Freie Universitatt:

Inscribable polytopes
via Delaunay triangulations

Dissertation

zur Erlangung des Grades eines
Doktors der Naturwissenschaften

am Fachbereich

Mathematik und Informatik
der Freien Universitat Berlin

vorgelegt von

Bernd Gonska

Berlin 2012



Betreuer: Prof. Giinter M. Ziegler

Erster Gutachter: Prof. Giinter M. Ziegler
Zweiter Gutachter: Prof. Dr. Michael Joswig

Tag der Disputation: 11. Januar 2013

i



Contents

Introduction v
0 Preliminaries 1
0.1 Polytopes and their f-vectors . . . ... ... ... .... 1
0.2 Delaunay triangulations and stellar subdivisions . . . . . 8
0.3 Projections and transformations . . . . . . . .. ... ... 14
0.4 Extensions of regular triangulations . . . . . . . ... .. 19
1 Three theorems about f-vectors of inscribed polytopes 25

1.1 Construction of all f-vectors of inscribed 3-polytopes . . 25
1.2 The Lower Bound Theorem for inscribed simplicial polytopes 27
1.3 The Upper Bound Theorem for inscribed polytopes and

Delaunay triangulations . . . . . .. ... .. ... ... 28
Characterization of inscribable stacked polytopes 33
2.1 Induced tree of stacked polytopes and stellar subdivisions 33
2.2 Characterization of inscribable stacked polytopes . ... 36

2.2.1 Realizing all inscribed stacked polytopes . . . . . 36

2.2.2  Necessity: Three stellar subdivisions are too much 38

2.2.3 Properties of inscribed stacked polytopes . . . . . . 44
Enclosing spheres and the inscribability exponent 45

Construction techniques of f-vectors of inscribable sim-

plicial polytopes 55
4.1 A technique to extend triangulations . . . .. ... ... 55
4.2 Step and Stay Construction . . . . ... ... ... .. .. 61
4.3 Applications of the Step and Stay Theorem . . . . . . . . 68
4.4  Controlling the number of vertices, edges and 2-faces . . 69
4.5 Discussion about the sufficiency part of the g-Theorem . 78

4.5.1 The proof by Billera and Lee . . . . .. ... .. 78

4.5.2 Geometric interpretation . . . . . .. ... L. 80

4.5.3 Approach for inscribable polytopes . . . . . .. .. 81
Geometric composition of inscribable polytopes 85

5.1 Inscribed stackable . . . . . . . . .. ... ... 85

iii



Contents

5.2  Constructions to extend inscribed polytopes . . . . . .. 93
5.3 Gluing inscribed polytopes . . . . . . . .. ... ... .. 96
Bibliography 105
Zusammenfassung 111

v



Introduction

The mathematical field of discrete geometry is a link between combi-
natorics and geometry. It investigates the shape and structure of finite,
discrete objects such as polytopes, triangulations and graphs. The ana-
logue to this area in computer science is computational geometry, which
deals with algorithms that solve computational problems like optimiza-
tion, scheduling and data-mining. Such algorithms often use objects from
discrete geometry as the data structures. High dimensional polytopes are
used in the simplex method to solve linear optimization problems, for
example, to find an optimal schedule for the subway trains of Berlin [34].
Delaunay triangulations are used as grids for CAD (computer aided design)
where components can be tested and optimized using physical simulations
with the Finite Element method. Graphs and especially binary trees are
frequently used data structures in all kinds of computer programs. They
can speed up search operations, deal with storage data of varying size and
provide fast data access. Discrete geometry provides the mathematical
basis.

The main structures that appear in this thesis are inscribed simplicial
polytopes and in particular their f-vectors. A polytope is called simplicial
if all its proper faces are simplices. Two classes of polytopes will be of
special interest: stacked polytopes and cyclic polytopes. They play an
important role in theorems about f-vectors of simplicial polytopes. Also
vital for this thesis are Delaunay triangulations which by Brown [9] can
be seen as projections of inscribed polytopes and thereby turn out to be
a powerful tool for us.

The f-vector of a complex like a triangulation or polytope is the statistic
of how many faces of which dimension the complex possesses. This
simple but fundamental property has also applications in computational
geometry. For example, the run time and the data space usage of an
algorithm that runs a search or even an iteration on such a complex is
influenced by the f-vector of the structure.

Many theorems have been found that at least partially characterize f-
vectors of polytopes. In dimension one and two f-vectors are too simple
to be interesting. In dimension three, Steinitz [45] gave a complete
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characterization for all f-vectors of 3-polytopes. In higher dimension,
a lot is known for f-vectors of simplicial polytopes. For example, the
Dehn-Sommerville equations [12, 42] state that already the first half of an
f-vector of a simplicial polytope is enough to complete the whole f-vector.
In 1970 McMullen [33] proved the Upper Bound Theorem: The f-vector
of any polytope is component-wise smaller or equal to the f-vector of
any cyclic polytope of the same dimension and number of vertices. In
1971/1973 Barnette proved the Lower Bound Theorem [1, 2]. He showed
that the f-vector of any simplicial polytope is component-wise larger or
equal to the f-vector of any stacked polytope of same dimension and
number of vertices. Moreover, in dimension larger than three stacked
polytopes are characterized by this property. The most impressive theorem
is clearly the g-Theorem, which completely characterizes all f-vectors of
simplicial polytopes. This theorem has been conjectured by McMullen in
1971. In 1980, the necessity part has been proven by Stanley [43] and the
sufficiency part by Billera and Lee [6, 5]. In 2006 Bjorner [7] gave another
comparison theorem which extends Lower and Upper Bound Theorem.
It compares the entries of an f-vector of a simplicial polytope with the
f-vectors of stacked and cyclic polytopes, that have the same number
of k-dimensional faces. For non simplicial polytopes the Upper Bound
Theorem still holds. It moreover implies by duality, that for all dimensions
and specific number of vertices the lower bounds for polytopes are given
by simple polytopes. Something like the g-theorem for all polytopes
however, does not even exist for dimension four. See [49] for a survey of
the current progress. In this thesis we will investigate the f-vector with
respect to inscribable polytopes: We discuss the Lower Bound Theorem,
the Upper Bound Theorem, the g-Theorem, f-vectors of three polytopes
and characterize all inscribable stacked polytopes (joint work with Gunter
M. Ziegler).

Figure 1: The combinatorial types of the triakis tetrahedron (left) and the
one vertex truncated cube (right) are not inscribable. The right
example is minimal with respect to the number of faces. [28]

Polytopes are called inscribed if all their vertices are positioned on a
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common sphere. The corresponding combinatorial type is named inscrib-
able. The question whether all polytopes are of inscribable type has
been first asked by Steiner [44] in 1832. Unfortunately, an argument by
Briickner [10], who seemed to prove that the answer is yes, turned out
to be wrong. Steinitz [45] in 1928 laid the basis for the whole theory.
He revealed the first examples of non inscribable types, including the
triakis tetrahedron (see Figure 1) and constructed an infinite family of
non inscribable 3-polytopes. He pointed out that the dual polytope of
an inscribed polytope is circumscribed, and vice versa (this holds in all
dimensions). One of his theorems implies that a simplicial polytope that
has at least as many facets as vertices cannot be of inscribable type after
all its facets are stacked. In 1967 Jucovi¢ [29] generalized this theorem
such that it implies that the d-simplex that is stacked on all facets is of
non inscribable type for d > 2. In 1974 Grinbaum and Jucovi¢ [24, 30]
used this fact to give an asymptotic upper bound for the inscribability
exponent. This exponent measures the proportion of vertices that can
always be placed on a sphere, while all other vertices lie inside. Although
the bound was conjectured to be tight, we managed to improve it drasti-
cally in dimension higher than 3. For dimension three Sevec [41] provided
some examples in 1982 that underline that the bound is probably tight.
In 1985 Schulte [39] extended the discussion about inscribability and
circumscribability further to the question how many k-dimensional faces
of a d-polytope can be realized to be tangent to the unit sphere. In 1991
and 1997 Jucovi¢, Sevec and Trenkler (31, 32] investigated quadrangular
inscribable 3-polytopes.

In 1978 Brown [9] showed that all (d — 1)-dimensional Delaunay subdi-
visions of convex polytopes are images of inscribed d-polytopes under
stereographic projection. Due to that, a inscribability of simplicial poly-
topes corresponds to the Delaunay property of triangulations. Delaunay
triangulations (also known as Delaunay tetrahedrizations, or in general
Delaunay tessellations or Delaunay subdivision) go back to the Russian
mathematician Boris Delaunay (sometimes spelled Delone) [13] in 1934.
These triangulations are dual to Voronoi diagrams (also known as Voronoi
tessellations or Dirichlet tessellations) which have been known long be-
fore [46, 18, 14]. Delaunay triangulations have intensively been studied in
computational geometry. More significant for us are the results of Dillen-
court in 1990 about realizability of planar Delaunay triangulations [15].
Beside some criteria, this work contains important examples as shown
in Figure 2. In 1991 Seidel [40] showed that cyclic polytopes are inscrib-
able and from that he derived exact upper bounds for the number of
faces Delaunay triangulations in arbitrary dimensions. The breakthrough
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for 3-polytopes clearly came with the characterization of all inscribable
3-polytopes by Hodgson, Rivin and Smith [38, 37, 36, 25, 26]. They
identified inscribed 3-polytopes via the Klein Model with ideal polyhedra
in hyperbolic space and characterized those by a dihedral angle condition
of the edges. On the other hand Dillencourt and Smith [16] presented
a purely numerical characterization of simple inscribable polytopes and
provided a linear time algorithm to recognize if a certain simple polytope
is inscribable. In 1996 they also showed some graph-theoretical condi-
tions [17] for Delaunay triangulations in the plane, these are useful but
only sufficient. So, there are characterization of inscribable (simplicial)
polytopes, but they do only work for dimension three and even there
we still do not have a combinatorial solution. Beside an upper bound
theorem from Seidel, there is almost nothing known about f-vectors of
inscribable polytopes in higher dimensions. We will change that.

A G A D

Figure 2: The first two triangulations are Delaunay triangulations, the
other two cannot be realized as Delaunay triangulations. [15]

Transformations and projections are fundamental techniques in this thesis.
One of them are projective transformations of the unit sphere. They are
the first choice to transform inscribed polytopes, because they preserve
convexity and inscribability. Brown [9] used the stereographic projection
to decomposed the boundary of an inscribed d-polytope into two simplicial
complexes, which only overlap in at most (d — 2)-dimensional cells. One
part is visible from the projection point and he calls the image of the
projection a furthest point Delaunay triangulation. The other part which
is not visible except for lower dimensional faces is projected to what he
calls closest point Delaunay triangulation, and which equals the Delaunay
triangulations. Brown had chosen the projection point to lie outside the
polytope. In contrast, we will pick it as a vertex and call it a vertex
projection. This is clearly just a variation of Browns method, but it
simplifies the relation between the inscribed polytope and its projected
image. It avoids furthest point Delaunay triangulations and so the
usual Delaunay triangulation encodes all information about the inscribed
polytope. Sphere inversions help us to understand the geometry of certain
configurations of affine spaces and spheres. They can provide a clearer
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view, especially for parts of Delaunay triangulations. For example, we
use a sphere inversion in Chapter 2 to force some parts of a Delaunay
triangulation into an affine dependence. This allows us to reduce a
d-dimensional problem to a well known one of dimension two.

The name Delaunay polytopes naturally appears if one thinks of Delaunay
triangulations and inscribed polytopes. The name “Delaunay polytopes”
is also used for lattice polytopes that are inscribed. The main part of
research in this topic involves perfect Delaunay polytopes. These have a
unique circumscribing ellipsoid. However, this interesting area has little
intersection with our work. See [19, 21].

The structure

Chapter 0 gives the preliminaries that we need for this thesis. It starts
with the definition of a polytope and the main theorems about f-vectors
of simplicial polytopes. It continues with Delaunay triangulations and
their relation to inscribed polytopes, and finally discusses extensions of
triangulations and how they influence the f-vector of a corresponding

polytope.

In Chapter 1, we show by construction that the Lower Bound Theorem for
simplicial polytopes, the Upper Bound Theorem for simplicial polytopes,
and the characterization of f-vectors of 3-polytopes all hold tight when
they are restricted to inscribable polytopes. This is joint work with
Giinter M. Ziegler [22].

In Chapter 2 we characterize all inscribable stacked polytopes. Since in
dimension larger than three stacked polytopes are exactly the polytopes
that reach the lower bound of the the simplicial Lower Bound Theorem,
we thereby characterize the lower bound for the inscribed simplicial case.
This is joint work with Giinter M. Ziegler [22].

In Chapter 3 we disprove a conjecture of Grinbaum and Jucovi¢ from
1974 about the inscribability exponent and improve the bounds of the
corresponding paper drastically for dimensions higher than three. To do
that we strengthen a result of chapter two. We show for all dimensions
that the simplex that has four facets stacked cannot have an enclosing
sphere that passes through all four apexes of the stackings.

In Chapter 4 we aim for the g-theorem of inscribed simplicial polytopes.
Although we cannot solve this question completely in all dimensions,
we manage to develop two construction schemes that allow us to prove
several results including the following;:

ix



Introduction

e The g-theorem is tight for inscribed simplicial polytopes (at least)
up to dimension seven.

e For each simplicial polytope of any dimension there is an inscribed
simplicial polytope of the same dimension that has the same number
of vertices, edges and 2-faces.

e For any dimension d, any number of vertices n > d 4+ 1 and any
integer k < d/2, there is a k-neighborly inscribed simplicial d-
polytope of n vertices, that is not (k + 1)-neighborly.

The chapter is completed by a discussion why the sufficiency proof of the
g-Theorem by Billera and Lee cannot easily be extended to the inscribable
case. It includes an example of two cyclic 3-polytopes of 8 vertices that
have different face-hyperplane arrangements.

In Chapter 5 we discuss three concepts of how inscribed polytopes can
be combined or extended to derive new inscribed polytopes. First we
discuss under what conditions an inscribed polytope has a facet that
can be stacked such that the result is inscribed. This property is also
important for the next two sections: We apply the techniques of chapter
three to extend a given inscribed polytope and finally discuss under what
conditions two inscribed polytopes can be glued by a common facet, if
we previously allow projective transformations of the unit sphere.
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0 Preliminaries

This chapter introduces the basic concepts. For a background about
polytopes we recommend [48] and [23]. For triangulations we have [11] and
especially for Delaunay triangulations we refer to [20]. The books [3, 4]
give the basics for geometry in general, including sphere inversions and
transformations. For an introduction to computational geometry, we
recommend [27].

0.1 Polytopes and their f-vectors

Polytopes are a fundamental concept in discrete geometry. Instead of
giving a detailed survey, we focus on the f-vector of simplicial polytopes
and introduce inscribed, stacked and cyclic polytopes.

For d > 0 the convex hull of finitely many points in R? is called a (convez)
polytope. An equivalent definition is the bounded intersection of finitely
many closed halfspaces of R?. If the dimension of the affine hull of a
polytope is d, then it is called a d-polytope. The relative interior of a set
in R? is the interior with respect to the affine hull of the set. A supporting
hyperplane of a d-polytope P is a hyperplane that intersects the polytope
but misses the relative interior of P. This intersection, which is again a
polytope, is called a face of P. Two different hyperplanes may define the
same face. By convention, the empty set and P itself are also considered
to be faces of P. The empty set is of dimension —1. All faces except the
last mentioned two, are called proper faces. Faces of dimension 0,1,d — 2
and d — 1 are called vertices, edges, ridges and facets. If P is a d-polytope
of R?, then each facet of P has exactly one supporting hyperplane which
divides R? into two open halfspaces. The one that intersects P is called
the space beneath the facet, the other one the space beyond the facet. A
point p € RY is said to see a face F' of P if it lies beyond any facet of P
that contains F'. Two polytopes are said to have the same combinatorial
type if there exists an inclusion preserving one to one correspondence
between the sets of their faces. In reverse, each polytope is a realization
of its combinatorial type.
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Definition 0.1.1 (Inscribed polytopes). A d-polytope is called inscribed
if its vertices lie on a common (d — 1)-sphere. A polytope and its combi-
natorial type are called inscribable if the combinatorial type contains a
realization that is inscribed.

Definition 0.1.2 (Polytopal complexes and triangulations). Let d > 0.
A finite set A of polytopes in R? is called a polytopal complez if it satisfies
the following:

e Each face of each polytope in A lies in A.

e For each F,G € A the intersection is a face of F' and a face of G.
Each polytope in A is called a face or a cell of A. The union V of the
vertices of all polytopes in A is called the set of vertices of A. The
support |A] of A is the union of all polytopes in A. The dimension of
A is the dimensions of |A]. A polytopal complex is called pure if every
face is contained in a d-dimensional face. A polytopal complex is called
a simplicial complex if all faces are simplices. A simplicial complex is
called a triangulation of V', if it is pure, has vertex set V' and its support
is convex. If A is pure and d-dimensional, then the boundary OA of A is
the polytopal complex that consists of all (d — 1)-faces (and their faces)
that only lie in only one d-face of A. All faces of A that do not lie in the
boundary are called interior faces.

Two important polytopal complexes are: The face complex of a polytope
P that is the set of all faces of P, and the boundary complex OP of P
that is the face complex of P without P. In case that 0P is a simplicial
complex, P is also called simplicial.

Definition 0.1.3 (Star, link, deletion, pyramid). Let C' be a polytopal
complex and F' a face of it.

e The star starp(C) is the polytopal complex that consists of all faces
(and their faces) of C' that contain F'.

e The link linkp(C) is the polytopal complex that consists of all
faces of the star of F' that do not intersect with F'.

e The deletion delp(C') is the polytopal complex that consists of all
faces of C' that do not contain F'.

e (' is the pyramid over an other simplicial complex C’, if there exists
a vertex v € C’ that does not lie in the affine hull of any face of C".
Further, C' consists of all faces of the form F' and conv(F,v), for F
being a face of C".

The f-vector of a (d — 1)-dimensional polytopal complex A is a vector
f=(1,fo,---y fae1). Fori=—1,...,d—1, the entry f; is the number
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of i-dimensional faces of A respectively P. The f-vector of a polytope
is the f-vector of its boundary complex. Not every sequence of integers
defines an f-vector of a polytope. Besides f_; = 1, each number of
vertices yields finite upper bounds for the number of other dimensional
faces. Surprisingly, there are polytopes that reach all upper bounds
simultaneously.

We set some notation:
— |d
d =4
Theorem 0.1.4 (Upper Bound Theorem, McMullen [33]).

Letn > d > 1. Let P be a d-polytope of n vertices and Q any simplicial
netghborly polytope of same dimension and number of vertices. Then

fi(P) < fi(Q) fori=1,...,d—1.
For i <d this is
fic1(P) < fisa(Q) = (fjo).

]

By the Dehn-Sommerville equations, the f-vector of a simplicial d-polytope
is already defined by the first half: f 1,..., fo_1.

Definition 0.1.5 (k-neighborly polytope). Ford > 1and 0 <k < d a
d-polytope P is called k-neighborly if for all k-subsets M of the vertex set
of P, the convex hull of M is a face of P. A polytope is called neighborly, if
it is d’-neighborly. An equivalent definition to k-neighborly is an f-vector
that satisfies:

fioi(P) = f;.1(Q) = ("];0> fori=1,...,k.

The complete f-vector of a simplicial neighborly d-polytope is:

i . n—d+k—1 _
fu:Z(Z k)hk o hk::{< oY) k=0,...d

k=0 ha—r k:d/—i-l,...,d

More about neighborly polytopes can be found in [23]. An important
example of neighborly polytopes are the cyclic polytopes:

Definition 0.1.6 (Cyclic polytope). For d > 1 the d-dimensional moment
curve is given by:

c:R—=RY  ts (tH 12t
It is known that the convex hull of any distinct n > d points on the trace

of this curve will yield to the same combinatorial type of polytope. This
type is called C4(n), the cyclic d-polytope of n vertices.
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All cyclic polytopes are simplicial neighborly polytopes. For a realization
of a cyclic polytope whose vertices lie on the moment curve, the parameter
t of the curve ¢(t) induces an order on the vertices. Using this order, the
subsets of the vertex set of Cy(n) can be described by a binary vector
of length n, where a 1-entry indicates that the vertex is part of the set.
Gale’s evenness condition, which is explained in more detail in [23], states
that such a vector with d many 1l-entries represents a facet of Cy(n) if
and only if between any two 0-entries an even number of 1-entries appear.

This condition defines the cyclic type: The condition completely encodes
the incidence relation between facets and vertices. This implies that if
the vertices of a given polytope can be ordered in a way such that the
polytope satisfies Gale’s condition, then it must be of cyclic type. We
will use this trick later.

For simplicial polytopes, there is also a lower bound for the f-vector. To
understand it, we need the following definition.

Definition 0.1.7 (Stacked polytope). For d > 1 a stacking operation is
performed onto a facet by taking the convex hull of the polytope with a
new point that lies beyond the selected facet but beneath all other facets
of the polytope. A polytope is called stacked if it can be built from a
d-simplex by a sequence of stacking operations.

Theorem 0.1.8 (Lower Bound Theorem, Barnette [1] [2]). Let d > 1
and n > d. Let P be a simplicial d-polytope of n vertices and Sy(n) any
stacked polytope of same dimension and number of vertices. Then

Py = st = (1) + - a- ()

1+ 1 7

fori=1,...,d.

In dimension 3 this is rather boring, because by the Euler character-
istic and a double counting argument, the number of vertices already
determines the number of edges and facets of a simplicial polytope. By
that, every simplicial 3-polytope reaches both upper and lower bound. In
dimensions greater than 3, all stacked polytopes reach the lower bound,
and these are the only polytopes that do so.

In contrast to the upper bound theorem, the lower bound theorem does
not work for non simplicial polytopes. A general lower bound theorem is
given by the dual polytopes of simplicial neighborly polytopes. The only
problem is, that these bound only hold for specific number of vertices,
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namely those that appear as number of facets of simplicial neighborly
polytopes (of the same dimension). The dual type of a polytope is the
type that has the same numbers of faces but all inclusions are reversed.
From that, one gets that there are simple polytopes, that provide lower
bounds which hold for all polytopes. But this is besides our topic since
we are interested in simplicial polytopes. For simplicial polytopes the
g-Theorem tells exactly which f-vectors are possible. Before we get to
this theorem, we introduce the h-vector and the g-vector.

Definition 0.1.9 (h-vector and g-vector). Let d > 0 and let f =
(f-1,..., fa—1) be the f-vector of a simplicial d-polytopes or the f-vector
of simplicial complex of dimension d — 1. By convention, f_; = 1.
Following the paper of Billera and Lee [6] we define the polynomials

d [e'S)
e t
FO =3 fiatt  and  RO@) = S RO = (1 0)f () .
k=0 k=0 L=t
The value e usually equals d or d 4+ 1, but in principal it can be any
positive integer. The corresponding h-vector and complete g-vector is
given by
h=hD = (hg,... hg):= (RS, ... B\

and
d+1 d+1
g="(90,---,94) := (h(()+),...,h((i+)).

Some notation: The Dehn-Sommerville equations state that for a
simplicial polytope the h-vector is symmetric (h; = hq—; for i =0,...,d).
Due to that, the complete g-vector of a simplicial polytope is determined
by its first half. This motivates the definition of the g-vector of a simplicial
polytope to be

g:= (90, 9a)-

The notation of the f-, g-, and h-vector in the above definitions does not
contain a reference to the corresponding polytope (or polytopal complex)
P. Sometimes it is necessary to denote this relation. Only in this case we
will use P as additional argument. Example: g(¢) and f of a polytope P
may also be denoted as g(t, P) and f(P).

Remark 0.1.10. Note that f(¢) and h(t) are not the f- and h-polynomials
that are defined in [11] and [48]. The definition there is:

F(t) = zd: fiot®™ and H(t) = i hit®™" = F(t —1).
k=0

k=—o00
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Both definitions yield the same h;, for ¢ = 0,...,d. Unfortunately the
definition of H(t) and F'(t) depends on d. Since in the following we use
formulas that include g-vectors and h-vectors with respect to different
dimensions, we need a waterproof definition of h(¥(t). That is why we
take this “old” definition.

Lemma 0.1.11. Here is a list of facts that can easily be computed. Let
d>0.

[ ] f_lzh[):g():l.
e Fori=20,...,d, we have

g; = h§d+1) = hgd) — hli)l = hl — hi,1

An inverse formula exists:

f(t) == (1 +t)n (lit) .

By sorting the coefficients we can count:

K = zl:(—l)k*i (6 :f) Jre-1 gi+1 = ZZ: (=) <Cji:l:> Tis

k=0 € k=——1

Jici= zz: <e B k) h,(:), Ji= i: (C;:?)%H

k=0 \€ — 1 k=—1

The g-vector of a stacked d-polytope S with k + d + 1 vertices is

9(S) = (90, - -+, 94) = (1,k,0,0,...,0)

The g-vector of a cyclic d-polytope C" with k + d + 1 vertices is

9(0)2(907---agd’) = (17 <II>’ (k;—1>7<k_3|_3>7)

Remark 0.1.12. Let d > 0and & = 1,...,d. Then the vectors (fo, ..., fr_1)
and (g1,...,gr) determine each other. For simplicial polytopes, the f-
vector is already given by (g1,...,9a). Since f is a linear function of
g, we can express their relation by a matrix. This is called McMullen’s
correspondence (Which was introduced by Bjoérner).

For example, for d = 3 we get:

(1. fo 1. f2) = (1,91) ((1) L 3)
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For d = 4 we get:

—_

0 10 5
(17f07f17f27f3>:(17.91792) 4 6 3
1 2 1

o O =
O = Ot

The first part of each such matrix is a square matrix, whose entries
are binomial coefficients. The non 0-entries are one part of an upside
down Pascal-triangle. The matrix has upper triangular shape and the
diagonal carries only 1-entries. This leads to a very nice affinity that

maps (g1, ...,9a) to (fo,-.., for—1). For d =9 this is
9
8
2
7
1

Back to the main question, which types of vectors are g-vectors of simpli-
cial polytopes.

()

N ©

(fo, f1, f2. f3) = (1,10, (12()), (13())) + (91, 92: 93, 94)

oo O
o O = ©
S =

Theorem 0.1.13 (The g-Theorem, Billera & Lee [6], Stanley [43]). Let
d>0. Let g= (1,91, 92,...,94) € NS Then g is the complete g-vector
of a simplicial d-polytope if and only if

o fork=1,...,d we have 0 < g < go™7'7,
o fork=1,...,d we have: gx = —gq_j+1-

The last condition of Theorem 0.1.13 is known as the Dehn-Sommerville
equations which can also be stated as h; = hg_;, for i =0,...,d".

The expression n<*> is called the kth pseudo power of n, a definition

follows. For n € Ny and k € N there are integers 0 < a; < --- < a4 that

satisfy
k .
; —1
ey (“ i )

i=1 ¢

This decomposition of n is called the k-canonical representation of n. It
turns out that it always exists and it is unique. The kth pseudo power of

n is defined by
k .
<i> . _ ai +1
=2 <@'+1>'

=1
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Remark 0.1.14. For d > 1 let P be a simplicial d-polytope with g-vector
(go,---,9a). Let 0 < k < d and let @ be a simplicial polytope that has a
minimal number of (k — 1)-faces while sharing the same g-vector entries
9o, - -, gk—1. Then gi counts the number of (k — 1)-faces that P has more
than Q.

In the third part of this thesis g1, go and g3 are of special interest. For
those, the g-Theorem states the following:

Corollary 0.1.15. Let d > 4 and P be a simplicial d-polytope, then
g(P) e NI+ and

WP =1, 0<q(P), 0<aP) < (gl N 1).

If d > 6 we define 0 < b < a such that go(P) = (‘”51) + (i’) Then

a+2 b+1
0<g3(P) < + .
3 2
These conditions are also sufficient, in the sense that for each such integers

g1, g2, g3 a corresponding simplicial d-polytope exists. (For example with
the remaining g entries set to 0.)

An other useful corollary is:

Corollary 0.1.16 (Pure binomial coefficients in g-vectors). Let d > 0.
Let nq,...,ng € Ny be integers and

0 (L))

Then g is the g-vector of a simplicial d-polytope if and only if

ny>mng > --->ng > 0.

0.2 Delaunay triangulations and stellar subdivisions

In this section we repeat the definition of Delaunay subdivision and
Delaunay triangulation, which is not consistent throughout the literature.
We also gather some facts about Delaunay triangulations that will be
useful for us later. A good book about Delaunay triangulations has been
written by Edelsbrunner [20].
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Definition 0.2.1 (Circumsphere, inside, outside). Let d > k > 1. For
a k-simplex ¢ in R? the circumsphere is the unique (k — 1)-sphere that
passes through all vertices of §. For a (d — 1)-sphere S in R?, the interior
of S (or the space inside ) is the open ball whose boundary is S. The
outside of S is the set of points that neither lie on nor inside S.

Definition 0.2.2 (Delaunay triangulations). Let d > 1 and V C R4}
be a finite set of points who affinely span R?~'. Then the Delaunay
subdivision D(V) is the polytopal complex that has vertex set V, that
has |D(V)| = conv(V) and that consists of all cells that are defined by
the so called empty circumsphere condition: For each F' € D(V) exists a
(d — 2)-sphere that passes through all vertices of F' and all other points
of V' lie outside this sphere.

The Delaunay subdivision is unique, pure and it always exists. If the
points in V' are in sufficiently general position (which is satisfied for
example if no d 4+ 1 points lie on a common sphere), then the Delaunay
subdivision of V' is a triangulation. In this case the Delaunay subdivision
is called the Delaunay triangulation of V.

We will employ the following very elegant criterion in order to test whether
a given triangulation is the Delaunay triangulation. For this we call a face
of a triangulation in R Delaunay if there exists a supporting sphere
of the face, that is, a (d — 2)-sphere that passes through the vertices of
the face but all other vertices of the triangulation lie outside the sphere.
Each interior (d — 2)-face F is contained in exactly two (d — 1)-faces,
conv(F U {v1}) and conv(F U {wvy}); we call it locally Delaunay if there
exists a (d — 2)-sphere passing through the vertices of F' such that the
vertices v; and vy lie outside this sphere.

Lemma 0.2.3 (Delaunay Lemma). Letd > 1 and let V C R4 be a
finite, affine spanning set of points. A triangulation T with vertex set V'
is the Delaunay triangulation if and only if one of the following equivalent
statements hold:

Proof. The first statement is the definition of a Delaunay triangulation.
It implies the second statement: For each face F' one can always do a
slight change to the supporting sphere of a (d — 1)-face that contains F
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to derive a supporting sphere of F'. The second statement implies the
third and this in turn the last one. For more details and also for a proof
that the last statement implies the first, we refer to Edelsbrunner [20),
pp. 7 and 99]. O

The next lemma is well known and probably the most frequently used
criterion to check the Delaunay property.

Lemma 0.2.4 (Angle criterion for Delaunay triangulation in the plane).
Let ABC and BCD be two triangles in the plane that intersect in the
edge BC. The edge BC' is locally Delaunay if and only if the angle at A
in ABC' and the angle at D in the BC'D sums up to strictly less than .

Proof. Two opposite angles of an inscribed quadrilateral always sum up to
. An arbitrary quadrilateral differs from an inscribed one by the position
of a single vertex. By moving any vertex of an inscribed quadrilateral
straight away /towards the center of the circumcircle, the angle at this
vertex decreases/increases, while the opposite angle stays unchanged. [J

Lemma 0.2.5 (Sphere pushing). Let d > 2 and let S1,Ss be (d —1)-
spheres whose intersection is a (d—2)-sphere. Let H, H™ be the two open
halfspaces that are bounded by the affine hull of Sy N S,. Let By, By C RY
be the open balls that are bounded by Sy, Ss. Then

SlﬂH+CBzﬂH+ and SeNH C B NH™
for the right notation of HY, H™.

Proof. Let Si, Sy C R be two distinct (d — 1)-spheres with corresponding
centers ¢y, ¢y and radii 1, 79. Following the book [20] the power with
respect to S; is defined by

p: R 5 R, p(x) == ||z —c||> — 2.

Some properties are

e p(z) < 0 if and only if = lies inside Sj,
e p(z) =0 if and only if = lies on S;.

Let p, denote the power with respect to S;. Then we see that the set
{p(x) = po(x) ‘ x € ]Rd} is a hyperplane H:

p(z) = pa(z)
& (v,2) =2z, c) + el =17 = (z,2) —2(x,0) + ||ca|* — 7}

& (1,200 — 2¢1) leall” = llea]|” + 72 = r2  (constant)

10
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Analogue for {p(:v) > pa(x) ’x € Rd} we get an open halfspace H* that
is bounded by H. In case that S;,.5; intersect, H has to contain this
intersection. All this implies that in H* each point z on S; has p(z) =0
and po(z) < 0. Hence x lies inside S;. This implies the lemma. O

The next lemma applies the “sphere pushing” technique.

Lemma 0.2.6 (Locally Delaunay via enclosing Sphere). Let d > 2
and a,b,vy,...,v4-1 € R Let A = conv(a,vy,...,vq_1) and B =
conv(b,vy,...,v4-1) be two (d — 1)-simplices. Let F' := conv(vy,...,v4_1)
be their intersection and let the line segment (a,b) intersect the relative
interior of F. Then F 1is locally Delaunay if and only if there exists a
sphere passing through a and b that contains F' inside.

Proof. Assume F is locally Delaunay. Let Sp(«) be the (d—3)-dimensional
circumsphere of F' scaled by a > 1 at the circumcenter of F'. Let S(«)
be the (d — 2)-sphere that passes through a and Sp(«). Then

e for a =1, S(a) is the empty circumsphere of A (b lies outside),

o for o > 1, F lies inside S(«),

e for a large enough, b lies inside S(a) because the hyperplane
lim, o S(a) is parallel to the affine hull of F' (which separates
a,b) and passes through a.

Hence there must be a value a > 1 such that S(a) passes through a,b
and F' lies inside.

For the other direction we assume there is a sphere S that passes through
a and b while F lies inside. Let S’ be a sphere that passes through
a,b, vy, ..., v such that k is maximal and vgy1,...,v4_1 lie inside S’.

We show that k < d — 1. For contradiction we assume S’ passes through
all vertices. Then the affine hull of S’ NS is a hyperplane that cuts
through the relative interior of F'. Hence at least one vertex lies on each
side. Lemma 0.2.5 then implies that S’ contains at least one of these
vertices still inside, which is a contradiction.

We now show that £ = d — 2. For contradiction we assume k < d — 3.
Then there is a hyperplane H that contains the vertices a, b, vy, ..., v but
no others. Since H contains an interior point of F', it splits the remaining
vertices into two nonempty sets. H can be seen as a limit of a homotopy
(variable ¢ € R) that starts with S” and contains only spheres that pass

11
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through a, b, vy, ..., v;. We see that at some point (¢ > 0) a larger k£ must
be possible, which contradicts the maximality of k.

The vertices a,vy,...,vq_o define a facet G of A, which is also a facet
of conv(A, B). This implies that b and v, lie on the same side of G.
Hence by Lemma 0.2.5 the sphere that is defined by passing through
a,vy,...,vg—1 must have b outside and hence is an empty circumsphere
for A. This proves that F' is locally Delaunay. O]

Definition 0.2.7 (Stellar subdivision). Let d > 1 and p be a point in
the interior of a (d — 1)-simplex o of a triangulation 7" in R4, A (single)
stellar subdivision of T at o by p is the triangulation that replaces o by
p and adds the simplices that are spanned by p and each proper face of
o. We call a triangulation a multiple stellar subdivision of T at o if one
or more single stellar subdivisions have been applied, one after an other
with points that lie in the relative interior of o.

Lemma 0.2.8. Letd > 1. Let T be the face complex of a (d—1)-simplex
in R&Y and p € relint|T'|. Then the stellar subdivision of T by p is a
Delaunay triangulation.

Proof. 1f the circumsphere of a new full dimensional simplex o would
contain the vertex v that does not lie in o, then it would contain all points
of the original simplex, and hence it would contain the new vertex ¢ in
its interior. See Figure 0.1. O]

> |

Figure 0.1: The circumsphere of o cannot contain v.

Lemma 0.2.9 (Any stellar subdivision can be undone). Let the tri-
angulation T' be obtained from a triangulation T of an affine spanning
point set V.C R4 by a single stellar subdivision. If T' is a Delaunay
triangulation, then so is T'.

12
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Proof. A stellar subdivision does not destroy a (d — 2)-face, thus among
the supporting spheres for (d — 2)-faces in 7" we have the supporting
spheres for all (d — 2)-faces in T. O

We end this subsection with an example of a triangulation that cannot
be realized as a Delaunay triangulation. See Figure 0.2. Later we will
see that the three examples of Figure 0.2 all correspond to the same
problem: How many stackings can be applied to a simplex, until it looses
inscribability.

Figure 0.2: Left: A triangulation that cannot be be realized as a Delaunay
triangulation. Middle: The same edge graph as in the left
figure, but as part of a Delaunay triangulation. Right: An edge
graph that does not belong to any Delaunay triangulation.

Steinitz already proved that the triakis tetrahedron (dimension 3) is of
non inscribable type. We give an alternative proof that is slightly stronger.
The result however is well known.

Lemma 0.2.10. The triangulation that is described in Figure 0.5 cannot
be realized as a Delaunay triangulation. In particular, at least one of the
edges (z, A), (z, B), (x,C") must not be locally Delaunay.

Proof. See Figure 0.3. The nine angles at a,b and ¢ sum up to 67. The
three angles that lie in triangles that contain a boundary edge are each
smaller than 7, so the remaining six angles must sum to more than 3.
However, each of the three edges Ax, Bx and Cz is locally Delaunay if
and only if its two opposite angles sum to less than 7. Hence not all three
edges can be locally Delaunay. O]

13
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Figure 0.3: In any triangulation of this combinatorial type at least one of
the three edges Ax, Bx and C'x is not locally Delaunay.

0.3 Projections and transformations

We will briefly review projective transformations, Mobius transformations
and stereographic projections. After this we discuss the relation between
inscribed polytopes and Delaunay triangulations. For a broad background
we refer to [3, 4].

For d > 1 let PGL(R?) denote the group of projective transformations in
the d-dimensional (real) projective space. We think of the projective space
is an extension of R? by points at infinity that correspond to all directions
in R? modulo orientation. Let Mob(R?) denote the group of d-dimensional
Mébius transformations in R¢ = R?U{oo}. For d > 1 let PGL(S%) denote
the restrictions to S of those transformations in PGL(R*!) that keep
S? invariant. Similar, let M6b(S%) denote the restrictions to S¢ of those
Mébius transformations of Méb(R4™!) that keep S¢ invariant. Both are
groups and they are known to be the same,

PGL(S?) = Mob(S).

Projective transformations map hyperplanes to hyperplanes. Those that
keep R invariant, restrict to affine transformations on R?. Projective
transformations that preserve the unit sphere do also preserve the unit

ball.

Mobius transformations are generated by sphere inversions and hence
preserve generalized spheres. Generalized means that hyperplanes are
spheres that pass through infinity. Moreover Mobius transformations

14
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are conformal, meaning they preserve intersection angles. All Mobius
transformations can be decomposed into at most one sphere inversion of
radius one and afterward a euclidean transformation.

Both Mdébius transformations and projective transformations are isomor-
phisms in their corresponding space. The following two lemmas illustrate
the use of these transformations.

Lemma 0.3.1 (Mobius transformations and Delaunay triangulations).
Letd > 2. Let T be a (d—1)-dimensional Delaunay subdivision and V' its
verter set. Let 1 be a Mébius transformation and p = 1~1(c0) be a point
outside all circumspheres of (d—1)-cells of T'. Then the combinatorial type
of T is a subcomplex of the combinatorial type of the Delaunay subdivision

T" of Y(V).

In case that ¥ (o0) lies outside all circumspheres of T', both triangulations
are combinatorially equivalent.

Proof. The map 1 maps generalized spheres to generalized spheres. The
inside of a regular sphere S is mapped to the inside of a regular sphere, if
and only if the point that is mapped to oo lies outside S. Hence the image
of the vertices of a Delaunay (d — 1)-face have an empty circumsphere if
and only p lies outside the original circumsphere. The second part follows
by inclusion from the other direction. ]

Lemma 0.3.2 (Mobius transformations and inscribed polytopes). Let
d > 1. Let P be a d-dimensional inscribed polytope and V its vertex set.
Let 4 be a projective transformation of PGL(R?) that preserves the unit
sphere. Then 1 (P) is an inscribed realization of P.

Proof. The supporting hyperplanes of the facets of P are mapped to
supporting hyperplanes of ¢(P). So ¢ (P) is a realization of P. Since all
vertices stay on the unit sphere, 1(P) is inscribed. O

Definition 0.3.3. Let d > 1 and N := (0,...,0,1) € R% The stereo-
graphic projection is defined by

LG\ (N R % {0 T e gy,
GrSTIVINE — RUIx(0h e (PR 0)

The stereographic projection can be extended in two meaningful ways.
First, as a radial projection

v RAfz e R zg <1} 5 RTIx{0},  a+ (1 flmd,..., fj‘;d,o).

15
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A second possibility is an inversion at the sphere with center N and radius

V2

z— N

6:RI\{N R\ {N
\{N} — \{N}, z = (224 -+ 23, +1—21)

+ N.

N |+

The second map is a Mobius transformation, where spheres through N
are mapped to affine subspaces. This map is an isomorphism.

Remark 0.3.4. The map ¢ identifies maps of Mob(S%) with maps of
Mob(R?) since both preserve generalized spheres and ¢ does also.

PGL(S?) = Mob(S%) ~ Msb(R?)

Definition 0.3.5 (Vertex projection). Let d > 1 and let P be a d-
polytope and V its vertex set. After a euclidean motion we can assume that
N is one of its vertices and that all other vertices lie in {x € R¢ ‘ Tg < 1}.

The above mentioned radial projection ¢ maps V' \ {N} to R and each
face of delyOP to a polytope that is projectively equivalent to the face.
We define the vertex projection ¥ to be the polytopal map that is induced

by ¥ on V' \ {N}.

Lemma 0.3.6 (Missing star). Let d > 1 and let P be a d-polytope with
vertex set VWU{N}. Let T be the image of a vertex projection W of P from
N and let U C V. Then Q := conv(UU{N}) is a k-face of P if and only
if F:=conv(W(U)) is a (k—1)-face of |T| and FN ¥ (V) = Y(U).

Proof. Assume @ is a k-face of P. Then it has a supporting hyperplane.
The projection of that hyperplane (the part that can be projected) is a
supporting hyperplane for F in |T|. It contains the vertices W(F') and
cannot contain any other. The affine hull of ) contains N and therefore

looses one dimension by the projection. Hence F' must have dimension
k—1.

Assume F is a (k — 1)-face of |T'| and F N ¥ (V) = ¥(U). Then any
supporting hyperplane of F' for |T'| can be extended to a a supporting
hyperplane for conv(U) U {N} by adding N to the affine hull. This shows
that ) is a face of P. By the first argument, it has dimension k. O

Corollary 0.3.7 (Missing star). Let d > 1 and let P be a d-polytope
with vertex set VWU{N}. Let T be the image of a vertex projection U of P
from N. Then P is simplicial if and only if T is a triangulation and the
boundary vertices of T are the vertices of a simplicial polytope that is |T).

16
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Definition 0.3.8 (Center of stellar subdivision, apex of stacking). Let
d > 2. We call an interior vertex of a pure (d — 1)-dimensional polytopal
complex the center of a stellar subdivision if its star is a pyramid over
the boundary of a (d — 1)-simplex. We call a vertex of a d-polytope P
the aper of a stacking if it is the center of a stellar subdivision in OP.

Lemma 0.3.9 (Vertex projection of a stacking). For d > 2 let P be
a d-polytope that is not a simplex. Let T be any vertex projection of P
whose boundary vertices are the vertices of a polytope and let s be any
vertex of P. Then s is the apex of a stacking if and only if:

1. If s is the projection vertex then the boundary complex of T is the
boundary complez of a (d — 1)-simplez.

2. If s has an image s' in the interior of T then s’ is the center of a
stellar subdivision.

3. If s has an image s' in the boundary of T, then s’ belongs to exactly
one (d—1)-cell of T and that cell is a simplex §. Further, the facets
of 0 that contain s' are also facets of |T.

Proof. Assume s is the projection vertex. Then the link of s in 0P
corresponds to the boundary of 7. This implies (1). Point (2) is basically
the definition.

Assume s’ lies in the boundary of 7. Then the link of s contains the
projection vertex N. If s is the apex of a stacking, then only one facet in
the link of s does not contain N. Hence s’ lies in only one (d — 1)-face
0 of T and this face is a simplex. By Lemma 0.3.6 the remaining facets
that contain s and N lead to the facets of § that contain s’ and these are
also facets of |T|.

The other direction: Assume s’ lies in only one (d — 1)-face of T" and this
face is a simplex §. Further, let the facets of § that contain s’ be facets
of |T|. Then by Lemma 0.3.6 each such facet yields a facet of P that
contains s and N. In addition, § corresponds to a facet in P. These are
all facets that contain s and they are simplices (d many). Hence s is the
apex of a stacking. This shows (3). O

Definition 0.3.10 (Lower convex hull). Let d > 0 and P be a d-polytope
in R, Let F be a facet of P and s the normal vector of the facet that
points away from P. Then we call F' down facing if the last coordinate
of s is smaller than 0. The lower convex hull of P is defined to be the

17
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polytopal complex that consists of all down facing facets of P and their
faces.

Definition 0.3.11 (Regular triangulation). Let d > 0 and let 7 : R4t —
R? be the orthogonal projection that truncates the last coordinate. A
triangulation is called regular if it is the image under 7 of a lower convex
hull of a (d + 1)-polytope.

Remark 0.3.12 (Regular triangulations). Images of a vertex projections
are regular subdivisions and vice versa. Both concepts only differ by a
projective transformation that fixes the hyperplane R? x {0} and maps
the projection vertex of the vertex projection to the infinite direction
(0,...,0,1). This transformation directly turns the “projection rays” that
emit radially from the projection vertex to parallel rays that go “straight
down”.

Proposition 0.3.13 (Inscribed polytopes and Delaunay triangulations).

Let d > 1. Let P C R? be a d-polytope and let VWU{N} be its vertex set.
Let T be the image of a vertex projection of P from N. If P is inscribed
then T is a Delaunay subdivision of dimension d — 1. If in addition, P is
simplicial then T' is a Delaunay triangulation and the boundary vertices
of T are vertices of a simplicial polytope |T"|.

If T" is a (d — 1)-dimensional Delaunay subdivision, then there exists an
inscribed d-polytope P' such that T" is the image of a vertex projection of
P'. If in addition, T" is a triangulation where all boundary vertices are
vertices of a simplicial polytope that is |T'| then P’ is simplicial.

Proof. Assume P is inscribed in the unit sphere S. We can assume that
the vertex projection W is based on the stereographic projection ¢. The
image W(P) is clearly a convex set. Let F' be a facet of P that does not
contain N (there must be at least one) and let Sr be its circumsphere and
Vr its vertex set. We know that ¢ maps spheres in S\ { N} bijectively
to spheres in R*!. So ¢Sr is a (d — 2)-sphere that contains ¢(Vx). In
reverse, the preimage of the circumsphere of ¢(Vp) must contain Sg.
This implies that ¢(Sr) is the circumsphere of ¢(F') and ¢(F') must be
a (d — 1)-face. Since ¢ is continuous, we see that the inside of Sr which
cannot contain any vertex, especially not N, is mapped to the inside of
®(Sr). Hence ¢(F) is a Delaunay (d — 1)-cell. Hence T is a Delaunay
subdivision.

Assume 7" is a Delaunay subdivision of a point set V’. Then we can use
¢~ to map V' to the unit sphere S. Let N = (0,...,0,1) € R%. The set
P := conv(¢~ (V) U {N}) is an inscribed d-polytope. Its vertex set is

18
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¢~ (V)U{N} because every vertex has a supporting hyperplane (tangent
to S). Right above we have the arguments that the vertex projection of
P’ from N is a Delaunay subdivision of V. Since Delaunay subdivision
are unique, this must be T".

The relation between simplicial polytopes and triangulation with special
boundary vertices has been discussed in Corollary 0.3.7. ]

Remark 0.3.14. In 1978 Brown [9] already used the stereographic
projection to connect Delaunay subdivisions and inscribed polytopes. He
uses a projection from a point on the circumsphere that is not a vertex.
This produces two different subdivisions which have the same support.
One corresponds to the part of 0P that is visible from the projection
center. Brown calls it the furthest point Delaunay subdivision (usually
this is not a Delaunay subdivision). The other part is called a (closest
point) Delaunay subdivision. It is the projection image of all facets (and
all their faces) that are not visible to the projection center. We prefer the
projection from a vertex. This is a well known modification of Browns
method and it has several advantages: The combinatorics of a Delaunay
triangulation already define the combinatorics of the inscribed polytope,
the vertex projection is also defined for polytopes that are not inscribed
and the combinatorics of the projection image is independent of the
geometric realization.

0.4 Extensions of regular triangulations

This section investigates how the f-vector of a polytope changes if its
image under a vertex projection is modified. This will later be a tool to
construct polytopes with prescribed f-vectors.

Definition 0.4.1 (Outer f- and g-vector). Let d > 1 and let T be
a (d — 1)-dimensional triangulation with boundary complex 0T. Let
f(T), f(OT) denote their f-vectors. To simplify notation, we set f; :=0
for all £ < —1. Then we define the outer f-vector by

[i(T) := f(T) + fi1(0T), fori=—1,...,d—1.

For e € N we define the outer h\®-vector and outer g-vector by

BOT) = 3 (1) ( - k) fiors (1) = BE(D),

k=0 €—

19



0 Preliminaries

The definition of an outer f-vector and g-vector is new, however the
concept behind it has been used before [11, sect.2.6].

Remark 0.4.2 (Outer f-vector and vertex projection). Using the poly-
nomials that correspond to the above vectors, we get for e € N that

hOT) = (1-t)° f( T)
= (1-10)F T)+t- f(——

1—t
= W T)+t-h(t,0T).

")

Definition 0.4.3 (Extension and horizon). Let d > 1 and let T" be a
(d — 1)-dimensional triangulation with vertex set V. Let p a point outside
conv(V'). Then we call a polytopal complex T" an extension of T' by p if

p does not lie in the affine hull of any boundary (d — 2)-face of T,
T' has the vertex set V U {p},

T is a subcomplex of T”, and

the support of 7" is conv(V U {p}).

This concept is a special case of a placing triangulation [11, sec. 4.3]. Let
H be the combinatorial type of the vertex figure of p in |T"|. We call H
the horizon polytope and its boundary complex OH the horizon of T seen

from p.

Lemma 0.4.4 (Extended triangulation). Let d > 1 and let T be a
(d — 1)-dimensional triangulation in R*1. Let p € R4 lie outside the
support of T and not in the affine hull of any (d — 2)-face of T. Then
there exists a unique extension of T by p, and this is a (d —1)-dimensional
triangulation.

Proof. Since such an extension 7" must contain 7" and it only has one
vertex more, we only have to argue about the (d — 1)-faces that contain p.
Assume such a “new” face contains d — 1 vertices of T" that do not lie in
a common face of the boundary complex of |T|. Then it intersects the
interior of |T'| and hence cannot be a face of 7. So all (d — 1)-faces of
T’ that contain p are made from a (d — 2)-dimensional boundary face
and p. O]

Lemma 0.4.5 (Extensions and realizability). For d > 1 let T be the
image of the vertex projection of a simplicial d-polytope P from a vertex N.
Let T" be an extension of T by a new vertex p € R4™1. Then there exists a
point p' € R? such that N is a vertex of the polytope P' := conv(P U {p'})
and the vertex projection of P' from N is T".
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0.4 Extensions of regular triangulations

This concept is projectively equivalent to the concept of lifting functions,
regular triangulations and pulling triangulations. More can be found in
the book [11, 2.2].

Figure 0.4: The point p can be lifted towards N such that the projection
of the convex hull of the polytope with p’ is the extension of
the projection of the polytope by p.

Proof. Let R be the open ray starting at N that points to p.
R =47 (p)

Because p lies outside the support of T, we see that R lies completely
outside P. See Figure 0.4. Because N is a vertex of P, there exists an
open neighborhood U of N, such that all points in U lie beneath all facets
of P that do not include N. We define p’ to be any point in RN U. Then
P" := conv(P U {p'}) contains all facets of P such that p’ lies beneath.
Hence the projection of conv(P U {v}) contains T" as a subcomplex. on
the other hand, the image of the projection must be a convex set. Hence
the projection of P’ is the extension of T" by p. m

The next correspondence has been discovered by the author.

Proposition 0.4.6 (Extensions and outer faces). Ford > 2 let T be a
(d — 1)-dimensional triangulation. Let T' be an extension of T by some
point p. Let H be the horizon polytope of T seen from p. Then

fi(T) = fi(T) + fi1(OH) + fi_o(0H), for i=-—1,...,d—1

and
g(T") = gi(T) + gi1(H), for i=0,...,d

where gi(T') = K\ ™(T") and g, (H) = BTV (H).
(Note that H is a (d — 2)-polytope).
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0 Preliminaries

A simpler way to express this is by using the index right shift operator R.
For s € N this shall be

R:Z5 — Z°, Ro(v) =0, Ripi(v):i=v;, fori=1,...,s.

Then we can formulate

F(T') = f(T) + Rf(OH) + R*f(0H),  ¢(T") = g(T) + Rg(H).

Figure 0.5: Left: The horizon of T seen from p is the red cycle. The
corresponding horizon polytope H is a pentagon. Right: To
calculate the outer f-vector of T”, only the outer f-vector of
T and the f-vector of H have to be known.

Proof. Every non empty face of T is one of the following:

I: An interior face of T'. (Also interior in 7".)
B: A boundary face of T', that is not visible to p. (Also a boundary
face of T".)
OH: A boundary face of T', that corresponds to a face of the horizon of
T seen from p. (Also a boundary face of T".)
C: A boundary face of T, that is an interior face in T".

See Figure 0.5. For j = —1,...,d — 1 let 7;,b;, hj, c; be the number of
j-faces of type I, B,0H,C. Since T" is an extension, all faces of 7" that
are not in 1" are the join of p with a face of T' that is visible from p. For
j=0,...,d—1 we count the j-faces of T".

(T = fi(T") + fi-1(9T")

= (’LJ + bj + hj +c; + hjfl + ijl) + (bjfl + hjfl + hj,Q)
(ij + bj + hj + Cj) + (bj—l + hj—l + Cj—l) + hj—l + hj—2
= [i(T)+ f;-1(0T) + hj1 + hjs

= filT) + fi-1(OH) + fi2(0H)
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0.4 Extensions of regular triangulations

We calculate the second part by using the sum formula for the g vector.

gi(T")

- §<—1>i+’f (fflj o k) (Fe-r(T) + fi-2(0H) + fi-s(0H)

)+ Y (Cfli - ’“) (Fo-2(0H) + fis(01)

= Gi(T) +M+%+M+ fi-2(OH)
. Zi;(—l)”’f (flj o k) fi2(0H) + ]§<—1>i+k (‘flj - ’“) fis(0H)

= §i(T) + fi—2(0H)

i—2 _ i—2 ‘ o
+Z(_1)i+k+1 (dfl’_ 1 ﬁ Z> Jru—1(0H) +Z(_1)Z+k (le +11 _f) Jr-1(0H)
k=0 k=0

<d :1__1 ]i Z>—<le:_11:];>] fe—1(0H) + fi—2(0H)

T S (d—1)~k
= 5:(T)+ %(—1% “*’“<( do1) (i 1)>fk1<aH> + fi-2(0H)

1—2

— §Z(T) +Z(_1)i—1+k

k=0

_ S i (d—1)—Fk
= gi(T) + kz:%(—l)( D+ ((d— 1)— (i — 1)> fr—1(0H)

= gi(T) + h\" Y (0H)

i

Since the f-vector of H and 0H are the same up to the entry fq_o(H),
we get that g;(T") = g:(T) + b7V (H) for i = 0,....,d. 0
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1 Three theorems about f-vectors of
inscribed polytopes

We show that all f-vectors of 3-polytopes, stacked polytopes and cyclic
polytopes also occur for inscribed polytopes. This chapter is joint work
with Giinter M. Ziegler, it is part of the paper [22].

1.1 Construction of all f-vectors of inscribed
3-polytopes

For dimension three all f-vectors of polytopes are known: According
to Steinitz [45] (see [23, Sect. 10.3]), the set of all f-vectors of convex
3-polytopes is

{(fo, fi, [2) eEN* A< fo <2fy—4, 4< fo <2fo—4, fi=fo+ fo—2}.

Theorem 1.1.1. All f-vectors of 3-polytopes occur for inscribed 3-
polytopes.

Proof. In Figure 1.1 we can see three types of inscribed 3-polytopes. For
n > 3 and k > 0 these are basically wedges over an n-gon that have been
stacked k times.

Type A, is constructed as follows. We pick any circle on S? that
intersects the equator of the unit sphere in two points, and hence cuts the
equator into two components. We pick n distinct points on one component
such that two points are the intersection points. Then we reflect these
n points at the equator hyperplane and take the convex hull of the so
derived 2n — 2 points. This type has two n-gon facets, and n — 1 vertical
facets, two of which are triangular. It has 2n — 1 many n-gon edges, and
n — 2 vertical edges. The number of vertices is 2n — 2.

Type Byo: We pick any circle in S? that intersects the equator of the unit
sphere in one point. We pick n points on that circle such that one is the
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1 Three theorems about f-vectors of inscribed polytopes

Type C

Figure 1.1: Examples of the three inscribed types that realize all f-vectors
of 3-polytopes. Type A and B are wedges over an n-gon plus k
stackings. In type A the upper and lower n-gon share an edge,
in type B they only share a vertex. Type C is a modification
of type B where the last stacking is degenerated. The stacking
point is placed in the affine hull of one other face.

intersection point. Then we reflect these points at the equator hyperplane
and take the convex hull of the so derived 2n — 1 points. This type has
two n-gon facets, n vertical facets, two of them are triangular. It has 2n
many n-gon edges and n — 1 vertical edges. The number of vertices is
2n — 1.

The type A, and B, ; are derived from A, o respectively B, o, by adding
k points on the equator, beyond only one facet. This facet shall be one
of the two vertical triangular facets. Then we take the convex hull. It
is not hard to see that these points exist and that they correspond to
a sequence of stackings (in the right order). Hence each of these points
adds two triangular facets, three edges and one vertex.

To get the type C,, ; we take B, ; and modify it by adding a vertex on
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1.2 The Lower Bound Theorem for inscribed simplicial polytopes

the equator behind a triangular facet but in affine dependence with a
rectangular facet as depicted in Figure 1.1. Then we take the convex hull.
This operation adds one vertex, two facets and two edges.

We count the f-vectors of the types. For all three types we have parameters
n>3and k > 0.

f(An’k)z(Qn—2+k,3n—3—|—3k5,n+1+2k:):(f0,f1,%+2+%k:)
F(Bux)=02n—1+k,3n— 143k n+2+2k)=(fo, f1, 2 +2+ 3k + 1)
f(Cop)=02n+k,  3n+1+3kn+3+2k)=(fo, 1,2 +2+3k+1)

The types A, produces simple polytopes while A and B provide all
f-vectors with the minimal number of facets for any given number of
vertices. Asy, are inscribed stacked polytopes with arbitrary many vertices.
These are simplicial and hence give the maximal number of facets for any
given number of vertices. It is easy to see that for any number of vertices
all permissible numbers of facets can be obtained by choosing the right
Type. [

1.2 The Lower Bound Theorem for inscribed
simplicial polytopes

As a corollary to Lemma 0.3.13 we obtain that the Lower Bound Theorem
is tight for inscribable polytopes, by applying it to the following type
of triangulation: Take a simplex ¢ and take an oriented edge F from a
vertex to any interior point of . Then add any number £ of distinct
points on the relative interior of the edge and order them according to
the direction of the E. Introduce the points one after an other by stellar
subdivisions of the simplex where they lie. See Figure 1.2.

Proposition 1.2.1. For all d > 2, n > 0, there is an inscribed stacked
d-polytope on d + 1 + n wvertices.

Proof. We show by induction that all cells of the above construction are
locally Delaunay.

First, by Lemma 0.2.8 the stellar subdivided simplex is a Delaunay
triangulation in all dimensions.

For induction we assume that we have already placed k vertices and the
result is a Delaunay triangulation 7. According to the construction, we
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1 Three theorems about f-vectors of inscribed polytopes

YA

/ i

Figure 1.2: This type of triangulation is always Delaunay. The same
concept works in higher dimensions.

place the next vertex p further on the ray, inside a simplex and thereby
cause a stellar subdivision. The result shall be T”.

To check its Delaunay property, it suffices to show that all (d — 1)-cells
are locally Delaunay. For all (d — 1)-cells that lie in 7" and 7" it suffices to
check that they cannot contain p. Their circumspheres intersect the ray
E in exactly two points. In between are all point of E that lie inside the
sphere, clearly p is not there. So the new cells remain to be checked, but
only against new cells. Since these cells form a stellar subdivided simplex,
they are also locally Delaunay. Hence T” is a Delaunay triangulation. [

1.3 The Upper Bound Theorem for inscribed
polytopes and Delaunay triangulations

The Upper Bound Theorem for inscribed polytopes is also tight for
inscribed (simplicial) polytopes. The straight way to prove this is to show
that all cyclic polytopes are of inscribable type. In fact, this has already
been done by Seidel [40] when he showed an upper bound theorem for
Delaunay triangulations. In fact he proved that every cyclic polytope has
an inscribed realization that can be stacked such that the result is still
inscribed.

After we repeat what is known, we will use our own technique to show it.
This will also reveal something about the structure of a cyclic polytope.

Proposition 1.3.1. The d-dimensional cyclic polytope Cy4(n) with n
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1.3 The Upper Bound Theorem for inscribed polytopes and Delaunay triangulations

vertices is inscribable for all d > 2 and n > d+ 1.

Thus all f-vectors of neighborly polytopes occur for inscribable simpli-
cial polytopes and hence the Upper Bound Theorem is tight even for
inscribable simplicial polytopes.

We will sketch the two known proofs:

Proof 1 (Seidel [40, p. 521]). The spherical moment curve is given by

(1,¢,82, ... 1471,

1
.t d -
C:R"™ — R C(t>'_1+t2—|—t4+~-+t2(d*1)
This curve lies on the image of the hyperplane x; = 1 under inversion
in the origin, that is, on the sphere with center %el and radius % Using
Descartes’ rule of signs one gets that this curve (restricted to the domain
t > 0!) is of order d, and thus the convex hull of any n distinct points on
this curve is an inscribed realization of Cy(n). O

Proof 2 (Griinbaum [23, p. 67]). For even d > 2, we consider the trigono-
metric moment curve
c:(—m m] —R?

c(t) == (sin(t),cos(t), sin(2t), cos(2t), ..., sin(gt),cos(gt)) :
Obviously its image lies on a sphere. We verify that this is a curve of order
d using the fact that any nonzero trigonometric polynomial of degree g
has at most d zeros per period (see e.g. Polya & Szeg6 [35, pp. 72-73]).
Thus we get that the convex hull of any n points on this curve yields an

inscribed realization of Cy(n). (Compare [48, pp. 75-76].)

For odd d > 3, we check using Gale’s evenness criterion that any “vertex
splitting” on Cy_1(n — 1) results in a realization of Cy(n); this yields
inscribed realizations of Cy(n) where all vertices except for those labeled 1
and n lie on a hyperplane. (See e.g. Seidel [40, p. 528|, where the “vertex
splitting” is called “pseudo-bipyramid”.) O

Our approach creates a Delaunay triangulation of a cyclic (d —1)-polytope
and shows that it is the vertex projection of an inscribed cyclic d-polytope.
This combinatorial approach offers a nice view to cyclic polytopes. The
idea behind it is similar to what Seidel did. We will also use a sphere
inversion and the moment curve, but we do not restrict to ¢ > 0.
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1 Three theorems about f-vectors of inscribed polytopes

Definition 1.3.2 (Induced triangulation of a cyclic polytope). Let C
be a cyclic polytope whose vertices lie on the moment curve. Like in
Gale’s evenness condition, the curve induces an order on the vertices
and a triangulation: The first d vertices define a simplex, whose complex
is a triangulation. Each following vertex defines an extension of the
previous triangulation. After adding the last vertex, we call the result a
triangulation that is induced by the moment curve.

Lemma 1.3.3 (The induced triangulation type is Delaunay). For any
n > d > 1 exists a realization of the cyclic polytope Cq(n) with vertices
on the moment curve, such that the induced triangulation is a Delaunay
triangulation.

Proof. We prove this by induction on the number of vertices, according
to the construction of the induced triangulation.

The first d + 1 vertices are picked arbitrarily on the moment curve, then
the face complex of the corresponding simplex is a Delaunay triangulation.
For induction we assume that we already have a Delaunay triangulation
T that is the induced triangulation of a cyclic polytope. We then define
T’ to be the Delaunay subdivision that contains all vertices of T" and
an additional vertex p on the moment curve. Since the moment curve
is unbounded, we can place p far enough, such that it lies outside all
circumspheres of cells in 7. We can also assume that 7" is a triangulation.
Since T” must contain 7" we get by Lemma 0.4.4, that there is only one
such triangulation: The extension of T" by p. O]

Proposition 1.3.4 (Cyclic polytopes are inscribable). For every n >
d > 2, the cyclic d-polytope Cy(n) with n vertices is inscribable.

Proof. 1t suffices to show that the moment curve induced triangulation T°
of a cyclic (d — 1) polytope P of n — 1 vertices is the vertex projection of
a cyclic polytope. By Lemma 0.3.13 the Delaunay condition corresponds
to inscribability.

Let P’ be a polytope such that T is the vertex projection from a vertex
N. Because the facets of a polytope already define it, it is enough to
show that all facets of P’ satisfy Gale’s evenness condition. To check that
we order the vertices according to the order that is given by the moment
curve and put N at the end. Let B be a binary vector, that describes a
facet of P’.

Assume the last entry of B is 1. Then by the vertex projection the vector
of the first n — 1 entries must describe a boundary face of T'. This is
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1.3 The Upper Bound Theorem for inscribed polytopes and Delaunay triangulations

a facet of P and it satisfies Gale’s Condition for n — 1 vertices. Hence
B must also satisfy Gales condition for n vertices, because appending a
l-entry cannot destroy this condition.

Assume the last entry of B is 0. Let ¢ + 1 be the position of the last
l-entry. Then B describes a (d — 1)-dimensional cell of T" that is created
in step ¢ + 1 of the construction of 7. Hence the (d — 2)-face, that is
indicated by the first ¢ entries of B, was a boundary face in step . In
step 7 4+ 1 it became an interior face. This implies that the vector of the
first ¢ entries of B ends with a block of 1-entries of odd size. This odd
block is even in B because position ¢ + 1 is a 1-entry. Hence B must also
satisfy Gales condition.

We have shown that all facets of P’ belong to a cyclic polytope. Since P’
is a polytope, it must be cyclic. O

Remark 1.3.5. We have seen that moment curve induced triangulations
can be realized as a Delaunay triangulation by choosing the points far
enough. We can modify this construction by applying a stellar subdivision
to the the first simplex directly after it appears. What we then get is the
vertex projection of an inscribed cyclic polytope that has been stacked
with a point on its circumsphere. By the arguments of Seidel [40] this
leads to a Delaunay triangulation with a maximal number of faces. In
Chapter 5 we will see that even two stackings are possible.
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2 Characterization of inscribable stacked
polytopes

In this section we characterize all inscribable stacked d-polytopes. This
is of special interest for us, since in dimension larger than two stacked
polytopes are known to characterize the lower bound of the Lower Bound
Theorem for simplicial polytopes. This chapter is joint work with Giinter
M. Ziegler, it is part of the paper [22].

Our characterization is given by an easy combinatorial criterion that is
necessary and sufficient. First we are going to assign to each combinatorial
type of stacked polytopes an induced tree structure, where basically every
node represents a stacking. Our criterion will then only refer to the node
degree of this tree.

We prove the theorem by solving an equivalent problem for Delaunay
triangulations. The sufficiency part will provide an iterative construction
that uses stellar subdivisions. The necessity part will be done by reduction
to a minimal example of a non inscribable type. This type is a simplex
that is stacked on four facets.

We will close this section with two corollaries about combinatorial prop-
erties of inscribed stacked polytopes.

2.1 Induced tree of stacked polytopes and stellar
subdivisions

A stacking operation can be imagined as gluing a simplex onto a facet,
or combinatorially as a stellar subdivision of a facet. It creates a simple
vertex.

A concrete stacking construction of a stacked polytope P clearly induces
a triangulation of P. We see that this triangulation has only interior
faces of dimension d and d — 1. In dimension at least three we can show
that it only depends on P and is independent of the specific construction:
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2 Characterization of inscribable stacked polytopes

Assume we have two such triangulations for the same stacked polytope P.
Then P must have a simple vertex, we call it v. Since both triangulations
do only have interior faces of dimension d and d — 1, we see that v must
lie in a single d-simplex, which is the same in both triangulations. If we
remove this simplex we get a new stacked polytope which has less vertices
than P and the corresponding two new triangulations differ if and only
if the old ones did. After finitely many repetitions, we end up with a
simplex and two identical triangulations.

In dimension two all polytopes are simple and all triangulations of an
n-gon without interior vertices are induced triangulation.

S

Figure 2.1: Left: A dual tree of an octagon. In dimension two each
polytope is a stacked polytope and the dual tree is not unique.
Right: The dual tree of a stacked 3-polytope. In dimension
at least three the dual tree of a stacked polytope exists and it
is unique.

Definition 2.1.1 (Dual tree of a stacked polytope). For d > 3, the dual
tree Tp of a stacked d-polytope P is the dual graph of the triangulation
that is induced by stackings. Every d-face in the triangulation corresponds
to a node and every interior (d — 1)-face corresponds to an edge of the
tree. See Figure 2.1.

The graph Tp given by Definition 2.1.1 is indeed a tree if P is stacked.

Remark 2.1.2 (Different constructions of a stacked polytope). All stack-
ing constructions of a stacked polytope P have the same induced triangu-
lation and dual tree 7p. They can be identified with all orderings of the
nodes of Tp that satisfy the following: Any node can be first. This node
represents the root of Tp and thereby induces a partial ordering on 7p.
Any linear extension of this order represents a stacking construction.
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2.1 Induced tree of stacked polytopes and stellar subdivisions

Figure 2.2: A stellar subdivision of a 2-simplex and its dual rooted tree.

By the use of Proposition 0.3.13 we see that the same concept can
be applied to triangulations that are created by a sequence of stellar
subdivisions started at a simplex. Such triangulations 7" are exactly the
vertex projections of stacked polytopes P where the projection vertex is
simple. The concept of a dual tree can be translated: The simplex in the
induced triangulation of P that contains the projection vertex is picked
as a root of the dual tree. Then every vertex that does not belong to
this simplex corresponds to a stacking and hence to a node of the tree.
Equivalently in T: The root represents all boundary vertices, and every
other vertex a stellar subdivision. See Figure 2.2.

Definition 2.1.3 (Dual tree of a stellar subdivision). Let d > 3. The
dual tree Tr of a multiple stellar subdivision of a (d — 1)-simplex o, has
one node for every vertex that is inserted by a single stellar subdivision.
Only exception, the root node r corresponds to ¢ and is not a stellar
subdivision. A node v’ is a child of the node v if it corresponds to a
single stellar subdivision of a (d — 1)-face has been introduced by v. See
Figure 2.2.

Every simplicial facet can be stacked if the stacking is just flat enough.
So every triangulation that has only interior faces of degree d and d — 1
corresponds to a stacked polytope type. Its dual tree Tp has maximal
vertex degree

maxdegTp < d+1

and we see that every tree of maximal vertex degree at most d + 1 also
comes from a stacked polytope. In contrast to the induced triangulation,
the dual tree does not contain all information about the combinatorial
type of a stacked polytope.
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2 Characterization of inscribable stacked polytopes

2.2 Characterization of inscribable stacked
polytopes

The following theorem will be proven in this section:

Theorem 2.2.1. Letd > 1. A stacked d-polytope is inscribable if and
only if all nodes of its dual tree have node degree at most 3.

Corollary 2.2.2. Letd > 1. A simplex that is stacked on k facets is of
inscribable type if and only if k < 4.

By Proposition 0.3.13 the theorem is equivalent to the following if we
project the stacked polytope from a simple vertex:

Theorem 2.2.3. Let d > 1. A triangulation that is a multiple stellar
subdivision of a (d—1)-simplex can be realized as a Delaunay triangulation
if and only if at most two of the (d — 1)-simplices that are generated in
each single stellar subdivision are further subdivided.

Equivalently: the dual tree of the multiple stellar subdivision is a binary
tree where the root has at most one child.

Corollary 2.2.4. Let T be a triangulation that is a single stellar subdi-
vided simplex where k of its full dimensional cells have been subdivided
again. Then T is of Delaunay realizable type if and only if k < 3.

2.2.1 Realizing all inscribed stacked polytopes

The following proposition establishes the “if” part of Main Theorem 2.2.1
(and thus also of Main Theorem 2.2.3).

Proposition 2.2.5. Let d > 1 and let T' be a Delaunay triangulation in
R, Let ¢ be an interior vertex of degree d and let Fy and Fy be two
(d —1)-faces of T that contain c. Then one can perform a single stellar
subdivisions of T' at Fy and then at Fy such that the result is again a
Delaunay triangulation.

Proof. Let Fy,..., F; be the (d — 1)-faces of T' that contain ¢, and let R
be the set of all other (d — 1)-faces of T'. Let vy,...,v4 be the vertices of
Iy, ..., Fysuch that v; is not contained in Fj.
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2.2 Characterization of inscribable stacked polytopes

Then the circumspheres of Fj, ..., Fy pass through ¢. The intersection of
the tangent hyperplanes of these d — 2 spheres at the point ¢ contains a
line ¢ through c. This line must be tangent to all those spheres.

Let U be a small open ball around ¢ that, like ¢, lies outside the circum-
spheres of all cells in R. Then U Nt \ {c} consists of two disjoint, open
line segments. We chose any two points, 1, x2, one in each line segment,
and use them for single stellar subdivisions of Fj respectively F,. See
Figure 2.3.

U3

Figure 2.3: How to choose the subdivision points.

We claim that the resulting triangulation 7" is again Delaunay. First
we check that x; and x, lie inside F} resp. F5: By the circumsphere
construction they lie outside all facets Fj,..., F; but clearly inside
conv{vy,...,v4}, hence they lie in F; U Fy. Because t contains ¢, which
is a vertex of F; and Fy, only one component of ¢ \ {c} can be contained
in F7 and only one can be contained in F,. Hence we can assume that
lies in the relative interior of F; and x5y lie in the relative interior of F5.

Now we need to show that all interior (d — 2)-faces of 1" are locally
Delaunay. The cells in RU {F3, ..., F;} lie in both triangulations 7" and
in 7", Their empty circumspheres in 7" stay empty in 7" since x1, zo lie
outside.

Let Z be the faces of T" that are not faces of T'. It remains to show that
all (d — 2)-faces in T” that are contained in two facets of Z are locally
Delaunay. The first type lies in (d — 1)-faces that both contain x; or
both contain x,. In this case the locally Delaunay condition is given
by Lemma 0.2.8. The second type lies in a (d — 1)-face that contains
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2 Characterization of inscribable stacked polytopes

U1

Figure 2.4: The circumsphere does not contain z; because x1, ¢ and x5
are collinear.

x1 and an other (d — 1)-face that contains x5. There is only one such
(d — 2)-face, namely the intersection of F; and Fy. Let’s call this face
K. The circumsphere of conv(K U {z3}) does not contain z, because
x1, ¢, T9 are collinear and ¢ lies between 7 and x5 (see Figure 2.4). Hence
also K is locally Delaunay and thus all interior (d — 2)-faces of T" are
locally Delaunay. Hence T” is a Delaunay triangulation. ]

Using this result, we also obtain examples of stacked polytopes that go
beyond the rather special construction given by Corollary 1.2.1.

2.2.2 Necessity: Three stellar subdivisions are too much

The following section establishes the “only if” part of Main Theorem 2.2.3

(and thus also of Main Theorem 2.2.1): If multiple stellar subdivisions
are performed on three facets Fi, F; and F3 at a simple interior vertex
of an arbitrary triangulation, then the resulting triangulation is not a
Delaunay triangulation. Since one dimensional triangulations have only
two facets around a vertex, we restrict to d > 2.

For this, it suffices to consider the complex A that arises by a single stellar
subdivision of a (d — 1)-simplex ¢ C R%! using an arbitrary interior
point ¢ € o. This complex A with (d — 1)-faces Fi,..., Fy is Delaunay
by Lemma 0.2.8. Now we apply single stellar subdivisions to the cells
Fi, Fy, F3 by arbitrary interior points rq,7,73. Our claim is that the
resulting triangulation 7' cannot be Delaunay.
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2.2 Characterization of inscribable stacked polytopes

In order to prove this claim, we first construct a point x that depends only
on A. Its position with respect to A is established in Lemma 2.2.6. Then
Lemma 2.2.7 records the properties of z with respect to the subdivision
T'. Finally, we establish in Proposition 2.2.8 that 7' cannot be Delaunay:
For that we use an inversion in a sphere centered at x in order to simplify
the situation so that a projection argument reduces the claim to the case
d = 3, which was established in Proposition 2.2.5.

Let 0 = conv{vy,...,v4} be a (d — 1)-simplex in R4, let ¢ € o be an
interior point, and let A be the single stellar subdivision of ¢ by ¢, with
(d — 1)-faces Fi,. .., Fy, labeled such that v; ¢ Fj.

For some k (1 < k < d) let F :={Fy41,...,Fy} and G := {F},..., Fy}.
Then Vg := {vy,..., v} is the set of vertices of o that lie in all cells of F,
while Vg := {vg11,...,v4} is the set of vertices of o that lie in all cells of

g.

Now Er := aff(Vr U {c}) is an affine subspace of dimension k, while
Eg = aff(Vg U{c}) has dimension d — k. The two spaces together affinely
span R?"!, so by dimension reasons they intersect in a line ¢. This line
intersects the two complementary faces conv(Vz) and conv(Vg) of ¢ in
relatively interior points  resp. y: Indeed, ¢ can be described uniquely
as a convex combination of two points = € conv(Vx) and y € conv(Vg),
so in particular z,y and c lie on a line. As Er contains ¢ and z, and Eg
contains ¢ and y, we find that ¢ = Eg N Ex is the line spanned by z, v,
and c.

Let Cx denote the unique (k — 1)-sphere that contains Vx U {c}, that
is, the circumsphere of the k-simplex conv(Vz U {c}), which is also the
intersection of the circumspheres of Fj.1,..., Fy. The point ¢ lies in the
intersection £ N C%. The line ¢ also contains the point £ Nconv(Vz) = {Z},
which is a relative interior point of conv(Vx) and thus for £ > 1 lies in the
interior of the circumspheres of Fjy,1,..., F; and thus in the interior of
the sphere Cr relative to the subspace Ex. Thus Cx N { = {c,z}, where
the second intersection point x is distinct from ¢, and lies outside o for
E>1.

As for Cr and z, z, we define Cg and y,y for G: See Figure 2.5.

Lemma 2.2.6. Let d > 2. In the situation just described, the point x

lies outside the circumspheres of Fi, ..., F} and on the circumspheres of
Fiy1, ..o Fa.

Proof. The five points x, z, ¢, y,y lie in this order along the line ¢, where
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2 Characterization of inscribable stacked polytopes

/,F?,: f

—
r & convVzx
1

1

// gIEg

U1

Figure 2.5: The situation of Lemma 2.2.6. The left figure illustrates d = 3,
k = 2, the right one d =4, k = 2.

the first two points coincide in the case k = 1, while the last two coincide
for d—k = 1. The circumspheres of Fi, ..., F}, intersect the line ¢ in {c, y},
and thus the point x lies outside these spheres, while the circumspheres
of Fyy1,..., Fy intersect the line £ in {c, z}. ]

Lemma 2.2.7. Letd > 2. If in the above situation the stellar subdivision
of some or all of the facets Fy, ..., Fy results in a Delaunay triangulation
T, then the point x lies outside all of the circumspheres of the newly
created (d — 1)-faces.

Proof. Without loss of generality, we assume that T is a single stellar
subdivision of A at F} by a new vertex r inside Fj. This will result in d
new (d — 1)-faces Fy,..., F;. We label F| := conv{r, v, ..., v} and for
i=2,...,dweset F/ :=conv({r,c,vq,...,vq} \ {v;}). (See Figure 2.6)

For i = 1,...,k we have that F; contains Vg and hence also y. On the
other side ¢ does not lie inside the circumsphere Cp, of F;. The order
T — ¢ — y that we see on ¢ (Lemma 2.2.6) then implies that Z lies outside
CFr..

k3

For i = k+1,...,d we have that F] and F; share the (d — 2)-face
K :=conv({c,va,...,va} \ {v;}). Their circumspheres intersect in aff(K).
The line ¢ intersects aff(K) in ¢, hence x and z lie on the same side of
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2.2 Characterization of inscribable stacked polytopes

Figure 2.6: The three cases of Lemma 2.2.7, for d = 3, k = 2.

aff(K), as well as vy, because ¥ is a convex combination of v; and aff(K).
So, the circumsphere of F; passes through = and v; on the same side of
aff(K). Because T' is Delaunay, the circumsphere of F; does not contain
v; and hence also not x. O

Proposition 2.2.8. Letd > 2. Let A be a single stellar subdivision of a
(d — 1)-simplex 0 = conv{vy,...,vq} in RS by an interior point c € o,
so the (d —1)-cells of A are F; = conv({c,v1,...,va}\v;) fori=1,...,d.

Let T arise from this Delaunay triangulation A by single stellar subdivi-
sions of Fy,. .., Fy by interior points r; € F; (1 <i < k).

If T is a Delaunay triangulation, then k < 3.

Proof. For d = 3 this was established in Lemma 0.2.10, so we assume
d > 3. As a single stellar subdivision can be undone without destroying
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2 Characterization of inscribable stacked polytopes

the Delaunay property (Corollary 0.2.9), it is enough to show that T’
cannot be a Delaunay triangulation if k£ = 3.

For the sake of contradiction we assume that such a 7' is a Delaunay
triangulation. Then we are in the situation discussed above, where we
find a point x that by Lemmas 2.2.6 and 2.2.7 lies on the circumspheres
of the facets Fy, ..., Fy, but outside the circumspheres of all other facets
of T. Let R denote the set of these other facets. The inversion of R*~! in
the unit sphere centered at x sends all the vertices of T' to new points
in R*!'. The proof of Lemma 0.3.1 shows that this inversion induces a
simplicial map

UV:R — T

and the image T” is a subcomplex of a Delaunay triangulation. As
an abbreviation, we denote the images of W by a prime sign ()’; for
example, U(v;) = v}. Note that if we apply this to the images of simplices
o, F1,..., Fs, then we refer to the simplices obtained by applying ¥ to
the vertices.

Figure 2.7: An example of 7" for d = 4 (3-dimensional triangulation). The
vertices v, vh, v, ¢ are coplanar. The face conv{c, v}, v}} is
marked red.

We will now show that 7" is a Delaunay triangulation and investigate its
properties. Let r],ry, 5 be the three images of the vertices that where
used to perform single stellar subdivisions to Fj, F5, F3. Then these
vertices are also interior vertices of 77 and hence 7" is the result of single
stellar subdivisions of F, Fj and Fj by r, ry, 5. The inversion centered
at x also implies that ¢/, v}, v} and v} lie in a common 2-plane, since their
preimages lie on a 2-sphere that passes through x. Note that no three
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2.2 Characterization of inscribable stacked polytopes

of these four vertices lie in line. By checking some vertex incidences, we
figure out that the structure of 7" can be described as follows: Take a
(d — 1)-simplex, split it into three simplices by inserting a vertex ¢ in the
relative interior of a 2-face and then apply single stellar subdivisions to
each of those three (d — 1)-simplices by points 7, 75 and 74. In particular,
the support of 7" is convex, so T" is the Delaunay triangulation of the set
{c,r},rh,rh vy, .. v} in REL (See Figure 2.7.)

Figure 2.8: Left: A supporting sphere C' of conv{c, v, v}} intersects the
2-plane K in a circle C'. The pyramid conv{C’, v}} lies inside
C'. Right: The image of a projection from v} to K.

Let K be the 2-plane that contains ¢, v}, v and v} and let T}, denote the
maximal subcomplex of 7" that lies in K. We define barycentric coordi-

nates by the affine basis (v],...,v}) and define 7 to be the coordinate
projection that sets the weights of vy, ..., v} to zero:
7 : relint(7") — relint(T}) = relint(conv{vy, ..., v3}).

We see that F] and Fj share the (d — 2)-face conv{c/, v}, ..., v} and this
face must have a have a supporting sphere. We pick one and call it C'. The
intersection of C' with K is a supporting sphere for the edge (¢, v%) in T.
We call this 1-sphere C” and notice that the preimage conv(C’)Nrelint |77 |
under 7, which is contained in conv(C’ U {v},...,v}}), lies completely
inside C. See the left picture of Figure 2.8.

This implies that the images of r], ) and r} under the projection 7 lie
outside C’, but in the relative interior of |T}|. From this we derive that
we can apply single stellar subdivisions to the three 2-faces of T} by
the vertices 7(r}), w(r}) and 7(r}) such that the edges (¢, v}), (¢, v}) and
(c/,v}) would still be locally Delaunay. See the right part of Figure 2.8.
However, in Lemma 0.2.10 we have already proved that this is impossible.

O
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2 Characterization of inscribable stacked polytopes
2.2.3 Properties of inscribed stacked polytopes

Proposition 2.2.9 (Inscribed and stacked with bounded vertex degree).
Letd > 2 andn > d+1. Then there exists an inscribed stacked d-polytope
that has n vertices, and each vertex has edge degree at most 2d.

Proof. Since d = 2 is obvious, let d > 2.

We start with an arbitrary d-simplex, which is inscribed. All its vertices
are simple. We label them from 1 to d+ 1. Now, for every k =d+2,...,n
we refer to Proposition 2.2.5 in order to stack a new vertex with label &
onto the facet {k —d,k —d+1,...,k — 1} that lies at the simple vertex
k — 1. This in particular destroys the facet {k —d,k —d+1,... k— 1}.
It thereby makes the vertex k — d inaccessible for all following stackings
and creates the new facet {k —d+ 1,k —d+2,...,k} that contains the
new simple vertex k.

In the inscribed stacked polytope that is created this way, two vertices ¢
and j are adjacent if and only if |i — j| < d. O

Proposition 2.2.10. Let d > 3 and P be an inscribable stacked d-
polytope. Then less than half of the vertices of P are simple, except if P
is a simplez.

For general stacked d-polytopes roughly d%dl of the vertices can be simple.

Proof. We show this by a graph theoretical argument: We choose any leaf
node r of the dual tree T of the stacked polytope P. The corresponding
simplex ¢ in the induced triangulation has exactly one simple node and
d other nodes. We define r to be the root of T'. By traversing 7" from
the root r, we identify the vertices of P that are not in § with the nodes
of T\ r in the obvious way. We see that the root and the leaves of T’
correspond to the simple nodes of P. Since P is inscribed, we know that
T must be a binary tree and the root, which counts as a leaf, has only
one child. This implies that the number of leafs in T" is at most one larger
than the number of interior nodes in 7. Together with the d > 2 non
simplicial nodes of 9, the proposition follows. n
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3 Enclosing spheres and the inscribability
exponent

In this section we strengthen Corollary 2.2.2 as follows:

Theorem 3.0.11 (Enclosed sphere and 4 stackings). For d > 2 and
k >0 let P be a d-simplex with k facets stacked. Then P has a realization
such that there is a sphere S passing through the k stacking vertices and
P C conv S if and only if k < 4.

Using this we get an improvement of a theorem of Grinbaum and Ju-
covi¢ [24] from 1974 about the upper bound of the inscribability exponent.
We thereby disprove the conjecture that the old bound is tight.

Definition 3.0.12 (Inscribability exponent). Let d > 1. Let P4 denote
the set of all d-polytopes. Let v(P) be the number of vertices of a polytope
P and s(P) the maximal number of vertices that can be placed on a
sphere while the remaining vertices lie strictly inside the sphere. The
inscribability exponent is then defined by

A Ins(P)

:= lim inf

s :
Pery Inwv(P)

Grinbaum and Jucovi¢ [24] proved the following theorem for dimension
three and explained why the argument easily extends to higher dimensions.
In addition, they conjectured that equality holds in all dimensions.

Theorem 3.0.13 (Inscribability exponent [24]). For d > 3 it holds that

@) < In(d — 1)

S Tmd log,(d —1).

Using Theorem 3.0.11 we will be able to modify the proof of this theorem
such that it yields:

Theorem 3.0.14 (Inscribability exponent). Ford > 1,

s < log, 2.
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3 Enclosing spheres and the inscribability exponent

The proof of Theorem 3.0.13 uses the following fact:

Lemma 3.0.15 (Enclosed sphere and d — 1 stackings [24]). Ford >3
let P be a d-simplex with all facets stacked. Then there is no sphere S
passing through the d + 1 stacking vertices such that P C conv S.

Remark 3.0.16. This lemma is not explicitly stated but it is used as a
fact in [24]. In 1967 Jucovi¢ [29] improved a theorem by Steinitz which
implies the lemma for d = 3. Then, in 1974 Griinbaum and Jucovi¢ [24]
mentioned that it can be extended to higher dimensions (and used this
as a fact in the paper). Here is a hint for extending the 3-dimensional
case to arbitrary dimension. The original proof assigns angles to edges
and adds them up around a set of facets. In higher dimensions one has
to use area angles and assign them to ridges.

Remark 3.0.17. Here is an example that shows that it is not screamingly
obvious that Corollary 2.2.2 implies Theorem 3.0.11. See Figure 3.1.

Figure 3.1: The left picture shows a stacked 2-polytope that has an
enclosing sphere passing through the thick vertices. The right
polytope can easily be made inscribed by flattening the three
stackings. This trick also works in higher dimension. It cannot
be applied in the left case since only the flattening guarantees
that convexity is kept.

Proof of Theorem 5.0.11. The case k < 3 is easy since three times stacked
simplices are inscribable. In this case the circumsphere is the enclosing
sphere.

We prove the case k > 3 by contradiction, assuming that we have four
stackings and S exists. We will investigate the Delaunay triangulation of
the vertex set of P and transform it by a sphere inversion. The result will
also be a Delaunay triangulation and maintain the Delaunay property
after a small modification. The obtained triangulation will then match the
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configuration described in Theorem 2.2.4 (with three stellar subdivisions).
This will contradict the Delaunay property and imply the theorem.

Some labeling: Let P be a stacked d-polytope that is constructed by
stacking four facets of a d-simplex § = conv(v,...,vy) with vertices
S0, 81, S2 and s3. Let U be the circumsphere of §. Since P is simplicial,
we can assume that all vertices lie in general position, especially that
Vo, - - ., Vg lie inside S and none on S. Let F; be the (d — 1)-face of ¢ that
does not contain v; (i =0,...,d), and let s; be the vertex that stacks F

(j=0,...,3).

Let us assume that no vertex sy, ..., vq lies inside U, then we can deduce
that P is of inscribable type: We can move s, ..., s3 straight towards an
interior point of P, until they all lie on U. This will not change the combi-
natorial type since we only “flatten” the stackings. By Corollary 2.2.2 we
know that this type is not inscribable, so at least one vertex of sg,...,s3
lies inside U.

Let us assume that two vertices sg and s; lie inside U. The intersection of
S with U is a sphere of dimension d — 2. Its affine hull is a hyperplane H,
which separates sy and s; from §. Since P is convex, and (s, s1) is not
an edge of P, this is impossible. Hence exactly one vertex of sq,...,s3
lies inside U.

Vo

< &

Figure 3.2: Left: A gray 2-simplex stacked on two facets. Right: The
corresponding Delaunay triangulation.

Let sg lie inside U while sy, s9, s3 lie outside. We will now reconstruct
the Delaunay triangulation 7' of the vertex set of P. We will start with
0 and add the vertices sg, ..., s3 to the convex hull. After each vertex
we will adjust the current triangulation to make it Delaunay. (This
technique is similar to the Bowyer—Watson algorithm [8] [47].) The face
complex of 9 is a Delaunay triangulation. We add the cell conv(Fp, s¢).
Since sg lies in U, this is not Delaunay and we need to flip the face Fj.
The result is a Delaunay triangulation of d many d-simplices that all
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3 Enclosing spheres and the inscribability exponent

share the edge (so,v9) and pairwise share a (d — 1)-cell. We add the
cell conv(sy, F1). Since S passes through sy and s; and encloses F}, we
see by Lemma 0.2.6 that F} is locally Delaunay. All other (d — 1)-faces
are still locally Delaunay, hence the current triangulation is Delaunay.
The same argument works for s, and s3, so we just add conv(Fs, v9) and
conv(F3, vs). This implies that the Delaunay triangulation of the vertex
set of P equals the induced triangulation of the stacked polytope P, with
one interior (d — 1)-face Fy being flipped.

Vo

S0 Vo S0 V2

Figure 3.3: Left: A gray 3-simplex stacked with three vertices. Right:
The corresponding Delaunay triangulation.

The fact that P is at least 3-dimensional and that it has exactly four
stackings is only needed in the last argument of the proof. So we can
illustrate most of the concepts by pictures of low-dimensional polytopes
with fewer stackings. For T see Figure 3.2 and Figure 3.3.

Since all vertices of T" are the vertices of a simplicial polytope, T is the ver-
tex projection of an inscribed simplicial polytope. We take that polytope
and use an other vertex projection from the vertex that corresponds to sg
to derive a new Delaunay triangulation 7”. (This is like a sphere inversion
of the Delaunay triangulation at sy. The image of infinity creates a new
vertex.) For simplicity, we denote the images of this transformation by
prime sign after the name. The new point which is the image of infinity
shall be oo’

The new Delaunay triangulation 7" is a flipped double simplex where
three of its d-cells are stellar subdivided. See Figure 3.4 and Figure 3.5.
We explain why: All facets of ¢’ except Fjj are in 7". Since they lie in cells
that also contain sj, they must lie at the boundary of 7”. The outside of
T corresponds now to the faces in 7" that are contained in faces that also
contain oo’. This includes all ridges of ¢" and all stacking vertices s/, s
and s%. So we get that 7" looks like a flipped double simplex, but instead
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Figure 3.4: Left: Figure 3.2 after a sphere inversion that is centered at
the blue vertex. The blue cells are new. Right: the same,
except that v is moved closer to oo’. This creates a new cell
conv{vy,v{, vy}

Figure 3.5: Left: Figure 3.3 after a sphere inversion that is centered at
the blue vertex. The blue cells are new. Right: the same,
except that vf) is moved closer to oo’. This creates a new cell
conv{vy, vy, v, vy}

of stacking it three times, three of its d-cells are stellar subdivided.

Since S passes through sy and separates oo from J, the image S’ is a
hyperplane and all vertices of ¢’ lie on one side, while oo’ lies on the other
side. We define the hyperplane H := aff(v], ..., ) and notice that it has
v, on one side while od’, s}, s, s are on the other side. We derive a new
triangulation 7" by moving v{, straight towards oo’ unless it has passed
H. After that, we fix the position in a sufficiently small distance to H
and name the new vertex vjj. The result is still a pure simplicial complex,
but no longer convex. We fix this by adding the cell conv(vj, vy, ..., v]).
Then the shape of T” is a stellar subdivided d-simplex where three of its
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3 Enclosing spheres and the inscribability exponent

d-cells have been stellar subdivided again. We indicate all objects of T"”
by a double prime.

We now prove that 7" is a Delaunay triangulation. It suffices to show
that all (d — 1)-cells are locally Delaunay. Boundary cells can be omitted
and also all cells that contain s, sy or s4 since they are internal parts
of a single stellar subdivision. Everything that is left to check are the
(d — 1)-cells that consist of the convex hull of v with a ridge of §'. By
construction, all vertices of 7" except v{, ..., v} lie below H. Hence H
is a supporting hyperplane of |T"|. Since vj is arbitrary close to H, the
circumsphere of the cell conv(v,v!,...,v]) can be assumed to be empty.
Hence this cell and all its (d — 1)-faces are locally Delaunay.

We have only left to check the (d — 1)-faces that consist of the edge
(00", vf) and d — 2 other vertices of §”. Let F" := conv(vj, R") be such
a (d — 1)-face and R” a (d — 2)-face. Then R” is a (d — 2)-face in the
boundary of 7" and also in T7”. Hence R” has a supporting hyperplane Hp
for |T"| and |T"”|. The face F” := conv(vy, R") is locally Delaunay in 7"
and hence there is a supporting sphere S for it. The intersection of Sg
with Hp is a (d — 2)-sphere Sk and it contains all vertices of F" and F”
except vy. The vertex v lies inside Sg, so we can now continuously pass
Sp through Sg until it also touches, vj (see also Lemma 0.2.5). The result
is a supporting sphere for F” since it is smaller than Sr, at least on the
side of Hp that faces |T"|. See Figure 3.6. Hence all interior (d — 1)-cells
are locally Delaunay. This implies that 7" is a Delaunay Triangulation.

Figure 3.6: The red sphere intersects the gray plane in a circle. The blue
sphere is created by pushing the red sphere through this circle.
On the side upper side of the plane the blue sphere lies inside
the red one.
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This is a contradiction to Theorem 2.2.3 which implies that 7" has no
Delaunay realization. So S does not exist for £ = 4 and the theorem
follows. O]

We could now copy the proof of Griinbaum and Jucovi¢ and modify it by
placing the right values. Instead we give our own version, which is based
on the ideas of [29]. In contrast to the known proof, it will contain new
results about stacked polytopes that are derived in this thesis.

Lemma 3.0.18 (Enclosed sphere). Ford > 1 let P be a d-polytope that
lies in the closed unit ball. Let the boundary of P contain the ridges of
a d-stimplex 6 and let V' be the vertex set of P without the vertices of J.
Then V' decomposes into d + 1 (possibly empty) subsets where each subset
lies exactly beyond one facet of 0. Further, at most three of these subsets
can intersect the unit sphere.

Proof. If any vertex of P would lie beyond two faces of §, then the ridge
that shares these two faces would not have a supporting hyperplane and
hence could not be a ridge of P. Assume we have four vertices of P at
the unit sphere, each behind a different facet of §. Then the convex hull
of & with those four simplices is a subset of P and hence enclosed by the
unit sphere S. By Theorem 3.0.11 this is impossible. O]

Proof of Theorem 5.0.14. We will construct an infinite sequence of stacked
polytopes that have a very poor inscribability ratio.

Let S be an enclosing sphere of a stacked d-polytope P and let A be the
induced triangulation and 7p the induced dual tree. We pick any node
to be the root of Tp, every other node then corresponds to a stacking
and thereby to a vertex. The root itself represents d + 1 vertices. By
this identification, we have covered all vertices of P exactly once. By
Lemma 3.0.18 at most three branches (including children and the parent)
of every node of Tp can participate in having a vertex on S. This reduces
to question of the largest number of inscribable vertices to the question
of the largest tree of node degree at most 3 (a rooted binary tree, the
root may have 3 children) that can be embedded into Tp (a rooted tree
whose nodes have at most d children, the root may have d 4 1 children).

By Theorem 2.2.1 every such binary tree corresponds to an induced
triangulation of an inscribable stacked d-polytope P’. Moreover, extending
this tree to the dual tree of P can be achieved by a sequence of sufficiently
flat stackings started at P’. This shows that the maximal number of
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3 Enclosing spheres and the inscribability exponent

inscribable vertices of a stacked polytope is exactly the number of nodes
of the largest binary tree that can be embedded into its dual tree, plus d.

We consider a stacked d-polytope P, where Fj is the d-simplex, and by
recursion for n > 0 we define P, to be P,_; stacked on all facets. Since
all stacked polytopes are realizable, every P, exists.

What is a maximal binary tree D in the dual tree of P,? For sure it will
contain the node R that is represented by Fy, otherwise we reduce the
problem by symmetry to P, ;. So if D contains the root, the best choice
is clearly to choose a complete tree of length n that is binary except that
the root has 3 children.

This implies that the maximal number of inscribable vertices for P, is
d+ 1 for the root, and three times the number of nodes of a perfect binary
tree of length n — 1. For the total number of vertices P, we get d + 1 for
the root and (d + 1) times the number of nodes of a perfect tree, with d
children of length n — 1.

n—1
inscr. vertices =d+1+3) 2'=(d—3)+3-2"
=0
n—1 1 1
all vertices =d+ 1+ (d+1)) d' = (d— §+1)+ Z+1d".
i=0 o o

This implies an upper bound for the inscribability exponent:

In((d—3)+3-2")

In((d — H3) + 4+1dn)

s < liyrln inf

We simplify nominator and denominator, and divide both by n:

In [2"- (3 +(d—3)27")] In(3 + (d - 3)27")

nom. = =In2+
n n
n , (d+1 d+1\ 3—n Y
denom. = - [d .(j+(d_ﬂ)d )} :lnd+ln<%+(d_%)d )
n n

In the limit, the complicated terms vanish, hence
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This result is also nice since it naturally covers the case d = 2: All
two dimensional polytopes are inscribable hence s?) = 1. In contrast
to the conjecture we have shown that the inscribability exponent is
getting smaller in higher dimensions, at least if s = log, 2. There are
investigations [41] that at least for some classes of 3-polytopes show that
sB) =log, 2.

We conjecture that log, 2 is the inscribability exponent for dimension d.

It would also be interesting to get a non asymptotic inscribability bound
that depends on the dimension and the number of vertices. Our proof
provides such bounds for special numbers. It should not be too hard
to derive a bound for every number of vertices. One could argue that
complete binary trees provide the worst possibility for embedding large
binary trees. The corresponding binary trees are then probably also
complete trees. This would then provide exact bounds for all stacked
polytopes.
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4 Construction techniques of f-vectors of
inscribable simplicial polytopes

In this chapter we develop a construction scheme that allows us to prove
that certain classes of f-vectors of simplicial polytopes also appear for
inscribed simplicial polytopes.

4.1 A technique to extend triangulations

In this section we present constructions for Delaunay triangulations for
which we can control the outer f-vector. Their special property is that
they can be iterated in almost any order and they guarantee that the
result is a Delaunay triangulation.

Definition 4.1.1 (Equator and ground polytope). Let d > 2. We define
the height function h and projection 7 by

h:R¥©™' SR, h(z):=24 and
7R S R w(n) = (2, ..., 2al0).

Let R%~! be the ambient space. We call a hyperplane vertical if any normal
vector x of it has last coordinate h(x) = 0. We call a (d — 2)-polytope
vertical in R~ if its affine hull is vertical. Let T be a (d — 1)-dimensional
triangulation, a (d — 1)-polytope or the complex of a (d — 2)-simplex. If T’
has no (d—2)-dimensional vertical faces in its boundary and does not lie in
a vertical hyperplane, then we define the equator of T' to be the simplicial
complex that consists of all faces of |T| that lie in a vertical hyperplane.
We will then say that T has an equator. We call (|T|) C R4~2 the ground
polytope of T.

The ground polytope is a (d — 2)-dimensional polytope. If 7" has an
equator, then 7 is a bijection between the equator and the boundary of
w(|T7).

Definition 4.1.2 (Hex triangulation). We call a triangulation 7' hex
(high extendable) if it has an equator and all vertices in its boundary are
vertices of a simplicial polytope that is |T7|.
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4 Construction techniques of f-vectors of inscribable simplicial polytopes

Lemma 4.1.3 (High extension). Let d > 2 and T be a hex triangulation
in RYL. Let V be its vertex set and let p be a point in R*2 x {0} that
does not lie in the affine hull of any face of the ground polytope of T. If
A € R is sufficiently large then p' := p + Aeq_1 lies outside |T| and the
equator of T is the horizon of T seen from p'.

If T is also Delaunay, or just a (d—2)-simplex, then A can be chosen large
enough, such that the extension of T by p' is a hex Delaunay triangulation.

We call such an extension a high extension and p the base point of the
extension. If T has an equator, then an extension 7" of T' can only have
vertical (d — 2)-faces in its boundary, if p lies in the affine hull of a facet
of (|T']). So by avoiding these positions one can iterate such extensions.

Proof. Let F be a (d — 2)-face in the boundary of T'. Note that its affine
hull is not vertical, so for large enough A the point p’ lies beyond F' if
and only if F lies on the upper convex hull of |T'|. The boundary of the
upper convex hull is exactly the equator, so the first statement is true.

In case that T"is a Delaunay triangulation, there are only finitely many
circumspheres of (d — 1)-faces of T'. If X is large enough, p’ lies outside all
of those. In this case the unique Delaunay subdivision of the vertex set
V' U{p'} must contain 7" and it must triangulate the set VU{p'}. This can
only be the extension we have created, so it is a Delaunay triangulation.

Since we have only finitely many conditions for A being large enough, a
suitable A € R exists. O

Definition 4.1.4 (Types of high extensions). Let d > 2 and T be a hex
triangulation in R%~!. Let V be the vertex set of the ground polytope
7(|T|). We define three types of high extensions. The base point shall
be p.

e A high extension of T is called a stay extension if p lies in the
relative interior of 7(|T]). (See Figure 4.1)

e A high extension of T is called a step extension if VU {p} are the
vertices of a simplicial polytope. (See Figure 4.1)

e A high extension of T is called a switch extension if the convex hull
of VU {p} contains exactly one vertex of V in its interior. (See
Figure 4.2)
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4.1 A technique to extend triangulations

Figure 4.2: A switch extension.

Lemma 4.1.5 (Flat extension). Let d > 2 and let P C R be a
d-polytope that has an equator. Let F be a simplicial facet of P that
intersects the equator in a ridge R. (Hence m(R) is a facet of w(P).)
Then there exists a point p € R? that can be used to stack P at F and
7(p) can be used to stack w(P) at w(R). See Figure J.3

Proof. There are exactly two facets of P that contain R, one is F' the
other one shall be G.. The set of points that lie beyond F' and beneath all
other facets of P is the interior of a polyhedron K. At its boundary there
must be a point ¢ that lies in the supporting hyperplane of G, but on the
other side of R than G. Hence its projection must lie outside 7(P). Any
interior point p of K that is close enough to ¢ will be possible to stack F,
while its projection stacks 7(P). O
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4 Construction techniques of f-vectors of inscribable simplicial polytopes

S

Figure 4.3: How to determine a point for a flat extension, and how the
number of visible facets can be increased.

Definition 4.1.6 (Flat extension). Let d > 2. Let T be a hex triangula-
tion in R?~! that has n vertices in its equator and let k& € {0,...,n—d+1}.
Then we can apply Lemma 4.1.5 to P := |T|. Let p be the new point.
Then, by assuming general position for p we can raise its height to gain
a new vertex p’ such that the horizon of |T'| seen from p’ has exactly
k + d — 1 vertices. We call the extension of T by p’ a flat extension of
degree k.

Lemma 4.1.7. Let T be a triangulation in R™" and T' a flat extension
of degree k of T'. Then the outer g-vector of T" satisfies

(T =qu(T)+1, goT') = go(T) + k.
Proof. This is an application of Lemma 0.4.6. n

If T is a hex triangulation then a flat extensions of 7" can be assumed to
be hex as well because the new point can be placed in general position.
This gives the possibility to iterate flat extensions. Unfortunately, the
height of the new point is bounded from above, so there is no guarantee
that the Delaunay property can be kept.

Definition 4.1.8 (Push in extension). Let d > 4 and m > 0 be integers.
Let T be a hex triangulation in R?~!. Let p,, € R%2 be the base point
of a step extension 7" of T in particular all vertices of w(|T'|) are also
vertices in 7(|7”]). Let g be a point in the relative interior of a facet
of 7(|T|) that is visible to p,,. Let py,...,pn be distinct points on the
open line segment (g, p,,) such that none of them lies in affine hull of any
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4.1 A technique to extend triangulations

, L >

m([T"]) = =(|T5])

Figure 4.4: An illustration of a push in extension for d = 4, s = 1 and
n = 2. For d < 5 life is boring, because p; and ps must exactly
see d — 2 vertices. In higher dimension this changes.

facet of w(|T'|). Then we call the sequence (T' =Ty, T}, ..., T,) a push in
extension if for ¢ = 1,...,m the triangulation 7; is a high extension of
T;_, with base point p;. See Figure 4.4.

Lemma 4.1.9 (Push in extension). Let d > 4 and m > 0 be integers.
Let T be a hex triangulation in R4™". Let p,, € R¥2 be the base point of
a step extension T' of T such that all vertices of w(|T|) are also vertices
in w(|T"|). Let n be the number of vertices of w(|T|) that are visible from
Pm oand 0 < A < -+ <\, = n —d+ 2 be integers. Then there exists
a push in extension (T =Ty, Th, ..., Ts) with points py, ..., Py such that
fori=1,...,m we have that p; sees \; +d — 2 vertices of T;_1.

For g(n(|T])) = (1,r,s,%,%,...) and i = 1,...,m we then have
g(7T(|,_TZ|>) = (]‘7T+ 17S+ Aj?*u*a e ‘)7

i—1
9(T;) =g(T) + (0,4,4(r +1) = 1is + > Aj %k, %,...).
j=1
If T is a hex Delaunay triangulation, then Ty, ...,T,, can be constructed

to be Delaunay as well.

Proof. Since we only use high extensions, the Delaunay property can be
preserved.
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4 Construction techniques of f-vectors of inscribable simplicial polytopes

We will now pick py,...,pm as follows. Let F' be a facet of 7(|T|) that is
visible from p,, and let ¢ be an arbitrary point in the relative interior of
F. If we imagine we travel from ¢ to p,,, then the visible points of 7(|7|)
will increase one by one at a time starting from the d — 2 vertices of F' to
finally A,, +d — 2. So we can pick py, ..., pn_1 with increasing distance
to ¢ such that for ¢ = 1,...,m we have that p; sees exactly \; +d — 2
vertices of m(|T|). Further, by the choice of ¢ we can assume that p; does
not lie the affine hull of any facet of 7(|T).

We investigate the corresponding high extensions by induction. At the
beginning, p; lies outside 7(|T|), not in any affine hull of any facet of
7(|T|) and it sees A\; +d —2 vertices. Hence we can define a step extension
T, of T with base point p;. For i = 2,...,m we assume that 7T;_; is high
extension of T; o by the base point p; ;. And we assume that all facets of
7(|T;—1|) are either facets of 7(|7T'|) or they contain p; ;. The induction
step follows. Since the line segment (g, p,) points away from = (|T),
p; must lie outside 7(|7;_1|) and it sees all the facets that contain p;_;.
Hence p; lies outside all affine hulls of facets of w(|7;_1|). This implies
that we can define a high extension 7; and 7(|7;|) will only contain facets
of m(|T'|) and facets that contain p;.

We count vertices and edges of 7(|T;|) for i = 1,..., m. Since all vertices
7(|T|) are also vertices of 7(|7”|) they must also be vertices of each 7 (|T;|).
For k =2,...,m all faces in 7(|T} — 1|) that contain py_; are visible to
pr. hence 7(|T;|) has one vertex more than 7(|7]) and \; + d — 2 more
edges. We simply count

n(7 (7)) = g (w(IT])) + 1 =r + 1,
HE(T)) = A(T))) + (d=2) + X

which yields that

92(m(IT3])) = g2 (IT])) + Ai = 5+ As.

To determine the outer g-vector of T'=Ti,...,T;, we use Lemma 0.4.6,
which for j =1,...3 yields that

9;(T;) = g;(T +Zgg (7 (|Tx]))
Hence

() =q(T)+1+ (1) = q(T) +
92(T3) = ga(T) + 7+ (1 = )(r + 1) = gao(T) + (7”+1) L
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4.2 Step and Stay Construction

93(T;) =g3(T)+ s+ (i—1)s+ iZ::Aj.

[]

The push in extension is a step extension followed by m — 1 switch
extensions.

4.2 Step and Stay Construction

In this section we use the techniques introduced in the previous section

to create some f-vectors. Because the effect of each construction step
depends on all previous steps, we develop a scheme that allows us to
calculate in which order we have to use which type of construction.

We will define “icicle matrices” which are special 0/1 matrices. We also
define what a g-vector of this matrix will be. First we will investigate
the properties of these matrices and their g-vectors. Then we prove
by construction that the g-vector of any icicle matrix corresponds to a
g-vector of an inscribed simplicial polytope. The construction will be a
double induction, over dimension and number of vertices. In each step a
Delaunay triangulation will be created by using either a step or a stay
extension. The icicle matrix encodes when to use which of the two options.

For any d € N we define d’ := |4].

Definition 4.2.1 (Icicle matrix). Let d > 2 and n > 0. We call a matrix
I €{0,1}"*" an icicle matriz if for any 1 < k < d’ and 1 < m < n,

A = At 1,m -
We define the support |Ix| of the kth row of I by
I :={m=1,....n|agm=1}.
In terms of support, an icicle matrix is characterized by the subset property
|Ix| C |14, for k=2,...,d.

The g-vector of an icicle matriz I is given by

gi(l) = #{(31,...,&) c N

n>s > >8> 1 }
a(le):...:a(i’si):l ’

fori=0,...,d.
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4 Construction techniques of f-vectors of inscribable simplicial polytopes

Theorem 4.2.2 (Step and Stay Theorem). Letd > 2 andn > 0. Let
I := (a; ;) be a d' xn icicle matriz. Then there exists an inscribed simplicial
d-polytope P and a (d — 1)-dimensional hex Delaunay triangulation T
such that

gi(P)=gi(T) =g;(I)  fori=0,...,d.

Example 4.2.3 (Counting monotone sequences in an icicle matrix). By
definition g;(/) counts the number of non increasing sequences of length 1.
As an example, we give an icicle matrix and two such sequences. We mark
the sequences by brackets. On the left example we have s = (s1, S, 53) =
(5,4,1), on the right we have: s = (s1, 89, $3,54) = (6,6,5,5)

1 101 1] 1 1101 1 [
1 0071 1 1 1001 1 [
1 00 0 1 0 1000 [1 0
000 0 1 0 0000T(] 0

To count all possible sequences one can do the following: We define a
matrix Y by replacing each 1-entry in the second row of I by the sum of
all 1-entries in the first row that lie in the same column or to the right.
Then we replaces all 1-entries in the third row of I by the sum of all
new entries in the second row that lie in the same column or to the right.
We proceed with the following rows in the same way. If we sum up all
numbers in a row of ¥, we get the number of sequences that start in this
row. Example:

110111 1 10111\ g)=5
st oo 1) o f5 00321 p)=11
100010[’ 11 0 00 3 0] gs3(I)=14,
000010 0 00030/ g()=3

Each entry of ¥ counts the number of monotone sequences in I starting
at the current point.

We see that a 0-column can be deleted without changing g(I). If we
eliminate all 0-columns, the first row contains only 1-entries. In this case
we have: n = g;([).

Definition 4.2.4 (g-vectors of submatrices). Let d > 2 and n > 0. Let
I be a d x n icicle matrix. Then for k = 1,...,d and m = 1,...,n
we denote by 7™ the lower left submatrix of I that has k rows and m
columns. By definition it is an icicle matrix. Let G(I) € N¥*" denote
the following matrix of g-vectors of submatrices

Grm(l) == g(I¥™)  for k=1,...,d andm=1,...,n.
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4.2 Step and Stay Construction

Example 4.2.5. We continue with the icicle matrix from the previous
example. Then G([) is

(1,1,1,1,0) (1,2,2,2,0) (1,2,2,2,0) (1,3,4,4,0) (1,4,7,8,1) (1,5,11, 14, 3)
(1,1,1,0) (1,1,1,0) (1,1,1,0) (1,2,2,0) (1,3,4,1)  (1,4,6,2)
(1,1,0)  (1,1,0)  (1,1,0)  (1,1,0)  (1,2,1) (1,2,1)
(1,0) (1,0) (1,0) (1,0) (1,1) (1,1)

These entries are related to each other as we will see later.

Definition 4.2.6 (The complete g-vector matrix). Let d > 2 and n > 0.
Let I be a d’ x n icicle matrix. Then the complete g-vector matriz G(I)
is obtained by appending a last row and a 0-th column to G(I): For
k=0,...nset Gy := (1) and for m € [n] set G0 := (1,0,...,0) €
{O, 1}d/—m+1‘

(1,0,0,0,0)]
(1,0,0,0)] G(I)
G(I) = (1,0,0)
(1,0)]
M @ @ @O @) (@

This extends the definition of G(I) in the natural way: In the Oth column
of G(I) we are counting sequences in a matrix without entries. There is
none except for length 0, where we have the empty sequence. This also
explains the first entry of all g-vectors.

Lemma 4.2.7 (Recursive structure). Let d > 2 and n>0. Let I be a
d' x n icicle matriz. Then the complete g-vector matriz G(I) satisfies for
allm=1,....nandk=1,...,d that

[ ] Zf Ik,m = 1, then C}Yk’m(f) == C:;’]%m_l(l) + R(ék—i-l,m(]));
[ Zf Ik,m = 0, then Gk’m(l) = Gka_l(I).

Here R denotes the index right shift operator.

Proof. Let k,m be given, and let I} ,, = 1. We recall that each entry in
a g-vector relates to counting sequences of particular length that end in
the first row of the submatrix. This can be decomposed into two sets of
sequences, those that use the upper right 1-entry and those that do not.
Fori=1,...,d we have

S1y--.,81<5,<...<s51<m — 1 Cy S
#{ eN A(1,81) == Qi 5;) = 1 }—I_#{ eN

This implies that gi(Im’k) = g;(I™bk) + gi_l(Im’k“). In case that
Iy.m = 0, nothing changes except that the second term has to be omitted:
gi(I™) = gi(I™ 1), O

1<8;<...<s9<m }
L

A(1,s1) =+ -= Q(4,5;) =
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4 Construction techniques of f-vectors of inscribable simplicial polytopes

We set some notation before we start with the proof of the Step
and Stay Theorem. For unspecified x € N we define the north pole
N :=1(0,...,0,1) € R*, the projection that truncates the last coordinate
7 :R® — R*! and the stereographic projection ¢ : S* '\ {N} — R*~1.
In addition, for an unspecified polytope that contains N as its highest
vertex, we define the vertex projection ¥ that geometrically corresponds

to ¢.

Proof of the Step and Stay Theorem. It suffices to construct a (d — 1)-
dimensional hex Delaunay triangulation 7', such that g(7T") = ¢g(I). Propo-
sition 0.3.13 and Remark 0.4.2 then imply the existence of an inscribed
polytope P such that g(P) = g(I).

We can assume that the upper right entry of I is 1. We will create a
hex Delaunay triangulation 7} ,, for each l-entry Iy, = 1, such that
Grm(I) = g(Tym) holds. We do this by a double induction over k =
d,....,1Tand m=0,...,n. We think of

Tkm = (D) fork=1,....,d and m € I}

as a d’ X n matrix whose entries are hex Delaunay triangulations, except
that index (k,m) is “unavailable” if I, = 0. During the construction,
each “available” triangulation T} ,, will satisfy the following properties:

e Each entry: Tj,, is a hex Delaunay triangulation of dimension
d—2k+1and §(Tym) = Gem(L).

e Relation between row entries: T}, ,, is a step or a stay extension
of the “next available” triangulation “to the left” of T} ,, in T. If
there is none, then T} ,, is a step or a stay extension of the face
complex of a simplex, which we call T}, .

e The projection: For k& < d' the ground polytope 7(|7T%,|) is
inscribed in the unit sphere and it contains the north pole as a
vertex. This ensures the existence of the Delaunay triangulation
U o m(|Tkm|), where W is the vertex projection (stereographic) from
the north pole.

e Outer g-vector of the projection: For k < d' and T}, not being
“the rightmost” triangulation of the kth row of T, let T} ,,+ be the
“next right available” triangulation for T ,,,. Then the outer g-vector
of the projection W o (|1} m|) i8 Gry1m+ (L)

e Projection appears in the row below: With conditions as in
the bullet point above, we have that W o 7(|Tj m|) = Tyt1,m+ if this
position is available. If not, ¥ o (|7 ,|) lies at the “next available”
position “to the left” of position (k + 1, m™). If there is no such
position, then W o 7(|Tkm|) = Tkt10-

64



4.2 Step and Stay Construction

The idea is to evolve the recursion rule of G(I) in Lemma 4.2.7 to a
construction rule for €. The connection between different rows will be
the projection W o (|-]) and the connection between triangulations in the
same row will be that they are made by step and stay extensions of one
another.

Preparation:

We define Ty to be the face complex of any (d — 2d’ + 1)-simplex in
RA24+1 Tf { is even, this is a line segment, if d is odd, it is a triangle.
This is a hex Delaunay triangulation and its outer g-vector is (1,0). For

=1,...,d and m = 1,...,n we define the next left position
k,m)” = (k, a < .
(hom) = (ko {i < m})

For m € |Iy|, we define Ty ., to be any high extension of Ty ,)-. By
Lemma 4.1.3, we can assume that these extensions are hex Delaunay
triangulations of dimension d — 2d’ 4+ 1. The last row of T is then

Two - Ty - Tam |

The dots indicate some unknown entries. The hyphens indicate a sequence
of unavailable entries.

First induction, on &k (every second dimension): We start a “re-
versed” induction over the rows k = (d' — 1),...,1 in this order. For a
fixed row index k, we assume that for all m € |I 1], the following holds:

e The first: T} is the face complex of a (d — 2k — 1)-simplex that
has an equator.

e Each entry: T}, is a hex Delaunay triangulations of dimension
d— 2k —1 and g(Tk—H,m) - Gk+1,m(I)

e Relation between row entries: 7j.;,, is a high extension of
T(k-&-l,m)* .

We see this holds for k£ +1 = d'.

First induction, induction step: Let VV be the vertex set of T} .
Then conv(¢~1(V) U {N}) is a (d — 2k)-simplex in R¥%* x {0}. Let
Tr.—1 be its face complex in R?-2**1. Note, that it has an equator and
Vo n(|Tk,-1]) = Tkt1,0- If we think of T also having a column with index
—1 and 0 then we have

Tk7_1 *

Tit1,-1 Tht10
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4 Construction techniques of f-vectors of inscribable simplicial polytopes

Second induction, on m (number of vertices): To define the trian-
gulations in the kth row, we start an induction over m € |Ix| U {0}. For
each m € |I;| U {0}, we define the next position m™ with respect to k.
We also define the position m

m* :=min {i € || U {0} |i < m},

m = max{i SR U{O}’z’ < m+}.

The position m can be described as “the last entry below the next
entry”. In the same way we define m*™ := (m™)* and m* := (m*) for
m* € |Ix] U{oo}. The induction assumption is:

e Each entry: Tj,, is a hex Delaunay triangulation of dimension
d— 2k +1 and g(Tk’,m) = Gk’m(I)
e The projection: Vo (|1} |) = Tht1.m-

Second induction, initial step: We create the initial step for m = 0.
Then m™ is the position of the first 1-entry in the kth row. Because I is
an icicle matrix, 0 is either 0 or 0*. If 0 = 0, then we define T to be
any stay extension of Ty _;. A stay extension does not change the ground
polytope of the triangulation, so we get

Vor([Thol) = Wor(|Th 1) = Tht10 = Thrp-

In case that 0 = 0%, the induction assumption tells us that T}, 410 18
an extension of Ty by a point p. Then we define T}, to be any step
extension of T} _; by the base point ¢~!(p). Again

Wo 7T(|Tk,0|) = Tk+1,()-

By Lemma 4.1.3, we know that in both cases T} is the face complex of
a (d — 2k + 1)-simplex, which is a hex Delaunay triangulation. Its outer
g-vector is g(Tho) = (1,0,...,0) = Gyo(I). So for m = 0 this holds. So
¢ looks like

Ti-1 Tho === (Tho+) *...
N
Tk+17,1 TkJrL@ --- — *...7
or
Tk7_1 Tk70 -=- (Tk’0+) ...
N\ e
Tiv1,-1 Thrrio - Thp *---
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4.2 Step and Stay Construction

The arrow indicates the projection ¥ o 7(]-]).

Second induction, induction step: Assume m satisfies the induction
condition and m™ # oo, which would end the induction. Then we have
two cases:

In the first case we assume that m** = oo, or [ 1 m++ = 0. Then
m* = m, because [ is an icicle matrix. We define T} ,,,+ to be any stay
extension of T} ,,. This leaves ground polytope unchanged, and we get:

U o 7T(|Tk7m+|) =Yo W(’Tk,m‘) = Tk—HJﬁ = Tk+17m+

In the second case we have that m*™* < oo and Ijyq,,++ = 1. Then,
mT = m™T. Because I is an icicle matrix and by the induction assumption,
Tht17+ is an extension of Ty 5 by a point p. We define T, ,,,+ to be any
step extension of T ,,, by the base point ¥~!(p). Then:

U o 7T(|Tk7m+ |) = Tk+17m+

By Lemma 4.1.3 we can assume in both cases, that T}, ,,+ is a hex Delaunay
triangulation of dimension d—2k+1. Using Lemma 0.4.6 and Lemma 4.2.7,
we get that

I(Tim+) = G(Tem) + R(G(Thr1,m))
= Gim(I) + R(Gram(1))
= Grmr-1(I) + R(Grirm+ (1))
— Gk’m+ ([)

We illustrate some examples of €. In the first example [ 4q ,,++ = 0, in
the second example ;1 ,,++ = 1. Again, the arrows indicate projection.

ok Ty o Tyt - (D) %
N
ook Thyim - - - - *
Tk Tk,m - Tk,m+ T (Tk,7rz++) *ao..
N N
* .. ek Tk+17m --- Tk+1,ﬁ1+ X ...

Conclusion: After the induction over m the requirements of the in-
duction step k are satisfied. This implies that T}, is a hex Delaunay
triangulation of dimension d — 1 and

g(Tl,n) = Gl,n(]) = g(I)
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4 Construction techniques of f-vectors of inscribable simplicial polytopes

4.3 Applications of the Step and Stay Theorem

In this section we present some result based on the construction techniques
that we have developed in the last two sections.

Theorem 4.3.1 (Pure binomial coefficients). Letd > 2 andny > --- >
ng > 0 be integers. Then there is an inscribed simplicial polytope of
dimension d whose g-vector is

ny ng + 1 ng +d —1
]

Note that by Corollary 0.1.16, these are the only g-vectors of the type
g=00).- ()

Proof. By theorem 4.2.2 it suffices to create a d’ xn icicle matrix I = (ag, )

such that g = g(I). We define ag,, = 1 if and only if m > n — n;. Then
fori=1,...,d we have

s1<n }

(is) = 1

The numbers n,, ..., ng are decreasing, and we see that a(;s,) = 1 exactly
if s, > n —mn;. So we can simplify

gi(I) =#{(s1,...5) €N’

1<s <o

2 IN

g:i(I) = #{(31,...31») e N

a(LSl) R

(n—n@-)ésiémﬁslgn}.

Rephrased,

G(D)=#{(s1,...,5) €N

i+i—1
0<s; < --- <51§(ni+z’—1)} = <n +,Z )

?
[l

Proposition 4.3.2. Let d > 0. For every simplicial d-polytope there
exists an inscribed simplicial d-polytope with the same number of vertices
and edges.

Proof. Dimension 0 and 1 is trivial, dimension 2 and 3 are covered by
stacked inscribable polytopes. So we assume d > 4. It suffices to show
that for any simplicial d-polytope P there exists a (d’ x n) icicle matrix
I such that g(I) = (1,n,g2,...,94) and n = g,(P) and ga = g2(P).

68



4.4 Controlling the number of vertices, edges and 2-faces

Let the first row of I consist of n many 1-entries. The second row shall be
v=(v1,...,0,) € {0,1}" and all other entries shall be 0. For any choice
of v this is an icicle matrix and ¢; (/) = n.

We define integers a > b > 0 through

(1) = (“;1> b

Note that this is unique with a < n and equality only if b = 0. We define
fori=1,...,nthat v, = 1l if and only if i > n —a and i # n —a + b.
Then

(D) =[(a+1)+ - +1] —(a+1-b) =[a+- - +1] +b= (agl>+b.

]

Corollary 4.3.3. Let d < 5. For every simplicial d-polytope there exists
an inscribed simplicial d-polytope with the same f-vector.

Example 4.3.4. This scheme is incapable of creating the vector g =
(1,2,2,1), which is the g-vector of a simplicial polytope. Let us assume
that there is such a matrix I. Since ¢;(/) = 2, it must contain two
1-entries in its first column. We can assume that there are no 0-columns,
so I has two columns. Since g, = 2 we have one choice to set the second
row

11 11 a(l) =2,
I=11 0], YX=12 0], go(I) =2,
* ok * ok g3(I) = *x(even)
Since all entries in the second row of ¥ are even and g3(I) is a sum of

numbers of the second row, g3 = 1 is impossible.

4.4 Controlling the number of vertices, edges and
2-faces

In the last section we have seen that the Step and Stay construction is
not capable of creating all possible (g1, g2, g3) combinations that simplicial
d-polytopes have. This section will provide a different scheme that allows
us to show the following theorem.

Theorem 4.4.1. Letd > 2 and P be a simplicial d-polytope. Then there
exists an inscribed simplicial d-polytope with the same number of vertices,
edges and 2-faces.
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4 Construction techniques of f-vectors of inscribable simplicial polytopes

Corollary 4.4.2. For d <7 and each simplicial d-polytope there is an
inscribed simplicial d-polytope with the same f-vector.

Corollary 4.4.3. For d > 6 and each simplicial d-polytope there is an
inscribed simplicial d-polytope with the same g1, g2, g3.

Similar to the last section, this theorem is equivalent to the existence of
a hex (d — 1)-dimensional Delaunay triangulation 7" such that

91(T) = q1(P),  g2(T) = g2(P), g3(T) = g3(P).

To prove the theorem we will define the Gs-matriz and its evaluation,
which will be three values (g1, g2, g3). We first show that for any g1, g2, g3
that appear as first g-vector entries of simplicial polytopes a G3-matrix
can be constructed that has them as evaluation. Then we prove by
construction the existence of an inscribed simplicial polytope whose g-
vector starts with gy, g2, g3. Similar to the icicle matrix the G3-matrix
will serve as a “construction recipe”.

Definition 4.4.4 (G3-matrix). A (2 xn)-matrix J = () is a G3-matriz
of length n, if it satisfies:

e Fori=1,...,n, we have v; € {0,1} and w; € {0,...,n}.
e Forevery:=1,...,n where v; = 1, let m > 7 be the minimum such
that m = n or aj,,4+1 = 1. Then

7

m
Zwk S Z Vi
k=i =

k=1

We define the evaluation of a vector x € N" by
eval : N — Ny, eval(z) :==nay + - + 1o, = Y x5(n— i+ 1).
i=1

and the evaluation of a G'3 matrix () of length n by

eval(J) := (n,eval(v), eval(w)).

Example 4.4.5. Let us check whether the following matrix is Gj.

J—1101100011
~\010012011%5

We have to check the sum formula. To do that we derive a vector b of
upper bounds from the first row

b:(12*34***56).
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4.4 Controlling the number of vertices, edges and 2-faces

Then we compute a vector based of w that we have to compare to b,
(0 (140) * 0 (1+24+0+1) * % * 1 6).

Since b is component wise greater or equal to the second vector, J is a
G'3 matrix.

In the next example J' is not a G3-matrix. We denote the values that we
have to compare as subscript.

J/_ 11 12 0* 13 14 O* O* 0* 15 O*
33 Op+2) 2+ 33 201241400 2+ Lo 0y 4uqr) L

The violation appears in column 1 and 5.

Lemma 4.4.6 (Describing g1, g2, g3 by a G3-matrix). Let d > 6 and P
be a simplicial d-polytope. Then there exists a Gs-matrix J such that

eval(J) = (g1(P), g2(P), g3(P))-

Proof. Let n = g1(P) and let J = () be a matrix of size 2 x n with
variables v, w € Nj. Similar to the proof of Proposition 4.3.2 we define
integers a > b > 0 such that g, = (“;1) + (11)) and for i =1,...,n we set

v; = 1l if and only if i > n —a and i # n —a+b. Then g = eval(v) holds.

For the construction of w, we define a function that returns the maximal
possible value below each 1 entry of v. Below a 0 it shall return 0,

b:{l,...,n} = Ny, b; :=v; > g, fori=1,...,n.
k=1

By the g-theorem, 0 < g3 < (af) + (bgl).

3 2 )
w; := b;, which, by definition, yields a G3-matrix.

If b = 0, then by construction of v, this is

Case 1: We assume that g3 = a+2) + (bH) Fori=1,...,n, we define

w=1(0,...,0,1,...,a)

and we get

2
eV&l(w):a-1+(a—1)~2.-.+1.a:(a_?t >:g3'
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4 Construction techniques of f-vectors of inscribable simplicial polytopes

If b > 0, we have

eval(w) = eval(0,...,0,1,...,0,0,b4+1,...,a)
= eval(0,...,0,0,1,...,0,0+1,...;a)+ (1 +---+10)

- (1)

Case 2: We assume that g3 < (G}:Q + bgl). We will now, in three steps,

increase the entries of a vector of length n, until its evaluation is g3. For
0 < k < b,, we define vectors w* € N§ by

w? = min(by, k), fori=1,...,n.
These vectors have the shape
wh=(0,...,0, 1,2,...,k, k,...., k).

There is one exception: At position b a 0 is inserted and all entries up to
position b are shifted by one position to the left. Now we need to find
the right k.

k= mjax{eval(wj) < gs}

In case that eval(w*) = g3, we have found a suitable vector w := w*.

Then J is the desired GG3-matrix.
Assume eval(w”) < g3. We define for 1 < s < n vectors w™* € NI by

k,s . min(bi, k + 1) 1< S,

? ':{min(bi,k’) s <i. fori=1,...,n.

These vectors have the shape
w™ =(0,...,0, 1,...;k+1, k+1,... k+1, k,... k).
Again one exception: At position b a 0 is inserted. Let
s = m?x{eval(wk’i) < g3}

In case that eval(w®*) = g3, we have found a suitable vector w := w"*

and J is a G'z-matrix.
Assume eval(w®®) < gs5. Since k is maximal, we have s < n. Using the
definition of the evaluation and the fact that s is maximal we get

r = g3 — eval(w®*®) < eval(w®*t!) — eval(w®*) = n — s.
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4.4 Controlling the number of vertices, edges and 2-faces

We set t :=n —r + 1 and define w by

wh i #t,

7

w; = I s , fori=1,...,n.
w,"+1 i=t,

Then eval(w) = eval(w®*) +r = gs.

We have left to check that J is G3. The only non obvious position is ¢.
We see that ¢ > s+ 1 hence for t # b we have w;”® < b,. In case that
t = b, we have to combine the information of positions ¢ and ¢t — 1. But
since we then have wffl < b, this is no problem. This shows that J is a
(G3-matrix. O

Lemma 4.4.6 allows us to reduce the proof of Theorem 4.4.1 to the
following problem: Given d > 6 and a Gsz-matriz J, construct a hex
(d — 1)-dimensional Delaunay triangulation T' such that

eval(J) = (q1(T), g2(T), g3(T))-

We set some notation: For unspecified z € N we define the north pole
N :=(0,...,0,1) € R?, the projection that truncates the last coordinate
7 : R” — R*7! and the stereographic projection ¢ : S*\ {N} — R*.
In addition, for an unspecified polytope that contains N as its highest
vertex, we define the vertex projection ¥ that geometrically corresponds
to ¢. (This vertex projection is also defined in case that not all vertices
lie on the sphere. Then we take the radial projection that corresponds to

¢.)

Proof. Let J = () be a matrix of size 2 x n with row vectors v, w € N.

Let b,c € N be
% %
bi:ZUj7 ci:ij.
i=1 j=1

We will create a matrix like structure & that consists of three row vectors
of hex triangulations.

T, To ... Tpeo Tno1 Th
6: A—l AO A] An—l An
By By By, ... By, B,

This will have the following properties:
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4 Construction techniques of f-vectors of inscribable simplicial polytopes

e The entries of the first row are (d — 1)-dimensional hex Delaunay
triangulations, where T} is a simplex and T, is the desired triangu-
lation that we aim to construct. Each entry is a high extension of
its left neighbor.

e In the second row we have hex triangulations of dimension d — 3.
Each is the vertex projection of the ground polytope of the entry
above it.

e The third row consist of hex Delaunay triangulations of dimension
d — 5. They will also correspond to some ground polytope vertex
projections of entries of the second row.

In a preparation step, we will create B_y,..., By, Ag and 7. Then
we use an induction over ¢ = 1,...,n in which we create T;_; and A; as
extensions of T;_5 and A; 1. In a final step, we build 7},. Throughout the
construction we keep track of the outer g-vector of the components.

Preparation: Let B_; be the face complex of any (d — 5)-simplex in
R4 For m =0, ...,b, let B,, be any proper extension of B,,_; by a
point p,,. We can assume they are all Delaunay triangulations.

[B_l,BO7Bb1;Bb27 e 7an]

Let V C R?7° be the vertex set of B_;. Then conv(¢~1(V) U {N}) is an
inscribed (d — 4)-simplex in R4 x {0}. Let A_; be its face complex in
R?=3. By definition, it has an equator and W o (|A_;|) = B_;. Let Ay
be any high extension of A_; by the base point ¢~(py). Then Ay is the
face complex of a (d — 3)-simplex. This is a hex Delaunay triangulation
and W o w(|Ag|) = By. Let V' C R%3 be the vertex set of Ay. Then
conv(¢p Y (V') U {N}) is a (d — 2)-simplex in R*2? x {0}. Let T, be its
face complex in R4, It has an equator and W o w(|T_;|) = A,.

T_1 ...
G = A,l AO ...
B,l BO X ...

(The new part is depicted in red. The blue part has not yet been con-
structed.)

Induction on the number of vertices:

Our induction will start with an optional step that appears if v; = 0 and
then iterate over every ¢ that has v; = 1. It will define all entries in &
except T,,.

The induction assumes for a given ¢ € N that
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4.4 Controlling the number of vertices, edges and 2-faces

In case © > 1 we have that T, 5 is a hex Delaunay triangulations of
dimension d — 1 and g(T;_s) = (1,7 —2, Xi23 b;, 07 ¢j, .. ).
For i = 1 we have T}_, is a hex triangulations that is a (d—2)-simplex
in R4 1,

A;_1 is a hex triangulation of dimension d — 3 and

Vorn(|Ti-g|) = Aiy.

\II @) W(’Aifl‘) = Bb* 1

o g(Ai—1) = (1,b-1,¢1, ...).
The case v; = 0: Let s be the maximal number such that
v = =0, =0.

For k =1,...,s we define A, := Ay and let T},_; be any stay extension
of Ty—5. By Lemma 4.1.3 we can assume that Tj_; is a hex (d — 1)-
dimensional Delaunay triangulation. Since T} is a stay extension, the
image of its projection is unchanged. We have

Von(|Ts1|) = Von(|T_1]) = Ay = A
Vo n(|As]) = By = B,

g(As) = g(Ap) = (1,0,0, ...).
Lemma 0.4.6 shows that g(Ts_1) = (1,5 — 1,0, ...). An illustration:

T,l TO Ts,1 ...
J:<8 8 :">,6: A, Ay =A, ... =A, x...
Bl BQ B() BO * ...

We now continue with two cases in which v; = 1.

Case 1: Assume that v; = 1. Assume further that v;;; = 1 or i = n
holds. Hlustrated:

J:("' * 1 1*) or ( * 1>'
Lol kW % R

Since v; = 1, we have that b; = b,_; + 1 and hence By, is an extension
of By, , by a point p. We define A; to be any flat extension of degree w;
of A;_; by the base point 1)~*(p). By Lemma 4.1.3 we can assume that
A; is a hex triangulations of dimension d — 3 and ¥ o 7(|A;|) = Be,. By
Lemma 0.4.6 we have that

g(Az) = (1, b1+ 1, Cio1 T w;, .. ) = (1, [Ji, Ciy -+ )
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4 Construction techniques of f-vectors of inscribable simplicial polytopes

Let p’ be the new point in A;. We use Lemma 0.4.5 to create a new vertex
p" € R?¥2 and define T;_; to be any high extension of Tj_, with base
point p” such that ¥ o n(|T;_1]) = A;. Tllustrated:

e TF2 TF1 L
J:<“' * 11 *)7 S=|--% A, A ox.l
PR o e e .ok Bbi—l Bb

k3

By Lemma 4.1.3 we can assume that 7;_; is a hex Delaunay triangulations
of dimension d — 1. In case that ¢ = 1 the extension of 77 _ is the face
complex of a simplex and

g(T:) = (1,0,...,0).
For i > 1, Lemma 0.4.6 shows that

G(Tim1) = G(Tiz2) + R(g(Air)) = (1,0 — 1, i b;, i ¢y

(R denotes the index right shift operator.)

Case 2: Assume that v; =1 and v;;; = 0. Let ¢ be the maximal number

such that v;11 = --- = v, = 0. Illustrated:
<* 1 0 ... 0 *> <* 1 0 ... 0)
J= or )
sk Wy Wil ... Wy kLl sk Wy Wil ... Wy
Then
Bbi:"':Bbt:Bhi—l-H

and hence By, is an extension of By, , by a point p. We define A, to
be any flat extension of A;_; of degree w; 4+ --- + w; with base point
1 ~Y(p). The new created point shall be p’ € R?3. We see that A, is a
hex triangulation of dimension d — 3 and

t t
g(At) = (szj + 17ij + (wl T+ +wt)>*) = (17 bt7 ct7*)'
=1 j=1

Because the extension is flat, all vertices in the boundary of A; ; also
lie in the boundary of A;. By using Lemma 0.4.5 we create a new point
p"” € R%2 such that it could be used for a step extension 7" of Tj_, and
such that Won(|7"]) = A;. This allows us to apply Lemma 4.1.9 to create
a push in extension (7;_i,...,7;_1) that has corresponding “visibility
numbers”

A1y ooy M) = Wiy (Wi + Wign)y oy (Wi + -+ -+ wy).
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4.4 Controlling the number of vertices, edges and 2-faces

The last base point shall be p”, then ¥ o 7(|7;—1]) = A;. By Lemma 4.1.9
Ti—1 is a (d — 1)-dimensional hex Delaunay triangulation and we have:

92(Ti) = g2(Tia) + (t =i+ 1)(bi-1 +1) — 1

i—2 i—1
= bp+b 1+ (t—1)b; =D by,
k=1 k=1

t—1
93(T;) = g3(Ti—a) + (t — i+ Dejmr + DN
j=1

i—2 t—i -1
= Z Cp +¢_1+ Z(Ci_l + )\J) = Z C.
k=1 j=1 k=1

Mlustrated:
J:<...* 1 0 ... 0 *>
sk Wy Wil ... Wy kLl
s X E—2 Ti—l Tt—l * ...
G=|--% Ai—l Az At ...
cee Xk B[,Fl Bbi -=- Bbt * ...

The final step: To complete the construction, let 7,, be any proper high
extension of T,,_,. Illustrated:

Then T,, can be assumed to be a Delaunay triangulation and by Lemma 0.4.6
we get
Ciy « .. )

n

g(Tl,n) = (1a n, Z bi7

n
i=1 =1

= (1,n,zn:ivi,zn:iwi, ) = (1,n,eval(v),eval(w), )

i=1j=1 i=1j=1
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4 Construction techniques of f-vectors of inscribable simplicial polytopes

4.5 Discussion about the sufficiency part of the
g-Theorem

The last sections invested quite some effort to construct inscribed poly-
topes with certain f-vectors. But why is this necessary? Billera and Lee
already gave a construction for simplicial polytopes in the proof of the
necessity part of the g-Theorem. Can this construction be modified to
construct inscribed simplicial polytopes as well? We discuss this question
and point out where the problems appear.

4.5.1 The proof by Billera and Lee

In 1980 Billera and Lee proved the sufficiency part [6] of the g-Theorem
for simplicial polytopes. They first proved the existence of a simplicial
sphere for a given g-vector. Then in a second part they realized the
construction geometrically to get a polytope.

Theorem 4.5.1 (The sufficiency part of the g-theorem, Billera & Lee [6]).
Let d > 1 and h = (1, hq, ..., hq) be an integer vector that satisfies

e hi=nhg, fori=0,...,d,
® hiy1>h; fori=0,...,d —1, and
L] hi+1_hi S (hi—hi_1)<i> fOTiZO,...,d/—l.

Then h is the h-vector of a simplicial d-polytope.
(The corresponding complete g-vector g = (go, - - -, ga) 1S given by go = 1
and g; = h; — h;_q fori=1,...,d.)

Lemma 4.5.2 (Simplicial (d — 1)-spheres, Billera & Lee [6]). Let d > 1
and h = (1, hq, ..., hq) be an integer vector that satisfies

e hi=hg, fori=0,....d,
e hiy1>h; fori=0,....d —1, and
[ ] hi+1—hi S (hi—hi_1)<i> fOTiZO,...,d/—l.

Then h is the h-vector of a simplicial (d — 1)-sphere.

(The corresponding complete g-vector g = (go, .- ., ga) 1S given by go = 1
and g; = h; — hi_y fori=1,...,d.)

Sketching the proof of the lemma (full version: Billera & Lee [6]).
We aim to construct a (d — 1)-sphere for any complete g-vector g =
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(go, - - -, ga) that satisfies the above given conditions. The first condition
is also known as Dehn-Sommerville equations and it automatically holds
for simplicial spheres. Hence it suffices to construct a (d — 1)-sphere with

g-vector g = (1,q1,...,9a).

Outline: Let n =d + 1+ g;. We choose a set of facets B of the cyclic
polytope Cyy1(n), such that the corresponding simplicial complex is a
shellable simplicial d-ball and its boundary complex is a (d — 1)-sphere
with the desired g-vector.

e Let V' be the vertex set of a cyclic polytope of type Cyi1(n). As
described in Gale’s evenness criterion, we order its vertices vy, ..., v,
and define for each F' C V the binary vector brp € {0,1}" by
bF7i:1<:>U¢€F.

e Let £ be the set of facets of Cy1(n) that contain v; and that
satisfy, that the number k£ > 0, that shall be the minimum such
that v, g, ..., v, are vertices of F, is even. (This is called an even
right end set). The reverse lexicographic order (read from right to
left) of the corresponding 0/1-vectors induces an order on €.

e We identify each 0/1-vector of a facet of £ with a monomial in
the following way: We decompose all 1-entries (in case d is odd we
excluding the first 1, which is at position 0) into consecutive pairs
P1,...,pa of l-entries. Then we define a monomial in variables
Xo, X1, X5 ... that contain as many X; as there are pairs that have
exactly ¢ O-entries to its left, for i = 1,2,.... We define X, :=1

Example: (1,1,1,0,0,1,1,0,1,1,1,1) corresponds to
1- Xy X3 X3 = XoX3.

and (1,1,1,1,1,1,0,1,1,0,1,1,0,0) corresponds to
1-1-1-X;-Xo =X, X5

e Let @™ be the set of monomials of degree at most n. Then the above
described identification « : £ — ®" is injective and it preserves a
reverse lexicographic order,
which can be introduced to ®™ similar as we did for {0,1}".

e We define a LOIM (reverse lexicographic order ideal of monomials)
M C ®™ by the given g-vector, such that we have exactly g;
monomials of degree i, for i = 1,...,d. It is shown that such a
LOIM is unique and it exists if and only if g = (go, ..., ga) satisfies

the requirements of the theorem.
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4 Construction techniques of f-vectors of inscribable simplicial polytopes

Example: Let d’ = 3, then g = (1, 3,4, 2) is associated with
1, x,y,2, xx,2Y, T2, Yy, TIT,TTY.
This is denoted in reverse lexicographic order by
l<r<zrr<zrr<y<ay<zry <yy <z <zxz<y:z.

e We define the set of facets B := a~!(M) and the corresponding
simplicial complex A.

e The paper shows that the order, that is induced on ‘B, is a shelling
order. It also turns out that a facet whose corresponding monomial
degree is p intersects exactly p previous facets in (d — 2)-faces.
Therefore h(A) = (g1,...,9a,0...,0) € R¥™! and thus A cannot
contain interior faces of dimension smaller than d — d’'.

e Since A is shellable, OA is a simplicial sphere.

e By the general formula h(t) = (1—t)*f(:%;) and a short calculation
we get

[

After the combinatorial part was done the paper realizes the concept by
a construction of a polytope. We will be very brief here since this part is
very technical.

Sketching the proof of the theorem, full version: Billera € Lee [0].

Let n = d+ 1+ g;. For given d > 1 and n a cyclic (d 4+ 1)-polytope
Cay1(n) is constructed, by carefully choosing its vertices as points with
increasing parameters on the moment curve ¢ : R — R starting by
v; = ¢(0) = 0. The construction of this polytope depends on n and d but
not on rest of g. Arbitrary close to v; a point z is defined that lies in a
specific direction from 0. The vertex figure of z in conv({z} U C') then
turns out to be a simplicial polytope and its g-vector is g. The facets of
C that are visible from z correspond exactly to the set of faces ‘B that
are chosen in the previous proof. The boundary of the complex A of the
previous proof corresponds here to the boundary of the vertex figure of
z. [

4.5.2 Geometric interpretation

We derive some geometric aspects of the construction that is given above.
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4.5 Discussion about the sufficiency part of the g-Theorem

Let P be the combinatorial type of the vertex figure of z in conv({z} UC).
By Gale’s evenness criterion, we see that the vertex figure of w in C' has
the combinatorial type of a cyclic d-polytope of n — 1 vertices (just cut
of the first entry of the binary vectors). Since w and z have almost the
same position, the only difference between P and the vertex figure of v in
C is that P has one additional vertex which corresponds to the edge zw.

This in particular shows that there is a cyclic d-polytope C' whose face
hyperplane arrangement provides one cell for each g-vector of any simpli-
cial d-polytope of n vertices. To create a simplicial polytope for a specific
g-vector, we just have to take the convex hull of C' with a vertex in the
right cell.

Remark 4.5.3. The paper also notes that the proof can be modified
such that C' can have arbitrary more vertices (more than n). Using this
modification and the fact that the realization of C' is independent of g,
we can follow that for any d and n there is a realization of Cy(n) whose
face hyperplane arrangement provides one cell for each g-vector of any
simplicial d-polytope of at most n vertices.

4.5.3 Approach for inscribable polytopes

To adapt this concept to inscribable polytopes we need three conditions.
First, a cyclic d-polytope of n — 1 vertices that is inscribed in the unit
sphere. Second, its face hyperplane arrangement has to provides a cell
that corresponds to a given g-vector, and third, the interior of this cell
has to intersect the unit sphere.

The first part is easy since by Proposition 1.3.4 all cyclic polytopes are
inscribable.

The second part is at least non trivial since the face hyperplane arrange-
ment of a cyclic polytope type in dimension greater than two is not
unique (we always assume that the face hyperplane arrangement lives in
projective space). This holds even under the restriction that the vertices
are placed on the moment curve as the following example shows.

Proposition 4.5.4 (The face hyperplane arrangement of a cyclic polytope

is not unique). There are two cyclic 3-polytopes with 8 vertices, whose
face hyperplane arrangements (in projective space) differ combinatorially.
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4 Construction techniques of f-vectors of inscribable simplicial polytopes

S

intersection ©

Figure 4.5: View from Z-axis: A cyclic 3-polytope whose supporting
hyperplanes of the four gray facets meet in a single point at
the Y-axis. A perturbation of p’ changes the combinatorics of
the face hyperplane arrangement.

Proof. Let ¢ be the moment curve in R3,
c:R— R3 c(t) = (t, 1%, 17).

We will construct eight points in symmetric position on |c| such that the
corresponding cyclic polytope has four face hyperplanes that meet in one
point on the Y-axis. By perturbing one of the points, only one of the
hyperplanes will be affected and leave the intersection, which implies the
proposition.

We define
z:=¢(3)=1(3,9,27), p:=c(1)=(1,1,1), q:=c(-1)=(-1,1,-1).

See Figure 4.5. First we create two hyperplanes H, and H, that contain
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z and that lie tangent to |c| at p respectively gq.

oc oc
E(l) - (17273)7 E(_l) - (17 _273)7

vy i=z—p=(2,8,26), n,:=(1,2,3)xv,=16-(51,-1)
H,:={z e R*|((5,1,~1),2) = -3}

vi=2—q=(4,8,28), n,:=(1,-2,3) xv,=4-(7,-5,1)
Hq::{:cER3’<(7,—5,1),a:):3}

It is easy to see that the intersection of H, and H, with the Y-axis is
at —3 and —g. We define a point ¢’ := ¢(1 + €) with a sufficiently small
¢ > 0 such that the hyperplane H; := aff(q, ¢, z) intersects the Y-axis
strictly between 0 and —3. We define p’ := ¢(r) with an —1 < r < 0 such
that H), := aff(p, p', 2) intersects the Y-axis exactly where H; does. This
is possible since the intersection value varies continuously from 3 to 0 as
we move r from —1 to 0.

We define points 2/, ¢”, p” that lie symmetric to z, ¢, p’ in the sense that

We now have eight points z,p',p,q", ¢, q,p", 2’ that appear in this order
on the moment curve. The cyclic polytope that is the convex hull of these
points, has, amongst others the following face hyperplanes: H), H, as
well as H)) = aff(p,¢", 2') and H] := aff(q,p",2"). By symmetry, they all
meet at a common point on the Y-axis.

If we move p' a bit along |c[ only H) will be affected and leave the
intersection point. Hence C' with a perturbed vertex p’ has a different face
hyperplane arrangement than C, although both are cyclic 3-polytopes of
eight vertices that lie on the moment curve. O]

Hence, even if it fells unlikely, there might be a g-vector and a correspond-
ing dimension, such that no inscribed cyclic polytope provides the desired
cell in its face hyperplane arrangement.

The third part is the hardest. Assume we have given an inscribed cyclic
polytope C and a specific cell of its face hyperplane arrangement that
does not intersect the circumsphere. How can we change the position
of the vertices, such that the cell does intersect the sphere? The first
attempt would be to apply a Mébius transformation of the unit sphere to
the vertices of C'. Unfortunately, these Mébius transformation extend to
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4 Construction techniques of f-vectors of inscribable simplicial polytopes

projective transformations of RP¢. Since the whole problem is projectively
invariant such transformations do not change anything. The next idea
would be to move the vertices of C' along the sphere until the desired
cell intersects the circumsphere. This is hard, since the polytope has to
remain a cyclic polytope and we do not even understand under what
conditions the desired cell remains to be a part of the face hyperplane
arrangement. This problem is in deed serious, since we know examples of
inscribable polytope types where even a stacking at a specific facet creates
a polytope of non inscribable type (see Theorem 2.2.1). This underlines
that there might be g-vectors, for which this approach cannot succeed at
all.

Conclusion: We see that modifying the proof of Billera and Lee to an
inscribed version contains a lot of difficult problems. What about our
approach? We see that the possibility of creating inscribed polytopes are
far greater than the two constructions schemes we have shown in this
thesis. In fact these schemes did not fail at some dimension, but they
became unhandy because the result of each step depends on all previous
steps. Maybe two additional dimensions can be proven with such type
of schemes, but it will be a lot of work and it does not solve the general
question.

We state the following conjecture:

Conjecture 4.5.5. For any d and any simplicial d-polytope, there exists
an inscribed simplicial d-polytope that has the same f-vector.
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5 Geometric composition of inscribable
polytopes

In this chapter we discuss how a facet of an inscribed polytope can the
changed, such that the result is still inscribed. It turns out that such a
facet must at least allow a stacking with a vertex on the circumsphere.

In the first section we call this property inscribed stackable and discuss
which polytopes provide inscribed stackable facets. In the next section
we show that all inscribed stacked polytopes, and all polytopes that are
made by high extensions have realizations that can be glued to inscribed
stackable polytopes while inscribability is preserved. In the last part we
discuss under what conditions two arbitrary inscribed polytopes can be
glued facet to facet to form a new inscribed polytope.

5.1 Inscribed stackable

We discuss under what conditions an inscribed polytope possesses a facet
that can be stacked, such that the resulting polytope is inscribed.

Definition 5.1.1 (Inscribed stackable). Let d > 1 and let P be an
inscribed d-polytope and F' a simplicial facet of P. If there is a point
v on the circumsphere of P that can be used to stack a facet F' of P,
then we call F' and P inscribed stackable. The combinatorial type shall
be stack inscribable. We call P inscribed double stackable if it has two
distinct simplicial facets such that both facets can be stacked, one after
the other, by points on the circumsphere of P. We call this combinatorial
type double stack inscribable.

Remark 5.1.2 (Simple vertices). A stacking on a simplicial facet will
always create a simple vertex. By Proposition 2.2.5 we see that an
inscribed simplicial polytope that contains a simple vertex that lies in
two simplicial facets, is automatically inscribed double stackable.

There is an obvious criterion whether a facet of an inscribed polytope is
inscribed stackable.
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5 Geometric composition of inscribable polytopes

Proposition 5.1.3. Let d > 1 and let F' be a simplicial facet of an
inscribed d-polytope. Let Hy, ..., Hy be the supporting hyperplanes of the
facets of P that intersect F' in a ridge of P. Then F' is inscribed stackable,
if and only if one of the following conditions hold.

e The intersection of Hy,...,Hy is a point beneath F.

e The intersection of Hy, ..., Hy is empty.

e The intersection of Hy, ..., Hy is a point beyond F', but outside the
unit sphere.

This is a corollary of Definition 0.1.7 using the beneath beyond technique.
Obviously, the mentioned intersection point changes under transforma-
tions of PGL(S9!). For 3-polytopes, we found a condition that is in-
variant under such transformations. Before we present it, we need some
definitions.

Definition 5.1.4 (The outside of a circumsphere in S%). Let d > 1.
Let P be a d-polytope inscribed in the sphere S and let F' be a facet
of P. Then we call the intersection of the affine hull of F' with S the
circumsphere of F. We call the space beyond F' intersected with S the
inside of this circumsphere and the space beneath F' intersected with .S
the outside of this circumsphere.

Figure 5.1: Inscribed intersection angle between facets F' and G of an
inscribed 3-polytope.

Definition 5.1.5 (Inscribed intersection angle). Let d > 2 and let P be
a d-polytope inscribed in the unit sphere S. Let F' and G be two facets
of P that intersect in a ridge R. Let Sr and Sg be the circumspheres
of F'and G in S. Then we call the supplementary angle of the outer
intersection angles (measured in tangent space) of S with Sg the inscribed
intersection angle of F and G respective the intersection angle at R in P.
See Figure 5.1.
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5.1 Inscribed stackable

Remark 5.1.6. The inscribed intersection angle is of greater use than
the angle between F' and G, since it is invariant under Mobius transfor-
mations of the unit sphere. Hence it is also invariant under projective
transformations that preserve S.

The same holds for the stereographic projection. We can calculate the
inscribed intersection angle of an inscribed d-polytope by measuring the
corresponding angle in the Delaunay triangulation that is derived from
a stereographic projection of an inscribed polytope. We see that this
angle is also well defined for Delaunay triangulations, and invariant under
Mobius transformations.

Now we can state the inscribed stackability criterion.

Proposition 5.1.7 (Stackability criterion). Let P be a 3-polytope and
F a simplicial facet of P. Let o, 3 and vy be the inscribed intersection
angles of the three edges of F'. Then F is inscribed stackable if and only if

a+pB+vy>m.

By the stereographic projection, this corresponds to a criterion for a
stellar subdivision of a triangle in a planar Delaunay triangulation.

Corollary 5.1.8. Let P be a 3-polytope and F a simplicial facet of P.
Let o, '~ be the outer intersection angles between the circumspheres of
the three facets that share an edge with F'. Then F' is inscribed stackable
if and only if

o+ +4 <

Proof of the proposition. We will use a vertex projection from a vertex of
F'. This projection preserves angles and leads to four cases of configura-
tions in R%. For each case we will check incidences and angles to proof
the corollary.

Let vy, v9, v3 be the vertices of F' and let
Fy = conv(vg, v3,wy), Fy = conv(vy,vs,wy), F3=conv(vy,vs,ws).

be the neighboring facets of F'in P. Let Sg, S1, 52,55 be the correspond-
ing circumspheres in S. Let X C S be the set of points where a stacking
on F'is possible (maybe empty). See Figure 5.2.

We investigate the image of the stereographic projection of P from v;. For
brevity we denote the image of an object in S by a prime sign (.)". Since
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5 Geometric composition of inscribable polytopes

Figure 5.2: The local picture on the sphere.

the projection (from S\ {v1} to R?) is conformal, the intersection angles
between the circumspheres are preserved. Since Sg, Sy and S3 contain vy,
their images are lines and outsides and insides of Sk, S5, S35 are mapped
to a halfplanes. Since the outside of S; contains vy, the interior of S is
mapped to a finite ball B and S intersects the line S} in {v},v5}. Let
{v1,w} define the intersection of Sy with S3. See four cases in Figure 5.3
and Figure 5.4.

Assume w does not lie inside Sg. See Figure 5.3. Then we see that the
sum of a and [ is larger or equal to . In this case X’ is the complement
of a finite ball intersected with an unbounded set, so X is nonempty.

X' X/

Figure 5.3: The projection from v;. w lies outside Sg.

Assume w lies inside Sr. By the choice of w we can also assume that
all intersections of the spheres Si, .55, S3 lie either on or inside Sr. Then
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5.1 Inscribed stackable

we have only the two configurations left to check that are depicted in
Figure 5.3. We see that X' is nonempty if and only if w’ lies outside 5.
We take a look at the triangle (S} N S%) U {v}}. Its angle sum is 7 and
two of its angles are a and ~. The third one is larger than 3 if and only
if w’ lies outside 5.

Figure 5.4: The projection from v;. w lies inside Sg.

These cases show that the angle criterion holds in all possible cases. [J

The following Theorem is joint work with Karim Adiprasito.

Theorem 5.1.9 (Four stackable facets). Let P be an inscribed simplicial
3-polytope. Then P has at least four inscribed stackable facets and P is
double inscribed stackable.

Proof. We will investigate a vertex projection of P from a vertex v and
show that three triangles can be stellar subdivided without ruining the
Delaunay property. By referring to the choice of v we will get four
stackable facets at P. Having four stackable facets will directly imply the
double stackability.

Let v be a vertex of P and let T" be the image of the vertex projection
from v. By Proposition 0.3.13 we can assume that T is a Delaunay
triangulation in R%. Let N be the set of n triangles in 7' that cannot be
stellar subdivided without breaking the Delaunay condition. Let S be all
other triangles in T, let s be their number.

Assume P has no simple vertex. Then each triangle of T" can only share
at most one edge of the boundary of 7. In this case Figure 5.5 illustrates

89



5 Geometric composition of inscribable polytopes

Figure 5.5: Two angle fans of angles that face neighboring boundary
edges of a triangulation T". These fans must intersect outside
the support of T" except they intersect in the relative interior of
T. This can only happen if they belong to the same triangle.

that the sum of all angles that face a boundary edge is at least 27, because
the corresponding angle fans cover the exterior of 7' completely. For any
0 € N Figure 5.6 and Lemma 0.2.4 illustrates that the angles of the
neighboring triangles that face the edges of ¢ sum up to at least 7. Let x
be the sum of all angles that face a triangle in S. Then we compare the
total number of angles (n + s)m to what we have

(n+s)m > nmw + 21 + .

Since x is non negative, s must be a least 2. But in this case x cannot
be zero, so we must have at least three stellar subdividable triangles.
This argument still holds if we assume that one of the inscribed stackable
facets already contained v. Hence we have at least four inscribed stackable
facets.

Figure 5.6: Left: The angle criterion implies that this configuration is
Delaunay if and only if the three angles in the white triangle
sum up to less than 7. Right: The same holds for the two
angles in the white triangles.

Assume P has a simple vertex w. Then, by Proposition 2.2.5, all three
facets that contain w are inscribed stackable. Let T be the image of
a vertex projection of P from w. If T has a triangle that contains two
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5.1 Inscribed stackable

boundary edges of T', then we know that this can be stellar subdivided
since the corresponding facet also lies at a simple vertex. If there is
no such triangle, we can even find three stellar subdividable facets by
referring to the arguments above. Hence, in every inscribed simplicial
3-polytope, we have at least 4 facets that can be stacked such that the
result is again an inscribed polytope.

About the double stacking: Stacking a facet only effects the stackability
of facets that share a ridge with it. If we have four facets in R3, where
each two share an edge, then P is a simplex. By Proposition 2.2.5 this
is double inscribed stackable. If it is not a simplex, then two of the four
facets are not adjacent and hence can both be stacked independent of one
an other. O]

In higher dimensions life is much harder as the following example shows.
This is also joint work with Karim Adiprasito.

Proposition 5.1.10 (600 cell). The reqular simplicial inscribed 4-
polytope that is called the 600-cell is not inscribed stackable.

This refers to the regular realization of the 600 cell, the combinatorial
type might be stack inscribable.

€1

W2
VF

w1

Figure 5.7: These are two 3-faces of the regular inscribed 4-polytope that
is called the 600-cell. Both are regular simplices. The distance
between the circumcenters cp, ¢ of both cells, measured in S3,
is shorter than the radius r» = ||cg — e;]| of both circumspheres.

Proof. It suffices to show that each point on S? lies inside at least two
circumspheres of facets of the 600-cell. By the symmetry of the 600-
cell, this can shown by proving the existence of one point inside the
circumsphere of one facet F', that lies inside all circumspheres of facet
that share a ridge with F'. We will show that the normalized center of
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5 Geometric composition of inscribable polytopes

mass cp of the vertices of F' is such a point. By symmetry, it suffices to
show that there is one facet G # F that shares a ridge with F' whose
circumsphere contains cr. Note that the center of the circumsphere of
G is the center of mass of the vertices of GG. So it suffices to prove that
the angle (viewed from (0,0,0,0)) between the two normalized center of
masses cp,cq of F and G is smaller than the angle between ¢ and a
vertex of F.

It is well known that the following vectors, with any even permutations
of their entries, and any signs in front of their entries, describe the set of
vertices of a regular 600 cell P that is inscribed in the unit sphere.

o O O
N
== =
N
Ol = B

The value ¢ := 1*—2‘/5 is known as the golden ratio. The following known
identities will be useful:

P=0+1 l=¢-1 L=2-0¢

We pick five vertices

[

-

I
O O O =

I~

B

|
OOl = -

¢

1 o
1

1

¢

It is known that two vertices share an edge in P if they enclose an angle
of cos™1(£). We compute that

DO |-

(e1,vp) = (e1,vG) = (e1,w1) = (€1, w) =

)

(v un) = (v yuz) = (v wn) = (v un) = (6% + 2) =

¢ 2
L. _ ¢

1
(w1, w) = Z(¢2_1+?> =5

Since there are no 4-cliques in P that do not belong to a facet, this shows
that the five vertices belong to two facets F' := conv(vp, e1, wy, ws) and
G := conv(vg, e1, wy, wy) of P which share a 2-face. See Figure 5.7.
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5.2 Constructions to extend inscribed polytopes

We compute the normalized center of masses of F' and G.

Cr ZIUF+€1+U)1+U)2:(1+3¢,1,;+2 0),

g :=vg+e+w +wy = (14_39257_17%_‘_2’0),
c ¢
L:=|cpl = llcgll, cr:= fF, ca = LG
Then we compare

angle(cp,cq) < angle(cr,er)
& (eryca) > (cr,er)
<CF 7CG> > <6F ’ €1>L
S (1430 -1+ (5+2)° > (1+30)/(1+30)>+1+ (5 +2)?
S 114186 > (1+3¢)/13 + 186
& 40,12... > 37.99...

Which is true, so the normalized center of mass of each facet lie in all
circumspheres of the neighboring facets. This shows that the 600-cell is
not inscribed stackable. O]

5.2 Constructions to extend inscribed polytopes

We will show that all stacked polytopes, cyclic polytopes and all polytopes
that are created by high extensions are double stack inscribable. Moreover,
these polytopes have realizations for each inscribed stackable polytope
such that both can be glued facet to facet to form an inscribed polytope.

Definition 5.2.1 (Gluing polytopes). Let P and @ be two polytopes of
same dimension whose intersection is a facet F' of both. Let the union
U = PUQ be a polytope that contains all proper faces of P and () except
F. Then we call U the glued polytope of P and @) along F.

Since all stacked polytopes have a simple vertex, Proposition 2.2.5 implies
that they are double inscribed stackable.

Proposition 5.2.2 (Stack constructions at inscribed polytopes). Let
d > 2 and let P be an inscribed stackable polytope and let C' be an
inscribed stacked polytope. Then there is a realization of C, that can be
glued to P such that the result is inscribed.
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5 Geometric composition of inscribable polytopes

Proof. Let F' be the inscribed stackable facet of P. Short and simple:
Reconstruct the combinatorics of C' by a sequence of stackings starting
at F'. The more precise version: We project P from a vertex and realize
a projection image of C inside the image of F'.

Since C' is inscribed stackable we can stack one of its facets G' by a point
on the cirumsphere of C'. We call the image of the vertex projection from
this point T. By Proposition 0.3.13 T is a Delaunay triangulation whose
combinatorics equals the combinatorics of C', except that the interior of
G is missing. The boundary of Ty is the image of the boundary of G.
Since C' was stacked, we see that T must be a simplex where a sequence
of stellar subdivisions has been applied. By Theorem 2.2.3 we know that
the dual tree of these stellar subdivisions is a binary tree.

We use a vertex projection of P from a vertex that does not lie in F'.
By Proposition 0.3.13 the image Tp is a Delaunay triangulation and the
image of F'is a (d — 1)-simplex that can be stellar subdivided without
destroying the Delaunay property. By that, Proposition 2.2.5 allows us
to realize all subdivisions of T in the image of ' without loosing the
Delaunay property.

Reversing the projection of P leads to an inscribed polytope X whose
boundary decomposes into two parts. The intersection of both parts is
the boundary of GG. One part is the boundary of P without the interior
of F' and the other part equals the combinatorics of the boundary of @)
without the interior of G. Hence X is inscribable and it is a realization
of C glued to P. O

Definition 5.2.3 (High construction). Let d > 2. We call a set of points
c=(¢)iz1,.n € RE=Dxn o high construction if it satisfies the following
properties:

e The first d — 1 vertices form a non vertical (d — 2)-simplex 6. Which
we call the initial simplex.

e The vertices are ordered by their height (last coordinate strictly
increases).

e By starting with o the vertices ¢y, ..., ¢, define a sequence of high
extensions starting at 9.

Let P be a polytope that has a vertex projection that has the vertices of
a high construction. Then we call P the result of a high construction.

Results of high constructions include step and stay constructions and
Gs-constructions. They also include cyclic polytopes:
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5.2 Constructions to extend inscribed polytopes

Remark 5.2.4. We see that the construction of a cyclic polytope as we
constructed in the proof Proposition 1.3.4 is a high construction: The
way to choose the position of the vertices was influenced by the moment
curve and not raised straight up, however, the vertices increase in height
and form a high extension. Hence cyclic polytopes are results of high
constructions.

Theorem 5.2.5 (High constructions at inscribed polytopes). Let d > 2.
Let P be an inscribed stackable d-polytope and C' a d-polytope that is the
result of a high construction c. Then C has a realization that can be glued
to P such that the result is an inscribed polytope.

Proof. Let F' be an inscribed stackable facet of P. We will project P from
a point beyond F' on the circumsphere. The boundary of the resulting
triangulation will be the boundary of a simplex. We will take this as
initial part to start a high construction that is similar to c.

Since F'is inscribed stackable we can stack it by a new point p on the
circumsphere of P. Let Tp be the image of the vertex projection from p,
which by Proposition 0.3.13 is a Delaunay triangulation. Its boundary
complex is the boundary of a simplex Ap, so it is a hex Delaunay
triangulation and the interior of Tp corresponds to the boundary of P
without F'.

Let Ay := conv(eq, ..., cq) denote the initial simplex of ¢. By an affine
transformation ¢ we transform A, to A. By the freedom of the align-
ment of P we can assume that this transformation keeps the direction
(0,...,0,1) invariant. Then ¢(A.) is still a high extension triangulation
with the same combinatorics as A, although it may not be Delaunay any
more.

The goal now is to replace the initial simplex of ¢(c) by Ap and repair the
Delaunay property by adjusting the heights of ¢(cqi1), ..., d(c,). We will
call such a triangulation 7. By Lemma 4.1.3 we can raise the height of
¢(cqy+1) until its extension of Ap is a Delaunay triangulation. We continue
with this argument with ¢(cqy2), ..., ¢(c,) until we have realized such a
T.

Finally, we reverse the vertex projection from p and thereby create an
inscribed simplicial polytope X from T'. By construction the boundary
complex of X decomposes into two simplicial complexes that intersect
in the boundary of F. One part equals the boundary of P without F.
and the other part corresponds to all faces of C' except the one that
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5 Geometric composition of inscribable polytopes

corresponds to the initial simplex. Hence X is inscribed and it is a
realization of C' glued to P. m

Proposition 5.2.6 (High constructions are double stack inscribable).
Let d > 2. All d-polytopes that are the result of a high construction are
double stack inscribable.

Proof. Let ¢ be a high construction and 7' the triangulation it creates.
We will stellar subdivide one (d — 1)-face of 7" and also add a simplex
to the boundary such that both operations corresponds to the stackings
of the resulting polytope. To guarantee the Delaunay condition of the
modification of T" we have to adjust the heights of the vertices of c.

We start with the initial simplex conv(cy,...,cq—1). We pick any point
from its relative interior and lower its height by any amount. This
point shall be z; and the simplex conv(zy, ¢, ..., cq_2) shall be 0. (It

corresponds to the first stacking)

We then introduce the point ¢; and raise its height (new vertex named ;)
until the two simplices § and d,4 := conv(cy, . .., c4_2,c,;) form a Delaunay
triangulation and the line segment (21, ¢;) intersects the initial simplex
in an interior point. The last condition is possible since x; lies directly
below the relative interior of the initial simplex. We call this triangulation
Ty. Since Tj is Delaunay, we can find a point in the relative interior of
04 that lies outside the circumsphere of . There we introduce x5 and
use it for a stellar subdivision of Tp. (This will correspond to the second
stacking) The result is a hex Delaunay triangulation that we call Tj.

We then iterate the following process for ¢ = d+1, ..., n. The triangulation
T; is the extension of T;_; by a vertex ¢; that has a raised height. The
height is sufficiently large such that T} is Delaunay, and the line segment
(x1, ¢;) intersects the initial simplex in its relative interior.

By Lemma 0.3.9 the polytope type P’ that has T,, as a vertex projection
differs from the one that has T by two additional stackings. Since Ty is
hex Delaunay, P is inscribable. O]

5.3 Gluing inscribed polytopes

We investigate under what conditions two inscribed polytopes can be
glued facet to facet to form an inscribed polytope. We will see how
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g-vectors are effected by a gluing operation and show the existence of an
inscribed simplicial polytope with a non-unimodal f-vector.

Lemma 5.3.1 (g-vector of glued polytopes). Let d > 2. Let U be a
d-polytope that is glued from simplicial d-polytopes P and Q). Then

g(U)=g(P)+9(Q)+(-1,1,0,0,0,...,0).

Proof. As we have seen in the first chapter, the g-vector is an affine
function of the first half of the f-vector. For i =0,...,d — 1 we have

d+1 ol —k+1
= ()

So for the restrictions f' = (fo,..., fo—1) and ¢ = (g1,...,gas) We can
write

g'(P) = M(f'(P) — f'(Ad)).
Where M is an invertible matrix, and f'(A4) denotes the f’-vector of a
d-simplex.

Given P,Q,U as in the lemma, we simply count that

fU) = f(P)+ f(Q) — f'(Aa).
So we get
g'(U)
= M(f'(U) = f'(Ad))
= M(f'(P)+ f(Q) — f(Ad-1) — f'(Ad))
= M(f'(P) — f/(Aa) + M(f(Q) = f'(Aa) + M(f'(Ad) — f'(Ad-1))
= ¢(P)+d(Q) +M(f'(Aa) — f'(Aa-1))-

A closer look at the entries ¢ = 0, ..., d shows

fi(Aa) = fi(Ad-1) = (ﬁf) - <Zj1> - @

On the other hand for a ¢’-vector (1,0, ...,0) we exactly get

Hlfd—k+1 d
£ e ()

k=1

So:

g(U) = (1,9/([])) = (1,9/(P)) + (179/(Q)) + (_17 1,0,0,... 70)'
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5 Geometric composition of inscribable polytopes

This for example shows that stacking a simplicial polytope, which means
gluing a simplex, changes the g-vector only by adding a 1 to the entry g;.

Proposition 5.3.2 (Nonunimodality). There are inscribed simplicial
polytopes that have nonunimodal f-vector.

Proof. As mentioned in the book [48], it suffices to create an inscribed
simplicial d-polytope, that has the following g-vector

n—d-—1

. ) fori=2,...,d.
i

gp=n—d—1+r gi=<

Where d = 20, n = 169 and r = 4303045807457. Then it turns out that
fi1 > fi2 < fis (We are not showing the calculation).

If » would be zero, then the g-vector would be the one of a neighborly
polytope. By referring to Lemma 5.3.1 we see that the desired g-vector
can be obtained by stacking r-times on a neighborly polytope, for example
on a cyclic polytope. Since all cyclic polytopes are stack inscribable, we
can apply arbitrary many stacking operations such that the combinatorial
type is still inscribed. See Proposition 5.2.6 and Proposition 5.2.2. [

Before we start gluing inscribed polytopes, we consider transformations
that transform inscribed polytopes to inscribed polytopes. The projective
transformations that keep the unit sphere invariant seem to be the right
choice. They keep the unit ball invariant, which implies that the image
of an inscribed polytope is again a polytope of the same combinatorial
type and it has all its vertices on the unit sphere, hence is an inscribed
polytope.

Remark 5.3.3. What about other projective transformations? The
projective image of the unit sphere is a non degenerate conic section.
Hence our inscribed polytope has to have its vertices on the intersection
of a non degenerate conic section with the unit sphere to allow such
a transformation. This is very restrictive. It would be interesting to
look at polytopes whose vertices lie on such an intersection and what
the transformation would cause. A simpler question is which polytopes
have several circumscribing ellipsoids. For lattice polytopes there is the
study of perfect Delaunay polytopes which have only one circumscribing
ellipsoid. See [19, 21]. We do not investigate that further and stick to
projective transformations that preserve the unit sphere.
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5.3 Gluing inscribed polytopes

Lemma 5.3.4 (Matching facets). Let {vy,...,vs}, {wy,..., w3} C S?
be two sets of 3 points. Then there exist exactly two projective transfor-
mations ¢ of RP3 that keep S* invariant and ¥ (v;) = w; fori=1,...,3.
Only one preserves the orientation in S>.

For alld > 0 and {vy, ..., v}, {wr, ..., wy} C ST being two sets of four
points in general position, there is no projective map v of RP? such that

P(S91) = S and (v;) = w; fori=1,...,4.

For us the term general position means, that the set of vertex vectors
(v1,...,04,w1,...,wy) for which such a transformation exists, is of dimen-
sion less than (d — 1)8. The projective space RP? is non orientable, so
projective maps cannot be orientation preserving or reversing. Neverthe-
less S as a subset of RP? is orientable. So projective maps that keep S
invariant can be judged to be orientation preserving or reversing on S.

Proof. Because rotations are sphere preserving projective transformations,
we can assume that v; = w;. By a stereographic projection v from
wi, we transform our problem into finding a Mobius transformation
t: R — RI-! that satisfies

t(o0) = o0, tom(vy) = m(wy), tom(vs) = m(ws).

Note that the group of infinity fixing Mobius transformations is the
group of similarities. For d = 3, there are exactly two similarities of
R? that transforms the oriented edge (7 (vs),7(v3)) to the oriented edge
(m(wsy), m(ws)). One is orientation preserving. Hence there are two pro-
jective transformations of RP? and one preserves the orientation of S.
For d > 3, there are more transformations. In terms of ¢, they differ by
rotation and reflection around the line (w(ws), m(ws)).

For four vertices and any d > 2, we see that we need to find a similarity
that transform a triangle into an other triangle. Since two arbitrary
triangles are usually not similar we only have such a map in special
cases. [

To glue polytopes, we also have to check that the union does not violate
convexity. Note that a projective transformation cannot help here, because
it maps convex sets to convex sets if no point of the set is mapped to
infinity. Note that a projective transformation that keeps S invariant,
also keeps the inside of S invariant.
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5 Geometric composition of inscribable polytopes

Proposition 5.3.5 (Convexity criterion). Let d > 2. Let P and Q be
inscribed d-polytopes and let their intersection F' be a facet of both. Let
Ry, ..., Ry be the (d—2)-faces of F and let oy, . . ., ay be the corresponding
inscribed intersection angles in P and [y, ..., Bk the ones in Q). Then P
can be glued to Q) via F, if and only if

o+ B > for i=1,... k.

Figure 5.8: The inscribed 3-polytopes P and () share a facet that lies at
the equator. Both polytopes can be glued if the corresponding
inscribed intersection angles at the common ridges sum up to
more than .

Proof. See Figure 5.8. Let FF and FiQ be the facets of P and @) that
are not F' and share R;. Since all inscribed intersection angles refer to
the circumsphere of F' (from different sides), we have for i = 1,...,d
that 7; := (o + ;) — 7 is the inscribed intersection angle between F
and Fﬁ. Since the circumspheres of F¥' and FiQ must define supporting
hyperplanes for the faces, we see that I and EQ are locally convex if
and only if 4; > 0. Since all other ridges are already locally convex, the
proposition follows. ]

Corollary 5.3.6 (Convexity criterion in R?®). Let P and Q be inscribed
3-polytopes and let F',G be simplicial facets of P, Q. Let oy, as, az resp.
B1, B2, B3 be the inscribed intersection angles of the (d — 2)-faces of F resp.
G. Then there exists a projective transformation T such that T(P)U @ is
an inscribed simplicial polytope that has the combinatorics of P glued to
Q via facets F, G, if and only if there is a permutation iy,is,13 of 1,2,3
such that

a, +0 <7 and a,+Po<7m and oy, + Pz <.
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5.3 Gluing inscribed polytopes

We have seen that the inscribed intersection angles can easily be calculated
before we apply any unit sphere preserving projective transformation that
would match the desired pair of faces. However, in higher dimensions
it is unlikely that such a projective transformation exists. Here is an
alternative that works in all dimensions, even though it has its price.

Proposition 5.3.7 (Bridge). Let d > 2. Let P and Q be inscribed
d-polytopes with inscribed stackable facets F' and G. Then there exists a
projective transformation ¢ such that ¢(P)U Q is an inscribed simplicial
polytope, that contains all faces of (P) and Q except ¢(F) and G.

Of course the resulting polytope can have additional faces. This operation
can be seen as gluing T'(P) and @ to opposite ends of a simplicial d-
polytope of 2d vertices. The price of new faces that we have to pay for
this bridge depends on the shape of faces T'(F') and G.

Figure 5.9: The inscribed 3-polytopes P and @) are pulled to opposite
corners of the sphere. Then the convex hull is taken. This
technique can be generalized to non simplicial polytopes. (P
is not simplicial.)

Proof. See Figure 5.9. Since the unit sphere preserving projective trans-
formations form a group, we can apply transformations to P and ). We
will do this in a way such that the equator of the unit sphere lies only
beyond one face of the image of P and the same for () on the other side.
Then we take the convex hull.

Since P is inscribed stackable, there is an open set on S where a stacking
point can be placed. We take any (d — 2)-sphere inside this set and map
the sphere by a unit sphere preserving projective transformation to the
equator of S. We do the same for () and assure, if necessary by rotation,
that the image @’ of @ lies on the other side of the equator than the
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5 Geometric composition of inscribable polytopes

image P’ of P. The set conv(P’, Q)', Equator) contains all faces of P' and
Q' except the images of F' and G. Hence the convex hull of P’ and @’
also contains all faces of P’ and Q)" except the images of F' and G.

If there is a non simplicial facet in between P’ and @)’ (for example because
of symmetry), then we can rotate (' around the north south axis until
we reach a sufficient general position of the vertices. O
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Notation

disjoint union of A and B.

projection that cuts the last coordinate
stereographic projection

vertex projection

support of a triangulation T’
{1,...,n}

|4] in case that d is a dimension
deletion

f-vector

outer f-vector

g-vector

outer g-vector

general h-vector with respect to e
group of Mobius transformations of R4
group of Mébius transf. of §¢ ¢ R+
k-th pseudo power of n

boundary complex of P

group of projective transformations of R?
group of proj. transf. of S¢ c RP4™
one point compactification of R?
projective space

unit sphere
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Zusammenfassung

In dieser Arbeit geht es um einschreibbare simpliziale Polytope und
insbesondere um deren Seitenvektor (f-vector). Die Frage nach der Ein-
schreibbarkeit von Polytopen geht zuriick auf Steiner in 1832. Simpliziale
Polytope und deren Seitenvektoren gehoren zu den grundlegenden Struk-
turen der diskreten Geometrie.

Seit 1980 gibt es eine vollstandige Charakterisierung (das g-Theorem) der
Seiten-Vektoren von simplizialen Polytopen und seit 1992 eine vollstandige
Charakterisierung der einschreibbaren 3-Polytope. Wenig ist jedoch
bekannt tiber den Seitenvektor von eingeschriebenen Polytopen und allge-
mein iiber hoherdimensionale eingeschriebene Polytope.

Wir zeigen unter anderem folgende Resultate:

e Das g-Theorem gilt uneingeschrénkt fiir simpliziale eingeschriebene
Polytope bis mindestens Dimension sieben.

e Genauer: Zu jedem simplizialen Polytop gibt es ein eingeschriebenes
simpliziales Polytop gleicher Dimension das gleich viele Ecken, Kan-
ten und 2-Seiten besitzt.

e Zu jeder Dimension d und jeder natiirlichen Zahl k < d/2 existiert
ein simpliziales, eingeschriebenes Polytop, welches k-nachbarschaft-
lich, jedoch nicht (k + 1)-nachbarschaftlich ist.

e Wir charakterisieren alle einschreibbaren Stapelpolytope zu be-
liebiger Dimension mit einem einfachen kombinatorischen Kriterium.

e Wir verschérfen eine obere Schranke fiir den Einschreibbareitsexpo-
nenten in hoheren Dimensionen und widerlegen damit eine Vermu-
tung von Griinbaum und Jucovié.

e Wir zeigen das alle simplizialen, eingeschriebenen 3-Polytope min-
destens 4 Facetten haben die bestapelt werden konnen, sodass das
Polytope danach eingeschrieben bleibt.

Da per stereographischer Projektionen eingeschriebenen Polytope mit
Delaunay Zerlegungen identifiziert werden konnen, fithren wir unsere
Konstruktionen hauptsachlich auf Konstruktionen von Delaunay Trian-
gulierungen zuriick.
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