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2.1.3 Erdős–Ko–Rado for sparse Kneser subgraphs . . . . . . . . . . . . . . 9

2.2 The removal lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Independence number of random Kneser subgraphs . . . . . . . . . . . . . . . 15

2.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
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guiding me towards interesting and fruitful problems, for teaching me how to write papers

and how to give talks, and for not giving up on me. To my mentor, Günter M. Ziegler, thank

you for your time and precious advices.

This work would not have been possible without the support of the Research Training

Group “Methods for Discrete Structures” (GRK 1408) and the Berlin Mathematical School.

In particular I am thankful to Dorothea Kiefer for always answering my questions and helping

me with various bureaucratic issues.
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I am thankful to Józsi for inviting me to work with him and his students at UIUC, Hong

and Maryam, to make my time in Illinois so fruitful and special.

I would like to express my warmest thanks to my friends Anh, Bum, Diep, Dũng, Huyen,
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Chapter 1

Introduction

Extremal Combinatorics is one of the central branches of discrete mathematics and has de-

veloped spectacularly over the last few decades. It has lots of intriguing connections and

important applications in various areas such as theoretical computer science, operations re-

search, discrete geometry, probability theory and number theory.

Extremal Combinatorics studies how large or how small a structure can be, if it does

not contain certain forbidden configuration. One of its major areas of study is extremal set

theory, where the structures considered are families of sets, and the forbidden configurations

are restricted intersection patterns. A fundamental result in this direction is the Erdős-

Ko-Rado theorem [37] which determines the maximum size of uniform intersecting families.

Another central area is extremal graph theory, in which the structures being studied are

graphs, and the configurations to be avoided are given subgraphs. A basic result in this area

is Turán’s theorem [94], which gives the maximum number of edges in graphs with no copy of

a given clique. Inspired from these theorems, countless extensions and variations have been

developed. We shall discuss some of them in subsequent chapters.

One of the very active areas of research related to popular recreational games (e.g. Tic-

Tac-Toe and Hex) is positional games. It enjoys fruitful interconnections with other combina-

torial disciplines such as Ramsey theory, probabilistic combinatorics, and theoretical computer

science. In the most general form, a positional game is a perfect information game described

by a finite set of positions (the board) and by a family of subsets of the board (winning sets).

Two players then alternatively claim previously unclaimed positions until they fully occupy

the board. Different types of positional games are characterised by (different) rules that are

used to determine the winner.

In this dissertation, we focus on various aspects of extremal combinatorics, including
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positional games, as well as the employment of the spectral method and the stability approach

to study extremal problems. In the following, we shall briefly overview the topics that will

be covered in the dissertation.

1.1 Removal and stability for Erdős-Ko-Rado

For positive integers n and k with 1 ≤ k ≤ n, let [n] denote the set of the first n natural

numbers and let
([n]
k

)
denote the family of all k-element subsets of [n]. A subfamily of

([n]
k

)
is

said to be intersecting if it does not contain a disjoint pair of sets. It is natural to ask how

large such a family can be. When n < 2k, there are no two disjoint sets, and so
([n]
k

)
is the

maximal intersecting family. When n ≥ 2k, a trivial construction is to take all sets containing

some fixed element i ∈ [n]. This intersecting family contains
(
n−1
k−1
)

sets which turns out to be

the best possible due to Erdős, Ko and Rado [37].

A recent trend in extremal set theory is to go beyond the Erdős-Ko-Rado threshold and

study the structure of families that need not to be intersecting, but contain few disjoint pairs.

In this direction, Friedgut and Regev [49] proved a general removal lemma, showing that

when k = cn for some constant 0 < c < 1
2 , a subfamily of

([n]
k

)
with few disjoint pairs can

be made intersecting by removing few sets. One of our main contributions in this chapter

is to provide a simple proof of a special case of this theorem, when the family has size close

to
(
n−1
k−1
)
. However, our theorem holds for all 2 ≤ k < n

2 and provides sharp quantitative

estimates.

The Kneser graph K(n, k) is the graph with vertex set
([n]
k

)
such that two vertices are

adjacent if they are disjoint. For p = p(n, k) ∈ [0, 1], let Kp(n, k) be the graph obtained

from K(n, k) by retaining each edge of K(n, k) independently with probability p. Clearly,

independent sets in K(n, k) are nothing but intersecting families in
([n]
k

)
. Thus, the Erdős-

Ko-Rado theorem can be restated saying the maximum size of independent sets in K(n, k)

is α(K(n, k)) =
(
n−1
k−1
)
. As Kp(n, k) ⊂ K(n, k), we must have α(Kp(n, k)) ≥ α(K(n, k)) =(

n−1
k−1
)
. Bollobás, Narayanan and Raigorodskii [15] asked to determine p for which the equality

α(Kp(n, k)) =
(
n−1
k−1
)

holds. In this chapter we use our removal lemma to answer their question

for k = o(n), and provide strong bounds on the critical probability for k ≤ n−3
2 .

The results of this chapter is joint work with Shagnik Das [25].
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1.2 Erdős-Rothschild problem for intersecting families

One of the fundamental results in graph theory is the theorem of Turán, proved in 1941, which

initiated the development of Extremal Graph Theory. Basically, it states that the largest Kk-

free graph on n vertices is (k − 1)-partite. Thirty three years after the birth of Turán’s

theorem, Erdős and Rothschild [36] proposed a novel twist to the theorem: they asked for the

maximum number of edge-colourings (not necessarily proper) of an n-vertex graph avoiding

monochromatic copies of Kk, and wondered whether it would lead to extremal configurations

that are substantially different from those of Turán’s theorem. Substantial progress have been

made on this problem over the past decade. For more detail on what has been done, we refer

the reader to [84] and the references therein.

A problem with the same flavour has been addressed by Hoppen, Kohayakawa and Lef-

mann [62] in connection with the Erdős-Ko-Rado theorem. It can be stated as follows: given

a set family F , a (r, t)-colouring of F is a map from F to [r] associating a colour with each

element of F with the property that each colour class is a t-intersecting family. We write

c(F , r, t) for the number of (r, t)-colourings of F , and let

c(n, k, r, t) = max{c(F , r, t) : F is a k-uniform family on [n]}.

When k, r, t are fixed and n is sufficiently large, Hoppen, Kohayakawa and Lefmann deter-

mined the exact value of this function and the corresponding extremal families. In particular,

they showed that when r ∈ {2, 3} and k, t are fixed, all extremal families are stars, thus

implying stars are also the largest t-intersecting families. In Chapter 2, we allow k, r and t to

grow as functions of n. We also address the problem in other settings, including permutations

and vector spaces.

The results of this chapter is joint work with Dennis Clemens and Shagnik Das [20].

1.3 A Density Turán Theorem

Turán’s theorem [94] states that every graph G of edge density 2e(G)/v(G)2 > k−2
k−1 contains a

complete graph Kk and describes the unique extremal graph. The idea to study multipartite

version of this theorem goes back to a suggestion by Bollobás (see the discussion after the

proof of Theorem VI.2.15 in [12]). The first systematic investigations of this kind have been

carried out by Bondy, Shen, Thomassé and Thomassen [17]. In the case of triangles they

showed the following: let d`(K3) denote the minimum real number with the property that

any `-partite graph G contains a triangle as soon as every edge density between two vertex

classes of G is greater than d`(K3). Then, d`(K3) decreases to 1
2 as ` tends to infinity. Bondy
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et. al. also showed d3(K3) = −1+
√
5

2 ≈ 0.61, d4(K3) > 0.51, and speculated that d`(K3) >
1
2

for all finite `. Thus, it was a surprise when Pfender [85] managed to prove that actually

d`(K3) = 1
2 for all ` ≥ 13. He went on and showed that, for ` large enough, d`(Kk) = k−2

k−1 .

For a general graph H, he suggested d`(H) = χ(H)−2
χ(H)−1 for sufficiently large `. In Chapter 4

we clarify the situation, showing Pfender’s suggestion is not always true. In fact, we extend

Pfender’s idea to characterise all graphs H for which the equality d`(H) = χ(H)−2
χ(H)−1 holds for

` ≥ `0(H) sufficiently large. The proof of our characterisation is an application of the stability

method introduced by Simonovits [92].

The results of this chapter is joint work with Lothar Narins [81].

1.4 Keeping Avoider’s graph almost acyclic

Let b be a positive integer and let F ⊆ 2X be a hypergraph over a finite set X. In a strict

(1 : b) Avoider-Enforcer game F two players, called Avoider and Enforcer, alternately occupy

previously unoccupied elements of the so-called board X. Avoider occupies exactly 1 element

per move and Enforcer occupies exactly b vertices per move. In a monotone (1 : b) Avoider-

Enforcer game F in each turn Avoider claims at least 1 element of the board, where Enforcer

claim at least b elements of the board. In both games, if the number of unclaimed elements

is strictly less than b before a move of Enforcer, then he must occupy all of the remaining

free vertices. The game ends when every element of the board has been claimed by one of

the players. Avoider wins the game if he does not fully occupy a hyperedge of F ; otherwise

Enforcer wins.

From now on, each game can be viewed under two different sets of rules – the strict game

and the monotone game. Given a positional game F , for its strict version we define the

lower threshold bias f−F to be the largest integer such that Enforcer has a winning strategy

for the (1 : b) game on F for every b ≤ f−F ; and the upper threshold bias f+F to be the

smallest non-negative integer such that Avoider can win the (1 : b) game on F for every

b > f+F . In the monotone game, there exists a unique threshold bias fmon
F for which Enforcer

can win the (1 : b) game if and only if b ≤ fmon
F . Determining the order of magnitude of

these threshold biases is a central problem in Avoider-Enforcer games. This appears to be a

very difficult problem to solve in full generality, and a complete solution seems to be beyond

our current means. Nevertheless, in the case of Avoider-Enforcer non-planarity game, we

obtain essentially optimal bounds on the threshold biases, thus addressing a question and

substantially improving the results of Hefetz, Krivelevich, Stojaković and Szabó [55]. The

interested reader may wish to consult the book of Hefetz et al. [57] for recent progress in

Avoider-Enforcer games, as well as its standing challenges and open problems.
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The results of this chapter is joint work with Dennis Clemens, Julia Ehrenmüller and Yury

Person [21].

Each subsequent chapter will contain its own introduction where backgrounds and moti-

vations of the problems are discussed in more details. Any specific notation will be introduced

in the individual chapters, but below we collect the standard notation used throughout this

dissertation.

General notation

We use standard graph-theoretic notation and follow mainly the notation used in [13]. In

particular, a graph is a pair G = (V,E), where V is a finite set and E ⊆
(
V
2

)
is a subset of the

pairs of elements of V . The elements in V are called vertices, and elements in E are called

edges. Two vertices v, w ∈ V are said to be adjacent if {v, w} ∈ E.

Let a graph G be given. Then we denote by V (G) its set of vertices, and by E(G) its set

of edges. Their sizes are denoted with v(G) = |V (G)| and e(G) = |E(G)|. Given a subset

U ⊆ V (G) of the vertices, we write G[U ] for the subgraph of G induced by the vertices of U .

The common neighbourhood NG(U) of U is the set of all vertices of G that are adjacent to

every vertex in U . For every vertex v ∈ V (G) and every set A ⊆ V (G), the set of all vertices in

A adjacent to v is denoted by NG(v,A), and we write degG(v,A) = |NG(v,A)| for the degree

of v in A. The degree of v in G is dG(v) := degG(v, V (G)). By δ(G) we denote the minimum

degree of G, the smallest degree a vertex in G can have. For two vertex sets A,B ⊆ V (G),

we let eG(A,B) = |{(v, w) ∈ A×B : {v, w} ∈ E(G)}|. The edge density between two disjoint

sets A,B ⊂ V (G) is denoted by dG(A,B) := eG(A,B)
|A||B| . Further standard graph parameters we

shall use are the independence number α(G), the maximum size of a subset of the vertices

without edges; the chromatic number χ(G), the smallest number k such that the vertices can

be coloured with k colours so that no two vertices of the same colour are adjacent. Often,

when the base graph G is clear from the context we omit the subscript G.

For a, b, c ∈ R we write a = b± c if b− c ≤ a ≤ b+ c. In order to simplify the presentation,

we omit floors and ceilings and treat large numbers as integers whenever this does not affect

the argument.

The set {1, 2, . . . , n} of the first n positive integers is denoted by [n]. For k ∈ N, we define(
X
k

)
:= {A ⊆ X : |A| = k}. We use the symbol

⋃̇
for union of disjoint sets.

We make use of asymptotic notation throughout the thesis. Given two functions f, g :

N→ R, we write f = O(g) if there is a constant C > 0 such that f(n) ≤ Cg(n) for all n ∈ N.

If lim
n→∞

f(n)/g(n) = 0, we write f = o(g) and g = ω(f). Finally, unless stated otherwise all

logarithms are to the base e.
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Chapter 2

Removal and stability for

Erdős-Ko-Rado

2.1 Introduction

In this chapter we derive a removal lemma for large families, showing that families of size

close to `
(
n−1
k−1
)

with relatively few disjoint pairs must be close to a union of ` stars. We then

use this removal lemma to obtain a sparse version of the Erdős–Ko–Rado theorem.

We now discuss the Erdős–Ko–Rado Theorem and the history of these problems in greater

detail, before presenting our new results.

2.1.1 Intersecting families and stability

A family F ⊂
([n]
k

)
is said to be intersecting if F1 ∩ F2 6= ∅ for every F1, F2 ∈ F . The natural

extremal question is to ask how large such a family can be. When n < 2k, there are no two

disjoint sets, and hence
([n]
k

)
is intersecting. For n ≥ 2k, a natural construction is to take all

sets containing some fixed element i ∈ [n]. This family, called the star with centre i, contains(
n−1
k−1
)

sets, and Erdős, Ko and Rado [37] showed this is best possible.

Given the extremal result, great efforts have been made to better understand the general

structure of large intersecting families. Hilton and Milner [59] determined the size of the

largest intersecting family that is not a subset of a star, before Frankl [43] extended this to

determine the size of the largest intersecting family not containing too large a star.

In the years since these initial papers appeared, a series of stability results have been

obtained. Friedgut [47] and Dinur and Friedgut [27] used spectral techniques to show, provided
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k ≤ (12 − γ)n for some γ > 0, any intersecting family of size close to
(
n−1
k−1
)

is almost entirely

contained in a star. Keevash and Mubayi [69] and Keevash [68] combined these methods with

combinatorial arguments to provide similar results when k is close to 1
2n.

However, a recent trend in extremal set theory is to go beyond the Erdős–Ko–Rado

threshold and study set families that may not be intersecting, but contain few disjoint pairs.

Das, Gan and Sudakov [23] studied the supersaturation problem, determining the minimum

number of disjoint pairs appearing in sufficiently sparse k-uniform families. Furthermore,

a probabilistic variant of this supersaturation problem was introduced by Katona, Katona

and Katona [67], and further studied by Russell [89], Russell and Walters [90] and Das and

Sudakov [24].

Another direction that has been pursued is the transferral of the Erdős–Ko–Rado theorem

to the sparse random setting. This study was initiated by Balogh, Bohman and Mubayi [3],

who asked when the largest intersecting subfamily of a random k-uniform hypergraph is the

largest star. Progress on this problem has been made in subsequent papers by Gauy, Hàn and

Oliveira [51], Balogh, Das, Delcourt, Liu and Sharifzadeh [5] and Hamm and Kahn [52, 53].

An alternative version of a sparse Erdős–Ko–Rado theorem, which we shall discuss in greater

detail in Section 2.1.3, was introduced by Bollobás, Narayanan and Raigorodskii [15].

2.1.2 Removal lemmas for disjoint pairs

As these new problems go beyond the Erdős–Ko–Rado threshold, we require more robust

forms of stability that apply not only to intersecting families, but also to families with few

disjoint pairs. This motivated the search for a removal lemma that would show one can remove

few sets from any family with a small number of disjoint pairs to obtain an intersecting family.

Such a result would be the set-theoretic analogue of the graph removal lemmas that have found

a wide range of applications in extremal graph theory, details of which are in the survey of

Conlon and Fox [22].

Friedgut and Regev [49] proved the first such removal lemma, stated below.

Theorem 2.1.1 (Friedgut–Regev). Let γ > 0, and let k and n be positive integers satisfying

γn ≤ k ≤ (12 − γ)n. Then for every ε > 0 there is a δ > 0 such that any family F ⊂
([n]
k

)
with

at most δ |F|
(
n−k
k

)
disjoint pairs can be made intersecting by removing at most ε

(
n−1
k−1
)

sets

from F .

This is a very general result that holds regardless of the size or structure of the nearest

intersecting family. However, for extremal applications, one is typically interested in the case

when |F| ≈
(
n−1
k−1
)
. For example, Gauy, Hàn and Oliveira required such a lemma in [51],
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coupling Theorem 2.1.1 with known stability results to show that a family of size close to(
n−1
k−1
)

with few disjoint pairs must be close in structure to a star. They further asked if

such a result also holds for k = o(n). Our main theorem shows this is indeed the case.

Theorem 2.1.2 provides a removal lemma that holds whenever F has size close to a union of

` full stars and has relatively few disjoint pairs. Moreover, when ` = 1, this holds for the full

range of 2 ≤ k < n
2 .

Theorem 2.1.2 ([25]). There is an absolute constant C > 1 such that if n, k and ` are positive

integers satisfying n > 2k`2, and F ⊂
([n]
k

)
is a family of size |F| = (`− α)

(
n−1
k−1
)

with at

most
((

`
2

)
+ β

) (
n−1
k−1
)(
n−k−1
k−1

)
disjoint pairs, where max (2` |α| , |β|) ≤ n−2k

(20C)2n
, then there is a

family S that is the union of ` stars satisfying |F∆S| ≤ C((2`− 1)α+ 2β) n
n−2k

(
n−1
k−1
)
.

Another feature of Theorem 2.1.2 is that, despite its simple proof, it provides quantitative

control that is often sharp up to the constant. The distance from F to a union of ` stars is

measured in terms of its size (parametrised by α), the number of disjoint pairs (parametrised

by β), and how close k is to 1
2n. When ` = 0, taking β = 0 gives a stability result for

intersecting families, and the bounds sharpen those given by Keevash and Mubayi [69] and

Keevash [68].

For positive β, the bounds remain sharp up to the constant. If k is bounded away from
n
2 , then one may take a star and add α

(
n−1
k−1
)

sets from another star to obtain a family of size

(1 + α)
(
n−1
k−1
)

with α
(
n−1
k−1
)(
n−k−1
k−1

)
disjoint pairs that is α

(
n−1
k−1
)
-far from a star. On the other

hand, if t = n−2k = o(n), consider the anti-star
([n−1]

k

)
. This has size

(
1 + t

k

) (
n−1
k−1
)
, contains

approximately t
n

(
n−1
k−1
)(
n−k−1
k−1

)
disjoint pairs, and yet is approximately

(
n−1
k−1
)
-far from a star.

When ` ≥ 2, F is much larger than the Erdős–Ko–Rado bound, and hence we would

expect F to contain many disjoint pairs. Das, Gan and Sudakov [23] have shown that,

provided n is sufficiently large, a union of ` stars, which has approximately
(
`
2

)(
n−1
k−1
)(
n−k−1
k−1

)
disjoint pairs, minimise the number of disjoint pairs in set families of this size. Theorem 2.1.2

provides stability for this supersaturation result, showing that families of comparable size

with a similar number of disjoint pairs must be close in structure to a union of ` stars.

Finally, while we require n > 2k when ` = 1, we can do a bit better when ` is large: as `

tends to infinity, the bound on n can be lowered to n > (12 + o(1))k`2.

2.1.3 Erdős–Ko–Rado for sparse Kneser subgraphs

To demonstrate the usefulness of Theorem 2.1.2, we shall apply it to a problem of Bollobás,

Narayanan and Raigorodskii [15] regarding an extension of the Erdős–Ko–Rado theorem to

9



the sparse random setting. To define the problem at hand, we first need to introduce the

Kneser graph and its connection to the Erdős–Ko–Rado theorem.

Given integers 1 ≤ k ≤ 1
2n, the Kneser graph K(n, k) is defined on the vertex set V =

([n]
k

)
,

with two k-sets F,G ∈
([n]
k

)
adjacent in K(n, k) if and only if F∩G = ∅. Since edges of K(n, k)

denote disjoint pairs in
([n]
k

)
, it follows that independent sets of K(n, k) correspond directly to

intersecting families in
([n]
k

)
. Thus the Erdős–Ko–Rado theorem, viewed from the perspective

of the Kneser graph, shows α(K(n, k)) =
(
n−1
k−1
)

when n ≥ 2k.

Bollobás, Narayanan and Raigorodskii [15] transferred the Erdős–Ko–Rado theorem to

the random setting by considering not the entire Kneser graph K(n, k), but rather random

subgraphs of it. Given some probability 0 ≤ p ≤ 1, letKp(n, k) denote the subgraph ofK(n, k)

where every edge is retained independently with probability p. As Kp(n, k) ⊆ K(n, k), we

clearly have α(Kp(n, k)) ≥ α(K(n, k)) =
(
n−1
k−1
)
. They then asked for which p we have equality.

In their paper, they showed the Erdős–Ko–Rado theorem is surprisingly robust when k is

not too large with respect to n. In other words, we almost surely have α(Kp(n, k)) =
(
n−1
k−1
)

even for very small probabilities p (and thus very sparse subgraphs of K(n, k)). Furthermore,

they exhibited a sharp threshold for when this sparse Erdős–Ko–Rado theorem holds.

Theorem 2.1.3 (Bollobás–Narayanan–Raigorodskii). Fix ε > 0 and suppose 2 ≤ k =

o(n1/3). Let

p0 =
(k + 1) log n− k log k(

n−1
k−1
) .

Then, as n→∞,

P
(
α(Kp(n, k)) =

(
n− 1

k − 1

))
→

{
0 if p ≤ (1− ε)p0
1 if p ≥ (1 + ε)p0

.

Moreover, for p ≥ (1 + ε)p0, with high probability the largest independent sets are stars.

While observing that we may take ε = O(k−1), they conjectured that the result should

continue to hold provided k = o(n). Partial progress was made by Balogh, Bollobás and

Narayanan [4], who showed that for every γ > 0 there is some constant c(γ) > 0 such that if

k ≤ (12 − γ)n and p ≥
(
n−1
k−1
)−c(γ)

, then α(Kp(n, k)) =
(
n−1
k−1
)

with high probability.

By applying Theorem 2.1.2, we obtain sharper results for large k, as given in the theorem

below. For these larger values of k, it is convenient to present the critical probability in a

different form to that of Theorem 2.1.3; note that pc below is asymptotically equal to p0 above

when k = o(n1/2).

10



Theorem 2.1.4 ([25]). There is an absolute constant C > 0 such that the following holds.

Let k and n be integers with ω(1) = k ≤ 1
2(n− 3), let ε = ω(k−1), and set

pc =
log
(
n
(
n−1
k

))(
n−k−1
k−1

) .

Then, as n→∞, P
(
α(Kp(n, k)) =

(
n−1
k−1
))
→ 0 if p ≤ (1− ε)pc.

For k ≤ n
6C , if p ≥ (1 + ε)pc, with high probability α(Kp(n, k)) =

(
n−1
k−1
)

and the stars

are the only maximum independent sets. For k ≤ 1
2(n − 3), the same conclusion holds for

p ≥ 2Cn
n−2kpc.

Theorem 2.1.4 exhibits a sharp threshold for k ≤ n
6C , thus extending Theorem 2.1.3 to k as

large as linear in n. Furthermore, when k ≤ (12−γ)n, as considered in [4], n
n−2k ≤ (2γ)−1, and

so Theorem 2.1.4 determines the critical probability up to a constant factor. Finally, when k

is close to 1
2n, we find that the sparse version of the Erdős–Ko–Rado theorem still holds for

very small edge probabilities; when k = 1
2(n− 3), we almost surely have α(Kp(n, k)) =

(
n−1
k−1
)

even for p = Ω(n−1).

The remaining of this chapter is organised as follows. In Section 2.2 we prove our removal

lemma, Theorem 2.1.2. We apply this result to the sparse Erdős–Ko–Rado problem in Sec-

tion 2.3, where we prove Theorem 2.1.4. The final section contains some concluding remarks

and open problems.

2.2 The removal lemma

In this section we prove our version of the removal lemma, Theorem 2.1.2. Our proof combines

the work of Lovász [75] on the spectrum of the Kneser graph with an analytic result of

Filmus [41] regarding approximations of Boolean functions on
([n]
k

)
. Before beginning with

the proof, we shall introduce the necessary terminology.

Given a family of sets F ⊂
([n]
k

)
, the characteristic function f :

([n]
k

)
→ {0, 1} is a Boolean

function indicating membership of the family, with f(F ) = 1 if and only if F ∈ F . We may

embed
([n]
k

)
⊂ {0, 1}n into the n-dimensional hypercube, and thus think of f as being defined

on the k-uniform slice of the cube {(x1, . . . , xn) ∈ {0, 1}n :
∑

i xi = k}. A function f is affine

if f(x1, x2, . . . , xn) = a0 +
∑

i∈[n] aixi for some constants ai, 0 ≤ i ≤ n. We will equip this

space of functions with the L2-norm with respect to the uniform measure on
([n]
k

)
, defining

‖f − g‖2 = E
[
|f − g|2

]
=

1(
n
k

) ∑
F∈([n]k )

|f(F )− g(F )|2 ,

11



and say f and g are ε-close if ‖f − g‖2 ≤ ε. Finally, to avail of the spectral results, which are

traditionally phrased in terms of matrices and vectors, we shall abuse notation and identify

a function f :
([n]
k

)
→ R with the vector f = (f(F ))

F∈([n]k ) in R([n]k ). Note that the L2-norm

above arises from the standard inner product on R(nk).

The first step of our proof is the following lemma, which transfers the problem into the

analytic framework set up above. The lemma shows that if a set family F is as in the

statement of Theorem 2.1.2, then its characteristic function can be approximated well by an

affine function.

Lemma 2.2.1. Let n, k and ` be positive integers satisfying n > 2k, and let F ⊂
([n]
k

)
be

a family of size |F| = (` − α)
(
n−1
k−1
)

with at most
((

`
2

)
+ β

) (
n−1
k−1
)(
n−k−1
k−1

)
disjoint pairs. If

f :
([n]
k

)
→ {0, 1} is the characteristic function of F , then ‖f − g‖2 ≤ ((2`− 1)α+ 2β) k

n−2k
for some affine function g :

([n]
k

)
→ R.

To prove Lemma 2.2.1, we require some information on the spectrum of the Kneser graph.

Let A denote the adjacency matrix of K(n, k). In his celebrated paper on the Shannon

capacity of graphs, Lovász [75, page 6] showed the eigenvalues of A are λi = (−1)i
(
n−k−i
k−i

)
for 0 ≤ i ≤ k. Thus the largest eigenvalue is the degree of the vertices in the regular

graph K(n, k), λ0 =
(
n−k
k

)
, while the smallest eigenvalue is λ1 = −

(
n−k−1
k−1

)
. The second

smallest eigenvalue is λ3 = −
(
n−k−3
k−3

)
. Furthermore, the λ0-eigenspace is one-dimensional,

spanned by the constant function. The (n− 1)-dimensional λ1-eigenspace is spanned by the

functions xi− k
n . Hence the span of the λ0- and λ1-eigenspaces is precisely the space of affine

functions. As A is a real symmetric matrix, its eigenspaces are orthogonal. Armed with these

preliminaries, we can prove the lemma.

Proof of Lemma 2.2.1. Given the characteristic vector f of F , write f = f0+f1+f2, where f0

and f1 are the projections of f to the λ0- and λ1-eigenspaces respectively, and f2 = f−f0−f1.
By the orthogonality of eigenspaces, we have ‖f‖2 = ‖f0‖2 +‖f1‖2 +‖f2‖2. As f is a Boolean

function, ‖f‖2 = E[f2] = E[f ] = |F| /
(
n
k

)
= (` − α) kn . Thus, solving for ‖f1‖2, we find

‖f1‖2 = (` − α) kn − ‖f0‖
2 − ‖f2‖2. Furthermore, since the λ0-eigenspace is spanned by the

constant function, f0 ≡ E[f ] = (`− α) kn , and so ‖f0‖2 = E
[
f20
]

= (`− α)2 k
2

n2 .

As A is the adjacency matrix of the Kneser graph K(n, k), and f is the characteristic

function of the set family F , it follows that fTAf = 2dp(F). Using our bound on the number

of disjoint pairs in F ,(
`2 − `+ 2β

)(n− 1

k − 1

)(
n− k − 1

k − 1

)
≥ 2dp(F) = fTAf = fT0 Af0 + fT1 Af1 + fT2 Af2

≥ λ0fT0 f0 + λ1f
T
1 f1 + λ3f

T
2 f2.

12



We divide through by
(
n
k

)
to normalise, obtaining(

`2 − `+ 2β
)
k

n

(
n− k − 1

k − 1

)
≥
(
n− k
k

)
‖f0‖2 −

(
n− k − 1

k − 1

)
‖f1‖2 −

(
n− k − 3

k − 3

)
‖f2‖2.

Dividing by
(
n−k−1
k−1

)
, substituting our expressions for ‖f0‖2 and ‖f1‖2, and simplifying gives

2βk

n
≥
[
1− (k − 1)(k − 2)

(n− k − 1)(n− k − 2)

]
‖f2‖2 −

(2`− 1)αk

n
+
α2k

n

=
(n− 2k)(n− 3)

(n− k − 1)(n− k − 2)
‖f2‖2 −

(2`− 1)αk

n
+
α2k

n
≥ n− 2k

n
‖f2‖2 −

(2`− 1)αk

n
.

Rearranging, we deduce ‖f2‖2 ≤ ((2`− 1)α+ 2β) k
n−2k . Recalling that f0 + f1 is spanned by

the λ0- and λ1-eigenspaces, and hence affine, setting g = f0 + f1 gives the desired result.

Lemma 2.2.1 shows the characteristic function of F must be close to an affine function,

from which we shall deduce that F itself is close to a union of stars. Note that the character-

istic function g of the union of stars with centres i ∈ S is simply g(x1, . . . , xn) = maxi∈S xi,

and is thus determined only by the coordinates in S. The Friedgut–Kalai–Naor theorem [48]

states that if a Boolean function f : {0, 1}n → {0, 1} on the entire hypercube is close to

an affine function, then it is close to a function determined by at most one coordinate. We

shall make use of an analogous result for the k-uniform slices of the cube, due to Filmus [41,

Theorem 3.1].

Theorem 2.2.2. For some constant C > 1 the following holds. Suppose 2 ≤ k ≤ 1
2n and

ε < k
128n . For every Boolean function f :

([n]
k

)
→ {0, 1} that is ε-close to an affine function,

there is some set S ⊂ [n] of size |S| ≤ max
(

1, Cn
√
ε

k

)
such that either f or 1−f is (Cε)-close

to maxi∈S xi.

We now have all the necessary ingredients to prove the removal lemma.

Proof of Theorem 2.1.2. Set ε = ((2`− 1)α + 2β) k
n−2k , and take C as in Theorem 2.2.2. By

our bounds on α and β, ε < k
128C2n

. If F is as in the statement of the theorem, then by

Lemma 2.2.1 its characteristic function f is ε-close to an affine function. By Theorem 2.2.2,

there is some S ⊂ [n] such that f or 1 − f is (Cε)-close to maxi∈S xi. Without loss of

generality, we may assume S = [s], where s ≤ max
(

1, Cn
√
ε

k

)
. Let gs = maxi∈[s] xi, and let

Gs =
([n]
k

)
\
([n]\[s]

k

)
be the family corresponding to this characteristic function.

Note that ‖f − gs‖2 = |F∆Gs| /
(
n
k

)
, since for any set F ∈

([n]
k

)
we have

|f(F )− gs(F )| =

{
1 if F ∈ F∆Gs
0 otherwise

.

13



Hence we must have |F∆H| ≤ Cε
(
n
k

)
for H = Gs or H = Gs, depending on whether it is f or

1− f that is (Cε)-close to gs. There are six possibilities to consider:

(i) H = Gs, s ≤ `− 1 (ii) H = Gs, s ≥ `+ 1 (iii) H = G0
(iv) H = Gs, s ≥ 2 (v) H = G1 (vi) H = G`

Since G` is the union of ` stars, we wish to show that (vi) must hold. We first consider the

sizes of F and H to eliminate cases (i)-(iv). Recall that |F| = (` − α)
(
n−1
k−1
)
, and, by our

bound on α, ` − α ∈ (` − 1
8 , ` + 1

8). Since ||F| − |H|| ≤ |F∆H| ≤ Cε
(
n
k

)
< 1

8

(
n−1
k−1
)
, we must

have
(
`− 1

4

) (
n−1
k−1
)
≤ |H| ≤

(
`+ 1

4

) (
n−1
k−1
)
.

We have |Gs| ≤ s
(
n−1
k−1
)
, which is too small if s ≤ ` − 1. On the other hand, observe that

Gs, the union of s stars, grows with s. Thus, when s ≥ `+ 1,

|Gs| ≥ |G`+1| ≥ (`+1)

(
n− 1

k − 1

)
−
(
`+ 1

2

)(
n− 2

k − 2

)
≥
(
`+ 1− `2k

n

)(
n− 1

k − 1

)
≥
(
`+

1

2

)(
n− 1

k − 1

)
,

which is too large. This rules out cases (i) and (ii). We also have
∣∣G0∣∣ =

(
n
k

)
= n

k

(
n−1
k−1
)
≥

2`2
(
n−1
k−1
)
, which is again too large, ruling out case (iii) as well.

To handle case (iv), we show that Gs is too large when s ≥ 2. Since
∣∣Gs∣∣ =

(
n−s
k

)
is

decreasing in s, it suffices to take s = Cn
√
ε

k . We indeed have too many sets, as

∣∣Gs∣∣ =

(
n− s
k

)
≥
(

1− sk

n

)(
n

k

)
=
(
1− C

√
ε
) n
k

(
n− 1

k − 1

)
>

3`2

2

(
n− 1

k − 1

)
≥
(
`+

1

2

)(
n− 1

k − 1

)
.

The above argument does not immediately rule out case (v), since if s = max
(

1, Cn
√
ε

k

)
=

1, we may not assume s = Cn
√
ε

k . However, the family G1 is still too large when ` ≥ 2, as

∣∣G1∣∣ =

(
n− 1

k

)
=
n− k
k

(
n− 1

k − 1

)
≥
(
2`2 − 1

)(n− 1

k − 1

)
>

(
`+

1

2

)(
n− 1

k − 1

)
.

To rule out case (v) when ` = 1, we consider the number of disjoint pairs in F . Note that

each of the
(
n−1
k

)
sets in G1 is disjoint from

(
n−k−1

k

)
other sets in G1, and hence dp(G1) =

1
2

(
n−1
k

)(
n−k−1

k

)
. Moreover, removing t sets from G1 can account for at most t

(
n−k−1

k

)
disjoint

pairs. If F were close to G1, then
∣∣G1 \ F∣∣ ≤ Cε(nk), and so

dp(F) ≥ dp(F ∩ G1) ≥
(
1
2 −

Cεn
n−k

)(n− 1

k

)(
n− k − 1

k

)
>
(
1
2 − 2Cε

)(n− 1

k

)(
n− k − 1

k

)
.

On the other hand, we assumed F has at most β
(
n−1
k−1
)(
n−k−1
k−1

)
disjoint pairs, so we must have

β ≥
(
1
2 − 2Cε

) (n−k)(n−2k)
k2

> n−2k
2n , contradicting our bound on β.

Thus we are only left with case (vi), where H is the union of ` stars G`, and, as required,

we have |F∆G`| ≤ Cε
(
n
k

)
= C((2`− 1)α+ 2β) n

n−2k
(
n−1
k−1
)
.

14



2.3 Independence number of random Kneser subgraphs

In this section we prove Theorem 2.1.4, establishing an analogue of the Erdős–Ko–Rado

theorem for sparse random subgraphs of the Kneser graph. We will show that below the

threshold, there is with high probability an independent superstar : some star S and a set

F /∈ S such that S ∪ {F} is independent in Kp(n, k). The upper bound on the critical

probability essentially follows from a union bound over all potential independent sets, where

we shall be able to take advantage of the fine control afforded to us by Theorem 2.1.2 to

obtain sharp results when k is large.

Proof of Theorem 2.1.4. First we establish the lower bound on the critical probability. Sup-

pose ε = ω(k−1) and p ≤ (1 − ε)pc. We wish to show that with high probability, stars can

be extended to independent superstars in Kp(n, k). Let S be the star with centre 1, and for

every 1 /∈ F ∈
([n]
k

)
let EF be the event that S ∪ {F} is independent in Kp(n, k).

Note that F is disjoint from
(
n−k−1
k−1

)
sets in S, and for EF to hold none of these edges can

appear in Kp(n, k). Thus P(EF ) = (1− p)(
n−k−1
k−1 ). Moreover, the events {EF : 1 /∈ F} depend

on mutually disjoint sets of edges of K(n, k), and are thus independent. Hence we can bound

the probability that the stars are the largest independent sets of Kp(n, k) by

P
(
α(Kp(n, k)) =

(
n− 1

k − 1

))
≤ P

(
∩FEF

)
=
(

1− (1− p)(
n−k−1
k−1 )

)(n−1
k )

.

This bound is increasing in p, so it suffices to take p = (1 − ε)pc =
(1−ε) log(n(n−1

k ))
(n−k−1
k−1 )

. As

n ≥ 2k + 2, p = O(n−1) = o(ε), and hence (1 − p)(
n−k−1
k−1 ) ≥ exp

(
−p(1 + p)

(
n−k−1
k−1

))
≥(

n
(
n−1
k

))−(1−ε/2)
. Thus(

1− (1− p)(
n−k−1
k−1 )

)(n−1
k )
≤ exp

(
−
(
n− 1

k

)
(1− p)(

n−k−1
k−1 )

)
≤ exp

(
−n−1

(
n− 1

k

)ε/2)
= o(1),

since ε = ω
(
k−1

)
. Hence for p ≤ (1−ε)pc we have α(Kp(n, k)) >

(
n−1
k−1
)

with high probability.

We now seek an upper bound on the critical probability. By monotonicity, it suffices to

consider p as small as possible. To begin, we shall prove the coarse threshold. Let C be the

(absolute) constant from Theorem 2.1.2, and take p = ζpc, where ζ = 2Cn
n−2k . For such p, we

wish to show the only maximum independent sets of Kp(n, k) are the stars. To this end, we

define the following random variables:

X = |{independent superstars F : F = S ∪ {F} for some star S, F /∈ S}| and

Yi =

∣∣∣∣{independent F : |F| =
(
n− 1

k − 1

)
, min
S a star

|S \ F| = i

}∣∣∣∣ , 1 ≤ i ≤
(
n− 1

k − 1

)
.
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X counts the number of independent superstars in Kp(n, k). If X = 0, the stars are all

maximal independent sets. If we further have Yi = 0 for all 1 ≤ i ≤
(
n−1
k−1
)
, then there are no

independent sets of size
(
n−1
k−1
)

that are not stars, and thus the stars are the only maximum

independent sets in Kp(n, k). Hence our task is to show X +
∑

i Yi = 0 with high probability.

By the union bound, it suffices to show P(X > 0) +
∑

i P(Yi > 0) = o(1).

We begin by estimating P(X > 0), which we can bound by E[X]. There are n choices

for the star S,
(
n−1
k

)
choices for the set F /∈ S, and, for each such configuration,

(
n−k−1
k−1

)
edges that should not appear in Kp(n, k), which occurs with probability (1 − p)(

n−k−1
k−1 ) ≤

exp
(
−ζpc

(
n−k−1
k−1

))
. Thus

E[X] ≤ n
(
n− 1

k

)
exp

(
−ζpc

(
n− k − 1

k − 1

))
=

(
n

(
n− 1

k

))1−ζ
= o(1), (2.1)

even for ζ as small as 1 + ω
(
k−1

)
.

To analyse P(Yi > 0), we shall distinguish between two different cases: families that are

close to a star, and families far from a star. For the first case, we assume 1 < i ≤ t1 =
1

400C

(
n−1
k−1
)
. The families F counted by Yi have size

(
n−1
k−1
)

and |F∆S| = 2 |S \ F| ≥ 2i for

every star S. By applying Theorem 2.1.2 with α = 0 and β = i(n−2k)
Cn(n−1

k−1)
, it follows that

dp(F) ≥ i(n−2k)
Cn

(
n−k−1
k−1

)
. For F to be independent in Kp(n, k), none of these edges can

appear, which occurs with probability (1− p)dp(F) ≤
(
n
(
n−1
k

))−ζi(n−2k)/(Cn)
.

We now take a union bound over all possible choices of F . We know there is some star

S such that |S \ F| = i. There are n choices for the star S,
((n−1
k−1)
i

)
choices for the i sets in

S \ F , and
((n−1

k )
i

)
choices for the i sets in F \ S. Hence there are at most n

((n−1
k−1)
i

)((n−1
k )
i

)
≤

n

(
ke2(n−1

k )
2

(n−k)i2

)i
families F that can be counted by Yi. Thus we have

t1∑
i=1

P(Yi > 0) ≤
t1∑
i=1

n

(
ke2
(
n−1
k

)2
(n− k)i2

(
n

(
n− 1

k

))−ζ(n−2k)/(Cn))i
≤

t1∑
i=1

ne2i

(ni)2i
= o(1). (2.2)

where the second inequality follows from our choice of ζ = 2Cn
n−2k .

Finally, we bound P(Yi > 0) when i > t1. Applying Theorem 2.1.2 with α = 0 and β =
n−2k

(20C)2n
, any family F counted by

∑
i>t1

Yi must have dp(F) ≥ n−2k
(20C)2n

(
n−1
k−1
)(
n−k−1
k−1

)
. Hence

the probability of such an F being independent inKp(n, k) is (1−p)dp(F) ≤
(
n
(
n−1
k

))− ζ(n−2k)

(20C)2n
(n−1
k−1).

Recalling our choice of ζ = 2Cn
n−2k , we apply a trivial union bound, summing over all

( (nk)
(n−1
k−1)

)
≤
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(
ne
k

)(n−1
k−1) families of size

(
n−1
k−1
)

to find, when k ≥ 600C,

(n−1
k−1)∑

i=t1+1

P(Yi > 0) ≤

(
ne

k

(
n

(
n− 1

k

))−1/(200C)
)(n−1

k−1)

≤

(
ne

k

(
k

n

)k/(200C)
)(n−1

k−1)

= o(1).

(2.3)

Combining (2.1), (2.2), and (2.3), we find that when p ≥ ζpc, P(X > 0)+
∑

i P(Yi > 0) = o(1),

and so for such p, the maximum independent sets in Kp(n, k) are precisely the stars.

We now prove the sharp threshold result, for which we must show that the same conclusion

holds when k ≤ n
6C and ζ = 1 + ε, for some small ε = ω(k−1). As previously stated, the

bound from (2.1) holds with this smaller value of ζ. However, bounding
∑

i P(Yi > 0) requires

more careful analysis. We now split the sum into three parts: 1 ≤ i ≤ t0 = ε
2

(
n−k−1
k−1

)
,

t0 + 1 ≤ i ≤ t1 = 1
400C

(
n−1
k−1
)
, and t1 + 1 ≤ i ≤

(
n−1
k−1
)
.

For the latter two parts, we modify slightly our analysis of the above bounds. When a

family is only moderately close to a star, with t0+1 ≤ i ≤ t1, we again use the bound in (2.2).

We begin by observing that i > t0 = ε
2

(
n−k−1
k−1

)
= εk

2(n−k)
(
n−k
k

)
, and so

ke2
(
n−1
k

)2
(n− k)i2

≤
4e2(n− k)

(
n−1
k

)2
ε2k
(
n−k
k

)2 ≤ 4e2(n− k)

ε2k

(
1 +

k

n− 2k

)2k

≤ 4e2(n− k)ek/(2C)

ε2k
.

Since k ≤ n
6C , we may also bound

(
n
(
n−1
k

))−ζ(n−2k)/(Cn) ≤ ( kn)k/(2C)
, and so the bases of the

exponential summands in (2.2) are at most

4e2(n− k)

ε2k

(
ek

n

)k/(2C)

≤ 4e3

ε2Ck/(3C)
<

1

2
,

as we may assume k ≥ 6C and ε ≥ 13C−k/(6C). This then implies
∑t1

i=t0+1 P(Yi > 0) = o(1).

For families that are far from a star, we can re-estimate the upper bound in (2.3) to show

∑
i>t1

P(Yi > 0) ≤

ne
k

(
n

(
n− 1

k

))− ζ(n−2k)

(20C)2n

(n−1
k−1)

≤

(
ne

k

(
k

n

) k
2(20C)2

)(n−1
k−1)

≤
(
ek

n

)(n−1
k−1)

= o(1),

assuming k ≥ (40C)2.

To complete the proof of the sharp threshold, we must demonstrate that we are unlikely

to obtain independent families that are very close to stars, with 1 ≤ i ≤ t0. In this range,

we repeat the analysis of Bollobás, Narayanan and Raigorodskii in [15], and instead consider

maximal independent families in Kp(n, k).

For j ≥ i ≥ 0, let Zi,j denote the number of maximal independent families F such that

there is some star S with |S \ F| = i and |F \ S| = j. Observe that if F is a family counted
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by the random variable Yi, then for any maximal independent family F ′ containing F , the

family F ′ must be counted by Zi′,j for some i′ ≤ i and j ≥ i. Furthermore, if i′ = 0, this

family F ′ contains superstars. This shows⋃
1≤i≤t0

{Yi > 0} ⊆ {X > 0} ∪
⋃

1≤i≤t0
j≥i

{Zi,j > 0} ,

and so
∑t0

i=1 P(Yi > 0) ≤ P(X > 0) +
∑t0

i=1

∑
j≥i P(Zi.j > 0). We already have P(X > 0) =

o(1), and hence it suffices to show
∑t0

i=1

∑
j≥i E[Zi,j ] = o(1).

Let F be a maximal independent family counted by Zi,j . Let S be the corresponding

star, A = S \ F , and B = F \ S. Thus we have |A| = i and |B| = j. By virtue of F
being independent, all of the edges between B and S \ A must be missing in Kp(n, k). As

F is maximal, each A ∈ A must have an edge to some B ∈ B, for otherwise F ∪ {A} would

be a larger independent family. In particular, this implies B is a subset of the union of the

neighbourhoods in K(n, k) of A ∈ A.

There are thus n choices for the star S,
((n−1
k−1)
i

)
choices for A, and at most

(i(n−kk )
j

)
choices

for B. Each A ∈ A must retain at least one of its edges to B, which occurs with probability

at most jp, independently for each of the i sets. Furthermore, as every B ∈ B has
(
n−k−1
k−1

)
neighbours in S, there are at least j

((
n−k−1
k−1

)
− i
)

edges between B and S \ A that must be

missing. This gives

E[Zi,j ] ≤ n
((n−1

k−1
)

i

)(
i
(
n−k
k

)
j

)
(jp)i (1− p)j((

n−k−1
k−1 )−i) = zi,j .

We first observe that, for i ≤ t0 = ε
2

(
n−k−1
k−1

)
and j ≥ i,

zi,j+1

zi,j
=

(i(n−kk )
j+1

)
(j + 1)i(i(n−kk )

j

)
ji

(1− p)(
n−k−1
k−1 )−i ≤

(
i
(
n−k
k

)
− j
)
e

j + 1
(1− p)(1−

ε
2)(n−k−1

k−1 )

≤ e
(
n− k
k

)(
n

(
n− 1

k

))−(1+ ε
4
)

= o(1),
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since p = ζpc =
(1+ε) log(n(n−1

k ))
(n−k−1
k−1 )

. Hence
∑

j≥i zi,j ≤ 2zi,i. Thus

t0∑
i=1

∑
j≥i

E[Zi,j ] ≤ 2

t0∑
i=1

zi,i

= 2n

t0∑
i=1

((n−1
k−1
)

i

)(
i
(
n−k
k

)
i

)
(ip)i (1− p)i((

n−k−1
k−1 )−i)

≤ 2n

t0∑
i=1

(
e2
(
n− 1

k − 1

)(
n− k
k

)
p (1− p)(1−

ε
2)(n−k−1

k−1 )
)i

≤ 2n

t0∑
t=1

(
e2
(
n− 1

k − 1

)(
n− k
k

)
(1 + ε) log

(
n
(
n−1
k

))(
n−k−1
k−1

) (
n

(
n− 1

k

))−(1+ ε
4
)
)i

= 2n

t0∑
i=1

(
(1 + ε)e2 log

(
n
(
n−1
k

))
n
(
n
(
n−1
k

)) ε
4

)i
= o(1),

completing the proof for the sharp threshold.

2.4 Concluding remarks

In this chapter, we built on the work of Filmus [41] to develop a removal lemma for large set

families with few disjoint pairs. We then used this to determine the threshold for random

Kneser subgraphs having the Erdős–Ko–Rado property, thus answering a question of Bollobás,

Narayanan and Raigorodskii [15].

Rather than the probabilistic problem considered above, one might instead ask the cor-

responding extremal question: how sparse can a spanning subgraph G of K(n, k) be if

α(G) =
(
n−1
k−1
)
? A lower bound can be obtained by requiring the stars to be maximal in-

dependent sets. For every set F ∈
([n]
k

)
, and every element x /∈ F , there must be an edge

between F and the star Sx centred at x, for otherwise Sx ∪ {F} would be an independent set

of size
(
n−1
k−1
)

+ 1. As each edge {F, F ′} covers k stars, it follows that F must have degree at

least n−k
k , and hence G ⊆ K(n, k) must have at least n−k

2k

(
n
k

)
edges.

Perhaps surprisingly, this simple lower bound can be tight. If k divides n, then Baranyai’s

Theorem [6] gives a partition of
([n]
k

)
into perfect matchings. In the Kneser graph, this

corresponds to a partition of the vertices into cliques of size n
k . Let G be the subgraph

consisting only of these cliques. Any independent set in G can contain at most one vertex

from each clique, and hence α(G) ≤ k
n

(
n
k

)
=
(
n−1
k−1
)
. Furthermore, G is n−k

k -regular, matching

the lower bound given previously.

Theorem 2.1.4 shows that for this bound on the independence number to hold in random
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graphs, they must be denser by a factor of at least log
(
n
(
n−1
k

))
. However, these random

graphs have the additional property that the only maximum independent sets are the stars,

which is not the case in the construction given above. One might be interested in the extremal

problem with this stricter requirement, or in the case when k does not divide n.

Returning to the random setting, Devlin and Kahn [26] have recently established threshold

results when k ∼ n
2 . It remains to exhibit a sharp threshold around pc for k > n

6C . We believe

that, perhaps for smaller k, a more precise hitting time result may hold. Consider the random

process where one removes edges from the Kneser graph K(n, k) one at a time, selecting at

each step an edge uniformly at random from those that remain. Is it true that, with high

probability, α(G) >
(
n−1
k−1
)

precisely when a superstar is born? The fact that the lower bound

from the sharp threshold comes from these superstars suggests this might be the case.

More generally, given how central intersecting families are to extremal set theory, we

believe the removal lemma should find many other applications. In a forthcoming paper

with Balogh, Liu and Sharifzadeh, we obtain some supersaturation results using the removal

lemma with ` ≥ 1, extending the results of [23]. We hope that the lemma might prove useful

for other research directions as well.
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Chapter 3

Erdős-Rothschild problem for

intersecting families

3.1 Introduction

Given a k-uniform hypergraph F , the Turán number ex(n, F ) of F is the maximum number of

edges in a k-uniform hypergraph on n vertices that does not contain a copy of F . Determining

these numbers is one of central problems in Extremal Combinatorics. Erdős and Rothschild

[36] in 1974 proposed a novel twist to this problem: instead of considering hypergraphs with

no copies of F , they were interested in edge-colourings (not necessarily proper) of hypergraphs

with no monochromatic copies of F . They asked for cr,F (n) the maximum possible number of

edge colourings of a hypergraph on n vertices with r colours without a monochromatic copy

of F , and wondered whether this would lead to extremal configurations that are substantially

different from those of the Turán problem. Note that as every edge colouring of any F -free

hypergraph contains no monochromatic copies F , we see that cr,F ≥ rex(n,F ) for all r ≥ 2. In

the case r = 2 and F = Ks, Erdős and Rothschild conjectured that the above estimate is tight

for n ≥ n0(s) sufficiently large. This conjecture was verified by Yuster [96] for s = 3. The full

conjecture for all s ≥ 3 was proved by Alon, Balogh, Keevash and Sudakov [2] who further

showed that an analogous result holds for three colours. The author of [2] noted that when

more than three colours are used, the behaviour of cr,Ks(n) changes, making its determination

both harder and more interesting. Namely, it was shown in [2] that for r ≥ 4 and s ≥ 3,

cr,Ks(n) is exponentially larger than rex(n,Ks). Pikhurko and Yilma [87] later provided some

exact results for r ≥ 4. Other authors (see [61, 62, 63, 64, 65, 71, 72, 73]) have address the

Erdős-Rothschild problem in the cases of forbidden monochromatic matchings, stars, paths,

trees and some other hypergraphs.
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In this chapter, we study the Erdős-Rothschild problem for intersecting families of sets,

vector spaces and permutations, extending the previous results in this direction. Given a

family of sets, vector spaces or permutations, we define an (r, t)-colouring of the family to

be an r-colouring of its members such that each colour class is t-intersecting1. The Erdős–

Rothschild problem then asks which families maximise the number of (r, t)-colourings. The

study of this problem was initiated by Hoppen, Kohayakawa and Lefmann [62]. Note that,

in contrast to the triangle-free case, this problem is trivial when r = 2. Indeed, let F be any

family, and let F ′ ⊂ F be a maximal t-intersecting subfamily. For any F ∈ F \F ′, there must

be some F ′ ∈ F ′ such that {F, F ′} is not t-intersecting. Thus in any (2, t)-colouring of F , F

and F ′ must receive opposite colours. It follows that every (2, t)-colouring of F is determined

by its restriction to F ′, and hence there are at most 2|F
′| (2, t)-colourings. On the other hand,

any two-colouring of a t-intersecting family G is a (2, t)-colouring, giving precisely 2|G| such

colourings. Hence the largest t-intersecting families also have the most (2, t)-colourings2. The

problem is of interest, then, when r ≥ 3.

In the following sections we shall review what are known before presenting our new results.

3.1.1 Permutations

Denote by Sn the symmetric group on [n]. A family of permutations F ⊆ Sn is called t-

intersecting if any two permutations in F agree on at least t points; that is, for any σ, π ∈ F ,

|{i ∈ [n] : σ(i) = π(i)}| ≥ t. A natural example of a t-intersecting family F ⊆ Sn is a t-star,

where there exist i1, . . . , it ∈ [n] and j1, . . . , jt ∈ [n] such that for every σ ∈ F , σ(i1) =

j1, . . . , σ(it) = jt. Confirming a conjecture of Deza and Frankl [44], Ellis, Friedgut and Pipel

[31] proved that, for n sufficiently large with respect to t, a t-intersecting family F ⊆ Sn has

size at most (n− t)!, with equality only if F is a t-star.

Our first result is an Erdős-Rothschild-type extension of the aforementioned theorem of

Ellis, Friedgut and Pipel.

Theorem 3.1.1 ([20]). For every t ≥ 1, there is an n0 = n0(t) such that if n ≥ n0, then a

family F ⊆ Sn can have at most 3(n−t)! (3, t)-colourings, with equality if and only if F is a

t-star.

1A family F is called t-intersecting if and only the intersection of every pair in F has size at least t.
2With a little more work, one can often show uniqueness.
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3.1.2 Set families

For k ≥ 2 and 1 ≤ t < k, a k-uniform family F on the ground set [n] is t-intersecting if

every two sets of F share at least t elements. A family F is called a t-star if every sets in F
contains a fixed set of t elements. The classic Erdős-Ko-Rado theorem [37] states that for n

sufficiently large with respect to k and t, the largest t-intersecting k-uniform families on [n]

have
(
n−t
k−t
)

edges. Frankl [42] and Wilson [95] later showed that n ≥ (t + 1)(k − t + 1) was

the correct bound. Moreover, for n > (t+ 1)(k − t+ 1) equality is attained only by t-stars.

We show that just beyond the bound n ≥ (t + 1)(k − t + 1), t-stars also maximise the

number of (3, t)-colourings.

Theorem 3.1.2 ([20]). Let n, k ≥ 64 and t ≥ 1 be integers such that n ≥ (t+1)(k−t+1)+ηk,t,

where

ηk,t =



k + 12 log k for t = 1,

60 log k for t = 2 and k − t ≥ 3,

1 for t ≥ 3 and k − t ≥ 3,

1531 for t ≥ 2 and k − t = 2,

1244k for t ≥ 2 and k − t = 1.

Then, a k-uniform family F on [n] can have at most 3(n−tk−t) (3, t)-colourings, with equality if

and only if F is a t-star.

Observe that ηk,t = 1, which we have for most values of k and t, is the best possible result,

as when n = (t+1)(k−t+1) there exist maximum t-intersecting families which are not t-stars.

However, there is no doubt that the case t = 1 is the most natural and interesting to study.

Theorem 3.1.2 shows t-stars maximise the number of (3, 1)-colourings when n ≥ 3k+12 log k.

We obtain the following result when colourings with four or more colours are considered.

Theorem 3.1.3 ([20]). Let n, k and r be integers with k ≥ 2, r ≥ 4 and n > Cr2kek
2/n log n

for sufficiently large constant C. All k-uniform families on [n] which maximise the number

of (r, 1)-colourings are unions of dr/3e 1-stars.

Note that the same conclusion was obtained by Hoppen, Kohayakawa and Lefmann [62]

for all k, r and all n ≥ n0(k, r) sufficiently large3. While Theorem 3.1.3 allows k to be as large

as o(
√
n log n) when r < n1/4

logn . In the proof we utilise a stability version of the Erdős-Ko-Rado

theorem due to Dinur and Friedgut [27]. This has prevented us from extending the present

3Their bounds seem to require n = Ωr(k
3).
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result from 1 to larger t as no analogue of the Dinur-Friedgut theorem has been established

for t > 1 4.

3.1.3 Vector spaces

Let Fnq be an n-dimensional vector space over the finite field Fq. A simple counting argument

shows that the number of k-dimensional subspaces of Fnq is given by the Gaussian binomial

coefficient [
n

k

]
q

:=
k−1∏
i=0

qn−i − 1

qk−i − 1
.

A family F of k-dimensional subspaces of Fnq is called t-intersecting if dim(F1∩F2) ≥ t for

any two subspaces F1, F2 ∈ F . Hsieh [66], and Frankl and Wilson [46] proved an Erdős-Ko-

Rado type theorem for this setting, showing that for n ≥ 2k + 1, any t-intersecting family of

k-dimensional subspaces of Fnq has size at most
[
n−t
k−t
]
q
. Moreover, the only families achieving

equality are t-stars, consisting of all k-dimensional subspaces through a given t-dimensional

subspace. For an alternate proof, see [18].

The results we obtain for permutations and hypergraphs can be extended to vector spaces

as well, and here we prove 1-stars maximise the number of (3, 1)-colourings.

Theorem 3.1.4 ([20]). Suppose n, k and q are integers with k ≥ 7, n ≥ 2k + 1 and q ≥ 2.

Then a family V of k-dimensional subspaces of Fnq can have at most 3
[n−1
k−1]q (3, 1)-colourings,

with equality if and only if V is a 1-star.

The bound of n ≥ 2k + 1 for q ≥ 2 and k ≥ 7 in the theorem is tight as the 1-stars are

not the unique extremal families for smaller values of n. We remark that for a fixed prime

power q and integers k > t ≥ 1, and sufficiently large n 5, Hoppen, Lefmann and Odermann

[65] determined families of k-dimensional subspaces of Fnq that maximise the number of (3, t)-

and (4, t)-colourings.

3.2 Three-coloured families

In this section we prove our results for (3, t)-colourings of families. The first subsection is

devoted to a general lemma, which gives a simple condition for the number of (3, t)-colourings

4Recently, we have managed to generalise Theorem 3.1.3 to cover the case t > 1. The proof will appear in

a new version of [20].
5In contrast, our bound on n does not depend on q.
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to be maximised by the largest t-intersecting families. In the subsequent subsections, we verify

this condition in the settings of permutations, vector spaces and set families.

3.2.1 A general lemma

The following lemma, phrased in general terms that will be applicable in all of our settings,

gives a simple condition for the number of (3, t)-colourings to be maximised by the largest

t-intersecting families.

Lemma 3.2.1. Let N0 denote the size of the largest t-intersecting family, N1 the size of the

largest non-maximum t-intersecting family, and suppose two distinct maximum t-intersecting

families can have at most N2 members in common. Suppose further that there are at most M

maximal t-intersecting families. Provided

N0 −max(N1, N2)− 51 logM > 0, (3.1)

a family F can have at most 3N0 (3, t)-colourings, with equality if and only if F is a maximum

t-intersecting family.

Proof. First, for every t-intersecting family I, fix an (arbitrary) assignment of a maximal

t-intersecting family M(I) containing I. Now let F be any family, and let c(F) denote

the number of (3, t)-colourings of F . We wish to show c(F) ≥ 3N0 if only if F is itself a

t-intersecting family of size N0.

The colour classes of a (3, t)-colouring of F give rise to a partition F = I1 t I2 t I3
into t-intersecting families. We can then map the (3, t)-colourings of F to triples of maximal

intersecting families (M1,M2,M3), where Mi =M(Ii) for 1 ≤ i ≤ 3. Let c(M1,M2,M3)

denote the number of (3, t)-colourings of F mapped to the triple (M1,M2,M3).

Since there are at most M maximal t-intersecting families, by pigeonhole principle there

exists a triple (M1,M2,M3) with c(M1,M2,M3) ≥ 3N0M−3. IfM1 =M2 =M3 =M for

some maximal intersecting familyM, then we have F ⊂M, and so c(F) = 3|F| ≤ 3|M| ≤ 3N0 ,

with equality if and only if F =M and |M| = N0. Hence we may assume M1,M2 and M3

are not the same.

We now seek to upper bound the number of (3, t)-colourings mapped to (M1,M2,M3).

Noting that a set F ∈ F can receive colour i only if F ∈ Mi. Now let es denote the

number of sets that are contained in exactly s families Ci’s, where 1 ≤ s ≤ 3. We then have

c(M1,M2,M3) ≤ 1e12e23e3 = 2e23e3 .

Since there are at least two distinct maximal families in M1,M2 and M3, we either

have a non-maximum t-intersecting family or two distinct maximum t-intersecting families,
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and so e3 = |M1 ∩M2 ∩M3| ≤ max (N1, N2). We also have 2e2 + 3e3 ≤ e1 + 2e2 + 3e3 =

|M1|+ |M2|+ |M3| ≤ 3N0, and hence e2 ≤ 3
2(N0 − e3). Thus

c(M1,M2,M3) ≤ 2
3
2
(N0−e3)3e3 = 2

3
2
N0

(
3 · 2−

3
2

)max(N1,N2)
.

Since c(M1,M2,M3) ≥ c(F)M−3, this gives

c(F) ≤ 2
3
2
N0

(
3 · 2−

3
2

)max(N1,N2)
M3 = 3N0

(
2

3
2 · 3−1

)N0−max(N1,N2)− 6 logM
2 log 3−3 log 2

< 3N0

as N0 −max(N1, N2)− 51 logM > 0. Therefore, the only families maximising the number of

(3, t)-colourings are the maximum t-intersecting families.

In order to obtain concrete results for permutations, vector spaces and set families, we must

check that (3.1) holds. This will entail using an Erdős–Ko–Rado-type theorem to determine

N0, a Hilton–Milner-type theorem for N1, and having appropriate bounds on N2 and M . In

the following subsections, we verify the inequality in each of these settings.

3.2.2 Permutations

In this section we shall prove Theorem 3.1.1. In light of Lemma 3.2.1, we need to verify

condition (3.1).

Proof of Theorem 3.1.1. A theorem of Ellis, Friedgut and Pilpel [31, Theorem 3] shows that

for n sufficiently large with respect to t, the largest t-intersecting subfamilies of Sn are t-stars.

So we have N0 = (n− t)!. Two distinct t-stars are either disjoint or fix at least t+1 elements,

and so N2 = (n − t − 1)!. By the stability result of Ellis [29, Theorem 9], a non-maximum

maximal t-intersecting family can contain at most N1 = (1−1/e+o(1))(n− t)! permutations.

It follows that max(N1, N2) = (1− 1/e+ o(1))(n− t)!. Finally, it was proved by Balogh, Das,

Delcourt, Liu and Sharifzadeh [5, Proposition 3.1] that the number of maximal t-intersecting

families of permutations is at most M = nn2
2n−2t+1

.

It remains to verify that (3.1) holds. We have, for large n,

N0 −max(N1, N2)− 51 logM = (1/e+ o(1))(n− t)!− 51n22n−2t+1 log n > 0,

since (n− t)! ≥
(
n−t
t

)n−t
. Hence, by Lemma 3.2.1, a family F ⊆ Sn can have at most 3(n−t)!

(3, t)-colourings, with equality if and only if F is a t-star.
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3.2.3 Set families

We now turn our attention to set families, and seek to prove Theorem 3.1.2 via Lemma 3.2.1.

The following inequality will be useful for our analysis:(
a
r

)(
b
r

) =
r−1∏
j=0

a− j
b− j

≥
(a
b

)r
for a ≥ b ≥ r. (3.2)

Proof of Theorem 3.1.2. We shall verify that, for n, k and t as in the statement of the theorem,

the condition (3.1) holds.

We begin with the case t = 1. By the extremal result of Erdős, Ko and Rado [37, Theorem

1], the 1-stars are the largest intersecting families, and so N0 =
(
n−1
k−1
)
. The intersection of

two distinct 1-stars fixes 2 elements, and hence N2 =
(
n−2
k−2
)
. The stability result of Hilton

and Milner [59, Theorem 3] bounds the sizes of non-maximum maximal intersecting families

by at most N1 =
(
n−1
k−1
)
−
(
n−k−1
k−1

)
+1. Hence max(N1, N2) ≤

(
n−1
k−1
)
−
(
n−k−1
k−1

)
+1. Finally, the

number of maximal intersecting families can be bounded by M =
(
n
k

)(2k−1
k−1 ), due to Balogh et

al. [5, Proposition 4.1]. Since
(
n
k

)
≤ 2n, we can estimate logM ≤ n

(
2k−1
k−1

)
. Therefore, using

(3.2), we obtain

N0 −max(N1, N2)− 51 logM ≥
(
n− k − 1

k − 1

)
− 51n

(
2k − 1

k − 1

)
− 1

≥

((
n− k − 1

2k − 1

)k−1
− 51n

)(
2k − 1

k − 1

)
− 1.

For t = 1, we have n ≥ (t+ 1)(k − t+ 1) + ηk,t = 3k + 12 log k. It follows that(
n− k − 1

2k − 1

)k−1
=
n− k − 1

2k − 1

(
n− k − 1

2k − 1

)k−2
≥ n

4k

(
1 +

12 log k

2k − 1

)k−2
As 1 + x ≥ exp (6x/11) for x ∈ [0, 1], we have(

1 +
12 log k

2k − 1

)k−2
≥ exp

(
72(k − 2) log k

22k

)
≥ exp(3 log k) = k3,

for k ≥ 64. Thus, N0 −max(N1, N2)− 51 logM ≥
(
1
4nk

2 − 51
) (

2k−1
k−1

)
− 1 > 0.

From now on we suppose t ≥ 2. The theorem of Wilson [95] shows that for n ≥ (t+1)(k−
t + 1), the largest t-intersecting hypergraphs are t-stars, and so we have N0 =

(
n−t
k−t
)
. The

intersection of two distinct t-stars fixes at least t+ 1 elements, and so N2 =
(
n−t−1
k−t−1

)
. By the

stability theorem of Ahlswede and Khachatrian [1], a non-maximum maximal t-intersecting

can have at most

N1 =


(
n−t
k−t
)
− n−(t+1)(k−t+1)

n−t−1
(
n−t−1
k−t

)
if k ≤ 2t+ 1,(

n−t
k−t
)
−min

(
n−(t+1)(k−t+1)

n−t−1
(
n−t−1
k−t

)
,
(
n−k−1
k−t

)
− t
)

if k ≥ 2t+ 2
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elements. It follows that

max(N1, N2) ≤
(
n− t
k − t

)
− 1

n

(
n− k − 1

k − t

)
+ n, (3.3)

and for k ≤ 2t+ 1,

max(N1, N2) ≤
(
n− t
k − t

)
− n− (t+ 1)(k − t+ 1)

n− t− 1

(
n− t− 1

k − t

)
. (3.4)

Finally, Balogh et al. [5, Proposition 4.1] bound the number of maximal intersecting families

by M =
(
n
k

)(2(k−t)+1
k−t ).

We now handle the case k − t = 1. Since M =
(
n
k

)(2(k−t)+1
k−t ) =

(
n
k

)3
, we can evaluate

logM ≤ 3k log
(
en
k

)
. Combining this inequality with (3.4), one gets

N0 −max(N1, N2)− 51 logM ≥ n− (t+ 1)(k − t+ 1)

n− t− 1

(
n− t− 1

k − t

)
− 153k log

(en
k

)
= n− 2k − 153k log

(en
k

)
.

Since we are assuming n ≥ (t+ 1)(k − t+ 1) + ηk,t = 2k + ηk,k−1 = 1246k, this expression is

increasing in n, and hence N0 −max(N1, N2)− 51 logM ≥ (1244− 153 log(1246e)) k > 0.

We next treat the case when t ≥ 2 and k − t = 2. By using the inequalities logM ≤(2(k−t)+1
k−t

)
n = 10n, n ≥ (t+ 1)(k − t+ 1) + ηk,k−2 > 3k and (3.4), we see that

N0 −max(N1, N2)− 51 logM ≥ (13ηk,k−2 − 510)n > 0.

It remains to verify (3.1) of Lemma 3.2.1 in the cases when t ≥ 2 and k − t ≥ 3. Using

the trivial bound
(
n
k

)
≤ 2n, we obtain logM ≤ n

(2(k−t)+1
k−t

)
≤ 2n

(2(k−t)
k−t

)
. By (3.3) and noting

that n− k − 1 ≥ t(k − t) + ηk,t, we have

N0 −max(N1, N2)− 51 logM ≥ 1

n

(
n− k − 1

k − t

)
− n− 102n

(
2(k − t)
k − t

)
(3.2)

≥

(
1

n

(
n− k − 1

2(k − t)

)k−t
− 103n

)(
2(k − t)
k − t

)

≥

(
n10

(4(k − t))11

(
t(k − t) + ηk,t

2(k − t)

)k−t−11
− 103n

)(
2(k − t)
k − t

)
.

(3.5)

If t = 2, then ηk,t = 60 log k and
t(k−t)+ηk,t

2(k−t) = 1 + 30 log k
k−2 . Since 1 + x ≥ exp(x/2) for

x ∈ [0, 52 ], we have

(k − 2)−11
(

1 +
30 log k

k − 2

)k−13
≥ k−11 exp

(
15(k − 13) log k

k − 2

)
≥ k−11 exp(11 log k) = 1
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as k ≥ 64. Combining this inequality with (3.5) we find that

N0 −max(N1, N2)− 51 logM ≥ (4−11n10 − 103n)

(
2(k − t)
k − t

)
> 0,

for n ≥ k ≥ 64.

If t ≥ 3, then (k−t)−11
(
t(k−t)+ηk,t

2(k−t)

)k−t−11
> (k−t)−11

(
3
2

)k−t−11
. This expression attains

the minimum at k − t = 27, and so from (3.5) it follows that

N0 −max(N1, N2)− 51 logM ≥
(
108−111.516n10 − 103n

)(2(k − t)
k − t

)
> 0,

for n ≥ (t+ 1)(k − t+ 1) + 1 ≥ 4k − 7 ≥ 249.

3.2.4 Vector spaces

We conclude this section by proving Theorem 3.1.4.

Proof of Theorem 3.1.4. Before we begin our calculations, it will be useful to have some

bounds on the Gaussian binomial coefficient. Observe that

qk(n−k) ≤
[
n

k

]
q

=
k−1∏
i=0

qn−i − 1

qk−i − 1
≤ (2q)k(n−k). (3.6)

By the extremal result of Hsieh [66, Theorem 4.4], the 1-stars are the largest intersecting

families, and so N0 =
[
n−1
k−1
]
q
. As the intersection of two distinct 1-stars fixes a 2-dimensional

subspace, we must have N2 =
[
n−2
k−2
]
q
. On the other hand, by the stability result of Blokhuis,

Brouwer, Chowdhury, Frankl, Mussche, Patkós and Szőnyi [11, Theorem 1.4], a maximal

family that is not a star can have at most N1 =
[
n−1
k−1
]
q
− qk(k−1)

[
n−k−1
k−1

]
q

+ qk subspaces,

a quantity slightly larger than
[
n−2
k−2
]
q
. Thus max(N1, N2) =

[
n−1
k−1
]
q
− qk(k−1)

[
n−k−1
k−1

]
q

+ qk.

Finally, the work of Balogh et al. [5, Proposition 6.1] allows us to bound the number of

maximal intersecting families by M =
[
n
k

](2k−1
k−1 )

q
. Putting these parameters together, we have

N0 −max(N1, N2)− 51 logM ≥ qk(k−1)
[
n− k − 1

k − 1

]
q

− qk − 51

(
2k − 1

k − 1

)
log

[
n

k

]
q

(3.6)

≥ qk(k−1) · q(k−1)(n−2k) − qk − 51 · 4kk(n− k) log(2q)

= q(k−1)(n−k) − qk − 51k(n− k)4k log(2q)

≥ q(k−1)(n−k) − qk − 13n24k log(2q). (3.7)

Since 7 ≤ k < n/2 and q ≥ 2, we may bound q(k−1)(n−k) ≥ q3n, qk ≤ qn/2, 4k ≤ qn−1 and

log(2q) ≤ q, and hence the right hand side of (3.7) can be bounded from below by

q3n − qn/2 − 13n2qn > qn − qn/2 > 0,
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where in the first inequality we use the fact that q2n > 13n2 for all q ≥ 2 and n ≥ 2k+1 ≥ 15.

This completes the proof of Theorem 3.1.4.

Remark 3.2.2. We may apply the stability result of Ellis [30] to show that every family V of

k-dimensional subspaces of Fnq has at most 3
[n−tk−t]q (3, t)-colourings, with equality if and only

if V is a t-star, provided n ≥ n0(q, t, k) sufficiently large. This recovers a result of Hoppen,

Lefmann and Odermann [65] mentioned in the introduction. By extending Lemma 3.2.1 from

3 to larger r, we can prove that, a family maximises the number of (r, t)-colourings only if it is

an union of t-stars. This rough structure characterisation allows us to determine the optimal

families for r ≥ 5 and t = 1, and for r ∈ {5, 6, 9} and t > 1. We refer the readers to [20] for

the details.

3.3 Multicoloured families

In this section we shall investigate the number of (r, t)-colourings of set families for r ≥ 4,

obtaining a precise characterisation of the extremal families for many ranges of the parameters.

We begin with an optimisation problem that motivates the constructions for the lower bound.

3.3.1 Optimisation problem

A maximum intersecting family has rN0 (r, 1)-colourings, since each of the N0 members of

the family can be receive any of the r colours. However, when r ≥ 4, we can do better

by distributing the colours between a larger number of maximum intersecting families. The

following optimisation problem, earlier discussed in [62], suggests that it is optimal to take

dr/3e maximum intersecting families, and assign three colours to as many of them as possible.

Lemma 3.3.1. Let r ≥ 2 be an integer. Consider the maximisation problem below, denoted

by MAX(r),

maximise
~α∈Nr

OBJ(~α) =
∏
i:αi 6=0

αi

subject to
r∑
i=1

αi ≤ r,

and let OPT(r) denote its optimal value. The following statements hold.

(i) For a feasible vector ~α, either OBJ(~α) = OPT(r) or OBJ(~α) ≤ 8
9OPT(r).

(ii) Up to a permutation of coordinates, all optimal solutions take one of the following forms:
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(a) r ≡ 0 (mod 3): ~α = (3, . . . , 3︸ ︷︷ ︸
r/3

, 0, . . . , 0).

(b) r ≡ 1 (mod 3): ~α = (2, 2, 3, . . . , 3︸ ︷︷ ︸
dr/3e

, 0, . . . , 0) or ~α = (4, 3, . . . , 3︸ ︷︷ ︸
br/3c

, 0, . . . , 0).

(c) r ≡ 2 (mod 3): ~α = (2, 3, . . . , 3︸ ︷︷ ︸
dr/3e

, 0, . . . , 0).

Proof. We will prove the lemma by showing that, if OBJ(~α) ≥ 8
9OPT(r), then ~α is as in (a),

(b) or (c) of (ii).

Suppose αi ≥ 5 for some i. Then, there exists j 6= i such that αj = 0, as
∑r

i=1 αi ≤ r.

Consider a new vector ~α′, where we replace αi and αj with 3 and αi− 3 respectively. Clearly,

~α′ is feasible, and OBJ(~α′) = 3(αi−3)
αi

·OBJ(~α) ≥ 6
5OBJ(~α) > OPT(r), a contradiction.

Hence we may assume every coordinate of ~α is at most 4. Now suppose
∑r

i=1 αi < r. Since

OBJ(~α) ≥ 8
9OPT(r) > 0, we must have αi 6= 0 for some i. Let ~α′ be the vector formed by

replacing αi with αi+1. Obviously, ~α′ is feasible, and OBJ(~α′) = αi+1
αi

OBJ(~α) ≥ 5
4OBJ(~α) >

OPT(r), since 1 ≤ αi ≤ 4 and OBJ(~α) > 8
9OPT(r). This is a contradiction.

Suppose ~α has two coordinates αi = 1 and 1 ≤ αj ≤ 4. Form a new vector ~α′ by replacing

these coordinates with 0 and αj+1. Then, ~α′ is again feasible, and OBJ(~α′) =
αj+1
αj

OBJ(~α) ≥
5
4OBJ(~α) > OPT(r), contradicting our assumption.

Thus every coordinate must be either 0, 2, 3 or 4. Replacing every 4 with two coordinates

both equal to 2 preserves feasibility without changing its objective value. Suppose now we have

at least three coordinates equal to 2. Form a new vector ~α′ by replacing those three coordinates

with two coordinates equal to 3 and one coordinate equal to 0. The resulting vector ~α′ is still

feasible, and OBJ(~α′) = 9
8OBJ(~α). Hence there can be at most two coordinates equal to 2,

and, up to permutation of coordinates, there is only one option for every r.

This implies the optimal solutions have all non-zero coordinates equal to 3, except for

perhaps one or two coordinates equal to 2, or one coordinate equal to 4, giving the charac-

terisation in (ii).

3.3.2 Extremal families

Given integers n, k, `, we write Sn,k,` = {F ∈
([n]
k

)
: F ∩ [`] 6= ∅}. In this section we shall show

Sn,k,dr/3e maximises the number of (r, 1)-colourings, provided n > Cr2kek
2/n log n. Below we

write c(F) for the number of (r, 1)-colourings of the family F . To show Sn,k,dr/3e is an optimal

family, we require a result of Dinur and Friedgut [27, Theorem 1.4].
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Theorem 3.3.2. There exists a constant K > 0 such that if F ⊆
([n]
k

)
is an intersecting

family then there exists i ∈ [n] such that all but K
(
n−2
k−2
)

of the sets in F contain i.

We also need the following generalisation of the Erdős-Ko-Rado theorem (see [50] and [45,

Theorem 3]).

Theorem 3.3.3. Let n and k be integers such that 2 ≤ k < n/2. Let A and B ⊆
([n]
k

)
be two

families such that A ∩B 6= ∅ for every A ∈ A and B ∈ B. Then min(|A| , |B|) ≤
(
n−1
k−1
)
.

We also require the following version of Hoeffding’s Inequality (see [60, Theorem 2]).

Theorem 3.3.4. Let the random variables X1, . . . , Xn be independent, with 0 ≤ Xi ≤ a for

each i. Let X =
∑n

i=1Xi. Then, for any t > 0,

P(|X − E[X]| ≥ t) ≤ 2 exp

(
− t2

a2n

)
.

In our notation, Theorem 3.1.3 gives c(n, k, r, 1) = c(Sn,k,dr/3e). It will be useful to have

a simple lower bound on c(n, k, r, 1). Indeed, let (α1, . . . , αdr/3e, 0, . . . , 0) be a vector which

solves OPT(r). We can use αi colours to colour the sets in {F ∈
([n]
k

)
: minF = i} for every

1 ≤ i ≤ dr/3e. This gives rise to at least (
∏
i αi)

(n−1
k−1)−r(

n−2
k−2) (r, 1)-colourings of Sn,k,dr/3e.

Hence

c(n, k, r, 1) ≥ [OPT(r)](
n−1
k−1)−r(

n−2
k−2). (3.8)

Proof of Theorem 3.1.3. Let F be an extremal system. As c(F) > 0, by applying Theorem

3.3.2 we can assume without loss of generality that

|{F ∈ F : minF > r}| ≤ Kr
(
n− 2

k − 2

)
. (3.9)

Our proof splits into two main steps.

Step 1: Describe a typical colouring of F .

Consider an (r, 1)-colouring ϕ of F . For each vertex i ∈ [n] and each colour σ ∈ [r], let

Fi,σ denote the subfamily of Fi := {F ∈ F : i ∈ F} induced by sets of colour σ. We say Fi,σ
is substantial if |Fi,σ| ≥ 3

(
n−2
k−2
)
. The family Fi is called s-influential if there are precisely s

colours σ ∈ [r] for which Fi,σ is substantial.

Claim 3.3.5. Suppose ϕ is an (r, 1)-colouring of F ⊂
([n]
k

)
. Then, for each colour σ ∈ [r]

there is at most one vertex i ∈ [n] such that Fi,σ is substantial.

Proof. Assume to the contrary that Fi,σ and Fj,σ are substantial for some i 6= j. Let A =

{F : F ∈ Fi,σ, j /∈ F} and B = {F : F ∈ Fj,σ, i /∈ F}. Since ϕ is an (r, 1)-colouring of F ,
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A and B are cross-intersecting. It now follows from Lemma 3.3.3 that min(|A| , |B|) ≤
(
n−3
k−2
)
,

and so min(|Fi,σ| , |Fj,σ|) ≤
(
n−3
k−2
)

+
(
n−2
k−2
)
< 3

(
n−2
k−2
)
. This contradicts our assumption that

both Fi,σ and Fj,σ are substantial.

Given r ∈ N, we denote by FEAS(r) the set of all vectors ~α = (α1, . . . , αr) ∈ Nr with∑r
i=1 αi ≤ r. For ~α ∈ Nr let C(~α) consist of all (r, 1)-colourings ϕ of F such that Fi is

αi-influential with respect to ϕ for all i ∈ [r]. Then, Claim 3.3.5 implies

c(F) =
∑

~α∈FEAS(r)

|C(~α)| . (3.10)

We shall show the contribution of C(~α) to c(F) is negligible unless ~α solves OPT(r). For

those vectors ~α, we describe a typical colouring in C(~α). In order to do so we introduce a

special class of colourings of F .

Suppose ~α ∈ OPT(r) and P(~α) = {(P1, . . . , Pr) : [r] = P1∪̇ . . . ∪̇Pr and |Pi| = αi for all i}.
For P = (P1, . . . , Pr) ∈ P(~α), we denote by SC(~α, P ) the set of all (r, 1)-colourings ϕ of F
with the following two properties

(P1) If ϕ(e) ∈ Pi, then i ∈ e;

(P2) If σ ∈ Pi, then σ appears at least 1
4r

(
n−1
k−1
)

times in Fi.

The set of ~α-star colourings of F is defined as SC(~α) =
⋃
P∈P(~α) SC(~α, P ).

The relevance of star colourings is revealed in the next claim.

Claim 3.3.6. Suppose |C(~α)| ≥ exp
(
−1

4

(
n−k−1
k−1

))
[OPT(r)](

n−1
k−1), then the following state-

ments hold:

(i) ~α solves OPT(r),

(ii) |Fi| ≥ 1
2

(
n−1
k−1
)

for all i ∈ supp(~α).

(iii) supp(~α) is a cover of F ,

(iv) |SC(~α)| = (1− o(1)) |C(~α)|.

Proof. By (3.10), it suffices to prove the statement for ~α ∈ FEAS(r). Set L := 3
(
n−2
k−2
)
. Note

that for each i ∈ [r] the family Fi contains at most
(
n−1
k−1
)

sets. The number of ways we may

choose and colour some of them such that these selected and coloured sets are not substantial

is at most∑
(a1,...,ar)∈[L]r

(
r∏
s=1

(
|Fi|
as

))
≤

∑
a∈[L]

((n−1
k−1
)

a

)r

≤

(
2

((n−1
k−1
)

L

))r
≤
(n
k

)3r(n−2
k−2)

, (3.11)
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where the second inequality holds since |Fi| ≤
(
n−1
k−1
)
. Moreover, the number of ways we may

colour sets in the family {F ∈ F : minF > r} is bounded from above by

r|{F∈F :minF>r}| ≤ rKr(
n−2
k−2), (3.12)

as |{F ∈ F : minF > r}| < Kr
(
n−2
k−2
)

by (3.9). On the other hand, the (α1 + . . .+αr) colours

that make the families F1, . . . ,Fr influential can be selected and distributed among the fam-

ilies F1, . . . ,Fr in at most (
r

α1 + . . .+ αr

)
(α1 + . . .+ αr)!

α1! · · ·αr!
< rr (3.13)

ways. To estimate |C(~α)| it remains to bound the number of ways the remaining sets in

Fi may be coloured with any of the αi colours that makes Fi αi-influential. Trivially, the

remaining sets in Fi can be coloured in at most

max{α|Fi|i , 1} ≤ max
{
α

(n−1
k−1)
i , 1

}
(3.14)

ways. In most of the cases this bound will suffice for our purpose. Now our analysis is divided

into four cases.

(i) Assume to a contrary that ~α does not solve OPT(r). Combining (3.11), (3.12), (3.13)

and (3.14), we find

|C(~α)| ≤ exp

(
3r2
(
n− 2

k − 2

)
log
(n
k

)
+K

(
n− 2

k − 2

)
r log r + r log r

)
[OBJ(~α)](

n−1
k−1)

≤ exp

(
−1

4

(
n− k − 1

k − 1

))
[OPT(r)](

n−1
k−1),

as OBJ(~α) ≤ 8
9OPT(r) by Lemma 3.3.1, and n > Cr2kek

2/n log n by the hypothesis. This is

a contradiction.

(ii) Suppose otherwise that |Fi0 | ≤ 1
2

(
n−1
k−1
)

for some i0 ∈ supp(~α). We can infer from (i)

that ~α solves OPT(r), and hence αi0 ≥ 2 by Lemma 3.3.1. It follows that the number of ways

the sets in Fi0 may be coloured with any of the αi0 colours chosen in (3.13) is at most

α
|Fi0 |
i0

≤ 2−
1
2(n−1
k−1) · α(n−1

k−1)
i0

. (3.15)

Combining (3.11), (3.12), (3.13), (3.14) and (3.15), we conclude

|C(~α)| ≤ exp

(
3r2
(
n− 2

k − 2

)
log
(n
k

)
+K

(
n− 2

k − 2

)
r log r + r log r − log 2

2
·
(
n− 1

k − 1

))
× [OBJ(~α)](

n−1
k−1)

≤ exp

(
−1

4

(
n− k − 1

k − 1

))
[OPT(r)](

n−1
k−1),
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when n > Cr2kek
2/n log n. This contradicts our assumption.

(iii) Suppose for a contradiction that supp(~α) is not a cover of F . Again by (i) we

conclude ~α solves OPT(r). Since supp(~α) is not a cover of F , there exists a set F ∈ F with

F ∩ supp(~α) = ∅. Suppose F receives colour σ and i0 ∈ supp(~α) is the vertex for which Fi0,σ
is substantial. Such a vertex i0 exists since F is ~α-influential6 and

∑
i αi = r. We shall bound

the number of ways we can colour the sets in Fi0 with αi0 colours selected in (3.13). Indeed,

there are at most
(
n−k−1
k−1

)
sets in Fi0 which are disjoint from F . Moreover, we can not use

the colour of F for those sets. Thus, we can colour them in at most (αi0 − 1)(
n−k−1
k−1 ) ways.

On the other hand, there are at most
(
n−1
k−1
)
−
(
n−k−1
k−1

)
sets in Fi0 that intersect F . These

sets can be coloured in at most α
(n−1
k−1)−(n−k−1

k−1 )
i0

ways. Therefore, the number of ways we can

colour the sets in Fi0 is bounded from above by

(αi0 − 1)(
n−k−1
k−1 ) · α(n−1

k−1)−(n−k−1
k−1 )

i0
≤
(
3
4

)(n−k−1
k−1 )

α
(n−1
k−1)
i0

, (3.16)

since αi0 ≤ 4 by Lemma 3.3.1. Finally, it follows from (3.11), (3.12), (3.13), (3.14) and (3.16)

that

|C(~α)| ≤ exp

(
3r2
(
n− 2

k − 2

)
log
(n
k

)
+K

(
n− 2

k − 2

)
r log r + r log r + log

(
3
4

)
·
(
n− k − 1

k − 1

))
× [OBJ(~α)](

n−1
k−1)

≤ exp

(
−1

4

(
n− k − 1

k − 1

))
[OPT(r)](

n−1
k−1),

for n > Cr2kek
2/n log n. This contradicts the assumption.

(iv) The assertion can be restated as
∣∣∣C(~α) \

⋃
P∈P(~α) SC(~α, P )

∣∣∣ = o(|C(~α)|). By the

definition, C(~α) \ SC(~α, P ) consists of all colourings ε ∈ C(~α) satisfying one of the following

properties

(P1) There exist i ∈ [r], σ ∈ Pi and e ∈ F \ Fi with ϕ(e) = σ;

(P2) There are i ∈ [r] and σ ∈ Pi such that σ appears less than 1
4r

(
n−1
k−1
)

times in Fi.

To bound the number of colourings which satisfy P1, we use the same argument as in (iii).

The number of colourings with property P2 can be bounded from above via Hoeffding’s

inequality.

For a vector ~α ∈ Nr which solves OPT(r), we write [~α] for the set of all vectors ~β ∈ Nr

such that ~β solves OPT(r) and supp(~β) = supp(~α). A typical colouring of F is described in

the following statement.

6In other words, Fi is αi-influential for every i ∈ [r].
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Claim 3.3.7. There exists a vector ~α ∈ Nr such that

|C(~α)| ≥ exp

(
−1

4

(
n− k − 1

k − 1

))
[OPT(r)](

n−1
k−1) and

∑
~β∈[~α]

∣∣∣SC(~β)
∣∣∣ = (1− o(1))c(F).

Proof. Recall that FEAS(r) = {(α1, . . . , αr) ∈ Nr|
∑r

i=1 αi ≤ r}. Hence

|FEAS(r)| =
(

2r

r

)
< 4r. (3.17)

We infer from (3.8), (3.10) and (3.17) that there exists a vector ~α ∈ FEAS(r) with

|C(~α)| ≥ 4−r · [OPT(r)](
n−1
k−1)−r(

n−2
k−2) > exp

(
−1

4

(
n− k − 1

k − 1

))
[OPT(r)](

n−1
k−1). (3.18)

Let V =
{
~β ∈ Nr :

∣∣∣C(~β)
∣∣∣ ≥ exp

(
−1

4

(
n−k−1
k−1

))
[OPT(r)](

n−1
k−1)

}
. It follows from (3.18) and

Claim 3.3.6 that V ⊆ [~α], and so∑
~β∈[~α]

∣∣∣SC(~β)
∣∣∣ ≥∑

~β∈V

∣∣∣SC(~β)
∣∣∣ = (1− o(1))

∑
~β∈V

∣∣∣C(~β)
∣∣∣ (3.19)

by Claim 3.3.6 (iv). On the other hand,∑
~β /∈V

∣∣∣C(~β)
∣∣∣ (3.17)≤ 4r exp

(
−1

4

(
n− k − 1

k − 1

))
[OPT(r)](

n−1
k−1) (3.8)

= o(c(F)) (3.20)

for n > Cr2kek
2/n log n. Finally, by combining (3.10), (3.19), (3.20), we obtain∑

~β∈[~α]

∣∣∣SC(~β)
∣∣∣ = (1− o(1))c(F),

as desired.

Step 2: Show that Sn,k,dr/3e is optimal.

Claim 3.3.8. Let ~α be the vector as in Claim 3.3.7. Then F = {F ∈
([n]
k

)
: F ∩supp(~α) 6= ∅}.

Proof. For simplicity of notation, let S = {F ∈
([n]
k

)
: F ∩ supp(~α) 6= ∅}. Then, it follows

from (3.18) and Claim 3.3.6 that F ⊂ S. Thus, F 6= S if and only if there is F ∈ Si \ F for

some i ∈ supp(~α). Assume this is the case. To get a contradiction we prove c(F ∪ {F}) ≥
(2− o(1))c(F). Note that, by Claim 3.3.7, we must have

∑
~β∈[~α]

∣∣∣SC(~β)
∣∣∣ = (1− o(1))c(F). So

it is enough to construct a 1-to-2 map between
⋃
~β∈[~α] SC(~β) and the set of (r, 1)-colourings

of F ∪ {F}. Indeed, let ϕ be a colouring in
⋃
~β∈[~α] SC(~β), say ϕ ∈ SC(~β, P ) for some ~β ∈ [~α]

and P = (P1, . . . , Pr) ∈ P(~β). Notice that∣∣∣∣∣∣Fi ∩
⋃

j∈supp(~α)\{i}

Fj

∣∣∣∣∣∣ ≤ r
(
n− 2

k − 2

)
. (3.21)
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On the other hand, since ~β solves OPT(r) and since ϕ ∈ SC(~β, P ), we can infer from Lemma

3.3.1 and the definition of SC(~β, P ) that |Pi| ≥ 2 and each colour in Pi appears at least
1
4r

(
n−1
k−1
)
> r

(
n−2
k−2
)

times in Fi. Combining this with (3.21), we conclude that at least two

colours, say σ and τ , appear in Fi \
⋃
j∈supp(~α)\{i}Fj . Since ϕ ∈ SC(~β), all the elements

assigned either colour σ or colour τ by ϕ must contain i, and hence ϕ can be extended to two

(r, 1)-colourings of F ∪ {F} by assigning either σ or τ to F . This finishes our proof of the

claim.

Claim 3.3.9. F ∼= Sn,k,dr/3e.

Proof. By Claim 3.3.8 and Lemma 3.3.1, we must have either F ∼= Sn,k,dr/3e or F ∼= Sn,k,dr/3e−1.
Assume to a contrary that Sn,k,dr/3e−1 maximises the number of (r, 1)-colourings. From this

it follows from Claims 3.3.6 – 3.3.8 and Lemma 3.3.1 that r = 3s+ 1 for some integer s ≥ 1.

We then can deduce from Lemma 3.3.1 and Claim 3.3.7 that

c(Sn,k,dr/3e−1) = (1 + o(1))s · (3s+ 1)!

24 · 3s−1
·
(

7s−1 · 6(s−1
2 )
)(1+o(1))(n−2

k−2) ·
(
4 · 3s−1

)(n−1
k−1)−(s−1)(

n−2
k−2) ,

and

c(Sn,k,dr/3e) = (1+o(1))

(
s+ 1

2

)
(3s+ 1)!

4 · 3s−1
·
(

4 · 52(s−1) · 6(s−1
2 )
)(1+o(1))(n−2

k−2)·
(
4 · 3s−1

)(n−1
k−1)−s(

n−2
k−2) ,

for n > Cr2kek
2/n log n. So c(Sn,k,dr/3e) > c(Sn,k,dr/3e−1), which contradicts our assumption.

Claim 3.3.9 shows that Sn,k,dr/3e maximises the number of (r, 1)-colourings, completing

the proof of Theorem 3.1.3.

3.4 Concluding remarks

In this chapter we study the Erdős-Rothschild extension for Erdős-Ko-Rado Theorem within

various setting in discrete mathematics. We determined the maximum possible number of

edge colourings of a hypergraph such that every colour class forms an intersecting hypergraph.

Nevertheless, numerous open problems remain.

We could extend Theorem 3.1.1 for (r, 1)-colourings with 5 ≤ r = o
(√

n
logn

)
showing

that the extremal families are isomorphic to the family
⋃dr/3e
i=1 Ti,i, where Ti,i is the coset

{σ ∈ Sn|σ(i) = i}. For r = 4, our method allows us to show that one of the two families

T1,1 ∪ T1,2 and T1,1 ∪ T2,2 would maximises the number of colourings. The proofs are almost

identical to that of Theorem 3.1.3; we leave the details to the readers. The requirement that
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r = o
(√

n
logn

)
seems somewhat artificial; we would expect the same statement to hold for

much larger r, say r = o(n), as well.

There is also the question of obtaining sharp dependency between n, k and t in Theorem

3.1.2. For t = 1 and n ≥ 3k + 12 log k, Theorem 3.1.2 shows that k-uniform families on [n]

which maximises the number of (3, 1)-colourings are stars. New methods will be required to

characterise optimal families for the complete range, as the bound on the number of maximal

intersecting families is not strong enough to apply Lemma 3.2.1 when n ≤ 3k. It is worth

noting that when n ≥ 2k + 1, the largest intersecting families are stars. We thus suspect

that n ≥ 2k + 1 may already suffice for the stars to become optimal constructions for the

Erdős-Rothschild problem.

We find most exciting the prospect of studying Erdős–Rothschild-type problems in other

settings. We hope that further work of this nature will lead to many interesting results and

a greater understanding of classical theorems in extremal combinatorics.
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Chapter 4

A Density Turán Theorem

4.1 Introduction

Turán-type problems ask for the maximum size of some structures that do not contain a given

substructure. In this chapter we consider a multipartite analogue of the problem, suggested

by Bollobás (see the discussion after the proof of Theorem VI.2.15 in [12]). Before stating the

problem at hand and presenting our contributions, we begin with a brief survey of relevant

results.

4.1.1 Background

The fundamental Turán theorem of 1941 [94] completely determined the Turán numbers of a

clique: the Turán graph Tk−1(n), the complete (k − 1)-partite graph on n vertices with parts

as equal as possible, has the largest number of edges among all Kk-free n-vertex graphs. Thus,

we have ex(n,Kk) = tk−1(n), where tk−1(n) is the number of edges in Tk−1(n). This theorem

generalises a previous result by Mantel [79] from 1907, which states that ex(n,K3) = bn2

4 c.

A large and important class of graphs for which the Turán numbers are well-understood is

formed by colour-critical graphs, that is, graphs whose chromatic number can be decreased by

removing an edge. Simonovits [92] introduced the stability method to show that ex(n,H) =

tk−1(n) for all n ≥ n0(H) sufficiently large, provided H is a colour-critical graph with χ(H) =

k; furthermore, Tk−1(n) is the unique extremal graph. As the cliques are colour-critical,

Simonovits’ theorem implies Turán’s theorem for large n.

For general graphs H we still do not know how to compute the Turán numbers ex(n,H)

exactly; but if we are satisfied with an approximate answer the theory becomes quite simple:
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it is enough to know the chromatic number of H. The important and deep theorem of

Erdős and Stone [40] together with an observation of Erdős and Simonovits [38] shows that

ex(n,H) =
(
χ(H)−2
χ(H)−1 + o(1)

)
n2

2 , where the o(1) term tends to 0 as n tends to infinity. In the

literature, this result is usually referred as the Erdős–Stone–Simonovits theorem.

In the years since these seminal theorems appeared, great efforts have been made to extend

them, some of which are discussed in Nikiforov’s survey [83]. We are particularly interested

in the following two extensions.

For every integer s ≥ 2, letKk−1(s) denote the complete (k−1)-partite graphKk−1(s, . . . , s),

and let K+
k−1(s) be the graph obtained from Kk−1(s) by adding an edge to the first class.

Nikiforov [82] and Erdős [33] (for k = 3) proved that for all k ≥ 3 and all sufficiently small

c > 0, every graph of sufficiently large order n with tk−1(n) + 1 edges contains not only a Kk

but a copy of K+
k−1
(
bc log nc

)
. For fixed k, the Erdős-Rényi random graph Gn,p shows that

the lower bound c log n on the size of the subgraph in this result is optimal up to a constant

factor.

Seeking an extension of Turán’s theorem, Erdős [35] asked how manyKk sharing a common

edge must exist in a graph on n vertices with tk−1(n) + 1 edges. Bollobás and Nikiforov [16]

sharpened Erdős’s result [35] showing that for large enough n, every graph of order n with

tk−1(n)+1 edges has an edge that is contained in k−k−4nk−2 copies of Kk. This result is best

possible, up to a poly(k) factor.

In this chapter we shall study analogues of these results for multipartite graphs. For a

graph H and an integer ` ≥ v(H), let d`(H) be the minimum real number such that every

`-partite graph G = (V1 ∪ . . . ∪ V`, E) with d(Vi, Vj) :=
e(Vi,Vj)
|Vi||Vj | > d`(H) for all i 6= j contains

a copy of H. The problem of determining the exact value of d`(H) was suggested by Bollobás

(see the discussion after the proof of Theorem VI.2.15 in [12]). However, it was first studied

systematically by Bondy, Shen, Thomassé and Thomassen [17]. Amongst other things Bondy

et.al. showed that for every graph H the sequence d`(H) decreases to χ(H)−2
χ(H)−1 as ` tends to

infinity. To show the lower bound d`(H) ≥ χ(H)−2
χ(H)−1 , they observed that the `-partite graph

G obtained from the empty graph on {1, . . . , `} by splitting each vertex v of {1, . . . , `} into

χ(H) − 1 vertices v1, v2, . . . , vχ(H)−1, and joining two vertices xi and yj if and only if x 6= y

and i 6= j, has all edge densities equal to χ(H)−2
χ(H)−1 . Since G is (χ(H) − 1)-colourable (with

vertex classes Vi = {vi : v ∈ {1, . . . , `}} for 1 ≤ i ≤ χ(H) − 1), it does not contain a copy of

H. For the opposite inequality lim
`→∞

d`(H) ≤ χ(H)−2
χ(H)−1 , they used the Erdős–Stone–Simonovits

theorem together with an averaging argument.

When H = K3, the aforementioned result of Bondy et. al. [17] implies that d`(K3)

decreases to 1
2 as ` tends to infinity. They also showed that d3(K3) = −1+

√
5

2 ≈ 0.61, d4(K3) >

40



Figure 4.1: An almost colour-critical graph.

0.51, and speculated that d`(K3) >
1
2 for all ` ≥ 3. Refuting this conjecture, Pfender [85]

proved that d`(Kk) = k−2
k−1 for large enough `. He also described the family Gk` of extremal

graphs; we shall define this family later in Section 4.2.2.

Theorem 4.1.1 (Pfender [85]). For every integer k ≥ 3 there exists a constant C = C(k)

such that the following holds for every integer ` ≥ C. If G = (V1 ∪ . . . ∪ V`, E) is an `-partite

graph with

d(Vi, Vj) ≥ k−2
k−1 for i 6= j,

then either G contains a Kk or G is isomorphic to a graph in Gk` . In particular, d`(Kk) = k−2
k−1

for every ` ≥ C.

This theorem can be seen as a multipartite version of the Turán theorem. For an arbitrary

graph H, Pfender suggested that d`(H) should be equal to χ(H)−2
χ(H)−1 for every ` ≥ `0(H)

sufficiently large.

4.1.2 Our results

In this chapter we shows that Pfender’s suggestion is not quite true. In fact, we characterise

those graphs for which the sequence d`(H) is eventually constant, calling them almost colour-

critical.

Definition 4.1.2. A graph H is called almost colour-critical if there exists a map φ from

V (H) to {1, 2, . . . , χ(H)− 1} such that

(i) The induced subgraph of H on φ−1(1) has maximum degree at most 1,

(ii) For 2 ≤ i ≤ χ(H)− 1, φ−1(i) is an independent set of H.

In other words, an almost colour-critical graph H has a vertex-colouring with χ(H)−1 colours

that is almost proper: all colour classes but one are independent sets, and the exceptional

class induces just a matching (see Figure 4.1). For example, cliques, or, more generally colour-

critical graphs, are almost colour-critical while the complete k-partite graphs Kk(s1, . . . , sk)

are not for every s1 ≥ 1, s2 ≥ 2, . . . , sk ≥ 2.
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Our main result shows that almost colour-critical graphs are exactly those for which the

sequence d`(H) is eventually constant.

Theorem 4.1.3 ([81]). The following statement holds for every graph H.

(1) If H is not almost colour-critical, then d`(H) ≥ χ(H)−2
χ(H)−1 + 1

(χ(H)−1)2(`−1)2 for every

` ≥ v(H).

(2) If H is an almost colour-critical graph, then there exists a positive integer C = C(H)

so that d`(H) = χ(H)−2
χ(H)−1 for every ` > C.

Note that the estimate in the first statement is tight for H = K1,2, and the second statement

implies Pfender’s result since cliques are almost colour-critical. This result can be viewed as

a multipartite version of the Simonovits theorem. Since the proof uses the graph removal

lemma, the resulting constant C(H) is fairly large.

The rest of the chapter deals with various extensions of Pfender’s result. More precisely,

we investigate the extensions of Turán’s theorem discussed in Section 4.1.1 for balanced mul-

tipartite graphs. An `-partite graph G on non-empty independent sets V1, . . . , V` is balanced

if the vertex classes V1, . . . , V` are of the same size.

A multipartite version of the extension considered by Nikiforov [82] and Erdős [33] can be

stated as follows.

Theorem 4.1.4 ([81]). Let k and ` be integers with k ≥ 3 and ` ≥ e4k
(k+6)k

, and let G =

(V1 ∪ . . . ∪ V`, E) be a balanced `-partite graph on n vertices such that

d(Vi, Vj) ≥ k−2
k−1 for i 6= j.

Then, either G is isomorphic to a graph in Gk` or G contains a copy of K+
k−1
(
bc log nc

)
, where

c = k−(k+6)k/2.

For fixed k, the random graph Gn,p shows that the lower bound c log n on the size of the

subgraph in this theorem is tight up to a constant factor.

The extension of Turán’s theorem studied by Bollobás and Nikiforov [16] has the following

multipartite version.

Theorem 4.1.5 ([81]). Let k and ` be integers with k ≥ 3 and ` ≥ k12k, and let G =

(V1 ∪ . . . ∪ V`, E) be a balanced `-partite graph on n vertices such that

d(Vi, Vj) ≥ k−2
k−1 for i 6= j.

Then, G either contains a family of k−2k
2
nk−2 cliques of order k sharing a common edge or

is isomorphic to a graph in Gk` .
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With some minor modifications, this result follows from our proof of Theorem 4.1.4. For the

sake of clarity we sketch these modifications after detailing the proof of Theorem 4.1.4.

4.1.3 Organisation

The remainder of this chapter is organised as follows. In Section 4.2 we introduce some

notation and definitions. In Section 4.3 we extend ideas developed in [85] to prove Theorem

4.1.3. A proof of Theorem 4.1.4 is given in Section 4.4. We sketch how to modify the proof

of Theorem 4.1.4 to get Theorem 4.1.5 in Section 4.5, and close with some further remarks

and open problems in Section 4.6.

4.2 Preliminaries

4.2.1 Notation

All graphs in this chapter are finite, simple and undirected. Given a graph G, we denote

its vertex and edge sets by V (H) and E(H), and the cardinalities of these two sets by

v(H) and e(H), respectively. For pairwise disjoint vertex sets W1, . . . ,Wr ⊆ V (G), we write

G[W1, . . . ,Wr] for the r-colourable graph which can be obtained from G[W1 ∪ . . . ∪Wr] by

deletion of edges in G[Wi] for all i ≤ r.

Let G be an `-partite graph on non-empty independent sets V1, . . . , V`. For X ⊆ V (G) and

i ≤ `, write Xi = X ∩ Vi. The edge density between Vi and Vj is dij := d(Vi, Vj) :=
e(Vi,Vj)
|Vi||Vj | .

For r ≥ 2 and t1 ≥ 1, . . . , tr ≥ 1, let Kr(t1, . . . , tr) be the complete r-partite graph with

classes of sizes t1, . . . , tr. If t1 = . . . = tr = t, we simply write Kr(t) instead of Kr(t1, . . . , tr).

For r ≥ 2, s ≥ 1 and t1 ≥ 2s, t2 ≥ 1, . . . , tr ≥ 1, we denote by K+s
r (t1, . . . , tr) the graph

obtained from Kr(t1, . . . , tr) by adding a matching of size s to the first vertex class. If s = 1,

we omit the upper index s. In particular, K+s
r (t) is the short form for K+s

r (t, . . . , t) and

K+
r (t) is nothing but K+1

r (t, . . . , t).

4.2.2 Extremal graphs

In this section we shall recall the definition of the family Gk` of extremal graphs given by

Pfender [85]. For k ≥ 3 and ` ≥ (k−1)!, a graph G is in Ḡk` if it can be constructed as follows.

Let {π1, π2, . . . , π(k−1)!} be the set of all permutations of {1, . . . , k − 1}. For 1 ≤ i ≤ ` and
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1 ≤ s ≤ k − 1, pick non-negative integers nsi such that

n
πi(1)
i ≥ nπi(2)i ≥ . . . ≥ nπi(k−1)i for 1 ≤ i ≤ (k − 1)!,

n1i = n2i = . . . = nk−1i > 0 for (k − 1)! < i ≤ `, and∑
s

nsi > 0 for 1 ≤ i ≤ `.

Vertex and edge sets of G are defined as (see Figure 4.2)

V (G) = {(i, s, t) : 1 ≤ i ≤ `, 1 ≤ s ≤ k − 1, 1 ≤ t ≤ n(s)i },

E(G) = {(i, s, t)(i′, s′, t′) : i 6= i′, s 6= s′}.

It is not hard to see that G is an (k − 1)-colourable `-partite graph with parts Vi =

{(i, s, t) : 1 ≤ s ≤ k − 1, 1 ≤ t ≤ nsi} for 1 ≤ i ≤ `, and colour classes V (s) = {(i, s, t) : 1 ≤
i ≤ `, 1 ≤ t ≤ nsi} for 1 ≤ s ≤ k − 1. Moreover, if all nsi are equal, we get dij = k−2

k−1 for every

i 6= j. Note that other weights nsi can be used to achieve the inequality dij ≥ k−2
k−1 for every

i 6= j.

Let Gk` be the family of graphs which can be obtained from graphs in Ḡk` by removal of

some edges in {(i, s, t)(i′, s′, t′) : 1 ≤ i < i′ ≤ (k − 1)!}. The following simple observation by

Pfender [85] will be useful for our investigation.

Lemma 4.2.1. Let k ≥ 3 and ` ≥ (k − 1)! be integers. If G = (V1 ∪ . . . ∪ V`, E) is a (k − 1)-

colourable `-partite graph with d(Vi, Vj) ≥ k−2
k−1 for i 6= j, then it is isomorphic to a graph in

Gk` .

n21

n11

n22

n12

n23

n13

· · · n2`−1

· · · n1`−1

n2`

n1`

Figure 4.2: A graph in Ḡ3` , all edges between different colours in different parts exists.

4.2.3 Infracolourable structures

The following notation will play a key role in our investigation.

Definition 4.2.2. Given a real number η ≥ 0, and integers k ≥ 3 and ` ≥ 2, an (η, k, `)-

infracolourable structure is an `-partite graph G = (V1 ∪ . . . ∪ V`, E) together with pairs

(D
(s)
i , Y

(s)
i )s≤k−1,i≤` satisfying:
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(i) For every i ≤ `, Vi =
⋃̇
s≤k−1Y

(s)
i and

∣∣∣Y (1)
i

∣∣∣ ≥ ∣∣∣Y (2)
i

∣∣∣ ≥ . . . ≥ ∣∣∣Y (k−1)
i

∣∣∣;
(ii) For every i ≤ ` and every s ≤ k− 1, D

(s)
i ⊆ Y

(s)
i and

⋃
i≤` Y

(s)
i \D(s)

i is an independent

set;

(iii) For every s ≤ k − 1, each vertex v ∈
⋃
i≤`D

(s)
i has at most η · v(G)

k−1 neighbours in⋃
i≤` Y

(s)
i and at least 3η · v(G)

k−1 non-neighbours in
⋃
i≤` Vi \ Y

(s)
i .

The graph G is called the base graph of the infracolourable structure.

Infracolourable structures are useful for us mainly because theirs base graphs break the

density conditions in our theorems.

Lemma 4.2.3. Let η be a positive real number, and let k ≥ 3 and ` ≥ 2 be integers.

Suppose that an `-partite graph G = (V1 ∪ . . . ∪ V`, E) together with a system of pairs

(D
(s)
i , Y

(s)
i )s≤k−1,i≤` of vertex sets form an (η, k, `)-infracolourable structure. Then

e(G) ≤ k−2
k−1 ·

∑
i<j

|Vi| |Vj | .

In particular, there exist two different indices i and j such that d(Vi, Vj) ≤ k−2
k−1 . Furthermore,

the equality occurs if and only if there exists i0 ∈ {0, 1, . . . , `} such that D
(s)
i = ∅ for all s and

all i,
∣∣∣Y (s)
i

∣∣∣ = 1
k−1 · |Vi| for all s and all i 6= i0, and d(Y

(s)
i , Y

(t)
j ) = 1 for all s 6= t and i 6= j.

Proof. It follows from the assumption that

e(G) ≤
∑
i<j
s 6=t

∣∣∣Y (s)
i

∣∣∣ ∣∣∣Y (t)
j

∣∣∣+

∣∣∣∣∣∣
⋃
i,s

D
(s)
i

∣∣∣∣∣∣ ·
(
η · v(G)

k − 1
− 1

2 · 3η ·
v(G)

k − 1

)

≤
∑
i<j
s 6=t

∣∣∣Y (s)
i

∣∣∣ ∣∣∣Y (t)
j

∣∣∣ =
∑
i<j

|Vi| |Vj | −
∑
i<j

s≤k−1

∣∣∣Y (s)
i

∣∣∣ ∣∣∣Y (s)
j

∣∣∣ ≤ k−2
k−1 ·

∑
i<j

|Vi| |Vj | ,

where in the last inequality we use Chebyshev’s sum inequality.

To find an infracolourable structure in host graphs we shall need the following technical

lemma. It was implicitly stated in [85]. We include a proof here for the sake of completeness.

Lemma 4.2.4. Let k ≥ 3 and ` ≥ 2 be integers, and let ε be a real number with 0 < ε < 1
4 .

Suppose that G = (V1 ∪ . . . ∪ V`, E) is an `-partite graph with d(Vi, Vj) ≥ k−2
k−1 for all i 6= j.

Assume that X
(s)
i and Ti be subsets of V (G) for i ≤ ` and s ≤ k − 1 with the following three

properties:

(i) For every i ≤ `, Vi = X
(1)
i ∪̇ . . . ∪̇X

(k−1)
i ∪̇Ti;

(ii) For every i ≤ `,
∣∣∣X(1)

i

∣∣∣ ≥ . . . ≥ ∣∣∣X(k−1)
i

∣∣∣ and |Ti| ≤ ε |Vi|;
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(iii) For every s ≤ k − 1,
⋃
i≤`X

(s)
i is an independent set.

Then there exists a subset I0 ∈
( N
k−1
)

so that
∣∣∣X(s)

i

∣∣∣ =
(

1
k−1 ± k

√
ε
)
|Vi| for s ≤ k − 1 and

i /∈ I0.

Proof. It suffices to show that for each s ≤ k − 1 there is at most one index i ≤ ` such that∣∣∣X(s)
i

∣∣∣
|Vi| > 1

k−1 +
√
ε. Assume to the contrary that

∣∣∣X(s)
i

∣∣∣
|Vi| ≥

∣∣∣X(s)
j

∣∣∣
|Vj | > 1

k−1 +
√
ε for some s and

i 6= j. We first prove that

∣∣∣X(s)
i

∣∣∣
|Vi| ≤ 1− ε. Otherwise, if

∣∣∣X(s)
i

∣∣∣
|Vi| > 1− ε, then

d(Vi, Vj) ≤ 1−

∣∣∣X(s)
i

∣∣∣
|Vi|

·

∣∣∣X(s)
j

∣∣∣
|Vj |

≤ 1− (1− ε)
(

1
k−1 +

√
ε
)
< k−2

k−1

for k ≥ 3 and ε < 1
4 , as X

(s)
i ∪X

(s)
j is an independent set by (iii). But this contradicts the

density condition that d(Vi, Vj) ≥ k−2
k−1 .

We shall get a contradiction by proving that d(Vi, Vj) <
k−2
k−1 . Indeed, we can infer from

Chebyschev’s sum inequality that

d(Vi, Vj)
(iii)

≤ 1− 1

|Vi| |Vj |
·
∑
t

∣∣∣X(t)
i

∣∣∣ ∣∣∣X(t)
j

∣∣∣
≤ 1−

∣∣∣X(s)
i

∣∣∣ ∣∣∣X(s)
j

∣∣∣
|Vi| |Vj |

− 1

(k − 2) |Vi| |Vj |
·
(
|Vi| − |Ti| −

∣∣∣X(s)
i

∣∣∣) (|Vj | − |Tj | − ∣∣∣X(s)
j

∣∣∣)
= 1− xixj − 1

k−2 (1− ti − xi) (1− tj − xj) ,

where xi =

∣∣∣X(s)
i

∣∣∣
|Vi| , xj =

∣∣∣X(s)
j

∣∣∣
|Vj | , ti = |Ti|

|Vi| and tj =
|Tj |
|Vj | . Since both xi and xj are bounded

from below by 1
k−1 , the expression f(xi, xj , ti, tj) := 1− xixj − 1

k−2 (1− ti − xi) (1− tj − xj)
is decreasing with respect to both xi and xj . Therefore, the density d(Vi, Vj) is bounded from

above by

f(xi, xj , ti, tj) ≤ f
(

1
k−1 +

√
ε, 1

k−1 +
√
ε, ti, tj

)
≤ f

(
1

k−1 +
√
ε, 1

k−1 +
√
ε, ε, ε

)
< k−2

k−1 ,

where the second inequality follows from the assumption that ti, tj ∈ [0, ε]. However, this

contradicts the assumption that d(Vi, Vj) ≥ k−2
k−1 .

4.3 Proof of Theorem 4.1.3

In this section we will prove Therem 4.1.3. We begin with a proof of the first assertion.

Proof of Theorem 4.1.3(1). We prove by contradiction. Assume that d`(H) < χ(H)−2
χ(H)−1 +

1
(χ(H)−1)2(`−1)2 . Let r = χ(H) − 1, and let V1, . . . , V` be ` disjoint sets of size (` − 1)r.
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For i ≤ `, we partition Vi into r subsets V
(1)
i , . . . , V

(r)
i of size (` − 1) each. We form a com-

plete bipartite graph between V
(s)
i and V

(t)
j for i < j and s 6= t. We then create a perfect

matching in V
(1)
1 ∪ . . . ∪ V (1)

` such that there is exactly one edge between V
(1)
i and V

(1)
j for

every i 6= j. The resulting graph G satisfies

d(Vi, Vj) =
χ(H)− 2

χ(H)− 1
+

1

(χ(H)− 1)2(`− 1)2
> d`(H) for i 6= j.

Thus, by the definition of d`(H), G must contain a copy of H. From the construction of

G, we can see that H is an almost colour-critical graph. This finishes our proof of Theorem

4.1.3(1).

Remark 4.3.1. The estimate in Theorem 4.1.3(1) is tight for K1,2, that is d`(K1,2) = 1
(`−1)2

for ` ≥ 3. Indeed, let G = (V1 ∪ . . . ∪ V`, E) be an `-partite graph with d(Vi, Vj) >
1

(`−1)2 for

every i 6= j. We wish to show that G contains a copy of K1,2. Suppose to the contrary that

G is K1,2-free. For i 6= j, we write Vi,j for the set of vertices in Vi with at least one neighbour

in Vj . Since G is K1,2-free, we see that

(i) the edges between Vi and Vj form a perfect matching between Vi,j and Vj,i for every

i 6= j;

(ii) Vi,j and Vi,j′ are disjoint for all distinct indices i, j and j′.

Notice that Vi,j is non-empty for every i 6= j as d(Vi, Vj) > 0. Combining this with property

(ii), we conclude that

|Vi| ≥
∑

j∈[`]\{i}

|Vi,j | ≥ `− 1 for i ≤ `. (4.1)

Hence ∑
1≤i<j≤`

(
|Vi,j |
|Vi|

+
|Vj,i|
|Vj |

)
=
∑

1≤i≤`

∑
j′ 6=i

∣∣Vi,j′∣∣
|Vi|

 ≤ `.
Consequently, there exist 1 ≤ i < j ≤ ` with

|Vi,j |
|Vi| +

|Vj,i|
|Vj | ≤

`

(`2)
= 2

`−1 . By appealing to the

Cauchy-Schwarz inequality, we thus get
√
|Vi,j | |Vj,i| ≤ 1

`−1 ·
√
|Vi| |Vj |. This forces

d(Vi, Vj)
(i)
=
|Vi,j |
|Vi| |Vj |

(i)
=

√
|Vi,j | |Vj,i|
|Vi| |Vj |

≤ 1

(`− 1)
√
|Vi| |Vj |

(4.1)

≤ 1

(`− 1)2
,

contradicting the assumption that d(Vi, Vj) >
1

(`−1)2 .

To handle the second statement of Theorem 4.1.3, we shall prove a stronger result.

47



Theorem 4.3.2 ([81]). Let H be an almost colour-critical graph. Then, there exists a constant

C = C(H) such that for every integer ` > C, every `-partite graph G = (V1 ∪ . . .∪V`, E) with

d(Vi, Vj) >
χ(H)− 2

χ(H)− 1
for i 6= j

contains a copy of H whose vertices are in different parts of G.

Remark 4.3.3. Suppose that H is almost colour-critical. Let k = χ(H) and q = v(H). From

the definition of almost colour-critical graphs, H is a subgraph K+q
k−1(2q). Moreover, it is easy

to see that χ(K+q
k−1(2q)) = k = χ(H) and K+q

k−1(2q) is almost colour-critical. Therefore, if

Theorem 4.3.2 holds for K+q
k−1(2q), it will hold for H as well.

A sketch of the proof. As the proof of Theorem 4.3.2 is quite technique, we begin with a

brief outline of the proof. We shall prove the statement by contradiction. Let G = (V1 ∪ . . .∪
V`, E) be an `-partite graph with d(Vi, Vj) >

k−2
k−1 for all i 6= j, but G does not contain a copy

of H = K+q
k−1(2q) whose vertices are in different parts of G. We split the proof into two main

parts.

• Step 1 (Nearly spanning induced (k − 1)-colourable subgraph): We use the

assumption that G does not contain a copy of K+q
k−1(2q) whose vertices are in different

parts of G, to show that G has few copies of H. Together with a simple consequence of

the graph removal lemma and the Erdős-Simonovits stability theorem (see Proposition

4.3.5), this implies that G contains a (k− 1)-colourable subgraph F ′ with the partition

V (F ′) = F(1) ∪ . . . ∪ F(k−1) such that
∣∣F(s)

∣∣ =
(

1
k−1 + o(1)

)
v(G) and degF ′(v, F(s)) =

(1 + o(1))
∣∣F(s)

∣∣ for every index s ≤ k − 1 and vertex v ∈ V (F ′) \ F(s). Next, we infer

from Lemma 4.3.6 that every monochromatic matching in G[V (F ′)] whose vertices are

in different parts of G has size Ok,q(1). This would imply that the graph F obtained

from G[V (F ′)] by deleting Ok,q(1) parts is (k − 1)-colourable (see Lemma 4.3.4).

• Step 2 (Large infracolourable structure): The induced subgraph F from Step 1

gives rise to a maximum (k−1)-cut ofG.1 We then refine the structure of the cut (restrict

to a subset of [`] if necessary) to obtain a subset I ⊆ [`] of size Θ(|V (G)|) such that

G[
⋃
i∈I Vi] is the base graph of an (η, k, |I|)-infracolourable structure (see Definition

4.2.2). But according to Lemma 4.2.3, this forces d(Vi, Vj) ≤ k−2
k−1 for some i, j ∈ I,

violating the density condition! The first property of an infracolourable structure can

be achieved by applying the pigeonhole principle. Lemma 4.3.10 is crucial for getting

the second property; its proof relies on Lemma 4.3.6. For the third property, we use

Lemma 4.3.9 whose proof follows from Lemmas 4.3.6 and 4.3.8.

1A partition of V (G) into k−1 disjoint sets so that the number of edges between disjoint parts is maximised.
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Our first step in the proof of Theorem 4.3.2 is to show that a counterexample G must

contain an induced (χ(H) − 1)-colourable subgraph which almost spans V (G). For that we

shall need the following stability result.

Lemma 4.3.4. Given integers k ≥ 3 and q ≥ 1 and a real number 0 < ε < 1
8k2q

, there exists

a constant C = C(k, q, ε) such that the following holds for ` ≥ C. Let G = (V1 ∪ . . . ∪ V`, E)

be a balanced `-partite graph on n vertices with d(Vi, Vj) ≥ k−2
k−1 for all i 6= j. Suppose G

contains no copy of K+q
k−1(2q) whose vertices lie in different parts of G. Then, G contains

an induced (k − 1)-colourable subgraph F whose vertex classes X(1), . . . , X(k−1) satisfy the

following properties

(i) For s ≤ k − 1,
∣∣X(s)

∣∣ =
(

1
k−1 ± ε

)
n;

(ii) For s ≤ k − 1 and v ∈
⋃
t6=sX

(t), deg(v,X(s)) ≥
∣∣X(s)

∣∣− εn.

In the proof of Lemma 4.3.4 we shall use the following result whose proof can be found in

Section 4.5.

Proposition 4.3.5. For every graph H and every ε > 0, there exist positive constants γ =

γ(H, ε) and C = C(H, ε) such that the following holds for n ≥ C. Suppose that G is an

n-vertex graph with e(G) ≥
(
χ(H)−2
χ(H)−1 − γ

) (
n
2

)
containing at most γnv(H) copies of H. Then,

G contains a (χ(H)− 1)-colourable subgraph of order at least (1 − ε)n and minimum degree

at least
(
χ(H)−2
χ(H)−1 − ε

)
n.

Another tool that will be used in the proof of Lemma 4.3.4 and Theorem 4.3.2 is an

embedding result. Before stating it, we shall introduce the necessary terminology. Let

G[W (1), . . . ,W (r)] be an r-colourable graph such that W (s) =
⋃̇
i≥1W

(s)
i for every s ≤ r.

We call an embedding f : Kr(a1, . . . , ar) → G good if the sth vertex class of Kr(a1, . . . , ar)

is mapped to W (s) for every s ≤ r, and for each index i there is at most one vertex

v ∈ Kr(a1, . . . , ar) with f(v) ∈
⋃
s≤rW

(s)
i .

Lemma 4.3.6. Suppose that r ≥ 2 and q ≥ 1 are integers, and let G[W (1), . . . ,W (r)] be an

r-colourable graph which satisfies the following properties

(i) For s ≤ r, W (s) =
⋃̇
iW

(s)
i and

∣∣∣W (s)
i

∣∣∣ < 1
2rq ·

∣∣W (s)
∣∣ for all i,

(ii) For s ≤ r and v ∈
⋃
t6=sW

(t), deg(v,W (s)) > (1− 1
2rq ) ·

∣∣W (s)
∣∣.

Then, for every r-tuple of integers a1, . . . , ar ∈ [0, q], every good embedding from Kr(a1, . . . , ar)

to G can be extended to a good embedding from Kr(q) to G.

Proof. Suppose f is a good embedding from Kr(a1, . . . , ar) to G. To prove the lemma, it

suffices to show that f can be extended to a good embedding g from Kr(a1, . . . , as+1, . . . , ar)
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to G whenever as ≤ q − 1. Let v be the vertex of Kr(a1, . . . , as + 1, . . . , ar) which is not in

Kr(a1, . . . , ar), and let X denote the set of vertices of Kr(a1, . . . , ar) which are not in the

sth vertex class. By property (ii), we see that each vertex of X has at most 1
2rq ·

∣∣W (s)
∣∣

non-neighbours in W (s), and thus
∣∣N(X) ∩W (s)

∣∣ ≥ ∣∣W (s)
∣∣ − |X| · |W (s)|

2rq ≥ 1
2

∣∣W (s)
∣∣. Note

that, by property (i), each vertex of X can forbid at most 1
2rq ·

∣∣W (s)
∣∣ vertices of W (s) from

being the image of v. Therefore, the number of possible images of v under g is at least∣∣N(X) ∩W (s)
∣∣− |X| · |W (s)|

2rq ≥
1
2

∣∣W (s)
∣∣− |X| · |W (s)|

2rq > 0, where in the last inequality we use

the inequality
∣∣W (s)

∣∣ > 0 which is implied by property (i).

Proof of Lemma 4.3.4. We denote H = K+q
k−1(2q), and let

γ = γ4.3.5
(
H, ε2k

)
, C = max

{
2k2q2γ−1, 8(k − 1)2q, 4(k − 1)qε−1, C4.3.5(H,

ε
2k )

}
.

Because G = (V1 ∪ . . . ∪ V`, E) is a balanced `-partite graph on n vertices, we must have

|V1| = |V2| = . . . = |V`| =
n

`
:= m. (4.2)

In the first step, we shall use Proposition 4.3.5 to show that G contains an almost spanning

(k−1)-colourable subgraph. Indeed, by the choice of C we see that n ≥ ` ≥ C ≥ C4.3.5(H,
ε
2k ).

Moreover, since G contains no copy of H whose vertices lie in different parts of G, the number

of copies of H in G is at most(
v(H)

2

)
`m2nv(H)−2 < 2k2q2

` · (`m)2nv(H)−2 ≤ γnv(H),

since n = `m and ` ≥ C ≥ 2k2q2γ−1. Also, by the density condition

e(G) ≥
(
`

2

)
k−2
k−1m

2
(4.2)

≥
(
k−2
k−1 −

1
`

)(n
2

)
≥
(
k−2
k−1 − γ

)(n
2

)
,

assuming ` ≥ C ≥ 2k2q2γ−1. Therefore, we can derive from Proposition 4.3.5 that G contains

a (k − 1)-colourable subgraph F ′ with

v(F ′) ≥ (1− ε
2k )n and δ(F ′) ≥

(
k−2
k−1 −

ε
2k

)
n. (4.3)

If W (1), . . . ,W (k−1) are vertex classes of F ′, then (4.3) implies that(
1

k−1 −
ε
2

)
n ≤

∣∣∣W (s)
∣∣∣ ≤ ( 1

k−1 + ε
2k

)
n for s ≤ k − 1. (4.4)

In the second step, we shall prove that the induced subgraph G[V (F ′)] of G does not

contain a large monochromatic matching whose vertices are in different parts of G. Indeed,

for s ≤ k−1, letM(s) denote a maximum matching in G[W (s)] whose vertices are in different

parts of G, and let K be a subset of [`] containing all indices i such that
⋃
s≤k−1M(s) has a

vertex in Vi. The size of K will be bounded from above in terms of k and q.
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Claim 4.3.7. |K| < 2(k − 1)q.

Proof. We prove the claim by contradiction. Suppose that for some s ≤ k− 1,M(s) contains

a matching of size q, say {x1x2, . . . , x2q−1x2q}, . We wish to show that the following two

properties holds:

(i) For t ≤ k − 1 and i ≤ `, W (t) = W
(t)
1 ∪̇ . . . ∪̇W

(t)
` and

∣∣∣W (t)
i

∣∣∣ < 1
4(k−1)q ·

∣∣W (t)
∣∣;

(ii) For t ≤ k − 1 and v ∈ V (F ′) \W (t), degF ′(v,W
(t)) >

(
1− 1

4(k−1)q

)
·
∣∣W (t)

∣∣.
Property (i) follows from the estimate∣∣∣W (t)

i

∣∣∣ ≤ |Vi| = n

`
<

1

4(k − 1)q
·
(

1

k − 1
− ε

2

)
n

(4.4)
<

1

4(k − 1)q
·
∣∣∣W (t)

∣∣∣
for ` ≥ C ≥ 8(k − 1)2q and ε < 1

8k2q
. To prove (ii), assume that v ∈ W (s) for some s 6= t.

Because W (s) is an independent set in F ′, one has
∣∣W (t)

∣∣ − dF ′(v,W (t)) ≤ v(F ′) −
∣∣W (s)

∣∣ −
degF ′(v). Hence by appealing to (4.3) and (4.4), we get∣∣∣W (t)

∣∣∣− dF ′(v,W (t)) ≤ n−
(

1

k − 1
− ε

2

)
n−

(
k − 2

k − 1
− ε

2k

)
n

≤ εn < 1

4(k − 1)q
·
(

1

k − 1
− ε

2

)
n ≤ 1

4(k − 1)q
·
∣∣∣W (t)

∣∣∣
for ε < 1

8k2q
. This finishes our verification of (i) and (ii).

Finally, properties (i) and (ii) ensure that we can apply Lemma 4.3.6 with r4.3.6 = k − 1

and q4.3.6 = 2q to G[W (1), . . . ,W (r)] to find a copy of Kk−1(2q) whose sth vertex class is

{x1, . . . , x2q} and vertices lie in different parts of G. Since {x1, x2, . . . , x2q−1x2q} is a matching

in G, the graph G contains a desired copy of H, which contradicts our hypothesis.

To finish the proof, we shall show that G contains an induced subgraph F with the

desired properties. For this purpose, we let X(s) = W (s) \
⋃
i∈K Vi for s ≤ k − 1. The

maximality of M(s) implies that X(s) is an independent set in G. So the induced subgraph

F = G[X(1) ∪ . . . ∪ X(k−1)] is (k − 1)-colourable. What is left is to prove that F has the

desired properties. Since ε < 1
8k2q

and ` ≥ C ≥ 4(k − 1)qε−1, we find that

v(F ) ≥ v(F ′)−

∣∣∣∣∣⋃
i∈K

Vi

∣∣∣∣∣ (4.3),Claim 4.3.7

≥
(
1− ε

2k

)
n− 2(k − 1)q · n

`
> (1− ε)n,

δ(F ) ≥ δ(F ′)−

∣∣∣∣∣⋃
i∈K

Vi

∣∣∣∣∣ (4.3),Claim 4.3.7

≥
(
k−2
k−1 −

ε
2k

)
n− 2(k − 1)q · n

`
>
(
k−2
k−1 −

ε
2

)
n.

Moreover, by (4.4) we see that
∣∣X(s)

∣∣ ≤ ∣∣W (s)
∣∣ ≤ ( 1

k−1 + ε
2k

)
n for s ≤ k − 1, and hence(

1
k−1 −

ε
2

)
n ≤

∣∣X(s)
∣∣ ≤ (

1
k−1 + ε

2k

)
n for s ≤ k − 1. Therefore, for s ≤ k − 1 and v ∈
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⋃
t6=sX

(t), there are at most n −
∣∣X(s)

∣∣ − dF (v) ≤ n −
(

1
k−1 −

ε
2

)
n −

(
k−2
k−1 −

ε
2

)
n = εn

missing edges in F between v and X(s). This completes our proof of Lemma 4.3.4.

We also need the following elementary lemma. It is probably well-known, but we could

not find a reference. For completeness we include its proof in Section 4.5.

Lemma 4.3.8. Given integers r ≥ 1 and q ≥ 2 and a real number d ∈ (0, 1), there exist

an integer D = D(r, q, d) and a positive ρ = ρ(r, q, d) so that the following holds. Suppose

that G is an (r + 1)-colourable graph with vertex classes U,W(1), . . . ,W(r). If |U | ≥ D and

deg(u,W(s)) ≥ d
∣∣W(s)

∣∣ for all u ∈ U and s ≤ r, then there is a subset A ∈
(
U
q

)
with∣∣N(A) ∩W(s)

∣∣ ≥ ρ ∣∣W(s)

∣∣ for s ≤ r.

In order to get the third property of an infracolourable structure (see Definition 4.2.2) we

shall make use of a consequence of Lemmas 4.3.6 and 4.3.8.

Lemma 4.3.9. Given integers k ≥ 3 and q ≥ 1 and a real number η ∈ (0, 1), there exist

integers C = C(k, q, η) and D = D(k, q, η) and a positive δ = δ(k, q, η) such that the following

holds for ` ≥ C and ε ∈ (0, δ). Suppose that G = (V1 ∪ . . . ∪ V`, E) is a balanced `-partite

graph containing no copy of Kk(2q) in G whose vertices are in different parts of G. Assume

(X
(s)
i )s≤k−1,i≤` are vertex sets satisfying:

(i) For i ≤ `, X(1)
i , . . . , X

(k−1)
i are disjoint subsets of Vi,

(ii) For i ≤ ` and s ≤ k − 1,
∣∣∣X(s)

i

∣∣∣ =
(

1
k−1 ± ε

)
|Vi|,

(iii) For every s ≤ k − 1 and v ∈
⋃
i≤`,t 6=sX

(t)
i , deg(v,

⋃
i≤`X

(s)
i ) ≥

∣∣∣⋃i≤`X
(s)
i

∣∣∣− ε · v(G).

Let I be the subset of [`] consisting of all indices i ∈ [`] such that Vi contains a vertex v with

deg(v,
⋃
j≤`X

(s)
j ) ≥ η · v(G) for s ≤ k − 1. Then |I| ≤ D.

Proof. LetD = D4.3.8

(
k − 1, 2q, kη4

)
, C = max

{
4kD, 2η−1D, 9(k−1)kqρ

}
, δ = min

{
1
4k ,

ρ
8(k−1)kq

}
,

where ρ = ρ4.3.8

(
k − 1, 2q, kη4

)
. We shall prove the lemma by contradiction. Assume that

|I| ≥ D. Let J be an arbitrary subset of I of size D. By the definition of I, for each index

j ∈ J we can find a vertex vj ∈ Vj such that deg(vj ,
⋃
i≤`X

(s)
i ) ≥ η · v(G) for s ≤ k − 1. Let

U = {vj : j ∈ J}.

For simplicity of notation, let X(s) :=
⋃
i≤`X

(s)
i and W (s) :=

⋃
i∈[`]\J X

(s)
i for s ≤ k − 1.

Then, property (i) implies that W (1), . . . ,W (k−1) are disjoint subsets of V (G). By (i) and

(ii), we find that ∣∣∣W (s)
∣∣∣ ≥ ( 1

k − 1
− ε− D

`

)
· v(G) ≥ v(G)

2k (4.5)
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for ε ≤ δ ≤ 1
4k and ` ≥ C ≥ 4kD. Also, (i) and (ii) force

∣∣W (s)
∣∣ ≤ ( 1

k−1 + ε
)
v(G) ≤ 2v(G)

k ,

since ε ≤ δ ≤ 1
4k . Combining these two inequalities, we conclude that

deg(v,W (s)) ≥ deg(v,X(s))−

∣∣∣∣∣∣
⋃
j∈J

Vj

∣∣∣∣∣∣ ≥ η · v(G)−D · v(G)

`
≥ η

2 · v(G) ≥ kη
4 ·
∣∣∣W (s)

∣∣∣
for v ∈ U and s ≤ k − 1, as ` ≥ 2η−1D. Furthermore, |U | = D = D4.3.8

(
k − 1, 2q, kη4

)
, by

the definition of D. By applying Lemma 4.3.8 to G[U,W (1), . . . ,W (k−1)] with r4.3.8 = k − 1,

q4.3.8 = 2q and d4.3.8 = kη
4 , we thus obtain a subset A ∈

(
U
2q

)
with∣∣∣N(A) ∩W (s)

∣∣∣ ≥ ρ ∣∣∣W (s)
∣∣∣ for s ≤ k − 1. (4.6)

In the rest of the proof we shall use Lemma 4.3.6 to show that G[N(A)∩W (1), . . . , N(A)∩
W (k−1)] contains a copy of Kk−1(2q) whose vertices are in different parts of G. Since this

copy lies in N(A), together with vertices of A it forms a copy of Kk(2q) whose vertices belong

to different parts of G, contradicting the assumption. It remains to verify the assumptions of

Lemma 4.3.6. Indeed, for s ≤ k − 1, N(A) ∩W (s) does admit the partition

N(A) ∩W (s) =
⋃̇

j /∈J

(
N(A) ∩X(s)

j

)
. (4.7)

Moreover, since N(A) ∩ W (s) ⊆ X(s) for s ≤ k − 1, we must have, for s ≤ k − 1 and

v ∈
⋃
t6=s
(
N(A) ∩W (t)

)
,

∣∣∣N(A) ∩W (s)
∣∣∣− deg(v,N(A) ∩W (s)) ≤

∣∣∣∣∣∣
⋃
i≤`

X
(s)
i

∣∣∣∣∣∣− deg(v,
⋃
i≤`

X
(s)
i )

(iii)

≤ ε · v(G)

≤ 1
4(k−1)q · ρ ·

v(G)

2k

(4.5),(4.6)

≤ 1
4(k−1)q ·

∣∣∣N(A) ∩W (s)
∣∣∣ ,

assuming ε ≤ δ ≤ ρ
8(k−1)kq . It can be rewritten as

deg(v,N(A) ∩W (s)) ≥
(

1− 1
4(k−1)q

) ∣∣∣N(A) ∩W (s)
∣∣∣ for s ≤ k − 1 and v /∈

⋃
t6=s

(N(A) ∩W (t).

(4.8)

Also, for every j /∈ J and s ≤ k − 1, we have∣∣∣N(A) ∩X(s)
j

∣∣∣ ≤ |Vj | = v(G)
` < 1

4(k−1)q · ρ ·
v(G)

2k

(4.5),(4.6)

≤ 1
4(k−1)q ·

∣∣∣N(A) ∩W (s)
∣∣∣ (4.9)

because ` ≥ C ≥ 9(k−1)kq
ρ . The inequalities (4.7), (4.8) and (4.9) show that we can apply

Lemma 4.3.6 to G[N(A) ∩W (1), . . . , N(A) ∩W (k−1)] with r4.3.6 = k − 1 and q4.3.6 = 2q.

The following consequence of Lemma 4.3.6 will be needed to achieve the second property

of an infracolourable structure (see Definition 4.2.2).

53



Lemma 4.3.10. Given integers k ≥ 3 and q ≥ 1 and a real number η ∈
(

2q−1
2(k−1)q , 1

)
, there

exist an integer C = C(k, q, η) and a positive δ = δ(k, q, η) such that the following holds for

every integer ` ≥ C and every ε ∈ (0, δ). Let G = (V1 ∪ . . . ∪ V`, E) be a balanced `-partite

graph containing no copy of K+q
k−1(2q) whose vertices are in different parts of G. Assume

(X
(s)
i , Y

(s)
i )s≤k−1,i≤` are pairs of vertex sets satisfying:

(i) For i ≤ ` and s ≤ k − 1, Y
(1)
i , . . . , Y

(k−1)
i are disjoint subsets of Vi and X

(s)
i ⊆ Y

(s)
i ,

(ii) For i ≤ ` and s ≤ k − 1,
∣∣∣X(s)

i

∣∣∣ =
(

1
k−1 ± ε

)
|Vi|,

(iii) For s ≤ k − 1 and v ∈
⋃
i≤`,t6=sX

(t)
i , deg(v,

⋃
i≤`X

(s)
i ) ≥

∣∣∣⋃i≤`X
(s)
i

∣∣∣− ε · v(G).

For i ≤ ` and s ≤ k − 1, let B
(s)
i denote a subset of Y

(s)
i consisting of all vertices v with

deg(v,
⋃
j≤`X

(t)
j ) < η ·v(G) for some t 6= s. For s ≤ k−1, writeM(s) for a maximal matching

in the induced subgraph G
[⋃

i≤` Y
(s)
i \ B(s)

i

]
of G whose vertices are in different parts of G,

and set J = {j ∈ [`] : Vj contains some vertex in
⋃
s≤k−1M(s)}. Then, |J | < 2(k − 1)q.

Proof. Choose

C =
4(k − 2)

η′
and δ = min

{
qη′

2q − 1
,

η′

4(k − 2)

}
, where η′ = η − 2q − 1

2(k − 1)q
.

Notice that η′ > 0 as η ∈
(

2q−1
2(k−1)q , 1

)
. We prove the statement by contradiction. Suppose

that M(s) contains a matching {x1x2, . . . , x2q−1x2q} of size q for some s ≤ k − 1. Let X(t)

denote the vertex set
⋃
iX

(s)
i for s ≤ k−1. For t 6= s, define W(t) =

⋃
i

(
N(x1, . . . , x2q)∩X(t)

i

)
.

Then property (i) implies that W (1), . . . ,W (k−1) are disjoint subsets of V (G). We shall apply

Lemma 4.3.6 to find a copy of Kk−2(2q) in G
[
W(1), . . . , Ŵ(s), . . . ,W(k−1)

]
whose vertices are in

different parts of G (here Ŵ(s) stands for the empty set). Since this copy lies in N(x1, . . . , x2q)

and since {x1x2, . . . , x2q−1x2q} is a matching, G contains a copy of K+q
k−1(2q) whose vertices

belong to different parts of G, which is impossible. The remaining task is thus to verify the

assumptions of Lemma 4.3.6. Indeed, from the definition of W(t) we see that, for t 6= s,

W(t) =
⋃̇

i

(
N(x1, . . . , x2q) ∩X(t)

i

)
. (4.10)

By the definition of M(s), we have deg(x,X(t)) ≥ η · v(G) for x ∈ {x1, . . . , x2q} and t 6= s.

Hence ∣∣W(t)

∣∣ =
∣∣∣N(x1, . . . , x2q) ∩X(t)

∣∣∣ ≥ 2qη · v(G)− (2q − 1)
∣∣∣X(t)

∣∣∣
(ii)

≥ 2qη · v(G)− (2q − 1)
(

1
k−1 + ε

)
v(G) ≥ qη′ · v(G) (4.11)

for ε ≤ δ ≤ qη′

2q−1 . Together with the assumption ` ≥ C = 4(k−2)
η′ , this inequality implies that,

for i ≤ ` and t 6= s,∣∣∣N(x1, . . . , x2q) ∩X(t)
i

∣∣∣ ≤ |Vi| = v(G)

`
≤ qη′

4(k−2)q · v(G) ≤ 1
4(k−2)q ·

∣∣W(t)

∣∣ . (4.12)
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On the other hand, we can derive from property (iii) that, for v ∈
⋃
i≤`,p/∈{s,t}X

(p)
i ,

∣∣W(t)

∣∣− deg(v,W(t)) ≤ ε · v(G) ≤ qη′

4(k−2)q · v(G)
(4.11)

≤ 1
4(k−2)q ·

∣∣W(t)

∣∣ , (4.13)

assuming ε ≤ δ ≤ η′

4(k−2) . It follows from (4.10), (4.12) and (4.13) that we can apply Lemma

4.3.6 to G
[
W(1), . . . , Ŵ(s), . . . ,W(k−1)

]
with r4.3.6 = k − 2 and q4.3.6 = 2q.

We are now ready to prove Theorem 4.3.2.

Proof of Theorem 4.3.2. Let k = χ(H). If k = 2, then H is a matching. The density

condition implies that there is at least one edge between any two parts of G. Hence G

contains a matching of size `
2 ≥ e(H) whose vertices are in different parts of G. So from now

on we can focus on the case when k ≥ 3. Moreover, as discussed in Remark 4.3.3, we can

suppose that H = K+q
k−1(2q) for some positive integer q. To prove Theorem 4.3.2, we assume

to the contrary that G does not contain a copy of H whose vertices are in different parts of

G. Without loss of generality we can suppose that each part of G has exactly m vertices,

where m is a sufficiently large integer. Otherwise, multiply each vertex in each part Vi by a

factor of m
|Vi| , which has no effect on the densities, and creates no copy of H whose vertices

lie in different parts of G.

Choose ` = max{C4.3.4(k, q, ε), 1/ε}, where ε > 0 is sufficiently small (to be specified

later). Let `1 = `
2(k−1)! , `2 = `1 − (k − 1), `3 = `2

(k−1)! and `4 = `3 − 2(k − 1)q − D, where

D = D4.3.9

(
k, q, 1

(6q+10)(k−1)(k−1)!

)
. Note that the parameters ` and `i both grow as Ω(1/ε).

Our goal is to find an infracolourable struture in G. In the first step, we apply Lemma 4.3.4

to G with k4.3.4 = k, q4.3.4 = q and ε4.3.4 = ε < 1
8k2q

to obtain an induced (k − 1)-colourable

subgraph F of G whose vertex classes X(1), . . . , X(k−1) satisfy∣∣∣X(s)
∣∣∣ =

(
1

k−1 ± ε
)
n for s ≤ k − 1, (4.14)

deg(v,X(s)) ≥
∣∣∣X(s)

∣∣∣− εn for s ≤ k − 1 and v ∈
⋃
t6=s

X(t). (4.15)

Let T = V (G) \ V (F ). The inequality (4.14) implies that |T | ≤ kεn. This forces |Ti| ≤
2kεm for at least half of indices i ≤ `. Since `1 = `

2(k−1)! , by the pigeon hole principle we can

relabel the Vi and the X(s) such that
∣∣∣X(1)

i

∣∣∣ ≥ ∣∣∣X(2)
i

∣∣∣ ≥ . . . ≥ ∣∣∣X(k−1)
i

∣∣∣ and

|Ti| ≤ 2kεm for i ≤ `1. (4.16)

Hence we can apply Lemma 4.2.4 with ε4.2.4 = 2kε < 1
4 to find a subset I0 ∈

( N
k−1
)

such that∣∣∣X(s)
i

∣∣∣ =
(

1
k−1 ± k

√
2kε
)
m for s ≤ k − 1 and i ∈ [`1] \ I0. By reordering parts if necessary,
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we may assume that∣∣∣X(s)
i

∣∣∣ =
(

1
k−1 ± k

√
2kε
)
m for s ≤ k − 1 and i ≤ `2. (4.17)

For i ≤ `2 we shall partition Vi into k − 1 subsets Y
(1)
i , . . . , Y

(k−1)
i as follows. A vertex

v ∈ Vi is assigned to Y
(s)
i if deg

(
v,
⋃
j≤`2 X

(s)
j

)
= mint≤k−1 deg

(
v,
⋃
j≤`2 X

(t)
j

)
; if there are

more than one such index s, arbitrarily choose one of them.

Claim 4.3.11. X
(s)
i ⊆ Y

(s)
i ⊆ X

(s)
i ∪̇Ti and

∣∣∣Y (s)
i

∣∣∣ =
(

1
k−1 ± 2k

√
2kε
)
m for s ≤ k − 1 and

i ≤ `2.

Proof. Let v be an arbitrary vertex of X
(s)
i . Since X(s) is an independent set of G, v has

no neighbours in
⋃
j≤`2 X

(s)
j . It thus follows from the definition of Y

(s)
i that v ∈ Y (s)

i , and

so X
(s)
i is a subset of Y

(s)
i . Combining with the fact that Vi =

(⋃̇
sX

(s)
i

)
∪̇Ti =

⋃̇
sY

(s)
i , we

conclude that Y
(s)
i ⊆ X(s)

i ∪̇Ti for i ≤ `2 and s ≤ k − 1.

As X
(s)
i is a subset of Y

(s)
i , (4.17) tells us that

∣∣∣Y (s)
i

∣∣∣ ≥ ∣∣∣X(s)
i

∣∣∣ ≥ ( 1
k−1 − k

√
2kε
)
m for

i ≤ `2 and s ≤ k − 1. Using (4.16) and (4.17), we get∣∣∣Y (s)
i

∣∣∣ ≤ ∣∣∣X(s)
i

∣∣∣+ |Ti| ≤
(

1
k−1 + k

√
2kε+ 2kε

)
m ≤

(
1

k−1 + 2k
√

2kε
)
m

for i ≤ `2 and s ≤ k−1, where the first inequality holds since Y
(s)
i is a subset of X

(s)
i ∪Ti.

Let I be the set of all indices i ∈ [`2] such that there exists a vertex vi ∈ Vi with

deg(vi, X
(s)
1 ∪ . . .∪X

(s)
`2

) ≥ 1
(6q+10)(k−1)! ·

`2m
k−1 for s ≤ k− 1. Below, we show that the size of I

is bounded in terms of k and q. We shall see later that this would imply the third property

of an infracolourable structure (see Definition 4.2.2).

Claim 4.3.12. |I| ≤ D.

Proof. We require ε to be small enough so that max{k
√

2kε, kkε} < δ4.3.9 (k, q, η) and `2 ≥
C4.3.9 (k, q, η), where η := 1

(6q+10)(k−1)(k−1)! . By (4.17),
∣∣∣X(s)

i

∣∣∣ =
(

1
k−1 ± k

√
2kε
)
m for s ≤

k − 1 and i ≤ `2. Moreover, for s ≤ k − 1 and v ∈
⋃
i≤`2,t6=sX

(t)
i , we have

deg(v,
⋃
i≤`2

X
(s)
i ) ≥

∣∣∣∣∣∣
⋃
i≤`2

X
(s)
i

∣∣∣∣∣∣+ deg(v,X(s))−
∣∣∣X(s)

∣∣∣
(4.15)

≥

∣∣∣∣∣∣
⋃
i≤`2

X
(s)
i

∣∣∣∣∣∣− εn ≥
∣∣∣∣∣∣
⋃
i≤`2

X
(s)
i

∣∣∣∣∣∣− kkε`2m.
Therefore, we can apply Lemma 4.3.9 to G[V1 ∪ . . .∪V`2 ] with input k4.3.9 = k, q4.3.9 = q and

η4.3.9 = η to conclude that |I| ≤ D4.3.9 (k, q, η) = D.
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As `3 = `2
(k−1)! , by reordering the Vi and Y (s) if necessary we can ensure

Vi =
⋃̇

s
Y

(s)
i and

∣∣∣Y (1)
i

∣∣∣ ≥ ∣∣∣Y (2)
i

∣∣∣ ≥ . . . ≥ ∣∣∣Y (k−1)
i

∣∣∣ for i ≤ `3. (4.18)

For i ≤ `3 and s ≤ k − 1, let B
(s)
i be the set of all vertices v ∈ Y (s)

i with the property that

deg(v,X
(t)
1 ∪ . . .∪X

(t)
`3

) < 2q
2q+1 ·

`3m
k−1 for some t 6= s. For s ≤ k−1, letM(s) denote a maximal

matching in G
[⋃

i≤`3 Y
(s)
i \ B(s)

i

]
whose vertices are in different parts of G, and write J for

the collection of all indices j ∈ [`3] so that
⋃
s≤k−1M(s) contains some vertex in Vj . We claim

that the size of J is bounded from above by a function of k and q. Later, we shall derive from

this the second property of an infracolourable structure (see Definition 4.2.2).

Claim 4.3.13. |J | < 2(k − 1)q.

Proof. We shall apply Lemma 4.3.10 to G[V1 ∪ . . . V`3 ] with k4.3.10 = k, q4.3.10 = q and

η4.3.10 = 2q
(k−1)(2q+1) to get |J | < 2(k−1)q. Note that

∣∣∣X(s)
i

∣∣∣ =
(

1
k−1 ± k

√
2kε
)
m for s ≤ k−1

and i ≤ `3, by (4.17). Furthermore, for s ≤ k − 1 and v ∈
⋃
i≤`3,t6=sX

(t)
i , we have

deg(v,
⋃
i≤`3

X
(s)
i )

(4.15)

≥

∣∣∣∣∣∣
⋃
i≤`2

X
(s)
i

∣∣∣∣∣∣− εn ≥
∣∣∣∣∣∣
⋃
i≤`2

X
(s)
i

∣∣∣∣∣∣− k2kε`3m.
Finally, we can choose ε sufficiently small so that max{k

√
2kε, k2kε} < δ4.3.10

(
k, q, 2q

(k−1)(2q+1)

)
and `3 ≥ C4.3.10

(
k, q, 2q

(k−1)(2q+1)

)
.

From Claims 4.3.12 and 4.3.13 we can assume (relabelling parts once more if necessary)

that {1, . . . , `3}\ (I ∪J) = {1, . . . , `4}. For i ≤ `4 and s ≤ k−1, let D
(s)
i be the set consisting

of all vertices v ∈ Y (s)
i such that deg(v, Y

(t)
1 ∪ . . . ∪ Y (t)

`4
) < 2q+1

2q+2 ·
`4m
k−1 for some t 6= s.

Claim 4.3.14. The `4-partite graph G[V1∪ . . .∪V`4 ] together with pairs (D
(s)
i , Y

(s)
i )s≤k−1,i≤`4

of vertex sets form an ( 1
6q+9 , k, `4)-infracolourable structure.

Proof. We have to verify the following three properties:

(i) For i ≤ `4, Vi =
⋃̇
s≤k−1Y

(s)
i and

∣∣∣Y (1)
i

∣∣∣ ≥ ∣∣∣Y (2)
i

∣∣∣ ≥ . . . ≥ ∣∣∣Y (k−1)
i

∣∣∣;
(ii) For i ≤ `4 and s ≤ k − 1, D

(s)
i ⊆ Y

(s)
i and

⋃
i≤`4 Y

(s)
i \D(s)

i is an independent set;

(iii) For s ≤ k−1, every vertex v ∈
⋃
i≤`4 D

(s)
i has at most 1

6q+9 ·
`4m
k−1 neighbours in

⋃
i≤`4 Y

(s)
i

and at least 1
2q+3 ·

`4m
k−1 non-neighbours in

⋃
i≤`4 Vi \ Y

(s)
i .

Property (i) follows directly from (4.18). For (ii), we observe that B
(s)
i ⊆ D

(s)
i for i ≤ `4 and

s ≤ k−1. We then deduce property (ii) from the maximality ofM(s). For (iii), we consider an
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arbitrary vertex v ∈
⋃
i≤`4 D

(s)
i . Assume to the contrary that deg(v,

⋃
i≤`4 Y

(s)
i ) > 1

6q+9 ·
`4m
k−1 .

Then, by Claim 4.3.11, we obtain

deg(v,
⋃
i≤`4

X
(s)
i ) ≥ deg(v,

⋃
i≤`4

Y
(s)
i )−

∣∣∣∣∣∣
⋃
i≤`4

Ti

∣∣∣∣∣∣
(4.16)

≥ 1
6q+9 ·

`4m
k−1 − 2kε`4m > 1

(6q+10)(k−1)! ·
`2m
k−1

for ε sufficiently small. On the other hand, by (ii), we must have v ∈
⋃
i≤`4 D

(s)
i ⊆

⋃
i≤`4 Y

(s)
i ,

and so deg(v,
⋃
i≤`2 X

(t)
i ) ≥ deg(v,

⋃
i≤`2 X

(s)
i ) for all t ≤ k − 1. Therefore,

deg(v,
⋃
i≤`2

X
(t)
i ) ≥ deg(v,

⋃
i≤`2

X
(s)
i ) ≥ deg(v,

⋃
i≤`4

X
(s)
i ) > 1

(6q+10)(k−1)! ·
`2m
k−1

for t ≤ k − 1, as v ∈
⋃
i≤`4 Y

(s)
i . This contradicts the fact that {1, . . . , `4} ∩ I = ∅. Finally,

by the definition of
⋃
i≤`4 D

(s)
i , there exists t 6= s such that deg(v,

⋃
i≤`4 Y

(t)
i ) < 2q+1

2q+2 ·
`4m
k−1 .

Consequently, the number of non-neighbours of v in
⋃
i≤`4 Y

(t)
i is at least∣∣∣∣∣∣

⋃
i≤`4

Y
(t)
i

∣∣∣∣∣∣− 2q+1
2q+2 ·

`4m
k−1

Claim 4.3.11
≥

(
1

k−1 − 2k
√

2kε
)
`4m− 2q+1

2q+2 ·
`4m
k−1 >

1
2q+3 ·

`4m
k−1 ,

assuming ε is sufficiently small.

Claim 4.3.14 tells us thatG[V1∪. . .∪V`4 ] is the base graph of an ( 1
6q+9 , k, `4)-infracolourable

structure. By appealing to Lemma 4.2.3, we can find two indices 1 ≤ i < j ≤ `4 with

d(Vi, Vj) ≤ k−2
k−1 , contradicting the assumption that d(Vi, Vj) >

k−2
k−1 . This completes our proof

of Theorem 4.3.2.

4.4 Proof of Theorem 4.1.4

In this section we shall prove a stronger version of Theorem 4.1.4.

Theorem 4.4.1 ([81]). Let k and ` be integers with k ≥ 3 and ` ≥ e2/c, where c is a real

number with 0 < c ≤ k−(k+6)k/2. Suppose that G = (V1 ∪ . . . ∪ V`, E) be a balanced `-partite

graph on n vertices such that

d(Vi, Vj) ≥ k−2
k−1 for i 6= j.

Then, G either contains a copy of K+
k−1
(
bc log nc, . . . , bc log nc, bn1−2

√
cc
)

or is isomorphic to

a graph in Gk` .

The idea of the proof is similar to that of Theorem 4.3.2. We assume that G does not con-

tain a copy of K+
k−1
(
bc log nc, . . . , bc log nc, bn1−2

√
cc
)
. We wish to show that G is isomorphic
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to a graph in the family Gk` . For this purpose, we apply the stability lemma (Lemma 4.4.2) to

find an induced (k− 1)-colourable subgraph of G which almost spans V (G). We then use the

embedding lemma (Lemma 4.4.4) showing that G contains a large infracolourable structure.

To conclude the proof, we shall use a bootstrapping argument (Lemma 4.4.8) which allows

leveraging a weak structure result into a strong structure result.

In the proof of Theorem 4.4.1 we shall need the following stability lemma.

Lemma 4.4.2. Let k and ` be integers with k ≥ 3 and ` ≥ e2/c, where c is a real number

with 0 < c ≤ k−(k+6)k/2. Let G = (V1 ∪ . . . ∪ V`, E) be a balanced `-partite graph such that

d(Vi, Vj) ≥ k−2
k−1 for i 6= j. If G does not contain K+

k−1
(
bc log nc, . . . , bc log nc, bn1−2

√
cc
)
, then

G has an induced (k− 1)-colourable subgraph F whose vertex classes X(1), . . . , X(k−1) satisfy

the following properties with ε = 4`−1/2

(i) For s ≤ k − 1,
∣∣X(s)

∣∣ =
(

1
k−1 ± kε

)
n;

(ii) For s ≤ k − 1 and v ∈
⋃
t6=sX

(t), deg(v,X(s)) ≥
∣∣X(s)

∣∣− kεn.

To prove the above statement we need a stability lemma of Nikiforov [82, Theorem 3].

Lemma 4.4.3. Let k ≥ 3 be an integer, and let c and δ be positive real numbers with

c < k−(k+6)k/2 and δ < 1
8k8

. Suppose that G is a graph of order n ≥ e2/c with e(G) ≥(
k−2
k−1 − δ

) (
n
2

)
. If G has no copy of K+

k−1
(
bc log nc, . . . , bc log nc, bn1−2

√
cc
)
, then G contains

an induced (k − 1)-colourable subgraph F of order v(F ) ≥ (1 − 2
√
δ)n and minimum degree

δ(F ) ≥
(
k−2
k−1 − 4

√
δ
)
n.

Proof of Lemma 4.4.2. By the assumption, |V1| = . . . = |V`| = n
` := m. Together with the

density condition, we conclude that e(G) ≥
(
`
2

)
k−2
k−1m

2 ≥
(
k−2
k−1 −

1
`

)
(`m)2

2 =
(
k−2
k−1 −

1
`

)
n2

2 .

Notice that c ≤ k−(k+6)k, 1
` <

1
8k8

and n ≥ e2/c. Thus, by applying Lemma 4.4.2 to G with

δ4.4.2 = 1
` we obtain an (k − 1)-colourable induced subgraph F = G[X(1) ∪ . . . ∪X(k−1)] of G

with v(F ) > (1 − ε)n and δ(F ) ≥
(
k−2
k−1 − ε

)
n. Since δ(F ) ≥

(
k−2
k−1 − ε

)
n and since X(s) is

an independent set, we must have∣∣∣X(s)
∣∣∣ ≤ n− δ(F ) ≤

(
1

k−1 + ε
)
n

for s ≤ k − 1. This implies that∣∣∣X(s)
∣∣∣ ≥ v(F )− (k − 2)

(
1

k−1 + ε
)
n ≥ (1− ε)n− (k − 2)

(
1

k−1 + ε
)
n =

(
1

k−1 − (k − 1)ε
)
n

for s ≤ k− 1. Therefore, for s ≤ k− 1 and v ∈
⋃
t6=sX

(t), the number of non-neighbours of v

in X(s) is at most

n−
∣∣∣X(s)

∣∣∣− dF (v) ≤ n−
(

1
k−1 − (k − 1)ε

)
n−

(
k−2
k−1 − ε

)
n = kεn,

as desired.
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The next ingredient we need is an embedding result.

Lemma 4.4.4. Let r ≥ 2 be an integer, and let G be an r-colourable graph with vertex

classes W(1), . . . ,W(r) of the same size h. Suppose that deg(w,W(s)) ≥
(
1 − 1

r2

)
h for s ≤ r

and w ∈
⋃
t6=sW(t). Then

(1) G contains at least 1
2h

r copies of Kr,

(2) For α ∈ (0, 14) and s ≤ r, G contains a copy of Kr(bαr log hc, . . . , bαr log hc, bh1−αr−1c)
whose sth vertex class is a subset of W(s).

The proof of the above lemma requires a simple result of Nikiforov [82, Lemma 5].

Lemma 4.4.5. Let r ≥ 2 be an integer, and let α be a real number in (0, 14). Suppose that

B[U,W ] is a bipartite graph with |U | = p and |W | = q. If p ≥ 4bαr log qc and e(B[U,W ]) ≥
1
2pq, then B[U,W ] contains the complete bipartite graph K(a, b) with a = bαr log qc and

b = bq1−αr−1c.

Proof of Lemma 4.4.4. (1) Let ws ∈ W(s) for s = 1, . . . , r. Observe that {w1, . . . , wr} forms

a clique of G if and only if ws ∈ N(w1, . . . , ws−1) ∩ W(s) for s = 2, . . . , r. In addition,∣∣N(w1, . . . , ws−1) ∩W(s)

∣∣ ≥ h− (s− 1) · h
r2

. Thus, we can bound the number of copies of Kr

in G from below by

hr ·
r∏
s=1

(
1− s−1

r2

)
≥ hr ·

(
1−

r∑
s=1

s−1
r2

)
= r+1

2r · h
r > 1

2h
r.

(2) We proceed by induction on r. The base case r = 2 follows from the first assertion and

Lemma 4.4.5. For the induction step, assume that r > 2. The induction hypothesis implies

that G[W(1)∪ . . .∪W(r−1)] contains a copy of Kr−1(m) with m = bαr−1 log hc. Let U denote a

set of m disjoint copies of Kr−1 in Kr−1(m). Define a bipartite graph B[U,W(r)] with vertex

classes U and W(r), joining R ∈ U to w ∈ W(r) if R ∪ {w} is a clique. We see that |U | = m

and
∣∣W(r)

∣∣ = h. Since 0 < α < 1/4, we have m = bαr−1 log hc ≥ b4αr log hc ≥ 4bαr log hc.
Furthermore, every vertex of U has at least h − r · h

r2
≥ h/2 neighbours in W(r). Hence

e(B[U,W(r)]) ≥ mh/2. The assertion then follows from the base case r = 2.

In order to find a large infracolourable structure in G we shall use the following conse-

quence of Lemma 4.4.4.

Lemma 4.4.6. Let k ≥ 3 and ` ≥ 2 be integers, and let ε and α be positive real numbers

with ε < 10−2k−k and α < 1
4 . Suppose that G = (V1 ∪ . . . ∪ V`, E) is a balanced `-partite

graph containing no copy of K+
k−1
(
bαk−1 log(p)c, . . . , bαk−1 log(p)c, bp1−αk−2c

)
, where p =

1
16(k−1)(k−1)! · v(G). Assume that (X

(s)
i )s≤k−1,i≤` are vertex sets so that
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(i) For i ≤ `, X(1)
i , . . . , X

(k−1)
i are disjoint subsets of Vi;

(ii) For s ≤ k − 1 and v ∈
⋃
i≤`,t6=sX

(t)
i , deg(v,

⋃
i≤`X

(s)
i ) ≥

∣∣∣⋃i≤`X
(s)
i

∣∣∣− ε · v(G).

Then, there are no vertices v ∈ V (G) such that deg(v,
⋃
i≤`X

(s)
i ) ≥ p for all s ≤ k − 1.

Proof. Suppose for the contradiction that there is v ∈ V (G) with deg(v,
⋃
iX

(s)
i ) ≥ p for all

s ≤ k − 1. Then, for s ≤ k − 1 there exists a subset

W(s) ⊆ N(v) ∩

(⋃
i

X
(s)
i

)
with

∣∣W(s)

∣∣ = p. (4.19)

By property (i), W(1), . . . ,W(k−1) are disjoint subsets of V (G). On the other hand, property

(ii) shows that for all s ≤ k − 1 and v ∈
⋃
t6=sW(t) one has

deg
(
v,W(s)

)
≥
∣∣W(s)

∣∣− ε · v(G) ≥
∣∣W(s)

∣∣− 1

(k − 1)2
· 1

16(k − 1)(k − 1)!
· v(G)

=

(
1− 1

(k − 1)2

) ∣∣W(s)

∣∣ , (4.20)

as ε < 10−2k−k. Finally, it follows from (4.19) and (4.20) that we can apply Lemma 4.4.4(2)

to the graph G[W(1), . . . ,W(k−1)] with r4.4.4 = k − 1, h4.4.4 = p and α4.4.4 = α to find a

copy of Kk−1
(
bαk−1 log(p)c, . . . , bαk−1 log(p)c, bp1−αk−2c

)
. Since W(1) ∪ . . . ∪W(k−1) lies in

the neighbour of v, G contains a copy of K+
k−1
(
bαk−1 log(p)c, . . . , bαk−1 log(p)c, bp1−αk−2c

)
,

which contradicts our assumption.

To find a large infracolourable structure in G we also require the following consequence

of Lemma 4.4.4.

Lemma 4.4.7. Let k ≥ 3 and ` ≥ 2 be integers, and let ε and α be positive real numbers with

ε < 1
12k3

and α < 1
4 . Let G = (V1 ∪ . . . ∪ V`, E) be a balanced `-partite graph containing no

copy of K+
k−1
(
bαk−1 log(p)c, . . . , bαk−1 log(p)c, bp1−αk−2c

)
, where p = 1

4(k−1) · v(G). Suppose

(X
(s)
i , Y

(s)
i )s≤k−1,i≤` are pairs of vertex sets which satisfy

(i) For every i ≤ ` and s ≤ k−1, Y
(1)
i , . . . , Y

(k−1)
i are disjoint subsets of Vi and X

(s)
i ⊆ Y

(s)
i ;

(ii) For i ≤ ` and s ≤ k − 1,
∣∣∣X(s)

i

∣∣∣ =
(

1
k−1 ± ε

)
|Vi|;

(iii) For s ≤ k − 1 and v ∈
⋃
i≤`,t6=sX

(t)
i , deg(v,

⋃
i≤`X

(s)
i ) ≥

∣∣∣⋃i≤`X
(s)
i

∣∣∣− ε · v(G).

For i ≤ ` and s ≤ k − 1, let B
(s)
i stands for a subset of Y

(s)
i consisting of all vertices v with

deg(v,
⋃
j≤`X

(t)
j ) < 2

3(k−1) · v(G) for some t 6= s. Then, for s ≤ k − 1,
⋃
i≤` Y

(s)
i \ B(s)

i is an

independent set of G.

Proof. We prove by contradiction. Suppose that there exists an edge {x, y} ∈ E(G) with

x, y ∈
⋃
i Y

(s)
i \ B(s)

i . Let t 6= s. By the definition of
⋃
iB

(s)
i , both deg(x,

⋃
iX

(t)
i ) and
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deg(y,
⋃
iX

(t)
i ) are at least 2

3(k−1) · v(G). Hence∣∣∣∣∣N(x, y) ∩
⋃
i

X
(t)
i

∣∣∣∣∣ ≥ deg(x,
⋃
i

X
(t)
i ) + deg(y,

⋃
i

X
(t)
i )−

∣∣∣∣∣⋃
i

X
(t)
i

∣∣∣∣∣
(ii)

≥ 4

3(k − 1)
· v(G)−

(
1

k − 1
+ ε

)
· v(G) ≥ 1

4(k − 1)
· v(G),

as ε < 1
12k3

. It means that there is a subset

W(t) ⊆ N(x, y) ∩
⋃
i≤`3

X
(t)
i with

∣∣W(t)

∣∣ = 1
4(k−1) · v(G).

On the other hand, it follows from property (ii) that
∣∣∣⋃iX

(s)
i

∣∣∣ ≥ ( 1
k−1 − ε

)
v(G) > 1

4(k−1) ·
v(G) for 0 < ε < 1

12k3
, and so there exists a subset

W(s) ⊆
⋃
i

X
(s)
i with

∣∣W(s)

∣∣ = 1
4(k−1) · v(G).

Analysis similar to that in the proof of Lemma 4.4.6 shows that G[W(1), . . . ,W(k−1)] must

contain a copy of Kk−1
(
bαk−1 log(p)c, . . . , bαk−1 log(p)c, bp1−αk−2c

)
whose sth vertex class is

of size bαk−1 log(p)c. Adding back vertices x and y to this class one gets a supgraph of the

graph K+
k−1
(
bαk−1 log(p)c, . . . , bαk−1 log(p)c, bp1−αk−2c

)
, contradicting the hypothesis.

The last component of the proof is a bootstrapping argument which allows us to leverage

a weak structure result into a strong structure result. Roughly speaking, it says that if G

contains an ˜̀-partite subgraph which is in Gk˜̀ , then G must belong to Gk` .

Lemma 4.4.8. Let k ≥ 3 be an integer, and let G = (V1 ∪ . . . ∪ V`, E) be an `-partite graph

with |V1| = . . . = |V`| = m and d(Vi, Vj) ≥ k−2
k−1 for all i 6= j. Suppose that there exist an

integer ˜̀ and disjoint subsets Y
(1)
i , . . . , Y

(k−1)
i of Vi for 1 ≤ i ≤ ˜̀ so that

∣∣∣Y (s)
i

∣∣∣ = m
k−1 and

d(Y
(s)
i , Y

(t)
j ) = 1 for all i 6= j and s 6= t. If G does not contain a copy of K+

k−1
( ˜̀m
32k2

)
, then G

is isomorphic to a graph in the family Gk` .

Proof. We wish to show that G is isomorphic to a graph in Gk` . According to Lemma 4.2.1,

it suffices to prove G is (k − 1)-colourable. By the assumption, we have∣∣∣Y (s)
i

∣∣∣ = m
k−1 , d(Y

(s)
i , Y

(t)
j ) = 1 for s 6= t and 1 ≤ i < j ≤ ˜̀. (4.21)

We shall show that for v ∈ V (G) \
(
V1 ∪ . . . ∪ V˜̀

)
there does not exist s ≤ k − 1 with

deg
(
v, Y

(s)
1 ∪ . . . ∪ Y (s)

˜̀

)
≥ 1, deg

(
v, Y

(t)
1 ∪ . . . ∪ Y (t)

˜̀

)
≥

˜̀m

2k
for all t 6= s. (4.22)
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We prove by contradiction. Suppose that (4.22) holds. We can pick an index i0 ∈ {1, 2, . . . , ˜̀}
with N(v)∩ Y (s)

i0
6= ∅ whose existence is guaranteed by (4.22). We then arbitrarily add other

indices to get a subset I(s) ⊂ {1, . . . , ˜̀} of size
˜̀

8k . It follows from (4.21) and (4.22) that for

each t 6= s, there are at least
˜̀

4 indices i ≤ ˜̀ with deg(v, Y
(t)
i ) ≥ m

4k . Hence we can find k − 1

disjoint subsets I(1), . . . , I(k−1) of size
˜̀

8k of {1, . . . , ˜̀} with the property that deg(v, Y
(t)
i ) ≥ m

4k

for all t 6= s and i ∈ I(t). By (4.21), G
[⋃

i∈I(1) Y
(1)
i , . . . ,

⋃
i∈I(k−1)

Y
(k−1)
i

]
is a complete (k−1)-

partite graph. In addition, we have
∣∣∣N(v) ∩

⋃
i∈I(s) Y

(s)
i

∣∣∣ ≥ ∣∣∣N(v) ∩ Y (s)
i0

∣∣∣ > 0 and∣∣∣∣∣∣N(v) ∩
⋃
i∈I(t)

Y
(t)
i

∣∣∣∣∣∣ =
∑
i∈I(t)

deg(v, Y
(t)
i ) ≥

∣∣I(t)∣∣ · m4k =
˜̀m

32k2
for t 6= s.

Therefore, by adding v to the sth part of G
[⋃

i∈I(1) Y
(1)
i , . . . ,

⋃
i∈I(k−1)

Y
(k−1)
i

]
we get a su-

pergraph of K+
k−1
( ˜̀m
32k2

)
in G, contradicting our assumption.

We can infer from (4.22) that deg(v, V1 ∪ . . . ∪ V˜̀) ≤ k−2
k−1 · ˜̀m for all v ∈ V (G) \(

V1 ∪ . . . ∪ V˜̀

)
. By the density condition, equality must hold. Again (4.22) shows that for

each v ∈ V (G) \
(
V1 ∪ . . . ∪ V˜̀

)
,

N(v) ∩
(
V1 ∪ . . . ∪ V˜̀

)
=
⋃
i≤˜̀

Vi \ Y (s)
i for some s ≤ k − 1. (4.23)

If v ∈ Vi for some i > ˜̀, then we assign v to Z
(s)
i . For i ≤ ˜̀we let Z

(s)
i = Y

(s)
i for s ≤ k−1. If

we denote Z(s) =
⋃̇
iZ

(s)
i for s ≤ k−1, then V =

⋃̇
sZ

(s). To prove G is (k−1)-colourable, it is

enough to show that Z(1), . . . , Z(k−1) are independent sets. Suppose to the contrary that for

some s ≤ k−1, Z(s) contains an edge {u, v} with u ∈ Z(s)
i1

and v ∈ Z(s)
i2

. We can easily find k−1

disjoint subsets J(1), . . . , J(k−1) of size
˜̀

2(k−1) of [˜̀]\{i1, i2}. Let W (s) = {u, v}∪
(⋃

i∈J(s) Y
(s)
i

)
and W (t) =

⋃
i∈J(t) Y

(t)
i for t 6= s. It follows from (4.21) and (4.23) that G[W (1), . . . ,W (k−1)]

is a complete (k − 1)-colourable graph with
∣∣W (t)

∣∣ ≥ ˜̀

2(k−1) ·
m
k−1 >

˜̀m
32k2

for t ≤ k − 1.

Combining this with the assumption that {u, v} ∈ E(G), we conclude that G contains a copy

of K+
k−1
( ˜̀m
32k2

)
, a contradiction.

We now have all the necessary tools to prove Theorem 4.4.1.

Proof of Theorem 4.4.1. For convenience, H = K+
k−1
(
bc log nc, . . . , bc log nc, bn1−2

√
cc
)

and

H− = Kk−1
(
bc log nc, . . . , bc log nc, bn1−2

√
cc
)
. Suppose G has no copy of H. We wish to

show that G is isomorphic to a graph in Gk` . Since G is a balanced `-partite graph on n

vertices, each partition set of G has size n/` := m. Let ε = 4`−1/2, `1 = `
2(k−1)! − (k − 1),

`2 = `2
(k−1)! and `3 = `2 − 1.
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By Lemma 4.4.2, G must contain an induced (k− 1)-colourable subgraph F whose vertex

classes X(1), . . . , X(k−1) satisfy∣∣∣X(s)
∣∣∣ =

(
1

k−1 ± kε
)
n for s ≤ k − 1, (4.24)

deg(v,X(s)) ≥
∣∣∣X(s)

∣∣∣− kεn for s ≤ k − 1 and v ∈
⋃
t6=s

X(t). (4.25)

Let T = V (G) \ V (F ). As in the proof of Theorem 4.3.2, by relabelling parts we can

assume that

|Ti| ≤ 2k2εm, and
∣∣∣X(s)

i

∣∣∣ =
(

1
k−1 ± 2k2

√
ε
)
m for i ≤ `1 and s ≤ k − 1. (4.26)

For i ≤ `1 we shall partition Vi into k − 1 subsets as follows. A vertex v ∈ Vi is assigned

to Y
(s)
i if deg

(
v,
⋃
j≤`1 X

(s)
j

)
= mint≤k−1 deg

(
v,
⋃
j≤`1 X

(t)
j

)
; if there are more than one such

index s, arbitrarily pick one of them.

Claim 4.4.9. X
(s)
i ⊆ Y

(s)
i ⊆ X(s)

i ∪̇Ti for i ≤ `1 and s ≤ k − 1.

Proof. Because X(s) is an independent set in G, every vertex in X
(s)
i has no neighbours

in
⋃
j≤`1 X

(s)
j , and so X

(s)
i is a subset of Y

(s)
i . Since Vi =

(⋃̇
sX

(s)
i

)
∪̇Ti =

⋃̇
sY

(s)
i and

X
(s)
i ⊆ Y

(s)
i for i ≤ `1 and s ≤ k − 1, the inclusion relation Y

(s)
i ⊆ X

(s)
i ∪̇Ti holds for i ≤ `1

and s ≤ k − 1.

We proceed by showing that
⋃
i≤`1 Vi does not contain a vertex which has relatively large

degree to
⋃
i≤`1 Y

(s)
i for all s ≤ k − 1.

Claim 4.4.10. There are no vertices v ∈
⋃
i≤`1 Vi with deg(v,

⋃
i≤`1 Y

(s)
i ) ≥ 1

15(k−1)(k−1)! ·`1m
for all s ≤ k − 1.

Proof. We can derive from (4.25) that, for s ≤ k − 1 and v ∈
⋃
i≤`1,t 6=sX

(t)
i ,

deg(v,
⋃
i≤`1

X
(s)
i ) ≥

∣∣∣∣∣∣
⋃
i≤`1

X
(s)
i

∣∣∣∣∣∣+ deg(v,X(s))−
∣∣∣X(s)

∣∣∣
≥

∣∣∣∣∣∣
⋃
i≤`1

X
(s)
i

∣∣∣∣∣∣− kεn ≥
∣∣∣∣∣∣
⋃
i≤`1

X
(s)
i

∣∣∣∣∣∣− kkε · `1m.
Applying Lemma 4.4.6 to G[V1∪ . . .∪V`1 ] with k4.4.6 = k, ε4.4.6 = kkε and α4.4.6 = (2c)1/(k−1),

we conclude either G[V1∪ . . .∪V`1 ] contains K+
k−1
(
bαk−1 log(p)c, . . . , bαk−1 log(p)c, bp1−αk−2c

)
or there are no vertices v ∈ V1 ∪ . . . ∪ V`1 with deg(v,X

(s)
1 ∪ . . . ∪X

(s)
` ) ≥ p for all s, where

p = 1
16(k−1)(k−1)! · `1m. Since αk−1 log(p) > c log(n), p1−α

k−2
> n1−2

√
c and since G has no

64



copy of K+
k−1
(
bc log nc, . . . , bc log nc, bn1−2

√
cc
)
, the former case is ruled out. The later case

implies our statement.

Since `2 = `1
(k−1)! , by reordering parts if necessary we can assume that∣∣∣Y (1)

i

∣∣∣ ≥ ∣∣∣Y (2)
i

∣∣∣ ≥ . . . ≥ ∣∣∣Y (k−1)
i

∣∣∣ for i ≤ `2. (4.27)

For i ≤ `2 and s ≤ k − 1, let us denote

D
(s)
i =

{
v ∈ Y (s)

i : deg(v, Y
(t)
1 ∪ . . . ∪ Y (t)

`2
) < 3

4(k−1) · `2m for some t 6= s

}
.

Claim 4.4.11. The vertex set
⋃
i≤`2 Y

(s)
i \D(s)

i is an independent set of G for s ≤ k − 1.

Proof. For i ≤ `2 and s ≤ k − 1, let B
(s)
i be the vertex set consisting of all vertices v ∈ Y (s)

i

such that deg(v,
⋃
i≤`2 X

(t)
i ) < 2

3(k−1) · `2m for some t 6= s. Note that, for s ≤ k − 1 and

v ∈
⋃
i≤`2,t 6=sX

(s)
i , one has

deg(v,
⋃
i≤`2

X
(s)
i ) ≥

∣∣∣∣∣∣
⋃
i≤`2

X
(s)
i

∣∣∣∣∣∣+ deg(v,X(s))−
∣∣∣X(s)

∣∣∣
(4.25)

≥

∣∣∣∣∣∣
⋃
i≤`2

X
(s)
i

∣∣∣∣∣∣− kεn ≥
∣∣∣∣∣∣
⋃
i≤`2

X
(s)
i

∣∣∣∣∣∣− k2kε · `2m.
This estimate together with Claim 4.4.9 and (4.26) show that we can apply Lemma 4.4.7 to

G[V1∪. . .∪V`2 ] with k4.4.7 = k, ε4.4.7 = max{2k2
√
ε, k2kε} and α4.4.7 = (2c)1/(k−1) := α to con-

clude that either G[V1 ∪ . . . ∪ V`2 ] contains K+
k−1
(
bαk−1 log(p)c, . . . , bαk−1 log(p)c, bp1−αk−2c

)
or
⋃
i≤`2 Y

(s)
i \ B(s)

i is an independent set of G for s ≤ k − 1, where p = 1
4(k−1) · `2m. Since

G has no copy of K+
k−1
(
bc log nc, . . . , bc log nc, bn1−2

√
cc
)

and since αk−1 log(p) > c log(n),

p1−α
k−2

> n1−2
√
c, the former case is ruled out. We can see that the later case implies our

statement.

Now we can find a large infracolourable structure in G, and then use Lemma 4.4.8 to show

that G is isomorphic to a graph in Gk` .

Claim 4.4.12. G is isomorphic to a graph in the family Gk` .

Proof. Analogously to the proof of Claim 4.3.14, we can infer from Claims 4.4.10 and 4.4.11,

(4.26) and (4.27) thatG[V1 ∪ . . . ∪ V`2 ] together with pairs (D
(s)
i , Y

(s)
i )s≤k−1,i≤`2 form a ( 1

15 , k, `2)-

infracolourable structure. By Lemma 4.2.3 this implies that e(G[V1 ∪ . . .∪ V`2 ]) ≤
(
`2
2

)
k−2
k−1m

2

and hence the equality must occur by the density condition. Appealing to Lemma 4.2.3
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once again, we see that there exists i0 ∈ {0, 1, . . . , `2} with
∣∣∣Y (s)
i

∣∣∣ = m
k−1 for all s and all

i ∈ [`2] \ {i0}, and d(Y
(s)
i , Y

(t)
j ) = 1 for all s 6= t and 1 ≤ i < j ≤ `2. Hence we can apply

Lemma 4.4.8 with ˜̀ = `2 − 1 to conclude that either G contains a copy of K+
k−1
( (`2−1)m

32k2

)
or G is isomorphic to a graph in Gk` . The former can not happen since G has no copy of

K+
k−1
(
bc log nc, . . . , bc log nc, bn1−2

√
cc
)

and since (`2−1)m
32k2

> max{n1−2
√
c, c log n}. So G must

isomorphic to a graph in the family Gk` .

This concludes our proof of Theorem 4.3.2.

4.5 Missing proofs

4.5.1 Proof of Theorem 4.1.5

In this section we sketch a proof of Theorem 4.1.5. We follow essentially the proof of Theorem

4.4.1. We make the following alterations. Instead of Lemma 4.4.3 we use a stability result

due to Bollobás and Nikiforov [16, Theorem 9].

Lemma 4.5.1. Let k ≥ 2 be an integer, and let δ be a positive with δ < 1
16k8

. Suppose that G

is a graph with n > k8 vertices and e(G) ≥
(
k−2
k−1 − δ

) (
n
2

)
edges. Then, either G contains a

family of k−(k+5)nk−2 copies of Kk sharing a common edge, or G contains an induced (k−1)-

colourable subgraph F of size v(F ) ≥ (1−2
√
δ)n and minimum degree δ(F ) ≥

(
k−2
k−1 − 4

√
δ
)
n.

We replace Lemma 4.4.4 by the following embedding result.

Lemma 4.5.2. Let r ≥ 2 be an integer, and let G be an r-colourable graph with classes

W(1), . . . ,W(r) of the same size h. Suppose that deg(v,W(s)) ≥
(
1 − 1

r2

)
h for s ≤ r and

v ∈
⋃
t6=sW(t). Then for every pair (s, t) with s 6= t, there is an edge between W(s) and W(t)

which is contained in 1
2h

r−2 copies of Kr.

Proof. According to Lemma 4.4.4, G contains at least 1
2h

r copies of Kr. Hence there exists an

edge between W(s) and W(t) which is shared by at least hr/(2h2) = 1
2h

r−2 copies of Kr.

The remainder of the proof is similar to that of Theorem 4.4.1.

4.5.2 Proofs of Proposition 4.3.5 and Lemma 4.3.8

To prove Proposition 4.3.5 we shall require the Erdős-Simonovits stability theorem (Erdős

[34] and Simonovits [92, Theorem 8], and the graph removal lemma (Ruzsa and Szemerédi

[91]).
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Theorem 4.5.3 (Stability theorem). For every graph H and every ε > 0, there exist

positive constants δ = δ(H, ε) and C = C(H, ε) so that the following holds for every integer

n ≥ C. Every n-vertex H-free graph with at least
(
χ(H)−2
χ(H)−1 − δ

) (
n
2

)
edges contains a (χ(H)−

1)-colourable subgraph of order at least (1− ε)n and minimum degree at least
(
χ(H)−2
χ(H)−1 − ε

)
n.

Theorem 4.5.4 (Graph removal lemma). For every graph H and every δ > 0, there

exists a positive constant γ = γ(H, δ) such that every graph on n vertices with at most γnv(H)

copies of H can be made H-free by removing from it at most δ
(
n
2

)
edges.

Now we can deduce Proposition 4.3.5 from Theorems 4.5.3 and 4.5.4 as follows.

Proof of Proposition 4.3.5. Let δ = δ4.5.3(H, ε)/2, γ = min{γ4.5.4(H, δ), δ} and C = C4.5.3(H, ε).

Since G contains at most γnv(H) copies of H, Theorem 4.5.4 shows that G contains an H-free

subgraph G′ with e(G′) ≥ e(G)− δ
(
n
2

)
. Hence

e(G′) ≥
(
χ(H)− 2

χ(H)− 1
− γ − δ

)(
n

2

)
≥
(
χ(H)− 2

χ(H)− 1
− δ4.5.3(H, ε)

)(
n

2

)
.

Moreover, v(G′) = n ≥ C = C4.5.3(H, ε). Therefore, one can apply Theorem 4.5.3 to obtain a

(χ(H)−1)-colourable subgraph G′′ of G′ with v(G′′) ≥ (1−ε)n and δ(G′′) ≥
(
χ(H)−2
χ(H)−1 − ε

)
n.

Proof of Lemma 4.3.8. Choose D = qd−r and ρ = e−qdrq. Let S be the set of tuples

(w1, . . . , wr, A) where ws ∈W(s) for all s, and A ∈
(
N(w1,...,wr)

q

)
. We find that

|S| =
∑
A∈(Uq)

∏
s≤r

∣∣N(A) ∩W(s)

∣∣ =
∑

(w1,...,wr)

(
|N(w1, . . . , wr)|

q

)
. (4.28)

Moreover, our assumption implies that∑
(w1,...,wr)

|N(w1, . . . , wr)| =
∑
u∈U

∏
s≤r

deg(u,W(s)) ≥ dr |U | ·
∏
s≤r

∣∣W(s)

∣∣ . (4.29)

Note that the function(
x

q

)
=

x(x− 1) · · · (x− q + 1)/q! if x ≥ q − 1,

0 if x < q − 1.

is convex. Thus, we can first apply Jensen’s inequality to the right hand side of (4.28) and

then use the inequality (4.29) to obtain |S| ≥
(
dr|U |
q

) ∏
s≤r

∣∣W(s)

∣∣. We infer from this and the

first identity in (4.28) that there is a subset A ∈
(
U
q

)
with

∏
s≤r

∣∣N(A) ∩W(s)

∣∣ ≥ (dr|U |q

)(|U |
q

) ·∏
s≤r

∣∣W(s)

∣∣ ≥ e−qdrq ·∏
s≤r

∣∣W(s)

∣∣ = ρ ·
∏
s≤r

∣∣W(s)

∣∣ ,
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where the second inequality holds since
(|U |
q

)
≤
(
e|U |
q

)q
, and

(
dr|U |
q

)
≥
(
dr|U |
q

)q
for |U | ≥ D =

qd−r ≥ q. Hence
∣∣N(A) ∩W(s)

∣∣ ≥ ρ ∣∣W(s)

∣∣ for s ≤ r.

4.6 Concluding remarks

Bollobás [12, Corollary 3.5.4] showed that every n-vertex graph with bn2

4 c+ 1 edges contains

cycles of lengths from 3 up to bn+3
2 c, and thus strengthened the Mantel theorem. Using

techniques developed in this chapter we can prove the following multipartite version of this

result; we omit the details.

Theorem 4.6.1 ([81]). Let ` ≥ 1020, and let G = (V1 ∪ . . . ∪ V`, E) be a balanced `-partite

graph on n vertices such that

d(Vi, Vj) ≥ 1
2 for i 6= j.

Then, G either contains a cycle of length h for each integer h with 3 ≤ h ≤ (12 −
2√
`
)n or is

isomorphic to a graph in G3` .

The balanced `-partite graph obtained by taking the disjoint union of K`

(
b n2`c − 1

)
and

K`

(
d n2`e + 1

)
has edge densities between parts strictly greater than 1

2 . However, every cycle

of this graph has length at most 1
2n + 2` = (12 + o(1))n provided ` = o(n). Therefore, the

bound (12 −
2√
`
)n in the above result is asymptotically best possible.

A book in a graph is a collection of triangles sharing a common edge. The size of a book

is the number of triangles. Let b(G) be the size of the largest book in a graph G. Generalising

Mantel’s theorem, Erdős [32] showed that every n-vertex graph G with bn2

4 c+1 edges satisfies

b(G) ≥ n
6 − O(1). The optimal bound b(G) ≥ bn6 c was obtained independently by Edwards

in an unpublished manuscript [28], and by Khadžiivanov and Nikiforov in [70]. We wonder

whether a similar result holds for balanced multipartite graphs.

Conjecture 4.6.2 ([81]). For every ε > 0, there is a constant C = C(ε) such that the

following holds for ` > C. Let G = (V1 ∪ . . . ∪ V`, E) be a balanced `-partite graph on n

vertices such that

d(Vi, Vj) >
1
2 for every i 6= j.

Then, b(G) >
(
1
6 − ε

)
n.

According to Theorem 4.1.5, the above conjecture is true for ε ≥ 1
6 − 3−18.

Assume H is not an almost colour-critical graph. Theorem 4.1.3(1) tells us that d`(H) ≥
χ(H)−2
χ(H)−1 + 1

(χ(H)−1)2(`−1)2 for every ` ≥ v(H). Furthermore, this estimate is tight for H = K1,2,
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as shown in Remark 4.3.1. It would be very interesting to have a characterisation of the

equality case.

Bondy, Shen, Thomassé and Thomassen [17] determined the value of d`(Kk) in the case

when ` = k = 3, while Pfender [85] obtained result in the case when ` is large enough in terms

of k. The value of d`(Kk) is not known in the remaining cases. Nevertheless, when ` = k ≥ 4,

Pfender [86] proposed the following conjecture (see [80, Section 5] for more details).

Conjecture 4.6.3. The critical edge density dk = dk(Kk) satisfies the following recurrence

formula:

d2 = 0, d2k(1− dk−1) + dk − 1 = 0 for k ≥ 3.

Finally, we emphasise that there are other interesting multipartite versions of the Turán

theorem. For instance, Bollobás, Erdős and Szemerédi [14] introduced the function δr(n)

which is the smallest integer so that every r-partite graph with parts of size n and minimum

degree δr(n) + 1 contains a copy of Kr. The exact values of δr(n) was determined completely

by Haxell and Szabó [54] (for odd r), and Szabó and Tardos [93] (for even r) via topological

methods.
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Chapter 5

Keeping Avoider’s graph almost

acyclic

5.1 Introduction

Avoider-Enforcer games can be seen as the misère version of the well-known Maker-Breaker

games (studied first by Lehman [74], Chvátal and Erdős [19] and Beck [7, 9]). This means

that, while playing according to their conventional rules, the players’ goal is to lose the game.

The general setting of Avoider-Enforcer games can be summarized as follows. Let X be a

finite set and let F ⊆ 2X . The two players, called Avoider and Enforcer, alternately occupy

a certain number of elements of the so-called board X. The game ends when all elements

are claimed by the players. Avoider wins if for every so-called losing set F ∈ F , he does not

occupy all elements of F by the end of the game. Otherwise Enforcer wins. In particular, it

is not possible that the game ends in a draw. We may assume that Avoider is always the first

player since the choice of the player who is making the first move does not have an impact

on our results.

In the following we shall focus on games where the board X is given by the edge set

E(Kn) of a complete graph and Fn is some graph property to be avoided. Following Hefetz,

Krivelevich, Stojaković and Szabó [56], we consider two different versions of Avoider-Enforcer

games. Let b be a positive integer. In the original, strict (1 : b) Avoider-Enforcer game (as

investigated e.g. by Beck [8, 9], Hefetz, Krivelevich and Szabó [58] and by Lu [76, 77, 78]),

Avoider occupies exactly 1 and Enforcer exactly b unclaimed edges per round. If the number

of unclaimed edges is strictly less than b when it is Enforcer’s turn, then he must select all

the remaining unclaimed edges. For these strict rules, we define the lower threshold bias f−Fn

71



to be the largest integer such that Enforcer has a winning strategy for the (1 : b) game on

(E(Kn),Fn) for every b ≤ f−Fn ; and the upper threshold bias f+Fn to be the smallest non-

negative integer such that Avoider has a winning strategy for every b > f+Fn . In general, f−Fn
and f+Fn do not coincide as shown by Hefetz, Krivelevich and Szabó [58].

In the monotone (1 : b) Avoider-Enforcer game, Avoider occupies at least 1 and Enforcer

at least b unclaimed edges per round. Again, if the number of unclaimed edges is strictly

less than b when it is Enforcer’s turn, then he must select all the remaining unclaimed edges.

Games with these monotone rules are bias monotone, as it was shown by Hefetz, Krivelevich,

Stojaković and Szabó in [56]. This means that there exists a unique threshold bias fmonFn
which is defined as the non-negative integer for which Enforcer wins the monotone (1 : b)

game if and only if b ≤ fmonFn .

One might wonder at this point whether for any family Fn there is some general relation

between the three thresholds mentioned above like f−Fn ≤ f
mon
Fn ≤ f+Fn . Indeed, if Fn = FP3,n

is the family of all paths on 3 vertices of Kn, then these inequalities hold, as shown by Hefetz,

Krivelevich, Stojaković and Szabó in [56]. However, these inequalities are not true in general

and in fact the outcome of some Avoider-Enforcer games in the strict setting can differ a

lot from the outcome of the corresponding monotone games. For instance, it was also shown

in [56] and by Hefetz, Krivelevich and Szabó in [58] that for the Avoider-Enforcer connectivity

game, where Fn = Cn is the family of all spanning trees of Kn, we have fmonCn
= (1 + o(1)) n

logn ,

while f+Cn = f−Cn = bn−12 c.

In the present chapter, we shall be studying biased strict and monotone Avoider-Enforcer

games, where Avoider’s goal is to maintain an (almost) acyclic graph. This will have a series of

improvements on the bias of various games such as planarity, colourability and minor games.

Before stating our results we survey the relevant developments so far.

Define NCkn to be the set consisting of the edge sets of all non-k-colourable graphs on

n vertices. It was proved by Hefetz, Krivelevich, Stojaković and Szabó [55] that for every

k ≥ 3, Avoider can win the strict (1 : b) “non-k-colourability” game NCkn against any bias

larger than 2kn1+
1

2k−3 . On the other hand, it was shown by the same authors [55] that there

exists a constant sk such that Enforcer has a strategy to win the game for every b ≤ skn.

Moreover, in the same paper the authors mention that there exists a constant c > 0 such that

cn ≤ f−
NC2

n
≤ f+

NC2
n
≤ n3/2.

Let M t
n denote the set of all edge sets of all graphs on n vertices containing a Kt-minor.

Playing against a bias larger than 2n5/4, Avoider can win the strict (1 : b) Kt-minor game M t
n

for every t ≥ 4 whereas if b is almost as large as n/2 Enforcer has a winning strategy where
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t is some constant power of n, see [55]. It was proved by Hefetz, Krivelevich, Stojaković and

Szabó in [56] that the threshold bias for the monotone version is of order n3/2 for t = 3.

Finally, let us introduce the “non-planarity” Avoider-Enforcer game. Let NPn be the

set consisting of the edge sets of all non-planar graphs on n vertices. In the so-called “non-

planarity” game NPn, Avoider’s task is to keep his graph planar. Hefetz, Krivelevich, Sto-

jaković and Szabó proved in [55] that in the strict (1 : b) non-planarity game, Avoider can

succeed against any bias larger than 2n5/4. Furthermore, their proof also can be applied when

considering the monotone rules instead.

The main results of this chapter are the following two theorems. The first theorem gives a

lower bound of 200n log n on the bias such that both in the monotone and in the strict (1 : b)

Avoider-Enforcer game, Avoider can keep his graph acyclic apart from at most one unicyclic

component.

Theorem 5.1.1 ([21]). For n sufficiently large and b ≥ 200n log n, Avoider can ensure that

both in the monotone and in the strict (1 : b) Avoider-Enforcer game by the end of the game

Avoider’s graph is a forest plus at most one additional edge.

In the strict (1 : b) game stated in the theorem below, Avoider’s task is to keep his graph

acyclic for which he has again a winning strategy for some bias b between 200n log n and

201n log n.

Theorem 5.1.2 ([21]). For n sufficiently large, there is a bias 200n log n ≤ b ≤ 201n log n

such that Avoider can ensure that in the strict (1 : b) Avoider-Enforcer game by the end of

the game Avoider’s graph is a forest.

While these results are interesting in their own right, they can be applied directly to

three other games discussed above: the “non-k-colourability”, the “Kt-minor”, and the “non-

planarity” Avoider-Enforcer games.

The two corollaries below are direct consequences of our main theorems above. In par-

ticular, these results improve upper bounds for f+
NCkn

and fmon
NCkn

with k ≥ 3, and for f−
NC2

n
.

Furthermore better bounds are obtained for f+Mt
n

and fmonMt
n

with t ≥ 4 and for f−
M3
n
. Finally,

the bounds on f+NPn and fmonNPn
are improved as well.

Corollary 5.1.3 ([21]). For n sufficiently large and b ≥ 200n log n, Avoider can ensure that

in the monotone/strict (1 : b) Avoider-Enforcer game by the end of the game his graph is

planar, k-colourable for k ≥ 3, and does not contain a Kt-minor for t ≥ 4. Thus,

f+NPn , f
+
NCkn

, f+Mt
n
, fmonNPn , f

mon
NCkn

, fmonMt
n
≤ 200n log n.
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Proof. By Theorem 5.1.1, Avoider can ensure that by the end of the game his graph is a

forest plus at most one additional edge. Clearly, this graph is planar, 3-colourable, and does

not contain a K4-minor, proving the statement.

Corollary 5.1.4 ([21]). For n sufficiently large, there is a bias 200n log n ≤ b ≤ 201n log n

such that Avoider can ensure that in the strict (1 : b) Avoider-Enforcer game by the end of

the game Avoider’s graph is 2-colourable and does not contain a K3-minor. Thus,

f−
NC2

n
, f−
M3
n

= O(n log n).

Proof. By Theorem 5.1.2, Avoider can ensure that by the end of the game his graph is a

forest. Obviously, this graph is 2-colourable and does not contain a K3-minor, proving the

statement.

Hefetz, Krivelevich, Stojaković and Szabó conjectured in [55] that the Avoider-Enforcer

non-planarity, non-k-colourability and the Kt-minor games should be asymptotically mono-

tone as n tends to infinity. That is their upper and lower threshold should be of the same

order, i.e. f−Fn = Θ(f+Fn). Since in each of the three games we have lower bounds on f−Fn that

are linear in n, Corollary 5.1.3 and Corollary 5.1.4 show that the threshold biases are at most

O(log n) factor apart, thus giving additional evidence that this conjecture might be true.

Coming back to the (1 : b) non-planarity Avoider-Enforcer game, it was also proved in [55]

that in the strict version Enforcer can win whenever b ≤ n
2 − o(n). Moreover, with a slight

modification of the proof, the same result can be obtained for the monotone rules. We improve

this bound as well.

Proposition 5.1.5 ([21]). For n sufficiently large and b ≤ 0.59n, Enforcer can ensure that

both in the monotone and in the strict (1 : b) Avoider-Enforcer game, Avoider creates a

non-planar graph. Thus,

0.59n ≤ fmonNPn , f
−
NPn

.

It should be mentioned that for the sake of readability, we do not optimize the constants

in our theorems and proofs.

The rest of this chapter is organised as follows. In Section 5.2 we prove the two main

results, namely Theorem 5.1.1 and Theorem 5.1.2. In Section 5.3 we study the non-planarity

Avoider-Enforcer game and prove Proposition 5.1.5. Finally, in Section 5.4 we discuss some

open problems.
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5.2 Forests and almost forests

Proof of Theorem 5.1.1. Let n be large enough and let b ≥ 200n log n. In the following we

shall provide Avoider with a strategy that ensures that by the end of the game Avoider’s

graph is a forest plus at most one additional edge.

Let t be the smallest integer with

n

(
t+ 1

10 log n

)t
< 3. (5.1)

An easy calculation shows that t = Θ(log n), in particular, we have for large n that

t < log n/3. (5.2)

To succeed, Avoider will play according to t stages in increasing order and each stage consists

of several consecutive rounds where it is possible that a stage lasts zero rounds, i.e. that a

stage does not occur at all. In the first t−1 stages, Avoider always claims exactly one edge in

each round, connecting two components of his forest such that the sum of their sizes is minimal

(whenever we talk about components, we mean the components of Avoider’s forest). In the

last stage, which will be shown to last at most one round, Avoider will claim an arbitrary

further edge. We refer to edges, neither taken by Avoider nor by Enforcer, as unclaimed

edges.

Starting with Stage 1, Avoider plays according to the following rules.

Stage k (for k ∈ [t− 1]). If there exists an unclaimed edge e between two components

T1 and T2 with |V (T1)| + |V (T2)| = k + 1, Avoider claims such an edge, thus creating a

component on the vertex set V (T1)∪V (T2). Then it is Enforcer’s turn and the round is over.

Avoider is going to play according to Stage k in the next round as well. If there is no such

edge e to be claimed at Stage k, Avoider proceeds with Stage k + 1. (As mentioned above

it might happen that there is no edge to be claimed at Stage k already when Avoider enters

Stage k. In that case, this stage lasts zero rounds, and Avoider immediately proceeds with

Stage k + 1.)

Stage t. In every further round, Avoider claims exactly one arbitrary free edge.

One can easily verify that Avoider can follow the strategy. Moreover, as long as Avoider

plays according to the strategy of the first t− 1 stages, his graph remains a forest. Thus, in

order to show that the above described strategy is indeed a winning strategy, it remains to

show that the last stage lasts at most one round. As a first step we aim to bound the number
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of rounds a given stage lasts. Let nk denote the number of rounds in Stage k − 1. Observe

that Avoider creates components of size exactly k only in this stage. Thus, the number of

such components is always bounded from above by nk.

Claim 5.2.1. For every k ≤ t,

nk ≤ n
(

k

10 log n

)k−1
.

Proof. The claim is obviously true for k = 1. So, let k > 1 and we proceed by induction.

When Avoider enters Stage k−1 every existing component contains at most k−1 vertices and

there are no unclaimed edges between any two components T1 and T2 with |V (T1)|+|V (T2)| ≤
k − 1. In particular, every unclaimed edge is either between two components T1 and T2 with

|V (T1)| + |V (T2)| ≥ k or between two vertices within the same component which has size

at most k − 1. The first case contributes at most
∑

1≤i≤j≤k−1: i+j≥k ijninj unclaimed edges

since ni is an upper bound on the number of components of size exactly i. For the second

case we find an upper bound of (k−1)n by the following reason: Let n′i denote the number of

components of order i immediately after the end of Stage k−1. Then the number of unclaimed

edges within components after k−1 stages is at most
∑k

i=1

(
i
2

)
n′i ≤ (k−1)

∑k
i=1 in

′
i = (k−1)n,

since
∑k

i=1 in
′
i = n.

Therefore, at the beginning of Stage k − 1, the number of unclaimed edges is at most∑
1≤i≤j≤k−1: i+j≥k ijninj + (k − 1)n. Since in each but possibly the last round at least b+ 1

edges are claimed (1 by Avoider and b by Enforcer), we conclude

nk ≤
1

b+ 1

 ∑
1≤i≤j≤k−1: i+j≥k

ijninj + (k − 1)n

+ 1. (5.3)

We use the induction hypothesis to estimate the sum
∑

1≤i≤j≤k−1: i+j=s ijninj for s = k,

. . . , 2k − 2 as follows:∑
1≤i≤j≤k−1

i+j=s

ijninj ≤
n2

(10 log n)s−2

∑
1≤i≤j≤k−1

i+j=s

iijj ≤ n2

(10 log n)s−2

∑
1≤i≤j≤s−1
i+j=s

iijj . (5.4)

For s ≤ 6, it is easy to check that ∑
1≤i≤j≤s−1
i+j=s

iijj < 3ss−1. (5.5)

On the other hand, for s ≥ 7 observe that we have for every 2 ≤ i ≤ s/2(
i

s

)i
≤
(

2

s

)2

(5.6)
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by an easy calculation for i ≤ 3 and since

ii

si−2
≤ ii

(2i)i−2
≤ i2

2i−2
≤ 4

for every i ≥ 4. Therefore, we also obtain for s ≥ 7

∑
1≤i≤j≤s−1
i+j=s

iijj < ss−1 +
∑

2≤i≤s/2

iiss−i = ss−1

1 + s
∑

2≤i≤s/2

(
i

s

)i
(5.6)

≤ ss−1

1 + s
∑

2≤i≤s/2

(
2

s

)2
 < 3ss−1. (5.7)

Observing that(
s

10 log n

)s−1
=

(
k

10 log n

)k−1 s−k∏
i=1

k + i− 1

10 log n

(
1 +

1

k + i− 1

)k+i−1
≤
(

k

10 log n

)k−1( 2ke

10 log n

)s−k (5.2)

≤
(

k

10 log n

)k−1
2k−s, (5.8)

we can simplify (5.3) using b ≥ 200n log n and Equations (5.4), (5.5), and (5.7) as follows

nk ≤
1

200n log n

(
2k−2∑
s=k

30n2 log n

(
s

10 log n

)s−1
+ (k − 1)n

)
+ 1

(5.8)

≤ 3n

20

(
k

10 log n

)k−1 2k−2∑
s=k

2k−s +
k − 1

200 log n
+ 1

(5.2)

≤ 3n

10

(
k

10 log n

)k−1
+ 2

(5.1)

≤ n

(
k

10 log n

)k−1
.

This completes the proof of Claim 5.2.1.

Now, analogously to the calculation of the proof of Claim 5.2.1 it follows that, when

Avoider enters the last stage, Stage t, the number of remaining unclaimed edges is bounded

by

∑
1≤i≤j≤t
i+j≥t+1

ijninj + tn ≤
2t∑

s=t+1

30n2 log n

(
t+ 1

10 log n

)t
2t+1−s + tn

(5.1)

≤ 180n log n+ tn < 200n log n

by the choice of t (t < log n/3) and for n sufficiently large. Thus, this last stage lasts at most

one round.
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Now we turn to the case of the strict rules, when Enforcer has to claim exactly b edges

during each round (except possibly for the last one).

Proof of Theorem 5.1.2. We will show below that for large enough n, there exists b with

200n log n ≤ b ≤ 201n log n and the remainder of
(
n
2

)
divided by b+ 1 is at least n log n.

Before proving this claim let us explain how the theorem follows then. Let b be given

as above. Avoider now plays according to the same strategy as given in the proof of Theo-

rem 5.1.1 until he reaches Stage t, where again t is the smallest integer with n
(

t+1
10 logn

)t
< 3.

At this point, Avoider’s graph is still a forest, the components of which are all of size at most

t. Analogously to the proof of Theorem5.1.1, there can be at most tn < n lnn/3 unclaimed

edges within components. However, since the remainder of the division
(
n
2

)
/(b+ 1) is at least

n log n, there exist unclaimed edges connecting two different components when Avoider enters

Stage t (provided n is large enough). Now, Avoider just claims one such edge arbitrarily. His

graph remains a forest and afterwards, Enforcer must take all remaining edges. Observe that

in the case when Avoider is the second player, he does not even claim an edge in the last

round.

So, it only remains to prove the above mentioned claim. Let b1 = d200.5n log ne. Moreover,

let (
n

2

)
= q1(b1 + 1) + r1 with 0 ≤ r1 ≤ b1 and q1 ∼

n

401 log n
.

If r1 > n lnn, we are done by setting b = b1. Otherwise, let b = b1 − d402 log2 ne. Then(
n

2

)
= q1(b+ 1) + (r1 + q1d402 log2 ne).

Moreover, for large enough n, we obtain r1 + q1d402 log2 ne < b, and therefore the remainder

of the division
(
n
2

)
by (b + 1) is at least r1 + q1d402 log2 ne > n log n, while 200n log n ≤ b ≤

201n log n.

5.3 Lower bound in the non-planarity game

Before obtaining a lower bound for the non-planarity Avoider-Enforcer game in Proposi-

tion 5.1.5, we analyze another strict game where two players, the first player (denoted by FP)

and the second player (denoted by SP), claim exactly 1 and b edges, respectively.

Proposition 5.3.1. Let c = 1/1000. For n sufficiently large and every 0.49n ≤ b ≤ 0.59n

the second player in a strict (1 : b) game on E(Kn) can isolate at least

n− (1− c)n
2

2b
vertices,
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i.e. claim all edges that are incident to these vertices.

Proof. Case 1. (0.49n ≤ b ≤ 0.55n.) As long as there are at least 4 vertices not isolated

by the second player (SP) and not touched by the first player (FP), SP can isolate a vertex

in every fourth round. Indeed, assume SP isolated a vertex in the previous round and now

wants to isolate one vertex within the next 4 rounds. He fixes 4 vertices v1, v2, v3, v4 that are

neither isolated by him nor touched by FP. In every first round, SP claims all edges between

these 4 vertices and at each vi he additionally claims b(b − 6)/4c arbitrary incident edges.

Now, it is FP’s turn. He can touch at most one of these four vertices since all edges between

them are already claimed by SP. Without loss of generality, v1, v2, and v3 are still untouched

by FP. Now in the second round SP claims at each of these three vertices bb/3c arbitrary

incident edges. Again, FP can touch at most one of these three vertices in his turn. Without

loss of generality, v1 and v2 are still untouched by FP after that. In the third round, SP

claims at each of these two vertices bb/2c arbitrary incident edges. After FP’s next turn,

w. l. o. g. v1 is still untouched by FP. Now, SP simply claims all remaining incident edges at

v1, which is possible since 3 + b(b− 6)/4c+ bb/3c+ bb/2c+ b > n, for large n. Note that while

SP isolates one vertex, FP can touch at most 8 other vertices. It follows that the number of

vertices that SP isolates in total is at least bn/9c ≥ n− (1− c)n2

2b .

Case 2. (0.55n ≤ b ≤ 0.58n.) Analogously to Case 1, SP can isolate a vertex in every

third round as long as there are at least 3 vertices not touched by FP. This time, SP starts by

only fixing three vertices v1, v2, v3 and isolates then one of them within three rounds, which

is possible since 2 + b(b− 3)/3c+ bb/2c+ b > n, for large n. It follows then that SP isolates

at least bn/7c ≥ n− (1− c)n2

2b vertices in total.

Case 3. (0.58n ≤ b ≤ 0.59n.) Analogously to Case 2, SP can isolate a vertex in every

third round as long as there are at least 3 vertices not touched by FP. In a first phase,

SP follows the above described strategy and he isolates n − 1.5b vertices, which happens

in at most 3n − 4.5b rounds. During this phase, FP can touch at most 6n − 9b vertices.

Afterwards, for every vertex that is neither isolated by SP nor touched by FP, SP only needs

to claim at most 1.5b further incident edges in order to isolate it. But then, analogously to

the previous cases, SP can isolate one vertex in every second round, since 1+b(b−1)/2c+b ≥
1.5b. Thus, in the second phase after at most 3n − 4.5b rounds, SP isolates a vertex in

every second round as long as possible. Since at the beginning of the second phase at least

n− (n− 1.5b)− (6n− 9b) = 10.5b− 6n vertices were neither isolated by SP nor touched by

FP, SP can isolate at least (10.5b − 6n)/5 further vertices. In total SP will isolate at least

(n− 1.5b) + (10.5b− 6n)/5 ≥ n− (1− c)n2

2b vertices.
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Lemma 5.3.2. For n sufficiently large and b ≤ 0.59n Enforcer can ensure that in the strict

(1 : b) game on E(Kn) Avoider creates a non-planar graph. Thus,

0.59n ≤ f−NPn .

Proof. Since the statement is already proved for b ≤ 0.49n in [55], we may assume from now

on that 0.49n ≤ b. The following proof will be a slight modification of the one given in [55].

Let c = 1/1000 be as in Proposition 5.3.1 and choose an integer k ≥ 3 such that

k

k − 2

(
1− c

2

)
< 1. (5.9)

Enforcer’s strategy consists of two goals: First of all, he wants to prevent Avoider from

creating cycles of length at most k. Secondly, he wants to isolate a large number of vertices to

ensure that Avoider’s graph lives on a small vertex set. For this he splits his bias b = b1 + b2

(b1 and b2 will be chosen later) and uses b1 for his first goal, and b2 for the second goal.

Preventing cycles. It follows from the work of Bednarska and  Luczak [10] (see also the

proof of Theorem 2.3 in [55]), that for every 3 ≤ i ≤ k there is a constant ci such that, for

sufficiently large n, Enforcer can prevent Avoider from claiming a cycle of length i if Enforcer

is allowed to claim at least cin
i−2
i−1 edges. Let C = max{ci : 3 ≤ i ≤ k}. Then, simultaneously

playing according to the different strategies for preventing cycles of length 3 ≤ i ≤ k, Enforcer

can ensure that Avoider’s graph has girth larger than k if he claims at least

k∑
i=3

cin
i−2
i−1 ≤ Ckn

k−2
k−1 =: b1

edges per round. Observe that b1 = o(b).

Isolating vertices. Let b2 = b−b1 = b(1−o(1)). In each round Enforcer uses b2 edges to

play according to the strategy given in the proof of Proposition 5.3.1. Therefore, he isolates

at least n− (1− c) n2

2b2
≥ n−

(
1− c

2

)
n2

2b vertices.

Now, let Enforcer split his bias b = b1 + b2, and thus play so as to prevent cycles of length

at most k, while at the same time to isolate at least n −
(
1− c

2

)
n2

2b vertices. Notice that it

does not hurt Enforcer if the combination of the above strategies leads to claiming the same

edge more than once - Enforcer can claim an arbitrary edge instead since this does not destroy

the properties of the graph he is about to create. Let A be Avoider’s graph at the end of

the game. We know that |V (A)| ≤
(
1− c

2

)
n2

2b and girth(A) > k. If A was planar, then, by a

standard application of Euler’s formula, we would have

|E(A)| < k

k − 2
(|V (A)| − 2) <

k

k − 2

(
1− c

2

) n2
2b
.
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However, by the number of rounds the game lasts, we have

|E(A)| ≥

⌊ (
n
2

)
b+ 1

⌋
>

k

k − 2

(
1− c

2

) n2
2b
,

using (5.9), for n sufficiently large. Thus, Avoider’s graph is non-planar and Enforcer wins.

Lemma 5.3.3. For n sufficiently large and b ≤ 0.59n Enforcer can ensure that Avoider

creates a non-planar graph in the monotone (1 : b) game on E(Kn). Thus,

0.59n ≤ fmonNPn .

Proof. Let A be Avoider’s graph throughout the game, and let A∗ ⊆ A be a subgraph

consisting of exactly one edge from every round played so far. Enforcer claims in every

round exactly b′ := max{0.49n, b} edges according to the strategy given in the proof of the

previous lemma, assuming A∗ to be Avoider’s graph. If this strategy asks Enforcer to claim

an edge from A \A∗, he will claim another arbitrary edge instead. We distinguish two cases.

Case 1. |E(A)| > 3n. Then, by Euler’s formula, Avoider’s graph is non-planar and

Enforcer wins.

Case 2. |E(A)| ≤ 3n. Then the number of rounds the game lasts is at least
(n2)−3n

b′ =
n2

2b′ (1− o(1)), which also gives

|E(A∗)| ≥ n2

2b′
(1− o(1)).

By the above described strategy we get again, similar to the proof of Lemma 5.3.2, |V (A∗)| ≤(
1− c

2

)
n2

2b′ as well as girth(A∗) > k, ensuring that A∗ cannot be planar provided that n is

large enough.

Proof of Proposition 5.1.5. This proposition follows directly from Lemma 5.3.2 and Lemma 5.3.3.

5.4 Concluding remarks

For each of the games considered for Corollary 5.1.3, we have shown that the lower and upper

threshold bias differ at most by a factor of lnn. However, we believe that this factor can be

replaced by some constant. We wonder whether this can already be done for the strategy

we analyzed in the proof of Theorem 5.1.1, where we have shown that Avoider can keep his

graph almost acyclic.
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Question 5.4.1 ([21]). Is there a constant C > 0 such that the following holds: For n

sufficiently large and b ≥ Cn, Avoider has a strategy that creates at most one cycle in the

monotone/strict (1 : b) game?

In case the question above can be answered positively, the following conjecture by Hefetz,

Krivelevich, Stojaković and Szabó [55, Conjecture 5.2] would follow immediately.

Conjecture 5.4.2. The Avoider-Enforcer non-planarity, non-k-colourability and Kt-minor

games are asymptotically monotone for every k ≥ 3 and t ≥ 4.

Our result on the lower threshold bias for the non-planarity game is obtained by splitting

Enforcer’s strategy into two parts. The first part, based on the strategy from [55], is to prevent

small cycles in Avoider’s graph. The second part is to isolate a large number of vertices. So,

our improvement was obtained by studying a positional game in which one player has the

goal to isolate as many vertices as possible. This game itself seems to be of interest.

Question 5.4.3 ([21]). Let b ∈ N. What is the largest number of vertices that the second

player can isolate in a (1 : b) game on E(Kn) under the strict rules?
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Zusammenfassung

Das Gebiet der Extremalen Kombinatorik beschäftigt sich mit der folgenden grundlegenden

Frage: ,,Wie groß kann eine Struktur sein, wenn sie keine verbotenen Teilstrukturen enthält?”

Die studierten Strukturen sind dabei äußerst flexibel, sodass sie eine große Bandbreite an

Anwendungen in verschiedensten Fachgebieten, wie der Theoretischen Informatik, dem Op-

erations Research, der Diskreten Geometrie und der Zahlentheorie, ermöglichen. Vieles in

der Extremalen Kombinatorik betrifft Klassen von Mengen, was Extremale Mengentheorie

genannt wird. Zum Beispiel: Was ist die größte Anzahl k-elementiger Teilmengen einer

n-elementigen Menge, die sich paarweise schneiden können? Die Antwort auf diese Frage,

nämlich der Satz von Erdős-Ko-Rado, hatte viele Fragestellungen in der Extremalen Men-

genlehre zu Folge.

In dieser Dissertation stellen wir neue Erweiterungen klassischer Theoreme der Extremalen

Kombinatorik vor, wobei wir probabilistische und analytische Argumente verwenden. In Kapi-

tel 2 nutzen wir die analytische Methode, um die Stabilität des Erdős-Ko-Rado-Theorems zu

untersuchen. Insbesondere zeigen wir, dass jedes Mengensystem, welches wenige disjunkte

Paare enthält, durch Wegnahme weniger Mengen überschneidend gemacht werden kann. Mit

diesem Resultat ausgerüstet, klären wir eine Frage von Bollobás, Narayanan and Raigorodski

(2014) bezüglich der Unabhängigkeitszahl von Zufallsgraphen des Knesergraphs. In Kapitel

3 untersuchen wir eine Variante des ursprünglichen Problems von Erdős und Rothschild, in

dem wir disjunkte Paare von Hyperkanten gleicher Farbe verbieten. Unsere Resultate er-

weitern das Erdős-Ko-Rado-Theorem. Danach schreiten wir zur Extremalen Graphentheorie

und studieren in Kapitel 4 eine multipartite Version des Satzes von Turán, wobei wir die

probabilistische Methode in Verbindung mit einem Stabilitätsansatz verwenden.

Der letzte Teil dieser Arbeit behandelt Avoider-Enforcer-Spiele, in denen zwei Spieler ab-

wechselnd Kanten des vollständigen Graphs einnehmen. Avoider gewinnt, wenn es ihr gelingt

zu vermeiden, dass sie alle Kanten einer Verlierermenge besetzt. In diesem Kapitel erhalten

wir im Wesentlichen optimale obere Schranken für die ,,threshold biases” des ,,non-planarity”-

Spiels und des ,,non-k-colourability”-Spiels, womit wir eine Frage von Hefetz, Krivelevich,

Stojaković und Szabó (2008) aufgreifen und deren Resultate bedeutend verbessern.
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Forum of Mathematics, Sigma 3 (2015).

[5] J. Balogh, S. Das, M. Delcourt, H. Liu and M. Sharifzadeh, Intersecting families of

discrete structures are typically trivial, Journal of Combinatorial Theory, Series A 132

(2015), 224–245.

[6] Z. Baranyai, On the factorization of the complete uniform hypergraph, Infinite and finite

sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), vol. 1, 1975,
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[54] P. Haxell and T. Szabó, Odd independent transversals are odd, Combinatorics, Probabil-

ity and Computing 15 (2006), 193–211.
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