
Chapter 2

Outline of density matrix theory

2.1 The concept of a density matrix

A physical experiment on a molecule usually consists in observing in a macroscopic

ensemble1 a quantity that depends on the particle's degrees of freedom (like the

measure of a spectrum, that derives for example from the absorption of photons

due to vibrational transitions). When the interactions of each molecule with any

other physical system are comparatively small2, it can be described by a state vector

j i(t)i whose time evolution follows the time{dependent Schr�odinger equation

j _ i(t)i = �iĤj i(t)i; (2.1)

where Ĥ is the system Hamiltonian, depending only on the degrees of freedom of

the molecule itself.

Even if negligible in �rst approximation, the interactions with the environment

usually bring the particles to a distribution of states where many of them behave

in a similar way because of the periodic or uniform properties of the reservoir (that

can just consist of the other molecules of the gas). For numerical purposes, this can

1There are interesting exceptions to this, the \single molecule spectroscopies" [44, 45].
2Of course with the exception of the electromagnetic or any other �eld probing the system!
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be described as a discrete distribution. The interaction being small compared to the

internal dynamics of the system, the macroscopic e�ect will just be the incoherent

sum of the observables computed for every single group of similar particles times its

weight3:

< Â > (t) =

1X
i=0

�ih i(t)jÂj i(t)i (2.2)

If we skip the time dependence, we can think of (2.2) as a thermal distribution, in

this case the �i would be the Boltzmann factors:

�i :=
e
� Ei
kbT

Q
(2.3)

where Ei is the energy of state i, and kb and T are the Boltzmann constant and the

temperature of the reservoir, respectively . Q is the partition function de�ned as

Q :=

1X
i=0

e
� Ei
kbT :

With this formalism, the weights �i must be left time independent because we do not

have an equation for the distribution but only a formula to derive the expectation

values (2.2).

What we need is a quantum mechanical equivalent of the phase space distribu-

tion or micro-canonical ensemble of classical statistical mechanics. Because of the

superposition principle of quantum mechanics, a simple sum generates interferences,

that should not exist between the elements of a statistical ensemble (using again the

time independent formalism for states in equilibrium):

j stati =

1X
i=0

aij ii ) < Â > = h statjÂj stati =

1X
i;j=0

a�jaih jjÂj ii:

To derive the quantum mechanical equivalent of a Liouville distribution, we may

introduce an identity operator Î on the left of Â in (2.2)

< Â > =

1X
i=0

�ih ij
1X
j=0

j�jih�jjÂj  ii =

1X
i;j=0

�ih ij�jih�jjÂj ii

3The number of states is set to in�nity, for a �nite number of states N , it is enough to set the

coe�cients with index larger than N to zero.
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and rearrange the order of the terms

< Â >=

1X
j=0

h�jjÂ
� 1X
i=0

�ij iih ij
�
j�ji :

Accordingly, expectation values of quantum mechanical operators Â for ensembles

can be derived from the trace operation

hÂi = tr
�
Â�̂
�
; (2.4)

where the equilibrium statistical operator �̂ is de�ned as

�̂ =

1X
i=0

�ij iih ij : (2.5)

It is possible to generalize the de�nition (2.5) by introducing a basis and time de-

pendent coe�cients4:

�̂(t) :=

1X
i;j=0

�ij(t)j�iih�jj : (2.6)

To have the properties equivalent to a microcanonical ensemble, the density operator

must be Hermitean and positive semide�nite5 because when brought back to diago-

nal form the coe�cients �ij(t) = �ij�i(t) have the meaning of probabilities, so they

must be real and positive. Once the density operator is generalized, the problem

arises whether (2.6) can always be rewritten as (2.5); being Hermitean, it can always

be diagonalized; but if there are states with the same population, the transformation

is not unique anymore. Any orthogonal set of state vectors spanning the subspace

of the degenerate eigenvectors can be used in (2.5); but all of them will give rise to

the same expectation values as can be veri�ed by rewriting the equations for �̂ and

using di�erent sets for the functions belonging to the degenerate eigenvalues. So the

orthogonalization procedure may be problematic, but the resulting density operator

will have anyway the correct physical properties.

If the coupling with the bath is negligible or its coordinates are included in (2.6),

the Schr�odinger dynamics can be mapped directly onto the density matrix space to

4The basis set being complete a time dependence on the functions is not necessary.
5Positive semide�nite operators have eigenvalues real positive or null.
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get the nondissipative Liouville{von Neumann equation [37, 46]

_̂�(t) = L�̂(t) � LH �̂(t) � �i
h
Ĥ; �̂(t)

i
; (2.7)

where LH is the Hamiltonian Liouvillian superoperator. The dynamics are unitary

and the eigenvalues consequently do not change in time, keeping the distribution

constant. The equations for isolated systems follow always the Hamiltonian dy-

namics, being by de�nition independent of external forces. Eqn.(2.7) is completely

equivalent to a set of time dependent Schr�odinger equations plus the averaging (2.2).

The practical solution of (2.7), however, requires the propagation of matrices rather

than state vectors. This disadvantage of density matrices is outweighed only in rare

cases by the advantage that both the propagation of mixed and pure initial states

can be done with the same e�ort.

When the strength of the interactions with the external modes cannot be ne-

glected (like in condensed phases) each molecule will behave according to the slightly

di�erent environment it is in, thus modifying the distribution (2.6). The dynamics

is even more perturbed when we look at the properties of small parts of molecules

like the chromophores of a macromolecule or the absorption properties of the ac-

tive groups of chlorophyll or rhodopsin,6 both embedded in large biological systems.

Here with the time evolution appears the phenomenon of IVR (Intramolecular Vi-

brational Redistribution). This could be modeled using a distribution of molecular

Hamiltonians (source of the inhomogeneous broadening in spectroscopy) and/or


uctuating forces (homogeneous broadening). All these phenomena can again be

more elegantly, and often more e�ciently, be handled in the framework of density

matrix theory. Here, the bath can be left out of the dynamics, but its e�ects on the

system can be reproduced directly in the equations of motion of the system via the

(non-Markovian) dissipative Liouville-von Neumann equation [37]

_̂�(t) = L�̂(t) = �i
h
Ĥs; �̂(t)

i
+

Z t

0

d�LD(t; �)f�̂(�)g: (2.8)

The relevant observables are then directly computed with �̂(t) and relation (2.4).

In (2.8), the Hamiltonian is indicated with Ĥs to stress that it refers only to the

coordinates of the smaller system. One usually talks about the \reduced dynamics"

6Molecules involved in the photosynthesis and in the visual process respectively.
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of the \reduced density operator". Ĥs is an e�ective Hamiltonian because even if

it depends only on the system modes, it includes the static (averaged) distortion of

the system dynamics that is due to the environmental degrees of freedom, like the

additional electrostatic �eld of a crystal cavity.

The term Z t

0

d�LD(t; �)f�̂(�)g

enters in (2.8) as a dissipative corrective to the Hamiltonian evolution to describe the

dynamical coupling of the system to an unobserved environment and depends on the


uctuations of the bath variables. It accounts for energy and phase relaxation,i.e.,

the modi�cation of distribution (2.5), or equivalently, of the eigenvalues of (2.6).

The derivation of the dissipative term may lead to a non-Markovian evolution (as in

Eqn.(2.8)), then the time evolution of the density operator depends upon its past,

the system develops a \memory".

Under the Markov approximation (i.e., when memory e�ects are neglected), the

equations of motion turn into [37, 46, 4]:

_̂�(t) = L�̂(t) = �i
h
Ĥs; �̂(t)

i
+ LD (�̂(t)) : (2.9)

Here, LD (�̂(t)) is a function of �̂ at time t only and is usually linear. The expression

\dissipative Liouville-von Neumann equation" normally refers to this equation and

not to (2.8).

The proper choice of this dissipative part is still a matter of dispute, so we

dedicate to this issue a separate section.

2.2 Equations of motion

The Liouville{von Neumann equation with dissipative terms does not have a unique

form7, and even its general properties are not yet clearly understood. Already in

7At least there are the non{Markovian (2.8) and the Markovian (2.9) alternatives.
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the derivation of the equations of motion, two main approaches are possible: One

is to start from the complete system and to eliminate through projection operator

techniques [47] the environmental degrees of freedom, leaving them only as opera-

tors of the Hilbert space describing the \essential" modes. The other one consists in

taking a phenomenological viewpoint, that is devising proper dissipation operators

for the Liouville{von Neumann equation, mainly using empirical knowledge on the

system. The two techniques should be equivalent in principle, given that the un-

derlying physics is the same, but the e�ects of the environment are often not only

theoretically complex to disentangle8, but also poorly known9. Moreover, coarse

approximations have to be made on the system and bath models just to be able to

derive the equations of motion, thus making the two approaches very di�erent. Both

solutions have their advantages and shortcomings, and both rely on the separability

of the system from the bath. Unfortunately, this assumption contradicts the quan-

tum mechanical character of the dynamics because, when systems get in contact

with one another, they are entangled and \cannot be divided" (as tell the famous

Einstein{Podolski{Rosen correlations). Indeed, it was recently shown by Lindblad

[48] that a reduced dynamics cannot have all the mathematical properties we would

expect for its physical interpretability10.

Nevertheless, the complexity of many reactions makes the use of a reduced dy-

namics interesting, if not unavoidable, because the approximations that have to be

introduced to describe the complete dynamics of the system plus reservoir would be

too poor. So, we follow the idea of eliminating the bath degrees of freedom from

the dynamics, while keeping only the coordinates necessary to compute the phys-

ical observables relevant to the phenomenon of interest. First, the environmental

degrees of freedom are projected out of the dynamics, then an inverse mapping is

constructed to the complete space in order to determine the equations of motion (in

simple words: \What would do the bath if it would have been propagated together

8For instance, where the asymptotic evolution should lead, and which are the mathematical

restrictions that the dynamics should satisfy.
9The evaluation of potential energy surfaces for the strongly coupled coordinates is already a

very complicated numerical task.
10This depends on the basic algebraic structure of quantum mechanics, the so called von Neu-

mann (noncommutative with involution) algebras, see in [48] and references for a more detailed

discussion of this issue.
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with the system"). This is the source of the non-Markovian terms because the

present \answer of the environment" depends on how the smaller system behaved in

the past. Therefore, the elimination of the bath from the dynamics creates a link to

the past, a memory, that otherwise wouldn't be there, because quantum mechanics

is Markovian11. This is why in order to have a reduced dynamics local in time, an

additional approximation has to be made, namely the already mentioned Markov

approximation. It is valid when the correlation time of the reservoir is much smaller

than the characteristic time scale of the system (that is the bath needs much less time

to go back to equilibrium than the system to change signi�cantly); in other cases,

e.g., when the bath correlation times are long (slowly moving solvent molecules, low

frequency phonons), it breaks down. This assumption depends also on the weakness

of the coupling, being exact in the zero coupling limit. An example of the failure

of the Markov approximation is when the system dynamics is very fast because

ultrashort lasers are used in the system Hamiltonian [49].

Many of the models based on projection operators have to make the assumption

that the bath and the system are initially uncorrelated; this may turn out to be

a major source of errors in addition to the neglected non-Markovian character of

the reduced dynamics. The so called build up of memory e�ects or \system slips"

[50, 51], are thus generated. In this case the reduced dynamics resembles the true

dynamics (for the solvable cases) only after an initial stage, and if the reduced

operator phases are changed (slipped) in the derivation of the equations. Physically

this corresponds to set a correction for the initial correlations in the global system.

An extensive study aimed at �nding a consistent solution for these problems is being

done in the group of Tannor [52].

The size and complexity of many condensed phase problems makes probably the

use of a Markovian dynamics the minor of the passable approximations, especially

in the case of the gas surface problems we are interested in. The Red�eld theory

[53, 54] and the mathematical, phenomenological approach of Lindblad and Gorini{

11This happens also in the case of Time Dependent Self Consistent Field equations [20], for cases

where some of the coupled equations are analytically solvable (like harmonic oscillators subject to

a time dependent force) and can be included in the other equations as non-Markovian nonlinear

terms. In [20], a nice example is reported.
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Kossakowski{Sudarshan [55, 56, 46] are the most prominent Markovian approaches

to open quantum systems [57].

The former belongs to the class of methods that combine projection operator

techniques [47] with perturbation theory to treat the system bath coupling micro-

scopically. Red�eld theory can be shown to converge to the exact dynamics in the

weak coupling limit12 [58]. It is also known to generate negative eigenvalues (proba-

bilities) in case of violation of the perturbative hypothesis or for a time scale shorter

than the bath correlation time [59]. This is the \coarse graining" assumption,i.e.,

the dynamics is meaningful only if averaged over timesteps larger than the bath

correlation time.

The Red�eld equations of motion, derived for the matrix elements of �̂(t) in the

basis of the eigenfunctions of the e�ective Hamiltonian, are

_�ij(t) = �i!ij�ij(t) +
X
kl

Rij;kl�kl(t) (2.10)

where !ij = Ei�Ej is the transition frequency between states i and j, and Rij;kl is

the Red�eld tensor, a matrix with the square of the rank of the density matrix.

The Lindblad approach belongs to the branch of the completely positive dynami-

cal semigroups13. Here, the so called Lindblad operators are used in the equations of

motion to treat the relaxation in the framework of the system only. One asks which

are the possible forms for LD in (2.9) that give to the dynamics of the physical sys-

tem the correct mathematical and physical properties; it is, consequently, a semiphe-

nomenological mathematical approach. Information from microscopic knowledge on

the system bath coupling can be included also in this model [43, 60]. This second

approach allows for the probabilistic interpretation of the diagonal elements of the

density matrix at any instant of time, while the Red�eld theory does not.

One of the requirements made in the Lindblad approach is the restrictive com-

plete positivity [46, 55]; this can intensify the coarse character of the dynamics as

12Through the use of numerical simulations and for an harmonic oscillator coupled with a bath

of harmonic oscillators, that is the only system for which a direct solution is possible.
13\Semigroups", because the inverse of the dynamical map does not exist [46], re
ecting an

irreversible evolution.
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illustrated in numerous works [61, 62, 63, 64], because of the weakness of the re-

duced dynamics approach in quantum systems [48]. Nevertheless, this approach is

general and allows to introduce the known properties of the system under study

phenomenologically, even when a proper microscopical model approach is imprac-

tical. The mathematical form of the Lindblad generator was derived by Gorini,

Kossakowski, and Sudarshan [56] for �nite dimensional Hilbert spaces and by Lind-

blad [55] for in�nite Hilbert spaces:

LD�̂ =
X
i=0

�
Ĉi�̂Ĉ

y
i �

1

2

h
Ĉ
y
i Ĉi; �̂

i
+

�
: (2.11)

The Ĉi are the Lindblad operators. They belong to the algebra of the bounded linear

operators acting on Hilbert space of the system with the condition that
P

i Ĉ
y
i Ĉi

must be bounded [55].

There are other approaches derived from the projection operator technique, the

Caldeira{Leggett model [65, 66] being one example of these. As far as shortcomings

are concerned it shares the nonpositive character with the Red�eld theory. As a

matter of fact, the original derivation of the Caldeira{Leggett model is made in the

Feynmann-Vernon formalism from which one gets a path integral formulation for the

system density matrix dynamics with so called in
uence functionals that represent

the e�ect of the environment [67]. This last formalism is often used to model small

systems in condensed phases, but because of its complexity it cannot be directly

applied to large systems.

An interesting discussion on Markovian dynamics is given in the series of papers

of Tannor and coworkers [63, 64].

To deal with stronger couplings between system and bath, time dependent op-

erator techniques can be used. Here the perturbation approach is not needed; they

generate a Markovian, but nonlinear dynamics. These methods are more accurate,

but computationally intense and were therefore used only for small and simple sys-

tems [68]. Another way to deal with strongly interacting baths is to use higher

order perturbation theory (the Red�eld theory being only second order in the bath

coupling); master equations of this kind are derived and discussed in [69].
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We have used Lindblad forms for almost all our dissipation models, because of

the complexity of the system studied (with electron hole pairs, phonons and multi-

ple electronic surfaces) that renders almost impossible to derive sensible dissipation

operators microscopically. Moreover, we often need a strict positive density ma-

trix, because we are interested in small probabilities, and the only alternative to

a Lindblad form would be to abandon the Markovian or the linear approaches in

the hope that the less approximate dynamics would correct the arising of negative

probabilities [52]. This approach is presently technically impossible for our large

systems. Moreover our dissipation is often connected with the motion of electrons,

whose speed compared to the nuclei renders the Markov approach very reasonable.


