
Chapter 4

Image Segmentation

4.1 Introduction

Many questions a scientist, engineer, or medical doctor may ask concerning a specific data set
can be answered by applying appropriate visualization techniques and looking at the resulting
images. This is true for both, qualitative as well as quantitative questions. In cases, however, where
a computer aided measurement is needed, like the accurate computation of an organ’s volume,
an explicit representation of that organ is needed. The same is true if a numerical simulation
based on the image data is to be performed which incorporates parameters that cannot be derived
directly from the image intensity. Examples are bioelectrical fields relevant in EEG and ECG
[49], mechanical properties in tissue deformation simulations for computer aided surgery [141],
or electric properties for microwave hyperthermia treatment planning [140]. In all these cases
an assignment of each voxel to classes of a suitable set of structures, like anatomic organs is
needed. Beside the abovementioned application areas we will see how this can also be used for
the generation of polygonal models, which are suited for fast display and data transmission.

In computer vision literature the process of computing such a classification is often divided into
two steps: A segmentation which decomposes the image domain into subsets and a labeling that
assigns structure names to these regions. This split-up, however, is only suitable for a certain set
of methods. In this section we will discuss both aspects, since they are closely linked and not even
separable sometimes.

During the last three decades hundreds of algorithms for different aspects of feature detection
and image segmentation have been developed. A comprehensive review of segmentation methods
is given in [92]. The authors show that the vast majority of the different algorithms that they
discuss can be derived as special cases of a very general continuous optimization problem, the
Mumford-Shah segmentation model [95, 18]. Let us consider one slice of a computer tomography
shown in Figure 4.1. Even without anatomical knowledge the observer can identify four major
region types which appear in different shades of gray, if a suitable mapping of the Hounsfield
units to gray values is applied: Air (black), muscle tissue (dark gray), fat tissue (light gray), bone
(white). According to a definition given in [92] a segmentation is a piecewise “smoothed” or
piecewise constant image, as also shown in 4.1. This definition is driven by the idea that images
that are to be segmented typically have smooth intensity variations within the objects which are

37

Figure 4.1: The left image shows a CT slice of an abdomen. The different image intensity values (gray lev-
els) correspond to different tissue types. In the middle image the intensity value has been replaced with the
average intensity for the tissue the voxel belongs to according to some given segmentation (not a threshold
segmentation). In general, however, it is important to understand that two different regions in the segmen-
tation do not necessarily correspond to image regions with different gray values. Also pixels belonging to
the same region do not necessarily have similar gray values. In general the labels are unrelated to image
intensities and depicting labels with colors as in the right image can help to avoid misunderstandings.

to be extracted and abrupt intensity changes at their borders. A large class of automatic and semi-
automatic segmentation methods fall into the class of or can be interpreted as variational methods,
also referred to as active contour models. One of the most prominent representants of this class are
the Snakes type methods proposed by [53]. Variational segmentation methods employ a functional
which measures the quality of a segmentation and try to optimize this value by finding a local or a
global optimum. As an example consider the simplest form of the piecewise constant Mumford-
Shah model. Let Ω be the domain of an image and g : Ω → � be an image. Let u : Ω → � be
a regularized piecewise constant function (the segmentation) with a set of discontinuities K ⊂ Ω
(the contours). Then the ideal segmentation according to this simple model would minimize the
L2-functional

E(u, K) =
∫

Ω\K
(u − g)2dx + λl(K). (4.1)

l(K) denotes the combined length of the contours K. The first term in the integral controls
the similarity of the segmentation with the image and the second term enforces parsimony of
boundaries. The parameter λ controls the total length of the contours, i.e. the degree of detail that
should be represented in the segmentation. This is often referred to as scale, which is a parameter
in many computer vision algorithms. We will discuss details of multi-scale image analysis in
Section 5.2.1.

It is not surprising that a functional like Equation (4.1) is too simple to accurately detect the
globally best segmentation of a complex image. Though already for this simple model it is difficult
to find this global optimum. Therefore, various modifications have been used which take into
account smoothness of the contours, coincidence of the set K with edges in the image as indicated
e.g. by the intensity gradient magnitude.

There are many computer vision tasks, where specialized computer vision methods are success-
fully used for automatic segmentation. A general solution for the segmentation of medical or
biological images, however, has not been found yet. And using an approach which is purely based
on the image data itself it probably will not. The reason for this is that the best segmentation
depends to a high degree on external expert knowledge and on the intended use of the segmenta-
tion. This influences for example the degree of detail that is considered optimal - often in a sense,

38

however, that is more sophisticated than could be modeled with a single global scale parameter.
Consider as an example a segmentation used for cancer treatment planning, where a slight shadow
in an organ that is diagnosed as a tumor by a medical doctor would have to be considered a sep-
arate region, while the same amount of intensity variation in different parts of the body can be
non-significant. Also general knowledge about the shape of a specific object can lead to different
interpretations of which regions of similar gray value are to be segmented as one region.

Although significant effort has been made in recent years to build a sound mathematical funda-
ment for various image segmentation algorithms (see e.g. [80]), the general problem of finding
functionals that distinguish a correct from and inaccurate segmentation has not been solved in
general.

These observations have lead to the development of model based or atlas based segmentation ap-
proaches, which is a very active field of research currently [21, 125, 131, 30, 54, 66]. These
methods try to incorporate additional knowledge about the objects to be extracted, which is not
present in the original image data into a segmentation algorithm. Often by imposing additional
constraints on the set of possible segmentations (u, k), by providing initial values for local ex-
tremum searches, or by defining additional ene.g. terms in the segmentation functionals which are
based on the similarity with an anatomical atlas. The model can be encoded into the algorithm
explicitly, or it can be acquired by training the method with a set of segmentations that are known
to be correct. It can be expected that model based segmentation will in the future provide solutions
for many routine tasks which require a lot of human interaction today. The drawback, however, is
that for every new task a new model has to be generated.

Today in practice the majority of image segmentation in medical and biological research is done
completely manually or with semi-automatic methods that require a certain degree of manual
intervention. For the discussed reasons this is not surprising and an abrupt change of this situation
within the next few years is not very likely.

Therefore, the challenge for researchers working on practical solutions today is to develop suitable
interaction paradigms. And the combination of automatic methods with interactive controls, which
requires a mapping of the free parameters to intuitive values that can be controlled by the user -
ideally geometrically by using the multi-dimensional input devices like a mouse.

The most important property of a good interactive segmentation system is simple but crucial: It
is guaranteed that the desired segmentation can always be achieved. The better the integration of
semi-automatic tools is, the faster this segmentation can be achieved.

We have developed and implemented such a system, which has been tested in numerous different
application areas and has proven to be a rather universal and efficient tool. It is part of the Amira
visualization system today. A complete description of all its details is not in the scope of this
work and we refer to [147, 40]. Here we will limit ourself to the basic concepts and some of the
scientific contributions contained therein.

4.2 Interactive Segmentation

Two basic prerequisites for an efficient interactive segmentation environment are a good method
of interaction and a tight perceptual coupling with the user. We have discussed that in Chapter 3.

39

Clearly the most wide-spread and most efficient multi-dimensional input devices are computer
mice and graphic tablets. These devices have essentially two degrees of freedoms (DOF). This
matches well with the two dimensional output devices normally used and the two dimensional
human retina, as discussed in Section 3.2.

Therefore, we have decided to use two dimensional interaction in slices to be the basis of our
segmentation system. In order to benefit from the three dimensional nature of the data and not be
obliged to segment each slice independently, working in orthogonal slices is possible and a true
three dimensional visual control is available. To exploit three dimensional coherency of the data
sets we have implemented interpolation methods.

The basic in-slice interaction tools allow to select voxels which then can be assigned to or sub-
tracted from a specific label. The most important are

• The Brush selects on mouse click pixels which are within a user-defined radius around the
mouse cursor.

• The Lasso lets the user draw a closed contour, and selects all pixels within the contour. We
have added an Intelligent Scissor mode [93, 122], which adopts the contour to automatically
detected image contours. We will go into more detail on this in Section 5.1.

• The Magic Wand is a region growing algorithm, which starting from a seed point will
select all connected voxels with a gray value in a given tolerance interval. Further options
like exclusion of previously labeled regions can be chosen.

• The Blow tool is based on a level set method [113]. Here we place a small circle on mouse
click and then extend its contour as the user moves the mouse. Each contour point is allowed
to move in the local contour normal direction. An underlying function, the speed function,
which is derived from the image data, controls the local velocity. This way the contour
locally decelerates when it reaches image contours.

Some of these tools are depicted in Figure 4.2. Both, on the set of selected pixels, as well as on sets
of already labeled pixels various image processing filters can be applied, like erosion, dilatation,
smoothing etc. [107, 41].

These tools allow for the segmentation of virtually any structure that can be seen in the images.
We have experienced that many of our users in biomedical application areas were able to save
90% or more of time needed for segmentation when using this framework. Before, they used less
specialized tools like Photoshop for segmentation.

In many cases an additional order of magnitude of efficiency can be gained, by combining these
tools with methods for inter- and extrapolation. We will detail this in the next sections.

4.3 Interpolation and Extrapolation

Interpolation and extrapolation is an important concept for an interactive image segmentation en-
vironment. It can help to reduce the amount of manual work in regions with little changes and
it can be used to compute initial guesses for a local interactive or automatic optimization. The
interpolation of shapes is not trivial.

40

Figure 4.2: The image segmentation editor. Pixels are interactively selected (red part) and then assigned to
specific structures. Already labeled pixels can be depicted in various styles, like hatched in image (i). The
lasso tool with Intelligent Scissor option enabled automatically adjusts a contour to edges in the image. In
image (ii) only three mouse clicks were necessary (white dots) to define the contour. Simultaneous display
of orthogonal views (iii) allows better understanding of the three dimensional relationship. Here two slices
in one orientation and one slice in an orthogonal orientation were labeled. In the third orientation these
appear as lines. A preview in the 3D viewer shows the selection in combination with a transparent volume
rendering. The lower row shows the blow tool. Lower row: Starting at a seed point (iv) the user can blow a
contour by moving the mouse (v). Ideally it will reach a state were the contour is adjusted to the structure
to be selected (vi). If the contrast is too low or if the mouse is moved too far, the contour will break out
(vii). In the latter case the mouse can simply be moved back again.

A wide class of methods work on a parameterization of the boundary of the objects to be interpo-
lated: A curve for two-dimensional, a surface for three-dimensional objects.

For the two-dimensional case this could look like this: Let the interval P = [0 . . . 1] be the param-
eter domain and let K1, K2 ⊂ �2 be two closed intersection-free curves to be interpolated. Let
k1 : P → K1 and k2 : P → K2 be parameterizations of the intersection-free curves, i.e. k1 and
k2 are bijections. A parameterization of two objects onto the same parameter domain implicitly
defines a correspondences C : K1 → K2 between the two objects, by

C(�x) = k2

(
k−1

1 (�x)
)

k−1
1 denotes the inverse of k1, which exists since k1 is bijective. Using the parameterization it is

easy to construct a family of curves which interpolate between K1 and K2, e.g. linearly:

K̂λ : P → �2

K̂λ(t) = (1 − λ)k1(t) + λk2(t) (4.2)

The curve family K̂λ is an interpolation, i.e. K̂λ=0 ≡ K1 and K̂λ=1 ≡ K2 and K̂λ is continuous
(C0). Using the correspondence C we can even keep track of an individual point on the curve
K1, which will move on a straight line to its corresponding point on K2. If parameters λ < 0 or

41

Figure 4.3: Correspondence definition and inter-/extrapolation based on arc-length segmentation can fail,
even if a suitable origin t = 0 is found. The figure illustrates this qualitatively. While in the left image
the correspondence between the two contours is acceptable, one would probably like the right part of the
smaller contour to be “stretched” stronger than the left part.

λ > 1 are used, the same formula can be used for extrapolation. The question whether K̂λ is a
good interpolation depends to a high degree on the parameterization. Figure 4.3 illustrates that a
simple arc-length parameterization is not always suitable.

For two dimensional surface in three dimensional space the situation is much more difficult. Al-
ready the choice of a suitable parameter domain depends on the topology of the objects, examples
could be the unit square, the unit-sphere, or a torus. In [152] we have presented a method which
decomposes the objects into patches that can be mapped to the unit circle or a unit-cylinder. User
input is used to assure that the correspondence is correct in a geometric and semantic sense. See
the references in [152], and the review article [67] for related work. The method has been used
successfully for generation of morphing sequences for animation. For an interpolation tool, how-
ever, the required user interaction reduces the time gain, that is expected from the interpolation,
too much to be efficient.

Both, the two-dimensional as well as the three-dimensional version of parameter based interpola-
tion suffer not only from the problem of finding the correct parameterization but the main problem
is the requirement of equal topology of K1 and K2, which is a prerequisite for finding a common
parameter domain. If for example K1 is a single closed loop and K2 contains two separate loops,
it is not obvious how a meaningful correspondence can be established in general.

Therefore, we have taken a different approach, which solves these problems in an elegant way.
Instead of working on the object boundary, an embedding is constructed which contains the object
boundary as a level set. The most frequently used embedding in this context is the distance map
which defines for each point the distance to the nearest boundary point. Typically with a negative
sign for points inside the object and positive sign outside. Some of the numerous works related to
this type of interpolation are [70, 69, 19, 126, 33].

In the following we will review the important concept of (signed) distance maps, show how they
can be used for shape interpolation and then point out the particular problems that occur if they
are used in an image segmentation system and how we have solved these problems.

42

4.3.1 Distance Maps

Distance maps are a powerful tool and they will be used at several places throughout this work. A
good review of the various concepts and algorithms is given in [22].

Let Ω be the domain of an image, which contains a binary object O. Then the distance map Ω → �
assigns to each pixel the distance to the nearest boundary point of δO:

D(�p) = min{dist(�p, �q), �q ∈ δO}, �p ∈ Ω

In order to distinguish the points inside the object from those outside, often a negative sign is
assigned to the interior part of the distance map. A signed distance map has been shown in Figure
3.4.

In this section we will focus on the case that the object O is given in a discrete way, more specif-
ically as a set of voxels. In order to measure a distance, a metric has to be supplied. Of course
the Euclidean metric is the most natural one, but in practice often other metrics are used, which
approximate the Euclidean metric, but are faster to compute. Frequently used metrics that we will
discuss are

disteuclidean(�p, �q) =
√∑

i

|pi − qi| (4.3)

distmanhattan(�p, �q) = max{|pi − qi|} (4.4)

distchamfer(�p, �q) = 1 · max{|pi − qi|} +
√

2 · min{|pi − qi|} (2D case) (4.5)

The first metric is the standard Euclidean distance. The second one is the max-norm (l∞). On a
discrete grid it is identical to the number of strictly vertical or horizontal steps that are needed to
walk from �p to �q. The third metric additionally allows diagonal steps with the respective weighting.
Other chamfer metrics exists, which use different weighting coefficients or allow more directions,
as we will see.

An ad-hoc algorithm for the computation of a distance map can be given easily: Compare each
voxel in the domain Ω with each boundary voxel of O (a discussion about the correct boundary
treatment in the discrete case will follow). If we assume that the object surface grows with the
second power of the linear dimension in three dimensions, this algorithm has a complexity O(n ·
n2/3) = O(n5/3) for the three dimensional case and O(n3/2) for the two dimensional case, where
n is the total number of voxels in the domain.

If a chamfer-type metric is used, the distance value at a given point can be deduced from the
distance value of one of its neighbors. Therefore, it is possible to implement more efficient al-
gorithms: First all the points on the border are initialized with distance value zero. Then each
voxel propagates its distance to its neighbors adding the appropriate weight. A voxel can receive
propagated distance values from several neighbors, but only the propagation resulting in the low-
est distance value is kept. If the propagation starts with the zero-valued boundary voxels and then
processes the remaining voxels in order of increasing distance value, each voxel has to propagate
only once. Therefore, an O(n) algorithm can be realized (we will discuss this in more detail for a
similar problem in Section 5.1.1). However, the bookkeeping of the current propagation front can
be quite memory intensive and such an algorithm is not cache-local.

43

Figure 4.4: Propagation of distance values with chamfer metric illustrated in 2D. Two passes are performed
in scanline order. In the first pass the scan starts at (0, 0), advancing first in x, then in y direction. In the
second phase the scan is done in the exact opposite order. In each scan the distance value of each voxel is
propagated to 4 of its neighbors, after it has been increased with offsets according to the mask depicted in
the image. In the second scan, a value is only propagated if that would lower the value assigned so far.

It has been shown that it is possible to propagate the distance values from the image border to the
whole domain with a much simpler processing scheme. Two passes in scanline order with opposite
direction are sufficient [11]. This is depicted in Figure 4.4. If a distance map with a chamfer metric
is used to approximate the Euclidean metric, a systematic error is made. One can try to minimize
this error by choosing a different weight in Equation (4.5). The maximal possible relative error
can be reduced to ≈ 4% by using a weight of 1.351 instead of

√
2. For the three dimensional case

optimal results are obtained with the weights (1, 1.314, 1.628). The maximal error is then ≈ 6%.
Instead of using a 3×3 neighborhood in the propagation a larger ask can be used, thus allowing
not only vertical/horizontal and diagonal steps, but e.g. using an 5×5 mask, thus further reducing
the error. See [12] for details. Note that in a practical implementation, often 8 or 16-bit integer
variables are used to store the distance map, to save memory and computation time. In these cases
the offsets in the chamfer mask have to be replaced by integer values. Frequently used values for
the 3×3×3 case are (3, 4, 5), approximating 3 · (1,

√
2,
√

3).

As already stated above the distance value with respect to a Euclidean norm can not be derived
from the distance values of its neighbors. Therefore, Danielsson [24] has proposed to not propa-
gate the distance value, but the difference vector pointing to the nearest boundary point. Then of
course the Euclidean distance to this point can be calculated exactly. It is not a priori clear whether
this is always the nearest point though. This would only be the case if the following statement was
true: For any given point the nearest boundary point is the same as for at least one of its neigh-
bors. This is true for the chamfer metric and for the Euclidean metric in the continuous case but
not for the discrete case. However, the maximal relative error that is made with a 3×3 propagation
scheme is only ≈ 0.3%, compare [24, 71, 22].

4.3.2 Distance Based Interpolation

From a distance map, the original object boundary can be extracted (approximatively in the dis-
crete case) by computing the zero level set, e.g. using the marching cubes algorithm. A label

44

representation can be computed by simply selecting all voxels with negative distance value. The
idea of distance based interpolation is to compute the distance fields of the two objects to be in-
terpolated, point-wise interpolate these fields and finally re-extract the object. The interpolated
object for interpolation parameter λ = 0 . . . 1 is:

Oλ = {�p ∈ Ω|(1 − λ)D1(�p) + λD1(�p) < 0}

where D1 and D2 are the distance maps of the two objects.

The method is elegant. It automatically handles topological changes and no parameterization has
to be computed. In some applications it is a disadvantage, that no explicit correspondence is es-
tablished by the method, for example in graphics and animation where often additional per-vertex
properties like texture coordinates or material properties have to be preserved and interpolated. In
our application this is not a problem.

To improve the quality of the results, several authors have combined the distance based interpola-
tion with a previous rigid or other coarse warping transformation [19, 69].

4.3.3 Interpolation for Segmentation

A useful application for interpolation in an image segmentation environment is the interpolation
of labels between (almost) consecutive slices, i.e. between two two-dimensional objects. This is
desired since in regions of little change often sufficient accuracy can be achieved by labeling a
structure only in every n-th slice and interpolating for the in-between slices.

Also it is often helpful to insert additional slices for subsequent algorithms in data sets which have
a large slice distance compared to the resolution within a slice.

A third use of such a method is the extrapolation of a labeling to a slice that has not been segmented
so far. The extrapolated result could be adjusted then, using manual or automatic methods, if
necessary.

We have implemented a distance based interpolation method and used it for our segmentation
framework. We have observed two problems: If used to interpolate between multiple slices with
large separation, using C0-elements does not suffice to represent organic shapes. The second prob-
lem is related to boundary effects. In the following will show how we have extended the method to
higher order continuity and show comparing results. Then we will illustrate this boundary problem
and propose a solution.

4.3.4 Higher Order Interpolation

As can be seen in the left two images of Figure 4.5 the interpolation as described so far produces
reasonable results. However, the linear type of Equation (4.2) results in surfaces which are con-
tinuous but not C1 in interpolation direction. Therefore, we propose to use local cubic Hermite
interpolation instead [26]. Here a piecewise cubic polynom is constructed from the function val-
ues and the first derivatives. Lets assume that we have to construct an interpolation involving n
equidistant slices. Let the corresponding distance maps be Di(�p). These are the function values

45

Figure 4.5: Interpolation demonstrated with an artifical test object. Only every 10th slice is labeled. A
slice orthogonal to the labeling orientation is shown in the top row. The lower row shows the same data set
in three dimensions. Linear interpolation yields correct but unorganic results (center). The results can be
significantly improved by using cubic Hermite interpolation (right).

to be interpolated. We now ask the derivative to be

D′
i(�p) =

⎧⎨
⎩

(Di+1(�p) − Di−1(�p))/2 ; i = 2 . . . N − 1
D2(�p) − D1(�p) ; i = 1
DN (�p) − DN−1(�p) ; i = N

. (4.6)

For the interpolation we use the Hermite polynoms which have the following defining properties
[26]:

H3
0 (t0) = 1,

d

dt
H3

0 (t0) = 0, H3
0 (t1) = 0,

d

dt
H3

0 (t1) = 0

H3
1 (t0) = 0,

d

dt
H3

1 (t0) = 1, H3
1 (t1) = 0,

d

dt
H3

1 (t1) = 0

H3
2 (t0) = 0,

d

dt
H3

2 (t0) = 0, H3
2 (t1) = 1,

d

dt
H3

2 (t1) = 0

H3
3 (t0) = 0,

d

dt
H3

3 (t0) = 0, H3
3 (t1) = 0,

d

dt
H3

3 (t1) = 1 (4.7)

The interpolating polynom in the interval t0 . . . t1 is then given by

P (t) = f(t0)H3
0 (t) + f ′(t0)H3

1 (t) + f(t1)H3
2 (t) + f ′(t1)H3

3 (t) (4.8)

as can be seen by inserting t0 and t1. For equidistant slices we can use t0 = 0 and t1 = 1. The
Hermite polynoms then are

H3
0 (t) = 2t3 − 3t2 + 1

H3
1 (t) = t3 − 2t2 + t

H3
2 (t) = −2t3 + 3t2

H3
3 (t) = t3 − t2. (4.9)

46

��

�

�

�

�

��

� 	

 �

� �� �

� �

� �

� �

� �

� �� �

� � �

! " # $

%&

'(

)*

+,

-.
/0

12
3

4

5 67

8 9

: ;

Figure 4.6: Boundary initialization for distance map propagation inside and outside the object. Grey pixels
are object voxels. The initialization in the left image is relatively inaccurate. In the second image half the
offsets from the 3×3 chamfer mask are used. The third image displays a boundary contour that corresponds
to such an initialization. Note that the contour intersects the edges of the dual grid always in the middle.

4.3.5 Border Initialization

We have discussed in the previous sections how the distance values are propagated from one pixel
to the next and what errors can occur. Such algorithms, however, require an initialization of the
boundary voxels to start with. In many implementations simply all object voxels, that have at least
one background voxel as neighbor, are considered to be part of the boundary and initialized with
zero. This is not compatible with the usual interpretation of an object in a segmentation framework.
Here we would expect the object boundary to pass somewhere between such boundary object
voxels and the neighboring background voxels. Therefore, the distance value at the centers of the
boundary object values is different from zero. Implementations taking this into account typically
initialize the boundary with half the values from the chamfer mask, depending on whether the
neighboring voxel is in the 4 or 8-neighborhood (6,18,26 in 3D). This is illustrated in Figure 4.6.
Since in general we do not have any information about where the boundary passes exactly, this
type of initialization is not a priori wrong. The resulting contour is compatible with the labeling
according to the following definition:

A contour k is compatible with a labeling, if all voxels centers labeled inside lie on one side of the
contour and all voxel centers labeled outside lie on the other side.

However, the contour in Figure 4.6 corresponds to a staircase-like boundary (with four different
directions of the steps).

Looking at Figure 4.7 we see that the iso-line for iso-value zero (the one which is drawn stronger)
is rather jerky. This is due to this effect. For increasing distances distance maps have a smoothing
property. Therefore, the boundary aliasing is not a problem for the majority of distance map based
algorithms. In our case, however, it is, because an extrapolation is often performed from two
consecutive and therefore very similar slices, the contour of the resulting object will be close to
the contours of the original objects. Therefore, it will be computed from the distance values in that
jerky region, resulting in undesired artifacts.

As stated above we do not know where the boundary of the real object passes exactly. However,
we do have significant reason to believe that the boundary of an organic object does not look like
a staircase. Instead, we would prefer to choose from all compatible contours the one which is as

47

Figure 4.7: Signed distance map, shown with pseudo coloring and iso-lines. The strong line corresponds
to zero distance. The distance map gets smooth with increasing distance, but at the original contour, the
staircase artifacts can occur due to binary boundary initialization. This can cause aliasing for extrapolation.

smooth as possible. Of course there may be details in the object which are not resolved this way,
but this is a general limitation of the finite image resolution.

In order to find “the smoothest” curve we define a functional based on the curvature. Let k :
[0 . . . 1] → �2 be a parameterization of the object boundary. Let k be proportional to the arc-length
parameterization, i.e. ∂k(t)/∂t = const.. For the following discussion we assume that the contour
consists of only one closed loop. If this is not the case the loops are processed independently. The
functional that we strive to minimize is:

E(k) =
∫ 1

0
|k′′(t)|2ds

k′′ the second derivative of k.

This is a standard problem of variational calculus. The solution of the problem

E(k) =
∫ 1

0
f(s, k, k′, k′′, ..., k(n))ds

!= Extremum

must satisfy the Euler-Lagrange differential equation:

fk − d

ds
fk′ +

d2

ds2
fk′′ − + . . . + (−1)n dn

dsn
fk(n) = 0 .

In our case the Euler-Lagrange equation results in

∂f

∂k
− d

ds

(
∂f

∂k′

)
+

d2

dss

(
∂f

∂k′′

)
= 0

⇔ d2

ds2
k′′(s) = 0 ⇔ k(4)(s) = 0 .

In order to find an optimal contour which is compatible with the labeling we introduce an addi-
tional parameter t which denotes an artificial iteration time in an iterative process of finding the
sought smoothing effect:

∂k(s, t)
∂t

+ k(4)(s, t) = 0

48

Figure 4.8: A binary border initialization as used in standard distance map algorithms is not suitable for
extrapolation, because it implicitly defines a jerky contour (left). After smoothing the contour is still com-
patible with the labeling (right) but significantly smoother (center).

If the iteration converges then ∂k(s, t)/∂t becomes zero and the solution is identical to the static
case.

In order to solve this differential equation, we have to discretize it. The parameter s is discretized
into N discrete steps si. We define ki = k(si). If the si are equidistant with h = si+1 − si the
fourth order derivative is approximated using central differences:

k
(4)
i ≈ ki+2 − 4ki+1 + 6ki − 4ki−1 + ki−2

h4
, i = 1, . . . , N

Also the time is discretized with constant time steps τ , the corresponding values of k are denoted
kn. The derivative ∂k(s, t)/∂t can then be approximated by:

∂k(s, t)
∂t

≈ kn+1(t) − kn(t)
τ

Putting all this together, we end up with an explicit Euler scheme [25]:

kn+1
i = kn

i − τ
kn

i+2 − 4kn
i+1 + 6kn

i − 4kn
i−1 + kn

i−2

h4
, i = 1, . . . , N

In order to satisfy the constraint of compatibility with the labeling, we proceed as follows. We
start with an initial contour as shown in Figure 4.8. As can be seen the vertices of the contour lie
always in the middle of the edges of the dual grid. For each vertex we store this edge and restrict
them to remain on this edge after each iteration. This guarantees the compatibility according to
the above definition. In fact this is even a little stricter than would have been necessary, but this
has not posed any problem.

Typical contours contain at most a couple of hundred vertices. Therefore, each iteration step can be
computed very quickly. Typically after 100 iterations the solution has been converged sufficiently
well. Results are shown in Figure 4.8. Once the smooth contour is found, the distance values of
the pixels intersected by the contour can be set to the exact distance of this pixel to the contour.
Also computing a distance map at a higher resolution than the original image is possible this way,
since the contour is given explicitly now.

49

4.3.6 Non-Planar Interpolation

Figure 4.9: For smooth structures or if only an approximative segmentation is needed, very few, poten-
tially non-orthogonal, slices are sufficient (left image) to define the structure sufficiently accurate, after the
wrapping based on implicit surfaces is applied. Example for two glomeruli in the honey bee’s antennal
lobe.

Another useful technique is the segmentation and interpolation in non-parallel slices. Instead, one
or more slices are labeled in two or all three orthogonal plane orientation, yielding a “skeleton” of
the desired structure (compare Figure 4.9). In order to reconstruct the full object from this skeleton,
a technique presented in [126] for shape morphing applications is used. Again, it is based on the
idea of constructing an embedding. In [126] a scattered data interpolation approach is suggested.
Points are distributed equally on the contours and assigned a function value 0. By subtracting
at each point the local normal of the contour, new points lying a little bit inside the contour are
computed and a function value of −1 is specified. Then the function values are interpolated by
constructing an interpolant based on a linear combination of thin-plate splines. This technique will
be described in more detail in Section 7.1.2.

It is expected that the interpolant is negative within the objected to be segmented and positive
outside. Its boundary surface can be computed then by extracting the 0-iso-surface, a labeling by
thresholding with threshold 0. Figure 4.9 shows results.

4.3.7 Results

We have presented a new method for border initialization and employed cubic splines to improve
the quality of distance map based shape interpolation and extrapolation. We have implemented and
applied the described interpolation methods in a number of different applications. Interpolation
has proven to be a very efficient tool to speed-up the interactive segmentation process in certain
areas or for certain structures, or when pixel-exact accuracy is not needed. It can also serve
as initialization for automatic segmentation algorithms like Snakes. Interpolation is also used
to increase resolution in z-direction for non-isotropic data sets if subsequent algorithms require
isotropical voxels. It has turned out that the tri-linear interpolation significantly increases quality
here, as can be seen in Figure 4.10. An example where non-planar interpolation has proven to be
efficient is the segmentation of glomeruli in the bee antennal lobe, as shown in 8.4.

50

Figure 4.10: Interpolation in a medical recording of the sacrum. The data set has a large slice distance.
Left image shows the labeling in the original slices. Central image shows a surface extracted after inserting
four additional slices between each two input slices using linear distance map interpolation. Right image
corresponds to cubic Hermite interpolation.

4.4 Sub-Voxel Accuracy

Advanced painting programs, like Adobe Photoshop or Gimp provide brush types that use trans-
parency at the boundaries to avoid aliasing effects. We have developed a set of tools for interactive
segmentation, that does not only modify the labeling, but simultaneously edits a set of weights,
that can be interpreted as the likelihood that the labeling is correct. By interpolating these weights
exact intersection points for interfaces between two materials can be computed. We have described
this method in [149] and shown that with the appropriate choice of weights, smooth boundary sur-
faces can be extracted. We have also described how standard tools like Lasso, Brush, or Magic
Wand can be defined to produce these weights. One problem, however, is, that not all segmen-
tation tools can be generalized this way. Additionally if such tools are applied subsequently in
the same region, e.g. when changing or correcting a previous labeling several times, the resulting
weight fields are not always as smooth as expected. A probably more flexible way to achieve the
same goal of smoothness is to stick with a binary labeling in the interactive stage and then use the
Constrained Smoothing method that we describe in Section 6.3.2 to generate smooth consistent
surfaces.

Up to here we have discussed the problem of generating smooth contours and surfaces from a
per-voxel labeling. Another aspect would be to extract the shape of the physical objects depicted
in the images with a spatial accuracy that is better than a voxel size.

Computer vision systems, for example used in optical tracking systems, are able to compute the
center of a white sphere on black background recorded with a video camera with an accuracy
that is a small fraction of the pixel size. And also the human perceptual system is able to de-
tect misalignments in the sub-pixel range in medical images. How this can be used in a practical
segmentation system, however, is subject to future research. Also the conceptual ease and consis-
tency of a label representation compared to a description based on contours suggests that even if
real sub-voxel-accurate interactive tools were found, the best underlying representation might still
be a uniform or adaptively refined label field with higher resolution than the image data. Again,
the final answer to this question has not been given yet.

51

4.5 Results

We have designed and implemented the above described methods in one common environment,
and found that this approach to interactive segmentation is very efficient. All the segmentations
and labelings shown in this work are generated using this tool. The concept can easily be extended
by other slice-based or volume-based tools, like a projection based volume editor, that we will
demonstrate in Figure 5.6 in Section 5.2.

52

