
Chapter 2

Concepts and Techniques

In this chapter we will briefly discuss some of the basic concepts that are of general relevance
for the following. Further details and definitions are given as they are needed in the respective
sections.

2.1 Digital Images

The primary data type we will have to deal with in this work are two- and three-dimensional
images. A continuous image is a scalar valued function

I2D : D2D ⊂ �2 → �, I3D : D3D ⊂ �3 → �

In the remainder of this section we will limit the discussion to two-dimensional images, since the
three-dimensional case is completely analogous.

The domains of images given in computer vision are almost always rectangular regions:

D = [x0 . . . x1] × [y0 . . . y1]

A digital image is a discrete approximation of the continuous function. It is given as a set of
function values defined on a grid. The grid is typically a rectangular hexahedral grid, often with
uniform grid spacing.

D̂ = {(xi, yj) ∈ �2| xi = x0 + i∆x, i = 0 . . . Nx − 1 (2.1)

yi = y0 + j∆y, j = 0 . . . Ny − 1}.

In order to formulate algorithms that process digital images, a proper interpolation method has to
be chosen. A frequently used interpolation scheme is the piecewise constant interpolation, where
the image looks like a regular assembly of little square tiles (cf. 2.1). These are called pixels,
which is short for picture elements, or voxels for volume elements in the three dimensional case.
The common use of piecewise constant interpolation leads to a common overlooking of the real
nature of a digital image. Alvy Ray Smith fights against this misinterpretation in his article A Pixel
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Figure 2.1: Comparison of different interpolation schemes in a digital image (at low resolution for demon-
stration purpose). The first image uses piecewise constant interpolation. The second image shows the same
data set with bi-linear interpolation. The image looks much smoother and more natural. On the other hand
the visual information about the sampling resolution is lost: It is not distinguishable whether the blur stems
from the smoothness of the continuous signal or the low sampling frequency. The two right images are
close-ups of slices that have been extracted from the three dimensional data set in a direction not orthogo-
nal to one of the major axis. While for the left of the two images tri-linear interpolation was used, the right
data set uses an approximation of the sinc-function as filter kernel. The difference may be harder to see in
the printed version than in the online document, but in the right image some of the details are preserved
noticeably better than in the left one.

is Not a Little Square, . . . [119], which is worth reading as an introduction to this subject. In the
following, however, it will become clear in which cases it makes sense to display pixels as little
squares and that sometimes for a user a pixel indeed is a little square.

Instead of the grid point in the digital image domain or the sample value at that point, the term
pixel (voxel) is often used to refer to the rectangular (cuboidic) region that is composed by all
points nearest to such a grid point, i.e. the cell of the dual grid. This is the definition that we
prefer. The grid point is referred to as the center of the pixel. The image value at a location within
such a pixel is determined by the interpolation scheme.

Beside constant interpolation, one of the most commonly used interpolation scheme is (tri-)linear
interpolation. The image value at a location �p = (px, py) is computed as follows: Let (i, j) be
given such that

xi ≤ px < xi+1, yj ≤ py < yj+1

Let �u be the relative location within the grid cell:

ux =
px − xi

xi+1 − xi
, uy =

py − yi

yi+1 − yi
.

Then the interpolated value is given by

Ilin(�p) = (1 − uy) ((1 − ux)I(xi, yj) + uxI(xi+1, yj)) +
uy ((1 − ux)I(xi, yj+1) + uxI(xi+1, yj+1)) . (2.2)

In Figure 2.1 we can see that linear interpolation leads to a smoother and more natural appearance
of the images. However, it also hides resolution information, therefore it has to be carefully
decided when to use it. Details are given in the figure caption. Note that the efficient use of an
interpolation scheme for display purpose requires consideration of the output device resolution.
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If we recall the initial definition of a continuous image and the interpretation of a digital image as a
sampling of that continuous function, a different interpolation scheme can be derived. According
to the Nyquist sampling theorem, a continuous function can be fully reconstructed from a discrete
sampling if the sampling frequency is at least twice the largest frequency occuring in the signal. If
a lower sampling frequency is chosen, aliasing artifacts can occur [102]. With the assumption that
the continuous function represented by a digital image was band-limited in this way, this function
could be reconstructed from the samples and evaluated exactly. For the one-dimensional case and
if x0 = 0 this is done with:

Irecon(x) = ∆x

Nx−1∑

i=0

I(xi)
sin (2π(x − i∆x)/(2∆x))

π(x − i∆x)
(2.3)

We can see that Equation (2.3) is essentially a discrete convolution with the sinc function
sin(x)/x. This function has infinite support but its value is bounded by 1/x. Therefore, it can
be reasonably approximated with a finite filter kernel. This leads to interpolation schemes which
are slower but more accurate than linear interpolation. Results are shown in Figure 2.1. Note that
the subtle differences can be seen better in the electronic version of this paper than in the printed
version.

2.2 Data Acquisition

A complete description of three dimensional image acquisition techniques is not in the scope of
this work. We will limit ourselves to mention the most relevant types for our work and the specific
properties of corresponding data sets.

The most important acquisition technique for this work is confocal laser scanning microscopy
(LSM) [115]. If a thick specimen is put under a conventional light microscope it is possible to
focus to different depths. Nevertheless, light from the out-of-focus planes will enter the detectors.
A confocal microscope has additional pin-holes which avoid this. Only light from one specific
point can enter the eye. In addition, a laser excites only a small region in the specimen. The
principle of an LSM is explained in figure 2.2. The optical resolution in the axial (z) direction is
not the same as the lateral one. Depending on the numerical aperture of the used objective it is at
least 2 to 5 times lower in axial direction. This effect complicates the data treatment significantly.

Another practical problem is due to the relationship of an objective’s resolution and the field-of-
view. The better the resolution is, the smaller is the part that can be recorded. In lateral direction
this limitation can partly be overcome by mechanically shifting the specimen with a motor-stage,
record several bricks and later assemble the mosaic to one large data set.

An LSM recording requires that the recorded tissue is fluorescent, i.e. that light is emitted when
the tissue is excited with a laser. Since in general this is not the case the specimen has to undergo
a staining procedure. For studying the anatomy of insect brains it was desirable to develop a
histological procedure which uniformly labels the neuropil of a complete brain, which is not trivial,
since whole brains are relatively thick. K. Rein has developed a specific two-antibody method
[105]: The primary antibody (nc82) recognizes a specific antigen in the fly brain, the second is
conjugated with a fluorescent dye and recognizes the first antibody. Details are given in [105]. A
similar procedure is used by R. Brandt for honey bees.
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Figure 2.2: Principle of a confocal microscope: Due to a pinhole the exciting laser illuminates only a small
part of the specimen. A pinhole in front of the detectors assures that only light from one specific point
reaches the detector. The point of excitation and the point of detection coincide; they lie in the same focal
plane, they are confocal. The microscope is steered by a computer that scans the entire specimen in x,y,
and z direction. Image modified from Leica [87].

This way structures formed by the neuropil-tissue can be imaged. Here neuron cells are not re-
solved individually. Especially in the honeybee brain it is also possible to individually identify and
record some of the bigger neuron cells: In an experimentally demanding procedure an electrode
is introduced into the cells’ primary neurit in a living individual. The electrode can be used to
measure the animals response to stimuli. Then a fluorescent dye is injected into the neuron, and
after preparation the morphology of the neuron can be recorded.

A general problem with fluorescent dyes is bleaching. The intensity of the exiting laser light
destroys the dye molecules. Therefore, only a very limited exposure time can be used. This often
leads to a very low signal-to-noise ratio, especially in regions of thin structures with small dye
concentration.

Three dimensional image volumes can also be recorded with conventional light microscopes, by
shifting the focus plane through the specimen, e.g. with a motorized z-stage. The out-of-focus
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light that blurs the image can then partially be removed using deconvolution algorithms [46].

Deconvolution tries to inverse the error introduced by the imaging process. The error can be
modeled as a convolution of the original object’s signal with the microscopes transfer function,
the so called point-spread-function. Under certain conditions Deconvolution can also be used
in confocal microscopy to increase the resolution of the recorded images. For further details of
deconvolution we refer to [45, 129].

Other important techniques for this work are computer tomography (CT) and magnetic resonance
imaging (MRI) [68]. The spatial resolution of these methods is not yet good enough for them to
be used for insect brain anatomy, but they are standard techniques for vertebrate brain research
and some first experiments with MRI imaging insect brains have been undertaken.
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