
Chapter 4

Photoinduced desorption of NO

from Pt(111)

4.1 NO photodesorption and the Variational Wave

Packet scheme

The dynamics of NO adsorbed on a Pt surface is a prototype for photodesorption

problems, with many theoretical [128, 129, 10] and experimental [42, 130, 131] works,

similar to the case of H2 scattering at metal surfaces for gas surface scattering (see

chapter 5). It is characterized by the femtosecond evolution for the molecule on

various electronic states [10, 132] that is strongly coupled with the surface modes,

in particular surface electronic excitations. Eventually, the molecule surface bond

will gain energy non adiabatically and the molecule will desorb on a time scale of

fractions of a picosecond, under the weak in
uence of electronic friction and surface

phonons.

This so called DIET (Desorption Induced by Electronic Transitions) of NO from

Pt (and also similar for other systems) is typically depicted as follows (see Fig.4.1

for illustration). First, the adsorbate wave packet in its ground electronic state



4.1 NO photodesorption and the Variational Wave Packet scheme 59

is promoted to an electronically excited state, either directly, or indirectly, e.g.,

through \hot electrons". The wave packet evolves in time in the excited state

(probably a metal to ligand charge transfer state in the case of NO/Pt), but is at

the same time \quenched" back to the ground state, from where desorption may

occur { or not. The lifetime of the excited intermediate is \ultrashort" (i.e., a few

femtoseconds) due to the e�cient coupling of the nuclear motion to the substrate

electronic excitations (e.g., electron hole pairs). The surface electronic \modes" are

fast and the assumption that they will induce an irreversible, dissipative dynamics

is very reasonable.

Accordingly, a density matrix description should be an e�cient framework for

these kinds of phenomena. Indeed, the problem has been formulated within the

language of open system density matrix theory, and treated with direct [133, 89, 74]

as well as stochastic wave packet methods [134, 89, 90]. The challenge of the problem

is twofold. First, since bonds are to be broken, a coordinate (grid) representation

has to be used, leading to large Hilbert space dimensions N , in particular for multi

mode models [90], making the direct approach technically intractable. Secondly, the

desorption probabilities are typically very small (10�4, say) and therefore stochastic

wave packet methods converge very slowly when properties of the desorbates are of

interest, as shown in Ref.[89].

The Variational Wave Packet method was previously applied [95], in a zero order

state basis, to a bound, large, dissipative problem [88], for which three system modes

and three system electronic states had to be considered, and for which the direct

approach was impossible. The method gave a good performance in comparison with

the equivalent MCWP calculations [88] in the computation of coherent properties.

This inspired us to test the possibilities of the new method and in [96] we adapted

the VWP method to the photoinduced desorption of a molecule of NO from the

Pt(111) surface.

For the DIET of NO from Pt(111) we used the same one and two mode, two state

models as previously [74, 90]. Since in DIET (in contrast to DIMET, \Desorption

Induced by Multiple Electronic Transitions") multiple excitations of the adsorbate

are not possible [74], only a single dissipative channel (namely the electronic decay)
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is allowed. We assumed [74, 90] a Lindblad form for the dissipation (2.11), so the

relevant dissipative Liouville-von Neumann equation reads

_̂�(t) = �i
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where Ĉ is the Lindblad operator, specifying the environment induced electronic

relaxation (see below).

The system Hamiltonian Ĥs in Eqn.(4.1) is of the simple, decoupled two state

form

Ĥs = Ĥgjgihgj+ Ĥejeihej ; (4.1)

where jgi and jei stand for the electronic ground, and the (short lived) electronic

excited state, respectively. The Hamiltonians Ĥl (l = g; e) are in the one [74] and

two mode [90] models given by

Ĥl = �1

2

FX
i=1

@2

�i@Q
2
i

+ Vl(fQig) : (4.2)

Here, in the one dimensional case F = 1, Q1 = Z (distance of molecular center

of mass to the surface) and �1 = mNO, while in the two mode case F = 2, Q1 =

Z;Q2 = x (x is the NO bond length), and �2 =
mNmO

mN+mO
.

Eqn.(4.1) is solved subject to the initial condition �̂(0) = jeihej
j0gih0gj, i.e., an
initial, singular Franck{Condon transition of the vibrational and electronic ground

state wave function j0gi to the electronic excited state jei is assumed, as a crude

model for an indirect, \hot electron" mediated excitation step [74].

Once electronically excited, the wave packet starts to move and to be electroni-

cally quenched. The quenching is controlled by the operator Ĉ,

Ĉ =
p
�gejgihej; (4.3)

where, �ge = 1=� is the rate for the decay of the excited state jei to the ground state
jgi (and � is the excited state lifetime). For simplicity, �ge is assumed to be coor-

dinate independent. Generalization to coordinate dependent, nonexponential decay
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is straightforward, and possible without much additional e�ort for all numerical

approaches adopted below.

After a �nal propagation time, tmax, those parts of the wave packets which have

reached asymptotic regions Z > Zd of the ground state potential energy surface,

are counted as \desorbed", and analyzed. Of particular interest are the desorption

probability, Pdes, and the \translational temperature",

Ttrans = Ekin=2kb (4.4)

of the desorbates. (Ekin is the kinetic energy of the neutral, desorbing NOmolecules).

The system has not a thermal distribution, even if it is a statistical ensemble, so the

expression \translational temperature" is to be considered as kinetic energy mea-

sured in Kelvin. Since the desorption probability is small in the cases considered

below, the properties associated with adsorbates are called \infrequent properties"

in the following. Occasionally, we will also be interested in \frequent properties",

namely the populations of the excited and ground states, and the total system en-

ergy.

The VWP results, which are obtained with n basis wave functions (excited and

ground state basis), are always checked against \exact" benchmark calculations.

In the one mode model, the exact reference is provided by direct density matrix

propagation, based on a Newton polynomial expansion of the time evolution super-

operator (see section (3.2) and references therein for the general theory and [74] for

details about this system). For the two mode model a direct density matrix result

is at present not available. Here, the results of Gadzuk's \jumping wave packet &

incoherent, weighted averaging scheme" [41], which can be shown to be equivalent to

density matrix theory for DIET models (single dissipative channel) with coordinate

independent quenching rates [89] are used as benchmark. (In this case, the weight-

ing coe�cients for averaging are known analytically [89, 90]. For an extension of the

economic \jumping & weighted average" approach to coordinate dependent quench-

ing, see [90]). In the \jumping wave packet" calculations, a split propagator is used;

while for any method, a discrete coordinate space representation is chosen for all

occurring operators and wave functions. The action of the kinetic energy operator is

evaluated locally, by using a discrete Fast Fourier Transform (FFT) algorithm (see

Appendix A).
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4.2 One dimensional model

In the one dimensional model, the ground state potential Vg(Z) is a Morse function,

and the excited state Ve(Z) an image charge stabilized bound, negative ion reso-

nance, metal to ligand charge transfer state [41]. The potential parameters are the

same used in [74], and the potential curves are shown in Fig.4.1. The discrete grid

used starts at �1:4 a0, and consists of N = 512 points spaced by �z = 0:04 a0. The

desorption point, Zd, is put at 4 a0. The excited state lifetime is taken as � = 2

fs. The System was propagated until the desorption probabilities had reached a

constant value, this corresponds to t = tmax = 500 fs. All the other computational

parameters and procedures are the same as described in Ref.[74]. Let us �rst con-

sider \frequent" properties associated with the decay of the excited state resonance,

namely Ne(t) (the population of the excited state), Ntot(t) = Ng(t)+Ne(t) (the total

norm), and Etot(t) (the total system energy). As shown elsewhere [89], these prop-

erties can be accurately computed with a moderate number of wave packets within

the \jump & averaging" scheme, and even with the ordinary MCWP method, but,

as shown in Fig.4.2, the VWP method is even more economic in the sense that a

smaller number of wave functions n is required for a certain accuracy.

In Table 4.1, for the selected times t = 2 fs, t = 5 fs, t = 20 fs, and t = 50 fs the

relative error for each observable A(t) (A = Ne, Ntot, and Etot),

E[A(t);n] =
Aex(t)� AVWP(t;n)

Aex(t)
(4.5)

is given for di�erent basis set sizes, n, of the VWP expansion (3.31). In these

calculations, n was kept �xed over the entire propagation time. Aex(t) in Eqn.(4.5)

denotes the \exact" observable, while AVWP(t;n) is the result of a VWP calculation

with n functions. Actually, the exact, frequent observables are known analytically

or semianalytically in the present example [Ne(t) = e��get, Ntot = 1, Etot(t) =

Ne(t) � Etot(0) + (1 � Ne(t)) � Etot(1)], or can be taken from direct density matrix

propagation. However, we prefer to de�ne as the exact results those obtained with

the VWP method and n = 13, Aex(t) := AVWP(t;n = 13), in order to not spoil

our analysis with (small) errors due to other numerical approximations (namely the

integrator and the grid). Indeed, the VWP results for the frequent properties are
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Table 4.1: Computation of \frequent" properties for the DIET of NO from Pt (see

text). Shown are the relative errors as de�ned in Eqn.(4.5) for di�erent numbers of

basis functions, n, used in the VWP expansion. The \exact" reference is taken to

be the result of the VWP (n = 13) calculation. The numbers in brackets (m) denote

exponents (10m).

t [fs] ! 2 5 20 50

n = 1 < 1:(�8) < 1:(�8) < 1:(�8) < 1:(�8)

2 < 1:(�8) < 1:(�8) < 1:(�8) < 1:(�8)

Ne 3 < 1:(�8) < 1:(�8) < 1:(�8) < 1:(�8)

6 < 1:(�8) < 1:(�8) < 1:(�8) < 1:(�8)

9 < 1:(�8) < 1:(�8) < 1:(�8) < 1:(�8)

n = 1 6.32(-1) 9.18(-1) 1.00(�0) 1.00(�0)

2 9.76(-3) 6.30(-2) 1.12(-1) 1.20(-1)

Ntot 3 7.06(-5) 2.94(-3) 2.29(-2) 2.29(-2)

6 < 1:(�8) 3.00(-8) 5.03(-4) 5.46(-4)

9 < 1:(�8) < 1:(�8) 1.10(-5) 2.30(-5)

n = 1 3.23(-2) 2.16(-1) 1.00(�0) 1.00(�0)

2 1.42(-3) 3.98(-2) 3.74(-1) 3.75(-1)

Etot 3 3.70(-7) 2.89(-3) 1.30(-1) 1.31(-1)

6 < 1:(�8) < 1:(�8) 6.56(-3) 7.53(-4)

9 < 1:(�8) < 1:(�8) 1.85(-4) 4.51(-4)



64 Photoinduced desorption of NO from Pt(111)

−1 0 1 2 3 4 5 6
Surface Coordinate Z [a0]

0.00

0.05

0.10

E
ne

rg
y 

[E
h]

Z d

t= 0 fs

t= 2 fs
t= 5 fs

t= 2fs

t= 200 fs

Figure 4.1: The resonance, metal to ligand charge transfer state and the ground

potential energy surfaces for the NO/Pt system in the 1D model are shown as bold

curves. The surface coordinate Z is the distance of the molecule's center of mass to

the surface [74]. The vertical dashed line at Z = Zd = 4 a0 is the point after which

a molecule is considered as desorbed. The typical behavior of a desorption process

is also shown as a series of snapshots of the diagonal elements of the density matrix,

as solid curves on the excited surface and as dashed curves on the ground electronic

state. The desorbed part, i.e., the dashed curve after the \desorption point", is

magni�ed 500 times.

well converged with respect to n for n = 13; the n = 13 results itself agree to within

about 10�4 with the (semi) analytical ones. From this fact alone we anticipate that

the VWP method may o�er great computational savings over direct density matrix

propagation schemes.

Table 4.1 shows that the \frequent" properties can be computed, to reasonable

accuracy, already with much less e�ort. For instance, the excited state popula-
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Figure 4.2: \Frequent properties" for the 1D DIET model for NO/Pt as computed

with di�erent methods are shown for di�erent n, the number of functions used for

the wave packet based methods.

tion Ne(t) is exactly reproduced with a single wave function, i.e., with n = 1 (see

also Fig.4.2). This observation follows also from an analytic solution of the VWP

equation (3.45) for the expansion coe�cients. Namely, if only a single excited state

wave function j 1i spans the basis, the density operator �̂ in Eqn.(3.31) is given by

�̂ = �1j 1ih 1j; further, by using the single DIET{Lindblad operator Ĉ as de�ned

in Eqn.(4.3), we have LD�̂ = �ge[jgihgj � 1

2
jeihej�̂� 1

2
�̂jeihej]. As a consequence, the

equation of motion for the coe�cient �1(t) [Eqn.(3.45)] reads

@�1(t)

@t
= ��ge�1 :

With �1(t) = Ne(t), and �1(0) = Ne(0) = 1 it follows, that

Ne(t) = e��get ;

which is the analytical result. Any errors, relative to the analytical result, of Ne(t)

(and any other excited state property) obtained with the VWP method and n = 1,
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are therefore numerical, and not due to a basis set being too small. Since in the

simple DIET model used here no re-excitations are possible and no Hamiltonian

couplings between jgi and jei exist, a single wave function is su�cient to describe

the excited state dynamics throughout.

Of course, for n = 1 the basis is (except at t = 0) incomplete, and total norm is

not conserved; the loss of norm increases with time according to �Ntot(t) = 1�e��get.
Hence, to compute the total norm (or any observable associated not solely with the

excited state), ground state basis functions j gui must to be added. Table 4.1 shows,
that one wave function in addition to the single wave function describing the excited

state (n = 2) already suppresses (for t = 2 fs) the relative error from 0:632, to below

10�2. This corresponds to an increase of the total norm from 0:3677 (n = 1), to

0:9902 (n = 2). When propagated to longer times, more and more wave functions

are needed for a certain accuracy. To reach a total norm larger than 0:9999, say,

requires n = 3 at t = 2 fs, n = 4 at t = 5 fs, and n = 6 at t � 20 fs (when the

dissipation becomes ine�cient). For all t, relative errors of the total norm (and also

of the total system energy Etot, for example) of 10
�3 (and mostly much lower) are

typical with n = 6. This is better than what was possible with the MCWP method,

where in the order of n � 100 wave packet runs where needed for a comparable

accuracy of the \frequent" properties [89], and also with the \jump & average"

method (which required around 30 wave packets [89]), as shown in Fig.4.2.

A more stringent test of the VWP method is its performance for \infrequent"

properties, i.e., those associated with the desorption of neutral NO molecules. In

Fig.4.3, the desorption probability Pdes(t) is given for di�erent basis set sizes n.

The number of basis functions (and the time step used by the propagator) is now

automatically adjusted during the propagation, and n is to be understood as the

number of functions used at t = tmax = 500 fs. The four curves shown in the

�gure are for n = 7, 9, 11, and 13, respectively. Also shown (as bullets) are the

benchmark direct density matrix probabilities taken from Ref.[74], which on the

scale of the �gure cannot be distinguished from the most accurate VWP calculation

(n = 13). Both \exact" curves rise after t � 100 fs from essentially zero, to the �nal

(t = tmax = 500 fs) desorption probability of � 9:5 � 10�5. This small probability

is not easy to capture by stochastic wave packet methods, for which even n = 1500
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wave packets were found to not accurately reproduce the �nal Pdes [89]. By contrast,
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Figure 4.3: Time resolved desorption probabilities Pdes(t) for NO from Pt(111)

(one mode model), as obtained with the VWP method with di�erent basis set sizes

(curves), and with the direct density matrix method [74] (bullets).

the VWP method not only converges with n = 13, but also with a fewer number

of wave packets \reasonable" results are obtained; further, the convergence to the

exact result is uniform and monotonic, rather than erratic as in the MCWP method.

This happens because the method is variational and the propagation positive, so the

�u(t) are necessarily positive and the results can only sum up together.

However, to compute \infrequent" properties, more basis functions are necessary

than for the \frequent" ones.
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This is quantitatively analyzed in Table 4.2, where the �nal (t = tmax) desorption

probability Pdes, the translational temperature of the desorbates, Ttrans (de�ned via

Eqn.(4.4)), and a few other useful quantities are given, for the four VWP calculations

shown in Fig.4.3, and for the direct density matrix benchmark calculation. Taking

the direct density matrix result as the \exact" observable Aex in Eqn.(4.5), we �nd

moduli of the relative errors in the desorption yields between 1 � 10�3 for n = 13,

and � 0:65 for n = 7. (The di�erent sign of the errors for n = 13, suggests that

this most accurate VWP propagation is in fact slightly more accurate than the

numerical direct density matrix result [74].) Similar relative errors are found for the

translational temperatures.

Table 4.2 also shows that the relative error in the desorption yield, say, correlates

(almost linearly) with the loss of norm. Hence, errors in the infrequent properties

may be brought to minimum by controlling the conservation of norm, which is a

useful tool in cases where the exact answer is unknown.

Table 4.2 further tries to compare the direct density matrix propagation with

the VWP method with respect to the computational e�ort. To make the analysis as

machine independent as possible, computation time and memory requirements are

given in units of the e�ort for the VWP (n = 13) calculation.

The VWP method is clearly superior to the direct, Newton polynomial approach

in terms of memory needs. The ideal, theoretical ratio of the memory requirements

for the VWP method with n basis vectors of length N each, and the direct density

matrix approach (matrix size N � N) is approximately n=N , and the \measured"

ratios found in Table 4.2 are of the expected order of magnitude. Since the VWP

approach is a coupled wave function method, the storage requirement is, however,

less favorable than for the MCWP method, for example, which has an ideal ratio of

n=N , and moreover is trivial to parallelize.

With respect to the computation time needed for a VWP(n) calculation, we �nd

in good approximation a numerical scaling proportional to n2. Up to n = 13, for the

present example, the VWP method is also faster than the direct method. However,

this statement is somewhat ambiguous since vastly di�erent algorithms were used

for both methods. The \waste" of memory by direct methods, and the convergence
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Table 4.3: Eigenvalues of the (ground state block of the) density matrix (right

column), compared to the ground state expansion coe�cients of the variational

wave packet method, for di�erent n, at t = tmax. [The expansion coe�cient of the

(single) excited state wave function is zero.]

n = 7 n = 9 n = 11 n = 13 density

matrix

1 .880225719 .880226017 .880226026 .880226018 .880226024

2 .096868957 .096874711 .096875082 .096875098 .096875100

3 .017190538 .017201899 .017202689 .017202743 .017202747

4 .004005631 .004020574 .004021669 .004021746 .004021755

5 .001106745 .001126925 .001128210 .001128300 .001128309

6 .000327787 .000356115 .000357609 .000357715 .000357725

7 .000119952 .000121829 .000121948 .000121958

8 .000040422 .000042752 .000042890 .000042901

9 .000015012 .000015183 .000015195

10 .000005110 .000005363 .000005378

11 .000001879 .000001901

12 .000000610 .000000650

13 .000000246

14 .000000083

15 .000000022

16 .000000013
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properties of the VWP method can be demonstrated by diagonalizing the 512� 512

ground state block of the density matrix. In doing so, we �nd that for t = tmax only

16 eigenvalues are larger than 10�8 (see Table 4.3). This implies that in its diagonal

form most of the density matrix elements are zero, and are propagated and stored

without carrying any useful information. It implies further, that in order to obtain

results with eight signi�cant digits, n = 17 has to be chosen, while with n = 13 six

signi�cant digits are obtained.

Table 4.3 also gives the n eigenvalues (i.e., the expansion coe�cients �u) of the

density matrix in the VWP representation, for the four di�erent calculations re-

ported in Table 4.2. Inspection of the Table 4.3 shows that the VWP method tries

to represent the \exact" (diagonal) density matrix with a minimum number of basis

functions in an optimal fashion (as should be expected, since �̂ is represented in the

natural orbital base). The \frequent" properties considered above are determined

by the largest eigenvalues, which are well represented already with a few basis func-

tions. For the computation of the \infrequent" properties, however, smaller (but

not the smallest) eigenvalues turn out to be important, and larger n are required

to accurately represent those. The reason for this is simply that the less populated

functions derive from the initial function (the only one on the excited surface), at

later time. Since this one has moved closer towards the equilibrium position of the

excited surface, the new functions are created deeper in the repulsive part of the

ground state potential and have thus a better chance to desorb.

4.3 Two dimensional model

In the two mode model, additional to the molecule surface distance Z, the NO

vibrational coordinate is included. The 2D potential energy surfaces for the neutral

ground state and the excited state negative ion resonance are taken from Ref.[135],

with two modi�cations [90]: (i) The parameter for the NO equilibrium distance x0;e

in the excited state is reduced from 2.377 a0 to 2.193 a0, because the vibrational

excitation generated by the former value is incompatible with the experimental

results; (ii) the energy di�erence between Ve and Vg at the Franck{Condon point
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is reduced to 1:5 eV, to account for the experimentally estimated excitation energy

[136]. Compared to Ref.[90], an enlarged grid along x with Nx = 64 (grid spacing

�x = 0:03 a0), and a �ner grid along Z with up to NZ = 1024 (grid spacing

�Z = 0:02 a0) is used, to describe better the kinetic energy distribution. The

lifetime chosen is � = 10 fs, which produces somewhat larger (and numerically easier

accessible) desorption probabilities than in the one mode example. Thus showing

that the increased dimensionality e�ectively changes the behavior of the dynamics

of the system, allowing for a much longer lifetime for the excited electronic state.

The total propagation time is tmax = 700 fs.

This time, no direct density matrix calculation is possible, because the grid

consists of N = 65536 points, and therefore 4 � 234 elements had to be stored for

a single, two state density matrix. A benchmark, however, can be provided by

Gadzuk's \jumping wave packet" algorithm [41] for the special DIET model at

hand. The \jumping wave packet" calculation was performed on the full 1024 �
64 grid. Only quenching

p
�gejgihej Lindblad operators were used (see Eqn.4.3),

so the evolution is dissipative only for the �rst � 80 fs, because later on there is

no more appreciable population on the excited surface. The functions j u(t)i being
coupled by the VWP equations of motion (3.49) only if the dynamics is dissipative,

the heavy part of the propagation can be consequently described on a much smaller

grid, i.e., with less than 256 points in the Z direction. In fact the grid was adapted

during the propagation by enlarging it when one of the functions j u(t)i reaches
the edge of it. For the remaining nondissipative evolution, the wave functions were

propagated independently and the observables computed using relation 3.31. For the

\frequent" properties the results are completely equivalent to the one dimensional

case, e.g., the properties on the excited surface can be computed with only one

function. Considering \infrequent" properties, with the \jumping wave packet"

approach a �nal desorption probability of 2:45�10�2, and a translational temperature
of Ttrans = 1840 K is obtained. With the VWP method, two calculations were

performed. In a �rst calculation, n = 13 basis functions were used, leading to

Pdes = 1:83 � 10�2, and Ttrans = 1610 K. In a second calculation, n = 34 was chosen,

giving Pdes = 2:32 � 10�2 and Ttrans = 1860 K, which is (considering the di�erences

in the numerical realization) in good agreement with the benchmark result. Again,

based on the loss of total norm, an internal accuracy check for the VWP method
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can be made. The loss of norm is � 10�3 for n = 13, and � 10�4 for n = 34, and the

estimated relative errors are one order of magnitude larger. The two calculations

took around 2 and 10 days, respectively, on an Origin 2000 SGI workstation.

In Fig.4.4, the dynamics is approximately depicted. For the VWP scheme, the

arrow on the excited potential energy surface represents the �rst j 0(t)i, after its
Frank{Condon excitation. During its evolution on the higher energy surface, the

wave packet generates the other functions j 1(t)i, j 2(t)i ... on the ground surface.

As it was for the one dimensional model, the later the wave functions are generated

the further they will be away from the equilibrium position, because j 0(t)i moves
towards the excited surface minimum, that is located at a smaller Z and a larger r,

compared to the ground surface. The number of functions needed to converge the

two dimensional calculations are larger than the one needed for the one dimensional

case. This is due to the fact that the increased dimensionality generates a more dense

states distribution, as is also known in many dimensional eigenstate calculations.

The expansion (3.31) necessary to approximate �̂(t) is accordingly \longer", the

decay of the �u(t) with the number u being less strong. These two calculations on

the two dimensional system were performed to show that the method can e�ectively

be used for systems too large to be handled with direct integration (see chapter 3)

and where the many dimensional large grids imposes a careful design of integration

algorithms, e.g., the use adaptative grids.

Because of its simple structure, this DIET model can be handled very e�ciently

with the Gadzuk method and its generalizations [90], thus allowing to produce

benchmark calculations to determine the numerical properties of the method, and

check its error estimators.

The calculations done by Gerdts et al. [95] together with the calculations shown

in this chapter prove that the VWP method is a general and reliable tool to treat

large scale problems. The calculations in Ref.[95] refer to a large three dimensional

bound model system intended to reproduce the dissipative dynamics of the S1=S2

states of pyrazine, while our work extended the modeling to unbound dissociative

dissipative systems. This point is discussed more in detail in the \Conclusions and

outlook", chapter 6, this section having to be understood more as a methodological
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necessary step towards the treatment of larger systems than as a self contained

physical simulation.
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Figure 4.4: Contour plot of the model potential energy surfaces, V (r; Z). The insert

shows the meaning of the coordinates r and Z, respectively. The top panel shows the

resonance, metal to ligand charge transfer state, while the bottom panel shows the

ground state. The potential is adapted from Ref.[135] modifying it as indicated in

the text. The contour spacing is 0:6 eV. The bold curves indicates the nuclear motion

during the dynamical event, while the dashed lines show the electronic transitions

between the two surfaces [after [90]].


