Chapter 6

Geometry Reconstruction

In this chapter we present algorithms to create explicit polygona representations of anatomical
structures from label images created with the methods discussed in Section 4 and from the graph
structures as discussed in Section 5.

Polygonal models are an essentia prerequisite for many visualization, analysis, and simulation
techniques. In particular they can be used as input for tetrahedral grid generators which produce
volumetric grids needed for finite element or other numerical methods. Especially the two latter
applications require the polygona models to be of high quality and consistency. |.e. there should
be no gaps, self intersections or wrongly oriented polygons. In the following we will concentrate
on the generation of triangular meshes since they are the most commonly used and easiest to treat
type of polygonal meshes.

6.1 From Labelsto Geometry

The given task isthe generation of a (triangular) surface mesh, of amodel implicitly encoded in a
three dimensional array of scalar values or labels as described in Section 4, called label field. The
model should consist of surfaces separating the regions with different labels.

An suitable algorithm has to take into account three main requirements:

Consistency: The surface should be consistent with the labeling, i.e. no two different labels
should be on the same side of the separating surface. In addition, the surface should be
topologically correct, i.e. it should not contain self intersections or gaps.

Shape: Within the constraints imposed by the |abel s the mesh should have anice shape, e.g. often
smoothnessis required.

Quality: Especidly if the mesh is used for subsequent computations, like numerical simulations,
the triangular mesh should meet quality criteria like good aspect ratio or an even angle
distribution.

Each of these criteria can complicate meeting the others. For instance simple smoothing ap-
proaches to assure nice shapes will violate consistency with the labels.

69

Figure 6.1: Two possible triangulations of a labeling. Although the two surfaces differ less than one voxel
edge length at each point, the naive voxel surface solution on the right is not suitable for most applications.

The task of extracting surface meshes from regularly sampled three dimensional scalar fields has
been addressed by many researchers. One of the main applications have been iso-surface extrac-
tion [78, 91, 88, 96, 106] and related problems, ranging from polygonalization of implicit surfaces
used in modeling and animation [36] to computation of complex meshes like removal envelopes
[110Q].

These methods share the assumption of a binary partitioning of the domain, e.g. into regions with
avalue smaller than agiven threshold and those with alarger value. Thelabel fieldswe are dealing
with, however, typically contain more than two labels so that these methods are not applicable.

The ad-hoc approach to compute a triangulation for each label individually does not produce
satisfying results since it does not generate a consistent triangulation in regions where three or
more different labels are adjoining. However, for pure visualization purposes such meshes can
be sufficient. This may be one of the reasons that this problem has been addressed much less
frequently than the binary case.

A straight forward solution to the problem would be to insert quadrilaterals perpendicular to the
main axes between voxels with different labels (“Lego surface”, compare Figure 6.1). Though this
produces a consistent mesh, this staircase surface is not suited for visualization or analysis (like
area measurement).

Approaches that have been taken for generating surface meshes from non-binary labeled medical
image data often rely on connecting contours in neighboring slices [86]. In such methods ambi-
guities can arise and treating changing topology of the contours is not easy. Again, most of these
methods treat each compartment surface as a separate object.

Bloomenthal and Ferguson [7] describe adifferent method for generating surfaces from non-binary
space partitionings, they refer to as non-manifold surfaces. Their paper mainly addresses modeling
via implicit surfaces and computational solid geometry applications. In contrast to our table-
based approach they propose a continuation method. A cubic cell is propagated across the surface
and decomposed into tetrahedra. For each tetrahedron a plausible triangulation is constructed
algorithmically. Although decomposition into tetrahedra simplifies the polygonalization problem,
it produces an excessive number of triangles, many of them not well-shaped. Thisis also the case
with marching tetrahedra algorithm by Nielson and Franke [97].

For these reasons we have developed a method that avoids these problems and generates well

70

shaped and consistent surface meshes. The surfaces created by our algorithm may contain contours
and points where three or more regionsjoin. More than two triangles are attached to an edge which
is part of such amulti-region contour.

In the following description we will first concentrate on the consistent triangul ation (based on our
method [142]) and then discuss how weights that complement the label information can be taken
into account to generate smooth surfaces. Finally, we will discuss how proper weights can be
generated.

Similar to the iso-surface a gorithms mentioned above our algorithm works on a per-cell basis. A
cell consists of 8 adjacent grid points. In the binary case like in the marching cubes only 28 = 256
possible configurations can occur for one cell (two possible colors for each of its corners), many
of which are topologically equivalent. For the general case with up to eight different colors this
number grows drastically. Therefore, the use of look-up tables is not straight forward and the
manual creation of them not feasible.

Therefore, we will present afully automatic method for creating the triangulation. In addition, we
will show how look-up tables for the most common configurations can be generated automatically
and used to achieve avery good performance.

6.2 Triangulation Algorithm

In the following sections we will outline the ideas of the surface meshing algorithm. We will
first describe how to determine a unique region type for every point in space. Then a method is
presented to compute a consistent approximate triangulation. Finally, we show how the meshing
agorithm can be accelerated via look-up tables and compare the method with standard marching
cubes algorithms.

6.2.1 Space Partitioning

Our goal isto compute non-manifold surfaces which accurately separate regions of different type
in space. For example in amedical application some parts of a volume may be classified as bone,
while others are classified as muscle or fat. We denote the total number of region types by n.

In the following we assume the region types to be defined on a discrete uniform grid. In case of
surface modeling viageneralized implicit surfaces such alabeling can be obtained by evaluating an
analytical expression at each grid node. In medical applications usually a segmentation algorithm
like thresholding or region growing is applied to a stack of tomographic images, e.g. CT or MR
images.

Let usconsider acubic grid cell defined by eight vertices. Inthe general caseit isnot quite obvious
how to subdivide the grid cell into regions of different types, since the type information is located
at the vertices. To congtitute a simple and unique space partitioning strategy we define a set of n
probabilities p; at each vertex. If avertex isassigned to materia k then all p; are set to zero except
pr Whichissetto 1.

71

Figure 6.2: The left image shows the surface in acell before the simplification step. The surfacein the right
image has been simplified by keeping only branching points and points on edges.

The probabilities for al types are interpolated independently within a cell. To classify an inner
point « we simply choose the region of maximal probability, i.e.,

region(x) = {i | p;(x) maximal}, (6.1)

where p; (x) denotes an interpolated probability at «. For the triangulation algorithm described in
the following section we use trilinear interpolation to compute p; (x). Other interpolation methods
can be used as well, but usually they will result in more complex surface topologies.

It should be mentioned that a classification according to maximal probability does not require
p; to be 0 or 1 at the vertices of a cell. However, the case of distinct region labels naturaly
corresponds to such integer vertex probabilities. In addition, integer probabilities make it easy to
distinguish between topologically different configurations. Therefore, cell triangulations can be
stored in look-up tables using a simple indexing scheme. The generation and use of non-integer
probabilities will be discussed in subseguent sections.

6.2.2 Cell Triangulation

Theinterpolation model defines a unique set of separating surfacesinside acell. On these surfaces
the two largest probabilities are equal. Sincetrilinear interpolation is a non-linear transformation
the inner surfaces are not planar. Our goal isto construct atriangular approximation of these non-
planar surface patches. Such a triangulation has to be consistent between adjacent grid cells to
avoid holes in the resulting mesh. It should also preserve the topology inside a cell.

In the case of two different region types 256 configurations are possible which can be divided into
14 different topological classes. For three region types there are 44 additional topological classes,
see Figure 6.4. To be able to handle any case with up to eight different region types we would
like to have amethod which is capable of generating the triangulation for any given configuration
automatically. Such a method can be obtained by a straight-forward subdivision approach.

Subdivision. To obtain a representation of the inner structure of a grid cell we start by sub-
dividing the cell into a number of smaller sub-cells. For each sub-cell the probabilities p; at a

72

branching point -

boundary curve ------

Figure 6.3: Parts of three different patches delimited by boundary curves (dark lines). At a branching point
multiple boundary curvesjoin.

representative point « are interpolated. We evaluate the probabilities not at the centers of a sub-
cell, but at slightly translated |ocations as depicted in the following diagram:

o — o —0o—o

[] [[®

[] L] [®
@ L

Points are distributed equi-distantly. Notice, that they are located on the cell’s faces for sub-cells
at the boundaries. This way we can guarantee consistency between adjacent grid cells.

The sub-cells are classified according to Equation (6.1). Whenever two adjacent sub-cells are
of a different class their common face is added to an intermediate triangulation. An example
of a resulting sub-cell triangulation is shown in Figure 6.2. It turns out that in case of integer
vertex probabilities 63 sub-cells are sufficient to give a topologically correct representation of the
implicitly defined separating surfaces.

From the high resolution sub-cell triangulation we compute the final cell triangulation using a
mesh simplification step.

Finding Patches. Simplification of the sub-cell triangulation first requires analysis of the sur-
facetopology. All connected triangles separating the same vertex classes are grouped into patches.
Then the boundary curves surrounding each patch are extracted. For each vertex of the triangul a-
tion the number of boundary curves it belongs to is determined. For inner points of a patch this
number is zero. Vertices which belong to more than two boundary curves will be referred to as
branching points. The notion of surface patches, boundary curves, and branching pointsisillus-
trated in Figure 6.3.

Simplifying Boundary Curves. The key observation for the following simplification step is
that only few vertices of the current triangulation are of rea importance. Among these vertices
are the branching points because they reflect the inner topology. Also vertices lying on the cell’s
edges are important, since these are referenced by multiple cells. All other points will merely
introduce complexity on sub-cell level, which is not necessary to create a topologically correct
triangulation. Therefore, one can thin out the boundary curves by keeping important points only.
After this procedure the boundary curve of a patch often consists of just three or four vertices.
However, there are also patches with five or more vertices.

73

Re-tiling Patches. After simplifying the boundary curves the patches are re-tiled with triangles
again. If apatch is planar this can be done in a straight-forward way, for example using an anchor
point strategy.

More attention has to be paid in cases where non-planar patches occur. Then the simplification
of the bounding curve in conjunction with an unfavorable triangulation can lead to patches which
penetrate each other. We avoided all penetration problems by inserting an additional center ver-
tex into patches with 5 or more boundary points and choosing a fan-type triangulation scheme.
However, in many casesit is also possible to find a suitable triangulation without introducing an
additional vertex.

6.2.3 Look-Up Tables

Subdividing grid cells, computing an intermediate sub-cell triangulation, and simplifying the re-
sulting surfaces is a relatively time-consuming procedure and is definitely not suited to handle
ten-thousands of grid cells occuring in common data sets. Fortunately the overall algorithm can
be accelerated very much by making use of look-up tables. In contrast to standard marching cubes
algorithmsin our case not only points on edges have to be created, but also inner points and points
on faces. The look-up table has to contain the point types in addition to the triangle information
for each cell configuration.

Asalready mentioned in the case of two vertex classes only 256 different configurations are possi-
ble. For three vertex types this number increases to 6561 (3%), although there are only 58 different
topological situations (including the 14 standard cases). These 58 configurations are shown in
Figure 6.4.

74

Figure 6.4: The image shows the look-up table for up to three different vertex classes. The first two rows
contain the cases with only two classes. For some cases the triangulation is different from the original
marching cubes [78].

75

If the full triangulation for al 6561 configurations is tabulated, about 70000 triangles have to be
stored. The exact number depends on how many inner points are inserted during the patch re-
tiling step. For every triangle three one-byte point indices have to be stored. For every vertex
an additional byte is necessary to encode the point type (e.g. vertex, face vertex, or inner vertex).
Consequently, the table can easily be kept smaller than 1 MB. Whilethisis still ahandable size for
alook-up table, afull table getsfar too largein case of four vertex classes or more. For four classes
65536 (4%) configurations are possible, but only 124 of them are topologically distinct (including
the 58 cases from Figure 6.4). There are two ways out of this dilemma. The first way is to store
only the topological different cases for the ‘more than 3' configurations and to perform a mapping
to a base configuration before the table look-up. Then the vertices read from the table have to be
rotated and mirrored accordingly. Of course this method could aso be applied to the 3-type case.
However, here the use of afull tableisfeasible and easier to implement.

The second alternative to handle configurations involving four and more vertex classes arises from
the observation that in most applications these cases are very rare. This makes it feasible to com-
pute the triangulations for these cases on-the-fly using the comparatively expensive subdivision
technique described above.

6.24 Comparison to Marching Cubes

Our method resembles the standard marching cubes algorithm [78] and its variations in respect
of the cell-by-cell traversal and the use of look-up tables to create triangular surface patches.
However, there are also some important differences.

First of all, checkerboard cases are handled differently than in most isosurface algorithms. Such
cases occur if adjacent vertices on a face are of different type, while the vertices located at op-
posite corners have the same type. In this case the original marching cubes algorithm chooses a
triangul ation which does not preserve the symmetry of the configuration index. Special care hasto
be taken to ensure consistency between neighboring cells. Otherwise the resulting surface would
exhibit holes [89, 77, 96, 106]. The classification model described in Section 6.2.1 avoids such
problems, prescribing a symmetric triangulation, i.e., a triangulation which has a branching point
at the center of aface. Such cell triangulations are depicted in Figure 6.4. The approach avoids
any ambiguities at the expense of an increased topological complexity of the resulting surface.

Another difference to the original marching cubes algorithm is that we have integer probabilities
at the vertices instead of fractional values. As a consequence, points on edges are always located
at the edge midpoint. In case of abinary vertex classification a similar approach is known as dis-
cretized marching cubes [88]. In contrast to the general case e.g. bisection has the effect that only
alimited set of triangle orientations occur. This makes it possible to combine multiple triangles
with equal orientation. Triangle decimation was the reason why the discretized marching cubes
algorithm has been developed. A similar decimation strategy may be applied to our resultsaswell.

6.2.5 Reaults

We have developed an algorithm for generating consistent surface meshes from non-binary space
partitionings, like an anatomical labeling of atomographic data set. Figure 6.5 shows a surface

76

Figure 6.5: The left image shows a surface from a segmentation of kidney and liver. The darker patch
represent the common interface between both organs. In the right image the vertices have been adjusted
according to sub-voxel weights, yielding much smoother surfaces.

generated using our agorithm applied to a segmentation of kidney and liver. Note how topological
information is revealed correctly by the algorithm.

The surface looks relatively un-smooth. Much smoother surfaces can be generated if additional
sub-voxel weights are used to shift the vertices correctly. Thiswill be described in the next section.
Vertex shifting has been used in the right image in Figure 6.5.

6.3 Computing Weights

Surface smoothness is a very important criterion for a good surface extraction algorithm. For
display, the variation of the surface normal is often much more prominent than the actual position
of the surface.

As an example compare an iso-surface obtained with marching cubes from a smoothed micro-
scopic recording and the corresponding staircase (“Lego”) like surface abtained by drawing the
voxel faces, in Figure 6.1. Although the two surfaces geometrically differ lessthan one voxel edge
length (e.g. measured with the Hausdorff distance), the normal directions differ significantly re-
sulting in acompletely different visual appearance. Smoothness can also have a significant impact
to quantitative investigations like surface area computation.

When surfaces are extracted from image data using conventional iso-surface extraction, the re-
sulting surface often has satisfying smoothness properties. This mainly is attributed to the limited
resolution of the image acquisition devices and the related partial volume effect which resultsin a
smoothing of the recorded image. If the recorded image is understood as the sampling of a contin-
uous band-limited function, then the original function can be fully reconstructed from the samples.
Instead of the (tri-)linear interpolation used by the marching cubes algorithm a convolution with
sinc function has to obtain interpolated values (compare [81, 102]). Thisway obviously the exact
iso-surface of the continuous function could be reconstructed.

The situation is different if the input for surface mesh generation is a binary or, as in our case
multi-valued labeling of the volume. Such labels could be the result of automatic segmentation

7

algorithms which do not operate with sub-voxel accuracy or they can be the result of amanual per-
voxel labeling operation. In this case the sub-voxel positioning of the extracted surface meshes
cannot be derived from the label data alone. Additional criteria have to be introduced to choose
from all surface meshes that consistently separate regions with different labels the one most suit-
able for the application.

A common approach is to work on a smoothed version of the data (e.g. [130]). A smooth surface
can be generated by smoothing the binary labels {0, 1}, e.g. by convolution with a Gaussian filter,
to obtain non-integer labels and extracting the 0.5-isosurface. Note that potentially voxels with
original label 0 can be assigned a value greater 0.5 and vice versa, thus resulting in a change
of the original labeling. For a non-binary classification, the situation is a little more difficult.
Although the labelsfor different material/tissue types are typically represented asinteger numbers,
calculating with them like with numbersiswrong. As an example consider alabel field containing
(among others) the regions muscle (represented by the number 1), liver (represented by 2) and
kidney, (3). In this case a smoothing of a boundary region muscle-kidney (1-3) could result in
voxels being assigned 2 (liver) which is obviously senseless. One correct approach is to smooth
each region individually using a {0, 1}-classification and properly combine the results.

Smoothing can also be applied after the extraction of the surface mesh, see e.g. [132, 124, 58] and
the references therein.

All such smoothing methods have a significant drawback. They act as a spatia |ow-pass filter;
small features in the label filter can get lost. More generally: The algorithm potentially modifies
the label information of a voxel in away that is not intuitively anticipated by the user. For many
applications that involve manual segmentation and especially for medical applications this is not
accepted. Additionally loosing consistency between the label information and the inside-outside
relationship from the surface mesh can lead to problems with subsequent algorithms.

A different approach is being proposed by Gibson [39, 38] and further developed by Whitaker
[137]. Both will be discussed in the next section.

6.3.1 Minimal Surfaces

Gibson [39] usesfrom all possible surface meshesthe one with minimal surface area. She achieves
this with a deformable surface approach called constraint surface nets. Starting from an initial
(consistent) surface mesh, the mesh is shrunk iteratively while the labeling acts as a constraint to
this regularization process.

Whitaker [137] follows the idea of using the minimal surface area as a regularization but develops
amethod that does not need an explicit surface representation for the smoothing step but instead
uses a volume-based approach derived from Level Set theory [113]. We will briefly review his
findings.

Level set methods represent surfaces not explicitly but describe them as iso-surfaces (level sets)
of avolumetric scalar valued function ¢ : 3 — R. Surface deformation may be performed by
solving a partial differential equation (PDE) on a discrete sampling of ¢. We call ¢ an embedding
of the surface.

For the problem of extracting a surface from alabeling, we have to find a discrete sampling of a ¢
that is compatible with the labeling.

78

Let Bi, j, k) be abinary labeling defined on the discrete domain D (athree dimensional uniform
grid). For convenience of notation of the following let B be —1 for voxels inside the object and
+1 for non-object voxels. An embedding ¢ is compatible with the labeling if it has the same sign
as B at the grid points D:

&(Zi) B(Tijr) 20 \/Zijn €D (6.2)

It is obvious that the zero level set of ¢ would then separate inside and outside voxels from each
other, or at most pass through a voxel if ¢(z; ;) = 0.

From all possible functions ¢ a specific one is to be chosen. In [137] minimal surface area is
suggested as criterion often leading to smooth surfaces. The combined area of al level sets of a
function ¢ is equal to integral of the level set density, which is given by the gradient magnitude
of ¢. From this equation and the constraints (6.2) properties of solution of the minimization
problem can be derived which lead to a gradient descent scheme to iteratively determine ¢ from
asuitable initial guess (i.e. B) (see[137] and the references therein for details). Let é?]k be the
discretization of ¢ in the n-th step of theiteration. Then the next step can be computed as:

P _{ r:'] ?ﬁjffﬁt Jikog)) Biik:—ll ©3
where
(0073002 + (007507 ol
(Bt)% + (0:075002) By + (007 + (0,05002) 2200
0o —2(0y ¢z]k6 ¢?;k5wy¢ et 0z ¢uk5 ¢Uk5m¢”k+5 ¢uk5 ¢uk yz¢z]k)
hak (0z ¢”k) +(y¢”k) +(Z¢z]k)

(6.4)
The 02 o Oxa ;s Oy P 1, denote approximated first and second order partial derivatives of
@™ which can be computed using centralized differences.

The equations (6.3) and (6.4) define an iteration scheme for finding a suitable embedding ¢ for
the wanted surfaced. The scheme can easily be implemented and converges fairly rapidly. In
[137] 20 iterations are reported to produce a sufficiently accurate solution. Note that it is sufficient
to compute gi)”k in a narrow band in the vicinity of the zero set (see [1, 113]), so that the total
computational costs are moderate.

Using this method we have created the surface mesh in Figure 6.6 from a binarized image of a
microscopic recording. Comparing it to a marching cubes surface of the binary image we see a
significant improvement. However, there are some parts where it seems that a better surface could
be found which still is consistent with the label information. The minimal surface spans tightly
over the constraints thereby devel oping sharp edges and corner.

Another shortcoming of the method is the behavior in regions of thickness one. If instead of
setting the valuesto 0 asmall positive or negative number +¢ isused for pixelsinitially positive or
negative, than no features can disappear. However, structures with a thickness of only one voxel
will shrink to (almost) zero. Whitaker has pointed out himself, that the criterion of minimal surface

79

Figure 6.6: The left image shows a surface reconstruction from a binarized image of the optic |obe data set
without additional weights or smoothing constraints. Note that only 12 different surface normal directions
occur. The right image shows how the minimal surface area approach improves the quality of the resulting
surface. However, significant staircase artifacts still remain, like in the upper |eft part of the data set.

area does not necessarily correspond to maximal surface smoothness and is probably not the best
criterion that could be found. Though [137] is not the final answer to the smoothing problem it
givesriseto interesting ideas that will be discussed in the next section.

6.3.2 Constrained Smoothing

In the above discretized iteration rule, we see that in each step (not surprisingly) the value at each
voxel is replaced by a combination of the voxels from its 26-neighborhood. The constraints are
incorporated by the min and max functions in Equation (6.3) which reset the fiuk to the valid
interval (R or ™) after each step if necessary. An analogous scheme of assuring the constraints
can of course be used as well in other iteration schemes or filter passes, like smoothing with
Gaussian filter kernels, leading to a procedure we call constrained smoothing.

Inits simplest version the method reads:

v | max((G o B)(%;;k),0) Bjjr=1
%M—{mw@om@m@m Biji= -1 (6.5)

Go isasmoothing operator, typically a convolution with a Gaussian filter kernel, which is applied

to the binary image B.
712
L 5 (6.6)
(2mo)2

In a practical implementation the convolution with G is approximated by a finite discrete filter
kernel g; ;1. We have used a5x5x5 kernel.

G(@) =

2 2 2

(GoB)(@igh)~ Y, > Y. GijkB@irania;kia;) (6.7)

Aj=—2Aj=—2 Ap=—2

80

Figure 6.7: Comparison of the minimal surface approach (left) with the surface obtained by constrained
smoothing (right). While both images are still fully consistent with the labeling information, the surface in
the right image is significantly smoother and exhibits much less aliasing effects.

Appropriate boundary treatment has to be assured.

The minimal surface constraint that lead to Equation (6.3) is complete in the sense that no ad-
ditional parameters are needed. For a Gaussian filter kernel a filter width has to be specified.
However, for the minimal surface method the properties and appearance of the resulting surface
highly depend on the resolution of theinput field, i.e. the “resolution of the constraints’. Similarly
we have coupled the filter parameters to the voxel-size. If the linear voxel sizeis v in one dimen-
sion (the smallest in case of non-isotropic voxels) we have chosen o = 2v for al examples shown
in thiswork.

We have applied this new method to the same data set as shown before. As can be seen in 6.7
the results are convincing. However, there is still room for improvement. In particular we have
observed and addressed two issues:

1. Ascanbeseenintheexamplein Figure6.7 there are anumber of little“scars’ and “pimples’
on the surface, which subjectively may seam to be alittle too prominent. Most of them stem
from one or two voxel sized features, that might be considered noise.

2. Structures of one voxel thickness will shrink to (almost) zero thickness, just enough to still
contain the voxel center, and thus effectively disappear, compare Figure 6.8. Thisis not a
theoretical problem: Especially in medical images with anisotropic voxels, some features
can often be recognized and labeled in asingle dlice only leading to one voxel thick struc-
tures. Another example are the dendritic structures of neuronal cells.

Both methods, the minimal surface as well as the constrained smoothing behave similar with
respect to these issues.

81

Figure 6.8: Theimages show the bones extracted from aclinical CT recording of a human’storso including
two ribs. The large dice distance istypical for such recordings. While the two ribs are still well connected
in the “binary” surface (Ieft), they partly shrink to zero thickness after smoothing. The problem is similar
for minimal surface (second) and constraint smoothing (third). Due to identification and special treatment
of thin structures in the right image the ribs are nicely preserved.

6.3.3 Surface Noise

Figure 6.9 shows acloseup of aone-pixel feature configuration and atwo dimensional sketch of the
situation. We see that the tip of thelittle pyramid cannot be moved further down without violating
the labeling constraints. Thisistypically one of the voxelsthat hasto be forced to maintainitssign
during the iteration. On the other hand the influence of the single elevated pixel is not sufficient
to let the vertices on the surrounding edges deviate significantly from their undisturbed position in
themiddle. Noticethat it clearly depends on the application if thisbehavior isdesired or not. If the
godl is a particularly smooth surface, it is probably not. We therefore propose away to eliminate
most of these effects:

From the above observationsit follows that voxels which potentially cause thistype of artifactsare
those voxels for which the value had to be set to zero in the iteration. In the following discussion
we will consider an initially negative (inside) voxel #' in a neighborhood of positive (outside)
voxels, such that the convolution at this point is significantly positive.

B(z;) = —1 (GoB)(@ijk) >0

A typical valueis (G o B)(z; ;) = 0.2. Itisintuitively understandable that forcing the value
of such avoxel to 0 leads to visual unsteadiness. Since the value of the voxel z; ;;, must remain
negative according to the labeling, the only way to produce a smoother surface at thislocation isto
decrease the values of the neighboring voxels. This can be achieved by setting the initial value at

O O O @) O @)

[L [L L L L
Figure 6.9: A one-pixel-feature on the 3D surface and two dimensional sketch of the situation. The top of

the pyramid cannot move further towards the base surface without violating the constraints imposed by the
labeling.

82

Figure 6.10: Single (few)-voxel features on the surface can disturb smooth appearance (see magnification
in left image). If thisisundesired an additional smoothness model turns the little spikesinto larger but less
obtrusive swellings (right).

z; ;1 before the convolution not to —1 but to add an additional (negative) offset value o; ; 1., thus
increasing its negative impact (not pejorative here) on its neighborhood.

Let V be the set of such “noise” voxels. We consider a voxel to bein NV if it was forced to 0 by
the min/max function and if there are only few other such voxelsin its vicinity. Asacriterion for
few we have used: less than 6 in the 125 neighborhood.

To completely avoid the unsteadiness at these points due to reseting to 0, the offset oz, ; , hasto
be large (small) enough that the convolved value at z; ; ;. becomes zero.

We do not want to add an offset to voxelsnot in N. We demand:

o@ijn) =0 \/Zijp g N (6.8)
(Go(B+0)(Tijr) =0 \/Ziju€N (6.9)
& (Goo)(Tijr)=—GoB \/ZijueN (6.10)

The right hand side of Equation (6.10) has been computed in the first step. (G o 0)((Z; %) iS
according to Equation (6.7) alinear combination of the 125-neighbors of (z; ; 1), most of which
are zero however. The coefficients are defined by g; ; 1. In effect we have to solve alinear system
with |card(V) variables (card(N) denotes the number of elementsin). In usua data sets of
resolution 5123 this number has typically been less than 5000, often less than 1000. According to
our definition of a“noisy” voxel, every voxel in N has at most 5 neighborsin NV, thus every row
of the matrix defining the linear equation system has at most five entries. Due to the symmetry
of g; ;1 the linear equation system is symmetric. Such a sparse symmetric linear equation system
can be solved most efficiently with an iteration method, like e.g. the conjugate gradient method.

In practice many voxelsin NV do not have neighbors at all. Thus the offset for these voxels can be
computed directly by dividing the right hand side of Equation (6.10) by go,0,0.

83

O O O ©) @) ©)

+1 _r+1 +1 .95 :.9 .95
q—1 Qr1 q—1 <?95 %.9 <?95

Figure 6.11: The Figure shows the a thin object (black object voxel) and the corresponding initialization
of the distance function. The intersection points on the connecting edges at the zero-crossing of the linear
interpolation. After the convolution (right) the middie pixel has to be artificially set back to zero (to avoid
positive values for object voxels). The neighboring background voxels are only little affected. Theresulting
contour shrinks to the voxel center.

Typical values for the offset arein the order of —15.

The complete algorithm with noise correction is then:

1. Initialize B; ; . from the labeling.

2. Computer; i, = (G o B)(Z; ;) and mark voxelswherer; ; . B; ;< 0 as potential noise.
3. ldentify noise voxelsand collectin N.

4. Solve linear equation system (G 0 0)(Z; j k) = —Tijk Zijr €N

5. Replace B, ; 1, with B, j 1 + 0; jx and compute ¢; ; according to Equation (6.5).

6. Extract zero-set from ¢.

Results are shown in Figure 6.10. The little spikes amost completely disappear, resulting in a
significantly increased overall smoothness.

6.3.4 Thin Structures

The shrinking of thin structures can be understood from the sketch in Figure 6.11. As pointed out
above this behavior is often undesired. In order to improve this, first such thin structures have to
be identified.

In order to identify thin parts of the object amorphological opening operator (an erosion followed
by a dilatation) can be used, see e.g. the text book [120] for an overview. Voxels that are part of
the original image but are removed by the operator are considered to be part of thin structures.
A standard erosion operator based e.g. on a 18— or 26— neighborhood would not only remove
structures of thickness 1 but also those which are two voxels thick. Thus too many voxels would
be classified thin.

Therefore, we propose to work on the dual grid as follows: Construct abinary image B+ with data
values not defined at the voxel centers but on the voxel corners (if the voxels were little boxes). A
voxel in B+ isset if at |east one one of the adjacent voxelsin B is set. Then the opening procedure
is applied. When converting the image back to the original grid a voxel is set only if al its eight

84

Figure 6.12: The figure depicts the algorithm for identification of thin voxels. From Ieft to right the images
depict (i) the binary input image, (ii) converted image to dual grid, (iii) result of 26(8)-neighbor-erosion
on the dual grid, (iv) result of dilatation, and (v) object voxels which are still present after converting back
(black) and those classified as thin (gray).

adjacent dual grid voxels are set. The full procedure is depicted (in two dimensions) in Figure
6.12. We have used morphological operators based on the 26-neighborhood.

Using this agorithm we are able to identify voxels at which the object is only one voxel thick.
To avoid complete shrinking at these points (cf. 6.11) additional constraints are imposed. Namely
instead of restricting the values for B to ®~ we choose a smaller maximum value, i.e. B can be
fixed to —1 at such voxels.

6.3.5 Results

We have proposed a method to compute sub-voxel positionsfor the vertices of apolygonal surface
extracted from alabeling. The approach does not violate the constraints imposed by thelabeling in
the sense that the centers of two voxels labeled differently will always be separated by a surface.
The method is fast and easy to implement and the results are very well suited for anatomical
objects. Results have been shown above and more results will be given throughout the remainder
of thiswork.

6.4 From Graphsto Geometry

6.4.1 Introduction

The graph-representations that we have extracted from the neuronal cells or from vascular net-
works can be visualized directly (Section 3) and statistical analysis methods typically even require
such arepresentation. Therefore, the need of converting these graphs into surface meshes is less
urgent than in case of the label fields. Nevertheless, especially for high-end visualization, illus-
tration purposes, and maximal compatibility for exchange of modelsit is desirable to be able to
generate polygonal surface descriptions of these structures as well.

The given models consist of a set of points (nodes) which are connected by line segments. We
assume a thickness information (diameter) to be defined at the nodes. The number of edges inci-
dent to one particular node can be one (end point), two (inner point of a branch), or greater than

85

two (branching point). We assume the diameter to vary linearly along ond edge. Asaspecialty in
the data sets studied in the course of this work, some of the models contain varicosities (“blebs’).
Although their biological function is not yet fully understood there are evidences that they have an
important functional meaning and are therefore important to be visualized. The varicosities can
geometrically be modeled by spheres. In order to obtain avisually smooth joining of the cylinders,
additional spheres are placed at the nodes. In terms of computational solid geometry (CSG) our
model can thus be described as the union of a set of spheres and conical frustrums (cylinders with
varying radius).

There are two fundamentally different approaches to converting an analytical CSG representation
of a model into a polygona boundary representation: Direct or constructive algorithms explic-
itly triangulate parts of the primitive boundaries that form the model and try to stitch the patches
together where primitives touch. The second class of algorithms use implicit surfaces. They com-
pute an intermediate scalar field F : 3 — R, typicaly defined on uniform grid, such that the
wanted surface isan iso-surface of F'. A typica examplefor F isthe signed distance field that en-
codes for each point in space the distance to the nearest surface point. For points inside the object
the negative distance is used. Obviously, the iso-surface with iso-value zero will approximate the
searched boundary of the CSG model. See e.g. [13, 33, 59] and the references therein.

For our problem we have chosen the second class of algorithms for two reasons. Compared to
the constructive approach consistency problems due to limited arithmetic accuracy can be avoided
more easily and the method allows easier extension to other primitives.

Although the iso-surface of the exact distance function is the exact object boundary, in most prac-
tical implementations there are two sources of approximation errors. The distance function is
only approximated by a (tri-)linear interpolation of its uniform distributed samples. Second the
iso-surface of this function is only approximated by a mesh of limited resolution. Both problems
have bee addressed in a number of ways. In [33] and adaptive method is proposed that samples
the distance function at a higher resolution where it cannot be accurately represented by linear
interpolation of the coarse grid. In [114] an adaptive resulting mesh resolution is achieved by
starting at a fine resolution and adaptively merging neighboring cellsif a certain error criterion is
not exceeded. In [59] additional points are added to the original marching cubes triangulation in
cells where needed according to a feature detection heuristic. Additionally a tri-variate distance
function is used to more accurately describe the shape of the objects.

Similar to the basicideasin [33] and [59] we have devel oped an octree based method to efficiently
triangul ate the neuron-cell models at high resolution, taken into account the sparse nature of the
models.

6.4.2 Algorithm
Our algorithm starts by building an octree data structure:

1. Compute the bounding box of the data set and initialize the octree data structure.

2. Insert the primitivesinto the octree. Thereby aprimitiveisinserted into all octree nodes that
it intersects. A node is subdivided if it contains at |east one primitive until amaximal depth
isreached.

86

X+

Figure 6.13: lllustration of the geometry extraction procedure for a sphere and a cylinder. Each of the three
non-empty octree nodes is subdivided by a grid g; ;.. For each inner grid point (filled) the six directed
distance values to the next primitive boundary are computed. The component wise maximum over all
primitives is taken. E.g. for the gray-filled point, the ™ distance will be taken from the sphere, while the
y~ isthat of the cylinder.

Note that each non-empty leaf node of the octree is on the same, maximal depth. In the next step
atriangulation is computed for each non-empty leaf node.

In each non-empty leaf node of the octree we generate a uniform spaced grid g; ; .. For each point
9i,j, We compute the inside/outside flag by testing it against each primitive in that octree node
(cf. 6.13).

Obviously, the boundary surface to be extracted will pass between two neighboring grid points
if they have different inside/outside flags. In order to compute the location of the intersection on
the edge we do not want to rely on the zero-crossing of a linearly interpolated distance function.
Instead, we compute for each inner grid point which is adjacent to an outer point, the six directed
distance values for each of the six major axis directions z*, y*, and z*, similar to the trivariate
distance function in [59]. The directed distance for a point 7 in direction d encodes distance
between p and the nearest intersection of the directed ray (p, J) This six-dimensional distance
vector is computed against each primitive and the component-wise maximum is taken. Thisis
illustrated in Figure 6.13. The maximal distance directly determinesthe position of theintersection
on the edge.

At this stage for each cell (g; ;k, gi+1,j+1,k+1) Of the fine grid the inside/outside configuration of
the eight cornersis known as well as the exact location of possible edge intersections. Therefore,
asimple table based method like the marching cubes can be used to triangulate the cells.

The result of the agorithm applied to a simple test data set is shown in 6.14.

6.4.3 Algorithmic Detailsand Implementation

As mentioned above the algorithm is flexibly extendible to other geometric primitives. For each
primitive only three functions have to be implemented:

1. Point inside primitive test.

87

Figure 6.14: The figure shows the method for a (coarse) artificial test data set. Left: Graph structure along
with the thickness information visualized by spheres. Right: Generated surface.

2. Primitive/box intersection test.

3. Computation of the six directed distance values for an inner point p.

Instead of an exact implementation of the box intersection test efficiency may be increased by
using asimplified version that can generate false-positive answers, as long as no real intersection
iS over-seen.

The relevant formulae for a sphere with center ¢ and radius » can be derived using Pythagoras
theorem:

7€ sphere(€,r) < |p—a* <r?

disty+(p) = F(pz —ca) T y/12 = (py —¢y)? — (P2 — ¢2)?
dist,=(P) = =£(py—cy) £ V12— (ps — c2)? — (p: — c2)?
dist+(p) = £(pz—c2) £ \/1? = (px —c2)? — (py — ¢y)?

For the conical case the expressions get a little more lengthy. Let a cone frustrum be defined by
the centers ¢; and ¢; of thetwo circles and their radii 1 and r5.

With the following definitions:

azf??*?"j H:|C_é—0_i e
|c3 — ci

Ql
Il

|3 — éi
we get
(P—ac)-a< H

p € frustrum(ci, s, ri,r2) & 0<
A \/\ﬁ—c_i|2—((ﬁ—c_i)-d')2 <ap—d)-d+nr

88

In order to compute the directed distances we introduce some further definitions:

v o= (py—ciy)ay + (pz—c12)a: n= (a2 + 1)a§ -1
p = azamv + aria, + vay
diy = —pE\fp?— (020 + 20m0 + 72— (py — 1) — (p — c12)? +0?)
H— _
P .
Pr — Clax Pr —Clax

Then the directed distance values at point p’ can be computed as

dist,+ (ﬁ) = min{di|di > P — Cl,x} - (pm - Cl,x)

dist,—(P) = (P — c1,2) — maz{d;|d; < py — c1 4}
The values for dist,+ (p) and dist ,+ (p) can be derived analogously. Expressions for other primi-
tive shapes could easily be derived.

6.4.4 Resaults

The described method efficiently generates consistent surfaces from analytical geometrical de-
scriptions of neuronal trees. An example is shown in Figure 8.6, in Section 8. Details on the
model are given in the figure caption.

As opposed to a surface composed of independent meshes for each primitive, our surfaces are
one-layered, consistent and closed. Therefore, they can be used for high-quality shading (includ-
ing transparent rendering), analysis like volume or surface rendering and could even be used for
tetrahedral grid generation if desired.

Due to the fine details combined with a large overall extend of the objects, the surface meshes
contain a large number of triangles. Therefore, they are especialy useful for still images, while
for interactive display aline-based rendering method will in most cases be preferable. Especially
in the still images though the surface shading helps to understand shape and depth, which in an
interactive setting can be retrieved by rotating the object. For arealistic appearance a good radius
estimation is important, which can be a problem in very noisy images.

An interesting option would be to combine the high-quality surface rendering with a line-based
rendering adaptively, based on aview dependent criterion.

The shapes that are relevant for this work are relatively smooth. If the method is used for models
with sharp edges or corners, artifacts can appear at these features. Such problems can efficiently
be reduced by inserting additional pointsin cells containing such features in the triangulation step
as proposed by [59]. In a post-processing step edge-flips can be performed to connect points on
edge features. A feature detector can be based on the surface normal at the intersection points of
the surface with the grid g; ; .. Note that the surface normal at these points can easily be computed
analytically.

Instead of refining the leaf nodes we could have chosen alarger maximal depth valuefor the octree.
However, we have found that this generates an unnecessary overhead due to the large number of
octree nodes which is not compensated by the slightly larger amount of empty volume that can be
skipped.

89

