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Abstract 
 

The relationship between conformations of bioactive molecules with their pharmacol-

ogical profiles has been well established. Only the unique biologically active confor-

mation of a drug molecule can bind to the active site of the receptor. In this thesis, 

conformational analysis of bioactive compounds at various environments will be dis-

cussed. Two categories of molecules were investigated; cannabinoid (CB) analogues 

and [60]fullerene derivatives. The major structural characteristics of these molecules 

are: (i) amphiphilicity and (ii) existence of flexible and rigid pharmacophoric seg-

ments. Their flexible segments constitute a challenging field for conformational 

analysis exploring of putative bioactive conformations. 
 

In case of CBs, a set of novel Δ8-tetrahydrocannabinol (Δ8-THC) and cannabidiol 

(CBD) analogues were subjected to three-dimensional quantitative structure-activity 

relationships (3D-QSAR) studies using comparative molecular field analysis 

(CoMFA), and comparative molecular similarity indices analysis (CoMSIA) method-

ologies. The high active compound C-1'-dithiolane Δ8-THC analogue AMG3 at the 

data base was selected as template molecule. Using molecular modeling techniques 

such as Monte Carlo (MC), molecular dynamics (MD) and grid scan analysis, the pu-

tative bioactive conformation of AMG3 in solution was determined. This conformer 

was used as a template, and CB1 and CB2 pharmacophore models were developed. 

The availability of homology models of CB1 and CB2 receptors based on rhodopsin 

has allowed the conformational analysis studies of AMG3 at the binding site of the 

receptor. Derived low energy conformers of AMG3 at the receptor site have been 

compared with its in solution conformations. The steroelectronic properties of binding 

cavities of a receptor model are directly related to the performed molecular model co-

ordinates. In the presented thesis, a homology modeling study based on β2-adrenergic 

receptor for both CB1 and CB2 receptors was also performed and results were com-

pared with rhodopsin based homology models. Similar binding sites of CB1 and CB2 

receptors using rhodopsin based models have been generated using the β2-adrenergic 

based receptors. The QSAR models were re-generated using putative bioactive con-

formers of AMG3 at the binding site of the CB1 and CB2 receptors. Relative contri-
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butions of steric/electrostatic fields of the 3D QSAR/CoMFA and CoMSIA pharma-

cophore models have shown that steric effects govern the bioactivity of the com-

pounds, but electrostatic interactions also play an important role. The comparison of 

derived QSAR models has shown that increasing the complexity level of calculations 

(mimicking more accurately the biological conditions) was positively affected the ob-

tained statistical result. The optimal QSAR partial least square (PLS) analysis was 

used as an input in the de novo drug design studies and these simulations provided 

novel CB analogues with enhanced predicted binding affinities.  

 

In case of fullerene derivatives, a series of experimentally reported as well as compu-

tationally designed monoadducts and bisadducts of [60]fullerene analogues have been 

used in order to analyze the binding interactions between fullerene based inhibitors 

and human immunodeficiency virus type I aspartic protease (HIV-1 PR), employing 

docking studies. MD simulations of ligand-free and the inhibitor-bound HIV-1 PR 

systems complemented the above studies and provided proper input structure of HIV-

1 PR in docking simulations. The obtained results revealed a different orientation of 

the β-hairpin flaps at these two systems. In inhibitor bound system, the flaps of the 

enzyme are pulled in toward the bottom of the active site (the closed form) while, in 

ligand-free system flaps shifted away from the dual Asp25 catalytic site and this sys-

tem adopts a semi-open form. The structural analysis of these systems at catalytic and 

flexible flap regions of the HIV-1 PR through the simulations, assisted in understand-

ing the structural preferences of these regions, as well as, the adopted orientations of 

fullerene derivatives within the active site of the enzyme. The reported most active 

fullerene analogue in the data base has been used as template and 3D QSAR models 

were derived. Based on obtained contour plots and derived PLS analysis, de novo 

drug design studies were performed in order to propose novel analogues with en-

hanced binding affinities. Such structures may trigger the interest of medicinal chem-

ists for synthesizing novel HIV-1 PR inhibitors possessing higher bioactivity, consid-

ering the urgent need for new anti-HIV drugs. 
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1.1  Motivation 
 

Drug design is an iterative process which begins with identification of a compound 

that displays an interesting biological profile and proceeds until the activity profile is 

characterized by minimum undesirable side effects and chemical synthesis is opti-

mized.1 One of the main issues faced currently by the pharmaceutical industry is find-

ing appropriate ligands for a given target protein and ensuring that they are highly 

specific for that target. Finding a therapeutic compound that binds selectively to a tar-

get receptor is not an easy task in the laboratory. Thus, this problem can be handled 

by using a combination of computer simulations together with laboratory work. 

Thanks to the wide spread availability of high performance computers and new com-

putational techniques, receptors and their binding interactions with ligands can be de-

fined at a molecular level with high accuracy. 

 

The physicochemical and biological properties of a molecule depend on the confor-

mations that it can adopt. Conformational analysis is the study of the conformations of 

a molecule and their influence to its chemical, physical or biological properties.2 The 

modern conformational analysis studies were initiated by D. H. R. Barton3, who 

showed that the reactivity of substituted cyclohexanes was influenced by the equato-

rial or axial nature of the substituents. The development of conformational analysis 

was enhanced due to the advancement of analytical techniques (e.g., infrared (IR) 

spectroscopy, nuclear magnetic resonance (NMR) spectroscopy and X-ray 

crystallography) which allow to explore the conformational properties of a molecule. 

 

One of the frequently problems faced in drug design is to find the conformation of a 

molecule that adopts when it fits its target binding site (bioactive conformation). The 

relationship between the conformations of bioactive molecules with their pharmacol-

ogical profiles has been well established. Only a unique conformation of a drug mole-

cule can bind to the binding site of the receptor. The knowledge of the conformations 

of a ligand at the binding site of a receptor assists in the rational approach to drug de-

sign. One might suggest that the most stable conformation in solution is likely to be 

the bioactive conformation since the molecule is most likely to be in that conforma-
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tion. However, the bioactive conformation of a ligand at the active site of the receptor 

is not necessarily identical with the lowest energy conformation, in solution. This is 

attributed to the fact that favourable binding interactions of the molecule with its tar-

get can lead a complex stabilization when the molecule adopts conformation that ap-

pears in solution with higher energies.4 Nonetheless, a very high energy conformation 

that is excluded from the population of conformations in solution cannot be biologi-

cally active. Moreover, the investigation of the optimal conformation of a bioactive 

compound also plays an important role in three dimensional quantitative structure-

activity relationships (3D QSAR) studies, because the output from the constructed 3D 

QSAR models is directly related with the alignment of the molecules in data set, 

based on template conformer.  

 

The aim of applying 3D QSAR studies is to derive indirect binding information from 

the correlation between the biological activity of a training set of molecules and their 

3D structures. The importance of steric and electrostatic characteristics is revealed by 

aligning structurally similar analogues using pharmacophoric features as structural 

superimposition guides. In contrast to the rigid molecules, defining the bioactive con-

formation of flexible ligands is more complex and therefore the alignment procedure 

of 3D QSAR is one of the most difficult steps. The combination of molecular model-

ing techniques and 2D NMR spectroscopy can be used to obtain the low energy con-

formation of a potent ligand in the data set which will serve as a template compound 

in the construction of QSAR models. In order to determine the linear correlation 

coefficients between actual versus calculated binding affinities, statistical analysis of 

the data can be used. The derived 3D QSAR models help to predict binding affinity 

values of ligands prior to their synthesis. The structure and binding affinity relation-

ships of compounds can be graphically plotted and used to explain different 

steroelectronic requirements of ligands for binding to the receptor site. Contour results 

can be used as pilot models for proposing novel analogues before their synthesis. 

 

The easiest way to analyze a bioactive conformation is to study the X-ray crystal 

structure of ligand-bound target structure. The structure of the protein/ligand complex 

can then be analyzed using computational methodologies and conformation of the 



 12

ligand can be identified. However, not all proteins can be easily crystallized (e.g., 

membrane proteins), thus other methodologies have to be used in order to identify the 

active conformation. If the X-ray structure of target is unknown, a homology model 

target can be created by molecular modeling based on known X-ray structure of a pro-

tein from same family, thus binding sites may be constructed to aid the drug design 

process. If one of the active compounds for a specific target is a rigid molecule which 

has one possible conformation, it can be used as template for more flexible molecules. 

The geometry of the pharmacophore (atoms and functional groups required for a spe-

cific pharmacological activity, and their relative positions in space) can be determined 

for the rigid molecule, and flexible molecules can be compared with this rigid mole-

cule in order to find conformation which will place the important binding groups in 

the same relative geometry.4 If a fully rigid molecule is not available to act as a tem-

plate, it may be possible to match up different ligands that have a rigid part some-

where in their skeleton. Energy minimization methods play a crucial role in the con-

formational analysis.4 If possible, it is desirable to identify all low energy conforma-

tions on the energy surface, but the number of minima may be so large that is not 

practical to pick up the conformer that has lowest energy. Under such circumstances 

population analysis can be performed using statistical mechanics. Solvation effects 

may also be important to include in the calculations of intramolecular energy. Several 

computational techniques (e.g., molecular dynamics (MD) simulations, Monte Carlo 

(MC) calculations) can be used as part of a conformational search strategy. More de-

tailed information on conformational search strategy will be given in the “Theoretical 

Background” chapter of the thesis.  

 

When no experimental structural information is available, molecular modeling tech-

niques can be used to reveal the bioactive conformations of the ligand. These tech-

niques include: (i) geometry optimization calculations, in gas phase; (ii) geometry op-

timization calculations employing a continuum model which simulates the biological 

medium; (iii) rotational energy barrier calculations; (iv) MC simulations; (v) MD 

simulations; and (vi) 3D QSAR models. Additional molecular modeling techniques 

can be used when the X-ray structure or homology models of a receptor are available: 

More specifically; in silico docking; and MD simulations of ligand at the active site of 
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the receptor can be performed. If the X-ray structure or a homology model of the tar-

get protein is available, the investigation of a bioactive conformation of molecule be-

comes more realistic and can be obtained with greater credibility.  

 

1.2 Investigated Systems 
 

In the present work, conformational analysis of bioactive compounds at various envi-

ronments will be discussed. Two categories of molecules were studied: (i) cannabi-

noid (CB) analogues and (ii) [60]fullerene derivatives. The major structural character-

istics of these molecules are: (i) amphiphilicity and (ii) existence of flexible and rigid 

pharmacophoric segments. Their flexible segments constitute a challenging field for 

conformational analysis exploring of putative bioactive conformations. 

 

1.2.1 CBs 

 

CB agonists have been suggested to have potential therapeutic uses such as neuropro-

tective, analgesics, apetite stimulants, anti-emetics, anti-glaucoma agents, and for the 

treatment of diseases associated with inappropriate retention of aversive memories 

(e.g., post-traumatic stress disorders and phobias).5 The pharmacological activity of 

CBs is mediated by G protein coupled receptors (GPCRs) CB1 and CB2. On binding 

of agonists, GPCRs become activated, presumably by conformational changes in the 

transmembrane (TM) domain. The CB1 receptor is localized primarily in the central 

nervous system (CNS), reflecting its most abundant GPCR prevalence in brain. An 

interesting feature of CB1 is its ability to be activated by structurally different classes 

of molecules, thus increasing the possibility of multiple activated forms of the recep-

tor. Although detectable at exceedingly low levels in brain, CB2 receptors are ex-

pressed mainly by immune cells and mediate immune responses, inflammatory and 

neuropatic pain.6 

 

Presently known CB analogues show susceptibility towards enzymatic hydrolysis 

and/or not have CB1/CB2 receptor selectivity. There is considerable interest to design 

CB analogues possessing selectivity, high affinity and metabolic stability. Such ana-
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logues may supply favorable response with fewer undesirable side effects and higher 

metabolic stability.7 

Identification of the binding conformations of CB agonists within the binding site of 

the receptor is of great interest not only to understand the key binding interactions be-

tween the amino acid residues and the ligand, but also provide insight into the mo-

lecular mechanism of receptor activation.8 

A set of novel synthesized Δ8-tetrahydrocannabinol (Δ8-THC) and cannabidiol (CBD) 

analogues were subjected to 3D QSAR studies using comparative molecular field 

analysis (CoMFA)9, and comparative molecular similarity indices analysis (CoM-

SIA)10 methodologies in order to propose new selective and high affinity CB ana-

logues. The high active compound C-1'-dithiolane Δ8-THC analogue (–)-2-

(6a,7,10,10a-tetrahydro-6,6,9-trimethylhydroxy-6H-dibenzo[b,d]pyranyl)-2-hexyl-

1,3dithiolane (AMG3), (Figure 1.1i) was selected as the template molecule. Using 

combination of several molecular modeling techniques such as molecular mechanics 

(MM) and quantum mechanics (QM) geometry optimization calculations, MD simula-

tions, MC calculations and grid scan analysis, the putative bioactive conformation of 

AMG3 in solution was determined. This conformer was used as the template structure 

and CB1 and CB2 pharmacophore models were developed.  

The availability of homology models of CB1 and CB2 receptors based on bovine 

rhodopsin, allowed the conformational analysis studies of AMG3 at the binding sites 

of CB receptors. Firstly, in silico docking simulations were performed using template 

ligand at the CB1 and CB2 receptors and cluster analysis was accompanied to the ob-

tained binding poses. Secondly, the derived best binding pose of protein/ligand com-

plex structure has been used as an input coordinate, and MD simulations have been 

performed in the presence of membrane bilayers. Trajectory analysis from MD simu-

lations of generated snapshots clarified the favored adopted low energy conformers of 

template compound. The derived low energy conformers of AMG3 at the binding site 

of the receptor have been compared with those produced in solution. QSAR models 

were re-generated using putative bioactive conformers of AMG3 at the binding site of 

the CB1 and CB2 receptors. Generated QSAR models in solution and at the binding 
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site of the CB1 and CB2 receptors were compared to define environment that more 

closely resembles the bioactive conformer.  

 

The derived optimal QSAR partial least square (PLS) analysis of CB models were 

used in the de novo drug discovery program for the predictions of novel compounds 

with enhanced predicted binding affinities.  

 

Since the steroelectronic properties of binding cavities of a receptor model are directly 

related to the performed molecular model coordinates, a homology modeling study 

based on β2-adrenergic receptor for both CB1 and CB2 receptors was also performed 

and results were compared with former rhodopsin based homology models.  

 

1.2.2 [60]Fullerene Derivatives 

 

In the last few years, many interesting biological applications of [60]fullerene deriva-

tives have started to be investigated due to their promising biological activities such 

as DNA photocleavage, human immunodeficiency virus type I aspartic protease 

(HIV-1 PR) inhibition, apoptosis and neuroprotection.11,12 Indeed, unique spherical 

shape of [60]fullerene may be envisaged as fitting the hydrophobic cleft that is often 

characterizing the target structures. When the cleft hosts the guest molecule and the 

intermolecular steroelectronic interactions are sufficiently strong, inhibitory effect 

may be expected. 
 
 
The inhibition of HIV-1 PR by fullerene analogues has been demonstrated by Fried-

man et al.11,13 and the complexation of HIV-1 PR with fullerene compounds has been 

supported by molecular modeling studies. These studies showed that the fullerene de-

rivatives can be perfectly accommodated inside the binding pocket of HIV-1 PR. 

However, the binding affinity (Ki) values of “first generation” fullerene inhibitors 

were not significant (Ki ~10-6 M). Thus, further structural investigation is required in 

order to propose new HIV-1 PR/fullerene complexes with better binding affinity. 
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A series of experimentally reported as well as computationally designed monoadducts 

and bisadducts of [60]fullerene analogues have been used in order to analyze the 

binding interactions between fullerene based inhibitors and HIV-1 PR enzyme em-

ploying docking studies. MD simulations of ligand-free and the inhibitor-bound HIV-

1 PR systems complemented the above studies and provided proper input structure of 

HIV-1 PR in docking simulations. The structural analysis of these systems at catalytic 

and flexible flap regions of the HIV-1 PR through the simulation, assisted in under-

standing the structural preferences of these regions, as well as, the adopted orienta-

tions of fullerene derivatives within the active site of the enzyme. 

 

The reported most active [60]fullerene in the data base ((3'-Phenyl-3'-(α-

hydroxybenzyl)-1,2-cyclopropano]buckminsterfullerene), (Figure 1.1ii)) was used as 

template and 3D QSAR/CoMFA and CoMSIA models were derived. Based on con-

tour plots and PLS analysis from the models, de novo drug design studies were per-

formed in order to propose novel analogues with enhanced binding affinities. Such 

structures may trigger the interest of medicinal chemists for novel HIV-1 PR inhibi-

tors possessing higher bioactivity.  

 

         
(i)                (ii) 

 

Figure 1.1 (i) Molecular structures of potent bioactive CB analogue AMG3; and (ii) 

an anti-HIV-1 PR bioactive fullerene analogue. 
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1.3 The Aim of the Study 
 

The aim of this study is to shed some light on the following questions addressed in the 

CB and fullerene fields. 

(i) Can 3D QSAR studies help to design putative bioactive novel CB and 

fullerene analogues with higher binding affinities and metabolic stabili-

ties?  

(ii) Can 3D QSAR studies help to design, in particular, selective novel CB de-

rivatives for CB1 and CB2 receptors? 

(iii) Is there any connection between biological activity of fullerene derivatives 

and the flap motion of the HIV-1 PR enzyme? 

(iv) How conformational changes at the catalytic site of the HIV-1 PR affect 

the biological activity of the fullerene derivatives? 

(v) How conformations of a template ligand derived using different environ-

ments affect the 3D QSAR models?  

 

1.4  Outline of the Thesis Structure 
 

The thesis structure is organized as follows. Chapter 1 introduces the reader to the 

subject and aims of this Ph.D. dissertation. Chapter 2 provides the “theoretical back-

ground” of some key concepts necessary to understand the discussed obtained results. 

In the Chapter 3, details of computational techniques used in the calculations are dis-

cussed. Chapter 4 provides discussion for the used strategies in the rational drug de-

sign. In the Chapter 5, a thorough conformational analysis of potent CB ligand AMG3 

using several molecular modeling techniques, its binding interactions with CB1 and 

CB2 receptor models, comparative 3D QSAR studies of CB analogues, homology 

modeling calculations of CB receptors and de novo drug design studies of CB ligands 

are discussed. In the Chapter 6, conformational analysis and binding interactions of 

[60]fullerene derivatives at the binding pocket of HIV-1 PR, 3D QSAR and de novo 

drug design studies are discussed. A summary of the main results is given in the last 

chapter (Chapter 7). Concluding remarks for the impact of this dissertation are also 

highlighted. 
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2.1 Some Useful Definitions for Many-body Systems 
 

Approaches used in computational chemistry can be divided to two broad parts, em-

pirical and quantum approaches. Empirical approaches (i.e., MM) use simple models 

of harmonic potential, electrostatic interaction, and dispersion forces for basic com-

parisons of energetics and geometry optimization. MM methods are extremely fast 

and are able to handle very large systems, such as enzymes.2 Quantum approaches are 

roughly divided into semi-empirical methods and non-empirical (or ab initio) meth-

ods. Semi-empirical methods are the approximate methods in which parameters in-

volved in the equations are taken from experiment, some are neglected, and some oth-

ers are estimated by fitting to experimental data. Like MM methods, semi-empirical 

methods use experimentally derived parameters; and like ab initio methods, they are 

basically quantum mechanical (QM) in nature. The main difference between semi-

empirical and ab initio methods is the extensive use of approximations and parameters 

optimized with respect to experimental data by the former approach. This allows 

semi-empirical methods to reduce the computational cost, while the computed results, 

in general, provide useful data.14 
 

2.1.1 QM Calculations 

 

The QM approach postulates the fundamental principles and then uses these postu-

lates to deduce experimental results. For the definition of the state of a system in QM, 

the function of the coordinates of particles is referred as the wave function or state 

function Ψ. In general, the state changes with time, thus for one-particle, one-

dimensional system, Ψ=Ψ(x, t). The wave function contains all possible information 

about a system.14  

 

Suppose there is a single particle (e.g., an electron of mass m) which is moving 

through space (given by a position vector r = xi + yj + zk) under the influence of an 

external potential ϑ. In order to find the future state of a system from the knowledge 

of its first state, an equation is needed that tells how the wave function changes with 
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time (t).15 Schrödinger's time dependent equation describes the particle by a wave 

function15 Ψ(r, t): 
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(where, ħ = h/2π, h is the Planck’s constant and i2 = -1) 

 

When the external potential ϑ is independent of time, then the wave function can be 

written as the product of a spatial part and a time part; Ψ(r,t) = ψ(r)T(t). In many ap-

plications of QM, the potential is considered as independent of time, thus the time-

dependent Schrödinger equation can be written in the more familiar, time-independent 

form2,14,15: 
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Usually,  2
2

2m
  is abbreviated as Hamiltonian operator H. Thus, Schrödinger 

equation is reduced to HΨ=EΨ. In order to solve the Schrödinger equation for many-

body systems, Hartree-Fock (HF) and density functional theory (DFT) are the com-

monly used approaches in the QM calculations. In the HF approximation, instead of 

calculating repulsions between electrons in the system explicitly, repulsions are calcu-

lated between one electron and the average field of all of the other electrons. In the 

DFT approximation, the total electron density is decomposed into one-electron densi-

ties, which are constructed from one-electron wave functions.16,17 

 

2.1.2 Semi-empirical Calculations 

 

The greatest proportion of the computational time at the ab initio calculation is in-

variably spent calculating and manipulating integrals. In order to reduce the computa-

tional effort, the most obvious way is to neglect or approximate some of these inte-

grals. Semi-empirical methods consider only valance electrons of the system and the 
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core electrons are subsumed into the nuclear core. The key point in semi-empirical 

methods is the overlap matrix S (in Roothaan-Hall equation FC=SCE), which is ap-

proximated by the identity matrix I.18 Therefore, all diagonal elements of the overlap 

matrix are equal to one and all off-diagonal elements are zero. Thus, the Roothaan-

Hall equation FC=SCE becomes FC=CE (F represents the Fock matrix, is a sum of 

one- and two-electron contributions, C is the molecular orbital coefficients and E is 

the energy levels).18 

 

2.1.3 MM Calculations: Empirical Force Field Models 

 

Generally, most of the systems that need to be studied using molecular modeling are 

too large for QM calculations. QM calculations include the electrons in a system, al-

though some of them may be ignored (e.g., semi-empirical calculations), a large num-

ber of particles must still be considered, thus the calculations are time-consuming.2 In 

the MM (also known as force field methods) not the electronic motions but only the 

function of nuclear positions of the system is included in the calculations of the en-

ergy of the system.2 Thus, in contrast to ab initio methods, MM is used to compute 

molecular properties (e.g., geometrical properties, relative stability of conformers) 

which do not depend on electronic effects.2 

  

Today, many of the MM force fields use relatively simple four components of the in-

tra- and inter-molecular forces within the system. Energetic penalties are associated 

with the deviation of bond lengths, bond angles and torsion angles from their refer-

ence or equilibrium values. More sophisticated force fields may include additional 

terms, but they invariable contain these four components2,16,17,19: 
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where, )(rN denotes the potential energy, which is a function of the positions (r) of 

N particles (e.g., atoms). The first term represents the interaction between pairs of 
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bonded atoms. This is modeled by a harmonic potential that leads to an increase in 

energy as the bond length (l) deviates from the reference value. The second term is 

associated with bond angle deformations modeled using a harmonic potential. The 

third term represents the torsional potential and models the energy changes relatively 

to bond rotations. The fourth term is associated with the non-bonded atoms and is cal-

culated between all pairs of atoms (i and j) that are in different molecules or in the 

same molecule but separated by at least three bonds. This term is usually modeled us-

ing a Lennard-Jones potential for van der Waals interactions and Coulomb potential 

for electrostatic interactions. 

 

2.2 Continuum Representations of the Solvent 
 

Most of the chemical processes take place in a solvent, thus it is important to consider 

how the solvent affects the behaviour of the system. In some cases, the solvent merely 

acts as a ‘bulk medium’, but it can still significantly affect the solute behaviour, with 

dielectric properties of the solvent often being particularly crucial.2 In such cases, it 

would be useful not to have explicit solvent molecules in the system, to enable us to 

concentrate on the behaviour of the solute(s). The solvent acts as a perturbation on the 

gas-phase behaviour of the system. This is the purpose of the ‘continuum’ solvent 

models.2 

 

2.2.1 Solvation Free Energy     

 

The solvation free energy (ΔGsol) is the free energy change to transfer a molecule 

from vacuum to solvent phase. The ΔGsol can be considered to have three compo-

nents2: 

ΔGsol = ΔGelec + ΔGvdw +  ΔGcav 

where, ΔGelec is the electrostatic component, ΔGvdw is the van der Waals interaction 

between the solute and solvent. ΔGcav is the free energy required to form the solute 

cavity within the solvent. This component comprises the entropic penalty associated 

with the reorganization of the solvent molecules around the solute together with the 

work done against the solvent pressure in creating the cavity.2 
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2.2.2 Electrostatic Contributions to the Free Energy of Solvation      

 

Born derived an expression for the electrostatic contribution of the ΔGsol by placing a 

charge within a spherical solvent cavity.2 In the Born model20, ΔGelec of an ion equals 

to the work done to transfer the ion from vacuum to the medium. This in turn is equal 

to the difference in the electrostatic work to charge the ion in two environments. The 

work to charge an ion in medium of dielectric constant ε equals to q2/2εa, where q and 

a are the charge on the ion and the radius of the cavity, respectively. Thus, ΔGsol is the 

difference in the work done in charging the ion in the dielectric and in vacuo2: 
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In many cases, solvent effects can be incorporated into a force field model. It is possi-

ble to study larger systems with the empirical models, in which case it is necessary to 

include dielectric properties of both solute and solvent. The generalized Born equation 

has been widely used to represent the ΔGelec contribution to the ΔGsol.2 The model in-

cludes a system of particles with radii ai and charge qi. The total electrostatic free en-

ergy of this system is given by the sum of the Coulomb energy and the Born free en-

ergy of solvation in a medium of relative permittivity2 ε: 
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2.3 Computer Simulations Methods 
 

2.3.1 Energy Minimization Method 

 

The aim of energy minimization is to find a set of coordinates representing a molecu-

lar conformation such that the potential energy of the system is at a minimum. This 

can be formally stated as follows: given a function f which depends on one or more 

independent variables x1, x2, x3,…xi, find the values of those variables where f has a 

minimum value.2,21 At the minimum, the first derivative of the function with respect 

to each variable is zero and second derivatives are all positive 0( 


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Information provided by energy minimization calculations in some cases can be suffi-

cient to predict accurately the properties of a system. If low energy conformations of a 

system on an energy surface can be identified then statistical mechanics techniques 

can be used to derive a partition function from which thermodynamic properties can 

be calculated. However, this is possible only for small molecular assemblies in the gas 

phase. Computer simulation methods assist to study large systems and predict their 

properties through the use of techniques that consider small replications of a macro-

scopic system with manageable numbers of atoms.2 Simulations generate a time-

dependent behavior of these small replications in such a way that accurate values of 

structural and thermodynamic properties can be obtained with a feasible computation 

time. 

 

2.3.2 Molecular Dynamics (MD) Method 

 

The essence of the MD method is in the numerical integration of Newton’s second 

law relating the mass and acceleration of an atom in the system to the gradient of the 

potential energy function and its associated force field.19 Thus, an approximate veloc-

ity for the atom can be computed with the given acceleration for a given period of 

time and changes in atomic coordinates can be determined. MD is a deterministic 

method, that is the state of the system at any future moment can be predicted from its 

current state.2 For this, continuous nature of potentials requires the equation of motion 

to be integrated by breaking the calculations into a series of very short time steps (δt, 

usually in fs time level). Finite difference techniques are used to generate MD trajec-

tories with continuous potential models. At each time step, the forces on the atoms are 

computed and combined with the current positions and velocities to generate new po-

sitions and velocities a short time ahead (t+ δt).2,19 There are many algorithms for in-

tegrating the equations of motion, using finite differences and they assume that the 

positions and dynamic properties of the atoms consisting the system under study can 

be calculated as Taylor series expansions2: 
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where, v is the velocity (the first derivative of the positions with respect to time), ɑ is 

the acceleration (the second derivative), b is the third derivative, and so on. The Ver-

let algorithm is one of the most widely used algorithm for the integrating the equa-

tions of motion in MD simulations. It uses the positions and accelerations at time t, 

and the positions from the previous step r(t-δt), in order to calculate the new positions,  

r(t+ δt). The system is followed for user defined time, taking care that the temperature 

and pressure remain at the required values, and coordinates as a function of time are 

written to an output file at regular intervals. Thus, MD simulation generates trajectory 

files that describe how the dynamic variables change through simulation. Usually, si-

mulation time in the MD calculations is between hundreds of pico-second (ps) and a 

few nano-second (ns) level. In the last years, MD simulations are extensively used to 

investigate the conformational properties of flexible molecules.  

 

2.3.3 Monte Carlo (MC) Method 

 

MC is another computer simulation method, while the low energy conformations of a 

system are connected to the time, in a MD simulation; in a MC simulation, each con-

formation depends only to the predecessor and not upon any other conformations pre-

viously visited.19 The MC technique derives conformations randomly and uses a spe-

cial set of criteria to decide whether or not to accept each new conformation. These 

criteria ensure that the derived conformation is equal to its Boltzman factor 

)(   whereT},)/k(rexp{- B
N Nr  is calculated using the potential energy function.2 In 

MC method, each new conformation of the system is generated by randomly rotating 

the bonds. The energy of the new system is then calculated using the potential energy 

function, and if the energy of the new system is lower than the energy of its predeces-

sor then the new conformation is accepted. If the energy of the new system is higher 

than its predecessor, then the Boltzmann factor of the energy difference is calculated 

with T}))/k(r(-)(rexp{-( B
NN

oldnew  and compared with a generated random number 

between 0 and 1.2 If the Boltzmann factor is greater than the random number then the 

new conformation is accepted, if not, then initial conformation is retained for the next 

move.2 Indeed, numbers generated from random number generator are not truly ran-

dom because the same sequence of numbers should always be generated when the 
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program is run with the same initial conditions. Usually, the linear congruential 

method is used for generating random numbers; each number in the sequences gener-

ated by taking the previous number, multiplying by a constant (multiplier, a) , adding 

a second constant (increment, b), and taking the remainder when dividing by the third 

constant (modulus, m); ( m}) b),a x 1)-MOD{([i]   .2 If the constants are chosen 

carefully, the method generates all possible numbers between 0 and m-1. The linear 

congruential method generates integral values, which can be converted to real num-

bers between 0 and 1 by dividing by m.2 

 

There are some difficulties applying the MC simulations to flexible molecules. It has 

been found that, even small movements away from an equilibrium bond length, cause 

a large increase in the energy. One of the widely used methods to overcome this prob-

lem is to freeze out some of the internal degrees of freedom, such as bond lengths and 

bond angles.2,16,19 

 

2.4 Methods for Exploring Conformational Space 
 

2.4.1 Grid Search 

 

In the grid search, all of the rotatable bonds are identified in the system and these 

bonds are then systematically rotated through 360o using a fixed increment (during the 

search bond lengths and bond angles remain fixed).2 Then, every derived conforma-

tion is subjected to energy minimization in order to obtain low energy conformations. 

For example, in the alanine dipeptide (Figure 2.1) conformational energy surface can 

be obtained by grid search algorithm. If it is assumed that the amide bonds adopt trans 

conformations then only two torsional angles ψ and φ of the backbone are flexible. 

Then, the energy is the function of these two variables and can be represented as con-

tour maps.2 These contour plots in amino acids is also known as Ramachandran map, 

after G. N. Ramachandran who found that the amino acids were restricted to a limited 

range of conformations. A representative Ramachandran map (for HIV-1 PR enzyme 

which has hundreds of ψ and φ torsion angles) is shown in Figure 2.2, where points 

lie on the axes indicating N- and C- terminal residues for each subunit. The most al-
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lowed region of Ramachandran space is colored blue, and partially allowed regions 

are colored green. 

 
Figure 2.1 The structure of alanine dipeptide. 

 

 
Figure 2.2 Ramachandran plot of experimentally derived structure of HIV-1 PR en-

zyme (pdb, 1AID). 

 

2.4.2 Random Search Methods 

 

In the random search method, conformational space can be explored by changing ei-

ther the atomic Cartesian coordinates or the torsion angles of rotatable bonds. At each 

iteration, a random change is performing to the current conformation and the new 

structure is then refined using energy minimization. If this conformation has not been 

obtained previously, it is stored. A new starting conformation is then chosen for the 

next iteration and the cycle starts again. The procedure continues until a given number 
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of iterations have been performed. The systematic search ends when all possible com-

binations of bond rotations are covered, however in the random search, there is no 

natural endpoint.2 

 

2.4.3 Distance Geometry in NMR 

 

2D-NOESY (Nuclear Overhauser effect spectroscopy), 2D-ROESY (rotating-frame 

Overhauser effect spectroscopy) and 2D-COSY (correlated spectroscopy) are mainly 

used experimental methods in the conformational analysis problems.2 NOESY gives 

the information about the distance between atoms which are close together in space 

but may be separated by many chemical bonds. The strength of the NOESY signal is 

inversely proportional to the sixth power of the distance, thus it is possible to calcu-

late approximate values for the distance between the pairs of atoms. ROESY is an ex-

periment in which homonuclear NOE effects are measured under spin-locked condi-

tions and usually used when the NOE is small for any internuclear distance or mixing 

time. COSY experiments are used to provide information for the atoms which are co-

valently separated by one to three bonds.2 Usually, 2D-NMR spectroscopy and mo-

lecular modeling calculations are combined for the elucidation of low energy con-

formers of a molecule. 

 

2.4.4 Exploring Conformational Space by Simulation Methods 

 

MC and MD simulations can be performed to explore the conformational space of 

molecules. There are some difficulties in using MC method for flexible molecules, as 

it has been discussed in section 2.3.3. A common strategy for a conformational space 

problem, solved by MD simulations is to perform the simulations at a very high tem-

perature (in some cases physically unrealistic temperatures). A high-temperature MD 

simulation may be able to overcome high energy barriers, thus explore conformational 

space. 
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2.4.5 Clustering Algorithms 

 

Many of the conformational analysis algorithms can generate conformations that are 

very similar. In this case, it is desirable to select a representative small set of confor-

mations with a subsequent analysis (e.g., cluster analysis).  Cluster analysis groups 

similar objects, from which the representatives can be picked up. Cluster analysis 

measures the similarity between the pairs of objects. In comparison of conformations 

of a molecule, the root mean square deviation (RMSD) would be an obvious measure 

to use2: 
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where, Natoms is the number of atoms and di is the distance between the coordinates of 

atom i in the two structures. Another method is to measure similarities of torsional 

angles between the structures2: 
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where, wm,i is the value of torsional angle m in conformation i. Ntot is the total number 

of torsional angles. 

 

2.5 The Use of Molecular Modeling and Cheminformatics Methods in 

the Design of New Molecules 
 

2.5.1 Molecular Docking 

 

Molecular docking or (in silico docking) is a method which predicts the preferred 

conformations of one molecule to a second one when bound to each other to form a 

stable complex. Molecular docking can be considered as a dynamic procedure where 

the correct geometry of a “key” is sought which will open the “lock”. 
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The docking problem involves several degrees of freedom, for example there are six 

translational and rotational degrees of freedom of a molecule relative to other as well 

as the conformational degrees of freedom of each molecule.2,14,16 Many algorithms 

have been developed to solve the docking problem. These can be grouped according 

to the number of degrees of freedom that they ignore. The simplest algorithms use  

two molecules as rigid bodies, thus explore only six degrees of translational and rota-

tional freedom (rigid docking). In flexible docking, the conformational degrees of 

freedom need to be taken into consideration. Most of the current docking programs 

treat only ligand as flexible and receptor is considered rigid (flexible docking). Con-

formational search methods have been incorporated at some stage in the docking cal-

culations. For example, MC simulation is used for the changing of internal conforma-

tion of ligand. The binding energy of ligand at the binding site of the receptor is cal-

culated by MM methods. The ideal docking method would allow flexibility to both 

ligand and receptor to explore their conformational degrees of freedom. Thus, the 

most ‘natural’ way to incorporate flexibility to ligand and receptor is via MD simula-

tions to the ligand/receptor complex. However, these calculations are computationally 

very demanding and, in practice, MD is used for refinement purposes of docking 

modes. Thus a successful initial docking pose has to be obtained before MD is ap-

plied. 

 

2.5.2 Scoring Functions for Molecular Docking 

 

Most of the docking programs are able to generate a large number of docking poses.  

Some of them have very high energy and clash with protein, therefore are neglected. 

The rest of the solutions are ranked using some scoring functions. Usually, scoring 

functions attempt to approximate the ligand-receptor binding free energy. The free 

energy of binding can be calculated with several simulation techniques but these cal-

culations are very time-consuming and too slow to be of value in docking calcula-

tions. More approximate and faster methodologies have to be used. In contrast to the 

free energy perturbation methods, these algorithms compute the free energy of bind-

ing as an additive equation of various components2,22: 
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ΔGbind = ΔGsolvent + ΔGconf + ΔGint + ΔGrot + ΔGt/r + ΔGvib 

 

where, ΔGsolvent is the contribution of the solvent effects arising from the interactions 

between the solvent and the ligand, protein and intermolecular complex. ΔGconf is 

contribution of conformational changes in the protein and in the ligand (usually, dock-

ing algorithms assume a rigid receptor, thus ΔGconf depends only on the conforma-

tional changes of ligand). ΔGint is the free energy, due to ligand-protein interactions. 

ΔGrot (entropic contribution) is the free energy loss because of freezing internal rota-

tions of protein and the ligand. This penalty function is simply calculated by assuming 

three  states per rotatable bonds (trans and gauche±) of equal energy, thus leading to a 

free energy loss of RT ln3 (~0.7 kcal/mol) per rotatable bond. ΔGt/r is the penalty 

function for the loss of translational and rotational free energy caused by the associa-

tion of two-bodies (ligand and receptor) to give a single body (the intermolecular 

complex). ΔGvib is the free energy of the system due to changes in vibrational modes 

(calculations of this term is very difficult and do not affect significantly the total sum, 

thus, they are usually ignored). There is a considerable discussion for each of the 

terms in above equation in literature, and for some of them, there may be a number of 

different ways for their estimation. However, many of these approaches are not suit-

able for the docking calculations, because they require a high computational cost.2 

Despite the simplicity of scoring functions, such functions rate well in comparisons of 

different functional forms. One of the interesting scoring function methods was sug-

gested by Böhm. In this approach, a simple relationship between the free energy of 

binding and a variety of parameters as well as fast calculation has been considered2,23: 
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where, ΔG0 is a constant term and it is independent from the system. It was inter-

preted as corresponds to ΔGt/r term, in the previous equation which shows the overall 

change in translational and rotational free energy. ΔGH-bonds is the contribution from an 

ideal hydrogen bond and multiplied by a penalty function f(Δr, Δα), which accounts 

for large deviations of a hydrogen bond from ideal geometry (assumed as 1.9 Å and 

180o). ΔGionic is the contribution from an unperturbed ionic interactions. ΔGlipo is the 
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contribution from lipophilic interactions, which are assumed to be proportional to the 

lipophilic contact surface between ligand and receptor Alipo. ΔGrot is the loss of free 

energy due to freezing a rotatable bond in the ligand upon binding, and it is multiplied 

by a number of rotatable bonds in the ligand (Nrot). 

 

2.5.3 3D QSAR Studies 

 

2.5.3.1 Structure-Activity Relationships (SAR) 

 

Molecular properties are coded by molecular structure. Compounds with similar 

structures often tend to have similar pharmacological activity. However, they usually 

exhibit differences in potency, undesirable side effects and in some cases different 

binding affinities. These structurally related differences are commonly referred to as 

SAR.  

 

SAR can be defined as “the relationship between chemical structure and pharmacologi-

cal activity for a series of compounds”.4,24 Traditional SAR studies are usually carried out 

by making large numbers of analogues of the lead compound and testing them for bio-

logical activity at a specific target. A SAR study of a lead compound and its analogues 

can be used to determine the segments of the lead compound that are crucial for its bind-

ing affinity, that is, its pharmacophore as well as its unwanted side effects. This informa-

tion can be used subsequently to design a new drug that has increased affinity and fewer 

unwanted side effects than the existing drug (optimize its SAR). Traditional SAR 

investigations are useful tools in the search for new drugs, however they are expensive in 

both personnel and materials. Thus, a number of attempts have been made to improve the 

traditional SAR studies. 

 

2.5.3.2 QSAR 

 

The success of the SAR approach to drug design depends not only on the knowledge 

and experience of the drug design group but also may related with luck. QSAR is an 

attempt to remove the luck factor from drug design by establishing a relationship in 

the form of a mathematical equation between biological activity and the measurable 
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physicochemical parameters of a drug that represents its properties such as lipophilic-

ity, shape and electron distribution, which have major effects on the activity.4,24 Quan-

titative structure-property relationships (QSPR) are also used, particularly when a 

specific property other than biological activity is considered. If an equation is formed, 

then a medicinal chemist could determine from the equation the value of parameter, 

and hence the structures, that would optimize the activity. These predictions allow 

medicinal chemists to make a more informed choice as to what analogues to design 

and synthesize. Obviously, this could considerably cut down the cost of drug devel-

opment. The relationship between these numerical properties and the activity is de-

scribed by a general equation; υ = f (p), where υ is the activity (usually defined as log 

(1/C), where C is the concentration of the compound required to produce standard re-

sponse in a given time), and p is the molecular descriptor (i.e., structure-derived prop-

erties of the molecule). These properties that influence the activity of a drug are quite 

diverse, the major ones being lipophilicity, steric effects and electronic effects. The 

parameters commonly used to represent these properties are partition coefficients for 

lipophilicity, Taft steric constants for steric effects, and Hammett σ constants for elec-

tronic effects.4,24 

 

2.5.3.2.1 Partition Coefficients (P) 

 

A drug has to pass through the biological membranes in order to reach its site of ac-

tion. Consequently, the relative solubilities of a drug in the aqueous medium and lip-

ids are crucial in the transport of that drug to its site of action, especially at the aque-

ous medium/lipid interface. P measures the distribution of a compound between two 

immiscible solvents, thus attempts have been made to correlate the activities of drugs 

with their lipid/water partition coefficients. It is not easy to measure P in situ, so the 

less accurate model systems (e.g., organic solvent/aqueous solution) are used; P = 

[drug in the organic phase] / [drug in the aqueous phase]; (usually, water or a phos-

phate buffer at the pH of blood (7.4) is the most commonly used aqueous phase and n-

octanol is the most commonly used organic phase).4,24 The nature of the relationship 

obtained depends on the range of P values for the used compounds. If this range is 
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small the results may be expressed as a straight line equation having the general 

form2: 

log (1/C) = k1.log P + k2 

where, k1 and k2 are the constants. 

 

Over large ranges of P values, the graph of log (1/C) versus log P often has a para-

bolic form with a maximum value (log Po). Thus, there is an optimum balance be-

tween the aqueous and lipid solubility for maximum activity. Below Po the drug will 

be reluctant to enter the lipid bilayer, whereas, above Po the drug will be reluctant to 

leave from the lipid bilayer.4 Therefore, analogues that have P values near the Po are 

likely to be the most active and worth for further investigation. Hansch showed that 

many of these parabolic relationships could be represented reasonably accurately by 

equations of the form24: 

log (1/C) = -k1 (log P)2 + k2 log P + k3 

An alternative way to express the Hansch equation is to use a lipophilic substituent 

constant (π). This is the logarithm of the P of a compound with substituent X relative 

to a parent compound in which the substituent is hydrogen24: 

π = log (PX/PH) 

Thus, 

log (1/C) = -k1 (log π )2 + k2 log π + k3 

π can be used as an alternative to P,when dealing with a series of analogues in which 

only the substituents are different. 

 

2.5.3.2.2 Electronic Parameters 
 

The distribution of the electrons in a drug molecule will have a considerable influence 

on the distribution and activity of the drug. As a general rule, non-polar and polar 

drugs in their unionized form are usually more readily diffused through membranes 

than polar drugs and drugs in their ionized forms.4,24 Once the drug reaches the ligand 

binding site at the receptor the distribution of electrons in its structure will determine 

the type of electrostatic bonds between drug and receptor.4,24 The distribution of elec-

trons within a molecule depends on electron-donating and electron-withdrawing 
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groups found in the molecule.24 Louis Hammett observed that the dissociation con-

stants (K) of aromatic acids are influenced by the electronic properties of the substitu-

ents on the phenyl ring. For example, benzoic acid is weakly ionized in water24: 

COOH COO-

+ H+

 
 

The K values of substituted benzoic acids indicate that electron-withdrawing groups 

(e.g., nitro group) increase the dissociation, while electron-donating groups (e.g., 

ethyl) decrease it. A similar effect exists for other equilibrium such as substituted 

phenyl acetic acids (Table 2.1)24: 
COOH COO-

+ H+

 
 

When plotting the quantity log (K/K0) for benzoic acids on the x axis, where K and K0 

are the constants for unsubstituted and substituted compounds, respectively, and cor-

responding values measured for the same set of substituents in phenylacetic acids on 

the y axis, Hammett obtained a straight line. Because of the association between dis-

sociation constants and free energies (ΔG = -2.3RTlogK) this phenomenon is known 

as the linear free energy relationship.24 

 

 
Table 2.1 K and log (K/K0) values for unsubstituted and substituted benzoic acids 

(left) and for same set of unsubstituted and substituted phenylacetic acids.  

 

Thus, straight line on Figure 2.3 can be written as a linear equation, the Hammett 

equation24: 
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log (K/K0) = ρ log (K/K0); 

log (K/K0) = ρ σ 

where, ρ is related to a given scaffold (e.g., phenylacetic acids), and σ is a descriptor 

of a substituent and describes its influence on the K. The parameter ρ describes the 

magnitude of the effect a substituent can exert on the dissociation reaction of a given 

scaffold. As the distance between the substituent and the dissociated proton increases, 

its influence on the dissociation reaction decreases and so does the value of ρ. A 
negative or positive σ value indicates that substituent is acting as an electron-donor or 

electron-withdrawing groups, respectively. The value of σ varies depending on the 

position of the substituted group (i.e., ortho, meta, para) in the molecule.24 A substitu-

ent may have an opposite sign of σ depending on its position on the ring because σ 

includes both inductive and resonance contributions of the electron distribution. For 

example, σm for the methoxy group of the m-methoxybenzoic acid is 0.12, however σp 

(p- methoxybenzoic acid) has the value of -0.27, because in the former case the elec-

tron distribution is dominated by the inductive contribution, whereas in the latter case 

it is controlled by the resonance effect.24  

 
Figure 2.3 Plot of log (K/Ko) values of benzoic acids versus log (K/Ko) values of 

phenylacetic acids. 

 

2.5.3.2.3 Steric Parameters 
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The Taft steric parameter (Es) was the first attempt to show the relationship between a 

measurable parameter related to the shape and size (bulk) of a drug and the dimen-

sions of the target site and activity of a drug.24 Taft used the relative rate constants of 

the acid-catalysed hydrolysis of α-substituted methyl ethanoates in order to define his 

steric parameter, because it had been shown that the rates of these hydrolyses were 

almost entirely dependent on steric factors24: 
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where, k is the rate constant of the appropriate hydrolysis, when X = H, Es = 0. 

Es is an experimental value based on rate constants for a given model reaction. The 

bulkier the substituent, the more negative the Es. 

 

Hansch postulated that the biological activity of a drug could be related to all or some 

of above stated factors by a simple mathematical relationships based on the general 

formula4,24: 

 

log(1/C) = c1(partition parameter) + c2(electronic parameter) + c3(steric parameter) + c4 

 

where, c1, c2, c3 and c4 are numerical coefficients obtained by feeding the data into a 

suitable computational statistical package. Parameters in the above equation are also 

known as molecular descriptors or simply descriptors. It must be noted that, several 

parameters different than above parameters (e.g., molecular weight, density, molar 

refractivity, etc.) can be used to correlate biological activity. 

 

2.5.3.2.4 Deriving a QSAR Equation 
 

The starting point for deriving a QSAR equation is the study table. It consists of a 

spreadsheet with molecules (data set) across the rows and molecular characteristics 

(biological activity, descriptors) down the columns. Typically, the first column indi-

cates the molecular identification (e.g., compound number), the second column shows 

the activity of compounds in the data set, and subsequent columns present the values 

of the corresponding descriptors (Table 2.2). The most widely used method for deriv-
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ing QSAR equations is linear regression, which uses the least-squares fitting to find 

the best combination of coefficients in the equation. The least-squares technique can 

be illustrated by using a simple case where the activity is a function of only one de-

scriptor.4 Therefore, the form of equation will be y = mx + c,  where, y is the depend-

ent variable (observations), (e.g., activity) and x is the independent variables (descrip-

tors), (e.g., logP). The objective of a regression analysis is to find the coefficients m 

and c that minimize the sum of deviations of the observed values from the fitted equa-

tion.4,24 

 

The least-squares coefficients m and c in the linear regression equation are given 

by2,4,24: 
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where, <x> and <y> are the mean values of the independent and dependent variables, 

respectively. The ‘quality’ of a simple linear regression equation is often reported as 

the squared correlation coefficient r2 value. This value indicates the fraction of the 

total variation in the dependent variables that is explained by the regression equation. 

In order to determine r2
 value, the total sum of squares (TSS) of the deviations of the 

observed y values from the mean <y> value is calculated together with the explained 

sum of squares (ESS), which is the sum of square deviations of the y values calculated 

from the model, ycalc.,i from the mean. The ycalc.,i is obtained by feeding the appropriate 

xi value into the regression equation. Other common squared term is the residual sum 

of squares (RSS), which is the sum of squares of the differences between the observed 

and calculated y values2,3,24: 
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where, TSS is equal to the sum of ESS and RSS. The r2 is then given by: 

r2 = (ESS/TSS) = (1 - (RSS/TSS)) 
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The r2 adopts values between 0 and 1; where, 0 indicates that none of the variations in 

the observations is explained by variation of independent variables in the equation and 

1 indicates that all of the variation in the observed values can be explained. 

 
Table 2.2 An example of QSAR study table. 

 

It is not always possible to correlate biological activities with a single descriptor (lin-

ear model with one descriptor). Given that biological action results from the com-

bined influence of many factors, one can extend the QSAR model to multiple descrip-

tors. Indeed, the observation that several parameters used simultaneously can lead to 

good models prompted the development of a method referred to as multiple linear re-

gression (MLR).  

 

In MLR, the activity is expressed as a linear combination of descriptors. In most 

cases, the obtained model with the minimum sum of deviations from the observations 

is not perfect and an error (e) is usually unavoidable. Thus, 
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where, y is the activity, xj is the value of descriptor j and bj its associated coefficient, e 

is the error.4,24 

 

Another quantity that is commonly reported in the QSAR studies is the F statistics. 

The F value is the ratio of the explained mean square divided by the residual mean 

square. The F values are available in statistical tables at different levels of confidence; 
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if the calculated value is greater than this tabulated value, then the equation is signifi-

cant at that particular confidence level.24 It must be noted that the F value depends 

upon the number of independent values in the equation and the number of data 

points.24 As the number of data points increases and/or the number of independent 

variables falls, the value of F which corresponds to a particular confidence level also 

decreases. Because, the aim is to obtain a model to be able to explain a large number 

of data points with an equation containing as few variables as necessary; such an 

equation would be expected to have a greater predictive power. The F-test employs 

the F-distribution to test whether the r2 obtained from the MLR analysis significantly 

differs from 0. The larger the F-value, the larger the probability that r2 significantly 

differs from the 0.  This is formally taken into account via the number of degrees of 

freedom associated with each parameter. An MLR is associated with N-1 degrees of 

freedom, because the fitted line always passes through the means of the dependent 

and independent variables. The TSS is always associated with N-1 degrees of free-

dom. If there are p independent variables (descriptors) in the equation, then there are 

N-p-1 degrees of freedom associated with the RSS and p degrees of freedom associ-

ated with the ESS. Therefore, the explained mean square equals to ESS divided by p; 

and the residual mean square equals to RSS divided by N-p-1, and so F is given by24: 

RSS
1ESS 


pN

p
F  

One of the easiest ways to validate a QSAR model is to calculate the standard error or 

standard deviation (SE or SD), which is calculated as the average square deviation of 

each number (the residuals) from the mean. The smaller the SD, the higher the quality 

of the model24: 
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where, yobs. and ycalc. are the observed and calculated activities, respectively, n is the 

number of data points and p is the number of descriptors used. 

 

2.5.3.2.5 Cross-validation 
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The indices of r2 and F can be generated to evaluate the quality of the obtained QSAR 

models. However, these parameters basically only tell us about the ability of the 

QSAR model to reproduce the data from which it was derived and not its aptitude to 

predict the activities of new compounds.4,24 Two methods can be used to estimate the 

predictive power of a QSAR model. The first method is known as the test set method 

and consists of partitioning the initial data into two sets, a preferred strategy when a 

large data set of compounds is available. The initial data set is divided into two parts; 

the first one (training set) is usually used to build a QSAR model and the second one 

(test set) to validate this model. The second method is known as the cross-validation 

method, it is preferred when the data set is too small. In this method, the data set is 

divided to N equal parts, N-1 parts are used to build the model which is then used for 

the remaining Nth part to predict the activities of the corresponding molecules. The 

procedure is repeated until all activities of all compounds have been predicted inde-

pendently. The most common form of the cross-validation method is the leave-one-

out method, in which each data value is left out and a model derived using the re-

mainder of the data. A value then can be predicted for the data left out and can be 

compared with the true observed value and this procedure is repeated for every data 

point. This procedure permits the calculation of cross-validated r2 )( 2
cvr or q2. 

 

The q2 is computed by analogy with r2, the difference being the use of the predicted 

sum of squares (PRESS) rather than the RSS in the numerator. PRESS is calculated as 

the difference between the measured activity and the predicted activity for the test 

set2,4: 
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2.5.3.2.6 Principal Components Regression (PCR) 

 

MLR can not deal with data sets, where the variables are highly correlated and/or 

where the number of variables exceeds the number of data points. Two methods are 

commonly used to deal with such situations; PCR and partial least squares (PLS). In 
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PCR, the variables are subjected to principle component analysis (PCA), and then re-

gression analysis is performed using the first few principle components. PCA is a 

commonly used technique for reducing the dimensionality of a data set (dimensional-

ity of a data set is the number of variables that are used to describe each objects). 

Consider the data shown in Figure 2.4, there is a high correlation between x and y 

values. If we were to define a new variable, z = x + y, then we could express most of 

the variation in the data as the values of this new variable z, which is called principal 

component. In general, the principal component (p) is a linear combination of the 

variables2,4: 
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where, pi is the principal component and ci is the coefficient of the variable xj (there 

are v such variables). The first principle component of the data set corresponds to that 

linear combination of the variables that gives the best fit straight line through the data 

when they are plotted in the v-dimensional space. The second and subsequent princi-

ple components account for the maximum variance in the data not already accounted 

for the previous principle components. Each principle components corresponds to an 

axis in a v-dimensional space, and each principle component is orthogonal to all the 

other principle components. Indeed, in order to explain all of the variation in the data, 

it is usually necessary to include all the principle components (there can be as many 

principle components as there are dimensions in the data), however, in many cases 

only a few principle components are enough to explain a significant proportion of the 

variation in the data. The principle components are calculated using standard matrix 

methods. The first step is to calculate the variance-covariance matrix; if there are s 

observations (number of compounds), each of them contains v values (number of de-

scriptors), and then the data set can be represented as a matrix D with v rows and s 

columns. The variance-covariance matrix Z is2:  

Z = DTD 

The eigenvectors of Z are the coefficients of the principle components. As the Z is a 

square symmetric matrix, its eigenvectors will be orthogonal.2 The eigenvalues and 

their associated eigenvectors can be obtained by solving the secular equation |Z –λI| = 



 43

0. The first principle component corresponds to the highest eigenvalue, the second 

principle component to the second highest eigenvalue, and so on.2 

 

 
Figure 2.4 Most of the variance in this set of highly correlated data values can be ex-

plained in terms of a new variable z, z = x + y. 

 

A general rule of thumb is that only those principle components that have eigenvalues 

which are greater than 1 should be used for inclusion in a PCR. 

 

2.5.3.2.7 Partial Least Squares (PLS) 

 

PLS is an alternative technique to PCR. The PLS expresses a dependent variable y in 

terms of linear combination of independent variables2 xi: 

 

y = b1t1+b2t2+b3t3+…..+bmtm 

where,  

t1 = c11x1+c12x2+c13x3+…..+c1pxp 

t2 = c21x1+c22x2+c23x3+…..+c2pxp 

t3 = c31x1+c32x2+c33x3+…..+c3pxp 
tm = cm1x1+cm2x2+cp3x3+…..+cmpxp 

 

t values are called latent variables (or components) and are constructed in such a way 

that they form an orthogonal set. The PLS method is using as a tool for decreasing the 

variations of many correlated descriptors in a data to a few uncorrelated latent vari-

ables. The use of orthogonal linear combinations of the x values is very similar with 
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PCA. The major difference is that the latent variables in a PLS are constructed to ex-

plain not only the variation in the independent variables (x) but also to simultaneously 

explain the variation in the dependent variables (observations, y).  

 

2.5.3.3 3D QSAR 

 

3D QSAR is a method based on statistical correlation analysis enabling the compari-

son of 3D molecular forces (fields) produced in the vicinity of different compounds to 

find correlations between biological activities and these fields.2 QSAR approaches 

aim to establish relationships between biological activities and chemical structure. In 

classical QSAR (2D QSAR) molecular properties are described by parameters that are 

not x,y,z dependent (e.g., logP, MR, Es, σ, π, etc.), whereas in 3D QSAR, they are 

represented by a set of values of x, y, z functions, measured at many different loca-

tions in the space around the molecules. Thus, in 3D QSAR, there are many more de-

scriptors than 2D QSAR. The comparative molecular field analysis (CoMFA) and the 

comparative molecular similarity indices analysis (CoMSIA) are two most popular 

approaches used in 3D QSAR studies. 

 

2.5.3.3.1 CoMFA 

 

CoMFA was first described by Cramer et al., in 1988.25 Prior to the CoMFA analysis, 

each compound in the data set has to be subjected to conformational analysis and it is 

presumed as the active conformation at the binding site of the receptor. These con-

formers must be superimposed on a selected template compound from the data set. 

The molecular fields (e.g., steric, electrostatic) surrounding each molecule are then 

calculated by placing appropriate probe groups at points on a regular lattice (in order 

to simplify calculations of the fields created around a molecule, the method consists 

of superimposing 3D lattice defining grid points regularly distributed in space, and 

calculating the interaction energy between the molecule and the probe at each grid 

point, using a potential energy function, see Figure 2.5). In order to test the presence 

of a field and to measure, it requires the use of probes with associated energy func-

tions.2 Usually a probe atom is employed which is placed at well selected points in the 
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space, to quantitatively measure the value of the field created by the molecule at the 

point considered. The probe must be of same type of the field to be measured (e.g., 

van der Waals probes for steric fields, charged probes for electrostatic fields). The 

electrostatic field is obtained by calculating the electrostatic interaction energy be-

tween the molecule and a probe at each grid point using Coulomb’s law2: 
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where, qi and qp are the atomic charges for the ligand and the probe, respectively. 

 

The steric field is obtained by calculating the van der Waals interaction energy be-

tween the molecule and the probe at each grid point using for example a Lennard-

Jones potential2: 
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where, A and B are specific parameters, different for each interacting pair of atoms. 

 

 
Figure 2.5 3D lattice defining grid points makes it possible to sample the space with a 

finite number of points of molecular interactions fields.  

 

2.5.3.3.2 CoMSIA 

 

CoMSIA was developed by Klebe et al.,10 in 1994 and it is an extension of the 

CoMFA methodology. Both models are forms of QSAR and are based on the assump-
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tion that changes in binding affinities of ligands are related to changes in molecular 

properties, represented by fields. CoMFA approach has been widely accepted and a 

useful technique in 3D QSAR, however, it is not without problems. In particular, both 

steric and electrostatic potential functions are very steep near the van der Waals sur-

face of the molecule, causing rapid changes in surface descriptions, and they require 

the use of cut-off values so calculations are not done inside the molecular surface. In 

addition, a scaling factor is applied to the steric field, so both fields can be used in the 

same PLS analysis. Finally, changes in orientation of a set of superimposed mole-

cules, relative to the calculation grid, can cause significant changes in CoMFA results 

due to steric cut-off values. In CoMSIA, similarity indices are calculated at regularly 

spaced grid points for the pre-aligned molecules. A comparison of the relative shapes 

of CoMFA and CoMSIA fields is shown in Figure 2.6. For the distance dependence 

between the probe atom and the ligand atoms a Gaussian function is used. Because of 

the different shape of Gaussian function, the similarity indices can be calculated at all 

grid points, both inside and outside the molecular surface. The equation used to calcu-

late similarity indices is as follows9: 
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where, A is the similarity index at grid point q, summed over all atoms i of the mole-

cule j under investigation, wprobe, k is the probe atom with radius 1 Å and charge +1, wik 

is the actual value of the physicochemical property k of atom i, riq is the distance be-

tween the probe atom at grid point q and atom i of the test molecule, α is the attenua-

tion factor and its optimal value is normally between 0.2 and 0.3.26 

 
Figure 2.6 Shapes of various functions. 
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2.5.4 De novo Drug Design 
 

In de novo design, the 3D structure of the receptor or the 3D pharmacophore is used 

to design new molecules. There are two basic types of de novo design algorithms; 

‘outside-in’ and ‘inside-out’ methods. In the first class of methods, the binding site is 

first analyzed to determine where specific functional groups might bind tightly. These 

groups are connected together to give molecular skeletons, which are then converted 

to ‘real’ molecules. In the second class of methods, molecules are grown within the 

binding site under the control of an appropriate search algorithm, with each proposi-

tion being evaluated using an energy function.2 
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3.1 Minimization Methods 

 
Energy is a function of the atomic coordinates of the system and software programs 

attempt to generate the xyz coordinates of atoms which correspond to a minimum en-

ergy. This is accomplished by minimization procedures and these techniques are itera-

tive in which the atomic coordinates are altered from one iteration to next in order to 

minimize the energy. Commonly used optimization methods are:2 
 

(i) The Steepest Descent (SD) Method. The SD method uses a first-order minimization 

algorithm and changes the coordinates of the atoms in the system gradually in order to 

reach closer and closer to minimum energy.  In the SD method, r is defined as a vec-

tor of all coordinates of N atoms in the system. Then, the net force on each atom F 

and the potential energy at each iteration step t are calculated. New positions are cal-

culated by2: 
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i = 1, 2, 3,…..N. 

The geometry optimization process stops, when the specified predetermined threshold 

conditions by the user are fulfilled. The SD is often used for structures far from the 

minimum as a rough and introductory run followed by a subsequent minimization 

procedure employing a more advanced algorithm (e.g., conjugate gradient).1 

 

(ii) The Conjugate Gradients (CG) Method. In the SD method, both gradients and di-

rection of successive steps are orthogonal, however in the CG method, the gradients at 

each point are orthogonal but the directions are conjugate. New positions are calcu-

lated by2: 
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Convergence properties of CG are superior to SD method.2,19  
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(iii) The Powell Method: Another first-order minimization algorithm is the Powell 

method and belongs to the CG family of optimization method. It applies a more effi-

cient CG method to determine the descent direction and it is more tolerant to inexact 

line searches.2,19 

 

(iv) The Newton-Raphson Method: This method does not use only first derivatives, 

but also the second derivatives in the minimization procedures. Second derivatives 

give information about the curvature of the function.2,19 

 

3.1.1 Geometry Optimizations of Investigated Systems 

 

The structures of the studied molecules were subjected to geometry optimization us-

ing a combination of the standard Tripos MM force field of the Sybyl molecular mod-

eling package27 (Powell energy minimization algorithm, Gasteiger-Huckel charges 

and 0.001 kcal/mol Å energy gradient convergence criterion). For the conformational 

analysis of template compounds used in 3D QSAR, ab initio B3LYP/6-31G* level 

QM calculations were also performed.26,28-31 

 

3.2 MC Simulations 
 

MC analysis of ligands has been carried out with the CHARMm force field of 

QUANTA package32 (Powell energy minimization algorithm, Gasteiger-Huckel 

charges and 0.001 kcal/mol Å energy gradient convergence criterion) as well as the 

semi-empirical methods of AM1 and PM3 (SCF convergence criterion has been set to 

10-6 as energy gradient convergence limit).26,29,30 

 

3.3 3D QSAR/CoMFA and CoMSIA Settings 
 

The steric and electrostatic field energies were calculated using the Lennard-Jones 

and the Coulomb potentials, respectively with a 1/r distance-dependent dielectric con-

stant in all intersections of a regularly spaced (2 Å) grid. An sp3 carbon atom with a 

radius of 1.53 Å and a charge of +1.0 was used as a probe to calculate the steric and 
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electrostatic energies between the probe and the molecules using the Tripos force 

field. The truncation for both the steric and electrostatic energies was set to 30 

kcal/mol.26-28,30  

 

3D QSAR/CoMFA and CoMSIA PLS Analysis and Validations: The initial PLS analy-

sis was performed using the “leave-one-out” cross-validation method for all 3D 

QSAR analyses. A minimum column filtering value of 2.00 kcal/mol was set to im-

prove the signal to noise ratio by omitting those grid points whose energy variation 

was below this threshold. In both CoMFA and CoMSIA analyses, the descriptors 

were treated as independent variables, whereas the pKi values were treated as depend-

ent variables in the PLS regression analyses in order to derive the 3D QSAR models. 

The final model (non-cross-validated conventional analysis) was developed from the 

model with the highest 2
cvr , and the optimum number of components was set equal to 

that yielding the highest 2
cvr . The non-cross-validated models were assessed by the 

conventional correlation coefficient r2, standard error of prediction, and F values. For 

the creation of the CoMFA field, ‘CoMFA standard’ scaling was selected, while in 

the case of CoMSIA ‘none’ option was selected in the Sybyl.26,28,29,31  

 

3.4 Molecular Docking 
 

Flexible docking studies have been applied using FlexX program of Sybyl molecular 

modeling package.27 FlexX is a flexible docking method that uses an incremental con-

struction algorithm to place ligands into a binding site of a receptor.23 The base frag-

ment (the ligand core) is automatically selected and placed into the active site of the 

receptor using a pose clustering algorithm.2 Then, the remainder of the ligand is built 

up incrementally from other fragments. Finally, placement of the ligand is scored on 

the basis of protein-ligand interactions and the binding energy is estimated and 

placements are ranked. 

 

The aim of base placement is to allow favorable simultaneous interactions between 

ligand and protein by pose clustering method.2 In this algorithm, the base fragment 

and receptor site are represented as a finite set of interaction points. A unique trans-



 52

formation of base fragment into binding site is defined by superposing three interac-

tion sites from the base fragment into three interaction sites on the receptor. Thus, the 

first step of the algorithm is to find all such compatible triangles.2 All placements are 

clustered according to RMSD between sets of two placements, using the complete-

linkage hierarchical cluster algorithm.2 Basically, the two nearest clusters are merged 

into one, as long as the distance between them is lower than the predefined threshold. 

Conformational flexibility is taken into consideration by systematically generating 

low energy conformations of the ligand. Bond lengths and bond angles are held fixed 

at their input values and a set of up to twelve preferred dihedral angles is assigned ac-

cording to records from a molecular fragment database. A grid box technique is used 

in the interaction energy calculations. Basically, the system is put inside a cubic grid, 

and to check a solution for steric overlap between receptor and ligand, only those re-

ceptor atoms in cubes within the van der Waals radius of the ligand atom and the larg-

est receptor atom radius must be checked. For each ligand-receptor interaction, the 

interaction center on the ligand (li), the interaction center on the receptor (ri) and en-

ergy contribution of the interaction (wi), provides optimal geometry. For the superim-

position routing, li are fitted onto ri, thus 2)( iii rlw  is minimized. In order to guide 

the growth of the ligand, a numerical measure of “goodness of fit” must be deter-

mined in order to measure the strength of protein-ligand interactions.2 

 

The physicochemical model behind FlexX can be divided into three parts: the analysis 

of the conformational space of the ligand, the model of protein-ligand interactions, 

and the scoring function. The scoring function of FlexX, developed by Böhm in order 

to rank the solutions, is an estimation of the free binding energy ΔG of the protein-

ligand complex23: 
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where; f ( r,  ) is a scaling function that penalizes deviations from ideal geome-

try. ΔG0 is a contribution to the binding energy that does not directly depend on any 

specific interactions with the protein. It may be considered as a reduction of binding 

energy due to overall loss of translational and rotational entropy of ligand. ΔGH-bonds 

represents the contribution from an ideal hydrogen bond. ΔGionic describes the contri-

bution from an unperturbed ionic interaction. ΔGarom accounts for the interactions of 

aromatic groups and ΔGlipo represents the contribution from lipophilic interactions. 

ΔGrot describes the loss of binding energy due to freezing of internal degrees of free-

dom in the ligand. Nrot is the number of rotatable bonds that are immobilized in the 

complex. It is assumed that such interactions are proportional to Alipo, the lipophilic 

contact surface between the protein and the ligand. 

 

(i) Molecular docking studies for CB ligands at the active site of CB1 and CB2 recep-

tors30,31: 3D models of the CB1 and CB2 receptors based on template rhodopsin from 

Tuccinardi et al.33 has been used for the initial docking experiments, however, the 

critical binding site residues were determined from several molecular modeling stud-

ies of CB receptors (e.g., Tuccinardi et al.33, Salo et al.34 and Shim et al.8). The active 

site in the docking runs included all atoms within a radius of 6.5 Å around the critical 

amino acids for CB1 receptor: Phe174, Leu190, Lys192, Leu193, Gly195, Val196, 

Thr197, Phe200, Thr201, Pro251, Trp356, Leu359, Ser383, Cys386, Leu387 and for 

CB2 receptor: Leu108, Ser112, Pro168, Leu169, Trp194, Trp258. (The complete list 

of amino acid residues form the binding site is detailed in the Appendix). In addition 

docking simulations were repeated with 3D models of the CB1 and CB2 receptors 

produced using β2-adrenergic template receptor. 

 

(ii) Molecular docking studies for fullerene analogues at the binding cavity of HIV-1 

PR28,29: Since the X-ray structure of the HIV-1 PR complexed with fullerene based 
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inhibitors has not yet been reported, the initial structure was taken from the HIV-1 PR 

complexed with haloperidol derivative at 2.2 Å resolution (pdb code; 1AID).35 The 

water molecules and the inhibitor were then removed and all hydrogens were added to 

the system. Ionization states for ionizable amino acid residues were assigned accord-

ing to the standard pKa values of amino acids. The geometry of the enzyme has been 

optimized by using the Tripos MM force field. The maximum number of conformers 

for each molecule was set to 30 and the top 10 lowest energy conformers were used in 

docking simulations and only the best docked complex was considered for further 

analysis. The default FlexX scoring function was used for the simulations. FlexX uses 

formal charges, which were turned on during the docking. The active site in the dock-

ing runs, included all atoms within a radius of 6.5 Å around the critical amino acids: 

Asp25, Asp25', Ile50, and Ile50'. (Full list of binding site residues have been detailed 

in the Appendix). 

 

3.5 MD Simulations 
 

The MD simulations were performed with Groningen Machine for Chemical Simula-

tions (GROMACS) version 3.3.1 software package36 using the gmx force field.36 

Simulations were run with periodic boundary conditions. In a truly macroscopic sys-

tem, surface effects may not be so crucial in the properties of the system, because as a 

spherical system increases in size, its volume grows as the cube of the radius, while 

its surface grows as the square. However, in a typical simulation, computational re-

sources inevitably constrain the size of the system to be so small that surface effects 

may play an important role in the properties of the system under study. Thus, model-

ing of a cluster may not tell one much about the behaviour of a macroscopic system.  

In order to eliminate surface effects from the computation, periodic boundary condi-

tions can be used.2 Periodic boundary condition are represented in Figure 3.1. Under 

periodic boundary conditions, the system which is modeled is assumed to be a unit 

cell in some ideal crystal (e.g., cube, hexagonal prism, orthorhombic). Periodic boun-

dary conditions combined with the minimum image convention: only one, the nearest, 

image of each particle is considered for short-range non-bonded interaction terms. For 

the long-range electrostatic interactions this is not always accurate enough, and has to 
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and has to be incorporated with lattice sum methods (e.g., Ewald sum, particle mesh 

Ewald). In these methods, a particle interacts with all other particles in the simulation 

box and with all of their images in an infinite array of periodic cells. 

 

 
Figure 3.1 Periodic boundary conditions. 

 

Because of heating due to external or frictional forces, it is necessary to control the 

temperature of the system. In MD simulations, Berendsen thermostat were used.37 

This algorithm mimics weak coupling with first-order kinetics to an external heat bath 

with given reference temperature T0. Deviation of the system temperature from T0 is 

slowly corrected by38: 


TT

t
T 
 0

d
d  

where, τ is the temperature coupling which is given by: 

kN
C

df

TV 2  

where, CV is the total heat capacity of the system, k is Boltzmann constant, and Ndf  is 

the number of total degrees of freedom, τT is the user defined temperature coupling 

time constant and close to τ but not exactly equal because the kinetic energy change 

caused by scaling the velocities is partly redistributed between kinetic and potential 

energy, thus change in temperature is less than the scaling energy. Similarly with the 

temperature coupling, the system can also be coupled to a pressure bath. For the MD 

simulations of the systems, Berendsen barostat was applied.37 The Berendsen algo-

rithm rescales the coordinates and box vectors with a scaling matrix µ in every step, 
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which has the effect of a first-order kinetic relaxation of the pressure with given refer-

ence pressure P0
38: 

P
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d  

The scaling matrix µ is given by38: 
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where, β is the isothermal compressibility of the system. 
 

All bonds were constrained using the linear constraint solver (LINCS) algorithm39. 

LINCS is an algorithm that resets bonds to their correct lengths after an unconstrained 

update. Visualization of the dynamics trajectories was performed with the visual mo-

lecular dynamics (VMD) software package40.  

 

3.5.1 Details of the Performed Simulations 

 

3.5.1.1 MD Simulations of CB 

 

(i) In DPPC lipid bilayers (without receptor) MD simulations: The coordinates of 

AMG3 conformers were used as input at the PRODRG program41 in order to obtain 

topologies which will be used in the MD simulations. DPPC lipid bilayer for the MD 

simulations was obtained from Dr. M. Karttunen (128 DPPC lipids and 3655 water 

molecules after 100 ns).42,43 Simulations were run in the NPT ensemble at 300 K and 

1 bar with periodic boundary conditions. Berendsen barostat and thermostat algo-

rithms were used.37 Electrostatic interactions were calculated using the particle mesh 

Ewald method.44 Cut-off distances for the calculation of Coulomb and van der Waals 

interactions were 1.0 and 1.4 nm, respectively. Prior to the dynamics simulation, en-

ergy minimization calculations were applied to the full system without constraints us-

ing the SD method for 5000 steps with the initial step size of 0.01 Å (the minimiza-

tion tolerance was set to 100 kJ/(mol.nm)). The system was then equilibrated via 250 

ps simulations with a time step of 2 fs, subsequently a 2.5 ns simulations were per-

formed at 300 K and 1 bar with a time step of 2 fs. All bonds were constrained using 
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the LINCS algorithm.39 Origin 6.0 program was used for dihedral angles versus time 

plots and statistical calculations.45 (ii) Membrane associated receptor MD simula-

tions: The lipid used in solution calculations was employed here, however the lipid 

extended by 4x4x1 in xyz directions, respectively in order to have enough area of 

lipid for the protein merging. Same running parameters with DPPC lipid bilayers 

(without receptor) MD simulations were used. (iii) MD simulations at the homology 

modeling step of the receptors: Same parameters with above defined MD have been 

used. The convergence criteria have been tested by the potential energy versus time 

plot and showed sufficient convergence. Each receptor backbone structure from a tra-

jectory is compared with reference (initial) structure in order to obtain the receptor 

backbone RMSD versus time plots (Figures A1 and A2, Appendix).  

 

3.5.1.2 MD Simulations of HIV-1 PR and Fullerene Analogues 
 

Canonical NVT ensemble at 300 K was used with periodic boundary conditions, and 

the temperature was kept constant by the Berendsen thermostat.37 Electrostatic inter-

actions were calculated using the particle mesh Ewald method.44 Cut-off distances for 

the calculation of Coulomb and van der Waals interactions were 1.0 and 1.4 nm, re-

spectively. Prior to the dynamics simulation, energy of the full system has been opti-

mized without constraints using the SD integrator for 5000 steps. The system was 

then equilibrated via a 100 ps MD simulations at 300 K. Finally, a 2 ns simulation 

was performed with a time step of 2 fs. The convergence criteria have been tested by 

the potential energy versus time plot and showed sufficient convergence. The receptor 

backbone RMSD versus time plot has also been presented (Figure A3, Appendix). 

 

3.6 De Novo Drug Design  

 
LeapFrog algorithm under Sybyl was used in order to automatically generate a series 

of ligands for the binding pocket of a receptor.27 Leapfrog is a second generation de 

novo drug discovery program for the design of potentially active compounds, using 

molecular evolution or electronic screening, by repeatedly making structural changes 

and then either keeping or discarding the obtained results, depending on the binding 
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energy results. There are two starting input options in order to generate site point 

probe atoms that will be used in the binding energy calculations, these are a pharma-

cophore model or a receptor structure. The charge of the site point probe atom is posi-

tive, negative or lipophilic and its value is compared with ±1.0: If the value is smaller 

than +1.0, it is lipophilic, if the value is bigger than +1.0, site points seek a negative 

atom and if the value is less than -1.0, site points seek a positive atom in the fragment. 

Binding energy calculations in LeapFrog were performed by steric, electrosteric and 

hydrogen bonding enthalpies of ligand cavity binding using the Tripos force field un-

der Sybyl molecular modeling package (v. 6.8).27 As with many de novo drug design 

programs, central operation of LeapFrog is the processing loop. In each pass through 

the loop, a type of move is selected randomly. If the move succeeds, a new structure 

is evaluated. A new ligand which passes evaluation is added to the pool of ligands 

available for the next move. The fragments used in JOIN, FUSE and BRIDGE are 

stored as a molecular data base in Sybyl. A hydrogen atom is chosen within the se-

lected ligand, randomly; and a local energy check is performed on its cavity environ-

ment within a 3.0 Å radius. If steric interactions are not favorable over more than half 

of the environment volume, the hydrogen atom is sterically excluded. If the first cho-

sen hydrogen is not accessible, another one is chosen, randomly until an accessible 

one is found. If no accessible hydrogens are found, the JOIN move fails. The FUSE 

move process is similar with JOIN; environment checks for steric accessibility are 

performed as JOIN move, however in a FUSE attempt, existence of a ring bond 

flanked by hydrogen in both ligand and fragment are required. Thus, FUSE move 

aims to fuse (usually rings) starting ligand and fragment from data base. The BRIDGE 

move attempts to bridge available fragments.46-49  
LeapFrog studies for CBs. As an initial basic procedure of LeapFrog, site point probe 

atoms were generated using the receptor cavity as well as a pharmacophore model 

inferred from the PLS results options. Template compound AMG3 was selected as 

starting structure. Firstly, the OPTIMIZE module was used for the improvement in 

binding energy. Secondly, several moves such as JOIN, FUSE, BRIDGE and 

OPTIMIZE options were used after the initial run of 100 moves taken into account the 

synthetic difficulties. The derived ligands that had the best binding energy were used 

for repeating the cycle of 5000 moves. 
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LeapFrog studies for fullerenes. Same parameters used in CBs have been applied for 

the fullerenes. Monoadduct and bisadduct of [60]fullerene derivatives that have 

higher affinity with HIV-1 PR (molecules 1, 3, 23, and 42, Tables 6.1 and 6.2 in 

Chapter 6) were used as starting structures with restricting to only changes of pendant 

groups on the [60]fullerenes. 
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Chapter 4. Strategies in Computational Drug Design 
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In-silico drug design has supported pharmaceutical research for over three decades. 

The receptor-based and ligand-based approaches are two major drug design method-

ologies.4,24 These strategies, in particular in combination with fragment-based lead 

discovery (identification of bioactive compounds by assembling small-molecule 

fragments) are considered to be complementary to high-throughput screening. A pre-

requisite for ligand-based approach is the availability of at least one bioactive refer-

ence structure.4,24 Therefore, in ligand-based design, attempts are done to derive other 

compounds having a similar shape and electrostatic potential with the known bioac-

tive compound in order to improve the biological activity. When an X-ray structure or 

3D homology model of a receptor is known, then receptor-based approaches can be 

used to screen compound collections virtually. Usually, both ligand-based and recep-

tor-based techniques may be applied simultaneously. Pseudoreceptor modeling fills 

the gap between these two approaches.50 3D QSAR techniques that map molecular 

features onto a field surrounding the spatial alignment of reference conformers are 

used in pseudoreceptor generation. The pseudoreceptor models attempt to capture the 

shape of the ligand binding pocket.50 The 3D information of receptor (target) is not 

always available at the beginning of a drug design project. For example, it is very dif-

ficult to obtain the X-ray structure of GPCRs or other membrane-bound proteins. Cur-

rently, protein data bank (PDB) contains only about 30 entrie (out of 50,000 total en-

tries) related to GPCR (rhodopsin and β2-adrenergic receptor structures). Thus these 

projects are limited to ligand-based design methods or structural information may be 

obtained from homology modeling studies based on available X-ray structure from 

same family.  

 

Computational design of novel lead drugs is getting more and more popular and tends 

to substitute the classical approach.51-53 There are many reasons that contributed to the 

preference of in silico design compared to the classical approach53: (i) The advance-

ment of the computer science which leads to the construction of powerful and friendly 

used computers; (ii) the development of statistical packages that can utilize databases 

containing theoretical or experimental data which can be subjected to QSAR;  (iii) the 

development of new techniques in the experimental procedures for characterizing pro-

teins and biological targets (i.e. X-ray crystallography and NMR spectroscopy); (iv) 
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the increase in the knowledge of the molecular basis of drug action. Thanks to the ad-

vancements in enzymology, molecular biology, pharmacokinetics and pharmacody-

namics; to mention only few representative fields that experienced huge developing 

steps; (v) the application of conformational search methodologies (e.g., MD and MC 

simulations); (vi) Adsorption, Distribution, Metabolism, Excretion and Toxicity 

(ADMET) simulations have also contributed significantly in the drug development.  

 

The most important characteristic of the rational drug design is to utilize in a positive 

way all known information of the system under study for developing a strategy for 

potential leads in drug discovery. This knowledge hopefully will lead to reduced hu-

man power cost, time saving and laboratory expenses. For the drug development new 

experimental and theoretical background is necessary. Usually, the first unsuccessful 

attempts serve as a feed back for development of new drugs.  

 

Each specific system under study requires its own strategy in the computational drug 

design. Some strategies used in the current research activities for tackling problems 

with different information in the system will be given. In first system, there is no in-

formation available for the receptor binding site (system-A). Thus, no crystallographic 

data for the ligand bound to the receptor binding site is available in this system. In the 

second case, the X-ray structure of the receptor is not available, but homology models 

of the receptors have been performed using the available X-ray of a prototype recep-

tor (system-B). Another case is when the X-ray structure of the receptor or ligand-

bound receptor, associated with experimental ligand binding measurement tests, are 

available (system-C and system-D, respectively).  

 

In order to develop more active novel compounds for system-A, strategy which is 

shown in Figure 4.1 can be used. Steroidal mustard esters for the antileukemic activity 

can be given as an example for the system-A.  

 

CBs can be given as an example of system-B. Because of the absence of X-ray struc-

ture of CB receptors, led to their modeling based on the rhodopsin as well as β2-

adrenergic receptors that constitute also members of GPCRs. The strategy followed 
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for designing novel leads was based on application of: (i) biophysical studies (ii) theo-

retical calculations combining with 2D NMR spectroscopy; (iii) in silico docking si-

mulations; (iv) MD simulations at different environments; (v) 3D QSAR studies; 

(Figure 4.2).  

 

Anti HIV-1 PR fullerene analogues design can be given as example for the system-C. 

In this case, the X-ray structure of the non-fullerene ligand bound HIV-1 PR receptor 

is known and biological ligand binding data for some analogues possessing different 

biological activity are available. The strategy applied in this case is shown in Figure 

4.3.  

 

 
Figure 4.1 Strategy used to develop more potent bioactive molecules for molecules 

acting on a system-A type.    
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Figure 4.2 Strategy used for designing new leads in the system-B.    

 

 

 
Figure 4.3 Strategy used for designing new leads in the system-C.    
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Renin inhibitors can be given as example for the system-D. The target of these com-

pounds is the inhibition of the action of renin, an aspartic protease that evolves in the 

elevation of blood pressure through the renin angiotensin system. In this case, the X-

ray structure of the renin with a variety of renin inhibitors is known. For this kind of 

systems, strategy shown in Figure 4.4 can be applied. 

 

 
Figure 4.4 Strategy used for designing new leads in the system-D.    

 

In the current thesis, examples of systems B and C have been studied extensively. 

 

Given the atomic resolution structure of a target molecule, it should be possible to 

find novel molecules that bind to it, modulating its activity. Indeed, this is one of the 

main aims behind all receptor-based ligand design. Molecular docking is a key tool in 

the target-based approach. The promise of the docking method is that the structure of 

the receptor will provide a template for the design of novel ligands. The need to ac-

count for the dynamic behaviour of a target has long been recognized as a complicat-
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ing factor in computational drug design field. Usually a single rigid receptor structure 

was chosen in order to reduce the computational cost. For example, if a large database 

of compounds is to be screened for the binding affinity against a target, then several 

conformers of each compound will be compared with each protein configuration. Al-

though it is more accurate to use the above mentioned way, it is usually impractical, 

because of very high computational cost. In order to gain flexibility to receptor and 

ligand, one of the easiest ways is to combine MD simulations with docking calcula-

tions.  

 

As it is mentioned, conformational analysis is a crucial step in computational drug 

design strategy. In the current thesis, the conformational analysis shown in Figure 4.5 

was followed.  

 
Figure 4.5 Performed conformational analysis strategy. 
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Chapter 5. Conformational Analysis, 3D QSAR, Ho-

mology Modeling, Molecular Docking and MD Simu-

lations of CBs 
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5.1 Introduction 
 

Cannabis sativa L. is one of the oldest known medicinal plants and has been exten-

sively used with respect to its psychotropic and pharmacological effects. Δ9-

tetrahydrocannabinol (Δ9-THC), (Figure 5.1a) is the primary psychoactive constituent 

of cannabis and it was identified by Gaoni and Mechoulam in 1964.54 

 

The pharmacological activity of CB ligands is mediated by two CB receptors: CB155-

58 and CB2.59 Both CB1 and CB2 receptors belong to the Class A, membrane-bound 

rhodopsin-like family of GPCR, possessing seven  characteristic TM domains.4-60,61 

The CB1 receptor is abundant especially in the central nervous system (CNS)62,63, pe-

ripheral tissues64 and is assumed to be involved in the regulation of cognition, mem-

ory, motor activity, and the inhibition of transmitter release through its coupling to 

Ca2+ and K+ channels. The CB2 receptor, on the other hand, is exclusively present in 

the tonsils and cells of immune system65,66 such as B lymphocytes and macrophages. 

It is also found in the marginal zone of the spleen. The CB2 receptor is assumed to 

participate in the regulation of immune responses and inflammatory reactions and 

neuropatic pain. Pharmacological studies have shown that CBs possess many poten-

tial therapeutic applications including against cancer, AIDS, stroke, pain, obesity, 

cachexia and neuronal disorders such as multiple sclerosis, Huntington’s chorea and 

Parkinson’s disease, as well as reduction of blood ocular pressure in glaucomic pa-

tients.5,6,67-74 

 

The recent studies showed that CB receptors work to block pain with a mechanism 

similar to the one which opiate receptors use when activated by the powerful 

painkilling drug morphine.74 The CBs might provide an alternative to morphine, 

which can have serious side effects such as dependency, nausea and vomiting. 74 
 

CBs can be classified mainly into three categories: Natural (herbal) or classical CBs, 

endogenous CBs, and synthetic CBs. Natural CBs occur in the cannabis plant. THC, 

CBD (Figure 5.1b) and cannabinol (Figure 5.1c) are examples of natural CBs. En-

dogenous CBs are produced in the bodies of human and animals. An endogenous CB 
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ligand isolated from porcine brain by Mechoulam and Devane in 199275 and is identi-

fied as arachidonylethanolamide (anandamide), (Figure 5.1d). It binds to the CB1 and 

CB2 receptors with modest (Ki = 61 nM), and with low (Ki = 1930 nM) affinities, re-

spectively.75 It behaves as a partial agonist in the biochemical and pharmacological 

tests used to characterize CB activity.67,76 2-Arachidonyl glycerol (2-AG), (Figure 

5.1e) is the second identified endogenous CB, and was isolated from brain and intes-

tinal tissues by Sugiura and Mechoulam groups.77,78 It was found to bind weakly to 

both of  CB1 (Ki = 472 nM) and CB2 (Ki = 1400 nM) receptors. Prior to the discovery 

of CB receptors, a number of independent research laboratories and pharmaceutical 

industries developed a large number of synthetic CB ligands as pharmacological and 

biochemical probes for studying CB biology and also prototypes for developing new 

medications.4,79,80 HU-210, CP55,940 and Nabilone are examples of such synthetic 

CB analogues (Figures 5.1f-h).81 The discovery of endogenous ligands prompted fur-

ther studies aimed at the elucidation of the chemical and pharmacological behavior of 

the CB1 and CB2 receptors and cannabinomimetic ligands. These studies pointed out 

that, in addition to classical CBs, other structurally different molecules may interact 

with the same receptors, inducing analogues responses.68,82 Classical CBs possess two 

pharmacophores within the CB prototype that are important for cannabimimetic activ-

ity: a phenolic hydroxyl and a lipophilic side chain. The early SAR studies have been 

reviewed comprehensively by Thakur67, by Khanolkar6, by Razdan83, and by Makri-

yannis and Rapaka84. Earlier literature reports5,6,67,84,85 showed that the lipophilic alkyl 

side chain plays a crucial role in determining cannabimimetic activity and selectivity 

towards CB receptors, as well as pharmacological potency. The alkyl side chain fits 

into a hydrophobic pocket such that the chain is oriented nearly perpendicular to the 

aromatic ring A.5,86-89 Analogues with alkyl side chains of less than five carbons have 

limited affinity for the CB1 receptor.6,67 Extension of the five carbon chain by adding 

one or two carbons improves binding, while further extension is detrimental to bind-

ing due to steric hindrance.5,6,67 Structural variations within this pharmacophore can 

result in analogues varying by up to three orders of magnitude in binding affinity for 

the CB receptor and in pharmacological potency. The structural modifications of the 

side chain produce high affinity ligands with either antagonist, partial agonist, or full 

agonist effects.5 
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Figure 5.1  Chemical structures of (a) Δ9-THC, (b) CBD, (c) Cannabinol, (d) Anan-

damide, (e) 2-AG, (f) HU-210, (g) CP55,940, (h) Nabilone, (i) Δ8-THC. 

 

In order to improve the medicinal properties and eliminate or reduce untoward effects, 

medicinal chemists are designing, synthesizing and testing additional CB1 and CB2 

ligands. One of main effort of our laboratory is to explore the pharmacophoric re-

quirements of the alkyl side chain within the classical Δ8-tetrahydrocannabinol (Δ8-

THC), (Figure 5.1i) and CBD (Figure 5.1.b) templates. Δ8-THC has a very similar 

pharmacologic profile as Δ9-THC, however it is chemically more stable. Several can-

nabinergic ligands possessing high affinities for both of CB receptors have been de-

veloped recently (Table 5.1). One of the most successful compounds that resulted 

from this work was the C1'-dithiolane analog AMG3; (12 in Table 5.1) exerting bind-

ing affinity values of 0.32 and 0.52 nM for the CB1 and CB2 receptors, respectively.85 

 

Hitherto, no direct observation of a CB ligand bound to a CB receptor using X-ray 

crystallography has been reported.90 Therefore, active sites of these receptors have 

been postulated from many approaches, such as receptor binding analyses of a variety 

of CB derivatives using wild type and mutated receptor systems, molecular modeling 

analysis and 3D QSAR studies.90-96 3D QSAR/CoMFA and CoMSIA techniques9,10 

have been successfully used previously in 3D QSAR studies of CBs and other 
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ligands.72,90,94,97-103 The present study uses 3D QSAR/CoMFA and CoMSIA analyses 

on novel CB analogues (Table 5.1)85,104-107 with a wide variation of biological activity 

(4000, and 1200-fold variances in bioactivity for the CB1 and CB2 receptors, respec-

tively). Thus studied compounds are characterized by subtle structural variations and 

a wide range of biological activities which constitute an ideal base for 3D QSAR stud-

ies.  

 

The selection of the lowest energy conformation of the bioactive conformation of the 

template molecule and the superimposition of all molecules on template compound 

are the two most critical steps in the 3D QSAR studies, especially for CoMFA and 

CoMSIA methodologies. These steps not only affect the output of the analysis, but 

they also contribute to the design of novel molecules. Among the synthesized ana-

logues shown in Table 5.1, AMG3 was selected as a template, because: (i) it has the 

highest binding affinity at the CB1 receptor and forth highest binding affinity at the 

CB2 receptor, in the dataset; (ii) preliminary results of the low energy conformers of 

AMG3 have been reported using a combination of 2D NMR spectroscopy and mo-

lecular modeling techniques.89 

 

The knowledge of the receptor structure is not a prerequisite for 3D QSAR analysis, 

however, the availability of its crystal structure or 3D model facilitates the structure 

alignment, and can provide statistically more reliable models.108,109 3D homology 

models of the CB1 and CB2 receptors were constructed by Shim et al.,8 Salo et al.34 

and Tuccinardi et al.33 with a molecular modeling procedure using the X-ray structure 

of bovine rhodopsin110 as the initial template and taken into account the available site-

directed mutagenesis data. These groups studied different CB classes, however, they 

found them to interact at an active site with similar homologies. Therefore, in addition 

to the conformational analysis studies of template compound in solution, conforma-

tional analysis studies have been also carried out at the binding sites of the receptors. 

Although, the more recent 3D receptor models were used for the molecular docking 

studies, the active site residues are determined considering both three models men-

tioned above.  
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HO R

OH

 
Compound 

No. 
   

 
R 

Ki for 
CB1 (nM) 

Ki for CB2 
(nM) 

Compound 
No. 

   Ki for 
CB1 (nM) 

Ki for     
CB2 (nM) 

 
1 

 

 

 
95.49 

 
71.81 

 
2 

 
638.1 

 
374.4 

 
3 

 

 

 
119.0 

 
51.70 

   

 
4 

 

 

 
57.77 

 
107.80 

   

 
5 

 

 

 
 

11.73 

 
 

9.39 

 
6 

 
753.5 

 
221.6 

 
7 

 

CN

 
 

 
27.90 

 
25.20 

 
8 

 
255.0 

 
105.0 

 
9 

 

CN

 

 
8.26 

 
3.86 

 
10 

 
319.0 

 
110.7 

 
11 

 

 

SS

 

 
168.0 

 
103.0 

   

 
12 
 

 

SS

 

 
0.32 

 
0.52 

 
13 

 
136.0 

 
50.40 

 
14 
 

 

OO

 

 
0.52 

 
0.22 

 
 
 

 
 
 

 
 
 

 
 

15 
 

SS

 

 
 

56.90 

 
 

257.0 
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Table 5.1 Molecular structures and binding affinity Ki values of CB analogues used as 

the training set to construct 3D QSAR/CoMFA and CoMSIA models.85,104-107 

 

 

 

 

 
16 
 
 

S S

 

 
1.80 

 

 
3.60 

 

 
 

  

 
17 

 
SS

 

 
32.30 

 
19.70 

   

 
18 
 
 

 

 

 

 
0.45 

 

 
1.92 

   

 
19 

 

 
 

 
47.60 

 
39.30 

 
20 

 
1265.0 

 
230.0 

 
21 

 

 

 

 
22.00 

 
- 

   

 
22 

 

 

 
 

 
0.83 

 
0.49 

   

 
23 
  

 
0.44 

 
0.86 

 
24 

 
58.68 

 
99.23 

 
25 
 

 

Cl

Cl  

 
1.27 

 
0.29 

 
26 

 
666.4 

 
32.87 

 
27 
 

Br

Br  

 
0.71 

 
1.03 

 
28 

 
189.0 

 
63.30 

 
29 
 

 

O  

 
21.70 

 
83.70 

 
 

  

 
30 
  

 
2.17 

 
3.30 
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In order to include solvent and temperature effects to the conformational analysis of 

the template compound more sophisticated calculations have been performed both in 

solution and at the membrane associated receptors using MD simulations. The ob-

tained conformations of template compound have been compared and for each con-

former 3D QSAR models were created and statistical analysis calculations were per-

formed. The effect of the increase of biological resemblance of a system to the de-

rived statistical results from constructed QSAR models was investigated. 

 

Reported low energy conformations of Δ8-THC analogues using NMR spectroscopy 

and molecular modeling studies in solution differed.89,90,102,111 The derived conforma-

tions differed in the alkyl side chain or in the ABC tricyclic segments (e.g., conform-

ers A-D in Figure 5.2). For example, in both conformers A and B, proposed for clas-

sical Δ8-THC analogues, and shown in the Figure 5.2, the alkyl chain adopts an or-

thogonal orientation relative to the horizontal plane of ring A, however B and C rings 

have different geometries (e.g., ring B has half chair-like and boat-like forms, in con-

formers A and B, respectively). In conformer C, the alkyl chain has been extended 

away from the ABC tricyclic segment while in conformer D the alkyl chain has been 

wrapped towards the tricyclic part (Figure 5.2).  

 

Conformational studies of AMG3 using a combination of 1D and 2D NMR spectro-

scopies as well as molecular modeling techniques, showed that, the alkyl side chain 

adopts a perpendicular orientation relative to the horizontal plane of ring A of 

AMG3.89 The conformation of the flexible l',l' dimethylheptyl side chain was also 

analyzed using a combination of theoretical studies and NMR experiments for classi-

cal CB (-)-9-nor-9β-hydroxy(dimethylheptyl)-hexahydrocannabinol and nonclassical 

CBs CP47,497, CP55, 244 and CP55, 940 by Xie et al. 86,112,113. Results showed that 

the alkyl side chain is almost perpendicular to the horizontal plane of the ring A.   
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Figure 5.2 (top) Molecular structure of AMG3 and; (bottom) its derived 3D low en-

ergy conformers A-I. Dihedral angles of the alkyl side chain are assigned on the top 

structure (τ1, C2-C3-C1'-C2'; τ2, C3-C1'-C2'-C3'; τ3, C1'-C2'-C3'-C4'; τ4, C2'-C3'-C4'-

C5'; τ5, C3'-C4'-C5'-C6'; τ6, C4'-C5'-C6'-C7'). 

 

CBs are predicted to exert their biological action in the TM3-TM7 helices of 

GPCRs.5,114 Reported experimental results suggest that biological activity of CBs can 

be related with two sequential criteria: (i) ‘proper’ topology and orientation of the 

drug in the membrane bilayer; (ii) diffusion and ‘appropriate’ fit of the drug in the 

receptor.115 CBs are lipophilic molecules and are considered to first interact with the 

lipid microenvironment that surrounds the membrane-associated protein and then dif-

fuse laterally at the active site of the receptor.116 Therefore, it is important to under-

stand the conformational properties of a drug molecule into the lipid microenviron-

ment. Membranes do not lend themselves in a detailed analysis of their structural and 

dynamical properties by means of a single physicochemical method because of their 
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complexity and instability.115 Thus, it is preferable to combine several experimental 

and/or computational methods seeking to obtain molecular information on the interac-

tions of drugs with membranes.115 Biophysical studies using different techniques 

(solid-state NMR spectroscopy, X-ray diffraction, Raman spectroscopy, IR spectros-

copy, differential scanning calorimetry (DSC), etc.) in combination with molecular 

modeling studies assist in the determination of drug-membrane interactions and the 

role of membrane in the putative bioactive conformation of the drug molecule.  

 

The effect of the cannabinomimetic drug AMG3 on the thermotropic and structural 

properties of dipalmitoyl-sn-glycero-3-phosphorylcholine (DPPC) liposomes have 

been studied by X-ray diffraction and DSC methodologies by Mavromoustakos et 

al.117 AMG3 was found to efficiently fluidize domains of the lipids in the Lβ' gel 

phase and to perturb the regular multibilayer lattice. In the liquid crystalline Lα phase, 

AMG3 was also found to cause irregularities in packing, suggesting that the drug in-

duces local curvature. Biophysical studies by Makriyannis et al.115 have also provided 

detailed information for the topography, the stereochemistry, and the dynamic proper-

ties of the CB ligand-membrane interactions by applying neutron diffraction, solid 

state NMR, DSC and small angle X-ray spectroscopy of Δ8-THC.118-120 In these stud-

ies, THC assumes an ‘awkward’ orientation in the bilayer with the long axis of its tri-

cyclic system being perpendicular to the bilayer chains, while its aliphatic side chain 

orients parallel to the chains of the membrane phospholipids. 

 

Generated 3D QSAR models were used in de novo drug design program and allowed 

us to propose novel ligands with higher predicted binding affinity values. In order to 

determine the linear correlation coefficients between actual (measured) versus calcu-

lated binding affinities, PLS statistical analyses of the data were used. CoMFA and 

CoMSIA contour plots were used to explain different structural requirements for CB 

binding to the CB1 and CB2 receptors. Derived contour plots can be used as pilot 

models for testing the designed novel analogues before their synthesis.  
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5.2 Results and Discussion 

 
5.2.1 Conformational Analysis of AMG3 in Vacuum and in Lipid Bilayer Envi-

ronments (without Receptor) 

 

5.2.1.1 Selection of Low Energy Conformers of AMG3 Using MC Studies 

 

Low energy conformers of AMG3 are derived using MC conformational search 

analysis. The application of MC analysis, which allows full angular window specifi-

cation and random change of dihedral angles of rotatable bonds, derived 1000 con-

formers of AMG3. These conformers were clustered into eight different groups based 

on the dihedral angle criterion. The lowest energy conformers from each cluster have 

been selected for further analysis. The number of conformers for each of the eight 

clusters has been shown in the Table 5.2. Cluster analysis showed that conformer A (it 

has a perpendicular orientation of alkyl side chain relative to long axis of the ABC 

tricyclic segment) and wrapped conformer D (wrapped conformations are defined as 

those conformations adopting gauche τ3 and τ4 dihedral angles at the alkyl chain) have 

highest and smallest group member populations, respectively. Among eight lowest 

energy conformers, three conformers (A, C, and D) of AMG3 in Figure 5.2 are identi-

cal with those reported conformations89,90,102,111 using experimental results and/or mo-

lecular modeling techniques, while other five conformations (conformers E-I of 

AMG3 in Figure 5.2) differed. Conformer B was not obtained by MC cluster analysis.  

 

5.2.1.2 Geometry Optimization Calculations 

 

MM geometry optimization has been applied using Sybyl molecular modeling pack-

age.27 According to MM calculations, conformer B has significantly high total energy 

(~8.8 kcal.mol-1) due to its high torsional energy, while other conformers have a simi-

lar energy plateau within the range of ~2.3 kcal.mol-1 (Table 5.2). The high energy 

conformer B of AMG3 has been transformed to conformer A at the ab initio 

B3LYP/6-31G*121,122 level optimizations. QM calculations show that all low energy 

conformers are almost isoenergetic (maximum total energy differences between the 
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conformers is ~2.5 kcal.mol-1, Table 5.2). In order to examine the solvent effect over 

geometrical properties of conformers, the vacuum medium has been modified to am-

phiphilic environment. The dielectric constant ε was set to 45, in order to simulate an 

amphiphilic environment, which mimics physicological conditions and therefore it is 

 

 

 

Table 5.2 Number of conformers of AMG3 in each derived cluster by MC analysis 

and comparison of the total energies of conformers using MM and QM methods.  

 

appropriate for investigating biological structures.123 It is observed that the effect of 

continuum model (ε = 45) to the analyzed conformers compared to gas phase is very 

limited as it is depicted by the small RMSD value between the conformers in gas 

phase and in continuum model. Dihedral angles of the alkyl side chain segment of all 

conformers applying full geometry optimization with MM and QM methods in gas 

phase and in continuum model are presented in Table 5.3.  

 

 

 

MM Relative Energy  
(kcal.mol-1) 

 
 
Conformer 

Number of 
conformers 
in each ob-
tained cluster 
by MC anal-
ysis 

Torsional 
 Energy 

VDW 
Energy 

Electrostat. 
Energy  

Other Contribu-
tionsa   

to MM Energy 

Total 
Energy 

QM Geometry 
Optimization 

(B3LYP/6-31G*), 
Relative Energy 

(kcal.mol-1) 

A 188 5.520 -3.821 -5.820 6.621 2.499 0.10 

B - 9.147 -2.674 -5.936 8.211 8.748 0.10 

C 147 5.550 -3.055 -5.817 6.688 3.366 1.26 
D 42 6.412 -5.857 -5.696 7.647 2.508 2.56 
E 102 6.493 -6.877 -5.676 8.157 2.097 0.00 
F 156 5.528 -3.877 -5.782 6.558 2.427 0.00 
G 92 6.180 -2.894 -5.693 6.773 4.366 1.57 
H 134 5.699 -3.013 -5.788 7.120 4.018 2.03 

I 139 5.783 -4.094 -5.726 7.507 3.470 1.48 

Averageb 111 6.257 -4.018 -5.770 7.254 3.723 0.93 

a Other contributions include bond stretching energy, angle bending energy, out of plane bending energy.  bAverage results do 
not include conformer B for QM relative energies, because conformer B is transformed to conformer A when QM geometry 
optimization is applied. 
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5.2.1.3 Rotational Energy Barrier Calculations 

 

In order to characterize the conformational flexibility properties of AMG3, rotational 

energy barriers were estimated using torsional grid scan analysis with semi empirical 

method PM3.124 Six rotatable torsional angles of AMG3, shown in Figure 5.2 and de-

fined in its figure legend, were analyzed. The analysis is initiated with τ1 and the en-

ergetically lowest structure (optimal dihedral angle) is used for the next torsional an-

gle analysis. Rotation around dihedral angles τ4-τ6 showed similar energy profiles and 

rotational energy barriers are found to be ~4 kcal.mol-1. Their optimal dihedral angle 

was found to be ~180o and the local minima were observed at ~60o and ~300o. Rota-

tion around dihedral angles τ1 and τ2 showed a rather more complex energy profiles 

due to the presence of the tricyclic ring segment. Rotation around dihedral angle τ3 

showed the largest rotational energy barrier (~6 kcal.mol-1) and its optimal dihedral 

angle value was found to be ~180o (Figure 5.3). 

 

5.2.1.4 MD Simulations of Conformers in Lipid Bilayer 

  

Computer simulations in general and MD simulations in particular, are of increasing 

importance in revealing details of molecular motions as well as structural and micro-

scopic properties of the solution, which are difficult to measure experimentally.125 

Heating increases the kinetic energy of the system which after equilibration at the 

given temperature overcomes any energy barriers close to the initial energy minimum. 

In order to examine the environmental effects over the structures, MD simulations 

were performed for all examined conformers with the Gromacs 3.3.1 software pack-

age36 in DPPC membrane bilayer environment. MD simulations were used in order to 

(i) further study the conformational space of AMG3 and (ii) explore the possibility of 

interconvertion between conformers in amphiphilic environments. 

 

MD in DPPC bilayer. Initial positions of the conformers in DPPC bilayer have been 

constructed according to experimental findings.115 Alkyl chain of conformers have 

been inserted through the alkyl chains of the lipid (parallel orientation with lipid bi-

layer chains).115 The tricyclic ABC segment of the AMG3 was localized close to the 
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head groups of DPPC bilayers and orienting their long axis perpendicular to the bi-

layer plane (Figure 5.4). MD simulations analysis have shown that last four defined 

torsional angles (τ3-τ6) at the alkyl side chain of AMG3 are all trans with some per-

turbations around these angles for all of the analyzed conformers. Therefore, wrapped 

conformers (e.g., D and E) and conformers which have gauche dihedral angles within 

τ3-τ6 (e.g., H and I) do not keep their initial values and turn to trans dihedral angles. 

(Torsional angle screening throughout the simulations for wrapped conformers D and 

E have been shown in Figure A4, Appendix). The dihedral angle τ1 shows more resis-

tance to be transformed to another torsional angle through simulations. The dihedral 

angle τ2 is the most flexible torsional angle in the alkyl chain and adopts gauche± and 

trans dihedral angles, thus it determines the characteristics of the conformers. MD 

simulations of AMG3 in lipid bilayer environment produced three more low energy 

conformers in addition to previous ones. These conformers are called J, K and L and 

are shown in Figure 5.5 (their adopting dihedral angles of alkyl chain are presented in 

their corresponding figure legend). Trajectory analysis results showed that stable con-

formers have gauche± for τ1, gauche± and trans for τ2 and all trans conformations for 

τ3-τ6 dihedral angles throughout the simulations. These stable conformers are A, C, F, 

J, K and L, and are considered for further investigations. 

 

These stable conformers form two favored plane angles which are are ~90o and ~140o. 

The first plane is defined by ring A (Figure 5.2), and the second plane is defined by 

the alkyl chain (Figure 5.6). Formed plane angles of favored conformations after MM 

and QM geometry optimizations and their relative energies are compared in the Table 

5.4. Relative energy differences are used for clarity and are defined on lowest total 

energy of conformers calculated by MM and QM methods. The lowest energy con-

formers (J for QM and K for MM methods) are arbitrarily assigned with zero poten-

tial energy and relative energies of other conformers are calculated. Both MM and 

QM calculations showed that, all favored conformations derived from MD simu-

lateons in lipid bilayer have similar relative energies; however conformers which 

form perpendicular plane angle between tricyclic ring and flexible segments have 

slightly lower energy (~1 kcal/mol) than corresponding plane angle of ~140o. 
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Table 5.3 Values of dihedral angles corresponding to the alkyl chain part for low energy conformers of AMG3 derived by applying full geometry 

optimization with MM (left) and QM (right) with B3LYP/6-31G* level of theory. After optimization with QM, conformer B was transformed to 

conformer A, therefore they have identical dihedral angles for the corresponding method. 

τ1, (degree) τ2, (degree) τ3, (degree) τ4 , (degree) τ5, (degree) τ6,  (degree)  
RMSD 

 

C 
O 
N 
F. 

MM 
ε=1 

MM 
ε=45 

QM 
ε=1 

QM 
ε=45 

MM 
ε=1 

MM 
ε=45 

QM 
ε=1 

QM 
ε=45 

MM 
ε=1 

MM 
ε=45 

QM 
ε=1 

QM 
ε=45 

MM 
ε=1 

MM 
ε=45 

QM 
ε=1 

QM 
ε=45 

MM 
ε=1 

MM 
ε=45 

QM 
ε=1 

QM 
ε=45 

MM 
ε=1 

MM 
ε=45 

QM 
ε=1 

QM 
ε=45 

MM QM 

A 73.8 73.2 63.3 65.3 57.8 57.8 61.1 61.3 178.9 179.0 181.1 181.7 179.7 179.7 180.5 180.2 180.0 180.0 180.2 180.8 180.0 180.0 180.1 180.0 0.25 0.75 

B 78.1 78.1 63.3 65.3 56.7 56.8 61.1 61.3 178.5 178.5 181.1 181.7 179.3 179.3 180.5 180.2 180.1 180.1 180.2 180.8 180.0 180.0 180.1 180.0 0.01 0.75 

C 82.0 82.0 81.5 77.2 181.0 181.0 184.0 176.5 179.8 179.8 185.3 182.2 180.0 180.0 180.6 180.6 180.0 180.0 180.5 179.6 180.0 180.0 179.9 180.0 0.00 3.86 

D 55.4 54.8 62.6 63.1 65.0 65.2 65.5 65.3 293.9 294.3 279.2 278.9 191.4 191.3 185.0 185.0 181.9 181.8 179.4 179.4 180.3 180.2 179.4 179.5 0.13 0.25 

E 55.7 55.2 61.4 59.0 68.9 69.1 66.7 68.6 300.8 301.2 281.5 285.5 191.0 190.9 186.8 186.2 176.5 176.4 176.5 177.7 63.9 63.7 65.9 66.0 0.12 2.08 

F 258.0 257.6 250.5 244.1 57.9 58.0 60.9 60.8 178.6 178.6 180.8 180.7 179.7 179.7 180.1 180.2 180.0 180.0 180.1 180.0 180.0 180.0 180.0 180.0 0.17 2.61 

G 187.4 187.0 187.2 187.1 176.9 177.0 175.6 175.6 176.6 176.5 177.8 177.8 179.5 179.5 179.6 179.5 179.9 179.9 179.5 179.5 180.0 180.0 180.1 180.1 0.17 0.06 

H 81.9 82.2 86.9 83.0 181.1 181.1 182.7 184.1 179.9 179.9 184.8 185.5 180.5 180.6 180.7 181.0 185.7 185.7 183.2 183.5 296.3 296.4 294.3 294.4 0.14 1.71 

I 103.1 103.7 116.1 128.3 302.9 302.9 298.0 297.3 182.6 182.6 178.9 178.0 186.5 186.6 184.2 181.8 302.0 302.1 296.6 295.4 302.3 302.3 297.2 297.3 0.25 5.11 
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                        (i)      (ii)      (iii) 

 
(iv)               (v)     (vi)     

Figure 5.3 Rotational energy barriers of AMG3 after applying grid scan analysis with consecutive optimization of dihedral angles 

(i) τ1, (ii) τ2, (iii) τ3, (iv) τ4, (v) τ5 and (vi) τ6. In figure, relative energies (differences of initial and final values of total energies with 

rotation) have been used instead of total energies for clarity. 
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Figure 5.4 MD simulations of AMG3 conformers in the lipid bilayer environment which 

consists of DPPC bilayers and water molecules.  

 

 
Figure 5.5 MD simulations in lipid bilayer produced three additional low energy confor-

mations of AMG3 (named J, K and L) in addition to the presented conformers. Their di-

hedral angles of alkyl chain τ1-τ6 were derived after applying MM and QM geometry op-

timizations in gas phase. These values are 103.9o, 302.1o, 181.2o, 180.2o, 180.0o and 

180.0o, respectively for conformer J; 282.8o, 302.2o, 181.4o, 180.3o, 180.0o, and 180.0o, 

respectively for conformer K; and 274.6o, 179.3o, 180.2o, 180.0o, 180.0o and 180.0o, 

respectively for conformer L.  
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Figure 5.6 Two favored plane angles between rigid and flexible segments of AMG3; ~90o 

(on the left) and ~140o (on the right) derived using MD simulations in lipid bilayer envi-

ronment. 

 

Table 5.4 Plane angles between rigid and flexible segments and relative energies of fa-

vored conformations of AMG3 in lipid bilayer. In table, relative energies (differences of 

total energies based on lowest total energy of conformers calculated by MM and QM 

methods; the lowest energy conformer of AMG3 with MM and QM methods are found to 

be K and J, respectively) have been used instead total energies for clarity. 

 

5.2.1.5  3D QSAR/CoMFA Results 

 

The existing experimental findings combined with our molecular modeling studies assisted 

to obtain the template conformation of AMG3 for the constructions of 3D QSAR models. 

Conformer MM-Plane Angle 
(degree) 

QM-Plane Angle 
(degree) 

MM-Relative  
Energy 

(kcal/mol) 

QM-Relative 
Energy 

(kcal/mol) 
A 87.0 89.0 0.16 0.16 

J 87.5 87.5 0.23 0.00 

F 88.8 86.6 0.09 0.15 

K 89.4 91.4 0.00 0.60 

C 137.9 135.5 1.03 1.40 

L 141.4 137.9 0.81 1.30 
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Both MM and QM calculations resulted to favored conformers in lipid bilayer environment 

which perpendicular plane angle exists between ABC tricyclic ring and flexible alkyl chain 

segments. Initially, these conformers (A, J, F and K) have been used as template con-

former and also compounds in the data base have been adopted with corresponding tem-

plate compound conformation, subsequently statistical tests have been performed. The 

template conformer which showed optimum statistical results (conformer A) has been used 

for further analysis.  

 

Several variations in the alignment schemes by superimposing the similar pharmacophoric 

features were considered. C1, C2, C3, C4, C4a, C6a, C7, C10, C10a, C10b and the oxygen atoms 

in the template ligand AMG3 (Figure 5.2) were selected for the structural superimposition 

processes. The alignment of the molecules was based on atom-by-atom superimposition of 

selected atoms, which is common in all compounds. The criteria applied for the selection 

were: (i) overlap of the putative biologically relevant pharmacophore groups (with mini-

mum RMS) and (ii) form of statistically significant 3D QSAR/CoMFA and CoMSIA mod-

els. In order to build 3D QSAR/CoMFA and CoMSIA models for the binding affinity at 

the CB1 and CB2 receptors, a set of 30 CB analogues for the CB1 receptor and 29 CB ana-

logues for the CB2 receptor were subjected to the cross-validated PLS analyses (Table 

5.1).  Figure 5.7 illustrates the superimposition of CB analogues used as the training set to 

construct CoMFA and CoMSIA models.  

 
Figure 5.7 Structural alignments of the CB derivatives in the training set for constructing 

3D QSAR/CoMFA and CoMSIA pharmacophore models. 
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Table 5.5 shows the derived statistical results using CoMFA technique for CB1 and CB2 

pharmacophore models.  The CoMFA study based on the selected lowest energy con-

former of template ligand which was determined by a combination of experimental and 

molecular modeling studies, gave 2
cvr  values of 0.784 and 0.572 for CB1 and CB2 recep-

tors, respectively. The non-cross-validated PLS analysis yielded an r2 of 0.981 and 0.972; 

and the estimated standard errors were 0.173 and 0.187 for CB1 and CB2 receptors, re-

spectively (Table 5.5). Therefore, the CoMFA-generated 3D QSAR models for the binding 

affinities of CB analogues at CB1 and CB2 receptors have a very good cross-validated cor-

relation. Table 6 shows the relationship between the experimental and CoMFA-calculated 

pKi (-logKi) values of the non-cross-validated analyses for CB1 and CB2 receptors. Linear-

ity of the plots at Figure 5.8 shows very good correlations between observed and predicted 

affinities for CoMFA models which developed in study for the binding affinities of CB 

ligands for the CB1 and CB2 receptors. 

 

 

 

 

 

 

 

 

Table 5.5 Statistical results obtained by 3D QSAR/CoMFA models for CB1 and CB2. 

 

The contour maps were used to create a ‘negative’ matrix in the place of the unknown ac-

tive site and variations of the used ligands can be generated as long as they fit better into 

the ‘imaginary’ active site. Figure 5.9 shows the steric-electrostatic contour maps of the 

CoMFA models for CB1 and CB2 receptors. The individual contributions from the steric 

and electrostatic favored and disfavored levels are fixed at 80% and 20%, respectively. The 

 CoMFA/CB1 CoMFA/CB2 

Number of compounds in training set 30 29 
2

cvr  0.784 0.572 

r2 0.981 0.972 
Standard error of estimate 0.173 0.187 
F 197.531 127.260 

Relative contributions of  
steric/electrosatic fields 

0.640:0.360 0.632:0.368 

Number of optimal  
components 

6 6 
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CoMFA contours of the steric maps are shown in yellow and green colors, and those of the 

electrostatic contour maps are shown in red and blue colors. Greater values of “bioactive-

measurement” are collected with: more bulky groups near the green colored contours; less 

bulky groups near the yellow colored contours; more positive charge near the blue colored 

contours, and more negative charge near the red colored contours. 

 
 
 

          CB1 CoMFA model                            CB2 CoMFA model  
Compound                 pKi (observed)     pKi(predicted)                       pKi (observed)   pKi(predicted)  
 
 
   1    7.02  7.16   7.14  7.25 
   2    6.20  6.18   6.43  6.50 
   3    6.92  7.09   7.29  7.19 
   4    7.24  7.13   6.97  7.13 
   5    7.93  7.86   8.03  7.98 
   6    6.12  6.20   6.65  6.64 
   7    7.55  7.69   7.60  7.87 
   8    6.59  6.63   6.98  7.03 
   9    8.08  8.09   8.41  8.27 
   10    6.50  6.56   6.96  7.03 
   11    6.77  6.66   6.99  6.95 
   12    9.49  9.34   9.28  8.96 
   13    6.87  6.89   7.30  7.39 
   14    9.28  9.40   9.66  9.68 
   15    7.24  7.17   6.59  6.62 
   16    8.74  8.74   8.44  8.44 
   17    7.49  7.61   7.71  7.68 
   18    9.35  9.50   8.72  9.05 
   19    7.32  7.33   7.41  7.51 
   20    5.90  5.80   6.64  6.43 
   21    7.66  7.73   -  - 
   22    9.08  8.99   9.31  9.04 
   23    9.36  9.13   9.07  9.12 
   24    7.23  6.88   7.00  7.16 
   25    8.90  9.19   9.54  9.35 
   26    6.18  6.53   7.48  7.19 
   27    9.15  9.11   8.99  9.29 
   28    6.72  6.58   7.20  7.26 
   29    7.66  7.52   7.08  6.93 
   30    8.66  8.54   8.48  8.39 
 

Table 5.6 Observed and predicted pKi (by CoMFA models) values at the training set for 

CB1 and CB2 receptors. 
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Figure 5.8 Plots of corresponding CoMFA-predicted and experimental values of binding 

affinity (given as pKi) of CB analogues in the training set at the CB1 (on the left) and CB2 

(on the right) receptors, respectively. 
 

5.2.1.6 3D QSAR/CoMSIA Results 

 

Several combinations of stereoelectronic fields (steric, electrostatic, H-bond donor, H-bond 

acceptor and hydrophobicity fields) of 3D QSAR/CoMSIA models were obtained from the 

compounds in the data set. The optimal 3D QSAR/CoMSIA model was derived by the 

combination of steric and electrostatic potential fields. This model based on the selected 

lowest energy conformer of template ligand AMG3, gave 2
cvr values of 0.746 and 0.625 for 

the CB1 and CB2 receptors, respectively (Table 5.7). The non-cross-validated PLS analy-

sis yielded an r2 of 0.944 and 0.912, and the estimated standard errors were 0.296 and 

0.324 for CB1 and CB2 receptors, respectively (Table 5.7). Relationship between the 

CoMSIA-predicted and experimental pKi values of the non-cross-validated analyses for 

CB1 and CB2 receptors have been shown in Table 5.8 and Figure 5.10.  

 

Figure 5.11 shows the steric-electrostatic contour maps of the CoMSIA models for the 

CB1 and CB2 receptors. Since the CB analogues used in the training set differ mainly in 

the C1' position and the tricyclic part of Δ8-THC or the CBD skeleton, the contour plots 

place more emphasis to these regions.  
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Figure 5.9 (top) CoMFA contour maps of template compound 12 (AMG3) (on the left) 

and its corresponding CBD analogue 13 (on the right) for the CB1 model. (Regions I, II, 

and III show contour maps around alkyl side chain, tricyclic part and α-face of C1' of 

ligand, respectively). (bottom) CoMFA contour maps of template compound 12 (on the 

left) and its corresponding CBD analogue 13 (on the right) for the CB2 model.  

 

 

Table 5.7 Statistical results obtained by 3D QSAR/CoMSIA models for CB1 and CB2. 

 CoMSIA/CB1 CoMSIA/CB2 

Number of compounds in training set 30 29 
2

cvr  0.746 0.625 

r2 0.944 0.912 

Standard error of estimate 0.296 0.324 

F 65.031 47.855 

Relative contributions of  
steric/electrosatic fields 

0.890:0.110 0.918:0.082 

Number of optimal components 6 5 
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5.2.1.7 Discussion 

 

When correlations are sought using reported data, one must take into account (i) large vari-

ability in testing procedures and (ii) uncertainties related to enantiomeric purities of syn-

thetic molecules. A careful examination of published data5,84,85 identifies essential molecu-

lar fragments contributing to ‘cannabimimetic activity’. One of them is the aliphatic C3-

alkyl side chain; the role of this pharmacophore is important for hydrophobic interactions 

with the site(s) of action. There is an established SAR which indicates longer side chains 

are correlated with more potent CBs.84,126 Decreasing the length of the n-pentyl side chain 

of Δ9-THC by two carbons, reduces potency by 75%, and extension of the five carbon 

atom chain by adding one or two carbons favors binding, while further extension is detri-

mental. Interestingly, analogues with substituents, e.g. CH3, C2H5, Cl, or I in the ortho po-

sition to the phenolic hydroxyl, retain substantial biological activity, however the para sub-

stitution produces inactive analogues.84,126 Accordingly, para substituents prevent the side 

chain from orienting to a southern direction with respect to the phenolic hydroxyl group, 

resulting in decreased CB activity. On the other hand, ortho substitution allows such an 

orientation.84 Thus, the orientation of the alkyl side chain plays an important role in the 

determination of biological activity. A significant degree of conformational restriction can 

be imposed upon the alkyl side chain either by the introduction of a double bond or a new 

cyclic ring fused to the aromatic ring A, leading to variations in biological responses.67 

Khanolkar et al.6 presented a series of Δ8-THC analogues, in which the n-heptyl side chain 

was restricted by a C2-C3 cyclohexyl ring, and showed that the alkyl side chain pointing 

downwards has a 18-fold higher binding affinity for the CB1 receptor and a 3-fold higher 

binding affinity for the CB2 receptor than the respective analogue in which the alkyl side 

chain orients laterally.  
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                         CB1 CoMSIA model                            CB2 CoMSIA model 
Compound                 pKi (observed)     pKi(predicted)                     pKi (observed)     pKi(predicted) 

 
 

1    7.02  7.19   7.14  7.31 
2    6.20  6.12   6.43  6.43 
3    6.92  7.03   7.29  7.19 
4    7.24  6.98   6.97  7.15 
5    7.93  7.54   8.03  7.74 
6    6.12  6.40   6.65  6.75 
7    7.55  7.63   7.60  7.97 
8    6.59  6.51   6.98  7.01 
9    8.08  7.83   8.41  8.18 
10    6.50  6.51   6.96  7.08 
11    6.77  6.91   6.99  7.04 
12    9.49  9.00   9.28  8.68 
13    6.87  6.89   7.30  6.99 
14    9.28  9.20   9.66  9.18 
15    7.24  7.15   6.59  6.99 
16    8.74  8.45   8.44  8.43 
17    7.49  8.03   7.71  8.10 
18    9.35  9.82   8.72  9.32 
19    7.32  7.33   7.41  7.46 
20    5.90  5.98   6.64  6.45 

      21          7.66        7.95          -         - 
22    9.08  9.05   9.31  9.24 
23    9.36  9.13   9.07  9.18 
24    7.23  6.74   7.00  7.15 
25    8.90  9.19   9.54  9.35 
26    6.18  6.65   7.48  7.37 
27    9.15  9.10   8.99  9.33 
28    6.72  6.61   7.20  7.38 
29    7.66  7.82   7.08  6.78 
30    8.66  8.55   8.48  8.26 

 

Table 5.8 Observed and predicted pKi (by CoMSIA models) values at the training set for 

CB1 and CB2 receptors. 

 

The CB1 and CB2 receptors belong to the same receptor family and exhibit a 44% se-

quence homology, which rises to 68% in the TM domains, an area thought to be involved 

in ligand recognition.5 Because of this high degree of homology, it is not surprising that 

binding affinities for CB1 and CB2 receptors are correlated. Figures 9 and 11 show the 

field contributions to the binding affinity among the CBs and provide a visualization of 

both steric and electrostatic interactions at the receptor site. The result demonstrates the 

importance of the hydrophobic components of the CBs with cannabimimetic activity and is 
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Figure 5.10 Plots of corresponding CoMSIA-predicted and experimental values of binding 

affinity (given as pKi) of CB analogues in the training set at the CB1 (on the left) and CB2 

(on the right) receptors, respectively. 

 

consistent with other studies. The CoMSIA results are in agreement with the CoMFA re-

sults. The contour maps resulted by applying CoMFA and CoMSIA methodologies dem-

onstrate that there are similar and different structural requirements for optimum ligand 

binding at the CB1 and CB2 receptors. Derived 3D contour maps of CoMFA and CoMSIA 

models were investigated in the three distinct regions:  

 

Alkyl side chain-Molecular segment I: The green colored contours along the left side of the 

end of the alkyl chain show that bulky groups enhance the binding affinity for the CB1 and 

CB2 receptors in both CoMFA and CoMSIA models (Figures 5.9 and 5.11). For example, 

the presence of adamantane, phenyl, t-butyl, isopropyl, or cyclopentyl groups in this region 

is expected to enhance CB1 and CB2 receptor binding affinities. There are large yellow 

colored contours on the right side of the end of the alkyl side chain in the CB1 and CB2 

CoMSIA models (Figure 5.11), and small areas for the corresponding CB1 and CB2 

CoMFA models (Figure 5.9) showing the existence of sterically unfavorable fields (the 

areas in which steric bulk is predicted to decrease binding). Thus, the orientation of the al-

kyl side chain plays an important role in determining biological activity. This result con-

firms the previous published reports.84,104   
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Figure 5.11 (top) CoMSIA contour maps of template compound 12 (AMG3) (on the left) 

and its corresponding CBD analogue 13 (on the right) for the CB1 model. (Regions I, II, 

and III show contour maps around alkyl side chain, tricyclic part and α-face of C1' of 

ligand, respectively). (bottom) CoMSIA contour maps of template compound 12 (on the 

left) and its corresponding CBD analogue 13 (on the right) for the CB2 model.  
 

Compounds 12, 14, 16, 18, 22, 23, 25, and 27 show high activity but low selectivity for the 

CB1 and CB2 receptors attributed to their fit in the hydrophobic subsite of both receptors.6 

An optimal interaction is observed when a lipophilic group is attached to C1' position. The 

CB1 receptor appears insensitive to isosteric groups attached to the C1' position whereas 

the CB2 receptor shows a higher preference for the smaller dioxolane five-membered ring 

rather than the dithiolane ring or more hydrophobic cyclopentyl analogues.67 
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ABC ring-Molecular segment II: The yellow colored contour at the α-face of the C-ring in 

the Δ8-THC analogues (Figures 5.9 and 5.11, on the left) indicates areas in which steric 

bulk is predicted to decrease binding. However, in the case of CBD analogues this area fits 

on the C9-methyl group (Figures 5.9 and 5.11, on the right). Bulky groups localized be-

tween molecular segments I and II are expected to reduce the binding affinities of CB ana-

logues at both CB1 and CB2 receptors. In these regions, the steric interactions affect dif-

ferently the binding affinities of Δ8-THC and CBD analogues for the CB1 and CB2 recep-

tors in both the CoMFA and CoMSIA models. In Δ8-THC analogues, a sterically unfavor-

able area (yellow colored contour) is located between the regions I and II (Figures 5.9 and 

5.11, on the left). In the case of CBD analogues, because of the different structural orienta-

tion of the bicyclic segment, this area fits on the methyl and propenyl groups (Figures 5.9 

and 5.11, on the right). If the binding affinity value of Δ8-THC analogues and their respec-

tive CBD analogues is compared, CBD analogues usually have lower binding affinities 

than their corresponding Δ8-THC analogues. For example, the template compound 12, has 

425-fold and 97-fold higher binding affinities than its respective CBD analogue 13, for 

CB1 and CB2 receptors, respectively. This can be explained by different topographical re-

quirements for the Δ8-THC and CBD derivatives at the cyclic ring segment. The CB1 re-

ceptor is more sensitive than the CB2 receptor to this different structural orientation, be-

cause in this region the sterically unfavorable area (yellow colored contour) is larger at the 

CB1 model (Figures 5.9 and 5.11).  

 

α-face of C1'-Molecular segment III: Sterically unfavorable contour (yellow colored) is 

localized in the vicinity of ring A (Figures 5.9 and 5.11). Therefore, the existence of bulky 

groups in this molecular segment results in the decrease of the binding affinity as it is con-

firmed by compounds 15 and 16. Figure 5.12 shows the steric-electrostatic CoMSIA con-

tour maps of compound 15 for CB1 and CB2 receptors, respectively. The contour maps 

show that the increased binding affinity and pharmacological potency are associated with 

bulky (green colored contours) and negatively charged groups (red colored contours) in the 

α-face of C1', (Figures 5.9 and 5.11).  The presence of such groups (e.g., C6H5OH, 
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C6H5CF3, C6H5CCl3, C6H5CI3, C6H5I, etc.) in this region, are expected to enhance CB1 and 

CB2 receptor binding affinities. 

 

The electrostatic contour maps that were correlated with the predicted potency were seen 

in the α-face of C1' (molecular segment III) for the both of CoMFA and CoMSIA models 

and in the middle of the alkyl side chain (molecular segment I) predominantly in the 

CoMFA models. Results show that in the α-face of C1' and in the middle of the alkyl side 

chain, ligands may interact with corresponding electropositive and electronegative atoms 

of CB1 and CB2 receptors, respectively (Figures 5.9 and 5.11). 

 

In order to test the predictive ability of the obtained CoMFA and CoMSIA models, 20 

other Δ8-THC analogues have been added to the training set for the CB1 model and 13 

other Δ8-THC analogues have been added to the training set for the CB2 model. (Binding 

affinities have been taken from reported values in the literature6,67. Binding affinities of 7 

CB analogues have been measured only for the CB1 receptor). The same CoMFA and 

CoMSIA settings and PLS analyses with initially derived models have been performed for 

the re-constructed CoMFA and CoMSIA models. Compound 12 has been used as a tem-

plate and same atoms in the CoMFA and CoMSIA models have been selected for the struc-

tural superimposition processes for re-constructed models.  

 
Figure 5.12 CoMSIA contour maps of 15 for the CB1 (on the left) and the CB2 models 

(on the right).  
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Table 5.9 shows the added Δ8-THC analogues from literature6,67 to the training set. Figure 

5.13 illustrates the structural superimposition of CB analogues for the re-construction of 

derived CoMFA and CoMSIA models. 

 

In order to re-build 3D QSAR models for the binding affinity at the CB1 and CB2 recep-

tors, a training set of 50 CB analogues for CB1 receptor, and 43 CB analogues for CB2 

receptor were included in the cross-validated PLS analyses. Table 5.10 shows the cross-

validated and non-cross-validated r2 values in all CoMFA analyses. The CoMFA study, 

based on selected lowest energy conformer of AMG3, gave cross-validated r2 values of 

0.770 and 0.614 for CB1 and CB2 models, respectively. The non-cross-validated PLS 

analysis yielded an r2 of 0.955, and 0.926 and the estimated standard errors were 0.242 and 

0.289 for CB1 and CB2 models, respectively. Thus, the CoMFA re-generated 3D QSAR 

models for the binding affinities to the receptors CB1 and CB2 has a very good cross-

validated correlation. Figure 5.14 shows the relationship between the calculated and ex-

perimental pKi values of the non-cross-validated analyses for CB1 and CB2 receptors. Fig-

ure 5.15 shows the steric-electrostatic contour maps of the re-generated CoMFA models 

for CB1 and CB2 receptors. 

 

Table 5.11 shows the derived statistical results from re-constructed CoMSIA analysis. The 

CoMSIA study, based on AMG3 as template, gave cross-validated r2 values of 0.740 and 

0.572 for models CB1 and CB2, respectively. The non-cross-validated PLS analysis 

yielded an r2 of 0.891, and 0.883 and the estimated standard error was 0.369 for both CB1 

and CB2 models. Figure 5.16 shows the relationship between the calculated and experi-

mental pKi values of the non-cross-validated analyses for CB1 and CB2 receptors. Figure 

5.17 shows the steric-electrostatic contour maps of the re-obtained CoMSIA models for 

CB1 and CB2 receptors. 
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Table 5.9 Molecular structures and binding affinity, Ki values of CB analogues that added 

to training set (30 Δ8-THC and CBD analogues) to re-construct CoMFA and CoMSIA 

models.6,67 
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Figure 5.13 Structural superimpositions of the compounds for the re-construction of 

CoMFA and CoMSIA models. 

 

 

 

 

 

 

 

 

 

 

 

Table 5.10 Cross-validated and non-cross-validated analyses at the CB1 and CB2 recep-

tors using the re-obtained CoMFA models, based on the AMG3 CB analogue used as the 

template. 

 

 CoMFA/CB1 CoMFA/CB2 

Number of compounds in training set 50 43 
2

cvr  0.770 0.614 

r2 0.955 0.926 

Standard error of estimate 0.242 0.289 
F 152.826 90.517 

Relative contributions of  
steric/electrostatic fields 

0.606:0.394 0.599:0.401 

Number of optimal  
components 

6 5 
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Figure 5.14 Plots of corresponding re-obtained CoMFA-calculated and experimental val-

ues of binding affinity (given as pKi) of CB analogues in the training set at the CB1 (left) 

and CB2 (right) receptors, respectively. 

 

The results from re-obtained models did not significantly modify the initially obtained 

models. The re-constructed 3D QSAR/CoMFA and CoMSIA models for the binding af-

finities to the CB1 and CB2 receptors have a very good cross-validated correlation. Al-

though there are minor differences between initial and re-constructed CoMFA and CoM-

SIA models, the overall emerging picture is consistent. The main topographical require-

ments in the re-constructed CoMFA and CoMSIA models confirm the initially obtained 

models for the CB1 and CB2 receptors. The predictive ability of the initial model has been 

tested with added compounds, and it was shown that the model is able to accurately predict 

them as true unknowns.  
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Figure 5.15 (top) CoMFA contour maps of template ligand 12 (AMG3, left) and its corre-

sponding CBD analogue 13 (right) for the re-obtained CB1 model. (bottom) CoMFA con-

tour maps of 12 (left) and its corresponding CBD analogue 13 (right) for the re-obtained 

CB2 model. 
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Table 5.11 Cross-validated and non-cross-validated analyses at the CB1 and CB2 recep-

tors using the re-obtained CoMSIA models, based on the AMG3 CB analogue used as the 

template. 

 

 

 
Figure 5.16 Plots of corresponding re-obtained CoMSIA-calculated and experimental val-

ues of binding affinity (given as pKi) of CB analogues in the training set at the CB1 (left) 

and CB2 (right) receptors, respectively. 

 

 

 CoMSIA/CB1 CoMSIA/CB2 

Number of compounds in training set 50 43 
2

cvr  0.740 0.572 

r2 0.891 0.883 

Standard error of estimate 0.369 0.369 
F 71.836 44.096 

Relative contributions of  
steric/electrostatic fields 

0.947:0.053 0.921:0.079 

Number of optimal  
components 

5 6 
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Figure 5.17 (top) CoMSIA contour maps of template ligand 12 (AMG3, left) and its cor-

responding CBD analogue 13 (right) for the re-obtained CB1 model. (bottom) CoMSIA 

contour maps of 12 (left) and its corresponding CBD analogue 13 (right) for the re-

obtained CB2 model. 

 

5.2.2 Conformational Analysis of AMG3 at the Binding Site of the Receptor 

 

5.2.2.1 Molecular Docking Studies 

 

3D models of the CB1 and CB2 receptors were constructed by several groups (e.g.; Salo et 

al.,72 Shim et al.8 and Tuccinardi et al.33) with a molecular modeling procedure, using the 

X-ray structure of bovine rhodopsin110 as the initial template and taken into account the 
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available site-directed mutagenesis data. 3D models of CB receptors were obtained from 

Tuccinardi et al.33 and used in the in silico docking simulations; however, the critical 

amino acids for the CB binding are determined considering reported CB models studied 

mentioned above. In addition, ligand binding pockets of the receptors have been obtained 

by the Biopolymer module of Sybyl molecular modeling package.27 Figure 5.18 shows the 

proposed binding pockets for the CB1 and CB2 receptors. Two binding pockets in the CB1 

and five binding pockets in the CB2 receptors have been determined. The found largest 

cavities of the receptors include same positions of the critical amino acids reported in the 

literature. Since conformers A, C, F, J, K and L are found as the most favored stable con-

formers through MD simulations in solution (DPPC bilayer environment without receptor), 

flexible docking has been employed to these six conformers using FlexX docking algo-

rithm of Sybyl molecular modeling package.27 The mean, the highest and the lowest values 

of the best 30 binding scores for the each complex of the CB1 and CB2 receptors and 

AMG3 conformers and the standard deviations between the scores are presented in Table 

5.12. Among the conformations, the conformer C of AMG3 shows the best binding com-

plex with the active site residues of both CB1 and CB2 receptors. Figure 5.19 (top) shows 

the localization of AMG3 ligand at the binding site of the CB1 (left) and CB2 (right) re-

ceptor models. Core of TM3-TM7 helices mainly participate to the binding cavities. Figure 

5.19 (bottom) shows the interactions of binding site residues with the AMG3. The bioac-

tive CB ligand AMG3 stabilizes its interactions with the active site through non-bonding 

van der Waals interactions with the non-polar surfaces of the active site residues of CB1 

receptor (i.e., Lue193, Phe200, Thr201, Ile247, Pro251, Thr283, Trp356, Leu360, Val387) 

and CB2 receptor (i.e., Phe117, Leu194, Leu255, Trp258).  
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Figure 5.18 Proposed binding pockets for CB1 (left) and CB2 (right) receptor models. 

 

The main characteristic of the low energy conformers of AMG3, both in solution and at the 

active site of the receptor is the high flexibility of the alkyl side chain. This is eminent by 

the low energy barriers observed in the various low energy rotamers of the molecule. It is 

noticed that the CB1 receptor has two available binding pockets (named as S1 and S2) for 

the accommodation of CB ligands (Figure 5.20i). S1 and S2 binding pockets constitute two 

cavities of ~7 Å and ~10 Å depths, respectively. They can both accommodate the alkyl 

side chain segment of CB ligands. Our findings are in accordance with previous re-

ports5,6,67, which show that extension of the five carbon atom chain (~7 Å) of THC by one 

or two carbon atoms (~10 Å) improves binding, while further extension (>10 Å) is detri-

mental due to steric hindrance. However, CB2 receptor has only one ligand binding pocket 

(Figure 5.20ii). Population analysis of docking modes for both CB1 and CB2 receptors 

showed that conformer C has highest propensity to bind at the active site of the CB1 and 

CB2 receptors.  
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Figure 5.19 (top) Ligand location at the active site of the receptors CB1 (left) and CB2 

(right); (bottom) AMG3 stabilizes its binding mainly through van der Waals interactions 

with the non-polar surfaces of the active site residues of CB1 receptor (left), (i.e., Lue193, 

Phe200, Thr201, Ile247, Pro251, Thr283, Trp356, Leu360, Val387) and CB2 receptor 

(right), (i.e., Phe117, Trp194, Leu255, Cys257, Trp258).   
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 (i) 

 

 

 

 

 

 

 

(ii) 

 

 

 

 

 

 

 

Table 5.12 The mean, the highest and the lowest values of the best thirty binding scores 

for each complex of the (i) CB1 and (ii) CB2 receptors with AMG3 conformers, as well as 

the standard deviations between the binding scores. 

 

5.2.2.2 Molecular Specificity for the S1 and S2 Binding Pockets at CB1 Receptor 

 

Since AMG3 has conformational flexibility that can accommodate S1 and S2 binding 

pockets, it should be of great interest to study the conformational preferences of these two 

cavities located at the binding site of the receptor. Design of molecules with specific pref-

erence to either site may be of biological significance. S2 is deeper than S1 pocket and ac-

commodates preferably the all trans conformation of the alkyl side chain segment of 

ligands. Unsaturation of the alkyl side chain of compounds leads their orientations towards 

S2 pocket. For this reason an analogue of AMG3 with four unsaturated bonds at the alkyl 

Conformer Mean Best Worst Std. 
Dev. 

A -9.93 -11.40 -9.26 0.60 

C -10.15 -11.43 -9.50 0.56 

F -9.50 -10.86 -8.90 0.46 

J -9.77 -11.14 -9.18 0.49 
K -9.55 -10.67 -9.01 0.44 
L -9.55 -11.15 -9.07 0.49 

Conformer Mean Best Worst Std. 
Dev. 

A -9.82 -11.50 -9.31 0.48 

C -10.26 -12.52 -10.26 0.69 

F -8.38 -9.22 -8.15 0.25 

J -10.29 -11.80 -9.73 0.55 
K -9.35 -11.15 -9.35 0.66 
L -8.90 -10.66 -8.26 0.66 
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chain was designed in order to specifically be directed to S2 cavity of the CB1 receptor 

(Figure 5.21i).  

 

 

 
Figure 5.20 (top) Two cavities S1 and S2 observed at the active site of the CB1 receptor: 

S1 and S2 pockets constitute two cavities that have ~7 Å and ~10 Å depths, respectively 

and they accommodate the alkyl chain segment of CBs. (bottom) AMG3 ligand location at 

the CB2 receptor. MOLCAD lipophilic potential surface was calculated for the receptor 

with the Connolly method. Brown color denotes the most lipophilic areas and blue color 

denotes the most polar areas. 

 

These predictions have been tested with the docking trials of novel analogues possessing 

unsaturation of alkyl side chain of AMG3. Imposing double bond unsaturation to the C2'-

C3' single bond of alkyl chain of AMG3, is not enough for forcing the side chain towards 
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lateral orientation (top-left on the Figure 5.21ii). However further unsaturations e.g., addi-

tion of double bonds to C4'-C5' (top-right on the Figure 5.21ii) and C6'-C7' bonds (mid-left 

on the Figure 5.21ii) leads the orientation of unsaturated alkyl chain towards S2 binding 

pocket. The four unsaturated bonded analogue has optimum alkyl side chain length for the 

S2 ligand binding pocket (mid-right on the Figure 21ii). Further extension is detrimental 

(bottom on the Figure 5.21ii). Figure 5.21iii depicts the total FlexX binding scores versus 

number of double bonds at the alkyl side chain of AMG3 analogues mentioned above. Dif-

ferent unsaturation patterns have been also studied at the alkyl side chain of AMG3 (e.g., 

C2'-C3' and C5'-C6'), in order to cover all possible probabilities without accounting for the 

synthetic difficulty. The docking results showed that imposing double bond unsaturations 

to the C2'-C3' and C5'-C6' single bonds of alkyl chain of AMG3, is not enough to orient to 

the direction of S2 site. These observations may help open new avenues to synthetic chem-

ists for synthesizing novel compounds. 
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(i) 

 
(ii) 
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(iii) 

 
* The best score obtained from 30 docking solutions.  

 

Figure 5.21 (i) Unsaturation of alkyl chain leads the orientation of chain towards S2. For 

this reason a structure was designed possessing four unsaturated bonds which were di-

rected specifically to S2 cavity. (ii) Docking of rationally designed AMG3 analogues pos-

sessing double bonds at the alkyl side chain of the CB1 receptor. The degree of unsatura-

tion is critical for the design of analogues to orient towards S1 or S2 binding cavity. (iii) 

Total FlexX binding scores versus number of double bonds at the side chain. The optimal 

number of double bonds at the alkyl side chain is four at S2 cavity. 

 

5.2.2.3 Second Generation of 3D QSAR Models Based on in Silico Docking Results 

 

After acquiring the highest percentage of conformer of AMG3 (conformer C) at the active 

site of the CB1 and CB2 receptors, the effect of used template conformation to the derived 

QSAR models was evaluated. For comparison, 3D QSAR/CoMSIA models with smoother 

potential functions have been used for the re-generation of CB1 and CB2 models. 
 

Same common atoms (C1, C2, C3, C4, C4a, C6a, C7, C10, C10a, C10b and the oxygen atoms in 

the template conformers of AMG3) with the initial models were selected for superimposi-

tion processes. Figure 5.22 shows the superimpositions of CB analogues used as a training 

set to construct 3D QSAR/CoMSIA models based on the conformer C of template ligand 
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(for comparison, superimpositions of CB analogues based on conformer A of template li-

gand is also presented). 

 

In order to build the CB1 and CB2 3D QSAR/CoMSIA models, a set of 30 Δ8-THC and 

CBD analogues (Table 5.1) were analyzed. The pKi values were used in the 3D QSAR cor-

relations, and cross-validated PLS analyses were applied. Steric and electrostatic field col-

umns of CoMSIA were generated. The same CoMSIA settings, PLS analyses and valida-

tions have been applied as initially generated models. A very high correlation was ob-

served for both models as it is demonstrated by the high values of r2 (Table 5.13). Addi-

tionally, the credibility of the models is proved by the high values of 2
cvr  (Table 5.13).  

  
Figure 5.22 Structural alignments of the compounds in the training set for constructing 3D 

QSAR/CoMSIA models based on conformers A (on the left) and C (on the right) of the 

template ligand 12. 

 
Table 5.14 summarizes the experimental (observed) and CoMSIA-calculated pKi results 

for the binding affinities at the CB1 and CB2 receptors. Figure 5.23 shows the relationship 

between the 3D QSAR/CoMSIA predicted and experimental pKi values of the non-cross-

validated analyses for the constructed models based on conformers A (left, top) and C 

(right, top) of 12 for CB1 receptor and corresponding conformers (A, left, bottom; and C, 

right, bottom) of 12 for CB2 receptors. The linearity of the plot concerning conformer C 

was better than the linearity of the plot concerning conformer A. Both plots showed good 

correlations for the constructed models.  
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Table 5.13 PLS analyses for the CB1 and CB2 receptors using the CoMSIA models based 

on compound 12 as template (using two different conformers A and C).   

 

 

Figure 5.24 shows the steric and electrostatic CoMSIA contour maps of 12 and its corre-

sponding CBD analogue 13 for the CB1 model using conformer C of AMG3 as template. 

For easy comparison, CoMSIA contour maps of CB1 model based on conformer A is also 

presented. Figure 5.25 presents the CoMSIA contour maps of 12 and its corresponding 

analogue 13 for the CB2 model using conformer C as a template ligand conformation. For 

easy comparison of contour plots, corresponding CoMSIA contour maps were also pre-

sented based on template conformer A of 12. 

 

 

 

 
 

 
 

CB1 model-initial 
model  (template 
ligand 12-
conformer A) 

CB1 model 
(template ligand 
12-conformer C) 

CB2 model-
initial model 

(template 
ligand 12-

conformer A) 

CB2 model 
(template ligand 
12-conformer C) 

Number of com-
pounds in the training 
set 

30 30 29 29 

2
cvr  0.746 0.764 0.625 0.645 

r2 0.944 0.953 0.912 0.940 
Standard error of 
estimate 

0.296 0.272 0.324 0.247 

F 65.031 77.600 47.855 57.491 
Relative contributions 
of steric:electrosatic 
fields 

0.890:0.110 0.890:0.110 0.918:0.082 0.885:0.115 

Number of optimal  
components 

6 6 5 5 
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          CB1 CoMSIA model                            CB2 CoMSIA model  
Compound                 pKi (observed)     pKi(predicted)                       pKi (observed)   pKi(predicted)  
 
 
   1    7.02  7.38   7.14  7.42 
   2    6.20  5.93   6.43  6.29 
   3    6.92  7.16   7.29  7.25 
   4    7.24  7.11   6.97  7.17 
   5    7.93  7.78   8.03  7.98 
   6    6.12  6.15   6.65  6.77 
   7    7.55  7.66   7.60  7.82 
   8    6.59  6.41   6.98  7.01 
   9    8.08  7.93   8.41  8.02 
   10    6.50  6.33   6.96  6.88 
   11    6.77  6.83   6.99  6.93 
   12    9.49  9.45   9.28  9.21 
   13    6.87  6.86   7.30  6.99 
   14    9.28  8.99   9.66  9.01 
   15    7.24  7.03   6.59  6.53 
   16    8.74  8.80   8.44  8.79 
   17    7.49  7.63   7.71  7.70 
   18    9.35  9.61   8.72  9.25 
   19    7.32  7.25   7.41  7.57 
   20    5.90  5.88   6.64  6.29 
   21    7.66  7.95   -  - 
   22    9.08  9.20   9.31  9.19 
   23    9.36  8.79   9.07  9.03 
   24    7.23  7.03   7.00  7.35 
   25    8.90  9.06   9.54  9.27 
   26    6.18  6.85   7.48  7.42 
   27    9.15  9.05   8.99  9.24 
   28    6.72  6.81   7.20  7.36 
   29    7.66  7.89   7.08  7.03 
   30    8.66  8.39   8.48  8.32 
 

Table 5.14 Summary of experimental (observed) and second generation of CoMSIA 

model predicted pKi results of training set for the binding affinity at the CB1 and CB2 

receptors.  
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 Figure 5.23 (top) Plots of corresponding 3D QSAR/CoMSIA predicted and experimental 

values of binding affinity (given as pKi) of CB analogues in the training set at the CB1 re-

ceptor for the constructed models based on conformers A (on the left) and C (on the right) 

of 12, respectively for CB1 receptor. (bottom) Plots of corresponding 3D QSAR/CoMSIA 

predicted and experimental values of binding affinity (given as pKi) of CB analogues in the 

training set at the CB2 receptor for the constructed models based on conformers A (on the 

left)  and C (on the right) of 12, respectively for CB2 receptor.  
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Figure 5.24 (top) CoMSIA contour maps of 12 (on the left) and its corresponding CBD 

analogue 13 (on the right) for CB1 model. Conformer A is used as template. (bottom) 

CoMSIA contour maps of 12 (on the left) and its corresponding CBD analogue 13 (on the 

right) for CB1 model. Conformer C is used as template.  

 

Steric and electrostatic contour maps using template conformer C of 12 by 80:20 contribu-

tion field ratio for the favored and disfavored fields were not enough to visualize these 

contour maps at the cyclic ring segment of the compound. However, increasing the disfa-

vored level ratio (e.g., 70:30) leads to visible steroelectronic contour maps and it shows 

similar properties as contour maps of template conformer A of 12 at the cyclic ring seg-

ment of the compound. For example, sterically unfavorable areas are located on the methyl 

or propenyl groups of CBD analogues, these unfavorable regions are located at the vicinity 

of the tricyclic segment of Δ8-THC analogues (Figure 5.26). Thus, contour maps confirm 

higher affinities of Δ8-THC analogues than their corresponding CBD analogues. 
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Figure 5.25 (top) CoMSIA contour maps of 12 (on the left) and its corresponding CBD 

analogue 13 (on the right) for CB2 model. Conformer A is used as template. (bottom) 

CoMSIA contour maps of 12 (on the left) and its corresponding CBD analogue 13 (on the 

right) for CB2 model. Conformer C is used as template.  

 

  
Figure 5.26 (top) CoMSIA steric contour maps of 12 (on the left) and its corresponding 

CBD analogue 13 (on the right) for CB2 model using 70:30 favored/disfavored field lev-

els. Conformer C is used as template. 
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Three general conclusions could be drawn from the characteristics of derived 3D contour 

maps of CoMSIA models using both conformations of template ligand 12: 

 

1. Steric effects determine the binding affinity. The relative contributions of steric fields 

are larger than the electrostatic fields. 

 

2. The orientation of the C3-alkyl chain plays a crucial role in determining the biological 

activity. The green colored contours along the left side of the end of the alkyl chain 

(corresponding to shown snapshot contour plots, Figures 5.24 and 5.25) show that 

bulky groups enhance the binding affinity, whereas bulky groups in the right sides of 

the C3-alkyl chain of analogues lead to decreased binding affinity. 

 

3. Because of the structural differences of Δ8-THC and CBD derivatives at the cyclic ring 

segment, these groups have different pharmacophoric requirements for their receptors 

in these regions. While sterically unfavorable areas are located on the methyl or pro-

penyl groups of CBD analogues, these unfavorable regions are located at the vicinity of 

the tricyclic segment of Δ8-THC analogues (Figures 5.24 and 5.25). This explains why 

usually Δ8-THC analogues have higher binding affinities than their corresponding CBD 

analogues. 

 

The conformers A and C of 12 used as a template compound in CoMSIA analyses show 

similarities and differences in contour maps. Their similarities are reflected in the same 

regions that contour levels of identical color cover. However, close observation reveals 

significant differences in their shape and extent of covering of the contour regions. The 

conformational differences of conformers A and C are localized in the alkyl chain. Our 

results confirm the earlier literature reports that the lipophilic alkyl chain plays crucial role 

in determining cannabimimetic activity for the CB receptors. Thus, the differences of con-

tour maps at alkyl chain are important for the interpretation of pharmacophore groups that 

affect the binding affinity. When conformer A is used as a template, both THC and CBD 

analogues have green colored contour (depicts sterically favorable groups) at the tail of 
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alkyl chain (Figure 5.24). However, if conformer C is used as a template compound, then 

at the tail of alkyl chain only THC fits green colored sterically favorable contour (left on 

Figure 5.25). CBD analogues do not fit green colored contours but they fit yellow colored 

contours (depicts sterically unfavorable groups) (right on Figure 5.25). These important 

observations are obtained only by the model that was constructed with conformer C of 12. 

The contour plots at the tail of alkyl chain which derived by the model that is constructed 

with conformer C of 12 demonstrates the better binding affinity of THC analogues than the 

corresponding CBD analogues. 

 

In addition, to validate the higher predictive ability of conformer C of the template ligand 

12, 10 other Δ8-THC analogues have been added to the training set and CoMSIA models 

have been reconstructed (binding affinities have been taken from reported values in the 

literature6,67). The same CoMSIA settings and PLS analyses have been performed for the 

re-constructed CoMSIA models. The same atoms in the template conformers of 12 have 

been selected for the structural superimposition processes. Results did not significantly 

modify the initially obtained models. Re-constructed 3D QSAR/CoMSIA models for the 

binding affinities at the CB1 and CB2 receptors have a very good cross-validated correla-

tion (0.745 and 0.632, respectively for CB1 and CB2 receptors). Re-constructed models 

validate the initially obtained results: The model based on conformer C of 12 shows better 

statistical results than the model based on conformer A of 12.  

 

5.2.2.4 MD Simulations of AMG3 at the Active Site of Membrane-associated CB1 and 

CB2 Receptors 

 

MD simulations have been performed to the systems including AMG3 at the binding site 

of the CB1 and CB2 receptors merged with membrane bilayer in order to analyze the effect 

of critical amino acid residues at the active site of CB receptors to the conformational 

properties of ligands in a more realistic environment. Figure 5.27 shows a representative 

picture of used systems. For these simulations, docked poses of complexes that have high 

population were used as initial ligand-receptor complex coordinates. Torsional angle val-
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ues of the alkyl side chain of AMG3 throughout the simulations were screened with trajec-

tory analysis. Results showed that adopted conformations of AMG3 at CB1 and CB2 re-

ceptors have different conformational properties. Torsional angles at the alkyl chain of 

AMG3 adopt trans for τ1, τ3, τ5 and τ6 at the binding site of CB2 receptor with some fluc-

tuations near this dihedral angle. Trajectory analysis of torsional angles τ2 and τ4 show a 

propensity to be gauche-; τ4 also adopts trans dihedral angles at the active site of the CB2 

receptor (Figure 5.28). Dihedral angle screening throughout the MD simulations results 

showed that τ2, τ4 and τ6 mainly form a trans conformations at the binding site of the CB1 

receptor. Dihedral angles τ3 and τ5 are very flexible and adopt gauche± and trans confor-

mations at the binding site of the CB1 receptor, however, gauche+/trans and trans/gauche- 

torsional angles are mainly observed for τ3 and τ5, respectively (Figure 5.28). 

 

Therefore, five additional conformations (M, N, O, P and R) have been obtained from 

these simulations (Figure 5.29). Torsional angle screening results of MD analysis showed 

that conformers C, M, N and O of AMG3 favor at the active site of the CB1, and conform-

ers P and R favor at the binding site of the CB2 receptor. 

 

Although the CB1 and CB2 receptors exhibit a very high sequence homology which rises 

to 68% in the TM regions, there are certain behavior differences of AMG3 conformers at 

the binding sites of receptors. One of the main differences between the MD simulations of 

ligand at the CB1 and CB2 receptors is the different behavior of the first dihedral angle τ1 

of the alkyl side chain of AMG3. In the CB1 receptor, there is a high propensity of τ1 to 

establish a gauche+ conformation, however in the CB2 receptor; it prefers to have a trans 

conformation. It is well-known that, different conformational re-arrangements of third and 

sixth TMs of GPCR determine the activation of CBs. In CB2 receptor, alkyl side chain of 

AMG3 conformers align parallel in the ligand recognition part of TM3, while in the CB1 

receptor they align perpendicular. This observation may help to understand the selectivity 

of CB ligands for the CB1 and CB2 receptors. 
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5.2.2.5 Third Generation of 3D QSAR Models Based on Conformational Analysis Re-

sults of AMG3 by MD Simulations at the Active Site of the Receptor 

 

In order to test the effect of favored conformations of template compound (AMG3) at the 

binding site of the CB receptors to the QSAR models, initially all possible conformations 

have been tested as template conformer and 3D QSAR/CoMSIA models were re-obtained. 

Same common atoms in the template conformers of AMG3 with the initial models were 

selected for superimposition processes. Compounds in Table 5.1 and their measured activi-

ties were used for the third generation of CB1 and CB2 models. Initial statistical tests by 

obtained models showed that optimal statistical results derived using template conformer 

O for CB1 and conformer P for CB2 models. Therefore, further analysis is performed us-

ing these template conformers. Figure 5.30 shows the superimpositions of CB analogues 

used as a training set to construct 3D QSAR/CoMSIA models based on the conformers O 

and P of template ligand. Table 5.15 shows the derived statistical results for CB1 and CB2 

models (in order to easy comparison, results of first and second generation of models were 

also included in the Table). It is clearly shown that the using template conformer obtained 

from MD simulations of ligand at the binding site of the receptor improves statistical re-

sults, significantly. 
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Figure 5.27 Representative picture of used system for MD simulations (ligand at the binding site of the receptor which is 

merged with lipid bilayer). 
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(i) 
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(ii) 

 
 Figure 28. Torsional angle screening of alkyl side chain of AMG3 throughout the MD simulations at the binding site of (i) CB1 

and (ii) CB2 receptors. 
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Figure 5.29 MD simulations of AMG3 at the active site of the receptors produced five additional conformations (M, N, O, P 

and R). At the active site of the CB1 receptor, conformers C, M, N and O; at the active site of the CB2 receptor, conformers P 

and R are found as favored conformations of AMG3. At the alkyl side chain these conformers have following dihedral angles: 

M (gauche+/trans/gauche+/trans/trans/trans); N (gauche+/trans/gauche+/trans/gauche-/trans); O 

(gauche+/trans/trans/trans/gauche-/trans); P (trans/gauche-/trans/trans/trans/trans) and R (trans/gauche-/trans/gauche-

/trans/trans).
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Experimental and corresponding predicted affinities of CB analogues were presented 

at the Table 5.16 and plotted at Figure 5.31. 

 
Figure 5.30 Structural alignments of the compounds in the training set for construct-

ing 3D QSAR/CoMSIA models based on template ligand 12. Superimposition was  

performed based on conformer O for CB1 model (on the left); and conformer P for 

CB2 model (on the right). 

 

Figure 5.32 shows the steric and electrostatic contour maps of 12 (on the left, top) and 

its corresponding CBD analogue 13 (on the right, top) for the CB1 receptor using as 

template ligand the conformer O; and corresponding stereoelectronic contour maps 

(compounds 12 (on the left, bottom) and 13 (on the right, bottom) for the CB2 recep-

tor using as template ligand the conformer P. Similar contour plots with initially gen-

erated models were obtained from the third generation of the models, however, the 

use of different template conformers for CB1 and CB2 models showed some fine and 

critical differences. For example, the orientation of alkyl chain of AMG3 is more re-

stricted in the CB2 models, since left and right sides of the tail of the alkyl chain in-

clude yellow colored sterically unfavorable contours, and between these contours 

there is a green colored sterically favorable contour (Figure 5.32, bottom).  
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Table 5.15 Derived statistical results of third generation (based on template conformation derived from MD simulations of template molecule at the 

membrane-associated CB1 and CB2 receptors) of CB1 and CB2 models. (In order to easy comparison, results of first and second generation of mod-

els were also included in the Table. First generation of models was based on favored template conformation in solution, and second generation of the 

models was based on docking results).  

 

 
 

CB1 model-first 
generation  (tem-
plate ligand 12-
conformer A ) 

CB1 model 
second generation 

(template ligand 12-
conformer C) 

CB1 model 
third generation 

(template ligand 12-
conformer O) 

CB2 model-first 
generation 

(template ligand 12-
conformer A) 

CB2 model 
second generation 

(template ligand 12-
conformer C) 

CB2 model 
third generation 

(template ligand 12-
conformer P) 

Number of com-
pounds in the training 
set 

30 30 30 29 29 29 

2
cvr  0.746 0.764 0.771 0.625 0.645 0.710 

r2 0.944 0.953 0.962 0.912 0.940 0.952 
Standard error of 
estimate 

0.296 0.272 0.244 0.324 0.247 0.246 

F 65.031 77.600 97.623 47.855 57.491 72.373 
Relative contributions 
of steric:electrosatic 
fields 

0.890:0.110 0.890:0.110 0.852:0148 0.918:0.082 0.885:0.115 0.853:0.147 

Number of optimal  
components 

6 6 6 5 5 5 
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         CB1 CoMSIA model                            CB2 CoMSIA model  

Compound                 pKi (observed)     pKi(predicted)                       pKi (observed)   pKi(predicted)  
 
 
   1    7.02  7.11   7.14  7.25 
   2    6.20  6.00   6.43  6.48 
   3    6.92  6.98   7.29  7.23 
   4    7.24  6.96   6.97  7.08 
   5    7.93  7.73   8.03  7.91 
   6    6.12  6.55   6.65  6.43 
   7    7.55  7.64   7.60  7.84 
   8    6.59  6.67   6.98  6.99 
   9    8.08  7.95   8.41  8.03 
   10    6.50  6.68   6.96  6.97 
   11    6.77  6.82   6.99  7.25 
   12    9.49  9.23   9.28  9.03 
   13    6.87  6.58   7.30  7.23 
   14    9.28  9.56   9.66  9.56 
   15    7.24  7.18   6.59  6.37 
   16    8.74  8.81   8.44  8.51 
   17    7.49  7.85   7.71  7.79 
   18    9.35  9.37   8.72  9.28 
   19    7.32  7.15   7.41  7.46 
   20    5.90  5.82   6.64  6.48 
   21    7.66  7.94   -  - 
   22    9.08  9.14   9.31  9.35 
   23    9.36  9.33   9.07  9.10 
   24    7.23  6.98   7.00  7.05 
   25    8.90  8.87   9.54  9.13 
   26    6.18  6.30   7.48  7.33 
   27    9.15  8.90   8.99  9.10 
   28    6.72  6.61   7.20  7.24 
   29    7.66  7.77   7.08  7.38 
   30    8.66  8.75   8.48  8.45 
 

Table 5.16 Summary of experimental (observed) and CoMSIA-predicted pKi results 

of training set by third generation of the models for the binding affinity at the CB1 

and CB2 receptors.  

 

Obtained contour plots also merged with the receptor coordinate files (Figure 5.33, 

top). Results confirmed the accuracy of obtained contour plots by third generation of 

QSAR models. For example, sterically unfavorable contours of CB1 model fit with 

the side chains of the amino acid residues at the binding site of the CB1 receptor (e.g., 

Leu190, Arg186, Trp279, Tyr275, Tyr355 and Val364); (Figure 5.33, bottom).  
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Figure 5.31 Plots of experimental  and predicted values of binding affinities (given as 

pKi) of CB analogues in the training set obtained by third generation of 3D QSAR 

(left) CB1 model and (right) CB2 model.  

 

  

  
Figure 5.32 Steric and electrostatic contour maps of 12 (on the left, top) and its corre-

sponding CBD analogue 13 (on the right, top) for the CB1 receptor using the template 

ligand as conformer O; and corresponding stereoelectronic contour maps (compounds 

12 (on the left, bottom) and 13 (on the right, bottom) for the CB2 receptor using the 

template ligand as conformer P. 
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Figure 5.33 (top) Contour plots of CB1 model merged with CB1 receptor. (bottom) 

Close-look to the contour maps at the binding site of the CB1 receptor. 

 

5.2.3 De Novo Drug Design Studies of CB Analogues  

 

The optimal derived PLS analyses of CB analogues, which are produced from third 

generation of QSAR models, were used to generate each site points for CB1 and CB2 

models. These site points were used in the de novo drug discovery program LeapFrog, 
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for the predictions of novel hits by repeatedly making structural changes and then ei-

ther keeping or discarding the results. Since third generation of CB1 and CB2 models 

were derived based on different conformations of template conformers, a selectivity 

of new generated ligand structures by LeapFrog can be expected. The basic informa-

tion about LeapFrog was explained in the “Computational Details” chapter of the the-

sis. The new ligand structures were evaluated on their binding energies, and structures 

that have better binding energy than reference compound (template compound, 

AMG3) were collected. Tables 5.17 and 5.18 show these structures for CB1 and CB2 

receptors, respectively. Predicted binding affinities based on derived QSAR models 

were also included in the tables. Derived molecules that have highest predicted bind-

ing affinity for CB1 and CB2 receptors (D1 and D12, Tables 5.17 and 5.18) were 

docked at the binding site of the CB1 and CB2 receptors, respectively (Figures 5.33 

and 5.34). Their predicted high binding affinities confirmed by better docking scores 

than AMG3 (i.e., D1 and D12 have binding scores of -19.11 kJ/mol and -19.23 

kJ/mol, respectively). The D1 stabilizes its interactions with the binding site forming 

H-bonds with the amino acid residues (e.g., Arg186, Thr197 and Pro251) of CB1 as 

well as van der Waals interactions with the non-polar surfaces of the active site resi-

dues of CB1 receptor (e.g., Thr197, Phe200, Thr201, Ile247, Leu250, Pro251, 

Tyr275, Trp279, Thr283, Leu360). The D12 stabilizes its interactions with the bind-

ing site forming H-bonds with the amino acid residues (e.g., Leu160, Leu163, Ser165, 

Tyr166, Leu167, Pro168) as well as van der Waals interactions with the non-polar 

surfaces of the binding site residues of CB2 receptor (e.g., Lys109, Leu160, Leu163, 

Pro168, Pro187, Tyr190, Trp194, Trp258). 

 

5.2.4 Homology Modeling Studies of CB Receptors  

 

If the X-ray structure of a ligand-bound receptor is not available, homology models of 

the protein can be used to obtain the ligand binding cavities. The steroelectronic prop-

erties of these cavities are directly related to the performed molecular model coordi-

nates. Thus, the use of different template structures for homology may result in varia-

tion of ligand binding modes. In order to validate the obtained results using CB1 and 

CB2 receptor models based on bovine rhodopsin (1F88, pdb code), alternative CB1 

and CB2 comparative models have been attempted employing template structure of 

β2-adrenergic receptor. The initial structure was taken from the cholesterol bound 
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form of human β2-adrenergic receptor (pdb code, 3D4S).127 The water molecules and 

the cholesterol were removed from the system. Sequence alignment has been obtained 

with Biopolymer module of Sybyl.27 CB1 and CB2 receptors show 28% and 24% se-

quence identity, respectively (Figure 5.35). Initial geometry optimization calculations 

have been carried out with Powell algorithm using Tripos force field.27 Subsequently, 

these receptors have been subjected to 2 ns MD simulations using Gromacs.  

 

Before the simulations, geometry optimization of receptors has been performed with-

out constrains using steepest descent integrator for 10000 steps with the minimization 

tolerance of 100 kJ/(mol.nm). Cluster analysis of obtained coordinate file of trajecto-

ries has been performed with g_cluster module of Gromacs and each simulation 

yielded 8 clusters. Sequence alignment of representative of these clusters with the 

rhodopsin based receptor models has been performed with Accelrys DS 2.0 pro-

gram128 and models that have smallest RMSD values (using Cα atoms as the reference 

points) for CB1 and CB2 were used for further analysis. Obviously there are some 

fine differences between models based on rhodopsin and β2-adrenergic receptor for 

each receptor; however, the motifs of the seven member TM helices have been kept. It 

should be noted that the active site residues have smaller RMSD values (< 3Å) than 

the other amino acid residues. For clarity, superimposition of rhodopsin and β2-

adrenergic based receptor models of CB1 has been shown at Figure 5.36. In Figure 

5.37, the ligand binding pockets of CB1 have been shown with novel obtained model 

based on β2-adrenergic receptor; figure clearly confirms the two obtained binding 

pockets from the previous model based on rhodopsin.  
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Compound  CB1 model 
Predicted pKi  
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D2 

SS
O

OH

 

 
 

9.43 

 
 

D3 
 
 

SS

H
N

O

OH

 

 
 

9.39 

 
 

D4 

 

SS
O

OH

CF3

F3C

F3C

 

 
 

9.35 

 
 
 

D5 

SS
N
H

O

OH

CF3

 

 
 
 

9.32 

 
 
 

D6 

SS
O

OH

 

 
 

9.32 
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D7 

 

SS
O

OH

 

 
 

 
9.31 

 
 

D8 
 

SS

HN

O

OH

 

 
 

9.28 

 
 
 

D9 

 

SS
O

OH

 

 
 
 

9.28 

 
 

D10 

SS
O

OH

 

 
 

9.27 

 
 
 

D11 

SS
O

OH

N

 

 
 
 

9.24 

 

Table 5.17 The proposed novel CB analogues by de novo drug design program Leap-

Frog based on CB1 model and their predicted pKi values for CB1 receptor. 
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 Compound CB2 model 
Predicted 

pKi 
 
 

Ref. 

SS
O

OH

 

 
 

9.03 

 
 

D12 

SS
O

OH

NH2

HN

O

NH2

 

 
 

9.52 

 
 

D13 

SS
O

OH

NH2

 

 
 

9.42 

 
 

D14 
 

SS
O

OH

H2N

 

 
 

9.40 

 
 

D15 

SS
N
H

CF3
O

OH

 

 
 

9.39 

 
 

D16 

SS
O

OH

O  

 
 

9.36 

 
 
 

D17 
SS

CF3
O

OH

 

 
 

9.34 

 
 
 

D18 
SS

O

OH

 

 
 
 

9.33 
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D19 

SS
O

OH

 

 
 
 

9.26 

 
 

D20 

SS

H
N

O

OH

NH2

 

 
 

9.26 

 
 

D21 

SS

NH

O

OH

H2N

 

 
 

9.25 

 
 

D22 

SS

H
N

O

OH

NH2  

 
 

9.23 

 
 
 

D23 
SS

NH

O

OH

H2N

 

 
 

9.15 

 

Table 5.18 The proposed novel CB analogues by de novo drug design program Leap-

Frog based on CB2 model and their predicted pKi values for CB2 receptor. 
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Figure 5.33 Binding interactions of D1 at the binding site of the CB1 receptor. 

 

 
Figure 5.34 Binding interactions of D12 at the binding site of the CB2 receptor. 
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Figure 5.35 Sequence alignment of CB receptors based on β2-adrenergic receptor. 

 

 
Figure 5.36 Superimposition of rhodopsin (yellow colored) and β2-adrenergic (cyan 

colored) based CB1 receptor models from both side and top views. 
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Figure 5.37 Two binding pockets (S1 and S2) were identified at the rhodopsin based 

CB1 model (left). CB1 receptor model obtained by using template of human β2-

adrenergic receptor confirmed these two ligand binding pockets between the TM3-

TM6 (right). 
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Chapter 6. Computational Design of Novel Fullerene 

Analogues as Potential HIV-1 PR Inhibitors: Analysis 

of the Binding Interactions between Fullerene Inhibi-

tors and HIV-1 PR Residues Using 3D QSAR, Mo-

lecular Docking and MD Simulations 
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6. 1 Introduction 
 

Inhibition of HIV-1 PR leads to the production of immature virus particles and pre-

vention of further rounds of infection.129,130 HIV-1 PR is an important target enzyme 

for anti-acquired immunodeficiency syndrome (AIDS) drug design as its inhibition 

leads to the production of non-infectious viral particles.129 In the last few years, many 

potent and selective HIV-1 PR inhibitors have been developed and approved as drugs 

for the inactivation of this enzyme by the Food and Drug Administration, while sev-

eral others are under clinical investigation.129,131 Since the nature of most of these 

drugs is peptide-like, their oral bioavailability and half-life are limited.132 Experimen-

tal findings indicate the rapid emergence of drug resistance to most of the HIV-1 PR 

inhibitors, because site specific mutations in the enzyme occur at one or more resi-

dues.133
 These mutations are conservative and involve a similar set of amino acid resi-

dues in response to exposure to different inhibitors, thus giving rise to cross resis-

tance.133
 Therefore, several research groups tried to develop non-peptidic HIV-1 PR 

inhibitors, which may block the mutations responsible for this resistance.11,134  

 

In the last decade, fullerene and its derivatives have been extensively investigated for 

biomedical applications. Inhibition of HIV-1 PR by fullerene analogues demonstrated 

by Friedman et al.11 and complexation of HIV-1 PR with fullerene compounds has 

been supported by molecular modeling studies.13 These studies showed that the 

fullerene can be perfectly accommodated inside the binding pocket of HIV-1 PR 

(Figure 6.1). The active site of the HIV-1 PR is approximately an open-ended cylin-

drical hydrophobic cavity with 10 Å diameter composed of catalytic aspartic acid 

residues Asp25 and Asp25'.11,13
 The complementary spatial relationship between 

[60]fullerene and the active site of the HIV-1 PR enzyme has led to the suggestion 

that fullerene-based derivatives could have potential use as effective HIV-1 PR inhibi-

tors.11,13 The binding interactions of [60]fullerene derivatives in the active site of the 

HIV-1 PR have been examined through a combination of several molecular modeling 

techniques.13,134 Kinetic analysis of the HIV-1 PR enzyme in the presence of various 

water-soluble fullerene derivatives suggests a competitive mode of action.13 This is 

attributed to the ability of fullerene derivatives to form bonds with the catalytic site 

and the van der Waals interactions with the non-polar HIV-1 PR surface thereby, im-
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proving the binding.134 Since the binding affinity values of “first generation” fullerene 

inhibitors were not significant (EC50 ~10-6 M), further structural investigation is re-

quired in order to propose new HIV-1 PR/fullerene complexes with better binding af-

finity. For this aim, a set of synthetically reported fullerene derivatives (Table 

6.1)135,136 have been used to construct models with the 3D QSAR methodologies: 

CoMFA9 and CoMSIA10.  

 
Figure 6.1 Perfect fit of a fullerene derivative at the active site of the HIV-1 PR (ac-

tive site residues have been shown as molecular surface for clarity). 

 

6.2 Results and Discussion 
 

In order to improve the structure alignment and derive statistically reliable models, 

initially, the most potent fullerene analogue in the data base (compound 1, Table 6.1) 

has been docked in the binding cavity of 3D model of HIV-1 PR (hitherto X-ray 

structure of a fullerene ligand-bound HIV-1 PR is not available, thus, HIV-1 PR struc-

ture has been received from the X-ray structure of haloperidol-bound HIV-1 PR (pdb 

code, 1AID)35. The derived best docked complex structure has been subjected to MD 

simulations, in order to stabilize the localization of fullerene at the HIV-1 PR. 3D-

QSAR/CoMFA and CoMSIA methods were applied to the data set, which was di-

vided into training and test sets. To our knowledge, this study is the first 3D QSAR 

application to the fullerene based compounds. Both CoMFA and CoMSIA studies 

gave similar results indicating that the steric effects are essential for the activity; 

which is reasonable because of high non-polar property of compounds at the data set. 
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The de novo design Leapfrog routine of Sybyl was used as an aid for the discovery of 

new molecules based on the 3D QSAR results.  

 
Comp. 

No. 
 

Compound 
Exp. 

Binding 
Energy 

(kJ/mol) 

Calculated 
Binding 
Score 

(kJ/mol) 

Exp. 
Binding 
Affinity 

(µM) 
 
 

1 
OH

 

 
-40.1 

 
-35.2 

 
0.1 

 
 

2 

NH2

NH2

 

 
 

-30.4 

 
 

-29.1 

 
 

5.0 
 
 

 
 

3 
OH

 

 
 

-39.2 

 
 

-29.2 

 
 

0.15 

 
 

4 
HN

HN

O
O

OH

O O

OH

 

 
 

-29.5 

 
 

-31.5 

 
 

7.3 

 
 

5 

 

H
N

O

OHH

 

 
 

-36.2 

 
 

-35.6 

 
 

0.49 
 

 
 

6 

 

H

H
N

O
OH

 

 
 

-16.6 

 

 
 

-24.8 

 
 
 
 
 
 
 
 
 
 

1300 

 
 

7 

H
N O

OH
NH2H

 

 
 

-23.7 

 
 

-32.3 

 
 

75 
 

 
 

8 
H
N H

N
NH2

H NH

O OH

 

 
 

-20.9 

 
 

-28.1 

 
 

230 
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9 
H
N H

N

H O

O

OH

O
OH

 

 
 

-22.1 

 
 

-20.1 

 
 

140 
 

 
 

10 

O

NH

OH
OH

OH

 

 
 

-32.2 

 
 

-27.4 

 
 

2.50 

 
11 

O

N
O O

OH

 

 
 

-34.7 

 
 

-36.0 

 
 

0.9 

 
 

12 
N

O O
OH

 

 
 

-31.8 

 
 

-33.0 

 
 

7.3 

 
 

13 

 

O
O

O

OH  

 
 

-32.5 

 
 

-33.5 
 

 
 

2.2 

 
14 

 
O

OH

O

O

 

 
 

-29.9 
 

 
 

-31.4 

 
 

6.3 

 
 

15 
N

O O

OH

 

 
 

-29.5 

 
 

-32.9 

 
 

2.9 

 
 

16 
N

O

O

OH

 

 
 

-26.8 

 
 

-27.1 

 
 

21.7 

 
 

17 

O

O
O

O

OO
 

 
 

-22.2 

 
 

-26.8 

 
 

137 

 
 

18 

 

OH

OH

 

 
 

-27.3 

 
 

-29.3 

 
 

17.6 
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19 

 

N

N

 
 

 
 
 

-23.8 

 
 
 

-24.6 

 
 
 

72.7 
 

 
 

20 
O

O

O

O  

 
 

-29.4 

 
 

-18.4 

 
 

7.70 

 

Table 6.1 Chemical structures, measured affinities and binding energies and calcu-

lated binding scores of fullerene derivatives.  

 

After obtaining the optimum position of most potent fullerene analogue 1 inside the 

HIV-1 PR, 3D QSAR/CoMFA and CoMSIA methods have been performed. The 

logarithmic 1/EC50 values (pEC50) were used in the 3D QSAR correlations, as they 

are related to changes in the free energy of binding. Several variations in the align-

ment procedures are considered by superimposing similar pharmacophoric features. 

Highlighted carbon atoms (32 central carbon atoms of fullerene) for the template 

ligand 1 are selected for the structural superimposition processes (Figure 6.2i). The 

alignment of the molecules was based on atom-by-atom superimposition of selected 

atoms, which are common in all compounds. Figure 6.2ii illustrates the superimposi-

tion of the molecules in the training set. Compounds 5, 16 and 17 have been used as a 

test set. They possess higher, similar, and lower inhibition effects than average pEC50 

values of the studied compounds which represents the whole data set. The cross vali-

dated PLS method was then subjected to the training set. Table 6.2 summarizes the 

statistical results. 
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  (i)      (ii) 

Figure 6.2 (i) Selected atoms of the template compound 1 for structural superimposi-

tions of the compounds in training set. (ii) Structural alignments of the compounds in 

the training set for constructing 3D QSAR/CoMFA and CoMSIA models at HIV-1 

PR receptor. 

 

 

Table 6.2 Cross-validated analyses using CoMFA and CoMSIA methodologies, 

based on template compound 1. 

 

 

 

 

 

 CoMFA CoMSIA 
2

cvr  0.549 0.555 

r2 0.994 0.997 

Standard error of estimate 0.097 0.051 
F 509.545 1216.442 
Relative contributions of  
steric/electrosatic fields 

0.776:0.224 0.872:0.128 

Number of optimal  
components 

4 5 
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3D QSAR/CoMFA and CoMSIA studies gave 2
cvr  values of 0.549 and 0.555, respec-

tively. The non-cross validated PLS analysis yielded r2 values of 0.994 and 0.997, re-

spectively. Figure 6.3 shows the relationship between the experimental and predicted 

pEC50 values of cross-validated PLS analysis for CoMFA and CoMSIA. The signifi-

cance of the proposed models is verified by the good predictions of the activity of 

compounds belonging to the test set. Test set compounds 16 and 17 both in CoMFA 

and CoMSIA gave good prediction results (Table 6.3). Compound 5 is underestimated 

by CoMFA about 1.0 unit but CoMSIA result gave satisfactory estimation of its activ-

ity (error on prediction is less than a unit). 
 

                                                           CoMFA               CoMSIA 
Compound                 pEC50 (observed)     pEC50(predicted)        pEC50 (predicted) 

1    7.00  7.05  6.95 
2    5.30  5.25  5.31 
3    6.80  6.65  6.84 
4    5.13  5.22  5.11 
5    6.31  5.22  5.76 
6    2.89  2.84  2.97 
7    4.12  4.03  4.08 
8    3.64  3.69  3.56 
9    3.85  3.92  3.80 
10    5.60  5.52  5.62 
11    6.05  5.96  5.94 
12    5.53  5.59  5.61 
13    5.66  5.83  5.66 
14    5.20  5.14  5.16 
15    5.14  5.23  5.23 
16    4.66  4.68  4.67 
17    3.86  3.46  3.67 
18    4.75  4.64  4.73 
19    4.14  4.17  4.15 
20    5.11  5.17  5.18 

 

Table 6.3 Summary of experimental (observed) versus CoMFA and CoMSIA-

predicted pEC50 results for the binding affinity of fullerene derivatives at the HIV-1 

PR. 

 

The CoMFA and CoMSIA contour maps were used in order to visualize the steroelec-

tronic requirements of the binding cavity of HIV-1 PR. Figures 6.4 and 6.5 show the 

steric-electrostatic contour maps of the CoMFA and CoMSIA models (for the com-

pounds that show the best and worst inhibition effects within the data set for the HIV-

1 PR receptor, compounds 1 and 6 in Table 6.1, respectively).  
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Figure 6.3 Plots of observed and 3D QSAR/CoMFA (left) and CoMSIA-predicted 

(right) binding affinities of fullerene analogues in the training set at the HIV-1 PR. 

 

Template compound 1 has better inhibition effect than 6, around 104-fold. This can be 

explained by different topographical requirements of 1 and 6; both aromatic rings of 

1, fit very well with the green colored contour map which shows sterically favorable 

places, there are no bulky groups of 6 in this field (Figure 6.4). In addition, inactive 

compound 6 has a flexible chain and fits with the yellow colored contour which 

shows sterically unfavorable areas at the CoMSIA model (Figure 6.4). Moreover, 

electrostatic contour maps of 1 and 6 clearly show the differences both in CoMFA and 

CoMSIA models. For example, the -OH group of 1 fits on red colored contour (nega-

tive charged favored) while, -C=O group of 6 fits on blue colored contour (positive 

charged favored), (Figure 6.4). Relative contributions of steric and electrostatic fields 

obtained by CoMFA and CoMSIA are 0.78:0.22 and 0.87:0.13, respectively. 

 
Figure 6.4 (Left) CoMFA contour maps of template compound 1 (shown in top-left 

and bottom-left which has highest binding affinity in the training set) and compound 6 

(shown in top-right and bottom-right which has lowest binding affinity in the training 

set). (Right) Corresponding CoMSIA contour maps for compounds 1 and 6. 
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Hitherto, a lot of fullerene derivatives have been synthesized by several experimental 

groups but a limited number of them have been subjected to bioactivity test against 

HIV-1 PR. Obviously, when the number of compounds increases in the data set, the 

stability of the constructed model is expected to be increased. However, in this par-

ticular case, it is difficult to increase the number of compounds in the data set because 

the experimentally examined fullerene compounds for HIV-1 PR inhibition are lim-

ited and measured ones do not show very diverse binding affinities. For this reason, 

an attempt has been performed in QSAR studies: The binding energy results of bio-

logically evaluated fullerenes in HIV-1 PR cavity was examined with docking simula-

tions and a correlation between experimental versus theoretical values has been found. 

Thus, it is proposed to enlarge the data set including the structures from computation-

ally designed compounds and their activities from the docking simulations to con-

struct QSAR models. This idea may be used by other research groups if the experi-

mental data are limited and/or not diverse, the coordinate file of the receptor (using X-

ray data or homology model) is available and the active site of the receptor is well de-

fined. 

 

The large variations in binding affinities of the designed fullerene inhibitors with 

HIV-1 PR and the relations between biological activity and the flap motion of the en-

zyme, as well as, the connection between the biological activity and the conforma-

tional changes in the catalytic site of the HIV-1 PR, were also analyzed. The follow-

ing three steps in our computational design strategy have been studied: (i) Initially, 

several monoadducts and bisadducts of [60]fullerene have been designed with some 

modifications of reported structures in the literature (Table 6.1) in order to explore 

more conformational space. Most of the designed fullerene structures include 1,3-

cyclohexadiene derivatives. The experimental methodology to synthesize this kind of 

fullerene derivatives was reported by An et al.137 (ii) In order to diminish the stability 

problems, CoMSIA models with smoother potential functions have been used in fur-

ther 3D QSAR investigations of the fullerenes. Novel monoadducts and bisadducts of 

[60]fullerene have been designed with the aid of 3D QSAR/CoMSIA models and their 

binding affinities at the HIV-1 PR have been tested employing molecular docking. In 

order to use proper input coordinates of HIV-1 PR/fullerene derivative complex in the 

docking simulations, MD simulations were employed by Gromacs program.36 In order 

to understand the effect of fullerene ligand to the conformational changes of amino 
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acid residues of active site of HIV-1 PR, both ligand-free and ligand-bound systems 

were used in the simulations (Figure 6.5). The flexibility of flap region of HIV-1 PR 

has been discussed by both experimental and computational studies.138,139 The free 

protease adopts closed, semi-open or fully open forms in a dynamic equilibrium. 

However, the closed form is favored when the inhibitor is bound in the cavity of the 

reaction site.138 Friedman et al.11,13 proposed that there is a direct correlation between 

inhibitory of a compound and the amount of hydrophobic surface area that it can 

desolvate. The MD simulations by Zhu et al.140 showed the exclusion of water near 

the flap regions in order to accommodate the fullerene inhibitor. The decreasing of the 

water density in the cavity leads to the enhancement of the hydrophobic interaction 

between the fullerene derivative and the active site of the enzyme. (iii) The Leapfrog 

de novo drug design program and 3D QSAR/CoMSIA contour maps have been used 

in order to generate a series of potent fullerene based HIV-1 PR inhibitors. This ap-

proach is fruitful and can be of general use because: (a) it minimizes the compounds 

to be synthesized; (b) it leads a rational design for the subsequent compounds to be 

synthesized and (c) it saves time and reduces the cost and human effort.  

 

The inhibition effect of limited monoadducts and bisadducts of [60]fullerene has been 

biologically evaluated. Table 6.1 shows the biological activities of 20 fullerene de-

rivatives reported in the literature.13,135,136,143 In order to explore more conformational 

space and include more diverse binding affinities in the data set, computationally de-

signed fullerene analogues (Table 6.4) have been analyzed using docking studies. The 

formula ΔG = -RTlnKi was used to convert the FlexX binding energies to estimated 

binding affinities. Since the experimental binding activities of most of the derivatives, 

which are of interest in this study only reported as median effective concentration 

(EC50), these values are assumed to be equal with Ki in the calculations of the free 

binding energies. A similar working hypothesis has been used by Naik et al.141 and 

Conn et al.142 The reported Ki and EC50 values for compound 4 are 5.3 µM and 7.3 

µM, respectively. Assuming that Ki and EC50 are identical, the resulting error for ΔG 

of compound 4 is 2.6 %.  
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Compound 

No. 

 
Compound 

Calculated 
Binding Score 

(kJ/mol) 

Estimated 
Binding Affinity 

(µM) 
 

 
 

21 

O OH

OH

OH

O OH

 

 
 

-37.9 

 
 

0.25 

 
 

22 
 

OH

OH

OH

OH

OH

OH

 

 
 

-41.9 
 

 
 

0.051 

 
 

23 
 

O OH

O OH

O

OH
OH

O

 

 
 

-50.3 

 
 

0.002 

 
 

24 
 

OH

OH

OH

OH

 

 
 

-35.3 

 
 

0.71 

 
 

25 
 

H

H

H

H

H

H

H

H  

 
 

-19.1 

 
 

472 

 
 

26 
 

 

N

O OH

NH2

O OH                                                                      

 
 

-35.6 

 
 

0.63 

 
 

27 
 

F

O OH

F

F

F

O OH

O OH

F
F

F
F

O OH  

 
 

-33.4 

 
 

1.53 

 
 

28 
 

N

O NH2

NH2

O NH2  

 
 

-35.5 

 
 

0.66 

 
 

29 
 

O OH

O OH

F

F

 

 
 

-38.4 

 
 

0.21 

 
 

30 
 

OH

OH

OH

OH

OH

HO

HO

OH  

 
 

-27.0 

 
 

19.9 



 152

 
 

31 
 

NH2

NH2

NH2

NH2

NH2

H2N

H2N

NH2  

 
 

-27.4 

 
 

16.9 

 
 

32 
 

NH2

NH2

H2N

H2N

O NH2

O NH2

O
H2N

OH2N  

 
 

-31.6 

 
 

3.15 

 
 
 

33 
 

OH

OH

O

NH2

O

NH2

 

 
 
 

-37.6 

 
 
 

0.28 

 
 

34 
 

F

F

F

F

F

F

F

F  

 
 

-23.2 

 
 

91 

 
 

35 
 

N

NH2

H2N

N

O NH2

O NH2

OH2N

OH2N  

 
 

-24.3 

 
 

58.7 

 
 

36 
 

N

NH2

H2N

N

O OCH3

O OCH3

OH3CO

OH3CO  

 
 

-12.9 

 
 

5670 

 
 

37 
 N

N
F

FN

NF

F

 

 
 

-19.3 

 
 

436 

 
 

38 
 

 

OH

OH

OH

 

 
 

-32.9 

 
 

1.87 

 
 

39 
 

NH2

NH2

NH2

 

 
 

-26.5 

 
 

24.3 

 
 

40 
 

H

H

H

H

H

H

H H

H
H

H

H

H

H

H

H

 

 
 

-17.6 

 
 

862 

 
 

41 
 

HO OH

OH

OH
HO

O OH

O OH  

 
 

-42.7 
 

 
 

0.04 
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42 
 

O NH2

O NH2

OH2N

OH2N

O
H2N

O
H2N

O
NH2

O
NH2

 

 
 

-42.6 

 
 

0.04 

 
 

43 
 

 

OH

OH

OH

OH

HO

OH

OH

OH

 

 
 

-38.8 

 
 

0.18 

 
 

44 
 

OH

OH

OH

 

 
 

-32.2 

 
 

2.47 

 
 

45 
 

H H

H H

H H

H H

H
H

H
HH

H

H

H

 

 
 

-23.7 

 
 

75 

 
 

46 
 

O OH

O OH
O

OH

 

 
 

-40.2 

 
 

0.10 

 
 

47 
 

OH

OH

OH

OH

 

 
 

-35.3 

 
 

0.71 

 
 

48 
 
 

OH

HO

O OH

O OH

OHO

OHO

HO

OH

 

 
 

-30.0 

 
 

5.98 

 
 

49 
 

F

F

O

NH2

O

NH2

 

 
 

-34.9 

 
 

0.84 

 

Table 6.4 Computationally designed fullerene derivatives, their binding scores and 

estimated binding affinities.  

 

A deeper understanding of the mechanistic events associated with HIV-1 PR binding 

is important for the design of new inhibitors with enhanced activity. In the docking 

calculations the FlexX docking algorithm was used which considers docking to a rigid 

protein. It is well known that, the conformations of binding pocket residues of a pro-
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tein affect the binding score. The coordinates of active site residues of fullerene bound 

HIV-1 PR may be different than the coordinate of haloperidol derivative bound HIV-1 

PR. Hence, the correct binding mode of the studied inhibitors can best be obtained 

from the MD simulations of HIV-1 PR/fullerene derivative complex. The most potent 

reported compound in Table 6.1 (compound 1) was docked in the binding cavity of 

HIV-1 PR and docking has been employed using the FlexX docking program. The 

coordinate file of the best FlexX molecular docking pose (which is associated with the 

biggest -in absolute value- binding energy) is used in the MD simulations of 

fullerene-bound HIV-1 PR. The average coordinate file of HIV-1 PR from the final 1 

ns trajectory files of MD simulations of complex system has been used in the re-

docking calculations.   

 

 
Figure 6.5 Two different systems were used in MD simulations: (i) A ligand-free rec-

tangular box with HIV-1 PR and solvent (water) molecules, (left on the figure), and 

(ii) the rectangular box includes fullerene analogue at the binding site of the enzyme 

and solvent (water) molecules, (right on the figure). 

 

HIV-1 PR is a C2 symmetric homo dimer with a large substrate binding pocket cov-

ered by two glycine-rich β-hairpins, or flaps.139 Consistent structural differences have 

been found between the free and bound systems of the HIV-1 PR (average structures 

from simulation have been considered; in Figure 6.6, initial forms have been shown 

with turquoise color and average structures from MD simulations have been shown 

with red color). In the fullerene inhibitor bound forms, the flaps are pulled in toward 
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the dual Asp25 catalytic site (the closed form), while the structure for the free HIV-1 

PR adopts a semi-open form with flaps shifted away from the catalytic site, however, 

still substantially closed to the active site. The relative orientation of the β-hairpin 

flaps is reversed in the two forms (Figure 6.6). The results are in agreement with the 

MD simulations of non-fullerene based HIV-1 PR inhibitor.139 

 

Changes of the HIV-1 PR binding cavity for the free and fullerene-bound systems 

were screened by employing the change of distance between Cα atoms of the two cata-

lytic residues, Asp25 and Asp25', as well as, the change of distance between Cα atoms 

of the residues at the flap region (Gly48, Gly49, Ile50, Gly51 and Gly52 amino acid 

residues in chain A and their corresponding residues in chain B). In the ligand-free 

system, only some perturbations around the initial distance have been found for the 

distance between Cα atoms of Asp25 and Asp25'; Gly48 and Gly48'; Gly51 and 

Gly51'; Asp25' and Gly49'; Gly52 and Gly52', however, distances between the Cα at-

oms have been found increased ~4.0 Å between Asp25 and Gly49; ~1.0 Å between 

Gly49 and Gly49’; and ~0.5 Å between Ile50 and Ile50' through the simulations (Fig-

ure 6.7i). In the fullerene-bound system a detectable decrease in distances has been 

observed during the simulation with some perturbations at certain intervals (Figure 

6.7ii). For example, distances between Cα atoms have been decreased ~1.5 Å between 

Asp25 and Asp25'; ~0.5 Å between Gly49 and Gly49'; ~2.0 Å between Asp25' and 

Gly49; ~2.0 Å between Gly48 and Gly48'. Distances between Ile50 and Ile50'; Gly51 

and Gly51'; Gly52 and Gly52' did not change significantly throughout the simulations 

(Figure 6.7ii). A small increase in the distance (~1.0 Å) has been observed between 

the Cα atoms of the amino acids Asp25 and Gly49. Therefore, fullerene inhibitor tends 

to keep HIV-1 PR cavity in a closed form. 

 

The difference of behavior at the flap region for these systems leads to two different 

orientations. It has been observed that flap loop of chain A lies perpendicular to that 

of chain B in both the fullerene bound and ligand free systems. However, in contrast 

to the ligand free system, chains orient toward the catalytic dual Asp25 residues in 

fullerene bound system. 
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(i) 

 
 

(ii) 

 
Figure 6.6 (i) In the fullerene inhibitor-bound forms, the flaps are pulled in toward 

the bottom of active site (the closed form), while the structure for the free HIV-1 PR 

adopts a semi-open conformation with flaps shifted away from the dual Asp25 cata-

lytic site, however still substantially close to the active site. In figure, initial forms are 

shown with turquoise color and average structures of simulation are shown with red 

colors. For clarity, only heavy atoms of the fullerene have been shown in the average 

structure of the simulation; (ii) A side-view of binding cavity of HIV-1 PR (from av-

erage structures of MD simulations of free (left) and inhibitor bound (right) systems) 

illustrates the semi-open and closed forms. 
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The torsional angles (OD2-Cγ-Cβ-Cα) of the catalytic dyad (Fig. 6.8i) were also inves-

tigated for the ligand-free and ligand-bound systems. The trajectory analysis of the 

defined torsional angles of Asp25 and Asp25' for ligand free HIV-1 PR have shown 

that they keep their value mainly at ~140o/~300o and ~100o/~300o, respectively. (Fig-

ure 6.8ii). These values are ~200o for Asp25 and ~280o for Asp25' in fullerene-bound 

HIV-1 PR (Fig. 6.8iii). 

 

Atom positions between the crystal (1AID) and the average structure from MD have 

been compared for both ligand-free and ligand-bound systems in order to understand 

which parts of the receptor are more stable and which are floppy. For this purpose, a 

script with color scale has been used under VMD program (version 1.8.6)40 where 

blue colored places show no change in distance (stable) and red colored places show 

floppy areas (Figure 6.9). As it is clearly shown, flap regions, catalytic part, and ter-

mino-lateral fields of HIV-1 PR at both ligand-free and fullerene-bound systems show 

more flexible conformations throughout the simulations. 

 

After obtaining the average structure of HIV-1 PR from MD simulations, computed 

binding scores of the synthetic derived fullerene analogues (Table 6.1) from docking 

simulations were compared with their corresponding experimental results (Table 6.1). 

The linearity of the plot (r2=0.69, N=19, compound 20 used as outlier) shows a good 

correlation between computed binding scores and experimental binding energies, 

(Figure 6.10).  

 

Tables 6.1 and 6.4 show the list of fullerene derivatives used in molecular docking 

studies, their binding energies and their estimated binding affinities from computed 

binding energies. In order to design novel fullerene derivatives with high inhibition 

effect of HIV-1 PR, 3D QSAR/CoMSIA models were employed. As it is mentioned 

above, binding affinity results from experimental measurements of fullerene-based 

inhibitors at the HIV-1 PR are limited. Since experimental and computed binding en-

ergies showed a good correlation, both experimental binding affinities of structures at 

Tables 6.1 and estimated binding affinities at Table 6.4 have been used to form 3D 

QSAR models. The used structures have a wide variation of biological activity (~106-

fold variances in binding affinity). 43 molecules were used as the training set and the 
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rest 6 derivatives (compound numbers: 16, 27, 34, 39, 43 and 48, Tables 6.1 and 6.4) 

were used as test set at the CoMSIA analysis. The test set includes compounds repre-

senting all categories of activity of the training set, e.g., inactive and active com-

pounds comprising all structural features that are important for the activity. Among 

the analogues at Tables 6.1 and 6.4, compound 23 was selected as a template, because 

it has the highest binding affinity at the HIV-1 PR in the training set. Several varia-

tions in the alignment schemes are considered by superimposing the similar pharma-

cophoric features. Highlighted carbon atoms (32 central carbon atoms of fullerene) for 

the template ligand 23 are selected for the structural superimposition processes (Fig-

ure 6.11).  The alignment of the molecules was based on atom-by-atom superimposi-

tion of selected atoms, which are common in all compounds. Figure 6.12 illustrates 

the superimposition of fullerene analogues used as the training set to construct CoM-

SIA models. The cross validated PLS method was then applied to the training set. Ta-

ble 6.5 summarizes the statistical results. 

 

Five different combinations of steroelectronic fields of 3D QSAR/CoMSIA models 

were obtained from the set of biologically evaluated and computationally designed 

fullerene derivatives (training set=43, test set=6) in order to predict novel compounds 

with improved inhibition effect. The best 3D QSAR/CoMSIA model (CoMSIA-4: 

steric/electrostatic/H-bond donor/H-bond acceptor) yielded a cross validated r2 value 

of 0.739 and a non-cross validated r2 value of 0.993. Using the neutral and ionized 

states of the fullerene analogues in data set did not affect significantly the constructed 

QSAR models. Thus, neutral states of fullerene derivatives were used in the further 

analyses. The selected 3D-QSAR/CoMSIA model (CoMSIA-4) for the estimated 

binding affinities of fullerene analogues at the HIV-1 PR has a good cross validated 

correlation. Figure 6.13 shows the relationship between the estimated pEC50 values 

from FlexX binding energies and CoMSIA-predicted results of the non-cross-

validated analyses for the HIV-1 PR. Linearity of the plot shows very good correla-

tion for the CoMSIA model. Table 6.6 summarizes the estimated binding affinities 

from molecular docking results and CoMSIA-predicted pEC50 results for the fullerene 

derivatives at the HIV-1 PR. A good correlation was observed in CoMSIA of the 

fullerene derivatives as it is demonstrated by the very high values of r2. Additionally, 

the credibility of the models is evidenced by the high values of rcv
2. However, the real
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(i) 
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(ii) 

 
Figure 6.7 (i) Change of the HIV-1 PR binding cavity for the ligand-free and; (ii) fullerene-bound systems were evaluated in terms of distance be-

tween the catalytic residues, Asp25 and Asp25' as well as distance between the residues of the flap region (Gly48, Gly49, Ile50, Gly51 and Gly52) 

were screened throughout the MD simulations. 
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(i) 

 
 

(ii) 

  
(iii) 

   
Figure 6.8 (i) The torsional angle of (OD2-Cγ-Cβ-Cα) of the catalytic dyad for the (ii) 

ligand-free and the (iii) ligand-bound systems throughout the MD simulation. 



 162

 

 

 
Figure 6.9 Atom positions between the crystal (1AID) and the average structure from 

MD simulations have been compared for both systems ligand-free and inhibitor-

bound systems in order to understand which parts of the enzyme are more stable and 

which are floppy. Blue colored fields show no change in displacement, red colored 

fields show high flexible regions. 

 

 

 
Figure 6.10 Plot of experimental and computed binding energies for the reported 

fullerene analogues. 

 

significance of the proposed model is verified by the good predictions of the activity 

of compounds belonging to the test set (Table 6.7). Their pEC50 values of these com-

pounds ranges between 4.04 and 6.74 and their biological activities were predicted 
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from the PLS equations derived from CoMSIA-4 model. All compounds showed pre-

dicted values within one logarithmic unit difference from the estimated pEC50 values.   
 

 
Figure 6.11 Selected atoms of the template compound 23 for structural superimposi-

tions of the compounds in training set. 

 

 
Figure 6.12 Structural alignments of the compounds in the training set for construct-

ing 3D-QSAR/CoMSIA model at HIV-1 PR. 

 

The contour maps were used to create a matrix in the place of the active site and 

variations of the used ligands can be generated as long as they fit better into the bind-

ing site. Figure 6.14i shows the steric-electrostatic contour maps of the CoMSIA 

models for the compounds 23 that shows the highest and 36 that shows the lowest in-

hibition effects within the data set for the HIV-1 PR enzyme. In addition, H-bond do-

nor and H-bond acceptor contour maps are shown in Figure 6.14ii. The individual 

contributions from the H-bond donor and H-bond acceptor favored and disfavored 

levels are fixed at 80% and 20%, respectively. The contours for H-bond donor fa-

vored fields have been shown in cyan color while its disfavored fields have been 
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CoMSIA1 

(STR/ES) 

CoMSIA2 

(STR/ES/ACC) 

CoMSIA3 

(STR/ES/DON) 

CoMSIA4 

(STR/ES/ACC/DON) 

CoMSIA5 
(STR/ES/ACC/ 

DON/HYD) 

rcv
2 0.616 0.733 0.630 0.739 0.670 

r2 0.970 0.991 0.985 0.993 0.993 

Components  6 6 6 6 6 

F 191.713 632.364 392.176 824.144 861.108 

Std. Err. 0.266 0.148 0.188 0.130 0.127 

Rel. Contr.      

Steric 0.707 0.512 0.551 0.426 0.243 

Electrostatic 0.293 0.143 0.197 0.127 0.086 

Hydrophobic - - 0.252 - 0.369 

Η-bond donor - - - 0.167 0.109 

Η-bond acceptor - 0.345 - 0.280 0.193 

 

Table 6.5 Summary of statistical results of the derived CoMSIA models for the train-

ing set. (Abbreviations: STR, Steric; ES, Electrostatic; ACC, H-bond acceptor; DON, H-bond donor; 

HYD, Hydrophobic). 
 

 
Figure 6.13 Plot of measured and CoMSIA-predicted binding affinities (given as 

pEC50) of fullerene analogues in the training set at the HIV-1 PR. 

 

shown in purple color. H-bond acceptor favored fields have been shown in orange 

color while its disfavored fields have been shown in white color. Derived 3D contour 

maps of CoMSIA models are investigated in the binding cavity of the HIV-1 PR. 

Contour plots confirmed the stability of the constructed models. For example, the es-

timated EC50 values of 23 and 36 are in nM and in mM ranges, respectively. This can  
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be explained by different topographical requirements for 23 and 36, in contour maps 

(Figure 6.14). There are large yellow colored contours close to the flap regions of 

HIV-1 PR. Compound 36 shows the existence of sterically unfavorable fields (the ar-

eas in which bulky groups are predicted to decrease binding). A part of cyclohexadi-

ene and dihydropyridine groups of 36 fit these unfavorable regions; (right on the Fig-

ure 6.14 (top)). However, sterically unfavorable yellow colored contour maps do not 

match with the subgroups of 23 (left on the Figure 6.14 (top)).  

 

 

Compound 

No. 

Measured 

pEC50 

3D QSAR 

CoMSIA 

Predicted 

pEC50 Difference 

1 7.0 6.90 0.10 

2 5.3 5.33 -0.03 

3 6.82 6.69 0.13 

4 5.14 5.28 -0.14 

5 6.31 6.32 -0.01 

6 2.89 2.80 0.09 

7 4.12 4.24 -0.12 

8 3.64 3.65 -0.01 

9 3.85 3.70 0.15 

10 5.60 5.55 0.05 

11 6.05 5.99 0.06 

12 5.14 5.28 -0.14 

13 5.66 5.62 0.04 

14 5.20 5.28 -0.08 

15 5.54 5.58 -0.04 

17 3.86 3.93 -0.07 

18 4.75 4.81 -0.06 

19 4.14 4.05 0.09 

21 6.60 6.90 -0.30 

22 7.29 7.34 -0.05 

23 8.70 8.70 0.00 

24 6.15 6.07 0.08 

25 3.33 3.49 -0.16 

26 6.20 6.24 -0.04 

28 6.18 6.15 0.03 
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29 6.68 6.31 0.37 

30 4.70 4.62 0.12 

31 4.77 4.92 -0.15 

32 5.50 5.47 0.03 

33 6.55 6.59 -0.04 

35 4.23 4.19 0.04 

36 2.25 2.18 0.07 

37 3.36 3.36 0.00 

38 5.73 5.83 -0.10 

40 3.06 3.36 -0.30 

41 7.40 7.38 0.02 

42 7.40 7.43 -0.03 

44 5.61 5.59 0.02 

45 4.13 3.96 0.17 

46 7.00 7.12 -0.12 

47 6.15 6.07 0.08 

49 6.08 6.07 0.01 

 

Table 6.6 Measured and 3D QSAR/CoMSIA predicted binding affinities of com-

pounds in training set. 

 
 

 

 

Compound 

Measured 

pEC50 

3D QSAR 

CoMSIA 

Predicted 

pEC50 Difference 

16 4.66 5.39 -0.73 

27 5.82 5.31 0.51 

34 4.04 3.67 0.37 

39 4.61 5.60 -0.99 

43 6.74 7.68 -0.94 

48 5.22 5.47 -0.25 

 

Table 6.7 Measured and 3D QSAR/CoMSIA predicted binding affinities of com-

pounds in test set. 

 

Furthermore, the subgroups of 23 fit perfectly with the sterically favorable areas 

which are shown with green colored contours (left on the Figure 6.14 (top)). Electro-

static contour maps (shown with blue and red colored contour maps) are mainly ob-
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served in the catalytic region of binding cavity. Red colored contours which show 

electronegative favored fields are in very close neighborhood with the –COOH groups 

of 23. H-bond donor and H-bond acceptor contour maps have been shown in Figure 

6.14 (bottom) in the binding cavity of HIV-1 PR. H-bond acceptor and H-bond donor 

favored regions fit very well with the –COOH groups of 23 and disfavored regions are 

far from the subgroups of the 23 (left on the Figure 6.14 (bottom)). However, sub-

groups of 36 fit mainly with the purple colored contours which are disfavored for the 

H-bond donor interactions (right on the Figure 6.14 (bottom)). 

 

Leapfrog de novo drug design software has been used to propose predicted novel 

fullerene HIV-1 PR inhibitors. Molecules 1, 3 (biologically measured potent mole-

cules, Table 6.1 ); 23 and 42 (computationally designed monoadduct and bisadduct 

fullerene derivatives that have best predicted binding energy with HIV-1 PR,  Table 

6.4) were used as starting structures with allowing the modifications only for the sub-

groups of fullerene derivatives in Leapfrog simulations. In addition to the de novo 

drug design, 3D QSAR/CoMSIA contour maps were also used to design new 

monoadducts and bisadducts [60]fullerene.  More than 100 compounds have been de-

signed to vary in polarity and contain various groups exerting electrostatic and steric 

interactions at different topographical requirements and their binding energies with 

HIV-1 PR have been computed using molecular docking studies (representative struc-

tures and their computed binding energies were presented in Table 6.8). These are ex-

pected to differ in their mode of action as it is indeed observed with the active site of 

the receptor. The binding interactions of 1 (high potent biologically evaluated 

fullerene derivative, Table 6.1) and 23 (computationally designed fullerene derivative 

with predicted very high potency, Table 6.4) at the active site of the HIV-1 PR have 

been compared in Figure 6.15. Compound 1 forms two hydrogen bonds between hy-

drogen atom of –OH group of ligand and oxygen atoms of the –COO group of Asp25 

catalytic amino acid residue at chain B, together with oxygen atom of –OH group of 

ligand and hydrogen atom of backbone –NH group of Ala28 at chain B (left on the 

Figure 6.15). On the other hand, 23 forms a hydrogen bond network between –COOH 

groups of ligand and catalytic amino acid residues Asp25, Gly27, Asp29, Asp30 at 

chain A together with Asp25 and Gly27 at chain B (right on the Figure 6.15). The van 

der Waals interactions of these ligands with non-polar HIV-1 PR surface have been 

observed mainly at the flap part of the cavity.  
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It must be noted that this is a computational study, thus the easy feasibility of synthe-

sizing any of the designed derivatives has not been thoroughly examined.  

 

 

 
 

Figure 6.14 (top) CoMSIA steric/electrostatic contour maps of template compound 

23 (template compound; has best binding affinity in training set, left on the figure) 

and compound 36 (has worst binding affinity in training set, right on the figure). (bot-

tom) CoMSIA H-bond donor/H-bond acceptor contour maps of compounds 23 and 36 

(on the left and right of the figure, correspondingly). The individual contributions 

from the H-bond donor and H-bond acceptor favored and disfavored levels are fixed 

at 80% and 20%, respectively. The contours for H-bond donor favored fields have 

been shown in cyan color while its disfavored fields have been shown in purple color. 

H-bond acceptor favored fields have been shown in orange color while its disfavored 

fields have been shown in white color. 
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No. 
 

Compound 
Calculated 

Binding 
Energy 

(kJ/mol) 
 
 

D1 
O

O

OH
OH

 

 
 

-38.38 

 
 

D2 
OH

O

O

OH

HO

HO  

 
 

-35.56 

 
 

D3 N N

O

O O
OH

O OH

OH

OH

O

OH

O

HO

 

 
 

-36.57 

 
 

D4 

O

O
NH2

NH2
O

NH2

O

NH2

 

 
 

-41.59 

 
 

D5 

O

O
NH2

NH2

NO2

NO2

 

 
 

-43.74 

 
 

D6 

NO2

NH2

 

 
 

-41.09 

 
 

D7 

O

O
NO2

NO2

NO2

NO2

 

 
 

-41.93 

 
 

D8 

NO2

NO2

NO2

NO2

 

 
 

-43.03 

 
 

D9 

NO2

NO2

NO2

NO2

NO2

NO2

 

 
 

-44.88 
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D10 

NO2

NO2

NO2

NO2

NO2

O2N

O2N
NO2  

 
 

-43.09 

 
 
 

D11 N

O
NO2

O
NO2

O

NO2

 

 
 
 

-46.25 

 
 
 

D12 

NH2

NO2

NO2

 

 
 
 

-53.20 

 

Table 6.8 Computationally designed fullerene derivatives using 3D QSAR contour 

maps and de novo drug design and their binding energies (the top binding score from 

FlexX molecular docking at HIV-1 PR). 
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Figure 6.15 The binding interactions of 1 and 23 at the active site of the HIV-1.  
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Chapter 7. Summary and Conclusions 
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In this study, bioactive conformations of CBs and [60]fullerene derivatives have been 

investigated. The major structural characteristics of these molecules are their amphi-

philic properties as well as the existence of flexible and rigid pharmacophoric seg-

ments. Their flexible segment constitutes a challenging field for conformational 

analysis exploring of putative bioactive conformations. In the first part, 3D QSAR, 

molecular docking, MC calculations, MD simulations and de novo drug design of CBs 

have been analyzed in order to propose novel and selective high affinity CB ana-

logues for CB1 and CB2 receptors. Since conformational analysis of high active com-

pound AMG3 was performed in different environments and derived conformations 

were used as template in the generation of 3D QSAR models, the connectivity be-

tween the used environments, thus complexity level of calculations, and obtained sta-

tistical results were discussed. In the second part, methodologies applied to CBs were 

performed to the monoadducts and bisadducts of [60]fullerene analogues in order to 

design higher inhibitory effect [60]fullerenes against HIV-1 PR enzyme as well as to 

analyze the connection between biological activity of fullerene derivatives and con-

formational changes of catalytic and flap regions of the enzyme. 

  

7.1 CB Derivatives 

 

Cannabis sativa (marijuana) has long been used for its psychotropic and pharmacol-

ogical effects.  In the 1960’s, the correct stereochemistry of both Δ9-THC and CBD 

were elucidated, and Δ9-THC was identified as the principle psychoactive component 

of cannabis sativa. A wide range of pharmacological effects was described for Δ9-

THC (e.g., analgesic, neuroprotective, anti-inflammatory, antiemitic, bronchodilatory, 

anticonvulsant). The structure elucidation of Δ9-THC allowed also the design of syn-

thetic analogues (e.g., Δ8-THC) starting from 1970’s. Δ8-THC has a very similar 

pharmacological profile as Δ9-THC, however it is chemically more stable. Given psy-

chotropic effects of CBs, many biological investigations employed brain and brain 

plasma membranes as study objects. Consensus data describing several key character-

istics of CB action emerged that CB analogues elicit biological effects in a stereo and 

structurally selective manner. Their binding to brain plasma membrane is saturable, 

stereospecific, concordant with in vitro and in vivo bioresponses (e.g., analgesia) and 

nonrandom in select brain regions. Thus, these characteristics strongly implied that 
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CB pharmacology is receptor-mediated and search led to discovery of cloning of two 

GPCRs for CBs namely CB1 and CB2 receptors with a high sequence homology. 

However, hitherto no direct observation of a CB ligand bound to a CB receptor using 

X-ray crystallography has been reported. Thus, active sites of these receptors have 

been postulated from various in silico methods such as molecular docking using ho-

mology model receptor systems and 3D QSAR studies. Alignment process is a critical 

part in 3D QSAR studies and affects statistical results. In addition, if derived 3D 

QSAR PLS analysis will be used in the steps of de novo drug design, it may affect 

also the proposed novel molecules. Thus, in the present study, the conformational 

analysis of template compound AMG3 which used in 3D QSAR studies have been 

analyzed at with and without receptor environments. 

 

MD simulations of AMG3 in lipid bilayer trajectory analysis showed that the dihedral 

angle defined between aromatic and dithiolane ring of the alkyl side chain of AMG3 

shows more resistance to be transformed to another torsional angle because the het-

erocyclic part interacts with the ring A of the rigid segment and leads to restriction of 

the rotation. The τ3-τ6 dihedral angles are transformed to optimal dihedral angle value 

of all trans conformation. Thus, the wrapped conformations are dynamically less 

probable in lipid bilayer than the linear conformations. The second dihedral angle τ2 

at the alkyl chain shows very flexible character and it is the critical dihedral angle in 

lipid bilayer for producing different low energy conformations. Both of MM and QM 

geometry optimization calculations showed that, favored conformations of AMG3 

derived from MD in lipid bilayer form a perpendicular plane angle between tricyclic 

ring and flexible segments. The obtained results suggest that synthetic analogues in-

corporating restraints (multiple bonds or rings) at different positions of alkyl chain 

may be of importance to be synthesized. Especially, such synthetic analogues are im-

portant if they restrict the favorable angles and avoid the perturbation effects around 

the favorable dihedral angle.  

 

MD simulations have been also performed to the systems including AMG3 at the 

binding site of the CB1 and CB2 receptors merged with membrane bilayer in order to 

analyze the effect of amino acid residues at the binding cavities of CB receptors to the 

conformational properties of ligand. Although the CB1 and CB2 receptors exhibit a 

high sequence homology, there are certain behavior differences of AMG3 conformers 
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at the binding sites of receptors. One of the main differences between the MD simula-

tions of ligand at the CB1 and CB2 receptors is the different behavior of the first di-

hedral angle τ1 of the alkyl side chain of AMG3. In the CB1 receptor, there is a high 

propensity of τ1 to establish a gauche+ conformation, however in the CB2 receptor; it 

prefers to have a trans conformation. It is well-known that, different conformational 

rearrangements of third and sixth TMs of GPCR determine the activation of CBs. In 

CB2 receptor, alkyl side chain of AMG3 conformers align parallelly in the ligand rec-

ognition part of TM3, while in the CB1 receptor they align perpendicularly with the 

ligand recognition part of TM3. This observation may help to understand the selectiv-

ity of CB ligands for the CB1 and CB2 receptors. 

 

Three 3D QSAR models were generated using favored derived template conformers 

from (i) free ligand, (ii) molecular docking and (iii) MD simulations of ligand at bind-

ing site of the receptor merged with lipid bilayer . Although there are some fine dif-

ferences between the derived models, three general conclusions could be drawn from 

the characteristic contour maps: (i) The relative contributions of steric fields are larger 

than electrostatic fields; (ii) the orientation of the C3-alkyl side chain plays an impor-

tant role in determining the biological activity; (iii) because of the structural differ-

ences of Δ8-THC and CBD derivatives at the cyclic ring segment, these groups have 

different pharmacophoric requirements for their receptors in these regions. While 

sterically unfavorable areas are located on the methyl or propenyl groups of CBD ana-

logues, these unfavorable regions are located at the vicinity of the tricyclic segment of 

Δ8-THC analogues. Therefore, Δ8-THC analogues have higher binding affinities than 

their corresponding CBD analogues. Comparison of generated QSAR models were 

shown that when the complexity level of calculations increased (mimicking more ac-

curately the real environment), it positively affects the obtained statistical results. The 

optimal QSAR PLS analysis which is obtained from the third generation of 3D QSAR 

model was used in the de novo drug design studies and these simulations provided 

novel compounds with enhanced predicted binding affinities.  

 

If the X-ray structure of a ligand-bound receptor is not available, homology models of 

the protein can be used to obtain the ligand binding cavities. The steroelectronic prop-

erties of these cavities are directly related to the performed molecular model coordi-

nates. In the present study, a homology modeling study based on the β2-adrenergic 
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receptor for both CB1 and CB2 receptors was also performed and results confirmed 

the obtained binding pockets found in receptor models based on rhodopsin. 

 

7.2 Fullerene Derivatives 

 

Since the discovery of fullerene in 1985, derivative of fullerenes have been exten-

sively investigated for biomedical applications (e.g., antibacterial, neuroprotective, 

antiviral and apoptosis). Antiviral activity of fullerenes has been supported by mo-

lecular modeling and in vitro studies, which provided that the fullerene can be ac-

commodated inside the catalytic cavity present in the HIV-1 PR.  

 

The binding affinity values of “first generation” fullerene inhibitors against HIV-1 PR 

were not significant (EC50 ~10-6 M). Thus, further structural investigation is required 

in order to propose new HIV-1 PR/fullerene complexes with better binding affinity. 

Novel monoadducts and bisadducts of [60]fullerene have been designed with a com-

bination of 3D QSAR models and molecular docking studies. In order to use proper 

input coordinates of HIV-1 PR/fullerene derivative complex in the docking, MD 

simulations were employed for the ligand-free and the inhibitor-bound HIV-1 PR sys-

tems. MD simulations contributed substantially in the understanding of the structural 

changes at the catalytic and flap regions for these two different systems. MD simula-

tions results showed structural differences between the unbound and bound systems of 

the binding cavity of HIV-1 PR. In the fullerene inhibitor-bound forms, the flaps are 

pulled in toward the bottom of active site (the closed form), while, the structure for 

the free HIV-1 PR adopts a semi-open conformation with flaps shifted away from the 

dual Asp25 catalytic site. MD simulations have also shown that flap, catalytic and 

termino-lateral regions of HIV-1 PR show more flexibility during the simulations.  

 

Obtained 3D QSAR models gave high relative contributions of steric fields which 

confirm the importance of the van der Waals interactions with non-polar HIV-1 PR 

surface in the activity of fullerenes. The contour maps from constructed 3D 

QSAR/CoMSIA models together with de novo drug design studies assisted to propose 

novel fullerene derivatives with better predicted potency which can aid synthetic 

chemists to initiate the synthesis of novel fullerene derivatives as HIV-1 PR inhibi-

tors. 
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Zusammenfassung 
 

Der Einfluß der Konformation eines bioaktiven Moleküls auf sein pharmakologischen 

Profil is seit langem bekannt. Nur die biologisch aktive Konformation eines 

Wirkstoffmoleküls ist in der Lage, eine Bindung mit der aktiven Stelle eines Rezep-

tors einzugehen. In dieser Arbeit wird die Konformationsanalyse bioaktiver Ver-

bindungen in verschiedenen Umgebungen diskutiert. Zwei verschiedene Molekül-

kategorien wurden untersucht: Cannabinoide (CB) sowie [60]Fullerenderivate. Die 

bedeutsamem strukturellen Merkmale dieser Moleküle sind zum einen, daß sie am-

phiphil sind und zum zweiten, daß sie sowohl flexible als auch starre pharmakopho-

rische Segmente besitzen. Insbesondere die flexiblen Teile stellen eine Herausfor-

derung für die Konformationsanalyse möglicher bioaktiver Konformationen dar. 

 

Im Falle der CB-Verbindungen wurde eine Serie neuer Derivate von Δ8-

tetrahydrocannabinol (Δ8-THC) und Cannabidiol (CBD) durch 3-dimensionale Quan-

titative Struktur-Aktivitätsbeziehungsstudien (3D QSAR) untersucht, einmal mittels 

vergleichender Molekularfeld-Analyse (CoMFA), als auch mit Methoden, die auf 

vergeichenden molekularen Ähnlichkeitsindizes (CoMSIA) basieren. Die hochaktive 

Verbindung AMG3, (C-1'-dithiolan-Δ8-THC) wurde als Template-Molekül aus dem 

benutzten Datensatz ausgewählt. Die Bestimmung der potentiel bioaktiven Konforma-

tion von AMG3 in Lösung erfolgte durch verschiedene molekulare Modellierung-

stechniken: Monte Carlo (MC), Molküldynamik (MD) sowie Gitterscananalysen. Das 

erhaltene Konformer wurde dann als Template weiter benutzt, und CB1 und CB2 

Pharmakophor-Modelle wurden entwickelt. Verfügbare Homologiemodelle von CB1 

und CB2, die auf Rhodopsin basieren, ermöglichten die Konformationsanalyse von 

AMG3 an der Bindungsstelle der Rezeptoren. Die erhaltenenen energetisch begün-

stigten Konformere von AMG3 an der Bindungsstelle wurden mit den entsprechenden 

Konformationen in Lösung verglichen. Die stereoelektronischen Eigenschaften der 

Bindungskavitäten eines Rezeptormodells stehen in direktem Zusammenhang mit den 

benutzten molekularen Koordinaten des Modells. In der vorliegenden Arbeit wurde 

auch eine auf dem β2-Adrenorezeptor basierende Homologie-Modellstudie für die 

CB1 und CB2-Rezeptoren durchgeführt, und mit den Ergebnissen des mit dem auf 

dem Rhodopsin-Rezeptor basierten Homologiemodells verglichen. Ähnliche 
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Bindungsstellen in den CB1 und CB2-Rezeptoren wurden sowohl von den auf 

Rhodopsin basierten Modellen als auch von auf β2-Adrenorezeptor-basierten Model-

len erzeugt. Die 3D QSAR Modelle wurden regeneriert mithilfe von potentiellen Kon-

formeren von AMG3 an den Bindungsstellen der CB1- und CB2-Rezeptoren. Die von 

den 3D QSAR/CoMFA bzw: CoMSIA Pharmakophormodellen berechneten relativen 

Beiträge der sterischen und elektrostatischen Felder zeigten, daß die Bioaktivität der 

Verbindungen hauptsächlich durch sterische Effekte bestimmt wird, obwohl elektro-

statische Effekte auch eine Rolle spielen. Ein Vergleich entsprechender QSAR Mod-

elle zeigte, daß die erhaltenen statistischen Resultate positiv beeinflußt wurden, wenn 

die Komplexität der Rechnungen im Sinne einer realistischeren Modellierung des 

umgebenden Mediums erhöht wurde. Die optimale QSAR Analyse mit partieller mi-

nimierter quadratischer Abweichung (PLS) wurde in Arbeiten zur de novo Wirkstoff-

Entwicklung benutzt, und haben zur Entwicklung neuer Verbindungen mit 

verbesserten vorhergesagten Bindungsaktivitäten geführt. 

Im Fall der Fullerenderivate wurde eine Serie von experimentell bekannten als auch 

von theoretisch  entwickelten Mono- und Bisaddukten von [60]-Fullerenderivaten 

ausgewählt und in Bezug auf die Bindungswechselwirkungen zwischen 

Fullerenbasierten Inhibitoren und Immunodefizienzvirus Typ I Endopeptidase (HIV-1 

PR) mithilfe von Dockingsstudien analysiert. MD-Simulationen des freien als auch 

des Inhibitor-gebundenen HIV-1 PR Systems ergänzten die genannten Studien und 

lieferten geeignete Startstrukturen für die Dockingssimulationen von HIV-1 PR. Die 

erhaltenen Ergebnisse zeigen eine unterschiedliche Orienterung der sogennannten β-

Haarnadel Laschen zwischen den beiden Systemem. In der Form mit angebundenem 

Fullereninhibitor werden die Laschen in Richtung des Bodens des aktiven Bereichs 

hin gezogen (sogenannte geschlossene Form), während die freie Form von HIV-1 PR 

eine halboffene Konformation bevorzugt. Die Strukturanalyse der katalytischen 

Segemente als auch der flexiblen Laschenregionen im Verlauf der Simulation von 

HIV-1 PR unterstützt das Verständnis sowohl der strukturellen Präferenzen dieser 

Regionen, als auch der von  den Fullerenverbindungen eingenommenen 

Orientierungen innerhalb der aktiven Kavität des Enzyms. Die Fullerenverbindung 

aus der Datenbank, die sich als die aktivste erwies, wurde anschließend als Template 

ausgewählt zur Erstellung von 3D QSAR-Modellen. Die damit erhaltenen 

Konturoberflächen sowie die Ergebnisse der PLS-Analyse wurden für de novo 

Wirkstoffentwickungsstudien benutzt, mit dem Ziel, neue Fullerenderivate mit 



 193

höherem Bindungsaktivitäten vorzuschlagen. Solche Moleküle können für den 

medizinischen Chemiker zur Synthese neuer HIV-1 PR Inhibitoren mit höhere 

Bioaktivität von Interesse sein, und damit auf der Suche nach dringend benötigten 

neuen Anti-HIV Wirkstoffen von Bedeutung sein. 
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Appendix 

List of Important Abbreviations 

CB: Cannabinoid 

GPCR: G protein coupled receptors 

Δ8-THC: Δ8-tetrahydrocannabinol  

CBD: Cannabidiol  

3D QSAR: Three-dimensional quantitative structure-activity relationships 

CoMFA: Comparative molecular field analysis 

CoMSIA: Comparative molecular similarity analysis 

TM: Transmembrane 

MD: Molecular dynamics 

MC: Monte Carlo 

PLS: Partial least squares 

PCR: Principal components regression 

2D-NOESY: Nuclear Overhauser effect spectroscopy  

2D-ROESY: Rotating-frame Overhauser effect spectroscopy 

2D-COSY: Correlated spectroscopy 

r2: the squared correlation coefficient  

2
cvr : Cross-validated r2  

TSS: Total sum of squares  

ESS: Explained sum of squares 

RSS: Residual sum of squares 

MLR: Multiple linear regression  
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 (i) The complete lists of residues consisting the binding site of the CB1 and CB2 re-

ceptors: 

 

CB1: Ile119, Leu122, Ser123, Leu126, Ala162, Asp163, Leu165, Gly166, Ser167, 

Ile167, Phe170, Val171, Tyr172, Ser173, Phe174, Ile175, Asp176, Phe177, His178, 

Val179, Ser185, Arg186, Asn187, Val188, Phe189, Leu190, Phe191, Lys192, 

Leu193, Gly194, Gly195, Val196, Thr197, Ala198, Ser199, Phe200, Thr201, Ala202, 

Ser203, Val204, Gly205, Ser206, Ile243, Ala244, Val246, Ile247, Ala248, Val249, 

Leu250, Pro251, Leu252, Tyr275, Thr283, Leu287, Val351, Leu352, Ile353, Ile354, 

Cys355, Trp356, Gly357, Pro358, Leu359, Leu360, Ala361, Ile362, Met363, Val364, 

Val367, Val378, Phe379, Ala380, Phe381, Cys382, Ser383, Met384, Leu385, 

Cys386, Leu387, Leu388, Asn389, Ser390, Thr391 and Val392. 

 

CB2: Phe106, Leu107, Leu108, Ile110, Gly111, Ser112, Val113, Thr114, Met115, 

Thr116, Phe117, Thr118, Ala119, Gly122, Leu160, Ser161, Ala162, Leu163, Val164, 

Ser165, Tyr166, Leu167, Pro168, Leu169, Asp189, Tyr190, Leu191, Leu192, Ser193, 

Trp194, Leu196, Phe197, Ile198, Leu201, Leu254, Cys257, Trp258, Phe259, Pro260, 

Val261, Leu262, Ala263, Leu264, Met265, Ala266, His267, Ser268, Leu269. 

 

(ii) Complete lists of residues used at the binding site of HIV-1 PR receptor: 

 

Chain A: Gln7, Arg8, Pro9, Leu23, Leu24, Asp25, Thr26, Gly27, Ala28, Asp29, 

Asp30, Thr31, Val32, Leu33, Met46, Ile47, Gly48, Gly49, Ile50, Gly51, Phe53, Ile54, 

Lys55, Val56, Pro79, Thr80, Pro81, Val82, Asn83, Ile84, Ile85. 

 

Chain B: Arg8, Ala22, Asp25, Thr26, Gly27, Ala28, Asp29, Asp30, Val32, Met46, 

Ile47, Gly48, Gly49, Ile50, Gly51, Gly52, Phe53, Ile54, Thr80, Pro81, Val82, Ile84, 

Ile85. 
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Figure A1. (top) Potential energy versus time plots throughout the MD simulations 

(include equilibration and simulation parts) for the membrane bound CB1 receptor 

systems (corresponding plot for the equilibration has been shown on the right for clar-

ity). (bottom) Potential energy versus time plot throughout the MD simulations (in-

clude equilibration and simulation parts) for membrane bound CB2 receptor systems 

(corresponding plot for the equilibration has been shown on the right for clarity). 

 

 
 
Figure A2. Receptor backbone RMSD versus time plots throughout the MD simula-

tions for membrane bound CB1 (left) and CB2 receptor (right) systems.  
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Figure A3. Potential energy versus time (left) and receptor backbone RMSD versus 

time (right) plots throughout the MD simulations of fullerene/HIV-1 PR systems.  
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Figure A4. Torsional angle screening throughout in lipid bilayer simulations for wrapped conformers D and E. 
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