Appendix A

Analytical tools

A.1 Details of the MO calculations

The MO calculations are performed with the commercial program HyperChem, re-
lease 7.03, Hypercube Inc. on a conventional personal computer. Most calcula-
tions were performed with semi-empirical self-consistent-field MO procedures as this
methods are about three orders of magnitude less expensive in computation time
compared to DFT methods. The molecular structures were determined applying
different parameterizations: AM1 (Austin Model 1), PM3 (a reparameterization of
AM1) and ZINDO/1 (Zerners non-spectroscopic version of the Intermediate Neglect
of Differential Overlap). The molecular geometries were optimized with a conju-
gate gradient algorithm (Polak-Ribiere). The optimization was stopped if the first
derivative of the total energy with respect to the nuclear positions was less than
0.001 keal /(A mol) (0.01 kcal/(A mol) for DTB-Pe-tripod).

Electronic structures were calculated within ZINDO/S (Zerners spectroscopic ver-
sion of INDO) [243, 244]. The electronic structure of neutral molecules has been
found to be rather insensitive on the parameterization used for the structure opti-
mization. For instance, the HOMO eigenvalue for perylene calculated with ZINDO/S
for the AM1, PM3 and ZINDO/1 obtained structures differs by less than 25 meV.
Closed shell systems (singlet states) are investigated with RHF (spin restricted
Hartree-Fock) calculations, open shell systems (doublet and triplet states) with UHV
(spin unrestricted Hartree-Fock) calculations.

Excited states for the calculation of electronic absorption spectra, transition dipole
moments and oscillator strength were obtained with configuration interaction (CI)
calculations performed at the molecular structure of the unexcited molecule (Franck-
Condon approximation). In the CI expansion, up to 10 occupied and 10 unoccupied

states have been taken into account.
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Figure A.1: Oxidized DTB-Pe-COOH (spin unrestricted Hartree-Fock calculation):
HOMO [E, = -11.5 V] (a), LUMO [Es = -5.8 eV] (b) and electrostatic potential
().

Inertial axes. The three axes (primary, secondary, and tertiary) are associated
with the moments of inertia of the molecular system. The primary inertial axis
marks the longest distance through the molecule, and the tertiary axis marks the
shortest distance, as visualized in Fig. A.2.

Figure A.2: Definition of the inertial axes considering DTB-Pe-COOH as example.

Adsorbate-surface bonding geometries. The adsorption geometries of the
DTB-Pe carboxylic, phosphonic, propionic and methyl phosphonic acids (Figs. A.3
and A.4) were modeled by a molecular mechanics (MM) calculation using the MM+
force field with HyperChem. The optimization was performed with the Block-
diagonal Newton-Raphson algorithm and was terminated when the gradient of the
molecular coordinates fell below 0.001 keal/(A mol). The TisuOgo anatase cluster is
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A.1 Details of the MO calculations

The geometry of the cluster is

constructed with the anatase bulk structure [133].

kept fixed during the MM calculations. Details are given in the figure captions.
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Figure A.4: Molecular mechanics optimized geometries of bi-dentate bonded DTB-
Pe-CH,-CH,-COOH (left) and tri-dentate bonded DTB-Pe-CH,-P(O)(OH), (right)
(force field: MM+). The system is kept neutral as the dissociated hydrogen is ad-
sorbed at a surface oxygen. Propionic acid: The dye-surface distance for the shown
converged geometry exhibits a through-bridge distance of 6.0 A and a through-
space distance of 3.4 A. According to the molecular mechanics calculations the
chromophore does not completely bend back to the surface. Also for a different
force field (Amber) the shown geometry appeared as global minimum of the geom-
etry optimization.

In the case of the methyl-phosphonic acid with tri-dentate bonding of the anchor
group(right), the geometry is more defined. The through-bond distance between the
perylene-carbon linked to the bridge group and the local surface plane defined by
the three binding surface-Ti atoms is 5.1 A, the through-space distance is 4.1 A.
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A.2 Details of the UPS and XPS measurements

Stationary ultraviolet photoemission spectra were recorded with a hemispherical
analyzer (VSW HAS 100) in a separate UHV chamber. A commercial He-UV-
discharge lamp emitting 21.22 eV photons was used for excitation of the samples.
The spectra were measured normal to the surface without angular resolution. The
pass energy of the analyzer was 2 eV. The UPS setup provides an energy resolution of
about 100 meV. A detailed description of the setup can be found elsewhere [100]. The
sample has been biased with -2.00 V (-4.00 eV for the determination of the secondary
edge) and heated to 360 K during the UPS measurements. Due to the limited
conductivity of the nanostructured anatase films, charging of the samples during
the UPS measurement is usually a problem. One solution is the usage of thinner
films, however, this alters the preparation procedure. It was observed that the strong
temperature dependence of the conductivity of nano-structured anatase [177] can
be utilized to overcome the charging problem. Heating the samples to about 370 K
is sufficient to prevent charging of the 2 pm thick films for the given UPS setup.
Comparing the optical absorption before and after the UPS measurement reveals
only a slight reduction of the absorbance, but no spectral changes.

The onset of the desorption or decomposition of the adsorbates was found to be
above 450 K for DTB-Pe-CH=CH-COOH by increasing slowly the temperature and
monitoring the C 1s peak via XPS and the partial pressure of possible decomposition
products by a mass spectrometer. This observation is in agreement with the high
thermal stability of up to 670 K observed for other perylene derivatives exhibiting
substituted groups [245]. Recently, it has been observed that the reactivity of car-
boxylic acids on anatase depends on the preparation conditions [246]. Adsorbates
on fully oxidized surfaces, which is also a realistic situation for the nano-structured
films, did not desorbe below 750 K.

Table A.1 summarizes the fit parameters of the XPS measurements for all inves-
tigated perylene derivatives. The column labeled ”"burned” denotes the sample
mentioned above, which was heated above the decomposition temperature of the
adsorbate. The observed spread in the peak positions as well in the peak shapes
between different perylene derivatives is within the spread of the parameters for
repeated measurements with the same dye. The same statement holds for the posi-
tion of the HOMO and HOMO-1/3 peaks obtained from UPS measurements. Thus,
the alignment of the molecular levels with respect to the semiconductor states are
independent of the bridge-anchor group (inclusive tripod).
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pure TiO4 | carboxylic | burned | propionic | acrylic | tripod | phosphonic | methyl-phosphonic
O 1s BE [eV] 530.71 530.72 530.75 | 530.66 | 530.74 | 530.70 530.65 530.69
O 1s FWHM [eV] 1.66 1.65 1.68 1.65 1.54 1.59 1.73 1.67
O 1s asymm -0.09 -0.13 -0.09 -0.09 -0.10 | -0.21 -0.17 -0.15
O 1s G/L 0.60 0.65 0.57 0.58 0.63 0.81 0.66 0.66
Ti 2p3/2 BE [eV] 459.37 459.39 459.41 | 459.31 | 459.39 | 459.35 459.29 459.32
2p1/2 - 2p3)2 [€V] 5.77 5.76 5.73 5.75 5.76 5.70 5.77 5.77
FWHM Ti 2pg/ [eV] 1.47 1.44 1.46 1.47 1.45 1.39 1.46 1.43
C 1s BE without asym [eV] 285.07 285.01 284.76 | 284.83 | 284.86 | 285.16 284.90 285.06
C 1s FWHM [eV] 1.95 1.73 1.77 1.77 1.71 1.561 1.74 1.82
O 1s BE - Ti 2p3/, BE [eV] 71.34 71.33 71.36 71.35 71.35 | T1.35 71.36 71.39
O 1s BE - C 1s BE [eV] 245.64 245.71 24599 | 245.83 | 245.88 | 245.54 245.75 245.63
Ti 2p3/, BE - C 1s BE [eV] 174.30 174.38 174.65 174.48 | 174.53 | 174.19 174.39 174.26
C 1s BE with asym [eV] 285.03 284.99 284.72 | 284.81 | 284.84 | 285.14 284.95 285.02
C 1s FWHM [eV] 1.95 1.73 1.78 1.77 1.71 1.56 1.73 1.82
C 1s asymm -0.08 -0.07 -0.09 -0.04 -0.05 | -0.06 -0.11 -0.09
C 1s G/L 0.35 0.42 0.58 0.37 0.53 0.51 -0.11 0.44
O 1s BE - C 1s BE [eV] 245.68 245.73 246.03 | 245.85 | 245.90 | 245.56 245.70 245.67
Ti 2p3/, BE - C 1s BE [eV] 174.34 174.40 174.69 174.50 | 174.55 | 174.21 174.34 174.30

Table A.1: Fit parameters of the XPS spectra for all investigated perylene derivatives. The peak positions are given as binding
energies (relative to the Fermi level). The column denoted "burned” is a DTB-Pe-CH=CH-COOH sample, which has been heated
up to 630 K under UHV conditions. The dye was completely decomposed (and eventually partially desorbed) by this treatment
and appeared sooty. The O 1s and Ti 2p are fitted with asymmetric peak functions, as outlined in section 3.4.3. The C 1s peaks
are fitted with both symmetric and asymmetric peaks, the according fit parameters are given in the upper and lower half of the
table, respectively.
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A.3 Further analytical tools

A.3.1 Single photon counting (SPC)

The principle of time-correlated SPC is to obtain the fluorescence decay by recording
less than one emitted photon per excitation pulse. The experiments have been
performed at an excitation rate of 150 kHz and a detection rate of about 2 kHz.
The data was averaged with an Ortec ADC. The response function of the setup was
determined by the jitter of the electronics. The decay curves have been fitted by
mono-exponential decays convoluted with the response function.

All chromophores except DTB-Pe-COOH were dissolved in dried toluene with con-
centrations below 107° mol/l. DTB-Pe-COOH was dissolved in 3:1 (vol.) toluene:
methanol to prevent dimerization via the carboxylic group. The transition was

pumped with a pulse of approximately 150 fs duration centered at 400 nm.

A.3.2 Stationary absorption and emission spectroscopy

Linear absorption spectra are recorded with Bruins Instruments Omega 10 and 20
UV-VIS-NIR spectrometer with a slit width of 0.5 mm. The emission spectra are
taken with a Spex FluoroMax spectrometer with a bandpass of 4 nm. The dye
concentrations were below 107° mol/1 for the absorption measurements and below

107% mol/1 for the emission scans.

A.3.3 FT-IR spectroscopy

The IR spectra were recorded with a Bruker Equinox IFS55 spectrometer equipped
with a diamond ATR unit. The sensitized and unsensitized anatase samples have
been prepared as described above, and then brought into UHV over night to evap-
orate the solvent from the nano-porous film. After this the anatase films were
scratched off the glass substrate on the ATR crystal in the nitrogen flooded spec-

trometer.

A.3.4 Raman spectroscopy

Raman spectra were recorded with a Bruker IFS 66v/S spectrometer with a Bruker
FRA 106/S Raman module. The samples were excited with 200 mW of 1064 nm light
(Nd:YAG). The signal was recorded with a resolution of 4 cm™' in backscattering
geometry with a liquid-Ny cooled Ge-D416 detector.
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A.3.5 Transmission electron microscopy (TEM)

TEM images were obtained with a Philips CM12 transmission electron microscope
with a maximum electron energy of 120 keV. The achievable lateral resolution is
2.0 A. Electron transparent samples of the temperature-treated colloidal anatase
films were obtained by scratching of the film from the glass substrate. The fragments

have been investigated on a gold grid.

A.3.6 Scanning electron microscopy (SEM)

SEM images were taken with a LEO 1530 Gemini microscope by use of an In-Lens
detector. Low acceleration voltages between 2 and 5 kV were applied to avoid

charging of the samples.
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