
Chapter 3

Visualization

Scientific (data) visualization is the process of creating a representation of an input data set that can
be displayed on a visual output device like a CRT computer monitor, a printer or a multi-wall stereo
projection system. Scientific visualization combines computer graphics, data processing, data
analysis and computational geometry, numerical and discrete mathematics as well as a number of
other disciplines. Even aspects from perceptional psychology and arts are important.

Visualization plays a key role in computer-based analysis of three dimensional data. Visualization
techniques are also a basic prerequisite for any kind of interactive data treatment. Obviously
interaction requires a way to perceive the subject of interaction, i.e. the data. At the same time a
feedback on the effect of the interaction is needed. The predominant means of perceptual coupling
between the computer and the user is the human visual system. In particular for image data,
visualization is the most natural way of perception, although research is ongoing to use other
output modalities like tactile devices or audio for data perception.

In this work we mainly have to deal with three different types of three dimensional data. Regu-
lar sampled scalar fields, triangulated surface models and graph structures, the latter potentially
annotated with additional thickness information.

Before describing ways to visualize these types of data we briefly introduce some of the basic
terms of computer graphics that will be needed in these sections. For a more comprehensive
introduction we refer to a text book like [31].

3.1 Computer Graphics Basics

The most common type of computer graphics systems uses surface based descriptions of the three
dimensional scenes that are to be rendered. For hardware accelerated rendering these surfaces
typically have to be given as or converted to sets of polygons.

Surfaces can be characterized locally by a distinct outward normal vector N . This normal vector
plays an important role when describing the interaction of light with surface elements. In the
following we will shortly review the popular reflection model of Phong. Let L denote the light
direction, V the viewing direction and R the unit reflection vector (the vector in the L-N -plane

10

Figure 3.1: The basic components of the OpenGL pipeline. From http://www.sgi.com.

with the same angle to the surface normal as the incident light). Then light intensity at a particular
surface point is given by

I = Iambient + Idiffuse + Ispecular

= ka + kd L·N + ks (V ·R)n (3.1)

The first term, a global one, represents the ambient light intensity due to multiple reflections in
the environment. The second term describes diffuse reflection due to Lambert’s law. Diffuse light
intensity does not depend on the viewing vector, i.e. diffuse reflecting objects look equally bright
from all directions. The last term in Equation (3.1) describes specular reflections on a surface.
Specular reflections or highlights are centered around the reflection vector R. The width of the
highlights is controlled by the exponent n, often called shininess.

Among others one can distinguish ray-tracing and z-buffer based rendering systems. In a ray trac-
ing system light-rays are traversed backwards, i.e. from the observers eye through the image plane
(“the monitor screen”) until they hit an object. Then an illumination model like Equation (3.1) is
evaluated. Possibly one (or more) rays are traced further to model reflection.

Most hardware accelerated graphics systems today are not ray-tracing but polygon/z-buffer based.
They render the scene on a per-polygon basis. Occlusion is handled by a z-buffer storing the
associated depth value for each pixel that has been rendered.

In typical polygon-based rendering systems Equation (3.1) is evaluated at each vertex and then
interpolated within the polygon. The hardware does not require the normals at all vertices of a
polygon to be the same. By using different normals at each vertex non-planar polygons can be
visually approximated. The resulting color from the lighting calculation at the vertices is interpo-
lated linearly in the triangle. This is often referred to as Gouraud Shading.

Instead of interpolating the result of Equation (3.1) within the polygon one could also interpolate
the normal value and then evaluate Equation (3.1) per pixel. This yields much nicer shaped high-
lights even with coarse triangulations, but only the latest graphics hardware supports this up to
now.

The most widely used graphics API for professional 3D graphics today is OpenGL [112]. As an
API it specifies the data structures and procedure calls application programs must use to produce
graphical output, as well as the semantics of the drawing process. The API design, however, is

11

very closely related to the design of the underlying hardware and for example the high end graphics
systems from Silicon Graphics like the InfiniteReality [90] are dedicated OpenGL machines. The
OpenGL pipeline is shown in Figure 3.1. Three dimensional geometry is specified by the vertex
coordinates of the individual polygons and associated properties like color, surface normal, and
texture coordinates. The vertices are projected onto the screen according to the current view point
and view direction. Lighting calculations are performed at each vertex. Then each polygon is
rasterized, i.e. it is computed which pixels are occupied by the projected polygon. Thereby the
result of the lighting calculation and the texture coordinates are interpolated linearly. Finally, a
texture lookup is performed and the pixel is written into the frame buffer along with its depth
coordinate, in case that the depth value currently stored in the frame buffer does indicate that the
new pixel is not occluded by an already drawn pixel. The two important performance bottle necks
in this pipeline to be considered when designing an interactive visualization algorithm are the
limited number of vertex transformations per second and the limited number of pixels that can be
drawn per second. Depending on which of the limits is reached first, one refers to polygon-limited
performance or fill-rate limited performance of a specific algorithm. An example for the first
are complex iso-surface visualizations (Section 3.2.4), an example for the latter is texture based
volume rendering (Section 3.2.5).

The pipeline drafted so far is only the most basic outline but it will be sufficient for the understand-
ing of the techniques described in this work. Details especially on texture mapping and blending
will be given when needed in the respective sections. For the variety of further extensions and
details we refer e.g. to the documents provided at [20].

The development over the last ten years has shown that the rendering and shading model behind
the initial OpenGL specification is not sufficient. More enhanced shading and rendering models
as needed for the realistic modeling of car painture, for rendering shadows or the high-quality
rendering of lines and transparent surfaces, which we describe in sections 3.3 and 3.4, are not di-
rectly supported. Using tricks like encoding the shading model into textures, using multi-pass ren-
dering techniques, or with special OpenGL extensions, such enhancements can be implemented
[44, 16, 9]. To increase the flexibility in the whole rendering pipeline, the specification for the
newest versions 8 and 9 of Microsoft’s 3D graphics API DirectX specifies a way for the pro-
grammer to define own lighting and texturing calculations, by providing little programs, called
vertex shaders and pixel shaders. These programs are executed in the graphics processor itself.
First hardware implementations exist on PC graphics boards [83]. Some of these capabilities are
also available via extensions for OpenGL and they will become part of the OpenGL 1.4 and 2.0
specifications.

3.2 Image Data Visualization

The primary source data type for the algorithms discussed in this work are digital three dimen-
sional image data sets, i.e. regular sampled scalar valued fields.

The scalar data values at each point can be mapped to gray-values or colors on the output device in
a straight-forward way. The challenge is to reduce the dimensionality of the domain by converting
the three-dimensional data set into a two-dimensional image suitable for display. Note that even
if a three dimensional light field could be created with an appropriate output device like a holo-
graphic display, the problem would remain the same since the human retina can only record two

12

dimensional intensity distributions. Also with a stereoscopic display, which sends two different
images to the two eyes, the problem remains for each of the two images.

The four most important techniques used for image data visualization are slicing, iso-surface ren-
dering, maximum intensity projection, and direct volume rendering. In the following sections we
will discuss these techniques and illustrate their use in the context of this work.

In the following we assume that a uniformly sampled image is given on a domain D as described in
Section 2.1. With an appropriate interpolation scheme an image defines a scalar valued function:

f : D −→ �, D ⊂ �3 (3.2)

3.2.1 Slicing

Slicing is the most commonly used technique to perform the dimension reduction mentioned
above. Instead of visualizing the scalar field on the whole domain, only the data values on a
subset are displayed.

The most commonly used type of subset is a planar cut, which is spanned by two perpendicular
vectors �u and �v in the plane and one point in the plane �o. The two-dimensional image I represent-
ing the cut is given by

I(x, y) = f(x�u + y�v + �o) (3.3)

with the range for x and y appropriately chosen. The function I(x, y) can directly be displayed as
a 2D image if an appropriate color mapping is applied (see next section).

This visualization technique is highly intuitive, especially if the scalar field represents light inten-
sity as in the case of a confocal microscope. However, the reduction of information is tremendous.
There are two common approaches to overcome this.

First, a time varying plane can be used to define a time varying image. For example if a plane
perpendicular to the z axis is shifted along z in time, we would get

I(x, y, t) = f(α1x, α2y, α3t), (3.4)

where αi are appropriate scaling constants. This way the third spatial coordinate that is missing
on the display system is replaced by time.

Alternatively, the slices defined by multiple planes can be displayed simultaneously as shown in
Figure 3.2. In order to visually encode the spatial relationship of the different slices the next step
is to embed the images into a three dimensional scene and render this scene using a perspective
projection as illustrated in the right part of Figure 3.2.

Slicing is not limited to planar subsets. Especially when dealing with multivariate functions like
multi-channel confocal images one of the components can be used to define the geometry of the
subset, while the other is mapped onto it. Figure 3.3 shows an example where the direction of a
measured fluid-flow is used to compute a stream surface and the magnitude of the flow is extracted
and displayed for each point of that surface.

13

Figure 3.2: Multi slice visualizations. Upper image: Data set displayed in virtual light box style. The three
dimensional relation has to be established mentally by the observer. Lower left image: Unlike traditional
photos, digitally recorded image volumes allow orthogonal slices to be computed from the same data set.
Note that each pair of images shares one coordinate axis. A crosshair allows the user to navigate. Lower
right image: Multiple slices are visualized at their correct three dimensional position. Provided that the
user can easily control the camera position, this is a very efficient and intuitive way for navigation and
understanding of spatial relationships.

3.2.2 Color Mapping

Instead of mapping scalar values to shades of gray, they can also be mapped to colors using a so
called transfer function. The range of applications for color mapping is broad. One simple reason
to use color mapping, which should not be underestimated, is to make the images more appealing
or more resembling to the images seen e.g. under a conventional microscope. Color can also

14

Figure 3.3: Non-planar slicing. A scalar valued field is evaluated on a non-planar geometry. Here a stream
surface [121] is used as geometry to display a flow field’s velocity magnitude.

help to allow an easier quantification and comparison of features that are not directly neighbored.
Intended discontinuities in the color map can be used to indicate pixels with potential clipping, to
find thresholds for segmentation, or to visually enhance iso-value lines or plateaus. Examples are
shown in Figure 3.4. If multiple discontinuities are introduced as in the last image in 3.4, isolevels
are visually enhanced. In the given example we only modified the luminance. This way visual
degrees of freedom are saved and color hue or saturation could even be used to encode a further
independent quantity. Note that is conceptually similar to the work described in [128], where C1

discontinuities are used in elevation functions for height-field display.

3.2.3 Maximum Intensity Projection

While slicing is an appropriate first tool to visually understand the shape of structures with a
significant volume, like the inner organs in the slices in Fig 3.2, it is much less well suited for thin
structures, like the skin, or even line-like structures, like blood vessels or the dendrites of neuron
cells.

The left part of Figure 3.5 shows a slice through a confocal recording of a single stained neuron.
Most dendrites appear as small bright spots. Even with multiple slices or by varying the plane it is
hard to understand the spatial relationship and structure of the dendritic tree. Only dendrites that
lie almost in the plane can be well perceived.

If, as it is the case here, the structures of interest only fill a small fraction of the volume and if they
appear significantly brighter or darker than the rest of the data set, then a maximum or minimum
intensity projection can be a powerful tool. The basic idea is to project the data set onto a plane
using an orthogonal or perspective projection and choosing along each projection ray the largest
(or smallest) value of the input data set:

I(x, y) = max{f(R(x, y, t))} t ∈ [0, 1], (3.5)

where R(x, y, ·) is the projection ray through the image pixel (x, y).

15

Figure 3.4: Visualization of scalar data on a slice using different mappings from data to color values.
Top row: (i) Confocal scan of a Drosophila brain, linear mapping to gray values. (ii) and (iii) Different
colormaps can be applied. The glow-style colors in (iii) resemble the colors seen in the microscope under
certain conditions and are therefore considered pleasing. (iv) By setting all pixels equal or above a suitable
threshold to some completely different color (here blue), thresholds can be found interactively or potential
clipping can detected. Lower row: Visualized is a distance map computed from the labeling shown in (i). In
the gray value mapping (ii) it is hard to quantitatively understand the data, which is easier using a colormap
(iii). The quantitative expression of the image can be further enhanced by introducing discontinuities into
the colormap (iv). Here we have modified the color luminance in a sawtooth fashion.

The right part of Figure 3.5 shows the maximum intensity projection of the same data set onto
three perpendicular planes, giving a much better understanding of the topology and by means of
the three orthogonal views still giving information about the three dimensional shape.

3.2.4 Iso-Surfaces

As can be seen in the images shown so far, the structures of interest are often of relative constant
color, which is different from the surrounding background. We assume that an image is a con-
tinuous function. By extracting the level-set for an iso-value in between the two colors, one can
therefore create a good representation of the objects. This can be understood as follows: The level-
set for a given level (also called iso-value or threshold) of a scalar function in a three-dimensional
domain is in general a two-dimensional manifold. If two neighboring samples of the digital im-
ages are on the opposite sides of the iso-value, the surface will in general pass in between them, at
least if linear interpolation is used. Thus the level-set encloses the object.

One way to display an iso-surface is to compute a polygonal approximation of it. This can be
done using the marching cubes algorithm proposed by Lorensen and Cline in [78]. The algorithm
works on a per-cell basis. The cells are part of the grid, dual to the pixel grid: The cells are formed
by eight neighboring image grid points. For each of the eight points it is determined whether it is

16

Figure 3.5: Slicing is not an appropriate tool for the visualization of line-like structures. While the overall
shape is not perceivable in the left image, the three maximum intensity projections in the right image give
a good impression. (Images inverted for better printing).

above or below the threshold. If both types occur for a cell, the isosurface must pass through this
cell. The intersection points on the cell edges are determined using linear interpolation. Within the
cell the surface is approximated with one or more triangles. Obviously only 28 = 256 qualitatively
different configurations can occur. Therefore, the triangulations can be stored efficiently in a look-
up table. The triangulation for each configuration is generated manually, which is feasible since
only 15 of the 256 cases are topologically different. Due to an inconsistent handling of some cases
the triangulation originally proposed in [78] can lead to cracks in the surfaces. Once recognized
this problem can be solved easily though [98].

Today iso-surface extraction is a standard technique for visualization of three-dimensional image
data. Irrespective of its power to visualize certain aspects, as we will see throughout this work,
a number of problems remain: Iso-surfacing requires that the structures to be visualized have an
intensity range which does not overlap with the surrounding structures. The need to choose one
threshold eliminates a huge amount of information contained in the data set. And especially for
large or noisy data sets the number of triangles generated by the algorithm can be very large - too
large to still be able to interactively rotate the objects. This problem can be addressed by adaptive
simplification of the resulting surface in a post-processing step [111, 47, 57]. Another approach
is to adaptively use a lower resolution of the input data in regions with less details already in the
triangle generation step. For example an octree representation or other adaptively refined meshes
can be used [114, 99, 136]. Such a re-organization of the domain can also serve to accelerate the
extraction process itself [76]. Beside the design of a criterion that efficiently decides locally about
the needed level of resolution, the challenge is to guarantee surface continuity in regions where
cells from different resolution levels are neighbored.

The problem of iso-surface extraction is closely related to the general problem of geometry extrac-
tion from image data and image segmentations. Therefore, some more aspects and developments
based on the marching cubes algorithm will be discussed in Section 6.1.

Isosurfaces can also be displayed without an explicit computation of a polygonal representation,
as we will see in the next section [50, 135, 75].

17

3.2.5 Direct Volume Rendering

Another visualization technique for scalar valued data volumes is called direct volume rendering,
or short volume rendering. Here the data volume is interpreted as a gaseous semi-transparent,
shining cloud. Each point in the data volume is assigned a light emission and absorption property,
depending on the data value at that point. Other effects like scattering and reflection can also be
taken into account.

Linear Transport Theory

Using linear transport theory and neglecting wavelength dependencies one can derive a simple
form of the equation of transfer [43]. The equation of transfer describes the change of intensity
along a ray due to absorption, emission, and scattering:

n·∇I(x,n) = −χ I(x,n) + η, (3.6)

where χ is the absorption coefficient and η is the light emission term. For volume rendering in
scientific visualization applications these terms are determined by the data values by applying
appropriate transfer functions. Typical transfer functions are transparent and less emissive for
smaller data values (background voxels) and more opaque and more emissive for larger data val-
ues. By choosing different transfer functions, different aspects of the data set can be revealed. The
design of a good transfer function can be a challenging task and in most cases manual interaction
is involved. Work has been done to assist the user in this process as well as for fully automatic
generation of transfer functions, describing opacity or opacity and light emission color, for exam-
ple in [42, 56, 29]. If different data sets of the same type are visualized, e.g. confocal recordings
of anti-body stained neuropil, experience shows, that sufficiently good results can be achieved by
globally scaling and shifting a well chosen standard colormap.

Light absorption can be broken down into a “true absorption” term κ and an attenuation term σ
due to scattering, η = κ + σ.

In an analogous way, the emission χ is split up into a light source term q and a term that describes
the amount of light j that is scattered in the direction of the ray, χ = q + j. The directional de-
pendency of the scattering process can be described using a phase function p(n,n′) that gives for
a direction n of incidence the amount of light scattered in direction n′. If the scattering particles
are small compared to the wave length, the phase function resulting from Rayleigh scattering is

p =
3
4
(1 + cos2 θ). (3.7)

In other cases often empirical models based on experimental results are used. See [43] for more
details.

Using the phase function the light “emission” due to scattering in direction n′ is

j(x,n′) =
1
4π

∫
σ(x,n′) p(x,n,n′) I(x,n) dΩ. (3.8)

Inserting this into (3.6) we get

n·∇I = −(κ + σ) I + q +
1
4π

∫
σ(x,n′) p(x,n′,n) I(x,n′) dΩ′, (3.9)

18

Figure 3.6: Shear-warp method for volume rendering. The left part shows the parallel-projection case,
where the slices are first sheared, then composited and finally warped. In the perspective case, an additional
per-slice scaling is added. (Figure adopted from [64].)

This is an integro-differential equation. It is often more convenient to rewrite the equation as a
pure integral equation by integrating along a ray x = p + sn. We introduce the optical depth
between two points on the ray x1 = p + s1n and x2 = p + s2n

τ(x1,x2) =
∫ s2

s1

χ(p + s′n,n) ds′. (3.10)

and can easily derive ([43]):

I(x,n) = I(x0,n) e−τ(x0,x) +
∫ s

s0

η(x′,n) e−τ(x′,x)ds′. (3.11)

Note that the term η(x′,n) still contains the integral over all possible directions of incidence.
Therefore, it would be very complex to solve Equation (3.11) in full generality. Instead, in many
cases the scattering terms are ignored or replaced by much simpler approximations, as we will
describe below. For alternative derivations and a discussion of the various special cases of the
volume rendering equation see [85].

Implementations

Even when neglecting the scattering effects, computing a full image according to Equation (3.11)
is computationally expensive. For each pixel, the intensity for a ray that is cast parallel to the
viewing direction and passes through that pixel has to be computed by discretizing the integral
in Equation (3.11) appropriately. Assuming a typical window resolution of 512×512 ≈ 250, 000
pixels, it is not surprising that a straight forward implementation will not result in interactive frame
rates. As soon as the viewing direction is not parallel to the major axis, following the ray through
the data set and evaluating the input data using appropriate interpolation is expensive.

In 1994 Lacroute and Levoy have proposed a fast implementation based on a Shear-Warp algo-
rithm [64]. This method first shears the data set, which is computationally inexpensive. In sheared
object space the rays are parallel to one of the major axis directions. Computing the integral in
Equation (3.11) is then just a matter summing up columns of pixels. In the final warping step an
affine transformation is applied to the composited image, to produce the final image. The method
is depicted in Figure 3.6. Using efficient data structures Lacroute and Levoy achieved rendering
speeds in the order of one frame per second for a 2563 data set at then current computers.

19

Figure 3.7: Texture based volume rendering. To render the image, slices are defined by intersecting equidis-
tant planes with the data domain (left). The resulting polygons are rendered back-to-front with an RGBA
(color+opacity) texture (middle). If a sufficient number of slices is drawn, a good approximation of the
volume rendering integral can be achieved (right).

The first truly interactive volume rendering systems, which achieved several frames per second
even for large data sets, however, used a different technique: They employed graphics hardware
to compute the integral by repeated blending operations in the frame buffer. The data values were
incorporated by using the three dimensional hardware accelerated texture mapping [2, 138, 23, 15].

The basic idea is to use the 3D data volume as a three dimensional texture map, which contains
color and opacity values for each point in 3-space. Then a large number of polygons is drawn,
which are perpendicular to the view direction. When applying the texture map, the texture hard-
ware performs a tri-linear interpolation for each pixel after the polygons have been rasterized and
uses the resulting color and opacity value. The method is illustrated in Figure 3.7. Today even
many consumer graphics boards support three dimensional textures. If 3D texturing is not avail-
able, even 2D textures can be used. Then typically the polygons are not drawn exactly orthogonal
to the view direction, but instead orthogonal to the major axis closest to the view direction. This
way only three sets of polygons are needed for which two dimensional texture maps can be pre-
computed.

The above sketched algorithm is only the basic method for texture based volume rendering. Many
improvements and extensions have been proposed over the last years. One important aspect for
expressive images is reflection of light from an external light source on surfaces in the volume.
This can be regarded as a special case of the scattering term in Equation (3.6). In [37] voxels are
classified into reflecting or ambient, based on the magnitude of the data gradient. Large gradients
occur at the boundary of materials, e.g. at the interface between bone and muscle tissue in the
case of medical CT data sets. This way images very similar to polygon-rendered iso-surfaces
can be computed, without the expensive generation and rendering of an explicit triangulation. In
[37] the gradient direction is quantized and together with a material classification an index into
a lookup table is computed, that allows fast lookup of the resulting color and opacity. Since the
lighting calculation is view dependent, the lookup table has to be recomputed for each new view
direction. The RGBA volume resulting from the lookup is fed into texture memory and rendered
as described above. The drawback of this approach is that for each new view the full texture has to
be recomputed and downloaded to texture memory, making the method slow. The authors report
performance comparable to the shear-warp implementation in [64].

20

Figure 3.8: The imaging pipeline in the Infinite Reality graphics. The color matrix and the optional subse-
quent lookup to the POST COLOR MATRIX COLOR TABLE enable sophisticated operations like shad-
ing calculations in RGB space. This pipeline corresponds to the box labeled Pixel Operations in Figure 3.1.
Figure adopted from [55].

With a graphics architecture like the SGI Infinite Reality [90] it is possible to take advantage of
the imaging pipeline for the shading calculations in special cases. We briefly describe, how this
can be done: The imaging pipeline consists of several stages that manipulate color values of pixels
that are drawn into the frame buffer with glDrawPixels. The same manipulations can also be
applied to a texture that is defined via glTexImage3D. Figure 3.8 shows the imaging pipe of the
Infinite Reality. For shading based on the data gradient, the trick that can be used is this: Instead of
real color (RGB) values, the three components of the gradient vector are written into the texture.
These vectors are multiplied with the Color Matrix. If this matrix is initialized properly with the
three coordinates of the light direction, this effectively computes the dot product between light
and gradient. The subsequent lookup to the POST COLOR MATRIX COLOR TABLE allows to
encode any shading model that depends solely on this dot product. This includes Phong shading
in the special case of a head light, i.e. a light direction that is identical to the view direction. We
will describe these techniques in more detail in Section 3.3.2. The drawback of this method is that
the texture has to be sent down the graphics pipeline for each new view.

An efficient method to display iso-surfaces with texture based volume rendering, which avoids
redefining the texture is described in [135]. Here the gradient is encoded in an RGB tuple. The
alpha test is used to draw only the first visible pixel above a given threshold. The actual shading
calculation is performed by applying the color matrix to each pixel’s RGB value in a pixel copy
operation. The color matrix was originally introduced to allow for color space conversions. Basi-

21

cally each row of the matrix is initialized with the three components of the light direction. Thus
the product of the RGB vector with the matrix effectively computes the dot-product between light
and gradient (which approximates the surface normal). This dot-product is proportional to the
diffuse reflection according to Lambert’s Law.

Westermann [135] also describes an alternative technique for shaded iso-surface rendering with-
out explicit pre-computation of the gradient. Instead, the diffuse lighting term is computed by
approximating a directional data derivative in direction of the light source with forward differ-
ences. These can be computed with frame-buffer arithmetic. Again, RGB tuples are interpreted as
spatial vectors. In this case, however, color corresponds to the position of the surface points rather
than to the gradient. The key tool for the actual shading calculation are pixel textures. They allow
to use the RGB(A) color values of a pixel to be used as lookup indices into a three dimensional
texture map. By rendering the image that contains the surface positions twice, the second time
adding a small bias in light direction, the above mentioned directional derivative can be computed.
The blend function has to be chosen so that the images are subtracted from each other.

Further extensions that are described in [135] are arbitrary clipping geometries implemented using
the stencil test, rendering of data on spherical domains using pixel textures, and volume rendering
of data on unstructured grids.

In summary, volume rendering using texture hardware has become a standard technique. It is fast,
all newer graphics boards have texturing capabilities, many of them support three dimensional
textures, and using the above described or similar methods, advanced effects can be achieved.
Two problems which remain are the still limited amount of texture memory on many graphics
boards and the lack of fast Phong-shaded multi-light source volume rendering. Both problems can
be overcome using dedicated volume rendering hardware. MERL has developed a single-chip-
based real-time volume rendering PCI board [100]. The authors reported a performance of 30
frames per second for a full Phong shaded volume rendering of 2563 voxel data sets. A newer
generation board, the VolumePro 1000, now distributed commercially by TeraRecon Inc., supports
rendering of data sets up to 2GB at interactive speed.

3.3 Visualizing Graphs and Lines

The next type of data to be visualized in the course of this work are lines or graphs. These are used
to represent the dendritic tree of neurons or networks of vessels. Although rendering lines appears
to be easy to achieve, the user gets confronted with serious problems when attempting it: On most
common graphics workstations lines either have to be displayed using flat-shaded line segments,
impairing the spatial impression of the image, or they have to be represented by polygonal tubes,
strongly limiting the number of lines that can be displayed in a scene. In this section we describe
an appropriate method for illumination of these lines and a way how to implement this model
in a hardware accelerated way on standard graphics hardware. We have originally presented this
method in the context of rendering field lines for vector field visualization [151].

It is a well-known fact that quality and realism of computer generated images depend to a high
degree on the accurate modeling of light interacting with the objects in a scene. Shading effects
are perhaps the most important cues for spatial perception. Consequently, much research has been
performed to develop realistic illumination and reflection models in computer graphics. A widely

22

used compromise between computational complexity and resulting realism is Phong’s reflection
model described above (Equation (3.1)) which assumes point light sources and approximates the
most important reflection terms by simple expressions [101]. Traditionally, this model is applied
to surface elements. Today many graphics workstations offer hardware support for this kind of
illumination.

The shading model can also be generalized to line primitives in R
3. In the following we will make

direct use of such a generalization. However, on current graphics workstations there is no direct
hardware support for display of Phong-shaded line primitives. We achieve a fast and accurate illu-
mination of line segments by exploiting texture mapping capabilities of current graphics hardware.
Applying this new shading technique interactive frame rates can be achieved even for scenes with
a large numbers of line segments. Taking light reflection on line primitives into account increases
significantly spatial impression of the resulting images, and therefore is of particular significance
for scientific visualization.

In scientific visualization the goal is not to render natural scenes in a photo-realistic way, but to
generate images which provide maximal insight into numerical or experimental data. Neverthe-
less, shading effects are at least as important for the spatial interpretation of artificial images as
in traditional computer graphics. Shading provides the observer with a minimum of realism in a
world of cutting planes, isosurfaces, and symbols. Unfortunately there are a number of visualiza-
tion techniques which are not based on surface primitives, and which therefore cannot make direct
use of the hardware shading capabilities of current graphics workstations. As an example consider
the various volume rendering techniques described above. While interactive frame rates can be
achieved for simple emission-absorption models by exploiting graphics hardware, in general this
is not yet possible if some sort of gradient dependent shading is included. Although rendering of
line primitives is not as complex as volume rendering, the situation is similar. Traditionally, either
flat shading has to be used or significant parts of the illumination calculation have to be computed
without support by dedicated hardware.

After discussing illumination of line primitives in more detail, we show in Section 3.3.2 how it
can be implemented using texture mapping techniques. In Section 3.3.3 we describe several visual
extensions and enhancements, like use of color, transparency, and depth cueing.

3.3.1 Illumination of Lines in R
3

Surfaces can be characterized locally by a distinct outward normal vector N . This normal vector
plays an important role when describing the interaction of light with surface elements. One popular
reflection model is the Phong model given by Equation (3.1). The Phong equation applied to
surfaces describes diffuse reflection by the dot product between surface normal and incident light
direction. Specular reflection is modeled by the n-th power of the angle between reflection vector
and view direction.

Let us now consider line primitives. In this case we can no longer define unique normal and
reflection vectors. Instead, there are two-dimensional manifolds containing infinitely many pos-
sible normal and reflection vectors. Mathematically lines in R

3 are said to have codimension 2.
Fortunately common surface reflection models can be generalized to higher codimensions in a
straightforward way. These generalizations have been discussed in detail by Banks [6]. For lines
in R

3 the results are quite obvious. From all possible normal vectors we simply have to select the

23

L

V

R
RN

T

normal space

Figure 3.9: For line primitives there are infinitely many possible reflection vectors R lying on a cone around
T . For the actual lighting calculation we choose the one contained in the L-T -plane.

T

L

LT

LN

normal space

Figure 3.10: The light vector L can be decomposed into two orthogonal components LT and LN corre-
sponding to the projection on the line’s tangent and normal space, respectively.

one which is coplanar to the light vector L and the tangent vector T . Taking this particular normal
vector we compute the diffuse reflection term as for surfaces using Equation (3.1). Likewise, from
all possible reflection vectors we choose the one coplanar to L and T . Again, taking this partic-
ular reflection vector we use Equation (3.1) to compute the specular reflection term. The relevant
vectors for line illumination are illustrated in Figure 3.9.

Instead of relying on a specially selected and explicitly calculated normal vector we would rather
like to express diffuse light intensity for line segments solely in terms of L and T . Therefore,
we first project the light vector into the line’s normal and tangent spaces, yielding an orthogonal
decomposition L = LN +LT . As illustrated in Figure 3.10, by applying Pythagoras’ theorem we
obtain

L·N = |LN | =
√

1 − |LT |2 =
√

1 − (L·T)2. (3.12)

Using similar arguments we can express the inner product V ·R responsible for specular reflection
solely in terms of L, V , and T , i.e. without referring to N . First, observe that RN = −LN and

24

RT = LT . We therefore have

V ·R = V ·(LT − LN)
= V ·((L·T)T − (L·N)N)
= (L·T)(V ·T) − (L·N)(V ·N)
= (L·T)(V ·T) −√

1 − (L·T)2
√

1 − (V ·T)2. (3.13)

Here we have replaced L ·T by Equation (3.12). A similar expression has been used to rewrite
V ·T .

3.3.2 Rendering Illuminated Lines

Despite the fact that the illumination equation looks the same for lines and surfaces, use of standard
hardware shading techniques is impaired because for each new view or light direction a suitable
normal vector has to be computed without utilizing graphics hardware. In the following we show
how Eqs. (3.12) and (3.13) can be effectively evaluated using texture mapping capabilities of mod-
ern graphics hardware, thereby avoiding explicit normal vector computation. The technique allows
us to achieve high frame rates even when large numbers of line segments have to be rendered.

Texture Mapping

We assume to have a graphics API available similar to OpenGL. In this graphics library at each
vertex a homogeneous vector of texture coordinates can be specified. Usually the first components
of this vector are taken as indices into a one-, two-, or three-dimensional texture map. A texture
map may contain colors and/or transparencies which can be used to modify in various ways the
original color of a fragment in the graphics pipeline. In addition it is possible to change texture
coordinates using a 4 × 4 texture transformation matrix. This texture transformation is the key
feature which makes it possible to employ texture mapping hardware for shading calculations.

Diffuse Reflection

Looking at Equation (3.12) we note that the diffuse light intensity of a line segment is a function
of L·T only. Specifying a texture vector t0 equal to the line’s tangent vector T at each vertex, this
inner product can be computed in hardware using the following texture transformation matrix:

M =
1
2

⎛
⎜⎜⎝

L1 0 0 0
L2 0 0 0
L3 0 0 0
1 0 0 2

⎞
⎟⎟⎠

The first component of the transformed homogeneous texture vector t = t0M then evaluates to

t1 =
1
2
(L·T + 1).

25

Figure 3.11: Two-dimensional texture map used to implement Phong’s reflection model for line segments.
Parameter values are ka = 0.1, kd = 0.3, ks = 0.6, and n = 40.

Note, that t1 always lies in the range 0 . . . 1. Therefore, this value can be used as an index into
a one-dimensional texture map P (t1). The value of the texture map at location t1 is chosen such
that it resembles the diffuse light intensity corresponding to L·T = 2t1 − 1, namely

P (t1) = Idiffuse = kd

√
1 − (2t1 − 1)2. (3.14)

Using a texture mode which takes the color of a line fragment to be equal to its texture color P (t1)
we obtain an image which accurately shows line segments diffusely illuminated by a single point
light source. If the light direction changes we simply have to update the texture transformation
matrix. Vertices and texture coordinates of the line segments remain constant. This means that we
can make use of OpenGL display lists to further increase rendering speed. Display lists allow one
to specify multiple vertex and texture definitions using a single graphics library call.

Specular Reflection

The specular reflection term does not only depend on L·T but also on V ·T , as can be seen from
Equation (3.13). To compute this additional inner product we initialize the second column of the
texture transformation matrix with the current viewing direction:

M =
1
2

⎛
⎜⎜⎝

L1 V1 0 0
L2 V2 0 0
L3 V3 0 0
1 1 0 2

⎞
⎟⎟⎠

While the first transformed texture component remains the same, for the second component we
now get

t2 =
1
2
(V ·T + 1).

26

In order to obtain the correct light intensity corresponding to L·T = 2t1 − 1 and V ·T = 2t2 − 1
we use a two-dimensional texture map P (t1, t2). Adding a constant ambient term ka as well as the
diffuse contribution from Equation (3.14) we can perform the whole shading calculation for a sin-
gle light source in texture hardware. Figure 3.11 shows an example of a resulting two-dimensional
texture map. One can clearly identify the highlight appearing at different angle positions on top
of a diffuse background. If no highlight were present color would not depend on the viewing
direction V , as stated by Lambert’s law.

It is worthwhile to note that there is an important special case, which allows one to use a one-
dimensional texture even when specular reflection is present. This is the case of a headlight, i.e. a
point light source located at the same position as the camera. In this case light vector and viewing
vector are identical. Equation (3.13) simplifies to

V ·R = 2(L·T)2 − 1.

Headlights are quite useful because they always guarantee an adequate illumination of the scene,
irrespectively of the actual viewing direction. The user has not to bother with a tedious setup of
light conditions. However, as will be shown later, also situations occur where other light positions
are favorable.

Of course it is also possible to use the third column of the texture transformation matrix to com-
pute an additional inner product. This would require the use of a three-dimensional texture map.
Three different inner products would allow the illumination of lines by two point light sources lo-
cated at arbitrary positions including specular reflection. Alternatively, one might discard specular
reflection and instead introduce a third purely diffuse illuminating light source.

Excess Brightness

Banks [6] pointed out that there is a general problem when illuminating objects with codimension
> 1. The overall intensity of an image increases and becomes more uniform, thus disturbing
spatial perception. In case of lines in R

3 this can be understood by the following consideration:
We know that the normal vector is not a constant one, but is given by the projection of the light
vector into the line’s normal space. Choosing such a vector means minimizing the angle between
light vector and normal. Therefore, in general the angle between these two vectors is smaller
compared to the case of a fixed normal. This results in a more uniform brightness than we are
used to perceive in real world. As suggested by Banks, we compensate the effect qualitatively by
exponentiating the diffuse intensity term:

Îdiffuse = kd (L·N)p (3.15)

In [6] a value of p = 4.8 was proposed. For the images in this paper we have used a value of
p = 2, which produced nicer results.

3.3.3 Visual Enhancements

There are a number of ways to enhance and modify the rendering of field lines as discussed in
Section 3.3.2. With color coding it is possible to depict an additional scalar quantity. Transparency
can either be used to draw anti-aliased line primitives, to highlight particular regions in space.

27

Color

Color coding is a common method in visualization. Applying color to individual lines enables us
to depict some additional scalar quantity. Ideally we would like to modify the curve’s ambient
and diffuse color components according to a given color lookup table. However, in our case color
is directly taken from a texture map. Since we use the same texture map for all field lines it is
not possible to set these components locally in a straight-forward way. Nevertheless, by using
an alternative texture mapping mode it is possible to modulate, i.e. multiply, texture color with
the object’s base color. The latter can be defined for each vertex separately. This yields the
desired effect with the restriction that also the specular highlight gets colored instead of remaining
constant. In practice this has proven to be only a minor limitation.

Transparency

Transparency is a powerful concept which can be utilized in a number of ways. How-
ever, it requires geometric primitives to be rendered in a depth-sorted way. We will first discuss
some applications of transparency, before we describe how to deal with the depth-sorting problem.

Anti-aliasing. Lines on a raster display may appear rather jagged, if a binary scan-conversion
algorithm is used. These alias effects can be suppressed effectively by rendering pixels which
are covered only partially by a line with an opacity proportional to the actual amount of overlap.
This causes the final pixel color to be a mixture of the line’s color and the color of the underlying
object. Anti-aliasing of lines is directly supported in OpenGL. It improves image quality
significantly. Jags tend to appear at different locations in successive frames with slightly different
view directions. Since this is quite disturbing anti-aliasing is even more important for interactive
applications and animations.

Highlighting. Transparency can be used to highlight important features of a scene. As with
color in our application we can use an independent scalar field to define the transparency of a line
at each vertex. Also drawing lines semi-transparently, allows us to depict a line thickness in the
sub-voxel range.

Depth sorting. Drawing a transparent pixel of opacity α and color C causes the current color in
the frame buffer to be updated according to

Cnew = (1 − α)Cold + αC. (3.16)

In general if multiple transparent objects are present the final color depends on the ordering of
the individual objects. Correct results are obtained using a back to front traversal. The situation
is simplified if all objects are of equal color C. In this case all traversal orders yield the same
result. This has been exploited by Max, Crawfis, and Grant [84], who applied flat shaded line bun-
dles for vector field visualization. However, for illuminated lines color isn’t constant. Therefore,
individual lines have to be rendered in a depth-sorted way.

28

Figure 3.12: Shaded rendering of lines. The left two images compare flat shaded lines (i) and properly
illuminated lines (ii). Especially when the line density is high, spatial structure is almost entirely perceived
via the shading. Also for less dense images, like the dendritic tree of a neuron in the right two images, the
shading (iv) improves perception, especially via the changing highlights when rotating the object (which is
not visible in the static images depicted here of course).

In general it is impossible to achieve an exact depth ordering for extended curves in 3D, because
mutual coverings may occur. Therefore, we split each line into many small line segments, which
are sorted and rendered individually. To avoid resorting line segments each time the view direction
changes, we use the following simplified algorithm: Three lists of pointers to field line segments
are created. The lists are sorted in order of increasing x-, y-, and z-coordinates, respectively.
During rendering the list that most closely resembles the viewing direction is traversed, either
from back to front or from front to back. Although this method is not exact, it produces excellent
results which can not be distinguished visually from the exact images. Experiments have shown,
that typically only about 1% of all pixels receive slightly incorrect color values.

3.3.4 Results

We have presented a method for the illumination of lines and shown how it can be implemented
efficiently in graphics hardware. With this method it is possible to render lines with proper illu-
mination without performance degrade. Line illumination significantly improves expressiveness
of the resulting images in many cases. Examples are shown in Figure 3.12. The shading also
improves image quality when line and surface models are combined, as in Figure 5.7.

3.4 Enhanced Transparency

The fundamental problem when visualizing a volumetric data set with surfaces that have been
extracted from the data set is occlusion. An outer surface like the skin in a medical data set will
inhibit the perception of all inner organs. A way to tackle this problem is the use of transparency.

Although there are many interesting applications of transparency in computer graphics and visu-
alization, the results of using transparency on standard polygon-based rendering systems often are
quite disappointing. Especially when the transparency is large (opacity alpha in the range of 0.1
to 0.3), the object’s shape is hard or nearly impossible to perceive. The impression of such images
is often that of a thin slab, instead of a three dimensional object, as we will see in the Figure 3.14.

29

The key observation is that transparent objects are mainly perceived by the attenuation of objects
(or background pattern), which are placed behind them. Although there have been some early
works [Gb78], in which the amount of transparency has been modulated in a view dependent
way, standard polygon based rendering environments assume the transparency to be a constant
material property. Then of course the attenuation only depends on the number of triangles that lie
between the observer and a particular background point (for closed convex objects this number is
always two). Therefore, the attenuation only displays the object’s contour, but not its full three
dimensional shape.

The shape of opaque objects is perceived through the spatial variation of its color by lighting
models. When transparency is assigned to the model, this color typically is multiplied by a factor
α, called opacity, before a pixel is combined with the background. For larger transparency values
α becomes smaller and at the same time the absolute intensity variations become smaller. The
observation is, that for typical α-values like α = 0.1...0.3 the intensity variations do not suffice to
provide a good three dimensional shape perception.

In the following we will show how the problem can be solved, by introducing a view dependent
transparency term. This improves both: shape perception as well as quality and realism of the
resulting images. The proposed model is easy to implement and it will be shown that all addi-
tional calculations can be implemented in a fully hardware accelerated way on standard OpenGL
graphics hardware.

Section 3.4.1 explains why such an approach is quite natural and derives some mathematical ex-
pressions. Section 3.4.2 describes the implementation on OpenGL-like APIs, and discusses per-
formance issues. It will be shown how texture hardware can be exploited to completely avoid
performance drawbacks.

3.4.1 The Physical Model

Light traveling through a non-opaque medium is influenced in several ways. The most important
effects are emission, absorption, and scattering. In the following we will focus on emission and
absorption.

Absorption

The amount of light absorbed at a particular point will in general be a function of the total light
intensity I(x) and the material properties at that point. This can be expressed by

dI

dx
= f(x, I(x)) (3.17)

Often it is justified to assume f to be linear in I . Then equation (3.17) becomes

dI

dx
= −κ(x)I(x), (3.18)

where κ(x) is the so called absorption coefficient. For many cases κ(x) is constant within one
material.

30

In this case equation (3.18) can be solved to be:

I(x) = I(0)e−κx (3.19)

In other words: The light ray passing through a layer of thickness d is attenuated by a factor

θ = e−κd. (3.20)

θ is called the transparency of this layer. Note that d is the materials’ extend in the light ray’s
direction. If the view direction is not perpendicular to the surface, then d is to be chosen as

d(φ) =
d0

cos φ
,

where φ is the angle between the surface normal and the view direction, and d0 is the layers
original thickness. Introducing the surface normal N and the view direction V into Equation
(3.20), we obtain

θ(V ·N) = e
−κ

d0
|V ·N | .

or with θ0 ≡ e−κd0 :

θ(V ·N) = θ
1

|V ·N |
0 . (3.21)

Emission

In addition to the attenuation of light by absorption, the material can add light to the beam. If
the light source density at a particular point emitting in direction of the observer is given by q(s),
then using the above results, we find that the intensity of emitted light, leaving the material after
thickness d is

Ie(d) =
∫ d

0
q(x′)e−κ(d−x′)dx′

The factor e−κ(x−x′) takes into account that the light emitted at a particular point is partly absorbed
again on its following way. For a layer of thickness d with constant light emission density viewed
under a certain angle, using the notation and results from above, we get:

Ie(d) =
q

κ

(
1 − e−κd

)

Ie(d) =
q

κ
(1 − θ) (3.22)

Reflection

In addition to the effects described above, transparent surfaces can reflect light that originates from
a light source and directly strikes the surface. In a lighting model like Phong’s model diffuse and
specular reflection are distinguished. The diffuse reflection term describes the light reflected back
after multiple scattering events within the material, while the specular reflection is a surface effect.

31

Since in transparent object’s a certain amount of light passes through the object instead of get-
ting scattered back, it is justified (and quite common) to decrease the amount of reflected light
proportionally when adding transparency to a material.

For the specular reflection it is not obvious why a transparent object should have a less bright
highlight. Think of a glass-like material. On the other hand in visualization transparency is often
used to reduce the overall visibility of an object. In this case a fully transparent object would be
expected to be completely invisible. There is no general rule to what the most correct or most
useful settings are. Some results for different parameters will be shown at the end of this section.

Summary

The most important observations from the above equations are, that

(a) the transparency of a layer of absorbing material is proportional to the length of the way a
light beam has to pass through the material on its way from a light source to the eye of the
observer.

(b) This transparency is view dependent.

(c) The absorbed, emitted, and reflected light intensities vary as a function of transparency.

3.4.2 Implementation

In this subsection we describe how these results can be implemented with standard polygon ren-
dering systems, like an OpenGL capable graphics board.

We also present a way to perform the view dependent calculations using the texture hardware.
This makes it possible to achieve the same frame rates as with non-view dependent transparency.

Blending

Putting the equations from subsection 6.2.1 together, we obtain what often is called blending.
Assume that the transparency of a surface at a particular point is θ and it’s light intensities resulting
from the Phong-lighting model are Idiffuse and Ispecular. If the light intensity originating from
objects behind this surface is IBackground, then the light that strikes the observers eye will be:

IResult = θIBackground + (1 − θ)
(q

κ
+ Idiffuse

)
+ Ispecular (3.23)

or
IResult = θIBackground + (1 − θ)

(q

κ
+ Idiffuse + Ispecular

)
. (3.24)

If θ is given, Equation (3.24) can be evaluated directly by the graphics hardware, since it is possible
to blend an objects color (the expression in brackets) with the background, i.e. to compute a
weighted average with weight θ.

In case of Equation (3.24) the highlight gets attenuated also. If this is not desired, Equation
(3.23) should be used instead. In this case the highlight is added to the pixel after the blending

32

operation. This can either be implemented using a multi-pass technique, or it can be approximated
by rewriting (3.24):

IResult = θIBackground + (1 − θ)
(q

κ
+ Idiffuse

)
+ Ispecular

= θIBackground + (1 − θ)
(

q

κ
+ Idiffuse +

Ispecular

(1 − θ)

)
(3.25)

Although the identity (3.25) is exact, clipping problems will occur especially if (1− θ) gets small.
This is due to the fact that many OpenGL implementations only allow a limited range for Ispecular

that could be exceeded by Ispecular

(1−θ) .

Apart from this potential problem, the implementation of this view-dependent transparency model
is straight forward. For each vertex equation (3.21) has to be evaluated, to compute the trans-
parency value for the current view at that vertex. Furthermore it has to be assured, that polygons
are drawn in a depth sorted way, as discussed for transparent lines in section 3.3.3. Due to the term
V · N Equation (3.21) has to be reevaluated whenever the view direction changes, i.e. when the
object is rotated.

Hardware Accelerated Implementation

To accelerate the repeated evaluation of a function for input parameters from a given interval, the
function can be approximated by a lookup to a precomputed table of function values, potentially
combined with a linear or higher order interpolation scheme. Though originally designed for a dif-
ferent purpose, texture hardware present in all modern graphics systems can be used to implement
this lookup and a linear interpolation, similar to our method described in section 3.3:

When texture mapping is used, for each vertex of a polygonal model a vector of texture coordinates
is specified. The first components of these vectors are used to lookup color or transparency values
in a one-, two-, or three-dimensional texture map. The key feature for our application is the so
called texture transformation matrix, which is applied in hardware to the texture coordinate vectors
before the actual lookup is done.

These computations are performed with homogeneous coordinates. To compute the view-
dependent part in (3.21) we initialize the texture transformation matrix with the components of
the view direction V and use the surface normal as texture coordinate.

M =
1
2

⎛
⎜⎜⎝

V 1 0 0 0
V 2 0 0 0
V 3 0 0 0
1 0 0 2

⎞
⎟⎟⎠

The first component of the transformed homogeneous texture vector t = t0M then evaluates to

t1 =
1
2
(V ·N + 1). ⇒ V ·N = 2t1 − 1

The fourth row of the matrix M has been chosen like this to assure that t1 lies always in the range
0 . . . 1, so that it can be used as an index to a one-dimensional texture map. The texture map P
then is initialized by evaluating (3.21). It is illustrated in Figure 3.13:

33

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

tr
an

sp
ar

en
cy

�

texture coordinate

Transparency texture map

Base transparency 0.9

Figure 3.13: View dependent transparency for viewing angles -90 . . . 90 degrees.

P (t1) = θ
1

|2t1−1|
0 (3.26)

The texture map will be used to lookup the transparency for each fragment after the lighting
computation has taken place and before it is drawn to the frame buffer.

This way, the result from a standard OpenGL lighting step can be accomplished with an appro-
priate view-dependent and locally varying transparency. Two problems that remain are (i) the
highlight gets attenuated by the same amount as the diffuse color and (ii) it is not obvious how the
view-dependent emissive color can be specified.

For objects with constant material properties an elegant way to solve both problems is to not only
employ the texture hardware for the alpha computation but for the complete shading calculation.

With simple geometric considerations the reflection vector R in Equation (3.1) can be written as:

R = 2(L·N)N − L

⇒ R·V = 2(L·N)(V ·N) − V ·L (3.27)

We see that the color per vertex according to Equation (3.1) is a function of the two dot products
L·N , V ·N , and values that are constant within the whole scene. Initializing the texture transfor-
mation matrix with the two vectors L and V this dot products can again be computed in hardware
and be used as lookup to a two dimensional texture map:

M =
1
2

⎛
⎜⎜⎝

V1 L1 0 0
V2 L2 0 0
V3 L3 0 0
1 1 0 2

⎞
⎟⎟⎠

The second component of the transformed texture coordinate becomes then

t2 =
1
2
(L·N + 1)

⇔ R·V = 1 − 8t2 + 8t22 (3.28)

If a 2D texture P (t1, t2) is initialized with the Phong light model I(t1, t2) then the result of the
texture lookup can be directly used as final color value without any additional lighting computa-
tions.

34

Since the hardware will for each triangle first interpolate the texture coordinates (actually these are
the normal vectors in our case) and then do the lookup, we get a real Phong shading, as opposed
to Gouraud shading where the lighting calculation is performed per vertex and the resulting color
is interpolated.

An important special case is a so called head-light, where the light is assumed to be always in view
direction: L = V . In this case obviously a one dimensional texture is sufficient.

3.4.3 Results

In this section we have shown that transparency model provided by standard OpenGL yields un-
satisfactory results. We have proposed an improved transparency model and shown how it can be
implemented in hardware.

The per-view evaluation of the exponential function can be greatly accelerated by using pre-
computed tables. Texture hardware can be used to implement the computation of the table index
and the lookup. This yields an additional performance increase of about 15% (measured on an
SGI Onyx3400 with InfiniteReality3 graphics) to 30% (PentiumIII with Geforce2MX).

For constant colored objects the complete shading calculation including the view-dependent emis-
sion and a non-attenuated highlight can be implemented with the texture hardware. The OpenGL
lighting can then be switched off and no normals have to be sent into the pipeline. This yields
another 30%-40% of performance increase and very appealing images.

Figure 3.14 illustrates these results. It is obvious how much shape information is added by the
view dependent transparency compared to the standard case.

Even multiple nested objects can be perceived when the transparency is near 1 and still the shape
of the objects is visible. If the depth relation of the objects cannot be recognized directly from the
still image it will immediately be seen with an interactive rotation.

As we have pointed out earlier, interactive exploration of three dimensional scenes can greatly
increase the ease of perception compared to looking at still images. This is especially true for the
effects described in this section. Even the shape of a fully transparent object with a highlight as
the only evidence of existence can be perceived quite clearly when changing the view.

35

Figure 3.14: Shading is important to understand the shape of three dimensional objects as can be seen
by comparing image (i), which is not shaded and image (ii). If a high constant transparency is used, the
shaded intensity gets attenuated so that the visual shape information is significantly reduced again (iii). This
problem can be tackled by adjusting the transparency according to the apparent thickness of a layer (iv).
Adding unattenuated specular reflection can further increase understanding (v,vi).

36

