
Chapter 5

H2 scattering from noble metal

surfaces

5.1 Introduction: The H2/metal system

The scattering or dissociation of gas phase (molecular beam) H2 from/at transition

metal surfaces, has served as a \drosophila" of gas surface dynamics in recent years.

The system has a marked quantum behavior. H being the lightest among all atoms,

both the vibrational and rotational energy levels of H2 are clearly quantized. Very

pronounced isotope e�ects are common, since the mass of H is one half of its iso-

tope D. From a theorist's point of view, it is relatively easier to handle numerically

because it has a small mass and only one electron. Last but not the least, it is

of key importance in many chemical reactions, like Haber{Bosch ammonia synthe-

sis or alkene hydrogenation. As a consequence, a large number of theoretical and

experimental works were and are focused on this system.

From the theoretical point of view, the scattering and dissociation of H2 as a

quantum particle at rigid metals has been treated in the Born{Oppenheimer ap-

proximation with full dimensional Schr�odinger equations, i.e., with all six nuclear

degrees of freedom of H2 considered [137, 138, 139, 140, 141, 142]. Numerous other
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high dimensional calculations are reviewed elsewhere [143, 144]. Moreover, there is

a considerable number of experimental works that show the entangled dependence

of the dynamics on all the dimensions of the system [145, 146, 147, 148]. This

implies that it is essential to include as many degrees of freedom as possible in a

simulation of a gas molecule encounter. On the other hand, both theory [16, 14]

and experiments [149, 39, 40] show that the inclusion of the surface degrees of free-

dom is necessary for a complete description of the system, because even the full

dimensional rigid surface calculations fail to have a quantitative agreement with the

experimental results [141].

\Free" particle problems in gas phase dynamics, such as atom molecule scat-

tering or photodissociation problems, as well as analogous problems in gas surface

scattering or half{scattering, are frequently treated by using a coordinate grid onto

which a nuclear wave function or a density matrix is mapped. Examples of these col-

location methods are the Fourier grid method [127] (mostly used in connection with

the Fast Fourier Transform algorithm), and the Discrete Variable Representation

[150] (for both see Appendix A). In contrast, \bound" problems with not too many

degrees of freedom, for which the corresponding (unperturbed) Hamiltonian can be

diagonalized, are more economically handled within the eigenstate representation.

On the other hand, the collocation methods have the advantage of being completely

generally applicable.

In time dependent multi dimensional wave packet theory, the advantages of both

representations have been combined by using simultaneously a grid for free, and a

state representation for bound coordinates within the so called Coupled Channel

Wave Packet (CCWP) method of Mowrey and Kouri [151, 152]. This expansion

leads to coupled, low dimensional time dependent Schr�odinger equations which are

(if not too many bound functions are required) easier to solve than a single, higher

dimensional one. So far, the CCWP method has been applied up to four and �ve

dimensional molecule surface problems [153, 154, 155, 156].

When the surface cannot be considered as \rigid" (participation of phonons

and/or electron hole pair excitations), and open system density matrix approach may

be preferred over a Schr�odinger dynamics. The numerical solution of Liouville{von
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Neumann equations, however, is a considerably more time and memory consuming

task than ordinary wave packet propagation, in particular for free problems. Koslo�

and coworkers devised algorithms to solve dissipation free [71] or dissipative [81]

Liouville{von Neumann equations directly (i.e., by density matrix propagation),

using a grid representation for all operators. Since the number of operations scales

in this case with N2 logN (rather than with N logN as for wave packet schemes)

with the number of grid points, N , and since several matrices (rather than vectors)

have simultaneously to be kept in central memory, this approach has so far been

applied only to one dimensional examples (see [157, 158, 133], and chapter 4 for the

case of photodesorption of NO from Pt).

In the following, we will consider the scattering of H2 from a nonrigid metal

surface. To account for experiments in which the H2 bond was vibrationally excited

[39], at minimum a two mode description for the \system" is required, but also the

\bath" of substrate excitations must be accounted for. Hence we use a simple two

dimensional molecule surface model, which historically played an important role in

driving the analogous wave packet theory of diatom surface dynamics. In this model,

which is the simplest one containing all the basic ingredients required to describe a

surface molecule inelastic scattering, one only considers the coordinates Z (distance

of the molecule's center of mass to the surface) and x (H2 bond length) explicitly

[159].

The dynamics is treated by a newly developed density matrix analog of the

CCWP method, called the Coupled Channel Density Matrix (CCDM) method. This

method is particularly well suited for the two dimensional, dissipative problem at

hand, where motion along one coordinate (x) is bound, and motion along the other

one (Z) free. Speci�cally, we consider H2, D2, and T2 molecules inelastically scat-

tering from a (nondissociative, nonreactive) noble metal model surface.
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5.2 The Coupled Channel Density Matrix (CCDM)

method

For the sake of simplicity, the CCDM equations are derived for the concrete example

of inelastic scattering of a diatomic molecule from a surface. First, the equations

of motion for the Hamiltonian (unitary) dynamics are introduced, because they are

applicable to any two mode system. Then in section 5.5, the speci�c dissipation

model is introduced, and the dissipative equations of motion are derived.

The two mode reduced dimensionality e�ective Hamiltonian Ĥ is1

Ĥ = � 1

2�x

@2

@x2
� 1

2�Z

@2

@Z2
+ V (x; Z) : (5.1)

In (5.1), x is the adsorbate interatomic distance, which is a bound coordinate at the

energies of interest here (i.e., the incoming molecule has a translational energy well

below the activation energy for dissociation), and Z is (apart from a possible shift

of the zero) the molecule surface distance, which is free at Z ! +1. �x and �Z

are the corresponding reduced masses, i.e., �x = mH=2 and �Z = 2mH , where mH

is the mass of an hydrogen atom. The molecule is assumed to approach the surface

side on.

The classi�cation of bound and free coordinates becomes clearer by introduc-

ing the model potential V (x; Z) used. The mathematical form of this \elbow po-

tential" V (x; Z) is adopted from [160] and was originally designed for the system

NO/Ag(111). We reparametrized it to resemble characteristic features found for the

approach of H2 to various sites of various copper surfaces. In particular, the model

potential used in this subsection shows a \late" barrier to dissociation (at x � 1:9 a0

and Z � 0 a0 ), 0:6 eV high. The potential parameters (which have been changed)

are given in Table 5.1.

The elbow potential is plotted in Fig.5.1 (the potential parameters for Fig.5.4

and in section 5.5 are di�erent from the one used in here, because di�erent systems

are modeled). Next, we introduce a one dimensional reference Hamiltonian Ĥref ,

1Here we drop the \s" for Ĥs to avoid a too involved notation in the CCDM coupled equations.
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Table 5.1: Computational parameters for (i) potential, (ii) density matrix propa-

gation (for D2, pure vibrational state m = 0, impact energy Ek(0) = 0:3 eV), and

(iii) bound state calculation for the reference Hamiltonian (see Eqn.(5.3)), for the

model scattering of D2 (H2) from a Cu surface. The potential form is described in

[160]. Here we give only those potential parameters, which are di�erent from the

ones given there.

Potential parameters

elbow potential

diatom Morse depth D 4:75 eV

diatom Morse exponent 1:04436 a�10

diatom Morse equilibrium 1:40 a0

barrier

barrier location x 1:90 a0

barrier location Z 0:00 a0

x exponent �x 5:00 a�10

Z exponent �Z 2:50 a�10

barrier height 0:60 eV

well

well depth 0:00 eV

Propagation parameters

grid parameters

grid spacing �Z 0:0945 a0

grid starting at 0:00 a0

grid ending at 12:00 a0

grid points N 128

time propagation

timestep �t 10 fs

total propagation time t1 200 fs

polynomial order n 170

initial conditions

asymptotic reference Zref 8:0 a0

Gaussian width � 1:00 a0

Bound state calculations

grid starts at 0:8 a0

grid spacing �x 0:031 a0

grid points Nx 50
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Figure 5.1: Contour plot of the model \elbow" potential V (x; Z), adapted from

Ref.[160] with the parameters indicated in table 5.1. This is the potential used in

sections 5.2.-5.4. The contour spacing is 0:16 eV. The insert shows the de�nition of

the bound (x) and free coordinate (Z), respectively.

Ĥref = � 1

2�x

@2

@x2
+ V (x;Zref) (5.2)

which governs the bound vibrational motion along x at a given value of the parameter

Zref . The actual value to be chosen for Zref constitutes di�erent possible reference

Hamiltonians, and has a great in
uence on the numerical e�ciency of the method

(see below). Since one dimensional (in general: low dimensional) and bound in the
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relevant energy range, Ĥref can be easily diagonalized

Ĥref jmi = "mjmi ; m = 0; 1; 2::: (5.3)

to give the reference eigenstates jmi and eigenenergies "m. Depending on the choice

of Zref and the actual problem considered, the diagonalization can be done either

analytically or numerically.

Using the reference eigenstates, we can spectrally decompose the density operator

�̂ as

�̂ =

K�1X
m;m0=0

jmihmj�̂jm0ihm0j :=
K�1X

m;m0=0

�̂mm0 jmihm0j : (5.4)

This expansion is exact, if the bound reference states form a complete set, and ap-

proximate, if a �nite number of channels K is used. In this case, K is a convergence

parameter. The expansion coe�cients �̂mm0 are still operators in the subspace of

the free coordinate(s).

We now

(i) use the expansion (5.4) in the Liouville{von Neumann equation (2.7), and

(ii) at the same time introduce a grid consisting ofN points for the free coordinate.

Using further the notation2

Ars
mm0 := hrjÂmm0 jsi := hrjhmjÂjm0ijsi

the time evolution of individual elements of the density matrix is

i _�rsH;kl(t) =

K�1X
m=0

NX
t=1

(Hrt
km�

ts
ml � �rtkmH

ts
ml) : (5.5)

2Lower indices denote k; l;m;m0 bound states, upper indices r; s; t; u dissociative grid indices;

integration over the respective independent variables.
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where the indexH denotes the Hamiltonian (dissipation free) case. Then, we rewrite

the two dimensional Hamiltonian in (5.1) as

Ĥ = Ĥ1 + Ĥref (5.6)

Ĥ1 := � 1

2�Z

@2

@Z2
+ V (x; Z)� V (x;Zref) : (5.7)

The individual matrix elements of Ĥref and Ĥ1 are

Hrt
ref;km = "m�km�rt (5.8)

Hrt
1;km = �kmT

rt + V tt
km�rt : (5.9)

In (5.8) and (5.9), �ij is the Kronecker delta
3. Further, the following abbreviations

have been used for the free kinetic energy and channel coupling potential matrix

elements

T rt := hrj � 1

2�Z

@2

@Z2
jtiZ (5.10)

V tt
km := hkjV (x; Zt)� V (x; Zref)jmix ; (5.11)

where h iy denotes integration over coordinate y. In deriving (5.8) and (5.9) we

made use of the following relation

hrjf(Z)jsiZ = �rsf(Zs)

which holds both if a Fourier and a DVR grid is used (f(Z) is a general function of

Z).

Using (5.8) and (5.9) in (5.5) we get, element-wise, the CCDM non{dissipative

equations of motion:

i _�rsH;kl(t) = (LH �̂)
rs
kl = ("k � "l)�

rs
kl

+
PN

t=1
(T rt�tskl � �rtklT

ts)

+
PK�1

m=0
(V rr

km�
rs
ml � �rskmV

ss
ml) :

(5.12)

3Remember that the coordinates in standard quantum mechanics are a continuous index [1],

but here we have performed a discretization [100, 127].
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Apart from the grid indices, (5.12) constitutes a set of K2 coupled one dimensional

Liouville{von Neumann equations, or equivalently, a Liouville{von Neumann equa-

tion of block form. The �rst term on the r.h.s. of (5.12) describes rotation of

the individual density matrix elements in the complex plane, without any coupling

between them. The second term allows for the kinetic coupling between elements

characterized by di�erent grid indices, i.e. motion along the Z coordinate. The

third term allows for the coupling between elements of di�erent state indices, i.e.,

vibrational transitions.

Note that if K = 1 (\vibrational adiabaticity"), Eqn.(5.12) reduces to

i _�rs = [Ĥ; �̂]rs ;

which is (element-wise) simply a one dimensional Liouville{von Neumann equation

along the free coordinate in grid representation. Similarly, for N = 1 (\coordinate

adiabaticity"), Eqn.(5.12) reduces to

i _�kl = ("k � "l)�kl + [V; �̂]kl

= ("k � "l)�kl

(5.13)

because the coupling matrix elements Vkl are zero in this case. (5.13) is a (bound)

Liouville{von Neumann equation in state representation. Hence, (5.12) satis�es the

correct free and bound limits.

It is interesting to check how the algorithm behaves without dissipation, where it

is easier to control the convergence and speed properties in comparison with normal

wave packet simulations.

5.3 Numerical performance of the method

5.3.1 Numerical solution of the CCDM equations

The coupled equations (5.12) have to be solved numerically. This is done by the

following steps.
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1. Time propagation. The time propagation of the density operator was done by

a Newtonian polynomial expansion of the time evolution superoperator (see

section 3.2), with relations (3.21), (3.20), and (3.17).

2. Kinetic coupling matrix elements for the free coordinate. The kinetic energy

matrix elements for the free coordinate, T rt in (5.10), were calculated either by

the FFT algorithm or the sinc{function DVR method (see Appendix A). The

grid parameters (for the FFT case), which were usually used (unless otherwise

speci�ed), are also given in table 5.14.

3. Potential coupling matrix elements for the bound coordinate. To evaluate the

potential coupling matrix elements V tt
km de�ned in (5.11), we �rst have to

evaluate the eigenfunctions of the one dimensional Hamiltonian Ĥref . This is

done by using a sinc{function DVR grid [150] along the vibrational coordinate

x (consisting ofNx points, say), and directly diagonalizing the resultant matrix

Href to give Nx eigenfunctions hxjmi as vectors5 m. Eqn.(5.11) is then easily

evaluated numerically because the coupling matrixV(Zt)�V(Zref) is diagonal

in coordinate space. The corresponding computational parameters are given

in table 5.1.

5.3.2 Initial states

The solution of (5.12) requires the de�nition of an initial state, reproducing an

experimental condition. Our goal is to model molecular beam experiments in which

the incoming diatomic molecule has a Gaussian shape along Z, and is in

(i) either a pure or

(ii) a thermal state

with respect to its vibrational motion.

4Outside the grid boundaries, the potential is formally in�nite and an energy cuto� is intro-

duced. The eigenfunctions used in this work are de�ned for an energy cuto� of 2 eV, and with the

grid parameters given in table 5.1. Di�erent grid and cuto� parameters may lead to slightly dif-

ferent results; for the present methodologically oriented purposes this is not important, the results

are converged for this choice of the potential.
5For this purpose the IMSL routine DEVESF 2.0 was used.
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In the pure state case (vibrational state m), the individual density matrix ele-

ments at t = 0 are

�rskl(0) = hrjhkj�̂(0)jlixjsiZ (5.14)

�̂(0) = g(Z) � jmihmj � g�(Z 0) =) (5.15)

�rskl(0) = g(Zr)g
�(Zs) �km�ml ; (5.16)

where g(Z) is the Gaussian of width � centered far outside the surface at a point

Z1, and approaching it along Z with mean momentum k0Z :

g(Z) =
1

(��2)1=4
e�ik0ZZ�

(Z�Z1)2

2�2 : (5.17)

Similarly, in the case of a thermal vibrational distribution we start with a density of

the form

�rskl(0) = g(Zr)g
�(Zs) � gk �kl ; (5.18)

where gk is the Boltzmann weight of state jki at the vibrational gas temperature

Tg, derived from

gk = e�"k�=
X
m

e�"m� : (5.19)

In (5.19), � := 1=kbTg has been used.

5.3.3 Scattering of D2 from a Cu surface at Ek = 0:3 eV

Benchmark calculations to test the performance of the CCDM method were carried

out for D2 scattering from the model Cu surface, when D2 was in its vibrational

ground state (m = 0 in (5.16)), and the average translational energy along Z,

Ek(0) = k20z=2�Z, was 0:3 eV. Further, the reference point Zref in (5.2) was asymp-

totically far away from the surface, Zref = 8:0 a0. In this case, the eigenstates of

the reference Hamiltonian are just the Morse vibrational eigenstates of the free D2

molecule. Fig.5.2 gives the population of the individual channels, Pm(t),

Pm(t) = tr (�̂jmihmj) =
X
r

�rrmm (5.20)
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as a function of time. (The second equality in (5.20) follows immediately from the

expansion (5.4) of the density operator). We note a signi�cant population of the

higher channels when the particle rebounces from the surface. It is further found
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time  [fs]
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Figure 5.2: Channel populations Pm(t) (Eqn.(5.20)), for D2 (m = 0, Ek(0) = 0:3

eV) scattering from the Cu model surface.

that for t ! 1 (200 fs in practice), the D2 molecule does not completely return

into its vibrational ground state, but rather has gained a small population in the

�rst excited state m = 1, P1(t1 = 200 fs)= 0:00356. (The m = 0 state is not shown

in Fig.5.2 for clarity). Direct vibrational excitation of the type m = 0 ! m = 1

for H2 and D2 molecules rescattered from Cu(111) surfaces has also been observed

experimentally [148, 161].
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5.3.4 Convergence with respect to the number of channels

The calculation with K = 12 is rather expensive, both in terms of computation

time and memory requirements. If no symmetry properties of the density matrix

are used, there are (12 � 128)� (12 � 128) � 2:4 � 106 (complex) elements for a single
density matrix, corresponding to a minimum memory requirement of 108 MBytes,

if the Newton algorithm is used. Though K = 12 is already substantially less than

what a two dimensional grid method would require, we are interested in the question

of how many channels are actually needed to achieve convergence.
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Figure 5.3: Convergence with respect to the number of channels, K, of the asymp-

totic �rst vibrational excited state population, P1(t1), for D2 (m = 0, Ek(0) = 0:3

eV) scattering from the Cu model surface. The channel reference functions are for

the asymptotic case, i.e., Zref = 8:0 a0. The circles are the CCDM results, while

the dashed horizontal line gives the numerically converged result P ex
1 , obtained from

a CCWP calculation with K = 20 (see text).

In Fig.5.3, for the same system and initial conditions as in the previous subsec-

tion, the convergence of P1(t = 200 fs) as a function of K is investigated. It is found

that already with K = 8, an accuracy of the fully converged (K = 12) result of

< 1:5% is achieved. The corresponding computational e�ort, with regards to both

memory and computation time is approximately 1=2 relative to the K = 12 case.

For the present, dissipation free situation numerically fully converged results can

far more economically be obtained from wave packet theory, i.e., from solving the

time dependent Schr�odinger equation. To make contact as close as possible with the
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CCDM method, we used the coupled channel wave packet (CCWP) method alluded

to earlier [151, 152], and employed exactly the same reference Hamiltonian Ĥref , and

corresponding eigenfunctions jmi and eigenvalues "m as above. If K = 12 channels

were included, the CCWP method gives a population P1, which di�ers from the

corresponding CCDM result by less than 0:002% (P1(t1) = 3:56114 � 10�3 (CCDM,

K = 12), and P1(t1) = 3:56119 � 10�3 (CCWP, K = 12)). Further, by taking more

and more channels into account in the CCWP calculation, we �nd that the results

change from K = 12 to K = 20 by no more than 0:02% (P1(t1) = 3:56194 � 10�3

(CCWP, K = 20)). In the following, we will refer to the P1(t1) (CCWP, K = 20)

value as the \exact" population, P ex
1 . The numerically exact benchmark result P ex

1

is included in Fig.5.3 as a dashed horizontal line.

The question arises of how the accuracy of the CCDM method can be judged, if

an exact or numerically converged benchmark is not available. Here, it is interesting

to note that the maximum population of the highest channel considered (K � 1),

gives a good estimate of the error made: It was found that this maximum population

was approximately the same as the di�erence of the P1 populations for the K = 12

case and the ones forK < 12. Hence, a reliable error estimate is possible by checking

for the maximum population of PK�1 during the dynamic event.

5.3.5 Di�erent reference Hamiltonians Ĥref

With reference to Fig.5.2, we note that the \bottleneck" of the calculation, with

respect to the number of channels needed, is around t = tcoll := 100 fs, i.e., when

the D2 is being re
ected. This is understandable, since the basis used to represent

the density matrix is optimized for a free molecule, so it's far from suited for a

distorted molecule close to a surface, and requires a relatively large value of K.

Indeed, again looking at Fig.5.2, for t� tcoll a single basis function is su�cient (per

de�nition), whereas for t � tcoll more than one, but still not many channels are

required.

Also the question arises, whether a di�erent reference Hamiltonian leads, over

the time, to a more uniform population of the individual channels, and if this helps
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to reduce the maximum number of channels needed. Since we seek a basis better

suited for the surface encounter, we choose as an alternative a reference Hamiltonian

(5.2) with Zref close to the surface: Zref = 0 a0. We will call this choice henceforth

the \surface reference" and the old one the \asymptotic reference". The resulting

eigenfunctions, j ~mi of the surface reference Hamiltonian are no longer eigenfunctions
of the free molecules and must be evaluated numerically.

Further, in practice, we will only use ~K of those eigenfunctions, and hence the

asymptotic eigenstates jmi can only be approximated by

jmi �
~K�1X
~k=0

j~kiC~km ;

where C~km is the scalar product h~kjmi.
This has the consequence of introducing an additional error when one is interested

in the computation of populations de�ned in terms of the asymptotic states (i.e.,

probabilities to �nd the free molecule in a particular vibrational state). These

populations are easily found to be

Pm = tr

0
@ ~K�1X

~k=0

~K�1X
~l=0

�̂~k~lC~lmC
�
~km

1
A :

Numerically, it turns out for the present calculation (D2,m=0, Ek(0) = 0:3 eV), that

with the choice ~K = 6, the additional relative error in computing Pm is estimated

to be < 10�5 (m = 0), < 10�4 (m = 1) and < 10�3 (m = 2). This estimate is based

on the numerically obtained norms hmjmi of the asymptotic states, when expressed

in the surface reference basis. Hence, for m = 0 and m = 1, the states which we are

most interested in, the additional error is small for all practical purposes.

On the other hand, the bene�t of using the new basis is given in table 5.2, where

the relative errors in the time{asymptotic populations of the �rst excited vibrational

level of D2, P1(t = 200 fs), are compared, as a function of the number of channels,

for the asymptotic and the surface reference Hamiltonians Ĥref , respectively. The

relative error was de�ned with respect to the numerically converged CCWP result
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Table 5.2: Relative errors (5.21), (5.22) for the populations P1 of channel m = 1

after inelastic scattering of D2 molecules (m = 0, Ek(0) = 0:3 eV) from the model

Cu surface. The upper row is for the asymptotic reference (Zref = 8:0 a0), the lower

one for the surface reference (Zref = 0:0 a0).

K( ~K) 4 6 8 10 12

E(K) � 100% 81:47 17:46 1:46 0:14 0:02

E( ~K) � 100% 7:16 0:42 0:14 0:09 {

P ex
1 in the asymptotic basis, i.e.,

E(K) :=
jP1(K)� P ex

1 j
P ex
1

; (5.21)

E( ~K) :=
jP1( ~K)� P ex

1 j
P ex
1

; (5.22)

where the P1 where for t = 200 fs. We �nd that, in comparison to the old one, with

the new basis already with ~K = 4 an accuracy in the few percent regime can be

achieved. Roughly, only half the number of channels is required with the new basis

to arrive at a prespeci�ed level of accuracy. This reduces the computational e�ort

substantially { approximately by a factor of 4.

5.4 Inelastic molecule surface scattering

We now use the CCDM algorithm to study various di�erent scattering experiments.

5.4.1 Di�erent isotopomers and variation of impact energy

We �rst discuss e�ects associated with di�erent particle masses and average transla-

tional energies. To this end, we consider H2, D2 and T2 molecules in their vibrational
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Table 5.3: The asymptotic �rst excited vibrational state population, P1(t1), for H2,

D2, and T2 molecules (in their initial vibrational ground state) scattering from the

Cu model surface, as a function of the initial average translational energy Ek(0).

Ek(0) [eV] 0.1 0.2 0.3 0.4

P1(t1)(H2) < 10�5 < 10�5 5:40 � 10�4 1:06 � 10�2

P1(t1)(D2) < 10�5 < 10�5 3:56 � 10�3 9:35 � 10�2

P1(t1)(T2) < 10�5 < 10�5 3:93 � 10�3 1:56 � 10�1

ground state, approaching the model Cu surface with various below{barrier aver-

age translational energies. In all cases we used the surface reference Hamiltonian

(Zref = 0 a0), and ~K = 6 channel functions for H2, ~K = 8 for D2, and ~K = 10 for

T2 to account for the smaller vibrational level spacings for the heavier isotopomers.

Also, we used di�erent timesteps and total propagation times t1 (in the range be-

tween 150 and 425 fs) for the di�erent impact energies, to account for the fact that

faster molecules complete the scattering after a shorter time. For all isotopomers

the same grid constant �Z given in table 5.1 turned out to be su�cient.

From table 5.3, which gives the population of the �rst vibrational state after the

scattering was complete, P1(t1), for the various isotopomers and impact energies,

we see the following two trends:

(i) For a given average translational energy, Ek(0), the excitation probability

increases with increasing mass of the isotopomer.

(ii) For a given isotopomer, the excitation probability increases with increasing

average translational energy.

The �rst observation is a simple consequence of the fact that increasing reduced

masses �x diminish the level spacings (and the zero point energy) for the asymptotic

diatomic Morse oscillator. Therefore, excited states become easier accessible. The
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second observation is due to the topology of the potential and can be explained along

the lines drawn by Gates and Holloway [160] (for NO/Ag, though). Namely, the

late barrier in Fig.5.1 allows high energy wave packets to probe the large curvature

regions of the elbow potential, leading to a more e�cient translation to vibration

energy transfer.

5.4.2 Thermal initial states

The examples given so far could in principle also be obtained with single wave

packet propagations, i.e., by solving the time dependent Schr�odinger equation. Next,

we study e�ects associated with (vibrationally) thermal initial states of the type

(5.18). In particular, we consider D2 and T2 with Ek(0) = 0:3 eV, surface reference

Hamiltonian with ~K = 8 (D2) and ~K = 10 (T2), and di�erent gas temperatures Tg.

The total propagation time was t1 = 200 fs (�t = 20 fs, n = 284 ) for D2, and

t1 = 300 fs (�t = 25 fs, polynomial order n = 264 ) for the heavier and slower T2.

The propagation of thermal states can be done by a single propagation run in

density matrix theory, whereas the Schr�odinger equation would have to be solved

for several wave packet runs. In the latter case, operator expectation values hÂi(t)
are obtained by incoherent averaging over individual wave packet expectation values

hÂim(t), where m is the index of the wave function m.

In table 5.4, we give the population of the individual channels (up to m = 2)

prior and after the surface encounter (t = 0 and t = t1, respectively), for all cases

considered. The �rst columns, both for D2 and T2, are the Tg = 0 K results

which partially have been given already in table 5.3, showing again that the surface

scattering vibrationally excites the molecule. In table 5.4 (in brackets), we also give

the ratio

Rm :=
Pm(t1)
Pm(0)

(5.23)

of the pre and after scattering channel populations. If Rm > 1, a population gain

of the corresponding channel took place relative to the initial state, whereas Rm <
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1 indicates a depopulation. For Tg = 0 K, where the higher states are initially

unpopulated, Rm !1 for m > 1.

For a temperature of Tg = 600 K we note that the scattering leads again to

vibrationally more excited products, for both isotopomers. The �nal state distribu-

tion is nonthermal { the logarithm of the individual channel populations is not any

more a linear function of "m. Further, the excitation is more e�ective for the higher

m.

By increasing the temperature even further, interesting observations are made.

(i) The absolute level of vibrational excitation increases.

(ii) The level of relative (to the initial state) vibrational excitation decreases with

increasing Tg (for a given m, the Rm become smaller).

(iii) At the highest temperatures it may even happen that the �rst excited level

m = 1, then already signi�cantly populated at t = 0, is depopulated by the

surface scattering event (Rm < 1).

In particular this last result is interesting in view of recent experiments by Gostein et

al., who observed substantial vibrational deexcitation of low energy Ek(0) = 0:078

eV H2(m = 1) molecules scattered from a Cu(110) surface [39]. A more detailed

discussion of this point will be given in section 5.5.

As a conclusion, the CCDM method allows for economical propagation of nuclear

density matrices in more than one dimension, including free degrees of freedom. In

particular, the memory problem is diminished by using a compact representation

for the bound degrees of freedom. We have shown that a proper choice of the low

dimensional bound reference Hamiltonian may lead to signi�cant savings.

The next step is to add a dissipation mechanism to the equations of motion.

An interesting test case are the recent scattering experiments done by Sitz and

coworkers [39], for which we construct a physical model and compute properties to

be compared to their empirical �ndings.
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5.5 Dissipative dynamics with the CCDMmethod

5.5.1 The physical model

Here we will try to model the scattering of vibrationally excited H2 and D2 molecules

approaching a cold, nonrigid and nondissociative surface. The term \nonrigid" is

used here again in the sense that, when close enough, the molecule may excite

phonons and electron hole pairs in the substrate and vibrationally relax. The elec-

tron hole pair mechanism is expected to be particularly e�cient when the substrate

is a metal [162]. In fact, an electronic mechanism has been suggested, for the exper-

iment that we want to model, as one possible source for the experimentally observed

30% reduction of the m = 1 survival probability of slow H2 (m = 1) molecules [ini-

tial kinetic energy Ek(0) = 78 meV], inelastically scattered from a Cu(110) surface

[39].

Electron hole pair excitation is also known to lead on a few ps time scale to the

vibrational relaxation of adsorbed molecules [163, 164, 165], or to the trapping of gas

phase atoms and molecules [162, 145, 7, 8, 166, 79]. Phonon creation leads to similar

phenomena, but usually proceeds on signi�cantly longer time scales. Temperature or

radiation created phonons and electron hole pairs can further lead to the vibrational

heating of adsorbates [167, 168] and even to their desorption [162, 169, 170] or

predesorption [128, 129].

These dynamical processes can be categorized by the \system" plus \bath" con-

cept and be described within open system density matrix theory. For our system,

where a slow gas molecule is interacting with a bath of substrate electron hole pairs,

the Markov approximation is expected to hold.

For dynamical gas surface encounters Red�eld type approaches were also used

to describe the sticking of rare gas atoms at copper model surfaces [166, 79], and

the photodesorption of neutral molecules from metals [171]. For related work, see

[172] and [173]. For the system we have to deal with, we preferred to use a Lindblad

(2.11) form as Eqn.[55], as already mentioned in section 2.
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Accordingly, we have chosen to construct a Markovian semigroup approach model

and to derive the corresponding CCDM equations of motion for the \minimal"

two mode model (unbound molecule surface coordinate Z, bound molecular bond

coordinate x). A phenomenological relaxation model will be introduced. To cover

from \weak" to \strong", and \short range" to \long range" dissipation a series

of sensible parameters are considered. The dissipation model introduced below is

expected to be suitable for a slow molecular beam of H2 (D2) (m = 1) molecules. For

simplicity, we assume that the microscopic coupling of the impinging molecule to the

(electron hole pairs of the) metallic substrate leads only to vibrational relaxation,

while the center of mass motion remains una�ected. We further postulate a strong

Z dependence of the vibrational relaxation rates. This is reasonable, because for

Z ! 1 a vibrational excited hydrogen molecule is stable on the time scales of

interest, whereas vibrationally excited molecules adsorbed on metals relax typically

within one to a few picoseconds [163, 164, 165]. The potential energy surface used

in the following subsections is shown in Fig.5.4.

The barrier is again chosen to be \late", but insurmountably high6 at least at the

energies considered here. Hence, the molecule can at most be scattered inelastically

from the surface, either due to translational to vibration (T{V) or V{T coupling, or

due to energy exchange with the nonrigid surface. This is qualitatively the process

expected to occur when gas phase hydrogen molecules interact with noble metal

surfaces [175], and may be relevant for the experiments of Sitz and coworkers for

the H2/Cu(110) system [39].

The functional form of the potential is the same as for the nondissipative calcu-

lations (subsections 5.2-5.4), but it was adapted from [174]. The original potential

was modi�ed by removing the physisorption well, and shifting and increasing the

barrier. The new potential parameters are given in table 5.5.

6We took a very high barrier (3:0 eV) to avoid dissociation of the molecule. In the case of

dissociation the x mode becomes unbound, and then the CCDM approach must be modi�ed.
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Table 5.5: Computational parameters used for (i) the potential, (ii) the density

matrix propagation, and (iii) the one dimensional bound state calculations [see

Eqn.(5.3) and (5.32)]. The functional form of the potential is adapted from [174].

Here we give only those potential parameters which are di�erent from those in [174].

The \typical" parameters for \grid and basis set" are for D2 (m=1, Ek(0) = 78

meV) scattering from a nondissociative model surface; slightly di�erent parameters

have been used for other initial kinetic energies, or the other isotopomer. Similarly,

the typical parameters for the \time propagation" depend on the actual dissipative

parameters.

Potential parameters

elbow potential

diatom Morse depth D 4:75 eV

diatom Morse exponent 1:0280 a�10

diatom Morse equilibrium 1:40 a0
barrier

barrier location x 2:6 a0
barrier location Z 0:8 a0
x exponent �x 0:5 a�10

Z exponent �Z 1:0 a�10

barrier height 3:0 eV
phys. well

well depth 0:00 eV

Propagation parameters

grid and basis set parameters

typical grid starting at 0:00 a0
grid points N 128
typical grid spacing �Z 0:11 a0

number of channels K 10

time propagation
typical timestep �t 10 fs
typical polynomial order n 300

total propagation time t1 (D2) 460 fs (Ek(0) = 50 meV)

390 fs (Ek(0) = 78 meV)

340 fs (Ek(0) = 150 meV)

total propagation time t1 (H2) 290 fs (Ek(0) = 78 meV)

initial conditions
asymptotic reference Z1 8:0 a0
Gaussian width � 0:5 a0

Bound state calculations
grid starts at 0:4 a0
grid spacing along x, �x 0:016 a0
grid points along x, Nx 250
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Figure 5.4: Contour plot of the model \elbow" potential V (x; Z), adapted from

Ref.[174] with the parameters indicated in table 5.5. This potential is used in section

5.5. The contour spacing is 1:0 eV. The insert shows the de�nition of the bound (x)

and free coordinate (Z), respectively.

5.5.2 The CCDM dissipative equations of motion

Before deriving the dissipative CCDM equations of motion, we make some remarks

about a more simple one dimensional system and derive for it the corresponding dis-

sipation operators for the dissipative Liouville-von Neumann equation. This allows

us to introduce the two dimensional model in a simpler fashion.
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Consider an K dimensional discrete system Hilbert space. In order to describe

an environment induced transition from level jji to level jii with a rate �ij, it is

convenient to choose for the Lindblad operator Ĉi in Eqn.(2.11) the following form

[46, 43], with indices explicitly referring to the states connected by the operator :

Ĉi ! Ĉij =
p
�ijjiihjj : (5.24)

Here, we use positive elements �ij for the relaxation matrix. For the diagonal

elements we take �ii = 0. Using (5.24) for the dissipative Lindblad operator (2.11)

gives (�ij := hij�̂jji):

_̂�D(t) =

K�1X
ij=0

�ij

�
jii�jjhij �

1

2
(jjihijiihjj�̂+ �̂jjihijiihjj)

�
: (5.25)

[We do not simplify Eqn.(5.25) for reasons which will become clear below.] Further,

the corresponding (K � K) density and Hamiltonian operators are given by �̂ =PK�1
ij=0

�ijjiihjj and Ĥ =
PK�1

ij=0
Hijjiihjj, respectively.

In general, the Hamiltonian in the basis of the diabatic functions fjiig will not be
diagonal. In fact, in the case of the (two dimensional) CCDM formalism of relevance

here, the vibrational states are diabatically coupled [see Eqn. (5.12)]. In this case

the diabatic energy curves along the free coordinate, Z, may cross. Then, an energy

withdrawing \upper state ! lower state" transition may become an unphysical

process in which the system energy increases by turning into an \lower state !
upper state" transition beyond the crossing point. More generally, problems arise

when the o�diagonal elements of the Hamiltonian, Hij, are nonzero.

These problems can be avoided by diagonalizing the system Hamiltonian and

then de�ning the dissipation in the vibrationally adiabatic basis. However, we still

treat the Hamiltonian evolution in the diabatic basis [see Eqn.(5.12)]. In the simple

(one dimensional)K state case, let fj�ig be the basis in which Ĥ is diagonal (Greek

letters for the adiabatic basis). The new basis is related to the nondiagonal basis

fjiig (Roman letters for the diabatic basis) by

j�i =
K�1X
i=0

jiiSi� ; (5.26)



102 H2 scattering from noble metal surfaces

where Si� = hij�i is a matrix element of the unitary transformation operator Ŝ.

De�ning the dissipation adiabatically means to replace Ĉij in (5.24) by Ĉ��, and to

introduce transition rates ���:

_̂�D(t) =

K�1X
��=0

���

�
j�i���h�j �

1

2
(j�ih�j�ih�j�̂+ �̂j�ih�j�ih�j)

�
: (5.27)

To combine the dissipative part (5.27) with the Hamiltonian part which is still

de�ned on the nondiagonal basis fjiig, we transform the dissipative part (5.27) to

the diabatic basis (the \propagation basis"). The (k; l) matrix element of _̂�D(t) in

the propagation basis is

_�D;kl =

K�1X
��=0

���

(
K�1X
ij=0

Sk� S�i �ij Sj� S�l (5.28)

�1

2

K�1X
ij=0

(Sk� S�i Si� S�j �jl + �ki Si� S�j Sj� S�l)

)
; (5.29)

(5.30)

where (5.26) and the orthonormality condition hijji = �ij for the propagation basis

functions have been used.

We now generalize to the two dimensional case with a bound motion represented

again by K states, and a free motion along N grid points Zr (r = 1; 2; : : : ; N) (see

subsection 5.2). For each coordinate point Zr, we de�ne

Ĥr := � 1

2�x

@2

@x2
+ V (x;Zr) ; (5.31)

and diagonalize,

Ĥrj�ri = "r�j�ri; � = 0; 1; 2; 3:::; K � 1: (5.32)

Note that the propagation basis fjmig of Eqn. (5.3) is fjmig := fj�refig, where the
subscript \ref" denotes the reference point Zref selected from the N grid indices.

In the spirit of the physical model discussed above, the general transition opera-

tors Ĉij occurring in (2.11) are chosen such that no environment induced transitions
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along the free coordinate Z are enforced. Further, transitions between the various

bound states at each grid point Zr shall be de�ned in the adiabatic basis fj�rig. We

�nally wish to allow for vibrational relaxation rates, which are coordinate depen-

dent. To this end, we choose the following form for the operators of the Lindblad

generator:

Ĉij ! Ĉ�� =

NX
r=1

q
��c�c � f(Zr) jr�rih�rrj : (5.33)

Here, ��c�c � 0 is the transition rate connecting two (adiabatic) states at a second

reference point, Z = Zc. (In general, Zc 6= Zref .) f(Z) is a (positive) function

accounting for the coordinate{dependence of the vibrational relaxation rates, and

will be speci�ed below.

We now insert the Lindblad operators (5.33) into Eqn.(2.11). Then we trans-

form the dissipative generator to the propagation basis, and by using Eqn.(5.26)

together with the orthonormality relations hrjsiZ = �rs and hmjm0ix = �mm0 for

the basis functions fjrig in coordinate space, and the propagation functions fjmig,
respectively, we arrive, element-wise, at

_�rsD;kl =
PK�1

��=0

PK�1
ij=0

��c�c

np
f(Zr) � f(Zs) Sk�r S�ri �

rs
ij Sj�s S�sl

�1

2

�
f(Zr) Sk�r S�ri Si�r S�rj �

rs
jl + f(Zs) �

rs
ki Si�s S�sj Sj�s S�sl

�	
(5.34)

where S�si, for example, stands for h�sjiix. Note that in the case of a single grid

point (Zc, say), Eqn.(5.34) gives the correct one dimensional relation Eqn.(5.30).

At this point we stress that neither the use of the Lindblad generator (2.11), nor

the choice (5.33) are unique; the suggested dissipative scheme is only one among

several possible ones. The dissipative generator is Markovian, trace conserving, and

leads to positive evolution. Further, no attempt is made at this stage to derive the

parameters ��c�c and the function f(Z) from �rst principles.

In our CCDM approach, the Hamiltonian plus dissipative time evolution of the

elements of the system density matrix is now given by

_�rskl = _�rsH;kl + _�rsD;kl ; (5.35)
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with _�rsH;kl and _�rsD;kl de�ned in Eqn.(5.12) and (5.34), respectively. In practice, the

number of channels, K, is used as a convergence parameter, and chosen as small as

possible. This has the consequence that the completeness relation
P

j jjihjj = 1

does not hold numerically, and therefore Eqn.(5.30) and (5.34) cannot be further

simpli�ed.

5.6 Numerical implementation

5.6.1 Time propagation

The time integration of the dissipative Liouville-von Neumann equation (2.9) is

done again with the help of the Newton polynomial propagator as in the dissipation

free case. The corresponding parameters are listed in table 5.5.

5.6.2 The operation L�̂

The evaluation of Eqn.(3.13) through (3.17) requires the knowledge of the action

of the Liouvillian superoperator, L (as de�ned in Eqn.(2.9)), on the actual density

operator, �̂(t), at every time t.

The Hamiltonian operation LH �̂ = �i
h
Ĥ; �̂

i
is performed as in section 5.3.1.

The one dimensional bound Schr�odinger equation (5.3) [and also (5.31)] was again

solved by using the sinc{function discrete variable representation and diagonalizing

the resulting Hamiltonian matrix as before. The reference point Zref was chosen as

Zref = 1:5 a0. For the other parameters, see Table 5.5.

The dissipative operation LD�̂ is more tricky. A brute force evaluation of Eqn. (5.34)

scales as O(K6�N2) with the number of channels, K, and the number of grid points,

N . (Four sums over K indices for each element of the density matrix, the latter

containing K2 � N2 elements.) This scaling is prohibitive, even when K is not too
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large. Fortunately, as shown in Appendix B, Eqn.(5.34) can be recast in a form

which leads to a scaling of O(K3 �N2) which is much more favorable.

5.6.3 Computational parameters

The number of required channels, K, the number of grid points along Z, N , and

the grid spacing along Z, �Z, were determined for the nondissipative case and are

indicated in Table 5.5. Convergence tests were carried out for D2 (m = 1) molecules,

scattering from the model surface. Only pure state initial density matrices (see

section 5.3.2) were considered, because of the experimental setup [39]. Here, m = 1

in (5.16) is the �rst excited eigenfunction of the free D2 molecule, obtained by

diagonalizing the 1D Hamiltonian Ĥr [Eqn.(5.31)] at the last grid point. The initial

function along Z, g(Z) in (5.16) is the same as in Eqn.(5.17). However, three kinetic

energies were considered here, namely Ek(0) = 50, 78, and 150 meV, respectively.

The initial wave packet parameters � and Z1, and typical basis set parameters K,

N , and �Z, are listed in Table 5.5.

For analysis, the population of vibrational eigenstate jmi was obtained with

Eqn.(5.20).

The grid and basis set parameters given in Table 5.5 were found to reproduce

numerically \exact" populations P0; P1; P2, and P3 to within a relative error of less

than 0:2%. (The \exact" values were obtained from benchmark calculations using

the CCWP method.) The same parameters were used in the dissipative cases (see

below); this { as made sure by numerical control experiments { did not introduce

any signi�cant additional error.

The total propagation time, tmax, was adjusted to allow for the complete re
ec-

tion of the molecules within the time interval [0; tmax], and is therefore dependent on

the initial kinetic energies, and on the particular isotopomer studied . The typical

Newton polynomial orders, n, and timesteps, �t are given in Table 5.5.
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5.7 Dynamics of D2 (H2) (m = 1) at nondissocia-

tive, cold metal surfaces

Calculations were carried out for both isotopomers H2 and D2 scattering from the

nondissociative model surface. The molecules are initially in their �rst excited vi-

brational state [see Eqn. (5.16)], and approach the surface with mean translational

energies Ek(0) � 150 meV (see above).

5.7.1 Dissipative model and model parameters

Di�erent dissipation parameters were used to cover a wide range of strengths and

ranges for the relaxation. The function f(Z) in (5.33) was assumed to be exponen-

tial,

f(Z) = exp f�
(Z � Zc)g ; (5.36)

where 
 is a range parameter, and Zc = 0:5 a0 is the distance between the Z = 0

plane and the minimum of V (x; Z), which corresponds to dissociatively chemisorbed

hydrogen atoms (the minimum for x larger than 4 a0 in Fig.5.4). The exponential

form derives from the fact that the electron hole pair mechanism here invoked must

depend on the substrate electronic density, which decays to a good approximation

exponentially with the distance from the surface plane. 
 was varied between 
 =

2:5 a�10 and 
 = 0:5 a�10 , corresponding to ranges of R = 1=
 between 0:4 a0 (\short

range dissipation"), and 2:0 a0 (\long range dissipation").

The dissipative model adopted for the relaxation matrix uses transition rates of

the form

��c�c =

8><
>:

�0c1c � � � ��;��1 ; � > �

0 ; else.

(5.37)

Here, the rates are given as multiples of a phenomenological transition rate �0c1c,

which is the rate for the decay of (adiabatic) level j1ci to level j0ci, at Z = Zc.
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Eqn.(5.37) can be derived from a local polaron model for the coupling between

substrate electron hole pairs and molecular vibrations, when perturbation theory

to lowest order is used [168]. Eqn.(5.37) imposes \selection rules" by connecting

only nearest neighbors along the vibrational ladder. Also, note that according to

Eqn.(5.37) only \downward" transitions are possible. This is appropriate when the

surface is cold, as assumed in the present model study.

For the dissipative strength parameter �0c1c, we took values between 1=50 fs�1

and 1=200 fs�1. A hypothetical molecule (m = 1), permanently attached to the

repulsive wall around Z � Zc of the potential given in Fig.5.4, would therefore

vibrationally relax within \lifetimes" between 1=�0c1c = 50 to 200 fs, respectively.

The low energy molecules considered here, however, can only probe the signi�cantly

less repulsive regions of the potential. A molecule with initial kinetic energy Ek(0) =

78 meV, for example, has its classical turning point Ztp at Ztp � 1:8 a0. As a crude

estimate, therefore, a hypothetical molecule permanently attached to the classical

turning point will vibrationally relax within

� � [�0c1c � f(Ztp)]
�1

; (5.38)

with f(Ztp) given by Eqn.(5.36). In the present work, estimated lifetimes � between

180 fs (for 
 = 1:0 a�10 , �0c1c = 1=50 fs�1, i.e., \strong" dissipation of \long range")

and � 5:2 ps (for 
 = 2:5 a�10 , �0c1c = 1=200 fs�1, i.e., \weak" dissipation of

\short range") have been considered. Recalling that electron hole pair mediated

vibrational relaxation of molecules adsorbed at metals typically takes place on a few

ps time scale [163, 164, 165], the dissipative parameters adopted are of a realistic

order of magnitude, provided the electron hole pair mechanism is assumed to be

dominant. The question arises as to whether these lifetimes are short enough to

account for a substantial reduction of the m = 1 survival probability during a

scattering experiment for which the \contact time" between molecule and substrate

is typically \short", of the order of 80, 100 and 130 fs for an average kinetic energy

of 150, 78 and 50 meV, respectively
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5.7.2 Dissipative vs. nondissipative scattering dynamics

In a �rst step, a dissipative scattering event was compared to the dissipation free

case. For this purpose, D2 (m = 1) molecules with an initial mean kinetic energy

of Ek(0) = 78 meV were scattered from the model surface, when the prefactor

�0c1c in Eqn.(5.37) was �0c1c = 1=1 ! 0 (nondissipative or rigid surface case)

and �0c1c = 1=100 fs�1 (dissipative or nonrigid surface case), respectively. The

dissipative range parameter was 
 = 1:5 a�10 , leading, in the dissipative case, to a

vibrational relaxation time at the classical turning point of � � 0:7 ps.

Fig.5.5a gives the asymptotic state populations Pm(t), as de�ned in Eqn. (5.20).

The solid curves refer to the dissipation free case, while the dashed ones are for the

dissipative dynamics. In both cases P0, P2, and the summed populations
P

m Pm

(m � 3) are shown, while P1 is not given for clarity. (P1 is 1 at t = 0, and

remains > 0:9 at all times.) Let us consider the dissipation free case (solid curves)

�rst. It is seen that with increasing time the populations of vibrational states other

than m = 1 �rst increase, and then decrease again to almost zero. Maxima of

the Pm(t) curves emerge around t � 150 fs, when the molecule hits the surface.

Though state j1i is still dominant, other states (in particular j2i and j0i) come into
play. For the propagation, K = 10 states was used (see Table 5.5), which gives

well converged results. After tmax � 390 fs the scattering process is over. For the

model potential used here (see Fig.5.4), at �nal time almost only elastic scattering

is predicted at Ek(0) = 78 meV { the population of the ground vibrational state

at tmax is P0(tmax) < 10�4. Hence, the model potential allows for almost no V{T

or T{V coupling, and a �nal ground state population P0(tmax) 6= 0 can only arise

when dissipation is present. Although our potential is not designed particularly for

this system, we note that Sitz and coworkers observed for the v = 0 ground state of

H2 rescattered from Cu(110), a survival probability of 1:0 [39], indicative for weak

T{V coupling also in that case.

As soon as dissipation is included, the situation changes (dashed lines in Fig.5.5).

Now, at �nal time a signi�cant fraction of the D2 molecules (ca. 4%) has relaxed

to the vibrational ground state. The �nal ground state population P0(tmax) is a

measure for the experimentally accessible survival probability of the m = 1 state,
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Figure 5.5: Scattering of D2 (m = 1, Ek(0) = 78 meV) from a nondissociative

model surface: Comparison of dissipative (solid curves) with nondissipative dynam-

ics (dashed curves). In the dissipative case, the strength parameter is �0c1c = 1=100

fs�1, and the range parameter is 
 = 1:5 a�10 . The meaning of these last parameters

is given in section 5.7.1, Eqn.(5.36) and (5.37) . Panel (a) shows selected asymptotic

state populations Pm(t) [Eqn.(5.20)], while panel (b) gives the energy loss �E(t)

[Eqn. (5.40)], in units of the fundamental vibrational quantum, "1 � "0, of free D2.

i.e., P1(tmax) � 1� P0(tmax), because under the present conditions no states other

than m = 0 and m = 1 are populated when the scattering is over.
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P0(tmax) can roughly be estimated from the ratio of the time which the molecule

spends close to the surface during scattering, tscat, and the approximate lifetime of a

hypothetical molecule localized close to the classical turning point, � [see Eqn.(5.38)],

multiplied by 1=e. Hence,

P0(tmax) �
1

e
� tscat
�

: (5.39)

From Fig.5.5a we estimate tscat � 100 fs, which gives P0(tmax) � 1

e
� 100fs
0:7ps � 0:05, in

close agreement with the observation.

It is further seen from Fig.5.5a that the m = 2 (and m � 3) populations are

almost identical in the dissipative and nondissipative cases, respectively. This is

because the dissipation was de�ned in the vibrationally adiabatic basis, rather than

in the asymptotic basis jmi, which is only used for analysis. The signi�cant pop-

ulations seen for the m � 1 states around t � 150 fs are therefore more due to

the fact that the asymptotic basis is not well suited to mathematically represent

the molecule when it strongly interacts with the surface, rather than due to \real"

vibrational transitions. Vibrationally adiabatic states higher than m = 1 are never

signi�cantly populated, and therefore dissipation cannot in
uence them too much.

In Fig.5.5b, the energy loss of the system due to dissipation,

�E(t) = tr
�
Ĥ (�̂(t)� �̂(0))

�
; (5.40)

is given for both cases studied in Fig.5.5a. We express �E in units of "1 � "0,

i.e., in units of the fundamental vibrational quantum of the free molecule. For the

dissipation free case (solid) the system energy is conserved (�E = 0), whereas in the

dissipative case energy is transferred from the excited molecule to the surface. In

our dissipative model the energy loss is only due to vibrational relaxation; �E(tmax)

must therefore be in the order of P0(tmax) � 0:04, which is indeed the case.

Fig.5.5 demonstrates that an electron hole pair mechanism may account for vi-

brational relaxation in the few percent regime, when translationally slow D2 (m = 1)

molecules scatter from cold, nondissociative surfaces. The fraction of relaxed, scat-

tered molecules can be estimated from Eqn.(5.39). In the following, we will address

in some more detail how the fraction of relaxed molecules depends:
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(i) on the dissipative model parameters,

(ii) on the kinetic energy of the incoming molecule, and

(iii) on isotopic substitution.

5.7.3 Variation of dissipative parameters

In Fig.5.6, the dependence of the survival probability of D2 (m = 1) molecules on

the dissipative range parameter 
 is investigated for the case of Ek(0) = 78 meV and

�0c1c = 1=100 fs�1. In Fig.5.6a, we give the population for the asymptotic vibrational

ground state j0i, P0(t) [Eqn.(5.20)], for �ve di�erent range parameters (
 = 0:5, 1:0,

1:5, 2:0 and 2:5 a�10 , respectively). In Fig.5.6b the analogous information on the

energy loss �E(t) [Eqn.(5.40)] is provided. It is seen that the longer the range of

the dissipative forces, (i.e., the smaller 
), the larger is the fraction of molecules

which relax. At t = tmax these fractions, i.e., the populations P0(tmax) are: 0:40

(
 = 0:5 a�10 ), 0:12 (
 = 1:0 a�10 ), 0:04 (
 = 1:5 a�10 ), 0:017 (
 = 2:0 a�10 ), and 0:006

(
 = 2:5 a�10 ). The simple relation (5.39) gives, with tscat = 100 fs, P0 = 0:19, 0:10,

0:05, 0:02 and 0:01, respectively, and therefore accounts for the observed trend. The

corresponding estimated vibrational relaxation times [(Eqn.5.38)] are � � 200 fs,

370 fs, 0:7 ps, 1:3 ps, and 2:6 ps, respectively.

From Fig.5.6b we note that the system energy is similar to Fig.5.5 { approxi-

mately given by the fraction of molecules relaxing to the vibrational ground state.

In Fig.5.7, the dependence of the results on the dissipative strength parameter

�0c1c is studied for D2 (m = 1, Ek(0) = 78 meV, 
 = 2:5 a�10 ). In Fig.5.7a the

populations P0(t) are given, while Fig.5.7b shows once more the energy loss �E(t).

The four di�erent curves in each panel refer to �0c1c = 1=50 fs�1, 1=100 fs�1, 1=200

fs�1, and 1=1, respectively. From Eqn.(5.38) we estimate vibrational relaxation

times of � � 1:3 ps, 2:6 ps, 5:2 ps, and 1 for these cases. Fig.5.7 suggests that

these \medium" to \weak" dissipative parameters lead to the vibrational relaxation

of only small fractions of D2 molecules. Both P0(tmax) and j�E(tmax)j do hardly

exceed 0:01, even for the strongest coupling. To summarize, in particular from
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Figure 5.6: Scattering of D2 (m = 1, Ek(0) = 78 meV) from a model nondissociative

surface: Comparison of di�erent dissipative range parameters 
, at a �xed dissipative

strength parameter, �0c1c = 1=100 fs�1. The meaning of these last parameters is

given in section 5.7.1, Eqn.(5.36) and (5.37) . Panel (a) shows the asymptotic

ground state population P0(t) [Eqn. (5.20)], and panel (b) gives the system energy

loss �E(t) [Eqn. (5.40)], in units of the fundamental vibrational quantum of free

D2.

Fig.5.6 it is concluded that the fraction of relaxed D2 (m = 1) molecules can in

principle cover the range seen by the experiment on the H2 (m = 1) / Cu(110) system

[39], which is in the order of 0:3. However, it must be stressed that this is only true

when the dissipation is very \long range", and / or \strong", and the corresponding
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Figure 5.7: Scattering of D2 (m = 1, Ek(0) = 78 meV) from a model nondissociative

surface: Comparison of di�erent dissipative strength parameters �0c1c, at a �xed

dissipative range parameter, 
 = 2:5 a�10 . The meaning of these last parameters is

given in section 5.7.1, Eqn.(5.36) and (5.37) . Panels (a) and (b) give information

analogous to Fig.5.6.

vibrational relaxation times su�ciently (probably unrealistically), short.

This is in more detail demonstrated in Fig.5.8, where computed �nal ground

state populations P0(tmax) are shown as a function of the approximate vibrational

relaxation time � [Eqn.(5.38)]. By varying the dissipative parameters 
 and �0c1c,

a lifetime range between 180 fs and 5:2 ps was covered. The calculations refer to

D2 (m = 1, Ek = 78 meV). The symbols shown in Fig.5.8 are the numerical values

obtained with the CCDM method. The dashed curve is an estimate for P0(tmax),

resulting from the simple relation (5.39), when tscat = 100 fs is used. Note that the

numerically \exact" populations follow closely the simple 1=� behavior predicted

by Eqn. (5.39). Both from the numerically exact and the approximate data, it can
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be argued that the experimental 30% reduction of the m = 1 population for H2

/ Cu(110) [39] requires a vibrational relaxation time of 200 fs or so. This seems

too short (by a factor of � 10) to be realistic, for a closed shell molecule relaxing

via an electron hole mechanism at a metallic substrate [163, 164, 165]. Though

di�erences between H2 and D2 molecules are to be expected (see below), and though

our model and the potential used are not necessarily representative for H2/Cu(110),

we conclude that electron hole pair excitation alone can hardly account for the

experimentally observed reduced survival probability of H2 (m = 1) at Cu(110) [39].

However, the reduction of the m = 1 population by a few percent seems possible,

when realistic vibrational lifetimes � are assumed.
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Figure 5.8: Scattering of D2 (m = 1, Ek(0) = 78 meV) from a model nondissociative

surface: Final vibrational ground state population P0(tmax), as a function of the

estimated vibrational relaxation time at the classical turning point, � [Eqn. (5.38)].

The symbols are the results of the CCDM approach, while the dashed curve arise

from the simple, approximate relation (5.39) with the choice tscat = 100 fs.
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5.7.4 Variation of initial mean kinetic energies

In a further step, the dependence of the inelastic scattering process on the initial

mean kinetic energy Ek(0) of the incoming molecule was studied. For this purpose,

calculations for D2 (m = 1) with Ek(0) = 50, 78, and 150 meV were carried out.

The dissipative strength parameter was �0c1c = 1=100 fs�1, while two di�erent range

parameters 
 (
 = 2:5 and 
 = 1:5 a�10 ) were used.

In Fig.5.9a, the vibrational ground state population P0(t) is shown for all six

cases studied (two range parameters, three kinetic energies), while Fig.5.9b gives

the analogous information for the system energy loss, �E(t). From Fig.5.9b, for

example, we note that our simple model predicts the following. The larger the

Ek(0), the earlier the molecule hits the surface, and the earlier the loss of energy

sets in. Further, the transition region connecting the two plateau regions at short

and long times t, is the steeper the larger Ek(0). The �nal energy transfer �E(tmax)

to the substrate is largely independent of the initial kinetic energy. This observation

holds for di�erent range parameters 
. Analogous conclusions are drawn from the

population curves given in Fig.5.9a.

The explanation of this remarkable insensitivity of the vibrational relaxation

process on initial kinetic energy is easily explained with the help of the approximate

relation (5.39). The higher the Ek(0), the closer to the surface is the classical turning

point; via Eqn.(5.38) and Eqn.(5.36), this implies a shorter vibrational relaxation

time, � . According to Eqn.(5.39), this leads to an increase of the asymptotic state

population, P0(tmax). However, the faster the molecule the shorter the interaction

time tscat, which leads, again via (5.39), to a decreased relaxation probability. Both

e�ects largely compensate, giving rise to the observed insensitivity of the �nal prop-

erties on Ek(0).

5.7.5 Isotope e�ects

In a �nal series of calculations, e�ects of isotopic substitution were studied by con-

trasting D2 (m = 1) scattering with H2 (m = 1) scattering. For �xed Ek(0) = 78
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Figure 5.9: Scattering of D2 (m = 1) from a model nondissociative surface: Com-

parison of di�erent mean initial kinetic energies, Ek(0). Three kinetic energies

Ek(0) = 50, 78, and 150 meV and two di�erent dissipative range parameters 
 = 1:5

a�10 and 
 = 2:5 a�10 , are considered. The dissipative strength parameter is �xed

at �0c1c = 1=100 fs�1. The meaning of the dissipation parameters is given in sec-

tion 5.7.1, Eqn.(5.36) and (5.37) . Panels (a) and (b) give information analogous to

Fig.5.6.

meV, and at a �xed dissipative strength parameter (�0c1c = 1=100 fs�1), di�erent

dissipative range parameters were considered (
 = 1:0, 1:5, and 2:0 a�10 , respec-

tively). A comparison between both isotopomers is given in Fig.5.10, where again

vibrational ground state populations (Fig.5.10a) and energy losses (Fig.5.10b) are

shown. From Fig.5.10a we note that the vibrational relaxation is more e�cient in the

case of D2, but the di�erences are not huge. For instance, with 
 = 1:0 a�10 , P0(tmax)

is 0:088 for H2, and P0(tmax) = 0:12 for D2. For 
 = 2:0 a�10 , the corresponding

numbers are 0:012 (H2), and 0:017 (D2), respectively.
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Figure 5.10: Comparison of H2 (m = 1, Ek(0) = 78 meV) with D2 (m = 1, Ek(0) =

78 meV) for the scattering from a model nondissociative surface. Three di�erent

dissipative range parameters 
 are considered, at a �xed dissipative range parameter,

�0c1c = 1=100 fs�1. The meaning of the parameters is given in section 5.7.1. Panels

(a) and (b) give the information analogous to Fig.5.6, except that in (b) absolute

energy units have been used.

Hence, the ratio P0(tmax)(H2)=P0(tmax)(D2) is remarkably close to
p
2, which is

the ratio of the classical velocities of H2 and D2 when approaching the surface with

the same kinetic energy Ek(0). The simple classical model (5.39) can also account

for the observed isotope e�ect. Namely, due to the higher velocity of the lighter

isotopomer, the H2 scattering time tscat will be shorter by a factor of about
p
2.

Since the classical turning points, and hence the estimated vibrational relaxation

times � are the same for both isotopomers, Eqn. (5.39) explains the higher survival

probability for H2(m = 1).

The �nal energy loss �E(tmax), which is given in Fig.5.10b, is approximately
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the same for both isotopomers if absolute energy units are used. This is because

of the cancellation of two e�ects. The H2 molecule loses about a factor of
p
2

less vibrational quanta than D2, but the absolute energy of the H2 fundamental

vibrational quantum is by a factor of about
p
2 larger than that of D2. The observed

isotope e�ects rely on the approximation that the dissipative parameters are the

same for both isotopomers.


