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老子曰：“上善若水，水善利万物而不争”。 

《道德经 • 道经》第八章，公元前六世纪 

 

Laozi said,  
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but never contends its own contribution. 
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Summary 

The two-dimensional hydraulic anisotropy (a), defined as the ratio of horizontal to vertical 

hydraulic conductivity (Kh/Kv), is a standard parameter of hydrogeological characterization, 

However, a is not routinely determined and correspondingly its value is often empirically 

set to 10 in the numerical modeling studies for solving anisotropic problems in sediments, 

owing to the fact that one of the challenging tasks hydrogeologists face today is the 

high-resolution characterization of directional hydraulic conductivity (DHC) in sediments. 

Therefore, an integrated laboratory method, called modified constant-head permeameter 

test (MCHPT), was established for the efficient determination and verification of 

consistent DHC values in fine-to-medium sandy sediments, based on a new 

methodological framework that includes a precise and standardized procedure for 

preparing the experimental setup. 

As known, detailed information on a can provide an important fundament for modeling 

transport phenomena in sediments, e.g. saltwater intrusion. Saltwater intrusion is a 

widespread problem of continuing great practical interest in many coastal and inland 

aquifers all over the world, which is considered a special category of contamination to 

make groundwater unsuitable for human, industry and irrigation uses. There is an 

increasingly significant effect of salinization in most abstraction wells with a great depth of 

~ 50 m below the surface in an inland aquifer at the Beelitzhof waterworks in southwestern 

Berlin (Germany) and a very thin film of saline groundwater (centimeter scale) has been 

observed in fine-to-medium sandy sediments on the top of the Rupelian clay at the site, 

thus, it could be assumed that Elsterian glacial channels would be in the close vicinity of 

the site, which results in saltwater upconing owing to pressure release by pumping a large 

amount of groundwater in drinking-water-production wells. Consequently, the impact of a 

on the intensity of saltwater intrusion due to pumping at the site was demonstrated based 

on the precise quantification of an a value of 2.3 using MCHPT in comparison with the 

empirical value of 10, by developing a conceptual model representative of the field 

situation and implementing it in a numerical density-dependent groundwater flow and 

solute transport model. 
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During the aforementioned modeling study, it has been found to be not yet able to be 

proven at the site whether there are hydraulic windows in the clay caused by glacial 

erosion or not. Therefore, two hypotheses about geological conditions in an inland aquifer 

leading to pathways for upwelling deep saline groundwater due to pumping, were raised as 

to: (1) there are windows in the clay, where their locations are uncertain; and (2) there are 

no windows in the clay, but the clay is partially thinned out but not completely removed by 

glacial erosion, so salt can merely come through the clay upwards by diffusion and 

eventually accumulate on its top. These hypotheses were tested to demonstrate the impact 

of the lateral distance between windows in the clay and the well, as well as salt diffusion 

through the clay depending on its thickness on saltwater intrusion in the pumping well 

respectively. Hypothesis 1 was validated with 4 scenarios that windows could occur in the 

clay at the site and their locations under some conditions could significantly cause 

saltwater intrusion, while hypothesis 2 could be excluded, because salt diffusion through 

the clay with thickness greater than 1 m at the site was not able to cause saltwater 

intrusion. 

On the basis of the validated deep saline-groundwater source, two recommendations of 

pumping optimization were provided to control saltwater intrusion in an inland aquifer for 

drinking-water supply at the site. In terms of pumping-rate reduction, the optimal pumping 

rate was validated for eliminating the effect of saltwater intrusion. Its value could be set 

1.39×10-2 m3/s (50 m3/h) or 5.56×10-3 m3/s (20 m3/h), if the requirement of drinking water 

palatability were good or excellent, respectively. With regard to pumping-pattern 

rearrangement, the well construction was modified to access bank filtration for eliminating 

the effect of saltwater intrusion. 

Overall, this thesis has conducted an integrated study of hydraulic anisotropy and its 

impact on saltwater intrusion in an inland aquifer. Its highlights can be summarized as to: 

(1) It is the first time to efficiently determine and verify precise consistent DHC values in 

fine-to-medium sandy sediments by developing an integrated laboratory method called 

MCHPT; and (2) it is the first time to identify deep saline-groundwater sources in an 

inland aquifer and validate their impacts on saltwater intrusion by testing for two 

hypotheses about geological conditions leading to pathways for upwelling deep saline 

groundwater due to pumping, using a density-dependent groundwater flow and solute 

transport model. 
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Zusammenfassung 

Die zweidimensionale hydraulische Anisotropie (a), die als das Verhältnis der horizontalen 

zur vertikalen hydraulischen Leitfähigkeit (Kh/Kv) definiert ist, ist ein Standardparameter 

der hydrogeologischen Charakterisierung und stellt eine wichtige Grundlage für die 

Modellierung von Transportphänomenen in Sedimenten dar. Dieser Parameter wird jedoch 

nicht routinemäßig bestimmt. Dementsprechend wird sein Wert in den numerischen 

Modellierungsstudien oft empirisch auf 10 gesetzt, um anisotrope Situationen in 

Sedimenten abzubilden. Tatsächlich ist heute die hochauflösende Charakterisierung der 

direktionalen hydraulischen Leitfähigkeit (DHC) in Sedimenten  eine nicht leicht zu 

lösende Aufgabe und erfordert einen hohen messtechnischen Aufwand. Aus diesem Grund 

wurde eine integrierte Labormethode in Form eines modifizierten Permeameterversuchs 

bei konstanter Druckhöhe (MCHPT) konzipiert, um die effiziente Bestimmung und 

Überprüfung von konsistenten DHC-Werten in feinen bis mittleren sandigen Sedimenten 

durchführen zu können. 

Die Berücksichtigung der Anisotropie eines Grundwasserleiters ist unter anderem 

bedeutend bei der Untersuchung und Bewertung von Salzwasserintrusionen. 

Salzwasserintrusion ist ein im globalen Maßstab auftretendes Phänomen in Küstenregionen, 

welches erhebliche Konsequenzen für die Nutzung der natürlichen Ressourcen in diesen 

Gebieten hat. Salzwasserintrusion kann als eine besondere Kategorie der 

Grundwasserkontamination angesehen werden, denn hochmineralisiertes Wasser ist für die 

Trinkwassergewinnung und Bewässerung landwirtschaftlicher Kulturen ungeeignet. Auch 

in einem Binnengrundwasserleiter im Bereich des Beelitzhofer Wasserwerkes im 

Südwesten von Berlin (Deutschland) ist eine zunehmende Versalzung in den meisten tief 

verfilterten Brunnen zu beobachten. Ein sehr dünner Film von salzigem Grundwasser 

(Zentimeter-Skala) wurde in fein- bis mittelkörnigen Sanden im Hangenden des 

unteroligozänen Rupeltons (Grundwassergeringleiter) festgestellt. Daher kann davon 
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ausgegangen werden, dass elsterglaziale Rinnenstrukturen einen Salzwasseraufstieg im 

Bereich von trinkwasserproduzierenden Brunnen erheblich begünstigen. In früheren 

Arbeiten konnte eine Korrelation zwischen der hydraulischen Anisotropie a, der 

Grundwasserabsenkung und dem Salzwasserauftstieg nachgewiesen werden. Im Rahmen 

der hier durchgeführten Untersuchungen konnte der Einfluss der Anisotrope a auf die 

Intensität der Salzwasserintrusion durch Wasserentnahme quantifiziert werden mit einem 

Wert von a = 2.3. Dies erfolgte mithilfe der Labormethode (MCHPT) und dem Vergleich 

mit dem empirischen Wert von a = 10. Hierfür wurde ein konzeptionelles 

hydrogeologisches Modell der lokalen Gegebenheiten im Umfeld eines 

Trinkwasserentnahmebrunnens erstellt und in ein numerisches dichteabhängiges 

Grundwasserströmungs- und -transportmodell implementiert.  

Eine tatsächliche Existenz hydraulisch wirksamer Fenster im Rupelton konnte durch die 

Modellstudie jedoch nicht nachgewiesen werden. Deshalb werden zwei Hypothesen über 

geologische Bedingungen in einem Binnengrundwasserleiter getestet, nach denen es 

aufgrund einer Wasserförderung aus Brunnen zum Aufstieg hochmineralsierten 

Grundwassers kommen kann: 1) es existieren hydraulisch wirksame Fenster im 

Grundwassergeringleiter, und 2) es gibt zwar keine hydraulischen Fenster, jedoch tritt der 

Grundwassergeringleiter in sehr geringer Mächtigkeit auf.. Es bestünde hierbei theoretisch 

die Möglichkeit einer Diffusion des Salzwassers durch die Tonschicht und einer 

Salzakkumulation an der Basis des oberen Grundwasserstockwerkes. Diese beiden 

Hypothesen wurden daraufhin überprüft, wie stark der Einfluss der lateralen Entfernung 

zwischen den hydraulisch wirksamen Fenstern im Ton und dem Entnahmebrunnen ist und 

ob eine Diffusion von Salzwasser durch den Ton möglich ist. Hierfür wurden 

unterschiedliche Mächtigkeiten (0,01 m bis 100 m) des Tones betrachtet. Hypothese 1 

wurde durch vier Szenarien bestätigt. Hydraulische Fenster im Rupelton können an dieser 

Lokation unter bestimmten Bedingungen Salzwasserintrusionen verursachen. Dagegen 

kann die zweite Hypothese verworfen werden, da eine mögliche Salzdiffusion durch den 

Ton bei einer Mächtigkeit über 1 m keine Kontamination im überlagernden 

Grundwasserleiter verursachen kann. 
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Auf Basis der nachgewiesenen Ursachen für einen Aufstieg des tiefen salzhaltigen 

Grundwassers wurden zwei Empfehlungen zur Optimierung des Pumpregimes entwickelt. 

Hierdurch kann eine Salzwasserintrusion in einen Binnengrundwasserleiter besser 

kontrolliert werden. In Bezug auf die Reduktion der Pumprate für die Bedingungen im 

Rahmen der Modellstudie wurde ein Wert von 1,39×10-2 m3/s (50 m3/h) für gute 

Trinkwasserqualität (TDS-Konzentration < 0,6 kg/m3) und eine Förderrate von 5,56×10-3 

m3/s (20 m3/h) für exzellente Trinkwasserqualität (TDS-Konzentration < 0,3 kg/m3) 

ermittelt. Darüber hinaus kann auch durch eine Filterstrecke, die im oberen 

Grundwasserleiter den hydraulischen Anschluss von Oberflächenwasser durch 

Uferfiltration ermöglicht, eine Salzwasserintrusion abgeschwächt werden. 
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1.1 Background and problem definition 

1.1.1 Hydraulic anisotropy 

The two-dimensional hydraulic anisotropy (a), defined as the ratio of horizontal to vertical 

hydraulic conductivity (Kh/Kv), is a standard parameter of hydrogeological characterization. 

It is commonly considered crucial to meaningfully understand an aquifer system at various 

scales (Paradis and Lefebvre 2013); it usually includes defining regional groundwater flow 

paths (Toth 1963; Freeze and Witherspoon 1967), delineating well capture zones (Zlotnik 

1997; Riva et al. 2006; Barry et al. 2009), estimating recharge through aquitards or 

unconsolidated sediments (Rushton et al. 1992; Gerber and Howard 2000; Hart et al. 2006), 

especially predicting contaminant migration (Falta et al. 2005; Wu et al. 2005). However, 

the a value is often empirically set to 10 in the numerical modeling studies for solving 

anisotropic problems in sediments respectively (Reilly and Goodman 1987; Bower et al. 

1999; Zlotnik et al. 2010; Jakovovic et al. 2011; Garabedian 2013), owing to the fact that 

one of the challenging tasks hydrogeologists face today is the high-resolution 

characterization of directional hydraulic conductivity (DHC) in sediments (Vienken and 

Dietrich 2011). 

A variety of laboratory and field methods used in sediments has been reported to yield 

approximations of K, including grain size analyses (Seelheim 1880; Hazen 1892; Terzaghi 

1925; Carman 1937; Kozeny 1953; Hütte 1956; Beyer 1964; Köhler 1965; Kaubisch and 

Fischer 1985; Kaubisch 1986; Vukovic and Soro 1992; Kasenow 2002; Chapuis 2004), 

permeameter tests (Hvorslev 1951; Freeze and Cherry 1979; Todd and Mays 2005), slug 

and bail tests (Cooper et al. 1967; Bouwer and Rice 1976; Hyder et al. 1994; Butler 1998), 

pumping tests (Theis 1935; Cooper Jr and Jacob 1946; Chow 1952; Neuman 1975; 

Moench 1995) and borehole flow-meter tests (Molz et al. 1994; Young and Pearson 1995; 

Molz and Melville 1996). However, comparison of the K values obtained by diverse 

methods is difficult due to the fact that determined K values represent different spatial 
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scales and, what is more important, they all fail to measure DHC consistently. Thus, an 

appropriate method for measuring DHC in sediments and therefore Kv and Kh consistently 

is highly desirable. 

Because of the fact that measuring DHC requires undisturbed samples, permeameter tests 

arise as an appropriate method. They have been demonstrated to be (1) suitable for a 

sample size of centimeters to decimeters (Wojnar et al. 2013), (2) reliable with regard to 

measurement precision (Paradis and Lefebvre 2013), (3) controllable over sample 

saturation (Madsen et al. 2008), and (4) economical with low-cost devices (Fallico et al. 

2010).  

With regard to sandy samples, the constant-head permeameter test (CHPT) is widely used 

as a standard method in the laboratory, based on the measurement of the one-dimensional 

steady-state water flow through a sample with a constant hydraulic gradient and the direct 

application of the Darcy equation to investigate K (Klute and Dirksen 1986; Xiang 1994). 

Considering sandy soils, the two-core method (Dabney and Selim 1987; Bathke and Cassel 

1991; Dorner and Horn 2006; Petersen et al. 2008) and the modified cube method 

(Beckwith et al. 2003; Bagarello et al. 2009) are commonly used in CHPT for obtaining 

undisturbed samples to secure the values of DHC. However, both of these are only 

practical for sampling near-surface soil rather than at greater depths (Bagarello et al. 2009). 

The preliminary investigations in fine-to-medium sandy sediments have shown that CHPT 

is still unsuitable for consistently determining the DHC of samples with different sizes. 

Moreover, a precise and standardized procedure for preparing the experimental setup has 

not yet been reported, e.g. for dimensioning the tubing to ensure laminar flow conditions, 

as required for a Darcy equation-based method. Hence, it is essential to modify CHPT to be 

able to measure DHC in fine-to-medium sandy sediments with variable sample sizes of 

centimeters to decimeters consistently (Problem 1). 
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1.1.2 Saltwater intrusion 

Saltwater intrusion is a widespread problem of continuing great practical interest in many 

coastal and inland aquifers all over the world, which is often described by coupled 

density-dependent groundwater flow and advection–dispersion equations because of 

hydrodynamic dispersion and a wide transition zone (Bear 1972; Huyakorn and Pinder 

1983; Segol 1994; Servan-Camas and Tsai 2009; Mastrocicco et al. 2012). It is considered 

a special category of contamination to make groundwater unsuitable for human, industry 

and irrigation uses (El Moujabber et al. 2006; Abd-Elhamid and Javadi 2011). 

There is an increasingly significant effect of salinization in most abstraction wells with a 

great depth of ~ 50 m below the surface in an inland aquifer at the Beelitzhof waterworks 

(BEEWW) in southwestern Berlin (Germany) (Figure 1-1), so it could be assumed that 

saltwater upconing, defined as the vertical upward movement of saline groundwater below 

a pumping well in the shape of a cone into fresh groundwater (Reilly and Goodman 1987), 

would come from deeper saline groundwater. This assumption is supported by geological 

conditions in the Northern German Basin, where the upper fresh groundwater bearing 

Quaternary sediments is separated from deeper saline groundwater by Oligocene clay, 

whose local name in the area of Berlin is Tertiary Rupelian clay (Figure 1-2). Deep 

reaching Quaternary Elsterian glacial erosional channels lead to either more or less 

thinning of the Oligocene clay up to a complete removal. Noting that a very thin film of 

saline groundwater (centimeter scale) has been observed in unconsolidated fluvial 

fine-to-medium sandy sediments on the top of the Rupelian clay at the site, therefore, it 

could be assumed that Elsterian glacial channels would be in the close vicinity of the site, 

which results in saltwater upconing owing to pressure release by pumping a large amount 

of groundwater in drinking-water-production wells.  

As known, detailed information on a can provide an important fundament for modeling 

transport phenomena in sediments (Petersen et al. 2008). Thus, it is important to reveal the 

impact of a on saltwater intrusion in an inland aquifer due to pumping based on its precise 

quantification in comparison with the empirical value of 10 (Problem 2). 



Chapter 1: 

 6 

 

Figure 1-1 Location of field site (not to scale) (modified from Berliner Wasserbetriebe 2013). 
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Figure 1-2 Geological profile at the site (not to scale). 

As noted in many aquifers, fresh groundwater overlies denser saline groundwater (Motz 

1992). However, the sources of saltwater intrusion in inland aquifers are not routinely 

certain in comparison with coastal aquifers that are in hydraulic connection with the sea 

(Freeze and Cherry 1979; Sherif et al. 1990). Saltwater intrusion in inland aquifers may 

originate from various sources, including (1) seawater that entered aquifers during 

deposition or during a high stand of the sea in past geologic time (connate water), (2) salt 

in saline domes, thin beds, or disseminated in the geologic formations, (3) slightly saline 

water concentrated by evaporation in tidal lagoon, playas, or other enclosed areas, (4) 

return flows to streams from irrigated lands, and (5) anthropogenic saline wastes (Bobba 
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1993). Accordingly, it has been found during the aforementioned modeling study that it is 

not yet able to be proven at the site whether there are hydraulic windows in the clay caused 

by glacial erosion or not. Therefore, two hypotheses about geological conditions in an 

inland aquifer leading to pathways for upwelling deep saline groundwater due to pumping, 

have arisen as to: (1) there are windows in the clay, where their locations are uncertain; and 

(2) there are no windows in the clay, but the clay is partially thinned out but not completely 

removed by glacial erosion, so salt can merely come through the clay upwards by diffusion 

and eventually accumulate on its top. Consequently, it is interesting and necessary to 

reveal the impact of deep saline-groundwater sources on saltwater intrusion in an inland 

aquifer due to pumping (Problem 3).  

Saltwater intrusion can reduce freshwater storage and in extreme cases even result in 

abandonment of drinking-water-supply wells, if salinity, generally defined as concentration 

of total dissolved solids (TDS), exceeds acceptable drinking water standard (El Moujabber 

et al. 2006; Abd-Elhamid and Javadi 2011). Therefore, it is crucial to properly manage 

groundwater resources for drinking-water supply by controlling saltwater intrusion. 

An enormous amount of studies in coastal aquifers has been conducted to control saltwater 

intrusion using various methods, which can be summarized as (1) reduction of pumping 

rates or rearrangement of pumping pattern, (2) relocation of pumping wells, (3) use of 

natural or artificial recharge, (4) construction of artificial subsurface barriers, (5) 

abstraction of saline water, and (6) combination of various techniques (Todd and Mays 

2005; Abarca et al. 2006; Abd-Elhamid and Javadi 2011). Despite the fact that these 

aforementioned methods all have some constraints, the first alternative of pumping 

optimization has been proven more effective and economic using analytical or numerical 

models (Finney et al. 1992; Hallaji and Yazicigil 1996; Emch and Yeh 1998; Das and Datta 

1999a, 1999b; Cheng et al. 2000; Gordon et al. 2000; Mantoglou 2003; Zhou et al. 2003; 

Abarca et al. 2006). In brief, the key issue of pumping optimization is to maintain a 

balance between pumping demand and quality requirements, it is thus essential to develop 

appropriate models as above mentioned for determination of water quantity which can be 
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pumped from aquifers while protecting pumping wells from saltwater intrusion 

(Mantoglou 2003; Abarca et al. 2006).  

However, to date, there is greatly limited discussion for controlling saltwater intrusion in 

inland aquifers. Hence, it is highly desirable to provide recommendations of controlling 

saltwater intrusion in an inland aquifer for drinking-water supply based on the validated 

source(s) of saltwater intrusion and pumping optimization (Problem 4). 

1.2 Objectives of this thesis 

The principal aim of this thesis is to conduct an integrated study of hydraulic anisotropy 

and its impact on saltwater intrusion in an inland aquifer, which includes (1) establishing a 

new laboratory method for the efficient determination and verification of consistent DHC 

values in fine-to-medium sandy sediments, (2) modeling the impact of a as well as deep 

saline-groundwater sources on saltwater intrusion due to pumping, and (3) providing 

recommendations of controlling saltwater intrusion for drinking-water supply. 

The specific objectives of each research problem are respectively present as follows: 

Problem 1 

 To develop a new method to obtain undisturbed core samples with several 

centimeters to decimeters in length;  

 To modify the experimental setup and procedure of CHPT to determine consistent Kh 

and Kv values with different sample sizes; 

 To validate the accuracy of the developed method and modifications; and 

 To provide an efficient, precise, and applicable methodological framework for 

general determination and verification of DHC values in fine-to-medium sandy 

sediments. 

Problem 2 
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 To develop a conceptual model representative of the field situation and implement it 

in a numerical density-dependent groundwater flow and solute transport model; 

 To assess the impacts of longitudinal and transverse dispersivity on saltwater 

intrusion for estimation of their uncertain values; and 

 To validate the impact of a on saltwater intrusion on the basis of its precise 

quantification in comparison with the empirical value of 10. 

Problem 3 

 To validate the impact of the lateral distance between windows in the clay and the 

well on saltwater intrusion by testing for hypothesis 1; and 

 To validate the impact of salt diffusion through the clay depending on its thickness on 

saltwater intrusion by testing for hypothesis 2. 

Problem 4 

 To reduce the pumping rate until getting the optimal value for eliminating the effect 

of saltwater intrusion; and 

 To rearrange the pumping pattern by modifying the well construction for eliminating 

the effect of saltwater intrusion. 

1.3 Outline of this thesis 

This thesis is composed of six chapters.  

Chapter 1 is the introduction of this thesis, which describes the background and problem 

definition as well as addresses its objectives. 

The following four core chapters (Chapters 2 to 5) comprise the main research work 

conducted within this thesis. They have been written as manuscripts for publication in 

international peer-reviewed scientific journals and accordingly, each of them can be 

independently read as self-contained pieces of work. Therefore, they have fulfilled the 
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formal requirements of a cumulative dissertation. Since certain repetitions such as sections 

discussing background, study site, methods and results are inherent in the nature of a 

cumulative dissertation, a certain amount of recurrence in this thesis is inevitable. For a 

consistent layout, these four manuscripts have been re-edited as follows: 

 Chapter 2: Laboratory method 

is published as: 

Jialiang Cai, Thomas Taute, Enrico Hamann, Michael Schneider (2014). An 

integrated laboratory method to measure and verify directional hydraulic 

conductivity in fine-to-medium sandy sediments. Ground Water. 

http://dx.doi.org/10.1111/gwat.12156. 

This chapter proposes to establish an integrated laboratory method, called modified CHPT 

(MCHPT), for the efficient determination and verification of consistent DHC values in 

fine-to-medium sandy sediments based on a new methodological framework.  

As the first author to this paper, I have been in charge of the development and conduction 

of the research work described as well as responsible for the scientific content and the 

preparation of manuscript, including literature review, data interpretation, preparation of 

figures and tables, and manuscript writing. Co-authors have mainly played an advisory and 

supervisory role. 

 Chapter 3: Modeling study I 

         Impact of hydraulic anisotropy on saltwater intrusion 

is under review as: 

Jialiang Cai, Thomas Taute, Michael Schneider. A theoretical modeling study on 

impact of hydraulic anisotropy on saltwater intrusion. Environmental and 

Engineering Geoscience. 

This chapter proposes to demonstrate the impact of a on the intensity of saltwater intrusion 

in an inland aquifer due to pumping based on its precise quantification in comparison with 

the empirical value of 10, by developing a conceptual model representative of the field 
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situation and implementing it in a numerical density-dependent groundwater flow and 

solute transport model. 

As the first author to this paper, I have been in charge of the development and conduction 

of the research work described as well as responsible for the scientific content and the 

preparation of manuscript, including literature review, data interpretation, preparation of 

figures and tables, and manuscript writing. Co-authors have mainly played an advisory and 

supervisory role. 

 Chapter 4: Modeling study II 

         Impact of deep saline-groundwater sources on saltwater intrusion 

is published as: 

Jialiang Cai, Thomas Taute, Michael Schneider. Saltwater upconing below a pumping 

well in an inland aquifer: A theoretical modeling study on testing different scenarios 

of deep saline-groundwater pathways. Water, Air, & Soil Pollution. 

http://dx.doi.org/10.1007/s11270-014-2203-7. 

This chapter proposes to test for two hypotheses about pathways of deep saline 

groundwater leading to saltwater upconing below a pumping well in an inland aquifer, 

using a density-dependent groundwater flow and solute transport model. 

As the first author to this paper, I have been in charge of the development and conduction 

of the research work described as well as responsible for the scientific content and the 

preparation of manuscript, including literature review, data interpretation, preparation of 

figures and tables, and manuscript writing. Co-authors have mainly played an advisory and 

supervisory role. 

 Chapter 5: Recommendations 

is under review as: 

Jialiang Cai, Thomas Taute, Michael Schneider. Recommendations of controlling 

saltwater intrusion in an inland aquifer for drinking-water supply at a certain 

waterworks site. Environmental Earth Sciences. 
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This chapter proposes to provide recommendations of controlling saltwater intrusion in an 

inland aquifer for drinking-water supply based on the validated source of saltwater 

intrusion and pumping optimization, using a density-dependent groundwater flow and 

solute transport model. 

As the first author to this paper, I have been in charge of the development and conduction 

of the research work described as well as responsible for the scientific content and the 

preparation of manuscript, including literature review, data interpretation, preparation of 

figures and tables, and manuscript writing. Co-authors have mainly played an advisory and 

supervisory role. 

Chapter 6 presents the conclusions of this thesis, by summarizing the major outcomes of 

the aforementioned core chapters and the highlights of this thesis, as well as providing an 

outlook for the future research. 

Appendix contains additional figures that have been included in the original manuscript 

(Chapters 3) as supplementary material. 
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2 Laboratory method 

The constant-head permeameter test (CHPT) is widely used in sandy samples as a standard 

method in the laboratory to investigate hydraulic conductivity (K). However, it neither can 

be used to consistently determine directional hydraulic conductivity (DHC) nor guarantee 

the comparability of measured K values of samples with different sizes. Therefore, this 

paper proposes an integrated laboratory method, called modified CHPT (MCHPT), for the 

efficient determination and verification of consistent DHC values in fine-to-medium sandy 

sediments, based on a new methodological framework. A precise and standardized 

procedure for preparing the experimental setup of MCHPT was conducted, based on the 

integrated experimental setup of CHPT and tracer tests. Moreover, a formula was yielded 

for the time-optimized sample saturation control. In comparison with grain-size based 

methods, the validity of consistent Kh and Kv values determined by MCHPT was 

convincing. 

 

Jialiang Cai, Thomas Taute, Enrico Hamann, Michael Schneider (2014) 

An integrated laboratory method to measure and verify directional hydraulic conductivity in 

fine-to-medium sandy sediments. 

Ground Water, http://dx.doi.org/10.1111/gwat.12156. 
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Due to copyright, the detailed information of Chapter 2 (pages 17 to 38)  

is not published in the online version.  

Please check it via http://dx.doi.org/10.1111/gwat.12156. 
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3 Modeling study I:  

Impact of hydraulic anisotropy on 

saltwater intrusion 

Hydraulic anisotropy (a) as a standard parameter of hydrogeological characterization can 

provide an important fundament for modeling transport phenomena in sediments. However, 

it is not routinely determined. An integrated laboratory method called modified 

constant-head permeameter test (MCHPT) has been developed to yield an a value of 2.3 

for samples with fine-to-medium sandy sediments from an inland freshwater aquifer at the 

Beelitzhof waterworks in southwestern Berlin, Germany. At the site there is an 

increasingly significant effect of salinization in most abstraction wells with a great depth, 

however, the a value is often empirically set to 10 in the numerical modeling studies for 

solving anisotropic problems of saltwater intrusion in pumping wells. Therefore, this paper 

conducted a theoretical modeling study to demonstrate the impact of a on the intensity of 

saltwater intrusion in a pumping well based on its precise quantification. A conceptual 

model representative of the field situation was developed and implemented in a numerical 

density-dependent groundwater flow and solute transport model. Due to the 

hydrogeological conditions at the site, it was validated that the impact of a on saltwater 

intrusion was not significant. Nevertheless, the a value yielded by MCHPT provided more 

accurate simulations for solving anisotropic problems of saltwater intrusion in pumping 

wells. 

Jialiang Cai, Thomas Taute, Michael Schneider 

A theoretical modeling study on impact of hydraulic anisotropy on saltwater intrusion. 

Submitted to Environmental and Engineering Geoscience (under review). 
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3.1 Introduction 

The two-dimensional hydraulic anisotropy (a), defined as the ratio of horizontal to vertical 

hydraulic conductivity (Kh/Kv), is a standard parameter of hydrogeological characterization. 

It is commonly considered crucial to meaningfully understand an aquifer system at various 

scales (Paradis and Lefebvre 2013); it usually includes defining regional groundwater flow 

paths (Toth 1963; Freeze and Witherspoon 1967), delineating well capture zones (Zlotnik 

1997; Riva et al. 2006; Barry et al. 2009), estimating recharge through aquitards or 

unconsolidated sediments (Rushton et al. 1992; Gerber and Howard 2000; Hart et al. 2006), 

especially predicting contaminant migration (Falta et al. 2005; Wu et al. 2005). Therefore, 

detailed information on a can provide an important fundament for modeling transport 

phenomena in sediments (Petersen et al. 2008). 

Various laboratory and field methods have been used to measure a in streambeds (Chen 

2000), as well as in peaty soils (Chason and Siegel 1986; Schlotzhauer and Price 1999; 

Beckwith et al. 2003; Surridge et al. 2005), mineral soils (Bouma and Dekker 1981; 

Dabney and Selim 1987; Bathke and Cassel 1991; Caris and Van Asch 1991), and 

sandy-loam soils (Petersen et al. 2008; Bagarello et al. 2009; Soracco et al. 2010). 

Concerning sandy soils, its measurements are strongly affected by heterogeneity of soil 

composition as well as soil structure, which leads to somewhat contradictory results 

(Petersen et al. 2008). Some authors pointed out that Kv values were greater than Kh values, 

particularly in well-structured soils (Bouma 1982; Hartge 984; Bathke and Cassel 1991); 

while other authors reported that Kh values were greater than Kv values, primarily in 

layered soils (Kanwar et al. 1989; Zhang 1996) or compacted soils (Dörner and Horn 

2006). Hence, a is not routinely determined, because practical and validated methods are 

still lacking (Bagarello et al. 2009). Furthermore, specific measurements with regard to the 

effects of the experimental setup and procedure on determination of a in sandy sediments 

are rare and it is thus evidently essential to develop an appropriate method for measuring a 

in sandy sediments. 
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Cai et al. (2014a) have developed an integrated laboratory method, called modified 

constant-head permeameter test (MCHPT), to yield an a value of 2.3 for samples with 

Pleistocene unconsolidated fluvial fine-to-medium sandy sediments from an inland 

freshwater aquifer. However, the a value is often empirically set to 10 in the numerical 

modeling studies for solving anisotropic problems of saltwater intrusion in pumping wells 

(Reilly and Goodman 1987; Bower et al. 1999; Zlotnik et al. 2010; Jakovovic et al. 2011; 

Garabedian 2013). It is, consequently, important to reveal the impact of a on saltwater 

intrusion due to pumping based on its precise quantification in comparison with the 

empirical value of 10. 

The principal aim of this research, thus, was to a theoretical modeling study to demonstrate 

the impact of a on the intensity of saltwater intrusion in an inland aquifer due to pumping. 

For that purpose, a conceptual model was developed and implemented in a numerical 

density-dependent groundwater flow and solute transport model. 

3.2 Methods 

3.2.1 Field site 

There is an increasingly significant effect of salinization in most abstraction wells with a 

great depth of ~ 50 m below the surface in an inland aquifer at the Beelitzhof waterworks 

(BEEWW) in southwestern Berlin (Germany) (Figure 1-1), so it could be assumed that 

saltwater upconing, defined as the vertical upward movement of saline groundwater below 

a pumping well in the shape of a cone into fresh groundwater (Reilly and Goodman 1987), 

would come from deeper saline groundwater. This assumption is supported by geological 

conditions in the Northern German Basin, where the upper fresh groundwater bearing 

Quaternary sediments is separated from deeper saline groundwater by Oligocene clay, 

whose local name in the area of Berlin is Tertiary Rupelian clay (Figure 1-2). Deep 

reaching Quaternary Elsterian glacial erosional channels lead to either more or less 

thinning of the Oligocene clay up to a complete removal. Noting that a very thin film of 
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saline groundwater (centimeter scale) has been observed in unconsolidated fluvial 

fine-to-medium sandy sediments on the top of the Rupelian clay at the site, therefore, it 

could be assumed that Elsterian glacial channels would be in the close vicinity of the site, 

which results in saltwater upconing owing to pressure release by pumping a large amount 

of groundwater in drinking-water-production wells. 

3.2.2 Conceptual model 

According to stratigraphic investigations at the site, the geological profile (Figure 1-2) 

shows that an aquitard (Holstein) divides the entire fresh groundwater aquifer into an upper 

aquifer and a lower aquifer. Therefore, it was assumed that a well with a depth of 50 m 

below the surface screened in the lower aquifer would be hydraulically decoupled from the 

upper aquifer and Lake Wannsee (Figure 3-1). In other words, no bank filtration from the 

lake to the well would occur. A conceptual model (Figure 3-1) was, consequently, 

developed to correspond with the lower aquifer at the site as a confined unit. 

Despite the observed thin film of saline groundwater in sediments on the top of the clay, it 

is not clear whether there are hydraulic windows in the clay caused by glacial erosion, 

which leads to saltwater rising and layering below freshwater in the aquifer, or only 

saltwater diffusion through the clay occurs, which is partially thinned out but not 

completely removed by glacial erosion. For simplification, thus, it was assumed that the 

bottom of the aquifer would be completely filled with saline groundwater and an unlimited 

delivery over the bottom boundary would be possible. In the case of diffusion, this 

assumption would lead to an overestimation of saltwater upconing. 

Considering recharge rate (E) (Figure 3-1), its areal effects on the critical rise were small 

enough (E/Kv = 7.29×10-5) to be excluded from the analysis (Garabedian 2013). 

3.2.3 Numerical model development 
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Figure 3-1 Schematic vertical cross-section of field situation and conceptual model (red rectangular area) (not to scale). X - model width, 2000 

m; Z3 - thickness of the lower fresh groundwater aquifer (model height), 140 m; Z - thickness of the entire fresh groundwater aquifer, 170 m; Z1 - 

depth of Lake Wannsee, 9 m; Z2 - thickness of the upper fresh groundwater aquifer, 30 m; rw - well radius, 0.45 m; Lws - length of well screen, 30 

m; r0 - radial distance from well center to constant head boundary condition, 1000 m; Q - pumping rate, 2.78×10-2 m3/s; E - recharge rate, 

3.17×10-9 m/s. 
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Numerical modeling was performed using SEAWAT-2000 (Langevin et al. 2007). 

SEAWAT-2000 is a coupling of the MODFLOW groundwater flow code, modified to solve 

variable-density flow conditions using equivalent freshwater head, with the MT3DMS 

transport model (Garabedian, 2013). The coupling between fluid density and solute 

concentration is incorporated in the code as a linear relationship. 

3.2.2.1 Model discretization 

Despite the fact that three-dimensional conditions were obtained in the conceptual model, 

the model was simplified into a two-dimensional X-Z environment to diminish the 

computational effort (Jakovovic et al. 2011). The model was spatially discretized to form a 

nonuniform mesh. The columns (Δx) were variably spaced with 0.45-m horizontal 

resolution at the well according to the well radius (rw) of 0.45 m at the site symmetrically 

expanding to 20-m horizontal resolution at the lateral boundaries (Figure 3-1). The layers 

(Δz) were spaced into two parts: (1) each layer was set to 10 m thick above the well screen 

(5 layers total); (2) each layer was set to 2 m thick below the well screen (45 layers total) 

(Figure 3-1). In order to minimize numerical dispersion and oscillation, the common 

criterion mesh Peclet number (Pe) was set to be ≤ 2 with all different Δx values (Zheng and 

Bennett 2002). 

All simulations were performed as transient flow until steady-state conditions were 

reached, using the TVD advection solver, which is mass conservative, without excessive 

numerical dispersion and artificial oscillation (Zheng and Bennett 2002). Trial-and-error 

analysis demonstrated that it took 600 years to reach steady-state conditions with the 

current model setup, where time steps (Δt) were set to 1 year. Using this small Δt value can 

ensure that Courant number (Cr) correspondingly remained ≤ 1 with all different Δx values 

for minimization of numerical dispersion and oscillation (Zheng and Bennett 2002). 

3.2.2.2 Boundary and initial conditions 
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The top of the model was set to no-flow boundaries according to the Holstein aquitard 

(Figure 3-1). The left- and right-hand sides of the model were chosen to be far enough 

(rw/r0 (the radial distance from the well center to the constant head boundary condition) = 

4.5×10-4) (Figure 3-1) not to be influenced by the pumping activities (Jakovovic et al. 2011; 

Garabedian 2013) and implemented as 1st order boundary conditions with a constant head 

(h0 = 30 m) and concentration (C0 = 0.2 kg/m3) respectively. According to the observed 

thin film of saline groundwater in sediments on the top of the impermeable Rupelian clay, 

2nd order boundary conditions were chosen at the bottom of the model. 

The simulated concentration was obtained at the bottom of the well screen. The 

concentration of saline groundwater (C1) was incorporated as total dissolved solid (TDS). 

Its value was set to 5.5 kg/m3 according to the aforementioned observed thin film of saline 

groundwater at the site. 

3.2.2.3 Model parameters 

The model was considered to be homogeneous according to Cai et al. (2014a), with 

uniform parameters. The site-specified values of h0, hydraulic gradient (i), Kh, specific 

storage (Ss) and effective porosity (ne) were measured (Table 3-1). Due to the fact that 

longitudinal and transverse dispersivity were uncertain, it was therefore essential to assess 

their impacts on saltwater intrusion. Longitudinal dispersivity (αL) is an intrinsic property 

of the aquifer and it is found in practice to be dependent on and proportional to the scale of 

the measurement (Konikow 2011). Most reported values of αL are in a range from 0.01 to 

1.0 times the scale of the measurement, albeit the ratio of αL to scale of measurement tends 

to decrease at larger scales (Anderson 1984; Gelhar et al. 1992; Frippiat and Holeyman 

2008). With regard to transverse dispersivity (αT), it is commonly assumed to be 

approximately one to three orders of magnitude smaller than αL (Harleman and Rumer 

1963; Zheng and Bennett 2002; Huang et al. 2003; Jakovovic et al 2011). Consequently, an 

assessment of the impacts of αL and αT was conducted with values varying in a range from 

0.5 to 20 m and from 0.01 to 1 m respectively. 
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Table 3-1 Numerical model parameters 

Parameter Symbol Value Unit 

Model width X 2000 m 

Model height Z3 140 m 

Initial hydraulic head h0 30 m 

Hydraulic gradient i 0 - 

Horizontal hydraulic conductivity Kh 1×10-4 m/s 

Hydraulic anisotropy a 1, 2.3, 10 - 

Effective porosity ne 0.3 - 

Well radius rw 0.45 m 

Length of well screen Lws 30 m 
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Pumping rate Q 2.78×10-2 m3/s 

Specific storage Ss 5×10-4 1/m 

Longitudinal dispersivity αL 0.5, 1, 5, 10, 20 m 

Transverse dispersivity αT 0.01, 0.05, 0.1, 0.5, 1 m 

Effective diffusion coefficient in porous media D* 1×10-10 m2/s 

Total dissolved solids (TDS) concentration of 

fresh groundwater 
C0 0.2 kg/m3 
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TDS concentration of saline groundwater C1 5.5 kg/m3 

Table 3-2 Water classification by total dissolved solids (TDS) concentration 

(Masters and Ela 2008) 

Classification TDS Concentration (kg/m3) 

Freshwater <1 

Brackish water 1~10 

Saline water 10~30 

Brine >30 
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Figure 3-2 Total dissolved solids (TDS) concentration at the bottom of the well screen with 

varying transverse dispersivity (αT). (1) Longitudinal dispersivity (αL) and hydraulic 

anisotropy (a) were set to constant values of 10 m and 2.3 respectively; (2) the dashed line 

represents the concentration threshold between freshwater and brackish water. 

3.3 Results and discussion 

3.3.1 Impact of dispersivity 

There were 5 scenarios simulated by variable αT values (Figure 3-2). When αT = 1 m, the 

salinity in the well was > 1 kg/m3; when αT = 0.5 m, the salinity was nearly equal to 1 

kg/m3; when αT = 0.01, 0.05 and 0.1 m, the salinity was all < 1 kg/m3. Accordingly, all 

simulations at 20%, 50% and 80% concentration contour of C1 enormously differed from 

each other as well (Figure A-1). The concentration distribution for saltwater upconing is 

therefore very sensitive to αT (Reilly and Goodman 1987). Noting the criteria listed in 

Table 3-2, the well water with αT values of 0.01, 0.05, 0.1 and 0.5 m was still classified as 
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freshwater, which indicated that there would be slight or modest effect of saltwater 

intrusion, whereas only with αT value of 1 m was consistent with the situation that 

significant effect of saltwater intrusion occurs at the site. 
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Figure 3-3 Total dissolved solids (TDS) concentration at the bottom of the well screen with 

varying longitudinal dispersivity (αL). (1) Transverse dispersivity (αT) and hydraulic 

anisotropy (a) were set to constant values of 1 m and 2.3 respectively; (2) the dashed line 

represents the concentration threshold between freshwater and brackish water. 

As shown in Figure 3-3, the salinity in the well simulated by variable αL values was all > 1 

kg/m3 within a very small range. Correspondingly, all simulations at 20%, 50% and 80% 

concentration contour of C1 were almost identical as well (Figure A-2). Thus, αL does not 

play a major role in determining the preceding concentration distribution (Reilly and 

Goodman 1987). Meanwhile, the well water of all simulations was classified as brackish 

water, with consistency in the significant effect of saltwater intrusion at the site. Due to Pe 
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defined as the ratio of Δx to αL, αL values of 10 and 20 m could both ensure that Pe was ≤ 2 

with all different Δx values. However, smaller values generally produce satisfactory 

simulations (Zheng and Bennett 2002; Jakovovic et al. 2011). 

Consequently, the αL and αT values were estimated to 10 and 1 m respectively, according to 

their impacts on saltwater intrusion. 
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Figure 3-4 Total dissolved solids (TDS) concentration at the bottom of the well screen with 

varying hydraulic anisotropy (a). (1) Longitudinal dispersivity (αL) and transverse 

dispersivity (αT) were set to constant values of 10 m and 1 m respectively; (2) the dashed 

line represents the concentration threshold between freshwater and brackish water. 

3.3.2 Impact of hydraulic anisotropy 

Figure 3-4 indicated that the salinity in the well simulated by variable a values was all > 1 
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kg/m3, so that the well water of all simulations was classified as brackish water, which was 

consistent with the aforementioned observation at the site. Meanwhile, all simulations at 

20%, 50% and 80% concentration contour of C1 were quite similar with only slight 

differences among them (Figure A-3). Therefore, the preceding concentration distribution 

is to some extent insensitive to a.  

It is notable that Garabedian (2013) developed a new steady-state analytical solution for 

the saltwater upconing problem with no-flow boundary conditions at the top and bottom in 

a partially completed pumping well. With the assumption that rw is much smaller than the 

freshwater aquifer thickness which in turn is significantly smaller than r0, this solution was 

evaluated for accuracy by comparison to numerical simulations in an isotropic scenario and 

an anisotropic scenario (a = 10) respectively. On the condition that rw/r0 > 0.1, it 

demonstrated that a was a sensitive parameter impacting on drawdown and 

correspondingly saltwater upconing, regardless of the ratio of the vertical elevation from 

the bottom of the freshwater aquifer to the freshwater aquifer thickness. Moreover, 

Garabedian (2013) also pointed out that this solution differed from that of Zlotnik et al. 

(2010) with the constant-potential upper boundary conditions and the no-flow lower 

boundary conditions. Thus, there were two assumable reasons why the impact of a on the 

intensity of saltwater intrusion in a pumping well was not significant in our case. On the 

one hand, our modeling setup was not completely consistent with the assumption of the 

aforementioned solution from Garabedian (2013) owing to the fact that r0 was not 

significantly greater than the freshwater aquifer thickness. On the other hand, the boundary 

conditions in our modeling setup differed from those in Garabedian (2013) and Zlotnik et 

al. (2010). Hence, it could be considered to be reasonable for the hydrogeological 

conditions at the Beelitzhof waterworks that the impact of a on saltwater intrusion in a 

pumping well was not significant. 

3.4 Conclusions 

This research conducted a theoretical modeling study to demonstrate the impact of a on the 
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intensity of saltwater intrusion in a pumping well in an inland aquifer at the Beelitzhof 

waterworks in southwestern Berlin, Germany. Due to the hydrogeological conditions at the 

site, it was validated that the impact of a on saltwater intrusion was not significant, based 

on its precise value of 2.3 in comparison with the empirical value of 10. Nevertheless, the 

a value yielded by MCHPT provided more accurate simulations for solving anisotropic 

problems of saltwater intrusion in pumping wells. 
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4 Modeling study II:  

Impact of deep saline-groundwater 

sources on saltwater intrusion 

To date, studies on the geological conditions in inland aquifers leading to pathways for 

upwelling deep saline groundwater due to pumping have been not yet published. Therefore, 

this paper conducted a theoretical modeling study to raise two hypotheses about deep 

saline-groundwater pathways leading to saltwater upconing below a pumping well in an 

inland aquifer based on the field situation at the Beelitzhof waterworks in southwestern 

Berlin (Germany), defined as (1) there are windows in the Rupelian clay caused by glacial 

erosion, where their locations are uncertain; and (2) there are no windows in the clay, but 

the clay is partially thinned out but not completely removed by glacial erosion, so salt can 

merely come through the clay upwards by diffusion and eventually accumulate on its top. 

These hypotheses were tested to demonstrate the impact of the lateral distance between 

windows in the clay and the well, as well as salt diffusion through the clay depending on 

its thickness on saltwater intrusion in the pumping well respectively, using a 

density-dependent groundwater flow and solute transport model. Hypothesis 1 was 

validated with 4 scenarios that windows could occur in the clay at the site and their 

locations under some conditions could significantly cause saltwater intrusion, while 

hypothesis 2 could be excluded, because salt diffusion through the clay with thickness 

greater than 1 m at the site was not able to cause saltwater intrusion. 

Jialiang Cai, Thomas Taute, Michael Schneider (2014) 

Saltwater upconing below a pumping well in an inland aquifer: A theoretical modeling study on testing 

different scenarios of deep saline-groundwater pathways 

Water, Air, & Soil Pollution, http://dx.doi.org/10.1007/s11270-014-2203-7. 
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4.1 Introduction 

Saltwater upconing is the vertical upward movement of saline groundwater below a 

pumping well in the shape of a cone into fresh groundwater and is a problem of continuing 

great practical interest in many coastal and inland aquifers around the world (Reilly and 

Goodman 1987). In general, its main issue is focused on analyzing its critical condition, i.e. 

determining the critical pumping rate, or the pumping rate at which the cone will become 

unstable, as well as determining the accompanying critical rise, or the height to which the 

cone will rise below the pumping well before incipient instability occurs (Bower et al. 

1999; Massmann et al. 2006). It has been reported by using a variety of analytical solutions 

(Schmorak and Mercado 1969; Haubold 1975; Motz 1992; Bower et al. 1999; Garabedian 

2013) and numerical models (Chandler and McWhorter 1975; Wirojanagud and 

Charbeneau 1985; Reilly et al. 1987; Panday et al. 1993; Zhou et al. 2005; Garabedian 

2013). Due to the challenges of undertaking field-based measurements of salt transport 

dynamics occurring below the pumping well, saltwater upconing research has been 

developed at laboratory scale rather than predominantly based on aforementioned 

theoretical analyses (Jakovovic et al. 2011). The laboratory experiments in the sand box 

(tank) were conducted to capture the behavior of saltwater upconing and correspondingly 

the numerical models were used to calibrate the input parameters, validate the laboratory 

observations, as well as provide further insight into the physical processes of saltwater 

upconing, which can not be perceived from physical experiments alone (Oswald 1998; 

Johannsen et al. 2002; Oswald and Kinzelbach 2004; Goswami and Clement 2007; Konz et 

al. 2009; Werner et al. 2009; Jakovovic et al 2011). 

As noted in many aquifers, fresh groundwater overlies denser saline groundwater (Motz 

1992). However, unlike in coastal aquifers that are in hydraulic connection with the sea, 

deep saline-groundwater pathways in inland aquifers are not routinely certain. To date, 

studies on the geological conditions in inland aquifers leading to pathways for upwelling 

deep saline groundwater due to pumping have been not yet published. Therefore, it is 

interesting and essential to reveal how deep saline-groundwater pathways impact on 
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saltwater upconing below a pumping well in an inland aquifer. 

Our preliminary study (Chapter 3) has shown that is an increasingly significant effect of 

salinization in most abstraction wells with a great depth of ~ 50 m below the surface in an 

inland aquifer at the Beelitzhof waterworks (BEEWW) in southwestern Berlin (Germany) 

(Figure 1-1), so it could be assumed that saltwater upconing would come from deeper 

saline groundwater. This assumption is supported by geological conditions in the Northern 

German Basin, where the upper fresh groundwater bearing Quaternary sediments is 

separated from deeper saline groundwater by Oligocene clay, whose local name in the area 

of Berlin is Tertiary Rupelian clay (Figure 1-2). Deep reaching Quaternary Elsterian glacial 

erosional channels lead to either more or less thinning of the Oligocene clay up to a 

complete removal. Noting that a very thin film of saline groundwater (centimeter scale) has 

been observed in unconsolidated fluvial fine-to-medium sandy sediments on the top of the 

Rupelian clay at the site, therefore, it could be assumed that Elsterian glacial channels 

would be in the close vicinity of the site, which results in saltwater upconing owing to 

pressure release by pumping a large amount of groundwater in drinking-water-production 

wells. However, it is not yet able to be proven whether there are hydraulic windows in the 

clay caused by glacial erosion or not, our hypotheses about deep saline-groundwater 

pathways, thus, arose as to: (1) there are windows in the clay, where their locations are 

uncertain; and (2) there are no windows in the clay, but the clay is partially thinned out but 

not completely removed by glacial erosion, so salt can merely come through the clay 

upwards by diffusion and eventually accumulate on its top. 

The principal aim of this research, consequently, was to conduct a theoretical study to test 

for two hypotheses about deep saline-groundwater pathways leading to saltwater upconing 

below a pumping well in an inland aquifer based on the field situation at the site, using a 

density-dependent groundwater flow and solute transport model. The specific objectives 

were to demonstrate the impact of (1) the lateral distance between windows in the clay and 

the well, as well as (2) salt diffusion through the clay depending on its thickness on 

saltwater intrusion in the pumping well. 
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4.2 Methods 

4.2.1 Conceptual models 

Our preliminary study (Chapter 3) has indicated the field situation at the site in detail, 

which is schematically present in Figure 3-1. Two conceptual models were thus 

accordingly developed in the lower aquifer as a confined unit. Each conceptual model was 

representative of the deep saline-groundwater pathway in the corresponding hypothesis 

(Figure 4-1).  

The areal effects of recharge rate (E) on the critical rise were small enough to be excluded 

from the analysis, according to our preliminary study (Chapter 3). 

 

 (I) 
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(II) 

Figure 4-1 Schematic vertical cross-section of conceptual models of hypothesis 1 (I) and 

hypothesis 2 (II) (not to scale). X - model width; Z3 – model height (thickness of the lower 

fresh groundwater aquifer); Lws - length of well screen; H1 - lateral distance from the well 

to windows in the Rupelian clay; H2 - thickness of the Rupelian clay. 

4.2.1.1 Conceptual model 1: Flow through erosional windows in the Rupelian clay 

Four scenarios were developed to interpret hypothesis 1. They were the windows A and B 

were located on the left- and right-hand sides of the well respectively on condition that H1A 

= H1B (Scenario 1) or H1A ≠ H1B (Scenario 2) (Figure 4-2I); the window A was only located 

on one side of the well on condition that H1B = 0 (Scenario 3) (Figure 4-2II); and the 

window A was only located on one side of the well on condition that H1B → +∞ (Scenario 

4) (Figure 4-2III) 
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Figure 4-2 Schematic horizontal cross-section of four scenarios for interpretation of 

hypothesis 1 in the X-Y plane (not to scale). (I) The windows A and B were located on the 

left- and right-hand sides of the well respectively on condition that H1A = H1B (Scenario 1) 

or H1A ≠ H1B (Scenario 2); (II) the window A was only located on one side of the well on 

condition that H1B = 0 (Scenario 3); (III) the window A was only located on one side of the 

well on condition that H1B → +∞ (Scenario 4). C0 and C1 represent the total dissolved 

solids (TDS) concentration of fresh groundwater and saline groundwater respectively. 

4.2.1.2 Conceptual model 2: Diffusion through the Rupelian clay 

Salt diffusion through the clay is the process in porous media whereby ionic or molecular 

constituents move under the influence of their kinetic activity in the direction of their 

concentration gradient (Freeze and Cherry 1979). According to Fick’s first law, the mass 

flux (F) was therefore used to interpret hypothesis 2. It can be two-dimensionally 
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expressed as 
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where D* is the effective diffusion coefficient in porous media; Δx is the model cell width; 

C0 is the total dissolved solids (TDS) concentration of fresh groundwater; C2 is the TDS 

concentration of saline groundwater; H2 is the thickness of the clay. 

4.2.2 Numerical model development 

Numerical modeling was performed using SEAWAT-2000 (Langevin et al. 2007). 

SEAWAT-2000 is a coupling of the MODFLOW groundwater flow code, modified to solve 

variable-density flow conditions using equivalent freshwater head, with the MT3DMS 

transport model (Garabedian 2013). The coupling between fluid density and solute 

concentration is incorporated in the code as a linear relationship. The developed numerical 

model in our preliminary study (Chapter 3) was used, with specified modifications for this 

research. 

4.2.2.1 Model discretization 

The model in a two-dimensional X-Z environment was spatially discretized to form a 

nonuniform mesh. The columns (Δx) were variably spaced with 0.45-m horizontal 

resolution at the well according to the well radius (rw) of 0.45 m at the site symmetrically 

expanding to 20-m horizontal resolution at the lateral boundaries (Figure 3-1). The layers 

(Δz) were spaced into two parts: (1) each layer was set to 10 m thick above the well screen 

(5 layers total); (2) each layer was set to 2 m thick below the well screen (45 layers total) 

(Figure 3-1). In order to minimize numerical dispersion and oscillation, the common 

criterion mesh Peclet number (Pe) was set to be ≤ 2 with all different Δx values (Zheng and 

Bennett 2002). 

All simulations were performed as transient flow until steady-state conditions were 
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reached, using the TVD advection solver, which is mass conservative, without excessive 

numerical dispersion and artificial oscillation (Zheng and Bennett 2002). Trial-and-error 

analysis demonstrated that it took 600 years to reach steady-state conditions with the 

current model setup, where time steps (Δt) were set to 1 year. Using this small Δt value can 

ensure that Courant number (Cr) correspondingly remained ≤ 1 with all different Δx values 

for minimization of numerical dispersion and oscillation (Zheng and Bennett 2002). 

4.2.2.2 Boundary and initial conditions 

The top of the model was set to no-flow boundaries according to the Holstein aquitard 

(Figure 3-1). The left- and right-hand sides of the model were chosen to be far enough 

(rw/r0 (the radial distance from the well center to the constant head boundary condition) = 

4.5×10-4) (Figure 3-1) not to be influenced by the pumping activities (Jakovovic et al. 2011; 

Garabedian 2013) and implemented as 1st order boundary conditions with a constant head 

(h0 = 30 m) and concentration (C0 = 0.2 kg/m3) respectively. According to the observed 

thin film of saline groundwater in sediments on the top of the impermeable Rupelian clay, 

2nd order boundary conditions were chosen at the bottom of the model. 

The simulated concentration was obtained at the bottom of the well screen. The 

concentration of saline groundwater was incorporated as total dissolved solid (TDS). Its 

TDS concentration in hypothesis 1 (C1) was set to 5.5 kg/m3 according to the 

aforementioned observed thin film of saline groundwater at the site as well as its TDS 

concentration in hypothesis 2 (C2) was set to 29.4 kg/m3 according to Assmann and 

Gandert (1957) as well as Wurl (1995). 

4.2.2.3 Model parameters 

The model was considered to be homogeneous according to Cai et al. (2014a), with 

uniform parameters. The site-specified values of h0, hydraulic gradient (i), Kh, specific 

storage (Ss) and effective porosity (ne) were measured (Table 4-1). According to our 

preliminary study (Chapter 3), the longitudinal (αL) and transverse dispersivity (αT) values 
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were estimated to 10 and 1 m respectively. The hydraulic anisotropy (a) defined as Kh/Kv 

was determined to 2.3 by an integrated laboratory method called modified constant-head 

permeameter test (MCHPT) (Cai et al. 2014a).  

Table 4-1 Numerical model parameters 

Parameter Symbol Value Unit 

Model width X 2000 m 

Model height Z3 140 m 

Initial hydraulic head h0 30 m 

Hydraulic gradient i 0 - 

Horizontal hydraulic conductivity Kh 1×10-4 m/s 

Hydraulic anisotropy a 2.3 - 

Effective porosity ne 0.3 - 

Well radius rw 0.45 m 

Length of well screen Lws 30 m 
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Pumping rate Q 2.78×10-2 m3/s 

Specific storage Ss 5×10-4 1/m 

Longitudinal dispersivity αL 10 m 

Transverse dispersivity αT 1 m 

Effective diffusion coefficient in porous media D* 1×10-10 m2/s 

Total dissolved solids (TDS) concentration of 

fresh groundwater 
C0 0.2 kg/m3 

TDS concentration of saline groundwater  

in hypothesis 1 
C1 5.5 kg/m3 

TDS concentration of saline groundwater  

in hypothesis 2 
C2 29.4 kg/m3 

Lateral distance from the well to windows  

in the Rupelian clay 
H1 0~1000 m 
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Thickness of the Rupelian clay H2 0~100 m 
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4.3 Results and discussion 

4.3.1 Testing for hypothesis 1: Variable lateral distance between erosional windows in 

the Rupelian clay and the well 

A series of tests in Scenario 1 showed that the salinity in the well was estimated to be 1 

kg/m3 when H1A = H1B = 550 m (Figure 4-3I), i.e. the well water was classified as brackish 

water on condition that 0 < H1A = H1B ≤ 550 m, noting the criteria listed in Table 3-2. 

Owing to the waterworks site for drinking-water supply, it was essential to consider the 

impact of TDS concentration on the drinking water palatability (DWP) as well. According 

to the criteria listed in Table 4-2, DWP was classified as unacceptable on condition that 0 < 

H1A = H1B ≤ 400 m, as poor on condition that 400 m < H1A = H1B ≤ 615 m, as fair on 

condition that 615 m < H1A = H1B ≤ 805 m, and as good on condition that 805 m < H1A = 

H1B ≤ 960 m, respectively. Thus, when 0 < H1A = H1B ≤ 550 m, the effect of saltwater 

intrusion was significant, as the well water was brackish water and DWP was unacceptable 

to poor; when 550 m < H1A = H1B ≤ 615 m, the effect was modest, as the well water was 

freshwater but DWP was poor; when 615 m < H1A = H1B ≤ 960 m, there was no or slight 

effect, as the well water was freshwater and DWP was fair to good. 

Table 4-2 Palatability classification of drinking water  

by total dissolved solids (TDS) concentration (WHO 2003) 

Classification TDS Concentration (kg/m3) 

Excellent <0.3 

Good 0.3~0.6 

Fair 0.6~0.9 

Poor 0.9~1.2 

Unacceptable >1.2 
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(I) (II) 

Figure 4-3 Simulations of total dissolved solids (TDS) concentration at steady-state condition in the well by Scenario 1 (I) and Scenario 2 (II) of 

hypothesis 1. The dashed line represents the concentration threshold between freshwater and brackish water.
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(III)                                                         (IV) 

Figure 4-3 (continued) Simulations of total dissolved solids (TDS) concentration at steady-state condition in the well by Scenario 3 (III) and 

Scenario 4 (IV) of hypothesis 1. The dashed line represents the concentration threshold between freshwater and brackish water.
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Considering Scenario 2, a series of tests yielded the greatly similar salinity in comparison 

to Scenario 1 (Figure 4-3II). When the H1A + H1B values were held constant, the salinity 

with different combinations of H1A and H1B were almost exceedingly close to each other as 

well (Figure 4-3II). Therefore, Scenario 1 and 2 could be merged into one scenario, defined 

as the windows A and B were located on the left- and right-hand sides of the well 

respectively, without consideration of H1A or H1B conditions. The aforementioned results 

were, consequently, summarized as follows: when 0 < H1A + H1B ≤ 1100 m, the effect of 

saltwater intrusion was significant, as the well water was brackish water and DWP was 

unacceptable to poor; when 1100 m < H1A + H1B ≤ 1230 m, the effect was modest, as the 

well water was freshwater but DWP was poor; when 1230 m < H1A + H1B ≤ 1920 m, there 

was no or slight effect, as the well water was freshwater and DWP was fair to good. 

With regard to Scenario 3, a series of tests indicated that the salinity in the well was 

estimated to be 1 kg/m3 when H1A = 865 m (Figure 4-3III), i.e. the well water was 

classified as brackish water on condition that 0 < H1A ≤ 865 m. DWP was classified as 

unacceptable on condition that 0 < H1A ≤ 530 m, and as poor on condition that 530 m < H1A 

≤ 960 m, respectively. Thus, when 0 < H1A ≤ 865 m, the effect of saltwater intrusion was 

significant, as the well water was brackish water and DWP was unacceptable to poor; when 

865 m < H1A ≤ 960 m, the effect was modest, as the well water was freshwater but DWP 

was poor. 

As for Scenario 4, a series of tests demonstrated that the salinity of all simulations was < 1 

kg/m3 (Figure 4-3IV), i.e. the well water of all simulations was classified as freshwater. 

DWP was classified as fair on condition that 0 < H1A ≤ 265 m, as good on condition that 

265 m < H1A ≤ 790 m, and as excellent on condition that 790 m < H1A ≤ 960 m, 

respectively. Therefore, there was no or slight effect of saltwater intrusion, as the well 

water was freshwater and DWP was fair to excellent. 

In the case of hypothesis 1, i.e. flow through erosional windows in the clay, the numerical 

simulations of 4 developed scenarios yielded different results for presenting the impact of 
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the certain lateral distance between windows in the clay and the well on saltwater intrusion. 

In terms of Scenario 1 and 2, there was a great consistency between these two scenarios, in 

which the lateral distance H1A + H1B in the range of (0, 1230] m had a 

modest-to-significant impact on saltwater intrusion in the pumping well, without 

consideration of H1A or H1B conditions. In terms of Scenario 3 and 4 with two extreme 

conditions of H1B, their results indicated a complete contrast to each other, in which the 

entire lateral distance H1A on condition that H1B = 0 (Scenario 3) had a modest-to- 

significant impact on saltwater intrusion, while the entire lateral distance H1A on condition 

that H1B → +∞ (Scenario 4) had no or a slight impact on saltwater intrusion. Consequently, 

it was validated that the effect of saltwater intrusion depended on the lateral distance 

between windows in the clay and the well, which led to the conclusion that windows could 

occur in the clay at the site and their locations under some conditions could significantly 

cause saltwater intrusion in the pumping well. 

4.3.2 Testing for hypothesis 2: Salt diffusion through the Rupelian clay with variable 

thickness 

A series of tests showed that the salinity in the well was estimated to be 1 kg/m3 when H2 = 

0.7 m (Figure 4-4), i.e. the well water was classified as brackish water on condition that 0 

< H2 ≤ 0.7 m. DWP was classified as unacceptable on condition that 0 < H2 ≤ 0.5 m, as 

poor on condition that 0.5 m < H2 ≤ 0.8 m, as fair on condition that 0.8 m < H2 ≤ 1.6 m, as 

good on condition that 1.6 m < H2 ≤ 5.6 m, and as excellent on condition that H2 > 5.6 m, 

respectively. Thus, when 0 < H2 ≤ 0.7 m, the effect of saltwater intrusion was significant, 

as the well water was brackish water and DWP was unacceptable to poor; when 0.7 m < H2 

≤ 0.8 m, the effect was modest, as the well water was freshwater but DWP was poor; when 

H2 > 0.8 m, there was no or slight effect, as the well water was freshwater and DWP was 

fair to excellent.  
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Figure 4-4 Simulations of total dissolved solids (TDS) concentration at steady-state 

condition in the well by hypothesis 2. The dashed line represents the concentration 

threshold between freshwater and brackish water. 

In the case of hypothesis 2, i.e. salt diffusion through the clay, the numerical simulations 

demonstrated that the effect of saltwater intrusion depended on the clay thickness. 

According to our previous observations at the site, the clay thickness was estimated to at 

least 1 m. Therefore, salt diffusion through the clay with thickness greater than 1 m was 

not able to cause saltwater intrusion in the pumping well, which validated that hypothesis 2 

could be excluded at the site. 

4.4 Conclusions 

In this research, it is the first time to conduct a theoretical study to test for two hypotheses 

about deep saline-groundwater pathways leading to saltwater upconing below a pumping 

well in an inland aquifer based on the field situation at the site, using a density-dependent 
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groundwater flow and solute transport model. It has provided fundamental knowledge of 

modeling impact of deep saline-groundwater pathways on saltwater intrusion, in which the 

developed conceptual und numerical models as well as the key findings could enlighten to 

conduct further modeling studies of real field situation sharing the same or similar 

geological conditions. 
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5 Recommendations 

Saltwater intrusion is a widespread contamination problem of continuing great practical 

interest in many coastal and inland aquifers all over the world. Therefore, it is highly 

desirable to properly manage groundwater resources for drinking-water supply by 

controlling saltwater intrusion. This paper proposes to provide two recommendations of 

controlling saltwater intrusion in an inland aquifer for drinking-water supply at a certain 

waterworks site on the basis of the validated source of saltwater intrusion as well as 

pumping optimization, using a density-dependent groundwater flow and solute transport 

model. In terms of pumping-rate reduction, the optimal pumping rate was validated for 

eliminating the effect of saltwater intrusion. Without consideration of scenario conditions, 

its value could be set 1.39×10-2 m3/s (50 m3/h) or 5.56×10-3 m3/s (20 m3/h), if the 

requirement of drinking water palatability were good or excellent, respectively. With 

regard to pumping-pattern rearrangement, the well construction was modified to access 

bank filtration for eliminating the effect of saltwater intrusion. 

Jialiang Cai, Thomas Taute, Michael Schneider 

Recommendations of controlling saltwater intrusion in an inland aquifer for drinking-water supply at a 

certain waterworks site. 

Submitted to Environmental Earth Sciences (under review). 

 





Chapter 5: Recommendations 

73 

5.1 Introduction 

Saltwater intrusion is a widespread problem of continuing great practical interest in many 

coastal and inland aquifers all over the world, which is often described by coupled 

density-dependent groundwater flow and advection–dispersion equations because of 

hydrodynamic dispersion and a wide transition zone (Bear 1972; Huyakorn and Pinder 

1983; Segol 1994; Servan-Camas and Tsai 2009; Mastrocicco et al. 2012). It is considered 

a special category of contamination to make groundwater unsuitable for human, industry 

and irrigation uses, by reducing freshwater storage and in extreme cases even resulting in 

abandonment of drinking-water-supply wells, if salinity, generally defined as concentration 

of total dissolved solids (TDS), exceeds acceptable drinking water standard (El Moujabber 

et al. 2006; Abd-Elhamid and Javadi 2011). Therefore, it is highly desirable to properly 

manage groundwater resources for drinking-water supply by controlling saltwater 

intrusion. 

In coastal aquifers, an enormous amount of studies has been conducted to control saltwater 

intrusion using various methods, which can be summarized as (1) reduction of pumping 

rates or rearrangement of pumping pattern, (2) relocation of pumping wells, (3) use of 

natural or artificial recharge, (4) construction of artificial subsurface barriers, (5) 

abstraction of saline water, and (6) combination of various techniques (Todd and Mays 

2005; Abarca et al. 2006; Abd-Elhamid and Javadi 2011). Despite the fact that these 

aforementioned methods all have some constraints, the first alternative of pumping 

optimization has been proven more effective and economic using analytical or numerical 

models (Finney et al. 1992; Hallaji and Yazicigil 1996; Emch and Yeh 1998; Das and Datta 

1999a, 1999b; Cheng et al. 2000; Gordon et al. 2000; Mantoglou 2003; Zhou et al. 2003; 

Abarca et al. 2006). In brief, the key issue of pumping optimization is to maintain a 

balance between pumping demand and quality requirements, it is thus necessary to develop 

appropriate models as above mentioned for determination of water quantity which can be 

pumped from aquifers while protecting pumping wells from saltwater intrusion 
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(Mantoglou 2003; Abarca et al. 2006).  

With regard to inland aquifers, to our knowledge, there is greatly limited discussion for 

controlling saltwater intrusion to date, owing to the fact that the sources of saltwater 

intrusion are not routinely certain in comparison with coastal aquifers that are in hydraulic 

connection with the sea (Freeze and Cherry 1979; Sherif et al. 1990). Saltwater intrusion in 

inland aquifers may originate from various sources, including (1) seawater that entered 

aquifers during deposition or during a high stand of the sea in past geologic time (connate 

water), (2) salt in saline domes, thin beds, or disseminated in the geologic formations, (3) 

slightly saline water concentrated by evaporation in tidal lagoon, playas, or other enclosed 

areas, (4) return flows to streams from irrigated lands, and (5) anthropogenic saline wastes 

(Bobba 1993). Hence, it is important and essential to identify the source(s) of saltwater 

intrusion before implementing pumping management. 

Our preliminary study (Chapter 3) has shown that is an increasingly significant effect of 

salinization in most abstraction wells with a great depth of ~ 50 m below the surface in an 

inland aquifer at the Beelitzhof waterworks (BEEWW) in southwestern Berlin (Germany) 

(Figure 1-1), which provides approximately 25% of total drinking-water supply for the city 

region. So it was assumed that the source of saltwater intrusion would originate from 

deeper saline groundwater.  This assumption is supported by geological conditions in the 

Northern German Basin, where the upper fresh groundwater bearing Quaternary sediments 

is separated from deeper saline groundwater by Oligocene clay, whose local name in the 

area of Berlin is Tertiary Rupelian clay (Figure 1-2). Deep reaching Quaternary Elsterian 

glacial erosional channels lead to either more or less thinning of the Oligocene clay up to a 

complete removal. Noting that a very thin film of saline groundwater (centimeter scale) has 

been observed in unconsolidated fluvial fine-to-medium sandy sediments on the top of the 

Rupelian clay at the site, therefore, it could be assumed that Elsterian glacial channels 

would be in the close vicinity of the site, which results in saltwater upconing owing to 

pressure release by pumping a large amount of groundwater in drinking-water-production 

wells. Cai et al. (2014b) have tested for two hypotheses about geological conditions 

leading to pathways for upwelling deep saline groundwater due to pumping, which 
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validated that the hydraulic windows could occur in the clay caused by glacial erosion at 

the site and their locations under some conditions could significantly cause saltwater 

intrusion in the pumping well. 

The principal aim of this research, consequently, was to provide recommendations of 

controlling saltwater intrusion in an inland aquifer for drinking-water supply at BEEWW 

on the basis of the validated source of saltwater intrusion as well as pumping optimization, 

using a density-dependent groundwater flow and solute transport model. The specific 

objectives were to (1) reduce the pumping rate until getting the optimal value and (2) 

rearrange the pumping pattern by modifying the well construction for eliminating the effect 

of saltwater intrusion. 

5.2 Methods 

5.2.1 Conceptual model 

Our preliminary study (Chapter 3) has indicated the field situation at the site in detail, 

which is schematically present in Figure 3-1. The conceptual model was thus accordingly 

developed in the lower aquifer as a confined unit, representative of the deep 

saline-groundwater pathway in the validated hypothesis (Figure 4-1). 

Cai et al. (2014b) have demonstrated there were three scenarios of the deep 

saline-groundwater pathway for interpreting the validated hypothesis. They were (1) the 

windows A and B were located on the left- and right-hand sides of the well respectively, 

without consideration of HA or HB conditions (Scenario 1) (Figure 5-1I); (2) the window A 

was only located on one side of the well on condition that HB = 0 (Scenario 2) (Figure 

5-1II); and (3) the window A was only located on one side of the well on condition that HB 

→ +∞ (Scenario 3) (Figure 5-1III). 

The areal effects of recharge rate (E) on the critical rise were small enough to be excluded 

from the analysis, according to our preliminary study (Chapter 3). 
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Figure 5-1 Schematic horizontal cross-section of three scenarios of the deep 

saline-groundwater pathway in the X-Y plane (not to scale). (I) Scenario 1: the windows A 

and B were located on the left- and right-hand sides of the well respectively, without 

consideration of HA or HB conditions; (II) Scenario 2: the window A was only located on 

one side of the well on condition that HB = 0; (III) Scenario 3: the window A was only 

located on one side of the well on condition that HB → +∞. C0 and C1 represent the total 

dissolved solids (TDS) concentration of fresh groundwater and saline groundwater 

respectively. 

The areal effects of recharge rate (E) on the critical rise were small enough to be excluded 

from the analysis, according to our preliminary study (Chapter 3). 

5.2.2 Numerical model development 

Numerical modeling was performed using SEAWAT-2000 (Langevin et al. 2007). 

SEAWAT-2000 is a coupling of the MODFLOW groundwater flow code, modified to solve 
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variable-density flow conditions using equivalent freshwater head, with the MT3DMS 

transport model (Garabedian 2013). The coupling between fluid density and solute 

concentration is incorporated in the code as a linear relationship. The developed numerical 

model in our preliminary study (Chapter 3) was used, with specified modifications for this 

research. 

5.2.2.1 Model discretization 

The model in a two-dimensional X-Z environment was spatially discretized to form a 

nonuniform mesh. The columns (Δx) were variably spaced with 0.45-m horizontal 

resolution at the well according to the well radius (rw) of 0.45 m at the site symmetrically 

expanding to 20-m horizontal resolution at the lateral boundaries (Figure 3-1). The layers 

(Δz) were spaced into two parts: (1) each layer was set to 10 m thick above the well screen 

(5 layers total); (2) each layer was set to 2 m thick below the well screen (45 layers total) 

(Figure 3-1). In order to minimize numerical dispersion and oscillation, the common 

criterion mesh Peclet number (Pe) was set to be ≤ 2 with all different Δx values (Zheng and 

Bennett 2002). 

All simulations were performed as transient flow until steady-state conditions were 

reached, using the TVD advection solver, which is mass conservative, without excessive 

numerical dispersion and artificial oscillation (Zheng and Bennett 2002). Trial-and-error 

analysis demonstrated that it took 600 years to reach steady-state conditions with the 

current model setup, where time steps (Δt) were set to 1 year. Using this small Δt value can 

ensure that Courant number (Cr) correspondingly remained ≤ 1 with all different Δx values 

for minimization of numerical dispersion and oscillation (Zheng and Bennett 2002). 

5.2.2.2 Boundary and initial conditions 

The top of the model was set to no-flow boundaries according to the Holstein aquitard 

(Figure 3-1). The left- and right-hand sides of the model were chosen to be far enough 

(rw/r0 (the radial distance from the well center to the constant head boundary condition) = 
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4.5×10-4) (Figure 3-1) not to be influenced by the pumping activities (Jakovovic et al. 2011; 

Garabedian 2013) and implemented as 1st order boundary conditions with a constant head 

(h0 = 30 m) and concentration (C0 = 0.2 kg/m3) respectively. According to the observed 

thin film of saline groundwater in sediments on the top of the impermeable Rupelian clay, 

2nd order boundary conditions were chosen at the bottom of the model. 

The simulated concentration was obtained at the bottom of the well screen. The 

concentration of saline groundwater (C1) was incorporated as total dissolved solid (TDS) 

and its value was set to 5.5 kg/m3 according to the aforementioned observed thin film of 

saline groundwater at the site. The values of the pumping rate (Q) were varying in a range 

from 2.78×10-3 (10) to 2.78×10-2 m3/s (100 m3/h). 

5.2.2.3 Model parameters 

The model was considered to be homogeneous according to Cai et al. (2014a), with 

uniform parameters. The site-specified values of h0, hydraulic gradient (i), Kh, specific 

storage (Ss) and effective porosity (ne) were measured (Table 5-1). According to our 

preliminary study (Chapter 3), the longitudinal (αL) and transverse dispersivity (αT) values 

were estimated to 10 and 1 m respectively. The hydraulic anisotropy (a) defined as Kh/Kv 

was determined to 2.3 by an integrated laboratory method called modified constant-head 

permeameter test (MCHPT) (Cai et al. 2014a). 

5.3 Results and discussion 

5.3.1 Reduction of pumping pate 

5.3.1.1 Scenario 1 



Chapter 5: 

 80 

Table 5-1 Numerical model parameters 

Parameter Symbol Value Unit 

Model width X 2000 m 

Model height Z3 140 m 

Initial hydraulic head h0 30 m 

Hydraulic gradient i 0 - 

Horizontal hydraulic conductivity Kh 1×10-4 m/s 

Hydraulic anisotropy a 2.3 - 

Effective porosity ne 0.3 - 

Well radius rw 0.45 m 

Length of well screen Lws 30 m 
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Pumping rate Q 
2.78×10-3, 1.11×10-2, 

1.94×10-2, 2.78×10-2 
m3/s 

Specific storage Ss 5×10-4 1/m 

Longitudinal dispersivity αL 10 m 

Transverse dispersivity αT 1 m 

Effective diffusion coefficient in porous media D* 1×10-10 m2/s 

Total dissolved solids (TDS) concentration of 

fresh groundwater 
C0 0.2 kg/m3 

TDS concentration of saline groundwater C1 5.5 kg/m3 T
ra

n
sp

or
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Lateral distance from the well to windows  

in the Rupelian clay 
H 0~1000 m 

 

When Q = 2.78×10-2 m3/s (100 m3/h), the salinity in the well was estimated to be 1 kg/m3 

when HA + HB = 1100 m (regression equation not shown, the same as blow) (Figure 5-2I), 

i.e. the well water was classified as brackish water on condition that 0 < HA + HB ≤ 1100 m, 

noting the criteria listed in Table 3-2. Owing to the fact that our recommendations aimed to 

control saltwater intrusion for drinking-water supply at BEEWW, it was thus essential to 
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consider the impact of TDS concentration on drinking water palatability (DWP) as well. 

According to the criteria listed in Table 4-2, DWP was classified as unacceptable on 

condition that 0 < HA + HB ≤ 800 m, as poor on condition that 800 m < HA + HB ≤ 1230 m, 

as fair on condition that 1230 m < HA + HB ≤ 1610 m, and as good on condition that 1610 

m < HA + HB ≤ 1920 m, respectively. Therefore, when 0 < HA + HB ≤ 1100 m, the effect of 

saltwater intrusion was significant, as the well water was brackish water and DWP was 

unacceptable to poor; when 1100 m < HA + HB ≤ 1230 m, the effect was modest, as the 

well water was freshwater but DWP was poor; when 1230 m < HA + HB ≤ 1920 m, there 

was no or slight effect, as the well water was freshwater and DWP was fair to good.  

When Q = 1.94×10-2 m3/s (70 m3/h), the well water of all simulations was classified as 

freshwater (Figure 5-2I). DWP was classified as poor on condition that 0 < HA + HB ≤ 820 

m, as fair on condition that 820 < HA + HB ≤ 1360 m, as good on condition that 1360 m < 

HA + HB ≤ 1900 m, and as excellent on condition that 1900 m < HA + HB ≤ 1920 m, 

respectively. Thus, when 0 m < HA + HB ≤ 820 m, the effect of saltwater intrusion was 

modest; when 820 m < HA + HB ≤ 1920 m, there was no or slight effect. 

When Q = 1.11×10-2 m3/s (40 m3/h), the well water of all simulations was classified as 

freshwater (Figure 5-2I). DWP was classified as good on condition that 0 < HA + HB ≤ 

1220 m, and as excellent on condition that 1220 m < HA + HB ≤ 1920 m, respectively. 

Therefore, there was no effect of saltwater intrusion. 

When Q = 2.78×10-3 m3/s (10 m3/h), the salinity of all simulations was almost as identical 

as C0, so no saltwater upconing occurred (Figure 5-2I). 

Consequently, according to the correlation of the salinity in the well to Q on condition that 

HA + HB = 200 m (Figure 5-3), it could be estimated in all simulations that there was no 

effect of saltwater intrusion and DWP was good when Q = 1.39×10-2 m3/s (50 m3/h) as 

well as DWP was excellent when Q = 5.56×10-3 m3/s (20 m3/h). 
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Figure 5-2 Simulations of total dissolved solids (TDS) concentration at steady-state 

condition in the well with varying pumping rate (Q) by Scenario 1 (I), Scenario 2 (II), and 

Scenario 3 (III), respectively. The dashed line represents the concentration threshold 

between freshwater and brackish water. 

5.3.1.2 Scenario 2 

When Q = 2.78×10-2 m3/s (100 m3/h), the salinity in the well was estimated to be 1 kg/m3 

when HA = 865 m (Figure 5-2II), i.e. the well water was classified as brackish water on 

condition that 0 < HA ≤ 865 m. DWP was classified as unacceptable on condition that 0 < 

HA ≤ 530 m, and as poor on condition that 530 m < HA ≤ 960 m, respectively. Thus, when 0 

< HA ≤ 865 m, the effect of saltwater intrusion was significant; when 865 m < HA ≤ 960 m, 

the effect was modest. 
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Figure 5-3 Correlation of total dissolved solids (TDS) concentration at steady-state 

condition in the well to pumping rate (Q) in Scenario 1 on condition that HA + HB = 200 m, 

Scenario 2 on condition that HA = 100 m, and Scenario 3 on condition that HA = 100 m, 

respectively. The dashed line represents the concentration threshold between freshwater 

and brackish water. 

When Q = 1.94×10-2 m3/s (70 m3/h), the well water of all simulations was classified as 

freshwater (Figure 5-2II). DWP was classified as poor on condition that 0 < HA ≤ 520 m, as 

fair on condition that 520 m < HA ≤ 960 m, respectively. Therefore, when 0 m < HA ≤ 520 

m, the effect of saltwater intrusion was modest; when 520 m < HA ≤ 960 m, the effect was 

slight. 

When Q = 1.11×10-2 m3/s (40 m3/h), the well water of all simulations was classified as 

freshwater (Figure 5-2II). DWP of all simulations was classified as good. Thus, there was 

no effect of saltwater intrusion. 
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When Q = 2.78×10-3 m3/s (10 m3/h), the salinity of all simulations was almost as identical 

as C0, so no saltwater upconing occurred (Figure 5-2II). 

Consequently, according to the correlation of the salinity in the well to Q on condition that 

HA = 100 m (Figure 5-3), it could be estimated in all simulations that there was no effect of 

saltwater intrusion and DWP was good when Q = 1.39×10-2 m3/s (50 m3/h) as well as DWP 

was excellent when Q = 5.56×10-3 m3/s (20 m3/h), the same as Scenario 1. 

5.3.1.3 Scenario 3 

When Q = 2.78×10-2 m3/s (100 m3/h), the well water of all simulations was classified as 

freshwater (Figure 5-2III). DWP was classified as fair on condition that 0 < HA ≤ 265 m, as 

good on condition that 265 m < HA ≤ 790 m, and as excellent on condition that 790 m < HA 

≤ 960 m, respectively. Therefore, there was no or slight effect of saltwater intrusion.  

When Q = 1.94×10-2 m3/s (70 m3/h), the well water of all simulations was classified as 

freshwater (Figure 5-2III). DWP was classified as good on condition that 0 < HA ≤ 685 m, 

as excellent on condition that 685 m < HA ≤ 960 m, respectively. Thus, there was no effect 

of saltwater intrusion. 

When Q = 1.11×10-2 m3/s (40 m3/h), the well water of all simulations was classified as 

freshwater (Figure 5-2III). DWP was classified as good on condition that 0 < HA ≤ 210 m, 

as excellent on condition that 210 m < HA ≤ 960 m, respectively. Therefore, there was no 

effect of saltwater intrusion. 

When Q = 2.78×10-3 m3/s (10 m3/h), the salinity of all simulations was as identical as C0, 

so no saltwater upconing occurred (Figure 5-2III). 

Consequently, according to the correlation of the salinity in the well to Q on condition that 

HA = 100 m (Figure 5-3), it could be estimated in all simulations that there was no effect of 

saltwater intrusion and DWP was good when Q = 2.50×10-2 m3/s (90 m3/h) as well as DWP 

was excellent when Q = 8.34×10-3 m3/s (30 m3/h). 
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Overall, the optimal Q (Qopt) was validated for eliminating the effect of saltwater intrusion 

at BEEWW. Without consideration of scenario conditions, its value could be set 1.39×10-2 

m3/s (50 m3/h) or 5.56×10-3 m3/s (20 m3/h), if the requirement of DWP were good or 

excellent, respectively. 

5.3.2 Modification of well construction 

As noted, the key issue of pumping optimization is to maintain a balance between pumping 

demand and drinking-water quality requirements. However, the aforementioned Qopt with a 

value of 5.56×10-3 m3/s (20 m3/h) would be apparently a low pumping rate, if the 

requirement of DWP were excellent, which would hardly meet the demand of 

drinking-water supply for cities like Berlin. Thus, it was necessary to rearrange the 

pumping pattern by modifying the well construction for controlling saltwater intrusion, 

while maintaining the present pumping rate, e.g. Q = 2.78×10-2 m3/s (100 m3/h). 

The Friedrichshagen waterworks (FRIWW) is located in southeastern Berlin (Figure 1-1), 

which shares the same geological conditions as BEEWW. However, no effect of saltwater 

intrusion has been observed in pumping wells with a depth of 50 m below the surface at 

FRIWW, owing to the fact that there is no aquitard dividing the fresh groundwater aquifer. 

Therefore, the bank filtration from Lake Müggelsee to pumping wells occurs to play an 

important role for controlling saltwater intrusion. Hass (2012) showed that there is 

approximately 70% bank filtration for total drinking-water supply at FRIWW. Hence, the 

well screen could be built in the upper aquifer to access bank filtration from Lake Wannsee 

for eliminating the effect of saltwater intrusion at BEEWW (Figure 5-4). Based on the 

situation at FRIWW, there was no need to conduct further numerical modeling to validate 

the effect of the well-construction modification. 
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Figure 5-4 Schematic vertical cross-section of well-construction modification (not to scale). 

Lws - length of well screen; rw - well radius; Q - pumping rate. 

5.4 Summary and conclusions 

This research provided two recommendations of controlling saltwater intrusion in an 

inland aquifer for drinking-water supply at BEEWW in southwestern Berlin (Germany) on 

the basis of the validated source of saltwater intrusion as well as pumping optimization, 

using a density-dependent groundwater flow and solute transport model. The key findings 

are summarized as follows: 

 In terms of pumping-rate reduction, Qopt was validated for eliminating the effect of 

saltwater intrusion. Without consideration of scenario conditions, its value could be 

set 1.39×10-2 m3/s (50 m3/h) or 5.56×10-3 m3/s (20 m3/h), if the requirement of DWP 

were good or excellent, respectively. It was demonstrated an effective and economic 
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measure for controlling saltwater intrusion, but might hardly meet the demand of 

drinking-water supply due to its strict quality requirements. 

 In terms of pumping-pattern rearrangement, the well construction was modified to 

access bank filtration for eliminating the effect of saltwater intrusion by building the 

well screen in the upper aquifer. It was demonstrated an effective measure for 

controlling saltwater intrusion while maintaining the present pumping rate, but would 

require financial investments in advance. 
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6.1 Major outcomes 

This thesis has conducted an integrated study of hydraulic anisotropy and its impact on 

saltwater intrusion in an inland aquifer at the Beelitzhof waterworks (BEEWW) in 

southwestern Berlin (Germany), which includes (1) establishing a new laboratory method 

for the efficient determination and verification of consistent values of directional hydraulic 

conductivity (DHC) in fine-to-medium sandy sediments, (2) modeling the impact of 

hydraulic anisotropy (a) as well as deep saline-groundwater sources on saltwater intrusion 

due to pumping, and (3) providing recommendations of controlling saltwater intrusion for 

drinking-water supply. 

The major outcomes of each core chapter are respectively summarized as follows: 

Chapter 2: Laboratory method 

 Undisturbed 25-cm core samples (25CS) and 6.5-cm core samples (6.5CS) were 

obtained for measuring vertical and horizontal hydraulic conductivity (Kv and Kh) 

respectively by a newly developed method. The integrity of the 6.5CS samples from 

the 25CS samples was validated by bulk density (ρb), which indicated that the 

differences between the 
CSb 5.6

  value and the average value of two 
CSb25

 values 

were < 1%. 

 A precise and standardized procedure for preparing the experimental setup of 

modified constant-head permeameter test (MCHPT) was conducted based on an 

integrated experimental setup of constant-head permeameter test and tracer tests by 

modifying the outer tubing diameter of 8 mm and the tracer injection point for the 

valid applicability of the Darcy equation. Moreover, a formula (Equation 2-9) was 

provided for the time-optimized control of sample saturation. 

 The determination of Kh and Kv values showed that all the Kh values were on average 

~2.3 times greater than the Kv values, and both of them were greater than 1.7×10-6 
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m/s (Kmin) but less than the K value of the experimental setup (Ksetup). They were 

validated by tracer tests with effective porosity (ne) < 0.5. 

 In comparison with grain size-based methods, the validity of consistent Kh and Kv 

values determined by MCHPT was convincing. 

 An efficient, precise, and applicable methodological framework of MCHPT for the 

general determination and verification of DHC values in fine-to-medium sandy 

sediments can be obtained for further investigation (Figure 2-12). 

Chapter 3: Modeling study I 

Impact of hydraulic anisotropy on saltwater intrusion 

 A conceptual model representative of the field situation was developed and 

implemented in a numerical density-dependent groundwater flow and solute transport 

model. 

 The uncertain values of longitudinal and transverse dispersivity were estimated to 10 

and 1 m respectively, according to the assessment of their impacts on saltwater 

intrusion. 

 The impact of a on saltwater intrusion was validated to be not significant due to the 

hydrogeological conditions at the site, based on its precise value of 2.3 in comparison 

with the empirical value of 10. 

Chapter 4: Modeling study II 

Impact of deep saline-groundwater sources on saltwater intrusion 

 Hypothesis 1, defined as there are hydraulic windows in the Rupelian clay caused by 

glacial erosion, where their locations are uncertain, was validated with 4 scenarios 

that windows could occur in the clay at the site and their locations under some 

conditions could significantly cause saltwater intrusion.  

 Hypothesis 2, defined as there are no windows in the clay, but the clay is partially 

thinned out but not completely removed by glacial erosion, so salt can merely come 

through the clay upwards by diffusion and eventually accumulate on its top, could be 
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excluded, because salt diffusion through the clay with thickness greater than 1 m at 

the site was not able to cause saltwater intrusion. 

Chapter 5: Recommendations 

 In terms of pumping-rate reduction, the optimal pumping rate was validated for 

eliminating the effect of saltwater intrusion. Without consideration of scenario 

conditions, its value could be set 1.39×10-2 m3/s (50 m3/h) or 5.56×10-3 m3/s (20 

m3/h), if the requirement of drinking water palatability were good or excellent, 

respectively. It was demonstrated an effective and economic measure for controlling 

saltwater intrusion, but might hardly meet the demand of drinking-water supply due 

to its strict quality requirements. 

 In terms of pumping-pattern rearrangement, the well construction was modified to 

access bank filtration for eliminating the effect of saltwater intrusion by building the 

well screen in the upper aquifer. It was demonstrated an effective measure for 

controlling saltwater intrusion while maintaining the present pumping rate, but would 

require financial investments in advance. 

Overall, the highlights of this thesis can be summarized as follows: 

 It is the first time to efficiently determine and verify precise consistent DHC values in 

fine-to-medium sandy sediments by developing an integrated laboratory method 

called MCHPT. 

 It is the first time to identify deep saline-groundwater sources in an inland aquifer 

and validate their impacts on saltwater intrusion by testing for two hypotheses about 

geological conditions leading to pathways for upwelling deep saline groundwater due 

to pumping, using a density-dependent groundwater flow and solute transport model. 

6.2 Outlook 

This thesis has provided fundamental knowledge of modeling impact of deep 
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saline-groundwater sources on saltwater intrusion in an inland aquifer and correspondingly 

recommending some appropriate measures of groundwater resources management by 

controlling saltwater intrusion for drinking-water supply at a certain waterworks site.  

Owing to the fact that the theoretical modeling study conducted in this thesis was 

simplified into a two-dimensional environment (vertical cross-section) with a pumping 

well, the following suggestions could therefore arise for the future research. 

 To conduct a three-dimensional analysis for deepening the obtained fundamental 

knowledge in order to more accurately simulate the field situation. 

 To expand the modeling study with two pumping wells, multiple pumping wells, till 

an entire well gallery at the site in order to more accurately simulate the field 

situation. Accordingly, the pumping pattern could be rearranged to coordinate the 

pumping interaction between the wells for controlling saltwater intrusion. 

 To further develop new methods that are more effective and economic than pumping 

optimization for controlling saltwater intrusion. 
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Appendix I – Figures 
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Figure A-1 Saltwater upconing distribution at steady-state condition with varying 

transverse dispersivity (αT) by 20% (I), 50% (II), and 80% (III) contour of total dissolved 

solids (TDS) concentration respectively. (1) Longitudinal dispersivity (αL) and hydraulic 

anisotropy (a) were set to constant values of 10 m and 2.3 respectively; (2) the dashed line 

represents the bottom of the well screen. 
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Figure A-2 Saltwater upconing distribution at steady-state condition with varying 

longitudinal dispersivity (αL) by 20% (I), 50% (II), and 80% (III) contour of total dissolved 

solids (TDS) concentration respectively. (1) Transverse dispersivity (αT) and hydraulic 

anisotropy (a) were set to constant values of 1 m and 2.3 respectively; (2) the dashed line 

represents the bottom of the well screen. 
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Figure A-3 Saltwater upconing distribution at steady-state condition with varying 

hydraulic anisotropy (a) by 20% (I), 50% (II), and 80% (III) contour of total dissolved 

solids (TDS) concentration respectively. (1) Longitudinal dispersivity (αL) and transverse 

dispersivity (αT) were set to constant values of 10 m and 1 m respectively; (2) the dashed 

line represents the bottom of the well screen. 
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