x p

r
y)

T , the
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mappings of table 4.2 are given as follows:

x̆
point−→ pr := P + pr

xu + pr
yv (4.7)

x̆
vector−→ tr := trxu + tryv (4.8)

x̆
pose−→ p̆r := x̆ +


p̆r

xux + p̆r
xvx

p̆r
yuy + p̆r

yvy

φr

 (4.9)

x̆
movement−→ ∆mr :=


∆mr

xux + ∆mr
xvx

∆mr
yuy + ∆mr

yvy

∆φr

 (4.10)

Correspondingly, we define transformations for mapping entities from the global to the

local system (table 4.3). The mappings
point−→, vector−→ ,

pose−→ and
movement−→ are bijective and

the mappings
point←−, vector←− , pose←− and

movement←− are the respective inverse functions. They are

defined as:1

x̆
point←− p :=

(
(p−P)Tu

(p−P)Tv

)
(4.11)

x̆
vector←− t :=

(
tTu

tTv

)
(4.12)

x̆
pose←− p̆ := x̆−


(p̆x p̆y)u

(p̆x p̆y)v

φ

 (4.13)

x̆
movement←− ∆m :=


(∆mx ∆my)u

(∆mx ∆my)v

∆φ

 (4.14)

1Note that
(
ax

ay

)T (bx

by

)
= (ax ay)

(
bx

by

)
= axbx + ayby
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4.4 Relationship between Wheel Rotations and the

Robot’s Movement

Figure 4.3 depicts the local coordinate system of the robot and the geometric relationships

that will be used in order to derive equations that relate the velocities of the individual

wheels to the translational and rotational velocity of the robot. First of all, we consider

(a) (b)
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Figure 4.3: In (a) the robot is viewed from above and the symbols that are used in the
text are illustrated. To avoid confusion, not all symbols are drawn in (a) but the geometry
is repeated in (b) with additional symbols.

the contact points P0i, i = 1, 2, 3, of the wheels, specified in the local system of the robot.

In order to easily calculate these points, we define

R(ψ) :=

(
cosψ − sinψ

sinψ cosψ

)
, (4.15)
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to be the rotation matrix which rotates a vector about the angle ψ. Then the contact

points are:

P0i = LR(γi)

(
1

0

)
(4.16)

(4.17)

with θ = (π−α)
2

and the definitions

γ1 := θ (4.18)

γ2 := θ + α (4.19)

γ3 := θ + α+ β. (4.20)

Note, that the contact points are specified in the local coordinate system of the robot.

Thus, P0i also expresses the direction of the respective axis of the wheels. Consecutively,

the normalized directional vectors of the wheels are:

Di = R(
π

2
+ γi)

(
1

0

)
(4.21)

Within the global coordinate system the velocity vectors of the the contact points are

vi =

(
ẋ

ẏ

)
+ Ṙ(φ− π

2
)P0i (4.22)

where
(

ẋ
ẏ

)
is the translational velocity and φ is the heading direction of the robot. Note,

that ẋ, ẏ and φ are part of the system state. Then the individual wheel velocities towards

the active directions Di are

vi = vT
i R(φ− π

2
)Di (4.23)

Substituting equation (4.22) into equation (4.23) results in

vi =

((
ẋ

ẏ

)
+ Ṙ(φ− π

2
)Pr

0i

)T

R(φ− π

2
)Di = (4.24)(

ẋ

ẏ

)T

R(φ− π

2
)Di + P0i

T Ṙ(φ− π

2
)TR(φ− π

2
)Di︸ ︷︷ ︸

=:vrot
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The second term

vrot = P0i
T Ṙ(φ− π

2
)TR(φ− π

2
)︸ ︷︷ ︸

=:M

Di (4.25)

can be simplified. Defining τ := φ− π
2

matrix M evolves to

M = Ṙ(φ− π
2
)TR(φ− π

2
) =

= φ̇

(
− sin τ − cos τ

cos τ − sin τ

)T (
cos τ − sin τ

sin τ cos τ

)
=

= φ̇

(
− sin τ cos τ

− cos τ − sin τ

)(
cos τ − sin τ

sin τ cos τ

)
=

= φ̇

(
0 cos2 τ + sin2 τ

cos2τ − sin2 τ 0

)
=

= φ̇

(
0 1

−1 0

)
. (4.26)

Substituting this result back into equation 4.25 we have:

vrot = φ̇P0i
T

(
0 1

−1 0

)
Di =

= φ̇L
(
R(γi)

(
1
0

))T ( 0 1

−1 0

)
R(π

2
+ γi)

(
1
0

)
=

= φ̇L
(
cos γi

sinγi

)T ( 0 1

−1 0

)(cos π
2
+γi

sin π
2
+γi

)
=

= φ̇L
(
cos γi

sinγi

)T ( sin π
2
+γi

− cos π
2
+γi

)
= φ̇L(cos γi sinγi)

(
cos γi

sin γi

)
= φ̇L (4.27)
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Thus, equation 4.23 evolves to

vi =

(
ẋ

ẏ

)T

R(φ− π

2
)Di + Lφ̇ =

=

(
ẋ

ẏ

)T

R(φ− π

2
)R(

π

2
+ γi)

(
1

0

)
+ Lφ̇ =

=

(
ẋ

ẏ

)T

R(φ+ γi)

(
1

0

)
+ Lφ̇ =

=

(
ẋ

ẏ

)T(
cosφ+ γi

sinφ+ γi

)
+ Lφ̇ =

= cos(φ+ γi)ẋ+ sin(φ+ γi)ẏ + Lφ̇ (4.28)

The drive velocities are thus non-linear functions of the translational velocity and the

angular velocity of the robot.

vi = cos(φ+ γi)ẋ+ sin(φ+ γi)ẏ + Lφ̇ (4.29)

Summarizing v1, v2 and v3 in a vector, this relationship can be written in matrix form:
v1

v2

v3

 =


cos(φ+ γ1) sin(φ+ γ1) L

cos(φ+ γ2) sin(φ+ γ2) L

cos(φ+ γ3) sin(φ+ γ3) L




ẋ

ẏ

φ̇

 (4.30)

Substituting γ1, γ2 and γ3 yields
v1

v2

v3

 =


cos(φ+ θ) sin(φ+ θ) L

cos(φ+ θ + α) sin(φ+ θ + α) L

cos(φ+ θ + α+ β) sin(φ+ θ + α+ β) L




ẋ

ẏ

φ̇

 . (4.31)
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Since θ = π−α
2

we have
v1

v2

v3

 =


cos(φ+ π−α

2
) sin(φ+ π−α

2
) L

cos(φ∗ + π−α
2

+ α) sin(φ+ π−α
2

+ α) L

cos(φ∗ + π−α
2

+ α+ β) sin(φ+ π−α
2

+ α+ β) L




ẋ

ẏ

φ̇

 = (4.32)

=


cos(φ+ π−α

2
) sin(φ+ π−α

2
) L

cos(φ+ π+α
2

) sin(φ+ π+α
2

) L

cos(φ+ π+α
2

+ β) sin(φ+ π+α
2

+ β) L


︸ ︷︷ ︸

=:W(φ)


ẋ

ẏ

φ̇

 (4.33)

Thus, we obtain the relationship
v1

v2

v3

 = W(φ)


ẋ

ẏ

φ̇

 (4.34)

and vice versa, 
ẋ

ẏ

φ̇

 = W−1(φ)


v1

v2

v3

 . (4.35)

Note, that v1, v2 and v3 are absolute values that specify the velocities of the respective

contact points in the direction of the corresponding wheel, specified in [cm/s]. Dividing

these velocities by the effective wheel radius re, we obtain the angular velocities ω1, ω2

and ω3 of the respective axes:

ωi =
vi

re

(4.36)

Solving this equation for vi and substituting v1, v2 and v3 in equation 4.34 we obtain
ω1

ω2

ω3

 =
1

re

W(φ)


ẋ

ẏ

φ̇

 . (4.37)

When considering odometric information later, this relationship will play an important

role (see page 96).
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4.5 The Dynamic Model

The process model for a system describes how the system states change as a function of

time and is usually written as a first-order non-linear vector differential equation or state

model of the form

ẋ(t) = f(x(t),u(t), t) + q(t) (4.38)

where x(t) ∈ IRn is a vector of the states of interest at time t, u(t) ∈ IRr is a known

control input, f(·, ·, ·) is a model of the rate of change of system state as a function of

time, and q(t) is a random vector describing both dynamic driving noise and uncertainties

in the state model itself.

We represent the state x(t) at time t of the robot by its cartesian x, y-position (units

in [m]), its orientation φ [rad], its translational velocities vx, vy [m/s] and its rotational

velocity w [rad/s].

x(t) =



x(t)

y(t)

φ(t)

vx(t)

vy(t)

ω(t)


(4.39)

Then the differential equations of the model are

ẋ(t) = vx(t) + nx(t)

ẏ(t) = vy(t) + ny(t)

φ̇(t) = ω(t) + nφ(t) (4.40)

v̇x(t) = ax(t) + nvx(t)

v̇y(t) = ay(t) + nvy(t)

ω̇ = aω(t) + nω(t).

Here, nx, ny, nφ, nvx , nvy and nω are assumed to be zero-mean, temporally uncorrelated

Gaussian process noise errors with variance σ2
x, σ

2
y , σ

2
φ, σ

2
vx

, σ2
vy

and σ2
ω, respectively.

The terms ax(t), ay(t) and aω(t) are the accelerations that result from the control u(t).

They will be derived in the following.
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Low-level motor control is done by a special electronic system which is embedded in

the robot. Communication with the main computer, which processes the computer vision

and behavior calculation, is established via a serial interface. The electronic subsystem

gets a command for a desired translational and rotational velocity and automatically

controls the power of the three motors in order to reach the desired values. The delay

from sending the control input to the electronics until the control input has an effect on

the motor speeds is approximately eight microseconds.

We will denote the control commands at time t by

u(t) =


uvx(t)

uvy(t)

uω(t)

 (4.41)

where uvx(t), uvy(t) and uω(t) are normalized command-values (v/vmax) without physical

units, lying within the interval [−1.0, ..., 1.0]. The values specify the desired translational

and rotational velocities at time t. A value of 1.0 corresponds to the maximum reachable

speed for the respective component. The values uvx(t), uvy(t) are specified from the

perspective of the robot. The y-direction corresponds to the robot’s heading and the

x-direction corresponds to its right-direction. For instance, to let the robot move with

full speed towards its heading direction, u(t) should be set to

u(t) =


0

1

0

 . (4.42)

To let the robot slowly rotate at a fixed position to the left, u(t) should be set to

u(t) =


0

0

0.1

 . (4.43)

The control electronics that receives the commands implements a PID-controller. Since

the 90W motors with the 12:1 gear produce a high torque compared to the relatively low

weight of the robot(≈ 10kg), we do not consider the precise dynamics of the controller,

but assume a simplified closed feedback loop model of its behavior in the following: The
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torque Ti(t) of the ith (i = 1, 2, 3) direct current (DC) motor that arises from the control

input u(t) depends on the current speed of the motor shaft. A reasonably accurate model

that captures this relationship is

Ti(t) = ᾱU(t)− β̄ωi (4.44)

where U(t) [V] is the voltage applied to the motor, and ωi(t) [rad/s] is the angular velocity

of the shaft of motor i. The constants ᾱ [Nm/V] and β̄ [Nm rad/s] characterize the motor.

The salient feature of this model is that the amount of torque available for acceleration

is a function of the speed of the motor. When neglecting wheel slippage, the force fi(t)

generated by the respective motor driven wheel is simply

fi(t) = αU(t)− βvi(t) (4.45)

where vi(t) [m/s]is the ground-velocity of the wheel mounted at the shaft of motor i. The

constants α [N/V] and β [kg/s]2 can readily be determined from ᾱ, β̄ and the geometry

of the robot. The translational acceleration of wheel i is

ai(t) =
fi(t)

m
(4.46)

where m is the mass that has to be accelerated. Now, we use the matrix W(φ) defined

in equation 4.33 on page 82 to project the accelerations of the wheels to the resulting

acceleration of the robot: 
ax(t)

ay(t)

aω(t)

 := W(φ)−1


a1(t)

a2(t)

a3(t)

 (4.47)

4.6 Using a Kalman Filter to Fuse the Three Layers

We use a Kalman-filtering approach to fuse the resulting positions of the different layers.

For an introduction to the filter see for instance [58][11].

We begin with a very general and simplified description of the filter and successively

remove the simplifications.

2Note, that 1N = 1kgm
s2
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A discrete Kalman filter tries to estimate the state x ∈ IRn of a discrete-time controlled

process that is governed by the linear stochastic difference equation

xk+1 = Axk + Buk + qk. (4.48)

The state is observed by a measurement vector z ∈ IRm that is linearly coupled to the

system state:

zk = Ckxk + rk (4.49)

The n× n matrix A relates the state at time step k to the state at step k + 1. The n× l
matrix B relates the control input u ∈ IRl to the state x. The m × n matrix C in the

measurement equation relates the state to the measurement zk.

The process noise is represented by the random variable qk which is normal distributed

with zero mean and covariance matrix Q. Accordingly, rk models the measurement noise

with covariance matrix R.

In our system we represent the state x of the robot by its Cartesian x, y-position, its

orientation φ, its translational velocities vx, vy and its rotational velocity ω = φ̇.

x =
(
x y φ vx vy ω

)T

(4.50)

The measurement z consists of the measurements from all three layers of localization.

z := ( zodo zrel vis zrec )T (4.51)

Here zodo, zrel vis and zrec are the respective measurement vectors of the three layers. The

syntax used in equation 4.51 should indicate that the compound measurement vector z

consists of the components of the three vectors, rather than of the vectors themselves. The

measurement vector zodo of layer 1 consists of the angles ∆α1, ∆α2 and ∆α3 specifying

the wheel rotations between two successive time steps. These angles are directly measured

by the tick counters of the motors, which provide 768 impulses per wheel revolution.

zodo = (∆α1 ∆α2 ∆α3)
T (4.52)

The measurement vectors of layer 2 and 3 are defined in a way, reflecting the direct
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measurement of the robot’s pose.

zrel vis = (x2 y2 φ2)
T (4.53)

zrec = (x3 y3 φ3)
T (4.54)

Although layer 2 supplies only a relative movement, the measurement of an absolute pose

can be simulated by adding this relative information to the most recent estimated pose.

Layer 3 directly measures the robot’s pose by recognizing high-level features that allow

the unique inference of the robot’s pose.

The measurement vector of each layer has to be related to the system state x. Typ-

ically, not all components of the system state are required to define the measurement

models for the individual layers. For instance, the odometric measurement vector only

depends on the last three components of the system state, the translational and rotational

velocities of the robot. In contrast, the measurements of layer 2 and 3 depend only on

the first three components of the system state, namely the robot’s pose. For layer 1, the

relationship between the system state and measurement vector is not linear. A detailed

description will follow on page 96, where we begin to describe the layers separately. There,

the Jacobian matrix Codo will be derived, linearizing the measurement model around the

current estimate of the robot’s pose:

zodo = Codo


ẋ

ẏ

φ̇

+ Rodo (4.55)

Here Rodo is the covariance matrix of the odometric measurements. For layer 2 and 3 the

measurement model is linear and it can be expressed by the following equations:

zrel vis = Crel vis


x

y

φ

+ Rrel vis (4.56)

zrec = Crec


x

y

φ

+ Rrec (4.57)
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Here, both Crel vis and Crec are the identity, since the layers are designed to directly

measure the robot’s pose. Rrel vis and Rrec are the corresponding measurement covariance

matrices. Summarizing the measurement equations of all three layers, we have

∆α1

∆α2

∆α3

x2

y2

φ2

x3

y3

φ3


k

=



0 0 0

0 0 0 Codo

0 0 0

0 0 0

Crel vis 0 0 0

0 0 0

0 0 0

Crec 0 0 0

0 0 0


︸ ︷︷ ︸

Ck



x

y

φ

vx

vy

ω


k

+ rk. (4.58)

Assuming that the measurements of the individual layers are independent from one an-

other, the compound measurement matrix rk is

rk =


Rodo 0 0

0 Rrel vis 0

0 0 Rrec

 . (4.59)

Note, that the assumption of independent measurements is not completely valid, because

the measurements of both layer 2 and layer 3 are based on the same field contours.

The measurement covariance matrices Rodo, Rrel vis and Rrec are not static, but depend

on the system state and other influences. Odometry, for instance, has larger variances

when the robot is moving fast or when it is accelerating. When using features in the second

layer to obtain a relative visual correction of the robot’s pose, the variances depend i.e on

the distance and on the orientation of the features with respect to the robot. However,

the dynamic adaption of the measurement matrices is not dealt with in this thesis.

The Kalman filter iteratively processes two steps, the measurement update and the time

update. The measurement update combines the last estimate of the system state with the

current measurement and produces a new estimate of the state. The time update uses

the dynamic model to predict the state for the next time step. The calculations that have
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to be carried out are illustrated in figure 4.4.

Here, it is assumed that the measurements of the three layers have the same time

delay. This simplification will be removed later.

Time Update

(1) Project the state ahead

(2) Project the error covariance ahead

xk+1
* = k xk

^ + Bk uk

*Pk+1
=

k k

T
Pk + Qk

Measurement Update

(1) Compute the Kalman gain

(2) Update estimate with measurement zk

K =  P C ( C P C +  R )k   k k  k k k   k

T T -1

xk
^ = x +  K  ( z - C x )k   k k k k 

* *

(3) Update the error covariance

P =  (I - K C ) P   k     k k k

*

Initial estimates for x and P  k k 

* *

A

A A

Figure 4.4: The Kalman filter iteratively processes two steps, the measurement update
and the time update. The measurement update combines the last estimate of the system
state with the current measurement and produces a new estimate of the state. The time
update uses the dynamic model to predict the state for the next time step.

time
time update

z0

x0

*

x0
^

time update

z1

x1

*

x1
^

time update

z2

x2

*

x2
^

x3

*

measurement
update

measurement
update

measurement
update

Figure 4.5: This figure shows the flow of computation while executing the filter steps of
figure 4.4 over several time steps.
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4.7 Fusing Delayed Measurements

In the above description of using a Kalman filter in order to fuse the measurements of

the three layers a simplification was made. It was assumed that the measurements have

the same time delays. Of course, this is not true. Odometric information typically enters

the system 8 ms after the corresponding physical event (wheel rotation). In contrast,

images have a typical delay of approximately 60 ms. Consider what happens when not

taking account for this time shift. Assume that just the last incoming data is fused and

that the robot is standing still on the playing field at the beginning. Assume further

that the robot is detecting the field lines and tries to match the lines onto an internal

model in order to correct for small positional errors (layer 2). Then, when the robot

starts rotating, odometric information will reflect the rotation after 8 ms. However, at

that time the images still reflect the state with the robot not moving because of the larger

time delay. The images will not show a rotation before 60 ms after the robot started

rotating. Hence, it is incorrect to fuse just the last incoming data. One has to take

account for the correspondence of the different signals in time. The above consideration

is illustrated in figure 4.6. For the sake of simplicity, the observed signal is considered

to be continuous and fusion of only the first two layers (odometry and relative visual

correction) are considered.
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Figure 4.6: A physical state (i.e. the orientation of the robot) is observed by two different
sensor systems, odometry (layer 1) and relative visual correction (layer 2). A physical
event (t0, a) is observed with different time delays. The corresponding event in layer 1,
(t0 +∆tglobal), has a delay of ∆tglobal. In layer 2 the corresponding event is (t0 +∆tglobal +
∆t2−1), that is the delay is ∆tglobal +∆t2−1. Here ∆tglobal is the delay of the most reactive
sensor (layer 1) and ∆t2−1 denotes the time shift between layer 1 and 2. Here, only two
layers are depicted for the sake of simplicity, however the scheme extends to all three
layers. The higher a layer the greater the delay. The time shift between two layers, i.e
∆t2−1, can be determined by the system by matching the signals to each other. However,
it is not possible to determine ∆tglobal without another reference sensor. In principle,
such a reference sensor is just another layer (layer 0) with a time delay ∆tglobal that is
so small that it can be neglected. For fusing the signals of the different layers correctly,
it is sufficient to determine the relative time shifts between the layers. However, when
incorporating the motion model, ∆tglobal also needs to be known. In our case ∆tglobal is
the odometric delay which is approximately 8 milliseconds.
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4.7.1 Splitting the Kalman Cycle

When considering the most recent data entering the system through the different sensor

layers, there exists odometric information for which no corresponding visual information

is yet available. Accordingly, there are situations, where layer 3 has not yet detected a

feature, but there is already relative visual information (layer 2) available. To keep the

description easy, let us concentrate only on the first two layers. The scheme can then be

adapted easily to all three layers. We split the Kalman cycle into two phases, phase 0

and phase 1. (Considering all three layers, the process would have been split into three

phases). Each phase consists of a time and a measurement update. While the dynamic

model is the same for both phases, each phase has its own measurement model. During

phase 0, corresponding visual and odometric information is fused. During phase 1, the

most recent odometric information is used, for which no corresponding visual information

is yet available (see figure 4.7). The measurement model for phase 0 is:

zphase 0,k =



∆α1

∆α2

∆α3

x2

y2

φ2


phase 0,k

=



0 0 0

0 0 0 Codo

0 0 0

0 0 0

Crel vis 0 0 0

0 0 0





x

y

φ

vx

vy

ω


k

+ rphase 0,k,

(4.60)

and the measurement model for phase 1 is

zphase1,k =


∆α1

∆α2

∆α3


phase 1,k

=


0 0 0

0 0 0 Codo

0 0 0





x

y

φ

vx

vy

ω


phase 1,k

+rphase 1,k. (4.61)

Figure 4.8 shows the overall flow of computation.
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Figure 4.7: When considering the most recent information gathered by the different sen-
sor systems, there exists odometric data for which no corresponding visual information
is yet available. This is due to the fact that odometric information has a shorter delay
(8 ms) compared to visual information (60 ms). Therefore, when only considering the
first two layers, the fusion process is divided into two phases. During phase 0 correspond-
ing odometric and visual information are fused, while during phase 1, the most recent
odometric data (the odometric tail), for which there is not yet correlating visual data, is
used to update the estimate of the system state of the robot. For both phases different
measurement equations are used and each phase uses its own filter matrix Ki, i = 0, 1.

4.7.2 Explicit Representation of Time

When dealing with measurement delays, one major problem has to be solved: The cor-

respondence of different signals in time observing the same system state has to be re-

solved. Assume for a moment, that we have two discrete signals ..., at−3, at−2, at−1, at and

..., bt−3, bt−2, bt−1, bt, with at and bt being the signal values at time step t. Assume further,

that the signals are sampled with the same frequency. Then, if we know the relative

time shift ∆t between the signals, with b being the signal with the higher measurement

delay, then bt corresponds to at−∆t. Under these simplified conditions, it would suffice,

to store the incoming data in two separate queues and to use shifted indices to address

corresponding data.
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Figure 4.8: The bottom part of this figure corresponds to figure 4.5 where no measurement
delays are considered. Beginning with the last estimate x̂k of the system state, a phase 0
time update propagates the motion model for the time interval in which both odometric
and relative visual information is available (yielding x∗

k), then a phase 0 measurement
update is performed, which fuses the corresponding odometric and visual information
(yielding x̂∗

k). A phase 1 time update is performed in parallel, propagating the motion
model for the time interval in which only odometric information is available (yielding
x̃∗

k). Finally, a phase 1 measurement update is processed, which integrates the odometric

tail and produces the final estimate ˆ̃xk of the system state. This system state is used to
control trajectory execution (after having applied a further prediction step).

However, reality is more complicated. First of all, the different signals typically are

not sampled with the same frequency. Layer 1, odometric information, provides data at a

rate of 50 samples per second, while layer 2 and 3 yield only 10 measurements per second.

Moreover, it typically happens that the sampling intervals within one signal vary. While

this is not true for odometric information, whose sampling intervals are very precise, the

time gaps between two successive image frames are not always the same. This can be

due to the operating system, the video acquisition drivers, or the varying computational

load while processing the images. In the extreme, the processing is so expensive, that a

frame has to be dropped. Thus, using a simple shift of indices to take account for the

measurement delays is not adequate.

Instead, time has to be represented explicitly. With recent processors (i.e. the Pentium

III and higher), a so-called performance counter is available, a 64-bit counter that is
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incremented with each clock cycle. With such a counter, time can be measured with a

precision below a microsecond (10−6 s). When the signals of the three different layers

enter the system, each data item is provided with such a 64 bit time stamp, and the data

is stored in a queue. Each layer has its own queue, which we refer to as a data channel in

the following. The data channels of the different layers have a length of approximately 100

items. The odometric data channel has 500 items due to the higher sampling frequency.

That is, each channel stores the last 500 or 100 incoming data items, together with their

time stamps. Note, that the time stamps reflect the time when the signal enters the

system, and not the time of the corresponding physical event.

Now assume that two successive images are grabbed with time stamps t1 and t2. Now,

we know the relative time shift ∆t between odometric and visual information, which is 52

milliseconds in our system. We will describe later, how this time shift can be determined

automatically by the system. In order to find the odometric data which correspond to

the time interval of the two images, we consider the interval t1−∆t and t2−∆t. We use

each shifted time stamp to find the index i of the data item in the odometric data channel

that most closely matches by its time stamp. This search can be efficiently implemented

(in O(log n)) by binary search, since the data in each channel are ordered by the time

stamps. In this way, we find the corresponding odometric data and we fuse the data as

described in the previous sections.

To find the relative time shift ∆t between odometry and vision, one can simply observe

a landmark, start the robot rotating and to stop the rotation after a small time period.

Then both odometry and vision will reflect the change of the angle and the time shift can

be recovered by determining how the data in the different channels have to be shifted in

order to produce the highest correlation. In our system we use the ball lying still on the

field as a landmark. It typically suffices to determine the time shift once, however, one

could consider techniques which are able to adapt to a changing time shift online.
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4.8 Layer 1: Odometric Information

The robot’s motors are equipped with tick counters generating 64 impulses per revolution.

Since each motor has a 12:1 gear, nticks = 768 impulses are generated per wheel revolution.

The counters are equipped with a sign specifying the direction of rotation. The ticks of

each wheel are summed up by the control electronics and periodically (50 times per

second) transmitted to the computer. Let λk,i, i = 1, 2, 3, denote these accumulated ticks

of motor i at time tk. By taking the difference of two successive accumulated tick values,

the relative ticks between two time steps can be computed. That is, we have the relative

tick vector:

∆λk =


∆λk,1

∆λk,2

∆λk,3

 =


λk,1

λk,2

λk,3

−


λk−1,1

λk−1,2

λk−1,3

 (4.62)

We can compute the corresponding wheel rotations from the relative tick vector ∆λk

corresponding to the time interval ∆t = k − tk−1:
∆αk,1

∆αk,2

∆αk,3

 =
2π

nticks


∆λk,1

∆λk,2

∆λk,3

 (4.63)

This vector (∆αk,1,∆αk,2,∆αk,3)
T is the measurement vector of layer 1 at time step k.

In section 4.4 on page 82 equation 4.37 was derived, describing the relationship between

the robot’s translational and rotational velocities, and the angular velocities of the wheels

(ω1, ω2, ω3)
T . This relationship is

ω1(t)

ω2(t)

ω3(t)

 =
1

re

W(φ(t))


ẋ(t)

ẏ(t)

φ̇(t)

 . (4.64)

When integrating the angular wheel velocities over the time interval [tk−1, ..., tk], we obtain

the relationship
∆αk,1

∆αk,2

∆αk,3

 = godo(x(tk−1), ...,x(k), re) :=

∫ k

t=tk−1

1

re

W(φ(t))


ẋ(t)

ẏ(t)

φ̇(t)

 dt (4.65)
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Linearizing godo around the current estimate x∗ of the system state, we obtain the ap-

proximation 
∆α1

∆α2

∆α3

 ≈ 1

re

W(φ∗)


ẋ

ẏ

φ̇

∆t. (4.66)

Thus, the matrix Codo, which was already used in equation 4.60 is given by

Codo =
1

re

W(φ∗)∆t. (4.67)

4.9 The Observation Model

In layer 1 we solely considered odometric information. The next two layers will use visual

information. In order to describe these layers we have to know the relationship between

the robot’s system state and the location where things can be expected in the image. To

establish this relationship is the purpose of the following section. After having described

the relationship we will continue with the description of layer 2 and 3.

4.9.1 The Omni-Directional Vision System

Standard cameras have a limited visual field of about 30 - 60 degrees. To enhance the field

of view, the idea of using a mirror in combination with a conventional imaging system to

obtain omni-directional images has been proposed by Rees in a U.S. patent in 1970 [67].

The general approach of combining a mirror with a lens is referred to as catadioptric image

formation. The term is composed of catoptrics, the science of reflecting, and dioptrics,

the science of refracting surfaces. Different types of setups have been examined. Yagi and

Kawato used a conic mirror [87]. Hong and others used a spherical mirror [43]. Yamazawa

and others used a hyperboloidal mirror [88] and finally, Nayar and Baker [63] developed a

setup using a parabola mirror and a telecentric lens. The latter two approaches generate

images taken by a single center of projection, which is particularly important when aiming

to transform the omni-directional images into perspective images.
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Figure 4.9: The optical mapping. In figure (b) three points are marked by small black
dots. Each of these points corresponds to a ray, which is reflected by the mirror (figure (a))
and intersects with the ground plane, yielding corresponding points on the floor. Thus,
each distance from the mirror’s center to a pixel in the image corresponds to a real-world
distance from the robot. This relationship is described by the distance function (figure
(c)).

4.9.2 The Distance Function

For our soccer robots we have designed a specific mirror. Here, the design principle was

not the goal to have a single center of projection, but a desired distance function, the

function which relates distances in the image to distances in the world. If a convex,

rotationally symmetric mirror is placed directly above the camera, then the center of
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the mirror is mapped to the center of the image. A pixel that is at a distance d to the

center in the image corresponds to a ray that has an angle α to the viewing direction of

the camera. The farther a pixel is away from the center, the greater is the angle of the

corresponding ray. For analysis, it is easier to reverse the direction of the light, thinking

of a ray as coming out of the camera and tracing the ray back to its origin. Adapting

this notion, the rays leave the camera and are reflected by the mirror. After reflection,

rays corresponding to outer pixels have a lower inclination towards the ground plane and

the distance from the robot where they intersect with the ground plane increases (see

figure 4.9a). The distance function describes this relationship. It maps a pixel distance

to a world distance. The pixel distance is measured from the location of the pixel to the

location of the mirror’s center in the image (figure 4.9b). We designed our mirrors to yield

a distance function which consists of a linear and an exponential portion as illustrated in

figure 4.9c.

4.9.3 Predicting the Location of Objects in the Image

Given the pose of the robot on the playing field, we can predict the location of objects in

the image. Before we describe the projection of arbitrary 3D points we first consider the

special case that the point is on the two-dimensional playing field. Then we will reduce

the general 3D case to the two-dimensional mapping.

4.9.4 Transformation of Two-Dimensional Points on the Field

Consider a point on the field, for instance a point a, being part of the field lines as

illustrated in figure 4.10. In the following we will describe how this point is mapped to

the image. The mapping takes place in three stages, transforming the point into different

two-dimensional cartesian coordinate systems.

The origin of the global world coordinate system is at the center of the playing field

as illustrated in figure 4.10. All existing objects are initially modelled in this system,

including the field lines. The robot’s local coordinate system is given by its reduced

system state x̆. Then the point a in the global system is transformed into the local
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Figure 4.10: The world coordinate systems. The global system is located in the center of
the playing field. The local system is located below the center of the robot’s camera and
mirror. Its y-axis is directed towards the robot’s heading direction, its x-axis to the right.

system by the following equation3:

ar = x̆
point−→ a (4.68)

The catadioptric mapping preserves angles between directions seen from the robot’s

position. Consider two different points in the local world coordinate system. These points

form an angle α with the origin of the system, the robot’s position. When projecting these

points to the image, the points form the same angle with respect to the center of the mirror

in the image. The reason is that the whole projection process of a light ray entering the

CCD array of the camera takes place in a plane orthogonal to the ground.

Essentially, the image directly corresponds to the local world coordinate system after a

pointwise application of the distance function. Here, applying the distance function means

to measure the length of the point-vector ar, to transform that length by the distance

3The transformation
point−→ is defined on page 76
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function and to create a new point-vector a∗ pointing to the same direction but scaled to

the transformed length:

a∗ =
ar

||ar||
d(||ar||) (4.69)

Here d(·) denotes the distance function. However, the image appears rotated, because the

camera has been mounted on the robot in a way that the diagonal of the CCD array is

directed towards the robot’s heading direction. The reason is that the diagonal direction

offers a greater range of sight and we wanted the robot’s heading direction to benefit from

this advantage.

Therefore, after having applied the distance function to the point ar the point is

represented in a coordinate system which appears to be rotated in the image. We refer to

this system as the local image coordinate system and its origin C is located at the center

of the mirror in the image. In the image, the y-axis (the vector v∗) of this system points

in the direction that corresponds to the heading direction of the robot (see figure 4.11).

Finally, after projecting the point out of the local image coordinate system, the point is

represented in the global image coordinate system which is located at the top left of the

image, with the coordinates specifying the pixel position.

a∼ = C + a∗xu
∗ + a∗yv

∗ (4.70)

4.9.5 Transformation of Arbitrary 3D Points

In order to transform arbitrary 3D points, we observe that a 3D point B is mapped to

the same image pixel as the ground point a which is on the same ray being reflected into

the camera. To calculate the corresponding point b on the floor we just have to determine

the ray and intersect it with the ground plane. However, to determine the ray we would

have to calculate the point R where the ray is reflected on the mirror. Although the

precise calculation is possible, involving the shape of the mirror and the location of the

focal point of the camera, it can be simplified by choosing an approximate reference point

R which is located at the center of the mirror according to figure 4.12. For catadioptric

systems with a single center of projection the calculation is precise if R is placed at the

center of projection, for other setups it is just an approximation. However, especially for
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local image coordinate system

global image coordinate system
*x

*y
*v

*u

*a
C

Figure 4.11: The image coordinate systems. The origin of the global system is located at
the top left corner of the image. The local system is located at the center of the mirror
in the image. Its y-axis (vector v∗) is directed towards the robot’s heading direction.

distant objects the error is small.

R

B

b

Figure 4.12: In order to project the 3D point B to the image we can calculate a corre-
sponding point b on the ground and apply the two-dimensional mapping.

4.10 Transforming the Contours into World Space

Independent of the method that is used to localize the robot, the lines, as extracted from

the images, are distorted by the mirror. We account for this distortion by transforming
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each point from image space to world space. This step makes use of the distance function

as described on page 98. Figure 4.13 shows the distorted line contours as they are extracted

by the region tracking algorithm. Given the robot’s pose x̆, the line can be transformed

Figure 4.13: The distorted line contours as extracted by the region tracking algorithm.

out of the corresponding local coordinate system. If the robot’s pose is incorrect, the lines

will not fit to a model, as illustrated in figure 4.14. In contrast, when the robot’s pose is

correct, the lines closely match to the model (see figure 4.15). In order to verify whether

the lines fit to the model or not, we have to establish a distance function. Before we set

up this function, we first describe how the field lines are represented in the model.
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Figure 4.14: The distortion has been removed by applying the distance function and the
contours have been transformed out of the local coordinate system. In this example, the
estimate of the robot’s pose is incorrect and as a result the line contours do not fit to the
model.

Figure 4.15: When the estimate of the robot’s pose is correct, the image lines fit to a
model of the field lines.
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4.11 Modelling the Field Lines

In order to define a matching distance, we have to define a model of the lines. The field

lines consist of curved and straight line segments (see figure 4.16).
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Figure 4.16: The model of the field lines consists of 17 straight line segments and five
circular arcs, one of which is the center circle.

Curved lines can be found in form of the center circle and the quater circles at the

corners. We represent straight line segments by the triple

(A,v, l), (4.71)

where A is the two-dimensional start point of the line segment, v is the normalized

direction of the line segment and l represents its length. The circular elements are defined

by

(M, r, φ0, φ1), (4.72)
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where M is the center point, r is the radius and φ0, φ1 define the enclosing angles of

the respective circular arc. In this way, the center circle can be represented by setting

φ0 = 0, φ1 = 2π and the quater circles can be defined by setting the difference of the

angles to π
2
.

Then the whole model consists of 17 straight line segments and five circular arcs which

are listed in table 4.4.

Nr. line segment (A,v, l) Nr. line segment (A,v, l)

1 (
(−w
−h

)
,
(
1
0

)
, 2w) 12 (

(
w
s

)
,
(−1

0

)
, g)

2 (
(

w
h

)
,
(−1

0

)
, 2w) 13 (

(−w+g
s

)
,
(−1

0

)
, g)

3 (
(−w

h

)
,
(

0
−1

)
, 2h) 14 (

(−w
−s

)
,
(
1
0

)
, g)

4 (
(

w
−h

)
,
(
0
1

)
, 2h) 15 (

(
w−g
−s

)
,
(
1
0

)
, g)

5 (
(

0
−h

)
,
(
0
1

)
, 2h) 16 (

(−w
−q

)
,
(
1
0

)
, p)

6 (
(−w+p

−q

)
,
(
0
1

)
, 2q) 17 (

(
w−p
−q

)
,
(
1
0

)
, p)

7 (
(

w−p
q

)
,
(

0
−1

)
, 2q) circular arc (M, r, φ0, φ1)

8 (
(

w−g
−s

)
,
(
0
1

)
, 2s) 18 (

(−w
h

)
, a, 3

2
π, 2π)

9 (
(−w+g

s

)
,
(

0
−1

)
, 2s) 19 (

(
w
h

)
, a, 2

2
π, 3

2
π)

10 (
(−w+p

q

)
,
(−1

0

)
, p) 20 (

(
w
−h

)
, a, 1

2
π, π)

11 (
(

w
q

)
,
(−1

0

)
, p) 21 (

(−w
−h

)
, a, 0, 1

2
π)

22 (
(
0
0

)
, r, 0, 2π)

Table 4.4: The elements of the line model. For the world championships in Lisboa 2004
the constants are: w = 600 cm, h = 300 cm, p = s = 150 cm, g = 50 cm, q = 250 cm,
r = 100 cm and a = 40 cm.
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4.12 Layer 2: Relative Visual Localization

Relative localization assumes that an initial estimate of the robot’s pose is available and

keeps track of the pose while the robot moves.

Assume that initially the robot has been determined to be at pose A. Then, within a

small time interval the robot moves to pose P. However, we do not know this new position.

Instead, we have an estimate Podo of the position due to odometric information. In the

long term, odometric information accumulates to unbounded positional error. Thus, we

have to correct Podo with visual information.

In the following, we consider two different methods that achieve this correction. The

first method is new, and we refer to it as the “MATRIX”-method. It takes a cloud of

points representing the field lines, transforms the points into the global coordinate system

corresponding to Podo and calculates a small correcting movement ∆m which makes the

points fit better to the model of the lines. Here, the idea behind the method is that the

points and the lines attract each other, resulting in an overall force and momentum which

iteratively makes the cloud adjust towards the line model. A force field is pre-calculated

in order to achieve real-time computation.

The second method is an already known-method, which is referred to as the system

dynamics approach. It is due to Dickmanns [26] and Wünsche [85, 86] and was already

described in chapter 2. Although the method is more efficient when considered isolated, we

have not adapted the method in our overall approach, since the third layer for localization,

which performs the feature recognition, requires the same input as is used for the MATRIX

method. However, we sketch how to adapt the system dynamics approach, since it is

elegant, extremely efficient and a prospective base for further research.

4.12.1 MATRIX: A Force Field Pattern Approach

Matching Distance Based on Closest Point Relationships

Having a hypothesis for the robot’s pose on the playing field, it is possible to transform the

perceived line contours into the global coordinate system. In order to evaluate the quality

of a hypothesis, we want to define a matching distance function between the perceived

lines and a model of the lines. Defining this function is difficult, because the function not

only needs to be appropriate, but also calculable in real-time.

An intuitive way to define a matching distance function is to determine for each point
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of the perceived line contours the closest point of the model and to calculate the average

of the corresponding distances. In order to be more robust against outliers, we sum up a

constant cost coutlier for distances which exceed a threshold toutlier (in our implementation

coutlier = toutlier = 50 cm). With A being the set of line contour points given in the local

coordinate system of the robot and the robot considered at pose x̆, the distance function

is defined as:

d(x̆,A) :=
1

n
((

∑
pr∈Avalid

|x̆ point−→ pr − p∗|) + |Aoutlier|coutlier). (4.73)

Here n := |A| denotes the total number of points and p∗ denotes the closest model

point of perceived line point pr ∈ A subject to the estimated pose x̆ of the robot. The

sets Avalid and Aoutlier divide A into valid points and outliers. A similar definition of a

matching distance function can be found in [55], where a distance function between two

laser range scans has been defined.

The computationally most expensive part in 4.73 is the determination of the point

correspondence. Given a point p := x̆
point−→ pr we have to iterate through all elements

(straight lines and circular arcs) of the line model, calculate the respective closest point,

and finally take the point p∗ with the overall smallest distance. For a straight line segment

(A,v, l) the respective closest point p∗ can be calculated as

s := (p−A)v (4.74)

t :=


0 if s < 0

l if s > l

s if 0 <= s <= l

(4.75)

p∗ = A + tv. (4.76)

For a circular arc (M, r, φ0, φ1), the calculation is

v := (p−M) (4.77)

p∗ =

{
M + r v

|v| if the polar angle of v is enclosed by φ0 and φ1

the closest endpoint of the arc otherwise
(4.78)

These calculations are illustrated in figure 4.17.
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Figure 4.17: Calculating the closest point p∗ of a point p for (a) a straight line segment
(A,v, l) and (b) a circular arc (M, r, φ0, φ1)

The Quality Matrix

On average the perceived line contours consist of approximately 400 points and since the

line model has 22 elements, about 8800 correspondence evaluations have to be carried out

if we want to examine a hypothetical pose x̆. Since the line model is always the same,

we can optimize the calculation by precomputing the correspondence relationships. We

discretize the area of the playing field into small cells (the MATRIX ) and precompute the

distance to the closest point for the center of each cell. When evaluating the matching

distance function d(x̆,A), we let each point p := x̆
point−→ pr index its corresponding cell

and lookup the distance δpr := |x̆ point−→ pr − p∗|. When pre-computing the grid, we verify

whether or not the calculated distances exceed the outlier threshold t and store coutlier to

the respective cells in these cases. Thus, the distance function evolves to

d(x̆,A) :=
1

n

∑
pr∈A

δpr . (4.79)
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This pre-computed quality matrix is illustrated in figure 4.18.

Figure 4.18: Each cell in the quality matrix stores the distance to the closest line point.
High intensities correspond to large distances. The quality matrix is used to efficiently
calculate the distance function d(x̆,A), expressing how good the point set A fits to the
field lines subject to the robot’s pose x.

Relative Correction by Particles

By means of the distance function d(x̆,A) we can efficiently verify the hypothesis for the

robot’s pose x̆. In particular, when we have an initial estimate Podo, we can distribute

a small number of particles (20 in our experiments) in the neighborhood of Podo. The

distribution of the particles should account for the system state of the robot, including

its velocities. That is, the variance of the particles should be highest in the direction of

highest uncertainty. This can be achieved by sampling from a Gaussian distribution with

the covariance matrix P, the error covariance matrix of the system state x. An example

with the robot moving forward is illustrated in figure 4.19. Then the distance function

d(x̆i,A) is evaluated for each sample x̆i and the best sample x̆ibest
is chosen as the correct
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Figure 4.19: During relative localization 20 particles are distributed according to the
robot’s motion state around the estimated position of the robot.

position. That is

zrelative vision := x̆ibest
. (4.80)

Relative Correction by a Force Field

Instead of using samples, one can also simulate an attractive force and a momentum

between the line model and the point set A. This results in a gradient descent algorithm

similar to the well-known Iterative Closest Point (ICP) algorithm [9], starting at Podo

and iteratively adjusting the position until the line contours converge towards a best fit

to the model. Instead of calculating the forces online, we precalculate a force field in

order to achieve real-time computation. Given a point p in the global coordinate system,

we define the force vector function f(p) to be a weighted sum of the vectors vk reaching
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from p to the closest point p∗
k on element k of the line model (straight line segments and

circular arcs):

f(p) :=
22∑

k=1

wk
vk

||vk||
min(||vk||, fmax), (4.81)

Here, we delimit the force contributions to fmax = 150, with

vk := p∗
k − p. (4.82)

The weights wk exponentially decrease with an increasing distance of the corresponding

points p∗
k:

wk := τe−η||vk||. (4.83)

Since we do not use physical units, the constants and units in which lengths are expressed

depend on each other. Here the constants are specified for lengths expressed in centime-

ters. The constant η defines the decline of the force field (η = 0.1 in our implementation)

and τ is a normalizing constant which is

τ =
22∑
i=1

e−η||vi||. (4.84)

Hence, the weights wk, k = 1, 2, ..., 22 sum up to one. Given an initial pose x̆k and a point

set A = {pr
0,p

r
1, ...,p

r
n} representing points on the field lines, which are specified in the

local coordinate system of the robot, we calculate a translational force and a momentum,

which in turn result in a relative translation and rotation producing an improved estimate

x̆k+1 of the robot’s pose. The overall force vector F(x̆k,A) acting on the point cloud A

and subject to an initial estimate of the robot’s pose x̆k is computed by

F(x̆k,A) =
1

n

n∑
i=1

f(x̆k
point−→ pr

i ) (4.85)

Pre-computing the forces for all possible positions on a discretization of the playing field

yields a force-field, which is illustrated in figure 4.20.

The momentum m(p,g) induced by the force f(p) on a single point p onto the center

of gravity g of point set A is calculated by

m(p,g) = f(p)R(π/2)(g − p). (4.86)
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Figure 4.20: The arrows indicate the forces acting on a point at the corresponding position.
The length of the arrows indicates the strength of the forces. The force field is used to
iteratively calculate a translation and rotation of a point cloud and a corresponding robot
position in order to make the points fit to the model of the field lines.

Here, R(π/2) is the rotation matrix which rotates a vector 90 degrees (definition on page

78). Then the overall momentum M(x̆,A,g) acting on g with respect to the robot’s pose

x̆ is

M(x̆,A,g) =
1

n

n∑
i=1

m(x̆
point−→ pr

i ,g). (4.87)

With x̆k =


xk

yk

φk

 we compute x̆k+1 by

(
xk+1

yk+1

)
=

(
xk

yk

)
+ γF(x̆k,A) (4.88)

φk+1 = φk + γM(x̆k,A,g). (4.89)
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Figure 4.21: This figure shows the force vectors acting on the points. Each force vector
is a weighted sum of a list of vectors. The number of vectors in each list is equal to the
number of straight and curved line segments in the model of the field lines and each vector
points to the closest point of the respective line segment, measured from the current point.
The force vectors for all possible locations can be pre-computed, since the model of the
field lines is static. Then, given a point, it suffices to look up the force vector in the lookup
table. Here, the lookup table is a two-dimensional discretization of the playing field. After
discarding outliers, an overall translational force can be computed by a weighted sum of
the forces.

Here γ = 0.1 is a constant, specifying the step width for the iterations. Both figure

4.21 and 4.22 are based on the same exemplary field contours, assuming that they were

detected in an image and that they were transformed into the global world coordinate

system. The figures show the forces and momenta that would arise, respectively.

In our overall setup, the line contours are extracted every third frame, yielding a fre-

quency of ten with a frame rate of 30 frames per second. With the robot’s maximum speed
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Figure 4.22: Similar to figure 4.21 the forces on the points are considered. However, for
calculating a rotational momentum, only the component of the individual force vectors,
which are perpendicular to a line connecting the center of gravity and the current point
are shown. These components are aggregated to an overall momentum as described in
the text.

of approximately 350 cm/s the robot can move a maximum distance of approximately 35

cm. Furthermore, we have a good initial estimate of this movement by odometry. As-

suming an odometric error of at most 10%, the error that has to be corrected for can be

bounded by approximately 3.5 cm. This is the reason why even one iteration is sufficient

to correct for these errors. Thus, using the force field pattern approach for relative visual

correction, the final measurement of layer 2 is:

zrelative vision := x̆k+1. (4.90)
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Considering Fusion

Relative localization is processed after image analysis and therefore runs at the frame rate

of the video stream. Here, the difficulty arises in using the odometric information that

corresponds to the time interval of the respective visual information. This is not trivial

because odometry and vision data are subject to different time delays. For instance, vision

has a typical delay of 150 milliseconds, while odometry has a delay of approximately 8

milliseconds. For instance, when the robot is standing still and then starts rotating, the

rotation will be observed by odometry after 8 milliseconds, but the visual processing will

not detect the rotation until 150 milliseconds after the rotation. Here, we can distinguish

two different times, the mental time at which an event is detected by the processing

system, and the physical time at which the event happened in the physical world.

When capturing odometric and visual information, we measure the times when the

information is processed by making use of the processor’s performance counter, which

allows a time resolution below one microsecond (10−6s). These measured times are the

mental times. To obtain physical times we have to subtract the respective time delays of

the preprocessing, which includes both hardware and software processing.

We store the incoming odometric information together with the corresponding physical

time stamps in a queue. Thus, we always have the data of the last 2-3 seconds and we

can access the data by physical times. Within the video callback function we also take a

time measurement and subtract the 150-millisecond time delay. Then, for two successive

images, we have two physical times and we can search for the corresponding odometry

information in the data buffer. Since the data is sorted by times within the data buffer,

we can use binary search to efficiently find the respective indices of the time interval and

we obtain the corresponding odometric information.

The precise handling of time is not that important for global localization because here,

we’re only interested in a rough position of the robot. However, relative localization works

on a very fine scale in time and space and the resulting position’s precision is of great

importance for estimating position and speed not only of the robot itself, but also of other

objects that are perceived with relative coordinates from the robot’s perspective.

Usually, relative localization is active 99 percent of the time and global localization

only 1 percent.
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4.12.2 Adapting the System Dynamics Approach

This section describes how the system dynamics approach can be applied instead of the

MATRIX method to correct for small errors in the estimate of the robot’s system state.

Based on the model of the field lines, the dynamic model and the observation model,

the idea is to predict the appearance and position of the field lines at a few locations

in the images and to use only a few detectors to correct the estimate of the system

state. In the following, we will describe the kinds of features, the detectors and how the

estimate of the system state is corrected. Two different approaches of defining appropriate
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Figure 4.23: In the first approach, we consider a feature to be a point on a field line
together with the orientation of a tangent to the field line at the respective point. The
two examples (a) and (b) show that the corresponding field line can be straight or curved.
The width of the field line at the point is also a component of the corresponding feature
vector. In the text, we refer to such a feature as a tangent point p := (xw yw φw ww)T .

features are considered, tangent points (see figure 4.23) and point triplets (see figure 4.27).

The first version, tangent points, results in a complicated mechanism to measure the

components of the feature in the image. Also, the resulting mathematical formulation

becomes complicated. Thus, the definition of the features is modified later, yielding the

point triplet features. Both versions will be described here, because the second approach

can most easily be understood when considering the first approach at the beginning.

Furthermore, by defining different features, the flexibility of the overall approach becomes

apparent.

The basic idea is to consider the orientation and position of the field lines at a few
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Figure 4.24: A set of detectors with 16 different orientations and widths is used for the
field line detection. The response of the detector is the average intensity of pixels below
the light areas of the detector minus the average intensity of pixels below the dark areas.

locations on the playing field. By observing how these fixation points behave in the image,

the estimates of the system state are calculated. Thus, in an initial approach, we define a

feature that will later be referred to as a tangent point. Of course, a point does not have a

tangent. Rather, with tangent point we consider a point on a curved or straight field line

together with the tangent direction of the corresponding line in the model taken at the
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respective point. Additionally, we include the width of the corresponding field line as a

component of the feature-vector. We denote a tangent point with p := (xw, yw, φw, ww)T

where xw and yw specify its position in the global world coordinate system, φw is the polar

angle of the tangent direction and ww denotes the width of the line. Here, the subscript

“w” emphasizes that the values are specified in world coordinates. This definition is

illustrated in figure 4.23. Note that we always know the coupling between a tangent point

and the curved or straight line, whose tangent at that point is considered. This coupling

is important when later calculating the Jacobian matrix C, which relates changes in the

system state to changes of features in the images.

Figure 4.25: Given the position of the robot and the obstacles, two visible tangent points
are determined. The points are depicted by small, white disks and the corresponding
orientations by small, black line fragments. The cones marked by thin black lines show
the parts of the field lines that are occluded by obstacles.

Using the observation model, we can predict the position of a tangent point in the

image, but we also want to predict the orientation and width of the corresponding line.

For the tangent direction, we consider two points in the world coordinate system that are

slightly spaced to each side of the tangent point, map these points onto the image and

calculate the angle of their difference vector. Similarly, to predict the width of the line in

the image, we consider two points around the tangent point, but this time perpendicularly

located at both sides of the field line, enclosing the field line in the middle. We denote

this mapping with

y∗ = g(p,x∗(k),kc), (4.91)
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where x∗(k) is the estimated system state at time step k and kc are known factors of the

optical mapping (i.e. specifying the mirror’s center in the image). The resulting vector

y∗ = (x∗, y∗, φ∗, w∗)T consists of four components describing the predicted position,

orientation and width of the projected tangent point in the image.

Our goal is to measure the discrepancy between the predicted feature y∗ and the real

feature y. Since we expect the difference to be small, we use y∗ as a starting point for the

detection process. That is, we have an initial estimate of the position, orientation and

width of the tangent point in the image, and we choose an appropriate detector from a

set of pre-computed filters defined for different orientations and widths of the expected

line (see figure 4.24).

With the above definition of the tangent points, considering a single point in the image

is insufficient to measure the feature’s true values y in the image. At least one, better two

auxiliary points have to be used. Figure 4.25 shows the robot close to the penalty area

and two tangent points that are used in figure 4.26 to measure the discrepancy between

the predicted and real appearance of the feature.

However, the need for auxiliary points in the image to measure the discrepancy in

the orientation strongly suggests that the idea of the tangent point is misrepresented.

Although this representation has the advantage of a small feature-vector - thus, resulting

in small matrices later - it is more straight-forward to consider the auxiliary points from

the very beginning, that is at the level of the world model.

Hence, we discard the idea of tangent points and instead define a new feature that we

refer to as a point triplet in the following. A point triplet is simply a set of three points

on a straight or curved line, equally spaced at a small distance (≈ 20cm). Figure 4.27

illustrates two cases for straight and curved lines. The corresponding feature vector p is

defined as

p := (xw1, yw1, xw2, yw2, xw3, yw3)
T , (4.92)

with xwi, ywi as the cartesian coordinates of the ith point (i = 1, 2, 3) specified in the global

world coordinate system. The feature vector p was already defined for the tangent points.

However, discarding this approach, we redefine this vector. Based on the current estimate

of the system state, the position of the point triplet in the image can be predicted.

y∗(k) := g(p,x∗(k),kc). (4.93)
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Figure 4.26: This figure shows how the discrepancy between predicted and real mea-
surements is determined using tangent points features. It shows that auxiliary points are
required to measure the orientation. This is one reason, why the idea of the tangent points
is discarded and replaced by point triplet features later. The figure shows a closeup of an
image at the corner of the penalty area. The estimate of the robot’s position is slightly
wrong. Thus, the predicted feature locations y∗

1 and y∗
2 do not precisely cover the pix-

els corresponding to the respective field lines. Here, y∗
1 and y∗

2 have three components
including the predicted x, y-position plus the predicted orientation. To measure the true
location of each feature, three line detectors are applied along straight lines. The lines are
oriented perpendicular to the predicted orientation of the corresponding field line. Each
of the detectors then finds the position of maximum response, which is on a pixel of the
field line. Fitting a straight line to the three detected points then yields the measured
orientation of the field line. Later, when we discard tangent points and use point triplets
instead, the measurements will solely consist of pixel coordinates, not including angular
components.

Now, y∗(k) = (x∗1, y
∗
1, x

∗
2, y

∗
2, x

∗
3, y

∗
3)

T contains the predicted pixel coordinates of the

projected points in the image. Also, we predict the orientation and width of the field

line at the respective points and select an appropriate detector. The detectors yield the
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Figure 4.27: In a second approach, we define a point triplet to be a feature consisting of
three points on a field line equally spaced at a small distance (between 20 and 80cm). The
two examples (a) and (b) show that the corresponding field line can be straight or curved.
The resulting feature vector has the simple form p := (xw1, yw1, xw2, yw2, xw3, yw3)

T .

positions of maximal responses, which are summarized in y(k) = (x1 y1 x2 y2 x3 y3)
T . This

step is illustrated in figure 4.28. Next, we consider the discrepancy between predicted and

measured feature values.

∆y(k) = y(k)− y∗(k) (4.94)

There is a coupling between a change ∆x(k) of the system state and the measurement

discrepancy ∆y(k). However, this mapping is non-linear because of the distortion of

the image and the angular components in the system state. Note that this non-linearity

is typical, not only for omni-directional vision systems, but also for perspective vision.

Hence, we linearize the mapping at the predicted estimate x∗(k) of the system state.

∆y(k) = C(k)∆x(k) (4.95)

Here,

∆x(k) = x(k)− x∗(k), (4.96)

and C(k) is the Jacobian at time step k, the derivation of the vector function g (see

equation 4.93) with respect to the system state x. We will describe later how it is cal-

culated. At this point, we consider y(k) to contain only one point triplet. In this case,

the mapping described by matrix C(k) is typically not bijective, that is, C(k) cannot be
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Figure 4.28: The position of a point triplet in the image y∗ = (x∗1, y
∗
1, x

∗
2, y

∗
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∗
3, y

∗
3)

T is
predicted based on the current estimate of the system state. A local detector is applied
along lines orthogonal to the predicted orientation of the field lines at the respective points.
Based on the prediction of the field line widths and orientations, the appropriate detector
is selected out of a set of pre-computed detectors that vary in width and orientation.
The detectors then measure the true position of the point features in the image y =
(x1, y1, x2, y2, x3, y3)

T .

inverted. Hence, it is not possible to calculate the system state by replacing ∆x(k) in

equation 4.95 with equation 4.96 and solving for x(k):

x(k) = x∗(k) + C(k)−1∆y(k). (4.97)

Moreover, such a calculation would contradict the overall approach, since we want to

include the dynamic and measurement models to interpret the discrepancy ∆y(k). Indeed,

we will collect more than one point triplet in the vector y(k) later, and C(k) will be

nonsingular in many cases. But even then, we do not use equation 4.97 to calculate the

system state. Instead, we apply a Kalman filter:

x∧(k) = x∗(k) + K(k)∆y(k). (4.98)
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Here, K(k) is the so-called gain matrix, which is calculated by

K = P∗CT (CP∗CT + R)−1. (4.99)

Here, P∗ is the current error covariance matrix. The matrix is updated by

P = P∗ −KCP∗. (4.100)

The number of rows and columns of the matrix P equals the number of system states.

R is the measurement noise covariance matrix. Its number of rows and columns cor-

responds to the dimension of y. The matrix R contains the covariances between the

individual quantities of the measurement vector y. These covariances depend on the cur-

rently selected features. A feature, which is close to the robot gives rise to smaller entries

than a distant feature. The reason is, that closer objects have a higher resolution in the

image due to the catadioptric image formation.

The Jacobian C(k) plays a fundamental role in the overall approach. The components

are the partial derivatives of the vector-function g, describing the optical mapping, with

respect to the components of the system state x, taken at x∗.

Remember, that the system state was defined as

x =
(
x, y, φ, vx, vy, ω

)T

, (4.101)

with x,y,φ representing the robots position and orientation (the robot’s pose or reduced

system state) and vx, vy, ω specifying the translational and rotational velocities (see page

73). The appearance of features in the image not only depends on the robot’s pose and

other objects, but also on its translational and rotational velocities. For instance, when

the robot rotates very fast and the exposure time of the camera is short, i.e. because of

dim light, then features like the field lines tend to smear along the rotational direction.

However, in the following, we neglect these effects. It suffices to consider the partial

derivatives with respect to x̆, the reduced system state. When considering only one point

triplet p(k) = (xw1 yw1 xw2 yw2 xw3 yw3)
T and setting

(x1 y1 x2 y2 x3 y3)
T := y(k) = g(p,x(k),kc) (4.102)
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the Jacobian has the form:

C(k) :=



δx1

δx
δx1

δy
δx1

δφ
δy1

δx
δy1

δy
δy1

δφ
δx2

δx
δx2

δy
δx2

δφ
δy2

δx
δy2

δy
δy2

δφ
δx3

δx
δx3

δy
δx3

δφ
δy3

δx
δy3

δy
δy3

δφ


(4.103)

Here, we omitted the variable k in the components of the matrix for the sake of readability,

but of course, the matrix is not static, instead depending on the time step k.

Because of the distortion by the robot’s mirror, the matrix C(k) cannot be computed

analytically. Instead, it has to be computed numerically in each time step k by combining

knowledge of the model of the field lines, the current estimate of the system state and the

detection process.

The differential components of the Jacobian C(k) at time step k are approximated by

finite differences. For that approximation, it is predicted how the measurements of the

detectors evolve in the image when individual components of the system state are slightly

modified. That is, small, finite differences ∆x, ∆y and ∆φ are added to the components of

the current estimate x∗(k) of the system state and the resulting geometric constellation of

the field lines in the image, before and after the modification, is investigated. Predicting

the image position of the currently used features, the question is, what the corresponding

detectors would measure if the state changed as supposed by the finite differences. Since

the measurements of the detectors are determined by applying them along straight scan

lines and returning the position of maximum response, a prediction of the measurement

can be made by calculating the intersection points between hypothetical scan lines and the

predicted field lines according to the modified system state. Relating the measurements

to the finite differences in the system state yields the approximate components of the

Jacobian matrix C. This calculation is illustrated in figure 4.29.
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Figure 4.29: The Jacobian C is calculated numerically by finite differences. Figure (b)
shows the field lines as they would appear to the robot when it is located as in (a). In
(c1), (d1) and (e1), the robot’s current pose is slightly modified in one of its components
(x, y, φ)T . The original pose is compared to each of the modified poses; in particular,
the corresponding predictions of the field lines in the image are compared. Assuming a
single point triplet, the response of the detector is predicted by calculating where the
detector’s scan lines would intersect the geometry in the image that corresponds to the
modified poses. In figure (c2), (d2) and (e2) the gray contours reflect the field lines that
correspond to the robot’s original pose. Each is the same closeup of (b). The black lines
reflect the field lines corresponding to the modified poses, and the straight scan lines and
black dots illustrate the expected detector measurements. To calculate the intersection
points, only the local geometry around the point triplet has to be used. Thus, figures
(c-e) show cut-outs. Relating the expected detector measurements to the modification of
the robot’s pose yields an approximation of the entries into the Jacobian matrix (f).
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Up to this point, only one point triplet was used to correct the current estimate of the

system state. Now, we will use several point triplets and collect all their components in

a single feature vector.

The point triplets used will not remain the same over time. Rather, a selection al-

gorithm will dynamically choose different features. But how many and which features

should be used?

A feature selection process must carry out the following three steps. First, visible

point triplets have to be determined. For that, the portions of the field lines that are not

occluded by obstacles have to be determined. Second, point triplets on the field that can

be easily recognized with feature detectors have to be selected. They should not be close

to obstacles, corners or junctions of the field lines to avoid detection problems. Also, they

should not be too distant. Third, from the set of potential point triplets, the combination

most suited to correct the current estimate of the system state must be determined.

The feature selection process must consider the obstacles to avoid the selection of

point triplets that will be occluded in the image. Obstacles can also be tracked with the

system dynamics approach. However, in the following, we simply assume that we know

these obstacle positions.

When observing the playing field from above, the left and right side of an obstacle form

a cone together with the position of the robot. Field lines within this cone and behind

the obstacle are occluded in the omni-directional images (see figure 4.30). Thus, if the

intersection points between the field lines and the sides of the cones are calculated, a list

of visible curved and straight line segments can be computed as illustrated in figure 4.30.

On each visible line segment, one or several potential point triplets can be considered.

However, the line segments should be long enough to allow a point triplet to be placed in

some distance w from the end points of the segment. Otherwise, they should be discarded

to avoid detection problems due to imprecisions in the current estimate of the system

state. If a line segment is long enough, several point triplets can be placed on it, with the

constraint that they are spaced at a distance of at least d = 10cm.

It is important to understand that a single point triplet on a straight line is not able

to recover the component of a movement that is parallel to the line. This is the well-

known aperture problem. However, by selecting constellations of point triplets that are

not parallel, this problem can be overcome.

After having selected a set H of l potential point triplets, the best k (i.e. k=2) should
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(a)(a) (b)(b)

Figure 4.30: The shaded areas in (a) show sections occluded by obstacles. The visible
parts of the field lines (b) can be determined by calculating the intersection points between
field lines and rays starting at the robot’s position and passing through each side of the
obstacles.

be selected. Here, the best point triplets are those that allow the best estimate of the

system state, that is, with the “smallest” resulting error covariance matrix P. The error

covariance matrix P is recursively computed from the old matrix P∗ by:

P = P∗ −KCP∗ (4.104)

Wünsche developed a criterion for the efficiency of a feature combination in his doc-

toral thesis [86]. Underlying a Gauss-Markov estimator, the error covariance matrix is

calculated by

P = (CT
NCN)−1, (4.105)

where

CN =
√

R
−1

CRS. (4.106)

Here, CR is the Jacobian matrix based on the reduced system state, and S is a scaling

matrix that is necessary to relate errors in the individual components of the system state

to each other. Wünsche defined

J = |CT
NCN | = |P−1| (4.107)
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as a criterion to decide for a feature combination. The feature combination that max-

imizes J should be selected. In this way, the determinant of P is minimized, favoring

small diagonal elements in P, which represent the error variances of the system state

components. At the same time, uncorrelated errors are favored. Using a Kalman filter to

calculate the error covariance matrix P, the definition

J := |P−1| (4.108)

is the analog to equation 4.107. However, the problem is that the determinant does not

consider the different units of the components of P. For instance, a variance of 1.0 radians

in the orientation of the robot is much more severe than a variance of 1.0 centimeters in

the cartesian position. Thus, the definition should be adjusted to

J := |S2P−1|, (4.109)

with S being a scaling matrix that relates the components to each other. Selecting k

features from the set H of l potential features,
(

l
k

)
combinations are possible. In many

applications the number of potential features is restricted. With k = 2 and l = 20 this

would result in 20·19
2

= 190 required evaluations of the criterion J . Selecting 4 from

10 features produces 61 combinations, which is a treatable computational load. However,

when k and l increase, the combinatorial possibilities explode. For instance, when selecting

6 from 50 possible features, approximately 15 · 106 combinations are possible.

In order to reduce the computational load, Wünsche’s idea was, not to compute the

best combination of features in each step, but instead to try to improve the current

feature combination by exchanging single features. In this way, each of the currently used

k features must be considered to be exchanged with one of the k− l unused features. That

is, the criterion J must be evaluated only k(k− l)+1 times. In the example, where 6 from

50 features have to be selected, only 50 ·44+1 = 2201 combinations have to be considered

in each step. Compared to the 15 · 106 combinations that had to be evaluated before, this

corresponds to a reduction of the computational load of two orders of magnitude.
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4.13 Layer 3: Feature Recognition

In the third layer, we run a feature detection process that allows us to find sub-structures

like corners or the center circle, which yield strong hints for the robot’s position. A

similar approach has been done in [39], where straight lines and circles are detected

for localization. Our approach differs from the previous method in the way we detect

the features. While the approach in [39] is based on the Hough transform, which is

computationally very expensive, we detect the features using a constructive approach.

That is, we try to iteratively compose features from smaller parts. Our method is based

on the representation of the field lines as obtained by the new region tracking algorithm

described on page 66. Here, the field lines are already organized as chains of points.

4.13.1 Representation of the Line Contours

We use our region tracking algorithm to extract the field lines from the images. We deter-

mine the boundary of all green regions in the images and we search for green-white-green

transitions perpendicular to the boundary curves. After having extracted the lines, they

are represented by the pair (P,C) where P = p0, ..., pn−1 is a set of n points with carte-

sian x,y-coordinates and C = c0, ..., cl−1 supplies connectivity information that partitions

P into l point sequences. Here, each ci = (si, ei) is a tuple of indices determining the

start and end point in P that belong to the corresponding point sequence. That is, point

sequence i consists of the points psi
, ..., pei

. By manipulating the connectivity information

C, point sequences can efficiently be split or merged.

The line contours as extracted from the images are distorted due to the mirror in the

omni-directional vision system. In the following, we assume that the distortion has been

compensated (see page 98). However, even without removing the distortion correctly, we

are still able to detect most of the features. Figure 4.31 can provide an impression of the

initial data. In many cases, there are long point sequences that correspond precisely to

the shape of the field lines. However, there are also outliers, missing lines, and small line

fragments due to occlusion and detection errors.
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Figure 4.31: Four examples of extracted line contours. Some long sequences of points
correspond precisely to the shape of the field lines. But there are also outliers, missing
lines, and small line fragments due to occlusion and detection errors.
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4.13.2 Quality and Quantity of Features

In the following sections, we will concentrate on the recognition of specific features which

we refer to as high-level features. The idea of hierarchically ordering the features stems

from the fact that there exist features, such as the center circle, which yield a unique

clue of the robot’s position, while others give rise to a whole set of possible positions.

Figure 4.32 provides a first idea of different feature types that might be detected in the

line contours.

corner X-junction T-junction

parallelismcenter circle U-structure

quarter circle rectangledouble corner

straight line arc

Figure 4.32: Examples of different types of features are illustrated. One can distinguish
between low-level features that give rise to many possible robot poses or high-level features
which yield only a few possible robot poses from which the feature could have been
observed.

In order to put the feature detection process onto a well-defined base, we first establish

a mathematically sound definition of what a high-level feature is. For that, we define two

terms, the quality and the quantity of a feature type in the following. The quality of a

feature type is the dimension of the space of possible robot poses once a feature of the
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respective type is detected. The quantity is the frequency of a feature in the task domain.

Of course, we will favor features with a low quantity number. In the following we will

establish these definitions more precisely.

In the context of the field lines, one of the simplest possible features is a single point

on a line. When detecting such a point pi in the image (subscript i for image), the point

can be transformed from the image coordinate system into the local coordinate system

of the robot (applying the distance function). Let’s denote this representation with pr

(subscript r for robot).

pr := Y−1
f (pi) (4.110)

Here Y−1
f is the generic function which maps the feature f from image space to local

world space.

Then we know the angle at which the point is seen and its distance. Let us assume

for the moment that there is no uncertainty in the measurement. Then the question is:

Where could the robot be so that a point on a field line is seen at the given angle and

distance?

In order to express this question more formally, we have to make some definitions.

First of all, given a feature type f (i.e. a point, line, corner,...) we define Lf to be the set

of all poses (position and orientation) where such features exist within the field model,

specified within the global coordinate system. For instance, Lp is the set of all points on

the field lines, Ll the set of all straight line segments, Lc the set of all corners, etc...

Then given a feature type f , we ask for the set Xf of robot poses, such that for all

x̆ ∈ X there exists an instance p ∈ Lf , such that p would appear at the location of pi in

the image:

Xf (p
i) :=

{
x̆|∃p ∈ Lf : Yf (x̆

point−→ p) = pi
}

(4.111)

Note, that each element in Xf is a three dimensional vector with the last component

specifying an angle. This last component complicates the following definitions, and we

will first consider X̃f , which is Xf without the final component. Typically, the set X̃f

can be thought of as a union of k sets X̃1f , X̃2f , ..., X̃kf , with each set being an affine

subset of IR2. Then we define the quantity of a feature type to be k and the quality to be

the dimension of the X̃i i = 1, 2, ..., k. In the case that the sets have different dimensions
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(which is not the case in this thesis) one should more carefully define the quality as:

˜quality(f) = maxi=1,2,...,k(dim(X̃if )) (4.112)

For instance, if we consider the center circle to be a feature type, Xcenter circle consists of

two possible robot poses, one on each side of the playing field, from which the robot could

have perceived the detected center circle pi in the image. Thus, X̃center circle decomposes

into two subsets of dimension zero. Hence, quality(center cirlce) = 0. Accordingly the

quantity of the center circle feature is two. If we consider a single point as a feature, the

quality is two, because X̃point consists of areas of possible points. The quantity in this

case is infinite.

We will consider another example with straight line segments as features. For the sake

of simplicity, imagine that our world model Lstraight lines would consist of only 1 (instead

of 17) straight line segment(s) and that li is a detected line segment in the image and lr

is the corresponding segment in the local coordinate system of the robot as depicted in

figure 4.33b). Then figure 4.33c) shows the set X̃straight lines and its decomposition into

the sets X̃1straight lines and X̃2straight lines.

Now we can establish a hierarchy of features. At the top are features with quality zero,

which we refer to as high-level features. Features having the same quality are ordered by

their quantity with lower quantities yielding a higher position in the hierarchy.

In the following sections, we will describe a complex feature detection method. The

method begins with low-level features such as points and lines and iteratively constructs

higher-level features. At the very top of the construction process, there are five different

high-level features: the center circle, and four different corners arising from the structure

of the penalty area. Before we detail the detection process, we will first describe how the

pose of the robot, which is the measurement vector zrec of the third layer, can be inferred

once a high-level feature is detected.

4.13.3 Direct Pose Inference by High-Level Features

Figure 4.34 shows the five high-level features we are going to detect. The four corners

seem to be congruent, but their location within the penalty area will be recognized such

that left,right, inner and outer corners can be distinguished.

Each feature type defines a local coordinate system. We refer to the origin of this
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Figure 4.33: This figure illustrates the definitions of quality and quantity of a feature. In
this example, the feature type “straight line segment” is considered and it is assumed that
the world model Lstraight lines consists only of one line l0. (see (a)). In (b) the robot is shown
having detected a line li in the image which is transformed into the robot’s local coordinate
system, where it is denoted with lr. Then figure (c) depicts the sets X̃1straight lines and

X̃2straight lines, which constitute the positions from which the robot could have seen the

line in order that its perception fits to the model Lstraight lines. Since each set X̃1straight lines

represents a one-dimensional line segment quality(straight line) = 1 and since there exist
two sets, quantity(straight line) = 2.

system together with the orientation of the y-axis as a reference mark. Figure 4.35 shows

the reference marks for the five high-level features. By specifying the pose of the reference

marks in the global coordinate system, the locations of the features are uniquely given.
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right outer corner

left outer corner

left inner corner

right inner corner

center circle

Figure 4.34: The center circle and four different corners are recognized by the system.
Although the shapes of the different corners are identical, the system is able to identify
the position of a detected corner within the penalty area. Within one side of the playing
field, each of the corners represents a unique feature, since their position with respect to
the penalty area is simultaneously detected in the recognition process.

right inner/outer corner left inner/outer corner
center circle

reference marksref

 fdafd

Figure 4.35: This figure shows the position of the reference marks considered in relation
to the local geometry of the features.
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In particular, the set Lf is the set of poses of reference marks in the global system. It

specifies at which locations the feature f is instantiated in the line model. Figure 4.35

shows the sets Lcenter circle and Lleft inner corner. The sets of the other three corners are

defined accordingly. When detecting a high-level feature, we actually infer the pose of its

right outer cornerL
right inner cornerL

left outer cornerL left inner cornerL

center circleL

Figure 4.36: The set Lf of global poses of the reference marks of each type of feature is
shown.

reference mark within the extracted field lines after having removed the distortion, that

is, within the local coordinate system of the robot. Let us denote qr
f as this detected

pose of feature f . Then we compare qr
f with the poses pi ∈ Lf and for each combination,

we determine a relative transformation Mi (a movement consisting of a translation and

rotation as defined on page 75) of the robot that matches the poses to each other. With

x̆k−1 being the last estimate of the robot’s pose, consider figure 4.37 for the calculation

of this transformation:

qf = (x̆k−1
point−→ qr

f ) (4.113)

Mi = qf
point−→ (pi

point←− (0 0
π

2
)T ) (4.114)

Here, qf is the pose of the reference mark in the global system corresponding to the last

estimated robot pose, which is going to be adjusted.
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Figure 4.37: A high-level feature f is detected, the reference mark of which is at pose qr
f

in the local coordinate system corresponding to x̆k−1 of the robot at time step k−1. Then
pose pi of the global model Lf is considered and our goal is to calculate the movement
M of the robot, such that the perceived feature matches the model feature.

Finally, we take the smallest movement and define the corresponding robot pose to be

the measurement vector of layer 3.

zk,recognition = x̆k−1 + Mismallest
. (4.115)

Here, x̆k−1 is the last estimate of the robot’s pose and the smallest movement Mismallest

is considered to be given in the global coordinate system. In order to determine the

smallest movement Mismallest
, we have to define a metric on the space of movements.

Thus, we have to relate a difference in orientation to a difference in translation. With

M =
(

∆x ∆y ∆φ
)T

, we use the following distance function:

d(M) = ∆x2 + ∆y2 + (γ∆φ)2, (4.116)

with γ = 300cm
π

enforcing the influence of the angle given in radians and ∆x and ∆y

specified in centimeters. Thus, a rotation of 180 degrees is weighted as severely as a

translation of about 300 centimeters.

This section described, how the robot’s pose can be inferred, when detecting a high-

level feature. The following sections are dedicated to the actual recognition process.
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4.13.4 Smoothing the Lines

After the field lines are extracted from the images, the actual feature recognition starts.

It consists of approximately 20 steps, beginning with a smoothing operation, which is

required to simplify the detection of local maxima in curvature later.

Smoothing is efficiently done by procedure 4, which is listed in appendix A. Figure

4.38 shows the effect of smoothing.

(a) (b)

Figure 4.38: The lines (a) before and (b) after smoothing.

4.13.5 Splitting the Lines

The field lines consist of curved and straight lines. For the further detection process, we

want to classify the perceived line contours into these two categories. However, as de-

picted in figure 4.39, the perceived lines often consist of concatenated curved and straight

segments. To classify them separately, we have to split the lines at the junctions. The

latter coincide with points of local maximum curvature. We retrieve these points by first

calculating a curvature measure for each point and then finding the local maxima. Al-

though sophisticated methods exist to calculate curvature measures([6]), we have adopted

a very simple approach for the sake of efficiency. For each point, we reference two other

points, one in front of and one behind the current point. With these three points, we

define two approximate tangent vectors, one reaching from the left to the center point

and one from the center to the right point. Finally, we define the curvature at the center

point to be the angle by which the first vector has to be rotated to equal the second vec-

tor, divided by the distance between the centers of both vectors. In order to be resistent
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(a) (b)

Figure 4.39: Often a perceived line consists of concatenated straight and curved segments
as illustrated near (a) the center circle and (b) a quater circle at the corner of the playing
field.

against local noise in the curvature, we choose the enclosing points at some distance to

the center point. Since all the points are approximately equally spaced, we can afford to

use an index distance instead of a precise geometric distance. That is, for a point p[i]

at index i, we choose the enclosing points to be p[i − w] and p[i + w] (w = 4 in our

implementation). This implies that the curvature can not be calculated for the first and

last w points. The principle is illustrated in figure 4.40 and the corresponding pseudo

code is given in procedure 5 (see appendix A).

a
b

p[i]

p[i-w]
p[i+w]

Figure 4.40: The curvature (dimension [1/cm]) at point p[i] is defined to be the angle α

by which ~a has to be rotated to equal ~b, divided by the distance between the centers of
both vectors.

To detect local maxima of the curvature measure, we have adopted the approach given

by procedure 6 in appendix A. While traversing the curvature values, we detect intervals
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of values that exceed a given threshold and within each interval, we determine the index

with the maximal value (see figure 4.41). To avoid extrema being too close together, a

new interval is opened only if it is at least some given distance from the previous interval.

index position

curvature  threshold

indices of local extrema

cu
rv

at
ur

e

Figure 4.41: The local maxima are found by searching for the highest values within
intervals that exceed a given threshold.

Figure 4.42 shows the locations of the split points for various lines. The splitting can

efficiently be performed by alternating the entries in the incidence array. If line l is split

at k locations, the corresponding entry I[l] is replaced by k + 1 new entries that specify

the start and end points of each segment according to the location of the split points.

Figure 4.42: Some examples that demonstrate the location of the split points.
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4.13.6 Corner Detection

This section describes a processing step which was applied in the system as it was in

2003, where the penalty area consisted only of one rectangle (see page 8). Although the

processing step is not included in the actual system it might be interesting for researchers,

who want to develop a similar feature detection method.

The split points not only determine the locations to subdivide the lines into parts,

but as a byproduct also can yield the first features. We denote a split point at which the

curvature is approximately 90◦ as a corner feature and we can distinguish two different

types depending on whether the curvature is positive or negative. Remember that the

lines are detected by stepping around the boundary of the regions neighboring the field-

lines and that the sense of rotation is always the same (see page 63). Thus, in the case

of a clockwise rotational direction, if the region has a convex boundary at the point

where the corner feature has been detected, the curvature is negative, while it is positive

if the boundary is concave. Hence, we denote the respective features as convex and

concave corner features. Both cases are illustrated in figure 4.43. As illustrated in figure

(a) (b)

<  0

> 0

convex corner

concave corner

Figure 4.43: Depending on the shape of the region’s boundary, a (a) convex or (b) concave
corner feature is detected.

4.44, convex corner features occur quite frequently. In contrast, concave corner features

occur only at the corners of the penalty area, which are directed inwards into the field.

Essentially, concave corner features should also arise at the outer corner markings of the

playing field, but the corner posts occlude the lines and no continuous sequence of points

is extracted at these locations. Therefore, detecting a concave corner feature gives a very

strong hint to the robot’s position on the playing field. Figure 4.45 gives an overview

of the locations on the playing field where the respective features emerged, underlying a
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playing field as it was defined by RoboCup in 2003.

the only concave corner feature

Figure 4.44: Convex corner features are drawn by dark blue corner arrows. The only
detected concave corner feature is drawn by a longer light blue arrow.

(b)(a)

Figure 4.45: The locations of (a) concave and (b) convex corner features, underlying a
field line structure as it was given in Padova 2003.
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4.13.7 Classification

After the lines have been split, we want to classify each fragment to be either straight

or curved and we employ the following test criterion: Similar to having calculated the

curvature measure above, we determine the angle between two vectors, but this time

spanned by the first, the middle and the last point of the current line fragment. If the

absolute value of the angle exceeds a threshold tφ (tφ = 0.4 radians in our application),

then the line is declared to be curved, otherwise straight. Figure 4.46 shows a typical

result and demonstrates that sometimes false classifications occur. The bent line passing

along the corner of the penalty area has not been split because its curvature is too smooth

and weak. Therefore, instead of having two straight fragments, the line has been classified

as curved. This is wrong because the field markings of the penalty area do not consist

of any curved lines. However, identifying lines as curved is primarily for the detection of

the center circle and the corresponding detection process can cope with a small number

of wrong classifications. The straight line fragments, the curved parts and the corner

features serve as building blocks for more complicated features.

4.13.8 Constructing Arcs and straight lines

Previously, point sequences were classified into straight and curved segments. Next, we

construct straight lines and circular arcs from the respective data. A straight line can be

approximated by the start and end point of each point sequence. Similarly, one can simply

construct an arc using the start, middle and end point by considering the perpendicular

bisectors of the two segments. They intersect at the center of the circle including the arc

(see figure 4.47).

In order to verify whether the points really have the shape of a circular arc, we ap-

proximate the radius r by the mean distance of the points pi from the center m.

r =
1

n

n−1∑
i=0

‖ pi −m ‖ (4.117)

where n is the number of points in the points sequence. Next, we compute the mean

distance from this radius. Finally, we relate this measure to the radius in order to allow

larger arcs to have a higher variance. That is, the relative deviation σrel from the radius
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false classification

Figure 4.46: Line fragments classified as curved are drawn by thick gray strokes, while
straight fragments are depicted as thin black lines. As illustrated on the left, false classi-
fications can occur. Points of curved sequences are not filled.

r is

σrel =
1

rn

n−1∑
i=0

|‖ pi −m ‖ −r |. (4.118)

It seems that two loops are required, one for calculating r and one for calculating σrel,

but this is not necessary. In terms of a random variable X being the distance of a point to

the center, equation 4.117 is the expectation EX of X and equation 4.118 is the standard

deviation of X divided by EX. That is,

σrel =

√
VarX)

EX
. (4.119)
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p0

pn-1

pn/2

m

Figure 4.47: The three points p0, pn/2 and pn−1 of a point sequence of length n form two
line segments. The center point m of a circular arc is approximated by calculating the
intersection point of the perpendicular bisectors of the segments.

Since VarX = E[(X − EX)2] = EX2 − (EX)2), we have

drel =

√
EX2 − (EX)2

EX
. (4.120)

Thus, r and σrel can be computed efficiently within the same loop by calculating EX

and E(X2). In figure 4.48, some examples of arcs with the respective values of σrel are

depicted. We consider arcs for which σrel exceeds 0.3 as unreliable and discard them.

rel
= 0.0063

rel
= 0.0450.046

rel
=

rel
= 0.015

Figure 4.48: Some examples that illustrate the values of σrel for various curved point
sequences. A precise arc with the estimated radius is shown for each point sequence. The
closer the shape resembles the arc, the lower is σrel. Point sequences with σrel > 0.3 are
discarded.
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(b)

(a)

Figure 4.49: The goal is to detect the center circle. However, it can happen, that arcs
are detected which do not originate from a circle. Two typical cases are illustrated. On
the left of figure (a) and (b) the original point sequences are depicted. Circular arcs are
constructed from each curved point sequence and the corresponding circle which includes
the arc is depicted on the right. For gray circles σrel > 0.3 and they are discarded. Circles
of accepted arcs are painted black. Also, the two perpendicular bisectors that were used
to calculate the center point of each arc (see figure 4.47) are depicted by thin straight
lines. If circular arcs originate from the same circle, their center points are close together.
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4.13.9 Grouping Arcs and Detecting the Center Circle

Although the arc detection discussed above discards curved point sequences that do not

have the form of a circular arc, arcs that are not part of the center circle could emerge.

Some of these spurious arcs are part of the quater circles, but there are also cases, where

arcs emerge from straight lines due to noise effects, detection errors, or a badly calibrated

distance function. Figure 4.49 shows some of these cases.

To be robust against such outliers, we want to group arcs in order to determine whether

there are several arcs supporting the same circle, or whether a single spurious arc has been

detected. Also, grouping allows a more precise detection of the overall circle.

(a) (b)

Figure 4.50: In figure (a) the center points of all detected arcs are depicted by small
disks filled in with a smooth black-white transition. In figure (b) the resulting clusters
are depicted with the area of the disks indicating the weight of each cluster. All point
sequences that contributed to the greatest cluster are painted red. A circle is constructed
with the center being the center of the main cluster and the radius being the average
distance of the red points from the cluster center. However, the circle is just a first
approximation and the solution will be refined by an iterative method later.
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In order to group the arcs, we observe that the center points of arcs belonging to the

same circle should be close together. Therefore, we search for clusters of the center points

of the arcs. We will refer to them simply as center points in the following description

of the cluster algorithm. Initially, we pose a cluster at the first center point. Then, we

traverse the remaining center points and calculate the respective distance to the cluster

center. If the distance exceeds a variable threshold tdist = 0.6r where r is the radius of

the current arc, we open a new cluster at the respective position. Otherwise, we adapt

the cluster center to represent the weighted mean position of all assigned center points.

Here, the weights are the lengths of the arcs, which we approximate by the number of

points of the corresponding point sequences. When several clusters have been opened,

a center point first determines the closest cluster and then verifies whether the distance

exceeds tdist. In this way, we obtain a set of clusters and choose the one with the greatest

weight. If the weight is greater than a threshold tw = 20, we consider the cluster to be

the approximate center of a circle. To determine a first approximation of its radius, we

calculate the mean distance of all points of the arcs that have contributed to the cluster.

However, as illustrated in figure 4.50 the circle is just an approximation. Up to now, the

circle has emerged from point sequences that have been classified as curved. However,

point sequences that originate from the center circle of the playing field could have been

misclassified as straight and hence, are not part of the points from which the circle is

determined. We want to include these points before refining the solution of the initially

found circle. Figure 4.51 shows an example of such lines that are part of the circle, but

have been classified as straight.

Remember that for classification, the angle between the two vectors spanned by the

first, middle, and end point of each point sequence is used. If the absolute value of

this angle exceeds a threshold tφ = 0.4, the point sequence is considered to be curved,

otherwise straight. Now, in the presence of misclassifications, one could assume that

the threshold tφ = 0.4 is too high. But when lowering the threshold, point sequences

that emerge from straight lines are sometimes classified as curved. In fact, there is no

threshold tφ that ensures that all the data is classified correctly. Instead, an initial idea

of the underlying structure of a point sequence has to be present in order to classify

ambiguous data correctly.
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(a) (b) (c)

misclassified point sequences

Figure 4.51: This figure shows the effect of misclassifications of point sequences for the
detection of the center circle. In (a) several point sequences are classified as straight,
although they originate from the center circle. Since arcs are only constructed from curved
sequences (b), the detected circle is imprecise (c). Thus, before refining the solution, it is
important to determine the point sequences which have been misclassified and to include
the corresponding points when improving the solution.

4.13.10 Refining the Initial Solution of the Circle

We use the initial hypothesis of the circle to detect and reclassify ambiguous data. We

consider all point sequences that have been classified as straight and investigate whether

they could have been part of the hypothetical circle. Here, some tolerance is required,

since the initial hypothesis is just an approximation of the real circle. Two conditions

are verified. First, the distance from the center of the actual “straight” point sequence

to the center of the hypothetical circle is compared with the radius of the circle. Second,

the direction of the point sequence is compared with the tangent direction of the circle

at a corresponding location. If the difference between the measured distance and the

radius is more than half of the radius, we discard the point sequence. That is, we do not

consider the point sequence to be a misclassified curved sequence that is part of the circle.

Similarly, we discard the point sequence if the difference in the direction is too large. In

order to describe the conditions more precisely, let m be the center and r the radius of the

initial circle. Furthermore, let p denote the center of the actual straight point sequence

and let v be the directional vector of the point sequence, which is the vector from the
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first to the last point of the point sequence. Then we consider the intersection point s

of the circle with a ray beginning at the center of the circle and passing through p (see

figure 4.52).

(a)

p ps s

(b)

t

v

m

n

m

r

point sequence

Figure 4.52: This figure illustrates the different symbols used in equations 4.121 to 4.125
to determine whether a point sequence belongs to the circle, although it has been classified
as straight. This step is important in order to refine the initial solution of the detected
circle. The meaning of the symbols is explained in the text. Part (b) shows a close-up of
the geometry around the point sequence in part (a).

Formally, s is given by

s = m + rn, (4.121)

where

n =
p−m

||p−m||
. (4.122)

The tangent direction t of the circle at point s is obtained by rotating n 90 degrees. With

n = (nx ny)
T , we have

t =

(
−ny

nx

)
. (4.123)

We discard the actual point sequence if

||p− s|| > 0.5r, (4.124)
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or, if

| t
Tv

||v||
| > cos 25◦. (4.125)

In this way, we detect additional point sequences that also belong to the circle. Thus, we

have the points from which the initial circle was constructed plus the points added due

to the initial hypothesis of the circle. Next, we will adjust the position and radius of the

circle to fit the points.

Here, we use Landau’s method [52], a simple method that iteratively adjusts the

center and the radius of the circle. We restrict the number of iterations to 4 where the

computational costs per iteration are linear to the number of points. Figure 4.53 illustrates

a typical example, showing the initial and refined circle.

(a) (b)

Figure 4.53: The position and radius of the initial circle is refined. Points which are
considered to originate from the circle are painted with a diagonal pattern. Initially (a),
only the points of curved point sequences are considered to be part of the circle. Thus, the
initial circle is not optimal. In (b) additional points have been determined by identifying
point sequences close to the initial circle. Then the initial circle is iteratively adjusted to
the points by Landau’s method [52]. Only few iterations are required (two iterations in
this example).

Finally, we search for a straight line which passes roughly through the center of the

circle. If such a line can be found, we consider the circle to be the center circle of the

playing field.
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4.13.11 Determining the Principal Directions

Straight field lines of the playing field are either parallel or perpendicular. We want to

determine the orientations in the extracted contours. We will refer to them as principal

directions. We will determine them with the straight lines constructed previously. Typi-

cally, spurious straight lines are present and we apply a clustering algorithm to cope with

the outliers. For each line i, we calculate its orientation φi, normalizing the orientation

to lay within [0, ..., π]. Each line votes for the angles φi and φi + π/2. Hence, each line

votes for a pair of perpendicular orientations. Here, we apply the same clustering method

as for the center circle, but this time working on one-dimensional values. We open a new

cluster if the angular difference to the best cluster exceeds 0.3 radians. Otherwise, the

cluster center is adjusted, with the weights being the lengths of the contributing lines.

Finally, the cluster with the greatest weight determines the first principal direction ψ0.

The second principal direction ψ1 equals the first, rotated 90 degrees. In the following

sections, we will consider two lines through the origin having the directions ψ0 and ψ1,

respectively. We will refer to these lines as the principal axes a0 and a1. Figure 4.54

shows two examples.

4.13.12 Discarding Unreliable and Grouping Collinear Lines

Having determined the main axes a0 and a1 we consider three types of lines. Those

which are perpendicular to a0, those which are perpendicular to a1, and those whose

orientation differs from both ψ0 and ψ1 by more than 0.3 radians. We consider the latter

lines unreliable and discard them. The following step is performed for both a0 and a1

together with the respective perpendicular lines. Therefore, we will write a instead of

a0 and a1 in the following. Let L = {l0, l1, ..., ln} denote the set of lines li which are

perpendicular to a. Furthermore, let mi be the midpoint of line li. We consider the

orthogonal projections of all mi onto the axis a. Lines that are collinear will yield close

projection points. Since a passes through the origin, each projection point of mi can be

represented by a single value ti, which is the distance of the projected point to the origin.

This relationship is illustrated in figure 4.55.

Collinear lines will have the same ti values. However, since the lines are not precisely

collinear, the ti will differ slightly. Thus, to find groups of collinear lines that are per-

pendicular to a, we search for clusters of similar ti values. Again, we apply the same
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(a) (b)

a0

a1

a0

a1

Figure 4.54: Two examples of the determination of principal directions are shown. The
original line contours are painted gray. Straight lines are drawn by black arrows and the
principal axes found are shown. As can be seen, the method is robust against outliers.

clustering algorithm described for the circle detection and determination of the principal

directions. A new cluster is opened if the distance to an existing cluster is greater than

20 centimeters. Each cluster stores the lines that were assigned to it. Thus, each cluster

represents a group of collinear lines which are perpendicular to the respective main direc-

tion. The lines within each group are replaced by a single line that encompasses the full

range of the original lines. Finally, we sort the groups by their one-dimensional cluster

centers tj. Note that the difference tj − tk of two groups of parallel lines is simply the

distance between the lines. By sorting for tj, we obtain a topological order of the groups

of collinear lines, which will be very useful for the detection of the penalty area and the

corresponding corners. Figure 4.56b) illustrates the results of this processing step for two

examples.
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(a)

(b)

Figure 4.55: In figure (a) straight lines that are approximately perpendicular to the
principal axis a are considered. Lines whose orientation differs more than 0.3 radians (i.e.
line l7 ) from a perpendicular line to the axis are discarded. The midpoints of lines li are
projected onto the principal axis a, yielding the values ti. Clustering the ti values yields
groups of collinear lines at tI and tII . In figure (b), the lines in each group are replaced
by a single line lI and lII , respectively.
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Figure 4.56: The results of grouping straight lines are shown. Straight collinear lines are
grouped and joined to form single straight lines that are perpendicular to the principal
axes. They are topologically ordered along the respective principal direction. The ordering
is shown by the dashed thin lines and the corresponding numbers. The original contours
and discarded straight lines are painted gray.
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4.13.13 Detecting the Corners of the Penalty Area

The rectangle marking the goal area and the rectangle marking the penalty area produce

three lines parallel to the baseline. The lines are spaced at a distance of 50 and 100

centimeters (see figure 4.57). Having grouped and sorted the sets of collinear lines, we can

50 cm

100 cm
penalty area

h0

h1

h2

Figure 4.57: At the penalty area the three parallel lines h0, h1 and h2 are spaced at a
distance of 50 and 100 centimeters. This structure can be easily recognized in the field
lines.

easily detect such a structure. Here, we allow a tolerance of 20 centimeters when verifying

the distances. Note that the structure emerges at the start or end of the sequence of sorted

collinear line groups, since the lines are the outmost existing lines. Having detected such

a structure, the direction towards the goal is now known, since the lines are spaced

asymmetrically. Thus, we can distinguish between the left and right sides of the lines.

Some additional constraints are necessary in order to avoid spurious detections. First,

if we find three parallel lines that have the given structure in their distances, we calculate

the overall length of the structure in the direction of the lines. This length should not

exceed the length of the penalty area, which is five meters. We allow a tolerance of 50

centimeters. A second constraint is that no lines perpendicular to the three lines are

beyond the goal line.

In order to find the respective corners, we simply verify whether we find perpendicular

lines whose endpoints are close to the given lines h1 and h2.
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Figure 4.58: The corners are detected by identifying the line structure h0, h1, h2 and
searching for perpendicular lines that are close to the endpoints of h1 and h2. The vector
v indicates the direction towards the goal.

4.13.14 Results of the Feature Detection

With our omni-directional vision system, the robot cannot see arbitrarily far, at least not

with a sufficiently high resolution. Thus, it is interesting to examine the distances up to

which the robot can detect features. To verify from which positions on the playing field

which feature can be detected, we let the robot execute a specific trajectory, which scans
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the field as illustrated in figure 4.59. Then we logged all locations where the respective

features were detected and marked the corresponding position of the robot as shown in

figure 4.59. In this experiment, we removed all obstacles from the field. As can be seen,

the robot can detect a high-level feature from all positions. However, the playing field in

our laboratory is smaller than the playing field used in the competitions, and using the

large playing field a few locations exist where the robot is not able to detect any high-level

features. These locations are between the center circle and the corners of the penalty area.

However, overall localization is not affected by this because layer 1 and layer 2 are able

to keep track of the localization without recognizing features.

Next, we consider how feature detection is influenced by occlusion. The most critical

part are the corners of the penalty area. If an obstacle is directly on the corner, the corner

is not detected. This is the reason why there are no markings in figure 4.59 at the locations

of the corners. The robot itself occludes them while executing the trajectory. It might

be possible to adjust the detection of the corners in a way that even the case of direct

occlusion can be compensated. To do so, one must infer the corner position by calculating

the intersection of two straight lines. However, the danger is that spurious corners arise

from straight line segments. Thus, we decided to go for a more conservative detection

algorithm that produces no false positives at the cost of sometimes not detecting a feature.

Since there exist four different corners at the penalty area, it is extremely unlikely that all

of them are occluded at the same time. Even if all four corners are occluded, the overall

localization method is not affected, since the bottom two layers maintain localization

without feature recognition, once they obtain a correct initial start position.

The detection of the center circle is extremely robust against occlusion. Even if only

small parts of the circle are visible, the circle can be detected in most cases. Figure 4.60

illustrates different scenarios with obstacles occluding the center circle and shows under

which circumstances the circle can be detected.
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left outer corners right outer corners

left inner corners right inner corners

center circle

Figure 4.59: Each figure shows the robot executing a trajectory, which scans the field,
with the respective positions marked from which a feature was detected.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

no detection

perceiving robot

perceiving robot

perceiving robot

Figure 4.60: The center circle is successively occluded by an increasing number of obstacles
and the processing steps for the center circle detection are illustrated (original contours,
arc construction, extension, detection). The robot was unable to detect the center circle
only in (g).
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4.14 Results of the Overall Localization

In order to test the influence of different environments on localization we examined two

different playing fields. The first had a green carpet and artificial lighting, while the

second had a reflective linoleum floor with natural light shining from one side through an

array of windows. However, since the reflections on the floor where almost white in the

images, we reduced the influence of natural light by adding artificial light from above and

using venetian blinds, although the blinds were not completely shut.

On both playing fields, we let the robot automatically move on a trajectory forming

an eight (see figure 4.61). The robot did not loose its position on either field. After 10-20

minutes we stopped the experiment. Moreover, when the robot was manually transferred

to an unknown position, the robot immediately found its correct position after perceiving

a feature. The maximum positional error while driving was about 10 cm.

   
SICK LMS 221 - 30206 
Outdoor (180°)
Range: 80m
Stat. error: 1cm

SICK LMS 200-30106
Indoor (360°)
Range: 80m
Stat. error: 5 mm

 
RIEGEL Q140i
Outdoor (60/80°)
Range: 450m
Stat. error: 2,5 cm

Figure 4.61: The path shows a robot moving on the field along a predefined figure. As
can be seen, the average deviation is approximately 10 cm for a robot driving 0.8 m/s.

While the robot moved, we logged all extracted line contours in a file and later manu-

ally verified the feature recognition for all frames. Not a single false positive was detected

on either field.

Finally, the system was employed during our participation at the world championships

in 2004, Lisbon. Here, the playing field had a size of 12 × 8 meters and we played more
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than 10 games using up to 6 robots. During a game, localization is more difficult, since

opponents and team robots are moving and continuously occlude different parts of the

playing field. However, localization worked very well and we could not observe any failures.

In particular, when robots had to be taken out of the field due to hardware problems

and were manually placed at a new location, the feature detection method proved to be

valuable for initial localization. In all cases, the robots where able to initially localize

after a very short time, typically below a second.
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