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1 Introduction

Understanding quantum many-body systems is an enduring challenge in modern physics. In
the past decades, methods from computer science have played an increasingly important role
in pursuing this challenge. The development of supercomputers and elaborate numerical tech-
niques allows for more and more powerful simulations of quantum systems. At the same time,
when it comes to harness certain quantum systems for computational tasks, their power as well
as limitations can be grasped in the language of complexity theory.

The main task in computational complexity theory is to classify computational problems ac-
cording to their difficulty and such classifications are made for different models of computation
(see Appendix A.1 for details). For instance, the complexity classes P and NP contain roughly
those decision problems (problems with yes-or-no answers) that can be solved or, respectively,
whose solutions can be verified, by classical computers efficiently. Whether or not these two
classes coincide is still an open problem; actually one of the seven Millennium Prize Problems
with a prize of 106 US dollars. It is, however, strongly believed that there are problems in NP

that are not in P, meaning that NP contains problems that are intractable on classical comput-
ers. It is the hope that one can use quantum resources for efficiently solving some of these and
also other classically intractable problems.

More concretely, one would like to use quantum many-body systems to solve problems that
are practically impossible to solve on classical computers. This hope is inspired by the study
of quantum algorithms [NC00], which can be performed by sequential unitary operations, each
only acting on two two-dimensional quantum systems called qubits. It has turned out that some
problems believed to be intractable on classical computers, can be solved by such quantum al-
gorithms efficiently. One of the most famous examples of this type is integer factoring [Sho97].
The ultimate goal certainly is, to actually build a universal quantum computer, i.e., a machine
on which one can efficiently run any quantum algorithm. However, the much more modest
goal of implementing a quantum simulation, i.e., of solving only some specific but still classi-
cally intractable problem with the help of quantum systems, would already constitute a great
breakthrough [CZ12, Pre12].

Having potentially more computational power at hand than that of classical computers, one
would like to assess what can actually be done with it. More explicitly, one would also like to
classify problems in quantum systems according to various notions of complexity. This has de-
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1 Introduction

veloped into the research field of Hamiltonian complexity theory. One guiding question in this
filed is “How hard is it to simulate a physical system?” [Osb12]. The situation is particularly
well-investigated for one-dimensional lattice systems. Already with time evolutions gener-
ated by relatively simple local Hamiltonians [Nag10] or by using ground states of spin chains
[AGIK09] one can perform universal quantum computations, meaning that such systems are
expected to be classically intractable. As it turns out, ground states can be be very complex
objects, as, e.g., only approximating the ground state energy of translation invariant spin chains
[GI09] is QMA-hard, i.e., cannot be done efficiently even on a quantum computer. Once a sys-
tem has an energy gap between the ground states and first excited states, the situation changes
drastically: Any unique ground state features exponential clustering of correlations [HK06,
NS06] and can be approximated classically efficiently [LVV13]. Most classical approximation
algorithms are build on so-called tensor networks (cp. review part in Publication [KGE14a]
on pages 69ff, and Publication [BKE10] in Appendix B for a discussion of famous exam-
ples), which essentially are computationally friendly parameterizations of the relevant degrees
of freedom. This is worth explaining in more detail: The key for the success of tensor network
methods is, to exploit the locality structure of those systems, i.e, to use that interactions involve
only a constant number (usually two) of constituents and/or that interaction strengths decay
rapidly with the distance. In this case, the speed of propagation of correlations is bounded
by the so-called Lieb-Robinson speed. Rigorous formulations of such a statement are called
Lieb-Robinson bounds [LR72] (see Publication [KGE14b] on pages 13ff for an introduction).
While having a number of immediate physical consequences, Lieb-Robinson bounds also pro-
vide very powerful proof tools. As a consequence [Osb06], time evolution of local observables
can be simulated efficiently in the system size [DKSV04, Hae+11, Vid04]. An important step-
ping stone for such simulations are Trotter-Suzuki approximations [Suz76, Tro59] that allow
for a decomposition of the full evolution into small and tractable building blocks by approxi-
mately factoring certain matrix exponentials into local operators. Besides the consequences for
the dynamics, also the above mentioned results on ground states follow: The Lieb-Robinson
speed together with the Hamiltonian gap induces a bounded correlation length [NS06], which,
in turn, allows for an efficient approximation by tensor network states for one-dimensional
systems [BH13].

On a rigorous level, a lot less is known in cases where quantum states are mixed. Two im-
portant frameworks are the ones of Makovian time evolution of open quantum systems and
Hamiltonian systems in thermal equilibrium, i.e., systems at non-zero temperature. Markovian
and purely dissipative time evolution can be used to perform universal quantum computation
[VWIC09], which is called dissipative quantum computation. However, for many standard
tools used in the investigation of closed quantum systems, it is unclear if and how they carry
over to the dissipative setting. For thermal states, the focus has been on so-called cluster proper-
ties in, and the uniqueness of, the thermodynamic limit, for classical systems [Rue64, Rue69],
quantum gases [Gin65], i.e., translation invariant Hamiltonians in the continuum, and cubic
lattices [BR97, Gre69]. For such systems the existence and uniqueness of thermal states in the
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thermodynamic limit at high temperatures is proven and analyticity of correlations can be de-
rived. Moreover, in the regime of high temperatures, n-point correlation functions are shown
to cluster for spin gases [Gin65, Rue64] and bosonic lattices [PY95] in the translation invariant
case. However, the questions of the existence of efficient classical simulation algorithms and
stability results for thermal states are still open. This is also highly disturbing from a physical
point of view: The desired mathematical properties of thermal states are intertwined with the
definition of temperature as a local quantity [FGSA12, HM05, HMH04]. More precisely, in
the case of interacting systems it is not clear how temperature can be defined locally, which we
call the locality of temperature problem. Advances toward a better understanding of thermal
states are hindered by a lack of methods to exploit the system’s locality structure. This lack of
methods also seems to be an obstacle to progress on some of the most interesting open ques-
tions related to foundations of statistical mechanics and the equilibration and thermalization
behaviour of closed quantum systems [GLTZ06, LPSW09, RDO08, RGE12, RK12], such as
equilibration time scales [CDEO08, CE10].

Going from classical to quantum simulations is expected to lead to new and more powerful
ways to understand complex quantum systems. Indeed, it is an intriguing idea to simulate one
(quantum) system using another quantum system. For the case, where the former is intractable
on classical computers, this would lead to the celebrated “quantum supremacy” [Pre12] mean-
ing that (for specific tasks) quantum systems are more powerful than classical ones. Indeed,
this idea has opened the race to implement the first quantum simulation outperforming clas-
sical computers. To some extent, this goal has already been achieved with ultracold atoms in
optical lattices [Bra+14, Tro+12], with Boson-Sampling in linear optical networks (see discus-
sion and references in Publication [GKAE13]), and with superconducting flux qubits [Boi+13,
Boi+14]. However, as quantum simulations are intractable classically, it is unclear how one can
test whether or not a claimed quantum simulation does indeed work correctly. In the light of
this problem, it is even unclear what a quantum simulation precisely is in the first place.

In this thesis, rigorous mathematical tools are used and developed further to generalize sev-
eral pure state Hamiltonian complexity results to settings involving mixed quantum states. Also
the structure of spaces of physically relevant quantum many-body states is investigated and the
significance for simulations is pointed out. Finally, complementary results on verification of
quantum simulations are discussed. Most of the results have in common that they rely on the
spatial locality structure of the quantum many-body systems under investigation. Exploiting
this locality structure leads to numerous implications concerning simulatability and intractabil-
ity of certain properties of these systems as well as physical consequences.

First, tools from basic Hamiltonian complexity theory are generalized to the setting of
Markovian open quantum spin lattice systems. In Publication [Kli+11a], we derive a dissi-
pative Trotter-Suzuki-type approximation, which has a number of immediate consequences.
Most importantly, Markovian dynamics can be simulated efficiently on a quantum computer,
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1 Introduction

or, more precisely, by a unitary quantum circuit of a size scaling polynomially in the simulation
time and the size of the system. This means that dissipative quantum computing [VWIC09] is
not more powerful than the unitary circuit model, which is the standard model of a quantum
computer. As we will see, our results can be seen as a so-called Church-Turing type statement,
as it guarantees under very natural assumptions, such as weak coupling to an environment, that
the dynamics of open quantum systems can be simulated efficiently on a quantum computer. It
then follows that Markovian dynamics is quasi-local and can be locally simulated on classical
computers, where the simulation is efficient in the system size and the error but, of course, not
efficient in time (Publication [BK12] in Appendix B). This results relies on a generalization
of a dissipative Lieb-Robinson bound. An introduction to these works and to consequences
of Lieb-Robinson bounds in general, is given in Publication [KGE14b], which appeared as
a book chapter. Together, the dissipative Trotter-Suzuki approximation and the dissipative
quasi-locality provide rigorous methods for classical simulations of open quantum systems.
However, there is also a fundamental obstacle for classical reliable simulations of properties of
stationary states of dissipative systems, which is identified in Publication [KGE14a]: Deciding
whether or not a translation invariant operator in matrix product form is positive semi-definite,
is NP-hard in the system size and undecidable if no bound on the system size is given. This
means that this problem is as complex as the most complex problems in NP and cannot be
decided by any algorithm in the thermodynamic limit. These findings imply that classical
computers cannot check efficiently whether or not an operator parameterized in the compu-
tation friendly matrix product form is a density matrix. We also comment on possibilities to
overcome this obstacle. From the earlier announced result that dissipative dynamics can be
effectively simulated in the circuit model, we obtain an intriguing consequence for the structure
of state space: Most states cannot be prepared efficiently by local dynamics [Kli+11a].

For thermal states on spin and fermionic lattices, I provide a perturbation formula and
a strong version of exponential clustering of correlations at high temperatures in Publica-
tion [Kli+14]. Together, this constitutes a thermal Lieb-Robinson type bound having again a
number of implications: It solves the locality of temperature problem, allows for efficient local
classical simulation at high temperatures, and also provides a bound on critical temperatures of
thermal phase transitions involving long-range order.

As a further discussion, of simulations and complex quantum systems, we will also discuss
so-called quantum simulations. In particular, we will discuss the precise meaning of “outper-
forming classical computers”. It turns out that the situation is more delicate as compared to the
one where one is confronted with problems in NP, such as factoring of integers. This is due to
the verification problem, i.e., that there is no obvious way to verify that a classically intractable
quantum simulation actually does what it is intended to do. For Boson-Sampling simulations,
min-entropy and sample complexity lower bounds are derived in Publication [GKAE13] in
Appendix B. These results provide rigorous evidence that Boson-Sampling cannot be verified
classically efficiently. Complementary to that, an explicit verification protocol was introduced
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very recently (see Publication [AGKE14] in Appendix B) that uses very simple quantum re-
sources. With this protocol, verification of quantum simulations of certain classes of multi-
mode bosonic states, including many states occurring in quantum linear optics such as current
Boson-Sampling experiments is already possible. The protocol is efficient in the number of
modes, in the error one needs to allow for, and in the success probability of measurement post
selection that can be allowed for.

This thesis is structured into two main chapters (Chapters 2 and 3). Chapter 2 contains the
quantum lattice systems results on Markovian dynamics, the structure of states space, and on
thermal states. Chapter 3 provides a further discussion of the verification problem, which is
often neglected in the literature on quantum simulations. In particular, two complementary
verification results on quantum simulations are discussed. All first-author publications are pre-
sented in the subsequent chapter. In order to keep the discussion self-contained, the author’s
other publications are included in Appendix B. The presentation of all publications is comple-
mented by short comprehensive introductions, where the results are interpreted and evaluated,
further connections between the results are discussed, and where the results are put into context
with other known results.

In order to keep these introductions as self-contained as possible, some of the standard ter-
minology used in the field, such as the precise meaning of efficiency, is is briefly explained in
Appendix A.
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2 Locality and complexity in lattice
systems

Spin lattice systems are an important class of models in solid state physics [AM76], as they are
used to study critical points and phase transitions [Voj03] of magnetic systems. They are also
ideal candidates for testing locality related questions in Hamiltonian complexity theory, as the
discrete locality structure allows for a (computational) complexity theoretic investigation.

This chapter starts with an introduction to Lieb-Robinson bounds and a review of some of
their consequences in Section 2.1. Then, in Section 2.2 of this chapter, we generalize various
results concerning time evolution from closed to open quantum systems. For thermal states, we
derive a Lieb-Robinson type bound and discuss several physical implications in Section 2.3.
We also provide surprising results concerning the structure of state space in Section 2.4. In
particular, in Section 2.4.1, we show that in more than one spatial dimension, so-called real-
space renormalization schemes yield states with bounded correlations and, in Section 2.4.2, we
identify a roadblock for reliable simulation techniques for mixed states.

2.1 Introduction to Lieb-Robinson bounds and their
implications

The locality structure of spin lattice systems has a very important physical consequence: It
effectively limits the speed of propagation of any kind of correlation. This speed limit is the
Lieb-Robinson speed and it is proportional to the interaction strength1. A precise mathemati-
cal statement of this type is referred to as Lieb-Robinson bound. Such statements are important
mathematical proof tools and have various consequences for the dynamic as well as static prop-
erties of lattice systems. Lieb-Robinson bounds are one of the most fundamental and important
mathematical tools for spin lattice systems and their consequences are perfect examples of how
a spatial locality structure can lead to simulatability statements. Therefore, it is worth having a
more detailed but still introductory discussion on that.

1In the literature on Lieb-Robinson bounds, interactions refer to interactions between spatial sites, i.e., interactions
include hopping terms.
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2 Locality and complexity in lattice systems

On the next pages, we first present an introduction to open and closed spin and fermionic
lattice systems, Lieb-Robinson bounds, and their implications. This text appeared as the Book
Chapter [KGE14b] and already anticipates some of the results presented in Section 2.2, where,
e.g., the quasi-locality of Markovian dynamics is proven. For copyright reasons we present the
preprint version [KGE13] of this publication.
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Lieb-Robinson bounds and the simulation of time evolution

of local observables in lattice systems

Martin Kliesch, Christian Gogolin, and Jens Eisert

Dahlem Center for Complex Quantum Systems,
Freie Universität Berlin, 14195 Berlin, Germany

August 19, 2014

Abstract

This is an introductory text reviewing Lieb-Robinson bounds for open and closed quan-
tum many-body systems. We introduce the Heisenberg picturefor time-dependent local
Liouvillians and state a Lieb-Robinson bound that gives rise to a maximum speed of prop-
agation of correlations in many body systems of locally interacting spins and fermions.
Finally, we discuss a number of important consequences concerning the simulation of time
evolution and properties of ground states and stationary states.

1 Introduction

In lattice systems one might expect that, due to the localityof the interaction, there is some
limit to the speed with which correlations can propagate. Similar to the light cone in special
relativity, there should be a space time cone, outside of which a local perturbation of such a
system should not be able to influence any measurement in a significant way. That this intu-
ition can indeed be made rigorous was first shown by Elliott H.Lieb and Derek W. Robinson
in a seminal work [38] in 1972.

Today, the term Lieb-Robinson bound generally refers to upper bounds on the speed of
propagation of some measure of correlation. Outside the space time cone defined by this
speed, any signal is typically exponentially suppressed inthe distance. The results of Lieb
and Robinson, originally derived in the setting of translation invariant 1D spin systems with
short range, or exponentially decaying interactions [38] have since been tightened [27, 43] and
extended to more general graphs [31, 47] and to interactions decaying only polynomially with
the distance, both, for spin systems [44] and fermionic systems [31] (see also Ref. [45] for a
review). Lieb-Robinson bounds have been proven for Liouvillian dynamics first in Ref. [55],
where Liouvillian dynamics is a generalization of Hamiltonian dynamics that can also capture
the effect of a certain type of noise. The bounds have recently been strengthened for a specific
subclass of Liouvillians in Ref. [14] and have been generalized to time-dependent Liouvillian
dynamics in Refs. [6, 48]. Indeed, Lieb-Robinson bounds provide the basis for a wealth of
statements in quantum many-body theory, mostly as a mathematical proof tool, but also as an
argument justifying numerical techniques. We will touch upon these implications and discuss
the simulation of time evolution in more detail.

To keep the presentation both self-contained and concise, we mainly focus on Liouvillian
dynamics as presented in Ref. [6]. The chapter is structured as follows: In the beginning,

Appeared as a chapter in the Book [73].

13



2 Setting and notation

we introduce the setting and the necessary notation in Sect.2. This includes in particular
an introduction to Liouvillian dynamics in both the Schrödinger and Heisenberg picture and
a discussion of the relevant measures for approximation errors that are needed to state the
Lieb-Robinson bound and their physical interpretation. Inthe last part of Sect.2 we explain
the setting of spin lattice systems. Next, we state a generalLieb-Robinson bound in Sect.3
and mention various consequences. In particular, we explain the locality and simulability of
time evolution in more detail in Sect.4. Finally, in Sect.5, we state the Lieb-Robinson bound
for fermions and introduce the Jordan-Wigner transform, which is a mapping between spin
systems and fermionic systems.

2 Setting and notation

In this section we introduce the necessary formalism to describe the dynamics of spin lattice
systems evolving under local Liouvillian dynamics, including local Hamiltonian dynamics as
a special case. While Hamiltonian time evolution describesthe dynamics of closed systems,
Liouvillian dynamics also captures the case of so-called open quantum systems [39], which
are systems coupled to memoryless “baths”. Such couplings can be used to model Markovian
“noise” perturbing the evolution of the system. The formalism and results discussed here
partially address the problem of developing a better understanding of “imperfect systems”
and, in particular, their time evolution (see also the chapter of Claude Le Bris).

2.1 Schrödinger and Heisenberg picture for time-dependent Liouvillians

We start by introducing some notation and some basic mathematical facts. For some Hilbert
spaceH of finite dimensiondim(H) let us denote the space of linear operators onH by
B(H). Together with theHilbert-Schmidtinner product, defined by〈A,B〉 := Tr(A†B)
for A,B ∈ B(H), the space of operatorsB(H) is also a Hilbert space. Importantly, this
defines theHilbert-Schmidt adjointof a superoperator. A superoperator is a linear mapT :
B(H) → B(H), i.e., T ∈ B(B(H)) and its (Hilbert-Schmidt) adjointT † ∈ B(B(H)) is
defined via〈X,T †(Y )〉 := 〈T (X), Y 〉 for all X,Y ∈ B(H). The subspace ofobservables
A(H) ⊂ B(H) are the Hermitian, i.e. self-adjoint operators and the set of statesS(H) (also
called density operators) are positive semidefinite Hermitian operators with unit trace. Given
an observableA ∈ A(H) and a stateρ ∈ S(H) the expectation value is

〈A〉ρ := Tr(ρA). (1)

When considering time evolution one is confronted with the following scenario: At some
times the system is in some initial stateρ and at a later time

t ≥ s (throughout this chapter) (2)

one measures some observableA that gives rise to an expectation value〈A〉ρ (s, t). The time
evolution can be described either in the Schrödinger picture or the Heisenberg picture. In the
Schrödinger picture, one evolves the initial stateρ, given at times, forward in time until time
t is reached at which the measurement is performed. In the Heisenberg picture, in turn, one
evolves the observableA backwards in time fromt to the times at which the initial state is
given.

In the Schrödinger picture one considers the states to be time-dependent. In the case of a
closed quantum system evolving under a HamiltonianH , the state of the system at timet is

2
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2 Setting and notation

the solution of the linear initial value problem

d

dt
ρs(t) = −i[H(t), ρs(t)], ρs(s) = ρ, (3)

where the solutions of the dynamical equations carry the initial time s as a label for reasons
that become clear once we switch to the Heisenberg picture. If a system is coupled to further
degrees of freedom giving rise to decoherence and dissipation, one can, e.g., for many physi-
cally relevant situations with weak coupling, describe thesystem as anopen quantum system
whose dynamic is given by the solution of the linear initial value problem

d

dt
ρs(t) = L†

t (ρs(t)) , ρs(s) = ρ, (4)

whereL† : R → B(B(H)) is called theLiouvillian1, and where the time dependence is
given by the inputt ∈ R. The Liouvillian may explicitly depend on time, e.g. to be able to
capture change of external control parameters. Throughoutthis chapter we restrict the time
dependence to bepiecewise continuous. For an equation of motion of this form, the only
constraint is that the time evolution maps states to states,i.e., is completely positive and trace
preserving. This is equivalent [70] to the LiouvillianL†

t having a Lindblad representation [39],
i.e. it must be of the form

L†(ρ) = −i[H, ρ] +

dim(H)2∑

µ=1

(
2LµρL

†
µ − L†

µLµρ− ρL†
µLµ

)
, (5)

for some time-dependent operatorsH : R → A(H) andLµ : R → B(H).
Liouvillian dynamics is ubiquitous in many contexts in physics. It has recently been studied

particularly intensely in the context of cold atoms in optical lattices [3, 15, 16, 52], trapped ions
[5, 57], driven dissipative Rydberg gases [23], and macroscopic atomic ensembles [35]. Also
dissipative state preparation [69], dissipative phase transitions [15], noise-driven criticality
[17] and nonequilibrium topological phase transitions [4] have been considered.

The initial value problem (4) defines thepropagator(also called dynamical map)TL†(t, s) :
B(H) → B(H) via

TL†(t, s)(ρ) := ρs(t), (6)

which is also the unique solution of the initial value problem

d

dt
TL†(t, s) = L†

tTL†(t, s) , TL†(s, s) = id. (7)

The expectation value at timet then is

〈A〉ρ (s, t) = Tr [TL†(t, s)(ρ)A] . (8)

If the LiouvillianL† is time-independent, a state satisfyingL†(ρ) = 0 is called stationary state.
The role played by stationary states is reminiscent of the role of ground states of Hamiltonians.
For the case of a unique stationary state the spectral gap of the Liouvillian is a measure of the
speed of convergence [33] towards this stationary state.

Evolving some stateρ from s to r ≥ s and then fromr to t ≥ r also yieldsρs(t) and hence

1As we will later mostly work in the Heisenberg picture it is convenient to denote the Liouvillian in the Schrödinger
picture byL† rather thanL.
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the propagator has thecomposition propertyTL†(t, r)TL†(r, s) = TL†(t, s) for all t ≥ r ≥ s.
For classical processes this property is stated by theChapman-Kolmogorov equation. It is a
good exercise to derive the differential equation

d

ds
TL†(t, s) = −TL†(t, s)L†

s, (9)

from this property.
We are now ready to introduce the Heisenberg picture, in which the states are constant and

the observables are defined as solutions of a dynamical equation. Of course, both pictures
must yield the same expectation values, i.e.,

〈A〉ρ (s, t) = Tr (ρ τL(t, s)(A)) , (10)

where
τL(s, t) = TL†(t, s)† (11)

is the adjoint ofTL†(t, s) in the Hilbert-Schmidt inner product.τL is thepropagator in the
Heisenberg picture. Using Eq. (9), it is not hard to see that it is the unique solution of

d

ds
τL(s, t) = −LsτL(s, t) , τL(t, t) = id, (12)

whereL andL† are Hilbert-Schmidt adjoints of each other and, in particular,L is given by

L(A) = i[H,A] +

dim(H)2∑

µ=1

(
2L†

µALµ − L†
µLµA−AL†

µLµ
)
. (13)

Now we define the(backward) time evolvedobservableAt(s) to be the solution of

d

ds
At(s) = Ls(At(s)) , At(t) = A, (14)

which is equivalent to
At(s) = τL(t, s)(A). (15)

In the case of time-independent Liouvillians, one can equivalently define the Heisenberg pic-
ture such that observables are evolved forward in time. Moregenerally, this is always possible
if τL(s, t)Lt = LtτL(s, t) for all s ≤ t, i.e., when the propagator commutes with the Liou-
villian. In this case, one can equivalently evolve observables forward in time withTL†(t, s)†

which is thenTL†(t, s)† = TL(t, s). If the propagator and the Liouvillian do not commute,
there is no simple way to obtain a consistent forward time evolution forA.

2.2 The physically relevant norms

Norms are functions that quantify the “size” of a vector or operator and hence provide an
important tool to measure errors when approximating observables. Let us explain this in more
detail. The Hilbert space inner product induces a norm via‖|ψ 〉‖ :=

√
〈ψ|ψ〉. This norm

gives rise to a norm on operators: letB ∈ B(H), then itsoperator normis defined to be the
supremum

‖B‖ := sup
‖ |ψ 〉‖=1

‖B |ψ 〉‖ , (16)
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X

Y1Y2

Y3

Fig. 1: An interaction hypergraph. The dots denote the vertices and the frames the hyperedges. The maximum number
of nearest neighbors isZ = 4: the edgeX has the nearest neighborsYj and itself.

which coincides with the largest singular values ofB. If B is an observable, then its norm
is its largest eigenvalue in magnitude and thus a bound on therange of values one can obtain
whenB is measured, i.e.,

‖B‖ = sup
ρ∈S(H)

|Tr(ρB)|. (17)

Considering the case whereB = A− A′ is the difference of two observablesA,A′ ∈ A(H)
this means that the operator norm is the physically relevantnorm to measure closeness of the
two observables: If‖A−A′‖ is small, thenA andA′ will have almost the same expectation
value on all states, see Ref. [49] for a more detailed discussion.

2.3 Lattice systems and local Liouvillians

Quantum lattice systems are formally described by a set of (spatial) sites that are considered to
be the vertices of a (hyper)graph. The interactions betweenthe sites correspond to the edges
of the (hyper)graph (see also Fig.1). In this section we explain this setting for spin systems in
detail and consider fermionic systems in Sect.5.

Let us assume that the set of sitesV is finite and that each sitex ∈ V is associated with a
finite dimensional Hilbert spaceHx. The Hilbert space of some subsystemX ⊂ V is denoted
by HX :=

⊗
x∈X Hx andH := HV . For an operatorA ∈ B(H) we define its support

supp(A) to be the smallest subsetX ⊂ V such that it acts as the identity outside ofX , i.e.,
AX = A⊗1V \X . The set of operators supported onX is denoted byBX(H) := {A ∈ B(H) :
supp(A) ⊂ X} and the subspace of observables byAX(H) ⊂ BX(H). For a LiouvillianL
onB(H) we define its support to be

supp(L) :=
⋃

{X ⊂ V : AV \X(H) ⊂ ker(L)}, (18)

i.e., the part of the system whereL corresponds to a non-trivial time evolution. The set of
Liouvillians supported onX is denoted byLX(H). Often we omit the Hilbert space and
write, e.g.,AX instead ofAX(H).

We are interested in the time evolution underlocal Liouvillians. A Liouvillian L is called
local if it is of the form

L =
∑

X⊂V
LX , LX ∈ LX . (19)

In many physically relevant situations many of the strictlylocal termsLX , in particular those
belonging to large setsX , will be zero. This structure reflects interactions and dissipation
processes that are finite-ranged. Theinteraction graphE of the Liouvillian is the set of all
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3 A Lieb-Robinson bound

subsets ofV for which the Liouvillian contains a non zero term, i.e.,

E := {X ⊂ V : LX 6= 0}. (20)

As an example, consider the case of a 1D system with nearest neighbor interactions and
open boundary conditions. If the sites areV = {1, . . . , N}, the interaction graph isE =
{{1, 2}, {2, 3}, . . . , {N − 1, N}} in that case.

The interaction (hyper)graphE defines a distanced(X,Y ) between any two setsX,Y ⊂ V
of vertices. The distanced(X,Y ) is equal to0 if and only ifX ∩ Y 6= ∅ and otherwise equal
to the length of the shortest path connectingX andY , and∞ if there is no connecting path.
A path between two setsX,Y ⊂ V is a sequence of elements ofE, such that the first element
contains a vertex inX , each element of the path shares at least one vertex with the following
element and the last element contains a vertex inY . Note thatd is a degenerate metric on
subsets ofV . In the above 1D example the graph distance of the two sets{j}, {k} ⊂ V would
simply bed({j}, {k}) = |j − k|, as one would expect.

3 A Lieb-Robinson bound

In this section we state and explain a very general Lieb-Robinson bound for the speed of prop-
agation of correlations in spin systems under arbitrary time-dependent Liouvillian dynamics.
Our goal is to make statements aboutlocal time evolution, i.e., time evolution of local ob-
servables arising from local interactions and local noise.In order to make this precise, let us
impose some technical constraints on a possibly time-dependent LiouvillianLs ∈ LV , which
we consider to be fixed from now on. Local time evolution is captured by a LiouvillianL that
is a sum of strictly local termsLX , each of which is bounded in norm byb, and a maximum
number of nearest neighborsZ. In more detail, we define

L =
∑

X∈E
LX , LX : R → LX(H), piecewise continuous, (21)

b := sup
s,X

‖LX(s)‖ , (22)

Z := max
X∈E

|{Y ∈ E : Y ∩X 6= ∅}| . (23)

The parametersb andZ will determine the Lieb-Robinson speed and also the final results
about thespatial truncation

L↾V ′ :=
∑

X⊂V ′
LX (24)

of the LiouvillianL to some regionV ′ ⊂ V . Now we are ready to state the Lieb-Robinson
bound for this setting. Similar results on Liouvillians canbe found in Refs. [48, 55]. The
theorem is quite general and it might not be immediately obvious how statements about prop-
agation of information are implied. But this will become clear in the next section.

Theorem 1 (Lieb-Robinson Bound [6]2). LetL : R → L(H) be a local Liouvillian as spec-
ified in Eqn.(21) – (23) andX,Y ⊂ V . Then, for everyKY ∈ LY (H), AX ∈ BX(H), and
s ≤ t

‖KY τL(s, t)(AX)‖ ≤ C ‖KY ‖ ‖AX‖ ev(t−s)−d(X,Y ), (25)

2 In Ref. [6] the bound is given for an arbitrary metric on the vertex set and the Liouvillians are allowed to have
interaction rangea in that metric. Our interaction graph distanced is induced by a metric onV for whicha = 1.
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wherev = exp(1)bZ andC is some constant depending polynomially on the size of the
smaller of the two setsX andY .

Remembering that the Liouvillian maps an observable to its time derivative. The theorem
tells us that an evolved observableτL(s, t)(AX) remains basically unchanged when evolved
with respect to a LiouvillianKY that is supported on a region a distance much larger than
v(t− s) away fromX , i.e., thatτL(s, t)(AX) is almost the identity outside the corresponding
space-time cone. More intuitively, the Lieb-Robinson bound tells us that information travels
with a velocity bounded by theLieb-Robinson speedv of the considered lattice system. In
the special caseKY = i[BY , · ] for someBY ∈ AY (H), Eq. (25) yields a Lieb-Robinson
bound in the more common form of an upper bound on the commutator‖[BY , τL(s, t)(AX)]‖
(compare Refs. [48, 55]).

If a system is mixing in the sense that all states are driven towards a steady state then
information encoded in the initial state gets lost at some point. This puts an upper bound on
the distance over which information can propagate. Therefore, one might expect that there
is some effective Lieb-Robinson speed that decreases in time. This is indeed true for certain
systems with fluctuating disorder [10] and for a certain class of Liouvillian dynamics [14].

Finally let us mention that, the lattice can also be infinitely large (implied by the next the-
orem), but the restriction to finite-dimensional subsystems is not merely for simplicity of no-
tation: For infinite-dimensional systems the situation canbe quite different. For some an-
harmonic lattices [47], and other instances of strongly correlated models [62] Lieb-Robinson
bounds can still be found, as well as for commutator-boundedoperators [56]. Still, counterex-
amples to Lieb-Robinson bounds are known for models with infinite-dimensional constituents
[19].

4 Consequences of Lieb-Robinson bounds

Lieb-Robinson bounds are fundamental for a plethora of statements concerning various prop-
erties of locally interacting systems. We first discuss immediate consequences as far as the dy-
namics of such systems is concerned. Next, we turn to implications for the classical simulation
of time evolution. Finally, we discuss static properties that can be derived from Lieb-Robinson
bounds.

4.1 Quasi-locality of quantum dynamics

The result of the last section suggests that the terms of the Liouvillian whose support is suffi-
ciently far away from the support of an observable are irrelevant for the time evolution. More
precisely, one should be able to spatially truncate the Liouvillian L to some regionV ′ ⊂ V .
If X is sufficiently far from the boundary ofV ′, i.e., if d(X,V \ V ′) is larger than the radius
v ·(t−s) of the space time cone ofτL(s, t)(AX), then the dynamics ofAX under the truncated
Liouvillian L↾V ′ and the original LiouvillianL should be very similar. In the next theorem
we will see that this is indeed the case if the underlying interaction graph is of finite spacial
dimension, which we define first. Let us denote the “sphere” around some subsystemX ∈ E
with radiusn by

SX(n) := {Y ∈ E : d(Y,X) = n}. (26)

Then we say that an interaction graphE is of spatial dimensionµ if there is a constantM > 0
that only depends on local properties of the interaction graph such that for allX ∈ E

|SX(n)| ≤Mnµ−1. (27)
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v (t− s)
t− s

AXV ′

D

Fig. 2: The space time cone of an observableAX in one spatial dimension. The truncation error scales exponentially
in the distanceD − v · (t − s).

For example, the interaction graph of next-neighbor Liouvillians on aµ-dimensional cubic
lattice has dimensionµ.

The bound from the following theorem is visualized in Fig.2.

Theorem 2 (Quasi-locality of local Liouvillian dynamics [6]). Let L : R → L(H) be a
local Liouvillian as specified in Eqs.(21) – (23) and let its interaction graph be of spatial
dimensionµ with the constantM as defined in Eq.(27). Then, for allX ⊂ V ′ ⊂ V with
D := d(X,V \ V ′) ≥ 2µ− 1,AX ∈ BX(H), ands ≤ t

∥∥∥τL↾V ′ (s, t)(AX)− τL(s, t)(AX)
∥∥∥ ≤ 2M

Z Dµ−1ev·(t−s)−D ‖AX‖ , (28)

wherev = exp(1)bZ is the Lieb-Robinson speed.

So, colloquially speaking, the full dynamics of local observables can be approximated with
exponential accuracy by the dynamics of a sufficiently largesubsystem. Of course, the size
of the subsystem depends on the desired time span of the evolution. In particular the locality
result makes an extension of time evolution to infinitely large lattices possible, i.e., it can be
employed to rigorously define the thermodynamic limit.

Theorem2 has two further immediate physical consequences, which canbe seen as an
interpretation of the result. For the rest of this section consider a lattice system withV =
{1, . . . , N} and letρ be a product state, i.e.,ρ =

⊗N
j=1 ρj whereρj ∈ S(H{j}) for all j and

moreover, letX,Y ⊂ V such thatX ∩ Y = ∅.
Suppression of correlation functions:Consider two observablesAX ∈ AX andBY ∈ AY .

Their correlation coefficient in stateρ ∈ S(H) is proportional to thecovariance

covρ(AX , BY ) := 〈AXBY 〉ρ − 〈AX〉ρ 〈BY 〉ρ . (29)

If ρ is a product state,covρ(AX , BY ) = 0. Now, Theorem2 tells us that as long asv ·
(t − s) ≪ d(X,Y )/2 the correlation coefficient of the time evolved observableswill remain
very small. More precisely,covρ(τ(s, t)(AX), τ(s, t)(BY )) is upper bounded byexp(v · (t−
s) − d(X,Y )/2) up to a constant factor. The measurement statistics of the two observables
can show correlations only after the dynamics of the system had enough time to correlate the
two regionsX andY (see Ref. [44] for a similar discussion in the context of Hamiltonian
dynamics).

Speed of information propagation:Time evolution on a lattice system can also be thought
of as a channel that one might want to use to send information fromX to Y in the following

8
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way: One party encodes a message by preparing at times the part of the initial stateρ in the
regionX in a particular way, the other party tries to retrieve the message by measuring on
regionY at timet. Lieb-Robinson bounds can be used to show that the amount of information
that can be transferred in this way in a time spant− s is exponentially suppressed ifd(X,Y )
is larger thanv · (t− s). This can be made precise in the sense that the classical information
capacity is exponentially small outside the cone, if the quantum many-body systems is used
as a quantum channel [8]. In Ref. [11], the ballistic propagation of excitations and informa-
tion propagation constrained by Lieb-Robinson bounds has been experimentally explored in
systems of cold atoms.

4.2 Classical simulation of quantum dynamics

By classical simulation of quantum dynamics we mean the calculation of expectation values
of local observables〈AX〉ρ (s, t), so that one could, for instance, plot them over time. If one
tries to do that naively, i.e., by calculating the full propagatorτL(s, t) on a classical computer,
one quickly runs into problems even with just having enough memory to store the propagator.
For instance, if one hasN subsystems with a local Hilbert space dimension of2, then to com-
pletely specify the propagator in a naive way, one needs24N complex numbers. Therefore, if
one aims at classically simulating local observables one needs to come up with a smart simu-
lation scheme that only deals with the information relevantfor the simulation. We sketch two
such schemes here:

Time evolution as (unitary) circuits:Here the quasi-locality Theorem2 is of great help,
since it already tells us that one can truncate the dynamics to a setV ′ containing the space time
cone of the observable instead of considering the full system V . The arising error is exponen-
tially small in the distance between the space time cone and the truncation. So the simulation
cost does clearly not depend on the system size and the dynamics can hence be implemented
efficiently in that. Of course, implementing the full simulation naively onV ′ is still by far
not optimal. Famously, one can decompose the propagatorτL↾V ′ (s, t) into products over short
time steps and strictly local propagators, which is often called Trotter-decomposition [64]. At
the heart of this approach is the followingproduct formulathat can be used to bound the error
one makes by decomposing the propagator of a Liouvillian that is a sum of two Liouvillians
L andK into the product of the propagators of these Liouvillians:

Theorem 3 (Trotter product formula [6, 34]). Let

L =
∑

X∈E
LX (30)

be a Liouvillian withLX ∈ LX . Then there exist constantsb andc that depend only on local
properties ofL, and are in particular independent of the number of sites, such that for all
X ∈ E and operatorsA

‖τL(s, t)(A) − τL(s, t)τL−LX (s, t)(A)‖ ≤ c(t− s)2eb(t−s)|E| ‖A‖ . (31)

One can now decompose the time spant − s into short time steps[sj+1, sj ] and in each
of these intervals approximate the propagator by a product of the strictly local propagators
τLX (sj+1, sj) for each edgeX in the interaction graph of the Liouvillian. In other words,
the full propagator can be approximated by a “circuit" of strictly local propagators. The
number of time steps needed to reach a simulation with total error upper bounded byǫ is
proportional to(t − s)2|E|2/ǫ [34]. Of course, the above covers Hamiltonian dynamics as a
special case. However, there one would rather apply similarideas to the time evolution oper-
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ator exp(−i (t − s)H) rather than the propagator. In a variant of this circuit description for
Hamiltonian dynamics in 1D, the time evolution operator canbe approximated by a circuit of
constant depth and time-dependent gates [50].

Time-dependent density-matrix renormalization group methods: A similar mindset is also
fundamental for the simulation of time evolution using so-called tensor network states. The
situation is particularly clear in 1D systems with sitesV = {1, . . . , N} in pure states under-
going local Hamiltonian dynamics. If the initial state has astrong decay of initial correla-
tions, then the time evolution can for short times be efficiently grasped in terms ofmatrix-
product states(MPS) [22, 51, 59]. These are variational state vectors that are described by
O(dND2) variational parameters, whereD ∈ N is a refinement parameter andd the dimen-
sion of the local Hilbert space. There are several variants of this approach, based on either
a Trotter-decomposition [64] or a time-dependent variational principle [25]. Such schemes
are subsumed under the termtime-dependent density matrix renormalization group method (t-
DMRG). At the heart of the functioning of t-DMRG is the insight that states generated by short
time local Hamiltonian dynamics will havelow entanglement. This can be formalized [18] in
terms of so-called area laws [2, 20, 26, 65] that arise as a consequence of a Lieb-Robinson
bound.
An area law is an upper bound on the entanglement of a state. More precisely, we say that a
pure state satisfies anarea lawif for any regionR ⊂ V the (Rényi) entropy of the reduced state
onR can be bounded by the size of the boundary ofR, up to a constant. States of 1D systems
satisfying an area law can be provably well approximated by matrix product states [68]. In-
deed, t-DMRG simulates time evolution for short times to essentially machine precision. For
long times, the entropy will in general grow too much, as thensites are in the space time cone
of too many sites of the lattice, and an efficient simulation in terms of matrix-product states
is hence [60] no longer possible [12, 61]. That is, the power of the t-DMRG approach can
be rigorously grasped in terms of Lieb-Robinson bounds. For1D local Liouvillian dynamics,
variants of t-DMRG have also been proposed [66, 72], usually as variational principles over
matrix-product operators, the mixed state analogues of matrix-product states, or by means of
suitable sampling employing classical stochastic processes in Hilbert space [52].

4.3 Static properties derived from Lieb-Robinson bounds

Among the most important applications of Lieb-Robinson bounds are proof techniques related
to static (time independent) properties of quantum latticesystems. Here we briefly mention
some of them:

Clustering of correlations in Hamiltonian systems:One of the most relevant applications
concerns the decay of correlations in the ground state of a local Hamiltonian with a spectral
gap3, first shown in Refs. [27, 31] and further generalized in Ref. [46]. The basic intuition
underlying this intricate insight is that the spectral gap∆E essentially defines a time scale in
the system, which in turn can be related to a length scale.

Theorem 4 (Clustering of correlations in unique ground states [31, 43]). LetH ∈ A(H) be a
local Hamiltonian with a unique ground stateψ and a spectral gap∆E > 0 andX,Y ⊂ V .
Then, for everyAX ∈ BX(H) andBY ∈ BY (H)

|covψ(AX , BY )| ≤ C ‖AX‖ ‖BY ‖ e−µd(X,Y ). (32)

C andµ are constants both depending on∆E. Moreover,C depends on the lattice geometry

3 The spectral gap of a Hamiltonian∆E is the difference between the ground state energy and the energy of the first
exited state.
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and the smaller of the surface areas ofX andY , andµ depends on the Lieb-Robinson speed.

The proof of this statement confirmed a long-standing conjecture in condensed-matter physics,
that gapped Hamiltonian systems have exponentially clustering correlations in the ground
state.

Clustering of correlations in Liouvillian systems:A similar intuition actually holds true for
Liouvillian systems, where the role of the ground state of Hamiltonian systems is taken over
by the stationary state. Clustering of correlations in local Liouvillian systems has first been
considered in Ref. [55] and has been made rigorous and largely generalized in Ref. [33]: If a
local Liouvillian is primitive (that is, if its stationary state has full rank) and has a spectral gap
which is independent of the system size, then correlation functions between local observables
again decay exponentially as a function of the distance between their supports.

Area laws of ground states of gapped Hamiltonians:It has been shown using Lieb-Robinson
bounds that ground states of 1D local Hamiltonian systems with spectral gap∆E > 0 al-
ways satisfy an area law for the Rényi entropies (for a review, see Ref. [20]). This result has
since been tightened [2] and area laws have also been shown for some instances of gapped
higher-dimensional Hamiltonian systems [54]. It has also been shown that in 1D exponential
clustering of correlations already implies an area law [7]. For local Liouvillians, general area
laws (in terms of entropic measures suitable for mixed states) can be derived for stationary
states [33], again using Lieb-Robinson bounds.

Approximating 1D ground states of gapped Hamiltonians withMPS: Since ground states of
any 1D local Hamiltonian with a spectral gap∆E > 0 satisfy an area law for Rényi entropies
they can be approximated [68] by matrix product states (MPS) in polynomial time [36]. This
is used by the staticdensity-matrix renormalization group method(DMRG) [58] (see also the
chapter of Ors Legeza, Thorsten Rohwedder and Reinhold Schneider) for simulating ground
state properties [59], which has led to a wealth of novel insights in condensed matter physics.

Higher-dimensional Lieb-Schultz-Mattis theorems:The Lieb-Schultz-Mattis theorem [1,
37] is an upper bound on the spectral gap of certain one-dimensional quantum spin systems.
Using Lieb-Robinson bounds, a higher-dimensional Lieb-Schultz-Matthis theorem has been
proven in Refs. [27, 29].

Stability and further properties of ground states:Lieb-Robinson bounds are one of the pil-
lars of the formalism grasping the stability of ground states of a certain class of Hamiltonians
(frustration-free Hamiltonians satisfying certain topological order conditions) under local per-
turbations. This has developed into a field of research in itsown right, and we merely touch
upon the topic here. Starting point is the concept ofquasi-adiabatic continuation[30], which
is a tool to connect dynamical properties of a Hamiltonian tostatic ones and relies on Lieb-
Robinson bounds. Importantly, quasi-adiabatic continuation is a cornerstone of the proof of
the stability of topological order under local perturbations [9] and related proofs of the stability
of the spectral gap, of frustration-free Hamiltonians under general, quasi-local perturbations
[41]. With similar tools, the stability of the area law for the entanglement entropy of the
ground state can be proven [42, 65].

Stability of stationary states:Inspired by the stability results on Hamiltonian ground states,
Lieb-Robinson bounds have also been used to prove the stability of stationary states of certain
local Liouvillians [13, 33].

Structure of elementary excited states:The structure of elementary excited states has been
explored using Lieb-Robinson bounds, which can be approximated by superimposing ground
states to which local operators have been applied [24].
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5 Fermionic Hamiltonians

While Lieb-Robinson bounds are usually stated for spin lattice system, they also hold for
systems of fermions on a lattice. The situation is particularly simple for 1D systems with
nearest neighbor coupling only, since in that case the Jordan-Wigner transform can be applied.
In this section we first state a fermionic Lieb-Robinson bound and then introduce the Jordan-
Wigner transform.

Again, as with spin lattice systems, we have an interaction (hyper)graph(V,E) but now
work in the picture of second quantization, i.e., operatorsare given in terms of the fermionic
creation and annhilation operatorsfj andf †

k for j, k ∈ V . These fermionic operators satisfy

{fj, f †
k} = δj,k, (33)

where{A,B} := AB +BA is the anti-commutator. According to thefermion number parity
superselection ruleonly observables that are even polynomials in the fermionicoperators can
occur in nature. A polynomial of fermionic operators is calledevenif it can be written as a
linear combination of monomials, where each monomial is a product of an even number of
fermionic operators fromfj andf †

k . Correspondingly, we denote the algebra of the parity
preserving observables acting on a regionX ⊂ V by GX for short. Now one can prove a
fermionic Lieb-Robinson bound in the same way as Theorem1 is proven:

Theorem 5 (Fermionic Lieb-Robinson bound). Let

H =
∑

X∈E
HX (34)

be a local time-dependent Hamiltonian withHX : R → GX and‖HX(r)‖ ≤ b for all X ∈ E
andr ∈ R, τ its propagator, andZ the maximum number of nearest neighbors as defined in
Eq. (23). Then, for everyAX ∈ GX , BY ∈ GY ands, t ∈ R,

‖[BY , τ(s, t)(AX)]‖ ≤ C ‖BY ‖ ‖AX‖ ev|t−s|−d(X,Y ), (35)

wherev = exp(1)bZ andC is some constant depending polynomially on the size of the
smaller of the two setsX andY .

For the unphysical case whereBY andAX are observables that are odd polynomials in the
fermionic operators one can still prove a similar Lieb-Robinson bound for the anti-commutator,
providing a relevant proof-tool [28].

For the case of 1D systems with nearest neighbor interactions only, the analogy between
fermionic and spin systems is even stronger in the sense thatsuch systems can be mapped to
each other by the Jordan-Wigner transform [32]. Note that a higher-dimensional variant has
also been developed [67].

Consider a one-dimensional lattice with verticesV = {1, . . . , N}. The Hilbert space of
the spin-1/2 model onV is given byH :=

⊗
j∈V Hj with Hj

∼= C2. We denote by
Xj , Yj , Zj ∈ A{j} the Pauli operators acting on sitej of the spin chain. Then the Jordan-
Wigner-Transformation is given by

fj + f †
j = w2j−1 := Xj

∏

j′<j

Zj′ (36)

ifj − if †
j = w2j := Yj

∏

j′<j

Zj′ , (37)
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6 Conclusion

where the(wj)2Nj=1 are calledMajorana operators. The Majorana operators satisfy the anti-
commutation relation{wj , wk} = 2δj,k. It can be verified with elementary calculations that

fj =
1

2
(w2j−1 − iw2j) , (38)

f †
j fj =

1

2
(1− iw2j−1w2j) , (39)

as well as

Zj = −iw2j−1w2j = 2f †
j fj − 1, (40)

Xj = w2j−1

∏

j′<j

Zj′ , Yj = w2j

∏

j′<j

Zj′ , (41)

and

∀j ≤ k : f †
j fk =

1

4
S+
j (

∏

j≤j′<k
Zj′)S

−
k , where S±

j := Xj ± iYj . (42)

Most importantly, as can be seen from Eq. (42), the Jordan-Wigner-Transformation preserves
locality in the sense that a one-dimensional fermionic Hamiltonian with nearest neighbor or
short range hopping and short range density-density interactions is mapped to a spin chain
Hamiltonian with only short range interactions.

6 Conclusion

We have reviewed the Heisenberg picture for time-dependentLiouvillian dynamics in spin
lattice systems. For this setting we have stated a Lieb-Robinson bound. Such bounds give
rise to a plethora of statements about locally interacting systems which we have reviewed
subsequently. Finally, we have explained the relevance forfermionic systems. We hope that
this text serves as an introduction to Liouvillian dynamicson spin lattice systems and provides
an overview of important consequences of Lieb-Robinson bounds.
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2.2 Generalizing Hamiltonian complexity results to open quantum systems

2.2 Generalizing Hamiltonian complexity results to open
quantum systems

Important methods and results concerning the time evolution of spin lattice systems are Lieb-
Robinson [LR72] type bounds and also Trotter-Suzuki [Suz76, Tro59] type approximations
[HDR90]. A Trotter-Suzuki approximation of unitary dynamics is the approximation of the
time evolution operator by a composition of strictly local unitary operations. In the language of
quantum information theory, this composition of local unitaries is a quantum circuit or, more
generally, a tensor network, see Figure 2.1 for an example.

Lieb-Robinson bounds and Trotter-Suzuki type approximations allow for various schemes
[DKSV04, Hae+11, Osb06, Vid04] to classically simulate real and imaginary time evolution of
closed quantum systems efficiently in the system size. All known physical systems are, how-
ever, at lest weakly coupled to their environment (otherwise we wouldn’t know about them).
In the most simple case of Liouvillian dynamics, such as in many weak coupling situations,
the interaction of the system with the environment is Markovian. More precisely, this means
that the state of the system evolves according to a differential equation of motion, which is of-
ten called master equation. In order to represent proper quantum dynamics, the corresponding
time evolution needs to be completely positive, or, equivalently [Lin76, WC08], the generator
of such a continuous time evolution must have a certain normal form, called Lindblad from
[Lin76]. Recently, such dynamics has been studied particularly intensely in the context of cold
atoms in optical lattices [AOLL12, Die+08, DYDZ10], trapped ions [Bar+11, Sch+13], driven
dissipative Rydberg gases [Gla+12], and macroscopic atomic ensembles [Kra+11]. Liouvillian
dynamics also displays rich phenomena, that allow for dissipative state preparation [VWIC09],

t

∆t

2∆t

Figure 2.1: A quantum circuit originating from the Trotter-Suzuki approximation

e−iHt ≈
(∏

j
e−ihj,j+1t/m

)m
of the time evolution operator e−iHt, where H =

∑
j hj,j+1 is a spin chain Hamilto-

nian with nearest-neighbour couplings hj,j+1. Each box acting on sites j and j + 1
corresponds to the strictly local time evolution operator e−i hj,j+1 ∆t. For such a spin
chain with nearest neighbour interactions the circuit can be arranged in a brick layer
structure.
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2 Locality and complexity in lattice systems

dissipative phase transitions [Die+08], noise-driven criticality [EP10], non-equilibrium topo-
logical phase transitions [Bar+12], and precise timing of quantum operations [KWE13].

Considering the relevance of Liouvillian dynamics, it seems to be important to formulate
Hamiltonian complexity results also for the open system setting. In the following, we first gen-
eralize Trotter-Suzuki type approximations to open quantum systems and discuss the physical
implications. Then, we prove quasi-locality of Markovian time evolution, allowing for classi-
cal simulations of the local dynamics. This result provides two important building blocks for
classical simulations of quantum systems. Moreover, the quasi-locality constitutes an impor-
tant proof tool, e.g., for proving clustering of correlations in stationary states of rapidly mixing
dynamics [KE13] and local topological quantum order [CLMPG13, KP13]. Combining quasi-
locality with the result on rapid mixing [KT13], one can also obtain stability results such as the
ones in Ref. [CLMPG13].

2.2.1 A dissipative Church-Turing theorem from generalizing the
Trotter-Suzuki decomposition

This thesis is about complexity in simulations of quantum systems. Consequently, the first
question we address is: What physical processes can one hope to efficiently simulate? The
most powerful realistic situation that one can think of as a simulation, is the one of local dissi-
pative quantum dynamics, as we will argue in the next paragraph. Such situations include the
dissipative model of computation [VWIC09], which can efficiently simulate quantum compu-
tations, which, in turn, can efficiently simulate classical computations. The above question is
also very much motivated by the quantum complexity-theoretic Church-Turing thesis (QCCTT)
from computer science [KLM07]: “A quantum Turing machine [i.e. a quantum computer] can
efficiently simulate any realistic model of computation”. As such, the QCCTT is a vague state-
ment that can neither be proven nor disproven. It serves as a working hypothesis in order to
restrict to one specific model of computation, such as the unitary circuit model of quantum
computation.

Here, we find reasonable assumptions under which we, nevertheless, can prove a Church-
Turing type statement. First of all, we assume that there are only k-body interactions. This
means that the Liouvillian can be decomposed into Liouvillians that only couple at most k sub-
systems for some constant k. Since we want to make a complexity theoretic statement, where
one needs to be able to quantify the resources, we restrict to finitely many finite-dimensional
subsystems. Next, we make the realistic assumption that the Liouvillian’s time-dependence
is piecewise continuous. Finally, we need to decide what a meaningful notion of “a system
performing a computation” is. If a system would be allowed to exchange information with
a potentially super powerful second system then we would hardly say that a computation is
performed only by the resources of the system. This justifies that the system’s time evolution
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2.2 Generalizing Hamiltonian complexity results to open quantum systems

should be Markovian, i.e., described by a Liouvillian. In the following Publication [Kli+11a]
we show that these assumptions are sufficient to simulate the dynamics efficiently in the unitary
circuit model.

This result has various implications. First of all, it immediately follows that the model of dis-
sipative quantum computation from Ref. [VWIC09] is equivalent to the unitary circuit model.
Next, as we show on pages 40f, by lifting arguments from Ref. [PQSV11] to open quantum sys-
tems, the following limitation on efficient state generation follows: Starting in a product state,
only exponentially few states can be approximately reached in polynomial time. Here, we fix
some maximal approximation error ε > 0 and count the states after also discretizing the state
space with ε. Finally, in a similar way as Trotter-Suzuki [Suz76, Tro59] type approximations
are used to simulate Hamiltonian dynamics, it is the hope that our dissipative Trotter formula
proves useful in the open system setting. We will also elaborate on that further in Section 2.2.2,
where we prove the quasi-locality of the dynamics for the case of finite ranged interactions.

On the next pages, we present the corresponding Publication [Kli+11a], which “opens up the
potential impact of quantum computers to important applications in condensed-matter physics,
quantum chemistry, and even biology” [Bro11].
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We show that the time evolution of an open quantum system, described by a possibly time dependent

Liouvillian, can be simulated by a unitary quantum circuit of a size scaling polynomially in the simulation

time and the size of the system. An immediate consequence is that dissipative quantum computing is no

more powerful than the unitary circuit model. Our result can be seen as a dissipative Church-Turing

theorem, since it implies that under natural assumptions, such as weak coupling to an environment, the

dynamics of an open quantum system can be simulated efficiently on a quantum computer. Formally, we

introduce a Trotter decomposition for Liouvillian dynamics and give explicit error bounds. This

constitutes a practical tool for numerical simulations, e.g., using matrix-product operators. We also

demonstrate that most quantum states cannot be prepared efficiently.

DOI: 10.1103/PhysRevLett.107.120501 PACS numbers: 03.67.Ac, 02.60.Cb, 03.65.Yz, 89.70.Eg

One of the cornerstones of theoretical computer science
is the Church-Turing thesis [1,2]. In its strong formulation
it can be captured in the following way [3,4]: ‘‘A probabi-
listic Turing machine can efficiently simulate any realistic
model of computation.’’ As such, it reduces any physical
process—that can intuitively be thought of as a computa-
tional task in a wider sense—to what an elementary stan-
dard computer can do. Needless to say, in its strong
formulation, the Church-Turing thesis is challenged by
the very idea of a quantum computer, and hence by a
fundamental physical theory that initially was thought to
be irrelevant for studies of complexity. There are problems
a quantum computer could efficiently solve that are be-
lieved to be intractable on any classical computer.

In this way, it seems that the strong Church-Turing thesis
has to be replaced by a quantum version [2]. Colloquially
speaking, the quantum Church-Turing thesis says that any
process that can happen in nature that one could think of as
being some sort of computation is efficiently simulatable.

Strong quantum Church-Turing thesis: Every quan-
tum mechanical computational process can be simulated
efficiently in the unitary circuit model of quantum
computation.

Indeed, this notion of quantum computers being devices
that can efficiently simulate natural quantum processes,
being known under the name ‘‘quantum simulation,’’ is
the topic of an entire research field initiated by the work of
Feynman [5]. Steps towards a rigorous formulation have
been taken by Lloyd [6] and many others [7].

Quite surprisingly, a very important class of physical
processes appears to have been omitted in the quest for
finding a sound theory of quantum simulation, namely,
dissipative quantum processes. Such processes are particu-
larly relevant since, in the end, every physical process is
to some extent dissipative. If one aims at simulating a

quantum process occurring in a lab, one cannot, however,
reasonably require the inclusion of all modes of the envi-
ronment to which the system is coupled into the simu-
lation. Otherwise, one would always have to simulate all
the modes of the environment, eventually of the entire
Universe, rendering the task of simulation obsolete and
futile. We argue that the most general setting in which
one can hope for efficient simulatability is the one of
Markovian dynamics [8] with arbitrary piecewise continu-
ous time dependent control [9]. In any naturally occurring
process the Liouvillian L determining the equation of
motion

d

dt
�ðtÞ ¼ Ltð�ðtÞÞ (1)

of the system state � is k-local. This means that the system
is multipartite and L can be written as a sum of
Liouvillians each acting nontrivially on at most k subsys-
tems. In fact, all natural interactions are two-local in this
sense. Since we are interested in processes which can be
viewed as a computation, we assume that the subsystems
are of fixed finite dimension. This is arguably the broadest
class of natural physical processes that should be taken
into account in a dissipative Church-Turing theorem and
includes the Hamiltonian dynamics of closed systems as a
special case.
In this work, we show the following.
(i) Every time evolution generated by a k-local time

dependent Liouvillian can be simulated by a unitary quan-
tum circuit with resources scaling polynomially in the
system size N and simulation time �.
(ii) As a corollary, we obtain that the dissipative model

for quantum computing [11] can be reduced to the circuit
model—proving a conjecture that was still open.

PRL 107, 120501 (2011)
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(iii) Technically, we show that the dynamics can be
approximated by a Trotter decomposition, giving rise to a
circuit of local channels, actually being reminiscent of the
situation of unitary dynamics. In particular, in order to
reach a final state that is only � distinguishable from the
exactly time evolved state, it will turn out to be sufficient to
apply a circuit of Km local quantum channels, where

m ¼
�
max

�
2cK2�2

�
;
�b

ln2

��
(2)

is the number of time steps, K � Nk is the number of local
terms in the Liouvillian, and b and c are constants inde-
pendent of N, �, K, and �. Some obstacles of naive
attempts to simulate dissipative dynamics are highlighted,
and the specific role of the appropriate choice of norms is
emphasized.

(iv) We also show that most quantum states cannot be
prepared efficiently.

(v) In addition, the Trotter decomposition with our
rigorous error bound is a practical tool for the numerical
simulation of dissipative quantum dynamics on classical
computers.

Setting.—We consider general quantum systems consist-
ing of N subsystems of Hilbert-space dimension d. The
dynamics is described by a quantum master equation (1)
with a k-local Liouvillian of the form

L ¼ X
��½N�

L�; (3)

where ½N� :¼ f1; 2; . . . ; Ng and L� are strictly k-local
Liouvillians. The subscript � means that the respective
operator or superoperator acts nontrivially only on the
subsystem � and we call an operator or superoperator
strictly k-local if it acts nontrivially only on at most k
subsystems. Each of the Liouvillians L� can be written
[10] in Lindblad form [12]

L � ¼ �i½H�; �� þ
Xdk
�¼1

D½L�;��; (4)

where D½X�ð�Þ :¼ 2X�Xy � fXyX; �g and may depend
on time piecewise continuously. In particular, we do not
require any bound on the rate at which the Liouvillians
may change.

The propagators TLðt; sÞ are the family of superopera-
tors defined by

�ðtÞ ¼ TLðt; sÞð�ðsÞÞ (5)

for all t � s. They are completely positive and trace pre-
serving (CPT) and uniquely solve the initial value problem

d

dt
Tðt; sÞ ¼ LtTðt; sÞ; Tðs; sÞ ¼ id; (6)

where id denotes the identity map.

The main result, which is a bound on the error of the
Trotter decomposition, will be somewhat reminiscent of
the Trotter formula for time dependent Hamiltonian dy-
namics derived in Ref. [13]. The main challenge comes
from the fact that we are dealing with superoperators rather
than operators. The key to a meaningful Trotter decom-
position is the choice of suitable norms for these super-
operators. The physically motivated and strongest norm is
the one arising from the operational distinguishability of
two quantum states � and �, which is given by the trace
distance distð�;�Þ :¼ sup0�A�1tr½Að�� �Þ�. The trace
distance coincides up to a factor of 1=2 with the distance
induced by the Schatten 1-norm k � k1, where the Schatten
p-norm of a matrix A is kAkp :¼ ½trðjAjpÞ�1=p. Therefore,
we measure errors of approximations of superoperators
with the induced operator norm, which is the so-called
(1 ! 1)-norm. In general the (p ! q)-norm of a super-
operator T 2 BðBðH ÞÞ is defined as [14]

kTkp!q :¼ sup
kAkp¼1

kTðAÞkq: (7)

The difficulty in dealing with these norms lies in the fact
that for p <1 the p-norm does not respect k-locality, e.g.,
kA � 1n�nk1 ¼ nkAk1. This problem is overcome by us-
ing the Lindblad form of the strictly k-local Liouvillians. In
the end, all bounds can be stated in terms of the largest
operator norm kXtk1 of the Lindblad operators X 2 L� of
the strictly k-local terms. The notation X 2 L� means that
X is one of the operators occurring in the Lindblad repre-
sentation (4) of L�. From now on we assume that this
largest operator norm a is everywhere bounded by a
constant of order 1 and, in particular, independent of N,
i.e., a 2 Oð1Þ.
Main result.—One can always approximate any dissipa-

tive dynamics generated by a k-local Liouvillian acting on
N subsystems, even allowing for piecewise continuous
time dependence, by a suitable Trotter decomposition.
The error made in such a decomposition can be bounded
rigorously.
Theorem 1 (Trotter decomposition of Liouvillian

dynamics). Let L ¼ P
��½N�L� be a k-local Liouvillian

that acts on N subsystems with local Hilbert-space dimen-
sion d. Furthermore, letL be piecewise continuous in time
with the property that a ¼ max� maxX2L�

supt�0 kXtk1
2 Oð1Þ. Then the error of the Trotter decomposition of a
time evolution up to time � into m time steps is�����TLð�;0Þ�

Ym
j¼1

Y
��½N�

TL�

�
�
j

m
;�
j�1

m

������
1!1

�cK2�2eb�=m

m
;

(8)

where c 2 Oðd2kÞ, b 2 OðdkÞ, and K � Nk is the

number of strictly k-local terms L� � 0. TL�
ð� j

m ; �
j�1
m Þ

can be replaced by the propagator TLav
�
ð� j

m ; �
j�1
m Þ ¼

expð�Lav
� =mÞ of the average Liouvillian
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L av
� ¼ m

�

Z �j=m

�ðj�1Þ=m
L�dt (9)

without changing the scaling (8) of the error.
All constants are calculated explicitly in the

Supplemental Material [15]. The supremum in a can be
replaced by suitable time averages over the time steps such
that kXtk1 can be large for small times. Before we turn to
the proof of this result, we discuss important implications.

Implication 1 (Dissipative Church-Turing theorem).
Time dependent Liouvillian dynamics can be simulated
efficiently in the standard unitary circuit model.

Using the Stinespring dilation [16], each of the Km

propagators TL�
ð� j

m ; �
j�1
m Þ can be implemented as a uni-

taryUj
� acting on the subsystem� and an ancilla system of

size at most d2k. These unitaries can be decomposed fur-

ther into circuits ~Uj
� of at most n ¼ Oðlog�ð1=�SKÞÞ gates

from a suitable gate set using the Solovay-Kitaev algorithm

[17] with �< 4 such that kUj
� � ~Uj

�k1 � �SK. Note

that for pure states, we have 1
2 kUjc ihc jUy � ~Ujc i�

hc j ~Uyk1 � kU� ~Uk1 � �SK and the 1-norm is nonin-
creasing under partial trace. The full error is bounded by
the error from the Trotter approximation (8) plus the one
arising from the Solovay-Kitaev decomposition, in
(1 ! 1)-norm bounded by Km�SK.

At this point a remark on the appropriate degree of
generality of the above result is in order. The proven result
applies to dynamics under arbitrary piecewise continuous
time dependent k-local Liouvillians. It does not include
non-Markovian dynamics as often resulting from strong
couplings. However, not only this result, but no dissipative
Church-Turing theorem, can or should cover such a situ-
ation: Including highly non-Markovian dynamics would
mean to also include extreme cases such as an evolution
implementing a swap gate that could write the result of an
incredibly complicated process happening in the huge
environment into the system. In such an intertwined situ-
ation it makes only limited sense to speak of the time
evolution of the system alone in the first place. On the
other hand, in practical simulations of non-Markovian
dynamics, where the influence of memory effects is
known, pseudomodes can be included [18], thereby render-
ing the above results again applicable.

It has been shown recently [19] that the set of states that
can be reached from a fixed pure reference state by k-local,
time dependent Hamiltonian dynamics is exponentially
smaller than the set of all pure quantum states. In fact, a
more general statement holds true (see Supplemental
Material [15]).

Implication 2 (Limitations of efficient state genera-
tion). Let S�

� be the set of states resulting from the time
evolution of an arbitrary initial state � under all possible
(time dependent) k-local Liouvillians up to some time �.
For times � that are polynomial in the system size, the

relative volume of S�
� (measured in the operational metric

induced by the 1-norm) is exponentially small.
Finally, Theorem 1 also provides a rigorous error bound

for the simulation of local time dependent Liouvillian dy-
namics on a classical computer. Even though classical simu-
lation of quantum mechanical time evolution is generally
believed to be hard in time, we have the following result.
Implication 3 (Simulation on classical computers).

For fixed simulation time and efficiently evaluable initial
states [20], dissipative dynamics can be simulated effi-
ciently in the system size on classical computers, e.g.,
using a variant of time-dependent density matrix renormal-
ization group.
This establishes a mathematically sound foundation for

simulation techniques based on Trotter decomposition that
have previously been used without proving that the approxi-
mation is actually possible; see, e.g., Ref. [21]. Recently,
CPT maps like the local channels in the Trotter decompo-
sition (8) have even been implemented in the lab [22].
Proof of theorem 1.—We now turn to the proof of the

main result. First we will find (1 ! 1)-norm estimates
(i) for T and (ii) for T� which will be used frequently. In
the next step (iii) we derive a product formula, which we
use iteratively (iv) to prove the Trotter decomposition.
Finally, (v) we show how the second claim of the theorem
concerning the approximation with the average Liouvillian
can be proven. Throughout the proof we consider times
t � s � 0.
(i) Because any CPT map T maps density matrices to

density matrices, we have kTk1!1 � 1. In Ref. [14] it is
shown that

kTk1!1 ¼ sup
A¼Ay;kAk1¼1

kTðAÞk1 (10)

for any CPT map T. Any self-adjoint operator A ¼ Aþ �
A� can, by virtue of its spectral decomposition, be written
as the difference of a positive and negative part A	 � 0.
Since T is CPT, kTðA	Þk1 ¼ trðTðA	ÞÞ ¼ kAk1, hence
kTk1!1 � 1, and finally kTk1!1 ¼ 1.
(ii) For any Liouvillian K the propagator TKðt; sÞ is

invertible and the inverse T�
Kðt; sÞ ¼ ðTKðt; sÞÞ�1 is the

unique solution of

d

dt
T�ðt; sÞ ¼ �T�ðt; sÞKt; T�ðs; sÞ ¼ id: (11)

From the representation of T� as a reversely time-ordered
exponential, the inequality

kT�
Kðt; sÞk1!1 � exp

�Z t

s
kKrk1!1dr

�
(12)

follows. This can be proved rigorously with the ideas from
Ref. [23] (see Supplemental Material [15]).
For the case where K is strictly k-local, we use its

Lindblad representation and the inequality kA�Bk1 �
kAk1k�k1kBk1 to establish kKk1!1 2 OðdkÞ and hence

kT�
Kðt; sÞk1!1 � ebðt�sÞ, with b 2 OðdkÞ.
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(iii) In the first step we use similar techniques as the ones
being used for the unitary case [13] where differences of
time evolution operators are bounded in operator norm by
commutators of Hamiltonians. Applying the fundamental
theorem of calculus twice, one can obtain for any two
Liouvillians K and L

TKþLðt; sÞ � TKðt; sÞTLðt; sÞ
¼ TKðt; sÞTLðt; sÞ

Z t

s
T�
L ðr; sÞ

Z r

s

d

du
ðT�

Kðu; sÞ
�LrTKðu; sÞÞT�

Kðr; sÞTKþLðr; sÞdudr
¼

Z t

s

Z r

s
TKðt; sÞTLðt; rÞT�

Kðu; sÞ
� ½Ku;Lr�T�

Kðr; uÞTKþLðr; sÞdudr: (13)

In the next step we take the (1 ! 1)-norm of this equation,
use the triangle inequality, employ submultiplicativity
of the norm, and use (i) and (ii) to obtainR
t
s

R
r
s k½Ku;Lr�k1!1dudr as an upper bound. In the case

where K and L are strictly k-local k½Ku;Lr�k1!1 2
Oðd2kÞ, which follows by the same arguments used in (ii)
to bound kKk1!1. In the case whereL is only k-local with
K terms, k½Ku;Lr�k1!1 is increased by at most the factor
K such that

kTKþLðt;sÞ�TKðt;sÞTLðt;sÞk1!12Oððt�sÞ2ebðt�sÞd2kKÞ:
(14)

(iv) The propagator can be written as

TLð�; 0Þ ¼
Ym
j¼1

TLð�j=m; �ðj� 1Þ=mÞ: (15)

Using the inequality

kT1T2� ~T1
~T2k�kT1kkT2� ~T2kþkT1� ~T1kk ~T2k (16)

and Eq. (14) iteratively, one can establish the result as
stated in Eq. (8).

(v) For any strictly k-local LiouvillianK the propagator
TKðt; sÞ can be approximated by the propagator of the
average Liouvillian,�����TKðt; sÞ � exp

�Z t

s
Krdr

������
1!1

¼ 1

3
bðt� sÞ2: (17)

This can be shown using the techniques described above by
lifting the proof from Ref. [19] to the dissipative case (see
Supplemental Material [15]). A comparison of Eq. (17)
with Eq. (14) shows that the error introduced by using the
average Liouvillian is small compared to the error intro-
duced by the product decomposition and does not change
the scaling of the error.

Conclusion.—In this work we show that under reason-
able assumptions the dynamics of open quantum systems
can be simulated efficiently by a circuit of local quantum
channels in a Trotter-like decomposition. This channel

circuit can further be simulated by a unitary quantum
circuit with polynomially many gates from an arbitrary
universal gate set. As a corollary it follows that the dis-
sipative model of quantum computation is no more power-
ful than the standard unitary circuit model. Furthermore,
the result implies that k-local Liouvillian dynamics can be
simulated efficiently in the system size on a classical
computer. It also shows that systems considered in the
context of dissipative phase transitions [11,24] can be
simulated in both of the above senses. The result can be
seen as a quantum Church-Turing theorem in the sense that
under reasonable and necessary requirements any general
time evolution of an open quantum system can be simu-
lated efficiently on a quantum computer.
This work was supported by the EU (Qessence, Minos,
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APPENDIX

In this appendix we elaborate on some of the technical as-
pects of our results and give explicit expressions for all in-
volved constants. First, we give a detailed derivation of the
error caused by the Trotter approximation for the time evo-
lution under a time dependentk-local Liouvillian. Along the
way we also derive a completely general bound for the Trot-
ter error for arbitrary (not necessarilyk-local) time dependent
Liouvillians, which we don’t need directly for the statements
made in the paper, but which could be of interest indepen-
dently as the bounds of our more specialized theorem is not
optimal in certain situations. Secondly, we present a detailed
derivation of the error that is made when the time evolution
under the time dependent Liouvillian is replaced by that of the
average Liouvillian on a small time step. Finally, we prove re-
sults on the scaling behavior ofǫ-nets used in the end of the
paper to argue that only an exponentially small subset of states
can be prepared with time dependentk-local Liouvillian dy-
namics in polynomial time from a fixed reference state. Our
argument lifts the considerations from Ref. [1] to the spaceof
density matrices and the physically relevant trace distance.

TROTTER APPROXIMATION FOR TIME DEPENDENT
LIOUVILLIANS

We start by giving a detailed proof that for short time in-
tervals it is possible to approximate the time evolution of a
k-local time dependent LiouvillianK + L by splitting off a
strictly k-local partK and performing the time evolution un-
derL andK sequentially.

Theorem 2(Product decomposition of propagators).LetL
andK be two time dependent Liouvillians that act on the same
quantum system ofN subsystems with local Hilbert space di-
mensiond. Furthermore, letK be strictlyk-local and letL be
k-local consisting ofK strictly k-local termsLΛ. For t ≥ s
the Trotter error is given by

‖TK+L(t, s)− TK(t, s)TL(t, s)‖1→1 ≤ (t− s)2eb(t−s)cK ,
(1)

where

b = 2a2(2 + 4dk),

c = 2a2 + 8a3dk + 16a4d2k,

a = max
Λ

max
X∈K∪LΛ

sup
s≤v≤t

‖Xv‖∞ .

We will use this theorem iteratively to bound the error
caused by decomposing the propagators of arbitraryk-local
Liouvillians into the propagators of the individual strictly k-
local terms.

The proof of this theorem can be presented most conve-
niently as a series of Lemmas. From the main text (point (i)
in the proof of the Theorem, page 3) we already know that
completely positive and trace preserving (CPT) maps are con-
tractive:

Lemma 3 (Contraction property of the propagator).
LetT be a CPT map. Then‖T ‖1→1 = 1.

We also need to bound the inverse propagator.

Lemma 4 (Backward time evolution). For t ≥ s:

(i) TL(t, s) is invertible and its inverse isT−
L (t, s) as de-

fined by Eq. (11) in the main text.

(ii) If the Liouvillian L is piecewise continuous in time then

∥∥T−
L (t, s)

∥∥
1→1

≤ exp(

∫ t

s

‖Lr‖1→1 dr) . (2)

Proof. First, we consider the case whereL is continuous in
time and use the theory presented in Ref. [2] and in particu-
lar the “properties” which are proven in this reference. The
product integralof L is defined analogously to the Riemann
integral,

t∏

s

exp(Lr dr) := lim
∆rj→0 ∀j

J∏

j=1

exp(Lrj∆rj) , (3)

where
∏J

j=1Xj := XJXJ−1 . . . X1. SinceTL(t, s) solves
the initial value problem in Eq. (6) from the main text,
TL(t, s) =

∏t
s exp(Lr dr) which is exactly the statement of

property 1.
(i) Property 3 precisely states that a product integral is invert-
ible. It is not hard to see that the inverse ofTL(t, s) solves the
initial value problem (11) from the main text.
(ii) The inverse propagator is

T−
L (t, s) =

(
t∏

s

exp(Lr dr)

)−1

. (4)

Since matrix inversion is continuous,

T−
L (t, s) = lim

∆rj→0 ∀j

1∏

j=J

exp(−Lrj∆rj). (5)
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We call this thereversely ordered product integraland use the
convention

∏1
j=J Xj := X1X2 . . . XJ . Using the submulti-

plicativity of the(1 → 1)-norm and the triangle inequality we
obtain from Eq. (5)

∥∥T−
L (t, s)

∥∥
1→1

≤ lim
∆rj→0 ∀j

1∏

j=J

exp(
∥∥Lrj

∥∥
1→1

∆rj) (6)

=exp( lim
∆rj→0 ∀j

J∑

j=1

∥∥Lrj

∥∥
1→1

∆rj) (7)

The definition of the Riemann integral finishes the proof for

the continuous case.

If L is only piecewise continuous in time then (i) and (ii)
hold for all the intervals whereL is continuous and from that
and the composition propertyTL(u, v)TL(v, w) = TL(u,w)
(u ≥ v ≥ w) it follows that (i) and (ii) hold on the whole time
interval[s, t].

With these tools at hand we can now prove a bound on the
Trotter error of two arbitrary (not necessarilyk-local) time
dependent Liouvillians.

Theorem 5(General Trotter error). For two arbitrary time dependent LiouvilliansK andL the Trotter error is given by

‖TK+L(t, s)− TK(t, s)TL(t, s)‖1→1 ≤
∫ t

s

∫ r

s

‖[Ku,Lr]‖1→1 du dr e2
∫ t
s
‖Kv‖1→1 dv (8)

≤ 1
2 (t− s)2 sup

t≥r≥u≥s
‖[Ku,Lr]‖1→1 e2(t−s) supt≥v≥s‖Kv‖1→1 . (9)

Proof. We use a similar argument as in Ref. [3]. With the fundamentaltheorem of calculus we obtain

T−
L (t, s)T−

K (t, s)TK+L(t, s)− id =

∫ t

s

∂r
(
T−
L (r, s)T−

K (r, s)TK+L(r, s)
)
dr

=

∫ t

s

T−
L (r, s)[T−

K (r, s),Lr]TK+L(r, s) dr

=

∫ t

s

T−
L (r, s)

(
T−
K (r, s)LrTK(r, s)− Lr

)
T−
K (r, s)TK+L(r, s) dr

=

∫ t

s

T−
L (r, s)

∫ r

s

d

du

(
T−
K (u, s)LrTK(u, s)

)
du T−

K (r, s)TK+L(r, s) dr

=

∫ t

s

∫ r

s

T−
L (r, s)T−

K (u, s)[Lr,Ku]TK(u, s)T
−
K (r, s)TK+L(r, s) du dr .

Multiplying with TK(t, s)TL(t, s) from the left yields

TK+L(t, s)− TL(t, s)TK(t, s) =
∫ t

s

∫ r

s

TK(t, s)TL(t, r)T
−
K (u, s)[Lr,Ku]T

−
K (r, u)TK+L(r, s) du dr. (10)

With submultiplicativity of the(1 → 1)-norm and the bounds on the norms of the forward and backward propagators from
lemma 3 and 4 the result follows.

To complete the proof of theorem 2 one needs to bound the
norms‖[Lr,Ku]‖1→1 and‖Kr‖1→1 in (9) for the special case
thatK is strictly k-local andL is k-local withK strictly k-
local terms.

Lemma 6. LetK andL be two Liouvillians which act on the
same operator space ofN subsystems with local Hilbert space
dimensiond. Furthermore, letK be strictlyk-local andL be
k-local consisting ofK strictly k-local termsLΛ. Then

2 ‖Kv‖1→1 ≤ bv (11)

and 1
2 ‖[Lr,Ku]‖1→1 ≤ cr,uK , (12)

wherebv = 4av+8dka2v, cr,u = 2arau+4(ara
2
u+a

2
rau)d

k+
16a2ra

2
ud

2k, andat = maxΛ max{‖Xt‖∞ : X ∈ K ∪ LΛ}.

Proof. First, let both Liouvillians be strictlyk-local. Hence
each of them can be written with at mostdk Lindblad opera-
tors. Let the Lindblad representations ofK andL be

K = −i[G, ·] +
dk∑

ν=1

D[Kν ] (13)
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and

L = −i[H, ·] +
dk∑

µ=1

D[Lµ] , (14)

whereD[X ](ρ) := 2XρX† − {X†X, ρ}. Inequality (11) fol-
lows from counting the number of terms in (13) and using that
‖AρB‖1 ≤ ‖A‖∞ ‖ρ‖1 ‖B‖∞. Similarly, by writing out the
commutator[K,L] and using the above representations one
can verify that[Kr,Lu] ≤ 2arau + 4(ara

2
u + a2rau)d

k +
16a2ra

2
ud

2k. If L =
∑

Λ⊂[N ] LΛ is k-local withK terms the
bound is increased by at most a factor ofK.

Theorem 2 follows as a corollary of theorem 5 and lemma 6
by inserting the suprema of the bounds (11) and (12) into
Eq. (9). Instead of using suprema in the step from Eq. (8)
to Eq. (9) one can take averages overbv andcr,u to obtain a
better, but more complicated bound. One can also improve
the scaling of the error with the size of the time steps by using
higher order Trotter schemes as in Ref. [3] (time dependent
case) or Ref. [4] (time constant case).

APPROXIMATION BY THE AVERAGE LIOUVILLIAN

In the product formula in our theorem 1 in the main text
one can replace the time ordered integralsTLΛ(t, s) by or-

dinary exponentials of the time averaged Liouvillians. This is
not essential to our argument concerning the quantum Church-
Turing thesis, but makes the result more useful for applica-
tions. The additional error caused by doing this is bounded in
the following theorem:

Theorem 7 (Approximation by the average Liouvillian).
Let K be a strictlyk-local Liouvillian acting on an opera-
tor space with local Hilbert space dimensiond. Then for any
t ≥ s

‖TK(t, s)− exp((t− s)Kav)‖1→1 ≤ 1
3b(t− s)2 , (15)

where the average Liouvillian

Kav :=
1

t− s

∫ t

s

Kr dr (16)

is indeed a Liouvillian,b = 2a2(2 + 4dk), and a =
maxXt∈K supt ‖Xt‖∞.

Proof. We lift the proof from Ref. [1] to the dissipative setting.
Let t ≥ s be fixed. Applying the fundamental theorem of
calculus and the definition ofKav, we obtain

TKav(t, s)− TK(t, s) = −TK(t, s)
∫ t

s

T−
K (u, s) (Ku −Kav)TKav(u, s) du

= − 1

t− s

∫ t

s

∫ t

s

TK(t, u) (Ku −Kr)TKav(u, s) dr du

= − 1

t− s

∫ t

s

∫ t

s

(
TK(t, u)KuTKav(u, s)− TK(t, r)KuTKav(r, s)

)
dr du .

The inequality in Eq. (16) from the main text yields

‖TKav(t, s)− TK(t, s)‖1→1 ≤ 1

t− s

∫ t

s

∫ t

s

‖Ku‖1→1

(
‖TK(t, u)− TK(t, r)‖1→1 ‖TKav(u, s)‖1→1

+ ‖TK(t, r)‖1→1 ‖TKav(u, s)− TKav(r, s)‖1→1

)
dr du .

(17)

FromTK(u, s) − TK(r, s) = −
∫ u

r TK(v, s)Kv dv, lemma 3
and the submultiplicativity of the norm we know that fort ≥
u, r ≥ s

‖TK(u, s)− TK(r, s)‖1→1 ≤
∣∣∣∣
∫ r

u

‖Kv‖1→1 dv

∣∣∣∣ (18)

and similarly forKav. With (17) we obtain

‖TKav(t, s)− TK(t, s)‖1→1

≤ 2

∫ t

s

∫ t

s

∣∣∣∣
∫ r

u

‖Kv‖1→1 dv

∣∣∣∣ dr du . (19)

It remains to show thatKav is a Liouvillian, i.e., that
exp(tKav) is a CPT map for allt ≥ 0. First of all, finite sums
of Liouvillians are Liouvillians. Furthermore, limits of se-
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quences of Liouvillians are Liouvillians since the exponential
function is continuous and the set of CPT maps is closed.

EFFICIENTLY PREPARABLE STATES CONSTITUTE AN
EXPONENTIALLY SMALL SUBSET OF STATE SPACE

In the following we will argue that for every fixed initial
state, the time evolution for a time interval of lengthτ un-
der any (possibly time dependent)k-local Liouvillian yields
a state that lies inside of one ofNT ǫ-balls in trace distance.
For timesτ which are polynomial in the system size,NT is ex-
ponentially smaller than the cardinality of anyǫ-net (in trace
distance) that covers the state spaceS. The case of Hamilto-
nian dynamics and state vectors is investigated in Ref. [1].It
will be convenient to use the Bachmann-Landau symbolsO
andΩ for asymptotic upper and lower bounds up to constant
factors.

By using theorem 1 of the main text, which provides an er-
ror bound for the Trotter approximation of a Liouvillian time
evolution, together with the Stinespring dilation [5] and the
Solovay-Kitaev algorithm [6], one obtains the following:

Theorem 8 (Number of channel circuits). The propagator
from time0 to timeτ , generated by anyk-local time dependent
Liouvillian acting onN subsystems with local Hilbert space
dimensiond ∈ O(1) can be approximated in(1 → 1)-norm
to accuracyǫ > 0 with one out ofNT channel circuits, where

log(NT ) ∈ O

(
N3k+2τ4

ǫ5

)
. (20)

Proof. According to theorem 1 of the main text, the propaga-
tor TL(τ, 0) of the Liouvillian time evolution can be approxi-
mated by a circuit

∏m
j=1

∏
Λ⊂[N ] T

j
Λ of at mostNkm strictly

k-local channelsT j
Λ to precisionǫ1 in (1 → 1)-norm, where

according to Eq. (2) from the main text,m = 2cN2kτ2/ǫ1.
We have assumed that2 ln(2)cN2kτ/ǫ1 ≥ b wherec andb
are given explicitly in theorem 2 and depend only on strictly
local properties of the Liouvillian. Employing the Stine-
spring dilation [5] for each of the channelsT j

Λ one obtains
a circuit of at mostNkm strictly 3k-local unitary gatesU j

Λ.
EachU j

Λ acts on an enlarged system composed of thedk-
dimensional original subsystem and an ancilla system of di-
mensiond2k. One can use the Solovay-Kitaev algorithm [6]
to approximate every single gateU j

Λ of the unitary circuit
by a circuit Ũ j

Λ of one- and two-qubit gates from a univer-
sal gate set of cardinalitynSK ∈ O(1), e.g.,nSK = 3. With
NSK = cSK logα(1/ǫSK) of thosenSK standard gates, each
unitaryU j

Λ can be approximated to accuracyǫSK introducing
a total errorǫ2 = NkmǫSK. The constantcSK depends ond3k.

Consequently, we have for the dilationU of∏m
j=1

∏
Λ⊂[N ] T

j
Λ an approximation Ũ with opera-

tor norm accuracyǫ2, given by a unitary circuit of
NAll gates = NSKN

km standard gates from the univer-
sal gate set. Note that for any pure state|ψ 〉, we have

1
2‖U |ψ 〉〈ψ |U †, Ũ |ψ 〉〈ψ | Ũ †‖1 ≤ ‖U − Ũ‖∞ and the
1-norm is non-increasing under partial trace. Tracing out the
ancillas, we obtain an approximatioñT of TL(τ, 0) with error
‖TL(τ, 0) − T̃‖1→1 ≤ ǫ = ǫ1 + 2ǫ2. The total number of
different channels̃T , which can arise in this way from the
chosen universal gate set, isNT ≤ nSK

NAll gates, i.e., for given
c, τ, k,N andd, a number ofNT standard gates are enough
to approximate anyTL(τ, 0) in (1 → 1)-norm to accuracyǫ.

To conclude, we bound the order ofNT .

log(NT ) ≤ NAll gateslognSK

= cSK logα
(
2cN3kτ2

ǫ1ǫ2

)
2cN3kτ2

ǫ1
lognSK

< cSK(3k)
α logα

(
2cNτ

ǫ1ǫ2

)
2cN3kτ2

ǫ1
lognSK .

(21)

Since we are interested in the scaling oflog(NT ) for large
N and smallǫ1, ǫ2 we can assume that the argument of the
logarithm is larger than18 and use thatlog42(x) < x2 for
x ≥ 18 to obtain

log(NT ) < C
N3k+2τ4

ǫ31ǫ
2
2

(22)

with C = cSK(3k)
α(2c)3 lognSK.

The above theorem shows that the time evolution under ak-
local Liouvillian can be approximated by one out ofNT many
circuits to accuracyǫ. The states that can be reached by any
k-local Liouvillian time evolution, starting from a fixed initial
state, are hence all contained in the union ofNT ǫ-balls (in
1-norm) around the output states of these circuits.

Let us now determine whether thoseǫ-balls can possibly
cover the whole state space. For this purpose we introduce
ǫ-nets. We consider aD-dimensional Hilbert spaceH and
denote

(i) the set of state vectors, i.e., the set of normalized vectors
in H byP ⊂ H,

(ii) the set of density matrices byS ⊂ B(H), and
(iii) the set of rank one projectors byP ⊂ S.
For an arbitrary subsetR ⊂ B(H) and someǫ > 0 we call a
finite subsetN p

ǫ (R) ⊂ R satisfying

∀a ∈ R ∃b ∈ N p
ǫ (R) : ‖a− b‖p ≤ ǫ (23)

an ǫ-net forR in (Schatten)p-norm. Furthermore, we call an
ǫ-netN̂ p

ǫ (R) optimalif any other setX ⊂ Rwith smaller car-
dinality |X | < |N̂ p

ǫ (R)| cannot be anǫ-net forR in p-norm.
Similarly, we defineǫ-netsNHS

ǫ (P ) ⊂ P for state vectors in
Hilbert space norm and, as before, we denote optimalǫ-nets
by N̂HS

ǫ (P ).
In Ref. [7] it was shown that for the set of state vectors of

aD-dimensional quantum system there existǫ-nets of cardi-
nality at most|NHS

ǫ (P )| ≤ (5/(2ǫ))2D. As the Hilbert space
distance upper bounds [8] the trace distance,

| |ψ 〉 − |φ〉 |2 ≥ 1
2 ‖ |ψ 〉〈ψ | − |φ〉〈φ |‖1

= dist( |ψ 〉〈ψ | , |φ 〉〈φ |) , (24)
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this also implies the existence ofǫ-nets forP in p-norm of
cardinality|N p

ǫ (P)| ≤ (5/ǫ)2D for anyp ≥ 1. By comparing
the volume of theǫ-balls with the volume of the whole set of
state vectors one can see that for state vectors this construction
is essentially optimal.

Lemma 9. For aD-dimensional quantum system

|NHS
ǫ (P )| ∈ Ω(

(
1

ǫ

)2D−1

) ∩O(

(
5

2ǫ

)2D

) . (25)

Proof. The set of state vectors in aD-dimensional Hilbert
space is isomorphic to a(2D − 1)-sphere with radius1 in
(2D)-dimensional real Euclidean space such that the Hilbert
space norm| · |2 on state vectors coincides with the Euclidean
norm inR2D. The surface area of a(n − 1)-sphere of radius
r is Sn−1(r) = nCnr

n−1, whereCn = πn/2/Γ(n/2 + 1)
andΓ is the Euler gamma function. The set of states within
Hilbert space distanceǫ to a given state is a spherical cap on
that sphere with opening angle4 arcsin(ǫ/2). Forǫ ≪ 1, the
area of such a cap is approximately equal to the volume of a
(2D − 1)-ball of radiusǫ. In fact, a more detailed analysis
reveals that forD = 3 the two are exactly identical and for
D > 3 the cap is always smaller than the(2D − 1)-ball. The
volume of ann-ball of radiusr is Vn(r) = Cnr

n. Thus for
D ≥ 3,

(
5

2ǫ

)2D

≥ |NHS
ǫ (P )| ≥ S2D−1(1)

V2D−1(ǫ)
=

2DC2D

C2D−1ǫ2D−1

= 2
√
π
Γ(D + 1/2)

Γ(D)

(
1

ǫ

)2D−1

≥ 15π

8

(
1

ǫ

)2D−1

,

where the first inequality follows from Ref. [7].

This is essentially the argument used in Ref. [1] to estab-
lish that Hilbert space is a “convenient illusion”. However,
the lower bound on|N̂HS

ǫ (P )| does not immediately imply a
lower bound on|N̂ p

ǫ (P)| (and hence also not for|N̂ p
ǫ (S)|)

for anyp ≥ 1. In particular, there are states with distance2
in Hilbert space norm and distance0 in any of thep-norms,
namely, any pair of state vectors{ |ψ 〉 ,− |ψ 〉}.

We now show that a similar lower bound as in the last
lemma holds for the size of optimalǫ-nets forP andS in
p-norm.

Lemma 10. For p ∈ {1, 2}

|N̂ p
ǫ (S)| ≥ |N̂ p

2ǫ(P)| ∈ Ω(

(
1

4ǫ

)2D−3

). (26)

Proof. For a given state vector|ψ 〉 it will be convenient to use
the notationψ := |ψ 〉〈ψ |.

We start to prove the first inequality. Fixp ∈ {1, 2}. There
is a family{ρj} ⊂ N̂ p

ǫ (S) such that theirǫ-neighborhoods in
p-norm coverP and such that for eachρj there exists a rank-1
projectorψj ∈ P satisfying‖ρj − ψj‖p ≤ ǫ. Then{ψj} is a

(2ǫ)-net forP in p-norm with|N̂ p
ǫ (S)| ≥ |{ψj}| ≥ |N̂ p

2ǫ(P)|.

From ‖·‖1 ≥ ‖·‖2 it follows that |N 2
ǫ (P)| ≤ |N 1

ǫ (P)|.
Hence it remains to prove the lower bound for|N 2

2ǫ(P)| in
(26). For this we construct anǫ′-netNHS

ǫ′ (P ) for state vectors
in Hilbert space norm from a(2ǫ)-netN 2

2ǫ(P). For every ele-
mentψj ∈ N 2

2ǫ(P) we fix an eingenvalue-1 eigenvector|ψj 〉.
Using the(ǫ2/2)-netN 1

ǫ2/2([0, 1[) = {ǫ2, 2ǫ2, . . . , ⌈1/ǫ2⌉ǫ2}
for [0, 1[ with cyclic boundary conditions we define the set

NHS
ǫ′ (P ) = {e2πiδ |ψ 〉 : δ ∈ N 1

ǫ2/2([0, 1[), |ψ 〉 ∈ { |ψj 〉}} .
(27)

This is anǫ′-net forP and we will find an expression forǫ′ in
terms ofǫ.

Let |φ 〉 ∈ P . Then there exists a state vector|ψ 〉 ∈ { |ψj 〉}
such that

(2ǫ)2 ≥ ‖φ− ψ‖22 = 2− 2| 〈φ|ψ〉 |2
≥ 2− 2| 〈φ|ψ〉 | ,

and aδ ∈ N 1
ǫ2/2([0, 1[) such that

∣∣ |〈φ|ψ〉| − Re(e2πiδ 〈φ|ψ〉)
∣∣ < (2ǫ)2 .

Together this yields

3(2ǫ)2 > 2− 2Re(e2πiδ 〈φ|ψ〉) = | |φ〉 − e2πiδ |ψ 〉 |22 .

Sincee2πiδ |ψ 〉 ∈ NHS
ǫ′ (P ), we can chooseǫ′ = 4ǫ >

√
12ǫ

to make NHS
ǫ′ (P ) a (4ǫ)-net. From the definition (27) of

NHS
ǫ′ (P ) we can bound its cardinality

|NHS
4ǫ (P )| = |N 1

ǫ2([0, 1[)| |{ |ψi 〉}|
< ⌈1/ǫ2⌉|N 2

2ǫ(P)| , (28)

where we have used that by construction|{ |ψi 〉}| =
|N 2

2ǫ(P)|. Finally, as the described construction works for
any(2ǫ)-netN 2

2ǫ(P), we obtain
⌈
1/ǫ2

⌉
|N̂ 2

2ǫ(P)| > |N̂HS
4ǫ (P )| (29)

and lemma 9 finishes the proof.

Combining theorem 8 and lemma 10, we arrive at the fol-
lowing theorem:

Theorem 11(Limitations of efficient state generation).For
every fixed initial state, the time evolution for a time in-
terval of lengthτ under anyk-local Liouvillian acting on
N subsystems with local Hilbert space dimensiond yields
a state that lies inside one ofNT ǫ-balls in 1-norm with
log(NT ) ∈ O

(
N3k+2τ4/ǫ5

)
. For timesτ polynomial in

the system sizeN , this is asymptotically exponentially smaller
thanlog |N̂ 1

ǫ (S)| ∈ Ω(−2dN) where|N̂ 1
ǫ (S)| is the cardinal-

ity of an optimalǫ-net in1-norm that covers the state spaceS.
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Erratum: Dissipative Quantum Church-Turing Theorem
[Phys. Rev. Lett. 107, 120501 (2011)]

M. Kliesch, T. Barthel, C. Gogolin, M. Kastoryano, and J. Eisert
(Received 21 August 2012; published 13 September 2012)

DOI: 10.1103/PhysRevLett.109.119904 PACS numbers: 03.67.Ac, 02.60.Cb, 03.65.Yz, 89.70.Eg, 99.10.Cd

Implication 3 in Ref. [1] is concerned with the classical simulation of k-local Markovian open system dynamics. While a
slightly weaker statement compared to the one given is true [2], as can be proven using Lieb-Robinson bounds, this result
is, strictly speaking, not implied by the argument given in Ref. [1].

In the physically important case where the local Liouvillian terms L� act on k neighboring subsystems of a regular
lattice of finite spatial dimension, the time evolution is quasilocal [2]. This means that, up to an exponentially small error,
the diameter of the support of any evolved local observable grows at most linearly in time, which is reminiscent of a light
cone effect. Consequently, the evolution of the local observable can be approximated to arbitrary precision by applying the
propagator of a spatially truncated version of the Liouvillian. Hence, the time evolution can be simulated on classical
computers with a cost that is independent of the system size.

Our original argument leading to implication 3 is wrong because it turns out that a truncation that is solely based on the
causal structure of the channel circuit originating from the Trotter approximation does not yield quasilocal dynamics and
alone does not establish an efficient classical simulation scheme.

We would like to thank T. J. Osborne for kindly pointing out this error to us.
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2 Locality and complexity in lattice systems

2.2.2 Lieb-Robinson bounds and quasi-locality of time evolution

In the last section we have seen that dissipative dynamics can be simulated efficiently on a quan-
tum computer. This motivates the question, under what assumptions and in what sense Marko-
vian dynamics can be simulated efficiently even on classical computers. It is strongly believed
that the dynamics, even when restricted to local observables, cannot be simulated efficiently in
time2. The local structure from the dissipative Trotter trotter circuits from the last publication
is a “brick layer” structure (as in Figure 2.1 and Figure 1c on page 109). For one such circuit
and a local observable only “bricks” insides the observables cone can influence the expectation
value. This already suggests that one can simulate time evolved local observables efficiently in
the system size. A proper error analysis, however, reveals that this implication does not hold in
general. But nevertheless, we use Lieb-Robinson bound techniques to show that the error made
when truncating the Liouvillian some distance away from the observable’s Lieb-Robinson cone
is exponentially small in that distance. This indeed implies that local dynamics can be simu-
lated efficiently in the system size on classical computers. Technically, we slightly generalize
a dissipative Lieb-Robinson bound from Ref. [Pou10] (see also Ref. [NVZ11]). The bound
on the speed of propagation of correlations gives rise to a space-time cone for the considered
observable or subsystem. This allows us to prove that one can truncate the Liouvillian at some
distance away from the space-time cone and obtain the same time evolution up to an error ex-
ponentially small in that distance. Hence, the simulation cost is independent of the system size
and is bounded inverse polynomially in the error. This answers the question from a purely com-
plexity theoretic point of view. However, exploiting this in an exact diagonalization approach
directly requires unfeasible many resources. In order to reduce the computation cost one can
Trotter-approximate (see Publication [Kli+11a]) the truncated Liouvillian, as a first step. For
the case without dissipation, these two approximations are the basic building blocks of density
matrix renormalization group (DMRG) methods [ECP10, Eis13, Oru13, PGVWC07, Sch11,
Sch13, VMC08]. With these methods one performs further approximation steps that exploit the
fact that the generated states are close to a low-dimensional submanifold of state space. One
remaining problem for dissipative systems is that these further approximations only preserve
positivity of the time evolution if there is no dissipation present. This is not only a technical
issue, but comes from a fundamental problem that we explain in detail in Section 2.4.2.

For the sake of completeness, the corresponding Publication [BK12] on quasi-locality of
Markovian time evolution is presented in Appendix B.

2otherwise BQP=BPP, i.e., one could perform quantum computations classically efficiently
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2.3 Locality of temperature from a new thermal Lieb-Robinson type bound

2.3 Locality of temperature from a new thermal
Lieb-Robinson type bound

In this section we will see that, also when considering high temperature states, a locality struc-
ture allows for statements reminiscent of the quasi-locality of time evolution and the resulting
simulatability result. It will turn out that the developed methods are closely interconnected with
our physical understanding of temperature.

Basic statistical mechanics teaches us that temperature is intensive, or, in other words, a local
quantity. This concept works perfectly well for non-interacting systems. But once a subsystem
of interest interacts with its environment, the intensivity of temperature breaks down [HM05]:
Interactions generate correlations that lead to noticeable deviations of the state of the subsystem
from a thermal state. Hence, given only a subsystem state, there is no canonical way to assign
a temperature to the subsystem. We call this the locality of temperature problem. Ultimately,
this is a standard problem in quantum mechanics, as it is about studying the classical concept
of temperature in the limit of small length scales. In the light of recent advances in the foun-
dations of statistical mechanics [GLTZ06, LPSW09, RGE12], suggestions for small thermal
machines working in the quantum regime [LPS10, ME12a], and experimental achievements of,
e.g., thermometers on the nano-scale [GB02], a better understanding of the limitations of the
concept of temperature on small scales is a pressing issue.

Progress in that and also other directions is hindered by a lack of mathematical tools ex-
ploiting the locality structure in thermal states. As we already saw, a lot is known about
ground states [Has06, HW05, LVV13, MZ13, NS06], as powerful mathematical tools such as
Lieb-Robinson bounds (see Publication [KGE14b] on pages 13ff) and the detectability lemma
[AALV09, AAVL11] are available. For thermal states a lot less is known, in particular, when
it comes to finite systems, which are not one-dimensional. The available explicit clustering re-
sults, for instance, are of the following type: In the limit of the distance between the supports of
two observables being infinitely large, the observables become uncorrelated (w.r.t. the covari-
ance) [PY95]. But physical intuition tells us that long-range correlations are rare and one should
expect systems to have a finite correlation length in many situations. It is known, however, that
thermal states at high temperature can be approximated by states of matrix product form with
sub-exponentially many parameters in the system size [Has06]. While the implications seem to
be effectively restricted to one-dimensional systems, this work develops an important cluster
expansion technique that exploits the system’s locality structure.

In the following Publication [Kli+14] we build on these methods and develop them fur-
ther. Moreover, we prove a perturbation formula and establish a strong version of exponential
clustering of correlations for high temperature states on fermionic and spin lattices. These re-
sults have a number of implications: First of all, it turns out that temperature is intensive on a
given length scale if and only if correlations are negligible on that length scale. One important
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2 Locality and complexity in lattice systems

point is, to identify the right correlation measure, which we call the averaged generalized co-
variance. After showing that above a critical temperature the generalized covariance decays
exponentially, this implies the intensivity of high temperatures. The critical temperature only
depends on the interaction strength and local geometry of the lattice. Therefore, this provides
an upper bound on physical critical temperatures for thermal phase transitions with long-range
order. Our results also imply that the generalized covariance is a measure of stability of thermal
states against distant Hamiltonian perturbations. For high temperatures, we obtain a thermal
Lieb-Robinson type bound (see, e.g., Figure 4 on page 51) and, as a rigorous computational
consequence, thermal states can be locally simulated efficiently on classical computers. For
smaller temperatures, our perturbation formula can provide a guideline of how the parameters
should be chosen in classical simulations, such as Monte Carlo simulations [TATW03]. We also
comment on relations to known results, such as actual physical critical temperatures, founda-
tions of statistical mechanics [GLTZ06, LPSW09, RDO08, RGE12], matrix product operator
approximations [Has06], and local topological quantum order [CLMPG13] (see pages 51ff).
One more connection to the previous Section 2.2 is that the results presented here are also
applicable to stationary states of Liouvillian time evolution with Davies generators [Dav79,
Spo78] of commuting Hamiltonians. In this case, the Liouvillian is local and has the Hamilto-
nian’s thermal state as unique stationary state.

In fact, the following Publication [Kli+14] has already proven useful to further develop
MPO approximations of thermal states [MSVC14]. It is also worth mentioning a second work
[MAMW13], slightly more recent than ours, on thermal states of lattice systems that also uses
the locality structure.
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This work is concerned with thermal quantum states of Hamiltonians on spin- and fermionic-lattice
systems with short-range interactions. We provide results leading to a local definition of temperature,
thereby extending the notion of “intensivity of temperature” to interacting quantum models. More
precisely, we derive a perturbation formula for thermal states. The influence of the perturbation is exactly
given in terms of a generalized covariance. For this covariance, we prove exponential clustering of
correlations above a universal critical temperature that upper bounds physical critical temperatures such as
the Curie temperature. As a corollary, we obtain that above the critical temperature, thermal states are stable
against distant Hamiltonian perturbations. Moreover, our results imply that above the critical temperature,
local expectation values can be approximated efficiently in the error and the system size.

DOI: 10.1103/PhysRevX.4.031019 Subject Areas: Condensed Matter Physics,
Quantum Physics, Statistical Physics

I. INTRODUCTION

The ongoing miniaturization of devices, with structures
reaching the nanoscale, has lead to the development of
extremely small thermometers [1,2], some of which are so
small that they can only be read out with powerful electron
microscopes [3]. Even small thermalmachinesworking in the
quantum regime have been suggested [4,5]. In order to
understand the working of such devices, it is necessary
to formulate a theory of statistical mechanics and thermo-
dynamics at the microscopic and mesoscopic scales. A
prerequisite for such a formulation is a good understanding
of the limitations of the concept of temperature at small scales.
The problem with assigning locally a temperature to a

small subsystem of a globally thermal system is the
following: Interactions between the subsystem and its
environment that generate correlations can lead to noticeable
deviations of the state of the subsystem from a thermal
state (see Fig. 1). Hence, given only a subsystem state,
there is no canonical way to assign a temperature to the
subsystem.We call this the locality-of-temperature problem.
The first steps toward a solution of the locality-of-

temperature problem have been taken in Refs. [6–8], and
more recently, within the mind-set of quantum information
theory, in Ref. [9]. The general locality-of-temperature
problem is, however, still open. In this work, we con-
clusively solve it for spin- and fermionic-lattice systems.

More precisely, we first show that the locality-of-
temperature problem is equivalent to a decay of correlations
measured by an averaged generalized covariance that
precisely captures the response of expectation values to
perturbations of the Hamiltonian. We expect the corre-
sponding equality to be useful for applications beyond the
scope of this article.
We then provide conditions under which the generalized

covariance decays exponentially with the distance, includ-
ing a detailed analysis of the preasymptotic, and of the
finite-size regime. In particular, this exponential decay
holds above a universal critical temperature that only
depends on the “connectivity” of the underlying graph
of the model and is an upper bound on physically relevant
critical temperatures such as the Curie temperature.
While, in the low-temperature regime, quantum lattice

models exhibit a great diversity of phases, many of which
involve the emergence of long-range or topological order
[10], in the high-temperature regime, exponential clustering

FIG. 1. The locality-of-temperature problem: Subsystems of
thermal states are themselves, in general, not in a state with a
locally well-defined temperature. Down to which length scale can
temperature be an intensive quantity?
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of correlations is expected. Our rigorous results help to
delineate the boundary between these two regimes. They
build upon and go significantly beyond previous results on
the clustering of correlations in classical systems [11], for
quantum gases [12], i.e., translation-invariant Hamiltonians
in the continuum, and cubic lattices [13–15].
Mathematically, we significantly contribute to the prob-

lem of whether and under which precise conditions thermal
quantum states are stable against distant Hamiltonian
perturbations. Stability of thermal states is particularly
relevant in the broader scheme of phase transitions in
classical and quantum lattice models [14,16] as well as for
the foundations of statistical mechanics and the equilibra-
tion and thermalization behavior of closed quantum sys-
tems [17–25]. In the light of the recent surge of interest in
these topics, developing a better understanding of the
properties of thermal states has become a timely issue.
A major obstacle to progress on some of the most

interesting open questions in this context, such as equili-
bration time scales in closed quantum systems, is the
limited set of mathematical tools available for exploiting
the structure of locally interacting Hamiltonians [25]. Our
results are among the first that explicitly exploit properties
of local Hamiltonians, without being limited to very
specific models.
For quantum Monte Carlo simulations [26], our results

provide a guideline as to how large the finite system size
has to be taken in order to be able to sample from the right
partition function and, conversely, to identify observables
that are best suited to detect long-range correlations.
In fact, our results are reminiscent of known statements

about ground states. If a Hamiltonian has a unique ground
state and is gapped, correlations in its ground state cluster
exponentially and faraway regions become essentially
uncorrelated. This clustering of correlations is rigorously
proven using information-theory-inspired methods such as
Lieb-Robinson bounds and quasiadiabatic continuation
[27–29]. These rigorous results allow for certified algo-
rithms that efficiently approximate ground states of gapped
Hamiltonians on classical computers [30]. In the same spirit,
we are able to show that an exponential decay of correlations
renders thermal states locally efficiently simulatable.
The rest of this paper is structured as follows: In Sec. II,

we formulate the precise setting and explain the main
results and their implications. In Sec. III, we discuss
connections to known results on phase transitions, thermal-
ization in closed quantum systems, and matrix product
operator approximations. Then, in Sec. IV, we discuss basic
properties of the generalized covariance, explain how
our results can be made applicable to finite-range k-body
interactions, and state the results for fermionic lattices. We
proceed with proving all theorems in Sec. V and conclude
in Sec. VI. In the Appendix, we provide a detailed proof of
two bounds on truncated cluster expansions, one of which
is an important ingredient to the proof of clustering of
correlations.

II. SETTING AND MAIN RESULTS

In this section, we introduce the setting, state the
locality-of-temperature problem more formally, and state
our results.

A. Perturbation formula for thermal states

As the first result, we state a perturbation formula, which
is a general statement about the response of the expectation
value of an observable in the thermal state, upon changes in
the system Hamiltonian. It does not make any reference to
the locality structure of the Hamiltonian but turns out to be
especially useful when correlations between local observ-
ables decay rapidly with distance.
Throughout the paper, we assume the Hilbert space

to be finite dimensional [31] and denote the thermal state,
or Gibbs state, of a Hamiltonian H at inverse temperature
β by

gðβÞ ≔ e−βH

ZðβÞ ; ð1Þ

with ZðβÞ ≔ Trðe−βHÞ being the partition function. If we
mean the thermal state or partition function of a different
Hamiltonian H0, we write g½H0�ðβÞ or Z½H0�ðβÞ.
We measure correlations by the (generalized) covariance

that we define for any two operators A and A0, full-rank
quantum state ρ, and parameter τ ∈ ½0; 1� as

covτρðA; A0Þ ≔ TrðρτAρ1−τA0Þ − TrðρAÞTrðρA0Þ: ð2Þ

We discuss various properties of this covariance and
generalizations to arbitrary-rank quantum states in
Sec. IVA.
The generalized covariance appears naturally in our

first theorem about the response of expectation values to
perturbations. More precisely, when we are given an
unperturbed Hamiltonian H0 and a perturbed
Hamiltonian H, then the difference of expectation values
in the corresponding thermal states is captured by that
covariance.
Theorem 1 (Perturbation formula).—Let H0 and H be

Hamiltonians acting on the same Hilbert space. For
s ∈ ½0; 1�, define the interpolating Hamiltonian by HðsÞ ≔
H0 þ sðH −H0Þ and denote its thermal state by
gs ≔ g½HðsÞ�. Then,

Tr½Ag0ðβÞ� − Tr½AgðβÞ�

¼ β

Z
1

0

dτ
Z

1

0

ds covτgsðβÞðH −H0; AÞ ð3Þ

for any operator A.
The proof of the theorem, which is presented in Sec. VA,

relies on the fundamental theorem of calculus and
Duhamel’s formula. We refer to the double integral over
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the covariance in Eq. (3) as the averaged (generalized)
covariance.

B. Spin-lattice systems

In the remainder of this work, we will be concerned with
spin- and fermionic-lattice systems. We will only write out
everything for spin systems and then later, in Secs. IV C
and V C, explain the necessary modifications for fermionic
systems. In the case of spin-lattice systems, the Hilbert
space is given by H ¼ ⊗

x∈V
Hx, where V is called the vertex

set and is assumed to be finite. To make the presentation
more accessible, many of the following definitions are
highlighted in Fig. 2. A local Hamiltonian with interaction
(hyper)graph ðV; EÞ is a sum

H ¼
X
λ∈E

hλ ð4Þ

of local Hamiltonian terms hλ acting on H. The (hyper)
edge set E is the set of supports λ ¼ suppðhλÞ ⊂ V of the
local terms hλ. For any subset of edges F ⊂ E, we denote
by HF ≔

P
λ∈Fhλ the Hamiltonian only containing the

interactions in F, and for any subsystem B ⊂ V, we define
the truncated Hamiltonian to be H↾B ≔ HEðBÞ, where
EðBÞ ⊂ fλ ∈ E∶λ ⊂ Bg is the restricted edge set and we
take H↾B to be an operator on the Hilbert
space HB ≔ ⊗

x∈B
Hx.

Given some subsystem S ⊂ V, there are two natural
thermal states associated with it.
(i) g↾SðβÞ ≔ g½H↾S�ðβÞ denotes the thermal state of S

alone, i.e., the thermal state of the truncated
Hamiltonian H↾SðβÞ.
(ii) gSðβÞ ≔ TrSc ½gðβÞ� denotes the full thermal state

reduced to S.

For a noninteracting Hamiltonian, these two states
coincide, but, in general, this is not the case due to
correlations between S and its environment. This discrep-
ancy raises the question of how to locally define
temperature as an intensive quantity, i.e., the locality-of-
temperature problem.

C. Locality of temperature

In order to locally assign a temperature to the subsystem
S ⊂ V, it was suggested, e.g., in Ref. [9], to extend S by a
buffer region and define the temperature of S via the
thermal state of the Hamiltonian truncated outside the
extended region B; see Fig. 2. The role of the buffer region
B is to remove the boundary effects and the correlations
with the rest of the system that are intuitively the reason for
the locality-of-temperature problem. Nevertheless, it is not
obvious how these correlations should be quantified and
how large this buffer region needs to be. We will see shortly
that Theorem 1 answers these questions.
By ∂B ⊂ E, we denote the set of boundary edges of B,

i.e., the edges having overlap with both B and its comple-
ment Bc ≔ V ⃥ B. Then, by choosing H0 ¼ H −H∂B in
Theorem 1, using that g0 ¼ g↾B ⊗ g↾Bc , and tracing over
Bc, we obtain the following corollary (see also Fig. 3).
Corollary 1 (Truncation formula).—Let H be a local

Hamiltonian, let B ⊂ V be a subsystem, and denote the
corresponding boundary Hamiltonian by H∂B and the
interpolating Hamiltonian by HðsÞ ≔ H − ð1 − sÞH∂B
with its thermal state gs ≔ g½HðsÞ�. Then, for any operator
A ¼ AB ⊗ 1Bc supported on B,

Tr½ABg↾BðβÞ� − Tr½AgðβÞ�

¼ β

Z
1

0

dτ
Z

1

0

ds covτgsðβÞðH∂B; AÞ: ð5Þ

Now, we choose S ⊂ B ⊂ V (see Fig. 2). If, for a given
inverse temperature β, correlations over the distance
between S and ∂B are negligible, then the corollary clearly
implies that

Tr½AgðβÞ� ≈ Tr½ABg↾BðβÞ� ð6Þ

for any observable AB ¼ AS ⊗ 1B⃥ S on S. Also note that
such an approximate equality does not hold whenever
average correlations over lengths exceeding the distance
between S and ∂B are non-negligible.
Hence, we have the following equivalence for the

temperature defined via thermal states.
Implication 1 (Locality of temperature).—Temperature is

intensive on a given length scale if and only if correlations
(measured by the averaged generalized covariance) are
negligible compared to 1=β on that length scale.
In order to fully exploit Corollary 1 it is necessary to

bound the generalized covariance, which we will do for
high temperatures in the next section.

FIG. 2. A 2D square lattice: The boxes indicate subsystems
S ⊂ B ⊂ V. The edges in S are EðSÞ, boundary edges of B are ∂B,
and F is a shortest path connecting S and ∂B; hence,
dðS; ∂BÞ ¼ jFj ¼ 2. The set of edges EðSÞ is an example for
an animal of size jEðSÞj ¼ 7, while ∂B is not connected and
hence not an animal.
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D. Clustering of correlations at high temperatures

For small temperatures, correlations can be arbitrarily
long ranged, as is, e.g., the case for the ferromagnetic Ising
model in two or higher dimensions below the Curie
temperature. On the other hand, above a universal critical
temperature, depending only on a local property of the
interaction graph, correlations cluster exponentially, as we
will see next. Given the combinatorial nature of parts of
the arguments leading to this result, we need additional
notation related to edges and vertices of the lattice. Most of
the following definitions can be understood intuitively, as is
shown in Fig. 2.
We say that two subsystems X, Y ⊂ V overlap if

X∩Y ≠ ∅, a set X ⊂ V and a set F ⊂ E overlap if F
contains an edge that overlaps with X, and two sets F,
F0 ⊂ E overlap if F overlaps with any of the edges
in F0. A subset of edges F ⊂ E connects X and Y if F
contains a sequence of pairwise overlapping edges such
that the first overlaps with X and the last overlaps with Y
and similarly for the case whereX and/or Y are just vertices.
The graph distance on V, and also the induced distance

on subsets of V, are denoted by d. The distance dðX;FÞ of a
subset X ⊂ V and a subset F ⊂ E is 0 if X and F overlap
and otherwise equal to the size of the smallest subset of E
that connects X and F. Sometimes, we denote the support
of an operator by the operator itself, e.g., for two operators
A and A0, their distance is dðA; A0Þ ≔ dðsuppA; suppA0Þ
and ∂A ⊂ E are the edges across the boundary of suppðAÞ.
A subset of edges F ⊂ E that connects all pairs of

its elements λ, λ0 ∈ F is called connected. Such a con-
nected set F is also called an (edge) animal. The size jFj
of an animal F is given by the number of edges contained
in F. The results presented here apply to Hamiltonians
with interaction graphs ðV; EÞ whose number am of
lattice animals of size m containing some fixed edge is
exponentially bounded. With

am ≔ sup
λ∈E

jfF ⊂ E connected∶ λ ∈ F; jFj ¼ mgj; ð7Þ

the growth constant α is the smallest constant satisfying

am ≤ αm: ð8Þ
For example, the growth constant of aD-dimensional cubic
lattice can be bounded as α ≤ 2De (Lemma 2 in Ref. [32]),
where e is Euler’s number. Moreover, α is finite for any
regular lattice [33]. Upper bounds to growth constants for
so-called spread-out graphs [32] render our results appli-
cable for the case of bounded-range two-body interactions.
By a simple embedding argument, one can also bound
the growth constant for the case of local k-body interac-
tions on a regular lattice, which we explain in Sec. IV B in
detail.
For any operator A and p ∈ ½1;∞�, we denote by kAkp

its Schatten p norm; e.g., kAk∞ is the operator norm and

kAk1 is the trace norm of A. We call J ≔ maxλ∈Ekhλk∞ the
local interaction strength of a local Hamiltonian, as given
in Eq. (4).
We are able to provide a universal inverse critical

temperature β�, which is, in particular, independent of
the system size, below which correlations decay exponen-
tially with a thermal correlation length ξðβÞ.
Theorem 2 (Clustering of correlations at high temper-

atures).—Let gðβÞ be the thermal state at inverse temper-
ature β of a local Hamiltonian with finite interaction (hyper)
graph ðV; EÞ having growth constant α and local interaction
strength J. Define the quantities

β� ≔ ln½ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4=α

p
Þ=2�=ð2JÞ ð9Þ

and

ξðβÞ ≔ j ln½αe2jβjJðe2jβjJ − 1Þ�j−1: ð10Þ

Then, for every jβj < β�, parameter τ ∈ ½0; 1�, every two
operators A and B with dðA; BÞ ≥ L0ðβ; aÞ [given in
Eq. (50)], and a ≔ minfj∂Aj; j∂Bjg,

j covτgðβÞðA; BÞj ≤
4akAk∞kBk∞

lnð3Þð1 − e−1=ξðβÞÞ e
−dðA;BÞ=ξðβÞ: ð11Þ

The proof is given in Sec. V B.
In the following sections, we outline some of the

applications of Theorem 2.

E. Universal locality and stability at high temperatures

If one is interested in the state gSðβÞ of some subsystem
S, then one can truncate the Hamiltonian to S extended
by some buffer region and obtain the approximation via
the thermal state of the truncated Hamiltonian. The follow-
ing theorem implies that the approximation error is
exponentially small in the width of the buffer region.
For any operator ρ, we denote its reduction to a

subsystem S ⊂ V by ρS ≔ TrSc ½ρ� and note that

kρSk1 ¼ sup fjTr½Aρ�j∶ suppðAÞ ¼ S; kAk∞ ¼ 1g: ð12Þ

Then, as a consequence of Corollary 1 and Theorem 2, we
obtain the following corollary.
Corollary 2 (Universal locality at high temperatures).—

Let H be a Hamiltonian satisfying the conditions of
Theorem 2, let jβj < β�, and let S ⊂ B ⊂ V be subsystems
with dðS; ∂BÞ ≥ L0ðβ; j∂SjÞ. Then,

kgSðβÞ − gS↾BðβÞk1 ≤
vjβjJ

1 − e−1=ξðβÞ
e−dðS;∂BÞ=ξðβÞ; ð13Þ

where gS↾B denotes the thermal state of B reduced to S
and v ≔ 4j∂Sjj∂Bj= lnð3Þ.
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Similarly, as a corollary of Theorems 1 and 2, we obtain
the following implication.
Implication 2 (Stability).—Below the critical inverse

temperature β� [from Eq. (9)], thermal states of local
Hamiltonians are exponentially stable against distant,
locally bounded perturbations.

F. Efficient approximation

Corollary 2 on the universal locality of thermal states
also has the following complexity-theoretic consequence.
Implication 3 (Efficient approximation).—For jβj < β�,

local expectation values can be approximated with a
computational cost independent of the system size and
bounded polynomially in the reciprocal error.
In this sense, the error bound (see Fig. 4) of Corollary 2

is reminiscent of the quasilocality of dynamics, as,
e.g., presented in Ref. [34], which is a consequence of

Lieb-Robinson bounds [35,36]. The quasilocality theorem
[34] allows for an approximation of time-evolved local
observables by truncating the Hamiltonian in the time-
evolution operator at a distance L > 0 far away from the
spacetime cone of the observable’s support and has an
approximation error that is exponentially small in L.

G. Fermions

In Ref. [37], it was shown for fermionic systems that
two-point functions of observables that are odd polyno-
mials in the fermionic operators decay exponentially with a
correlation length proportional to the inverse temperature.
Here, we obtain an exponential decay of the covariance
above the critical temperature for all operators.
Observation 1 (Fermions).—All results also hold for

locally interacting fermions on a lattice. See Theorem 4
and Corollaries 4 and 5 in Sec. IV C for the precise
statements.

III. RELATIONS TO KNOWN RESULTS

In this section, we discuss the critical temperature from
the clustering theorem, the connection of this work to
concepts related to thermalization, and approximations of
thermal states with so-called matrix product operators;
as a last point, we briefly mention similarities with local
topological quantum order.

A. Critical temperatures and phase transitions

Our results show that the quantity β�, as defined in
Eq. (9), provides a potentially coarse but universal and
completely general upper bound on physical critical tem-
peratures like the Curie temperature. For the ferromag-
netic two-dimensional isotropic Ising model without an
external field, our bound yields, for example, 1=ðβ�JÞ ¼ 2=
ln½ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1=e
p Þ=2� ≈ 24.58, whereas the phase transi-

tion between the disordered paramagnetic and the ordered
ferromagnetic phases is known to really happen at 1=ðβcJÞ ¼
2= lnð1þ ffiffiffi

2
p Þ ≈ 2.27 [16]. Our universal bound is about

an order of magnitude higher than the actual value for
this example. To put this discrepancy into perspective, it is
worth pointing out that it is a very difficult task to estimate
physical critical temperatures—numerically or analytically.
In fact, analytic expressions for critical temperatures or even
just bounds on their values are known only for very few
models.
One of the few known general statements is the Mermin-

Wagner-Hohenberg theorem [38]. It states that in certain
low-dimensional systems with short-range interactions,
there cannot be any phase transition involving the
spontaneous breaking of a continuous symmetry at any
nonzero temperature. However, such systems can still have
a low-temperature phase with quasi-long-range order
characterized by power-law-like decaying correlations.
Consequently, even for systems covered by the Mermin-
Wagner-Hohenberg theorem, our Theorem 2 is nontrivial.

FIG. 3. The truncation from Corollary 2 and Implication 3: For
β < β� and dðS; ∂BÞ ≪ ξðβÞ, Corollary 2 implies that gSðβÞ,
depicted on the left, and gS↾BðβÞ, depicted on the right, are
approximately equal.

FIG. 4. One can obtain slightly tighter error bounds in Corol-
laries 2 and 5 by directly using Eq. (47). The plot shows this
bound on the approximation error kgSðβÞ − gS↾BðβÞk1 for the case
of S being a single site on a 2D square lattice as a function of the
inverse temperature β in units of the critical temperature and the
width of the buffer region L. This bound can be seen as an
imaginary-time Lieb-Robinson “cone” with diverging width
as β → β�.
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For example, it implies an upper bound on the critical
temperature of the Kosterlitz-Thouless transition in the
two-dimensional XY model [39].
In this work, we have concentrated on the general

picture, but it seems likely that refinements of the methods
employed and developed here can yield much tighter
bounds on critical temperatures if more specific properties
of a model are taken into account. At the same time, it
remains an open problem to actually find a model with a
phase transition with long-range order at the universal
highest possible temperature.

B. Foundations of statistical mechanics

The recent years have seen a large number of
numerical and experimental (see Ref. [21] for a review)
as well as analytical investigations (see, for example,
Refs. [17–19,22–24]) of equilibration and thermalization
in closed quantum systems. In the focus of these works
are the approach to equilibrium or properties of energy
eigenstates. The current work complements this body of
literature in that it shows fundamental properties of systems
in thermal equilibrium. A feature that makes the current
work unique is that, contrary to essentially all other works,
the results derived here explicitly use the structure of
locality interacting systems. (Noteworthy exceptions are
Ref. [24] and, albeit in a very special setting, Ref. [18].)
The locality of thermal states is also of interest for recent

results [24] on the dynamical thermalization of translation-
invariant lattice models: Our Corollary 2 guarantees the
existence of a “unique phase” [24] for all temperatures
above our critical temperature. Hence, it implies that at
sufficiently high temperatures, Theorems 1, 2, and 3 of
Ref. [24] are applicable for any translation-invariant
Hamiltonian.
There is also an interesting connection of our locality and

stability results to the so-called eigenstate-thermalization
hypothesis (ETH) [20,21]. The ETH essentially conjectures
that the expectation values of certain physically relevant
observables (for example, local ones) in energy eigenstates
of sufficiently complex Hamiltonians should be very
similar to the expectation values in thermal states with
the same average energy. Corollary 2 and Implication 2
thus imply that the eigenstates of a Hamiltonian in
the center of the spectrum (which correspond to high-
temperature thermal states) must, if the Hamiltonian fulfills
the ETH, also be locally stable against perturbations of the
Hamiltonian. This insight could put constraints on the class
of Hamiltonians that fulfills the ETH, provide new insights
into the properties of their eigenstates, and open up new
ways to test the ETH.

C. MPO approximation of thermal states

Matrix product operators (MPOs) are a certain class of
operators that are tractable on classical computers for one-
dimensional systems. Therefore, they play an important

role in numerical simulations based on so-called tensor
networks.
An important ingredient to our proof of Theorem 2 on

the clustering of correlations will be a bound on a truncated
cluster expansion (Lemma 1). The original result on the
cluster expansion (Lemma 2 in the Appendix) is due to
Hastings and was first used to approximate thermal states
with inverse temperature below 2β� by MPOs [40]. This
approximation is summarized in the next theorem.
In one spatial dimension, this MPO approximation yields

a tensor size bounded polynomially in the system size
and the approximation error (see the subsequent corollary).
In higher dimensions, however, the MPO approximation
yields a tensor size bounded only subexponentially in the
system size and is hence not computationally efficient,
albeit exponentially cheaper than storing the full density
matrix gðβÞ. In order to explain the MPO approximation
in more detail, we start the discussion with a slightly
nonstandard definition of MPOs.
Definition 1 (MPO).—Let ðb½x�ðjÞÞd2j¼1 be a basis for the

operators on Hx and write an arbitrary operator A on H in
the product basis as

A ¼
X

k∈½d2�V
Ak ⊗

x∈V
b½x�ðkxÞ; ð14Þ

with expansion coefficients Ak ∈ C and where
½d2� ≔ f1; 2;…; d2g. If the Ak are of the form

Ak ¼
Y
x∈V

a½x�ðkÞ; ð15Þ

where every a½x�ðkÞ only depends on at most r of the jVj
indices kx, then A is called an MPO with tensor size d2r.
Thermal states can be approximated by such MPOs. The

following theorem is a consequence of Lemma 2, which we
will prove in the Appendix along with Lemma 1.
Theorem 3 (MPO approximation of thermal states

[40]).—Let H ¼Pλ∈Ehλ be a local Hamiltonian with
finite interaction graph ðV; EÞ having a growth constant
α and local interaction strength J ¼ maxλ∈Ekhλk∞, and
define bðβJÞ ≔ αejβJjðejβJj − 1Þ. Moreover, let β be small
enough such that bðβJÞ < 1. Then, for each L ∈ Zþ, there
exists a self-adjoint MPO ρðβ; LÞ [given in Eq. (A3)] with
tensor size d2NðLÞ, where

NðLÞ ≔ sup
x0∈V

jfx ∈ V∶dðx; x0Þ < Lgj ð16Þ

is the number of vertices within a distance less than L. The
approximation error is bounded as

kgðβÞ − ρðβ; LÞk1 ≤ exp

�
jEj bðβJÞL

1 − bðβJÞ
�
− 1; ð17Þ
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i.e., for fixed jβJj < b−1ð1Þ, the trace norm difference
scales as OðjEje−j ln½bðβJÞ�jLÞ for large enough L.
In particular, the above theorem implies the following

corollary.
Corollary 3 (Bound on the tensor size).—Let D be the

spatial dimension of the Hamiltonian’s interaction graph
ðV; EÞ, let n ≔ jEj be the system size, and let β < 2β� with
β� from Eq. (9). Then, the MPO approximation in
Theorem 3 gives rise to a tensor size of the MPO
ρðβ; LÞ scaling as

logdðtensor sizeÞ ≤ O½lnðCn=ϵÞD�; ð18Þ

with some β-dependent constant C. In particular, for
D ¼ 1, the bound on the tensor size scales polynomially
with n=ϵ.
Let us consider a one-dimensional system and suppose

we are explicitly given the MPO tensors a0½x� [see Eq. (15)]
of an approximation to a state ρ and, similarly, an
observable A of MPO form with MPO tensors a½x�. If
the tensor sizes of both MPOs scale at most polynomially in
the system size, then one can compute the corresponding
approximation to the expectation value TrðρAÞ with a
computational cost scaling polynomially in the system
size. Thus, for instance, global product observables can be
approximated efficiently, which is not guaranteed by our
Implication 3. The problem with the MPO approximation,
however, is that Theorem 3 only guarantees the existence of
the MPO tensors but it is not obvious how they can be
computed (efficiently).
Proof of Corollary 3.—The condition β < 2β� is equiv-

alent to bðβJÞ < 1. Let us denote the bound to the
approximation error in Eq. (17) by ϵ. Note that the upper
bound in Eq. (17) satisfies

ϵ ≔ exp

�
jEj bðβJÞL

1 − bðβJÞ
�
− 1 ≤ Cn bðβJÞL ð19Þ

for distances L being at least logarithmically large in
n ¼ jEj and some β-dependent constant C. Then, the
distance L necessary to reach ϵ must asymptotically be
at least as large as

L ≥
ln ðCn=ϵÞ
j ln½bðβJÞ�j : ð20Þ

Bounding NðLÞ in terms of the spatial dimension D as
NðLÞ ≤ MLD with some constant M yields a tensor size
bounded as

logdðtensor sizeÞ ≤ 2M

�
ln ðCn=ϵÞ
ln½1=bðβJÞ�

�
D
: ð21Þ

▪

D. Local topological quantum order

It is worth mentioning that Corollary 2 and Implication 2
are very reminiscent of the local topological quantum order
condition for open quantum systems introduced in
Ref. [41] and the results on the local stability of stationary
states of local Liouvillians in Ref. [42]. A slightly different
family of local topological quantum order conditions for
closed quantum systems [41–44] has played a very impor-
tant role in the theory of locally stable (topological) lattice
systems and for rigorous proofs of entropic area laws.
Corollary 2 similarly characterizes the regime where local
perturbations cannot drive any thermal phase transition.

IV. DETAILS

In this section, we first discuss the generalized covari-
ance and then provide details concerning the applicability
of our results to Hamiltonians with k-body interactions.
Finally, we justify Observation 1 by stating the fermionic
versions of our results.

A. The generalized covariance

The generalized covariance defined in Eq. (2), which
depends on a parameter τ ∈ ½0; 1�, provides more informa-
tion about the correlations between two observables
than the standard covariance in a similar way as the class
of Rényi entropies characterizes more completely the
entanglement properties of a state than simply the von
Neumann entropy [45]. While it occurs quite naturally
in the perturbation formula of Theorem 1, other possible
applications are to be explored. Here, we discuss possible
generalizations of the generalized covariance to operators
of arbitrary rank, show that for operators A and A0 they are
always bounded by kAk∞kA0k∞, and comment on con-
vexity and a symmetrized version of the generalized
covariance.
A definition of the generalized covariance for states of

arbitrary rank is not relevant for this work because for
nonzero temperature, thermal states are full-rank operators.
However, the discussion of possible generalizations also
hints at the behavior of covτ at the end points of the unit
interval. On the open interval τ ∈ �0; 1½, it is natural to
simply keep the definition from Eq. (2). There are two
natural ways to define ρ0: Either as ρ0 ≔ 1 or as
ρ0þ ≔ limτ→0ρ

τ, where ρ0þ turns out to be the projector
onto the image of the operator ρ. For each end point τ ¼ 0
and τ ¼ 1, there are hence two natural ways to define covτ,
either such that the generalized covariance is continuous
or such that cov0ρðA; A0Þ ¼ covρðA0; AÞ and cov1ρðA; A0Þ ¼
covρðA; A0Þ, where

covρðA; A0Þ ≔ TrðρAA0Þ − TrðρAÞTrðρA0Þ ð22Þ

defines the standard covariance.

LOCALITY OF TEMPERATURE PHYS. REV. X 4, 031019 (2014)

031019-7
53



Note that for product states and operators with disjoint
support, all versions of the generalized covariance vanish.
Moreover, for pure states, the continuous version of the
generalized covariance vanishes also, meaning that
classical correlations are needed to yield a nonzero value.
Next, we show that the generalized covariance is always

bounded as

j covτρðA; A0Þj ≤ kAk∞kA0k∞; ð23Þ

irrespective of which definitions are chosen for cov0 and
cov1. We consider a state ρ and define Ā ≔ A − TrðρAÞ.
Then,

covτρðA; A0Þ ¼ TrðρτĀρ1−τA0Þ: ð24Þ

Hölder’s inequality generalized to several operators and the
fact that kXkp ¼ kjXjpk1=p1 then imply that

j covτρðA; A0Þj ≤ kρτk1=τkĀk∞kρτk1=ð1−τÞkA0k∞ ð25Þ

¼ kĀk∞kA0k∞; ð26Þ

and, by noting that kĀk∞ ¼ kAk∞, the bound (23) is
proven for the continuous version of the generalized
covariance. For the noncontinuous versions, the bound
follows similarly.
The variance covτρðA; AÞ induced by the continuous

version of the covariance is convex in τ, as can be seen by
writing out ρ in its eigenbasis. As one can change the sign
of covτρðA; A0Þ by just changing the sign of A0, the
generalized covariance is not convex in τ. But, it might
be that its magnitude j covτρðA; A0Þj is convex, which is
unclear. If this were the case, it would be enough to prove
the clustering Theorem 2 only for the end points τ ∈ f0; 1g,
and hence the proof could be significantly simplified.
Similarly, as there is a symmetrized version of the

standard covariance, one can also symmetrize the gener-
alized covariance with respect to the two operators.
Because of the cyclicity of the trace, the generalized
covariance satisfies the symmetry property

covτρðA; A0Þ ¼ cov1−τρ ðA0; AÞ: ð27Þ

Hence, one can define the symmetrized version of the
generalized covariance as follows:

covτρðA; A0Þ ≔ 1

2
½ covτρðA; A0Þ þ covτρðA0; AÞ�: ð28Þ

Our results can also be phrased in terms of this sym-
metrized version, since the averaged generalized covari-
ance in the perturbation formula of Theorem 1 can easily be
rewritten in terms of cov, and a bound analogous to the
clustering of Theorem 2 holds also for the symmetrized
quantity.

B. Bound on the growth constant for
local k-body interactions

In this section, we show that regular hyperlattices also
have a finite growth constant, which renders our results
applicable to Hamiltonians with local k-body interactions.
In the case of k-body interactions, the Hamiltonian is

again a sum of local terms hλ whose supports are hyper-
edges λ ¼ suppðhλÞ ⊂ V with jλj ≤ k. As before, V denotes
the vertex set and E the set of hyperedges.
We assume that the interaction hypergraph ðV; EÞ is a

regular hyperlattice, i.e., that it can be embedded into a
regular hypercubic lattice of a certain dimension D with
hyperedges of hypercubic form. Let us denote by R the
edge length of the resulting hypercubes. Note that such an
embedding is, in general, not unique and changes both the
number of terms in the Hamiltonian and the local inter-
action strength of H. Moreover, the grouping changes the
values of the metric d in our results.
In order to find an exponential upper bound to the

number am of hyperanimals composed of m hypercubes,
let us define a spread-out graph of range R as the graph
with the edge set consisting of all pairs fx; yg with
0 < kx − yk∞ ≤ R and x; y ∈ ZD (see Ref. [32]). Notice
that as any hypercube is uniquely specified by the coor-
dinates of its “lower left corner,” any hyperanimal of sizem
corresponds to a lattice animal of sizem − 1 and range R in
the spread-out graph. It follows from Lemma 2 in Ref. [32]
that am ≤ ðKeÞm with K ¼ ð2Rþ 1ÞD − 1 being the co-
ordination number. Hence, the hyperlattice has a growth
constant bounded by α ≤ ½ð2Rþ 1ÞD − 1�e.
The bound obtained is, for most models, far from

optimal, in particular, in situations where the supports of
the local Hamiltonian terms are very different from hyper-
cubes. For such cases, one can derive tighter but more
specific bounds from known results about lattice animals in
a similar way.

C. Fermionic versions of the main results

To make Observation 1 about fermions precise, we
introduce the setting of interacting fermions on lattices.
For each site x ∈ V, the corresponding fermionic operators,
i.e., the creation and annihilation operators f†x and fx, act
on the fermionic Fock space and satisfy

ffx; f†yg ¼ δx;y1; ð29Þ

ffx; fyg ¼ 0; ð30Þ

where fA; Bg ≔ ABþ BA is the anticommutator. For such
systems, all operators can be given in terms of polynomials
in the fermionic operators. A monomial of fermionic
operators is called even (odd) if it can be written as a
product of an even (odd) number of fermionic operators fx
and f†y. A polynomial of fermionic operators is called even
(odd) if it can be written as a linear combination of only
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even (odd) monomials, and an operator is called even (odd)
if it can be written as an even (odd) polynomial of fermionic
operators. According to the fermion-number-parity super-
selection rule, only operators that are even polynomials
in the fermionic operators are physical observables and
Hamiltonians.
As with spin-lattice systems, we have again a finite

interaction graph ðV; EÞ; however, the support of an
operator is now to be understood in the picture of the
second quantization as follows: The support of any operator
A being a polynomial in the fermionic operators is the set
of vertices of the fermionic operators that occur in the
polynomial. Correspondingly, we denote the algebra of the
even operators supported on a region X ⊂ V by GX and
denote G ≔ GV for short. The Hamiltonian of a fermionic-
lattice system is of the form

H ¼
X
λ∈E

hλ ð31Þ

with hλ ∈ Gλ. For B ⊂ V, the truncated Hamiltonian H↾B is
similarly the sum only over the edges contained in B. As for
spin systems,H∂B is the sum over the boundary edges of B.
Theorem 1 also holds for such fermionic-lattice systems,

and we can prove statements analogous to Corollary 1,
Theorem 2, and Corollary 2. Hence, all implications stated
in Sec. II also hold. All proofs are presented in Sec. V C.
Corollary 4 (Fermionic truncation formula).—Let H ¼P
λ∈Ehλ be a fermionic local Hamiltonian with local terms

hλ ∈ G, let B ⊂ V be a subsystem, and let the interpolating
Hamiltonian by HðsÞ ≔ H − ð1 − sÞH∂B with its thermal
state gs ≔ g½HðsÞ�. Then, for any operator A with support
suppðAÞ ⊂ B,

TrfAg½H↾B�ðβÞg − Tr½AgðβÞ�

¼ β

Z
1

0

dτ
Z

1

0

ds covτgsðβÞðH∂B; AÞ: ð32Þ

Theorem 4 (Clustering of correlations in fermionic
systems).—Let gðβÞ be the thermal state at inverse temper-
ature β of a local fermionic HamiltonianH ¼Pλ∈Ehλ with
finite interaction graph ðV; EÞ having growth constant
α, local terms hλ ∈ G, and local interaction strength J.
Define the functions β�, ξ, and L0 as in Eqs. (9), (10), and
(50). Then, for every jβj < β�, τ ∈ ½0; 1�, and every two
operators A and B with dðA; BÞ ≥ L0ðβ; aÞ, where
a ≔ minfj∂Aj; j∂Bjg,

j covτgðβÞðA; BÞj ≤
4akAk∞kBk∞

lnð3Þð1 − e−1=ξðβÞÞ e
−dðA;BÞ=ξðβÞ: ð33Þ

Corollary 5 (Locality of fermionic thermal states).—Let
H be a Hamiltonian satisfying the conditions of Theorem 4,
let jβj < β�, and let S ⊂ B ⊂ V be subsystems with
dðS; ∂BÞ ≥ L0ðβ; j∂SjÞ. Then,

kgSðβÞ − gS½H↾B�ðβÞk1 ≤
vjβjJ

1 − e−1=ξðβÞ
e−dðS;∂BÞ=ξðβÞ; ð34Þ

where v ¼ 4j∂Sjj∂Bj= lnð3Þ.

V. PROOFS

We start this section with the proofs of Theorems 1
and 2. One important stepping stone for the proof of the
latter is a tailored version of a bound on a truncated cluster
expansion (Lemma 1) from Ref. [40]. Both versions are
proven in the Appendix. In the last part of the section, we
prove the fermionic versions of our main results,
Theorem 4 and Corollaries 4 and 5.

A. Proof of the perturbation formula (Theorem 1)

The two main ingredients in the proof of Theorem 1 are
the fundamental theorem of calculus and Duhamel’s
formula. The generalized covariance appears as a natural
measure of correlations.
Proof of Theorem 1.—Using the fundamental theorem of

calculus, we obtain

Tr½Ag0ðβÞ� − Tr½Ag1ðβÞ� ¼ −Tr
�
A
Z

1

0

d
ds

e−βHðsÞ

ZsðβÞ
ds

�

with Zs ≔ Z½HðsÞ�. The derivative can be written as

d
ds

e−βHðsÞ

ZsðβÞ
¼ 1

ZsðβÞ
d
ds

e−βHðsÞ −
gsðβÞ
ZsðβÞ

Tr

�
d
ds

e−βHðsÞ
�
:

After applying Duhamel’s formula to both derivatives, i.e.,
using that

d
ds

e−βHðsÞ ¼ −β
Z

1

0

ðe−βHðsÞÞτ
�
d
ds

HðsÞ
�
ðe−βHðsÞÞ1−τdτ;

we obtain

TrðAg0Þ−TrðAgÞ¼−β Tr
�
A
Z

1

0

Z
1

0

f−gτsðH−H0Þg1−τs

þgsTr½gτsðH−H0Þg1−τs �gdτds
�
: ð35Þ

Together with the cyclicity of the trace and the definition
of the generalized covariance in Eq. (2), the last equation
finishes the proof. ▪

B. Proof of Theorem 2 on clustering of correlations

The proof of Theorem 2 builds on and develops further a
cluster expansion of the power series of e−βH in terms of
summands of the form

hðwÞ ≔ hw1
hw2

…hwjwj ; ð36Þ

LOCALITY OF TEMPERATURE PHYS. REV. X 4, 031019 (2014)

031019-9
55



where wj ∈ E. For the sake of a compact presentation, we
refer to edges as letters, to the edge set E as an alphabet, and
call sequences of edges words. For any subalphabet F ⊂ E,
we denote by F� ≔ ⋃∞

l¼0F
l the set of words with letters

in F and arbitrary length l, where the length jwj of a word
w ∈ E� is the total number of letters it contains. For
two words w; v ∈ E�, their concatenation is denoted by
w ∘ v ≔ ðw1; w2;…; wjwj; v1; v2;…; vjvjÞ. We call a word
c ∈ E� connected or a cluster if the set of letters in c is an
animal, i.e., connected. So, clusters are connected sequences
of edges where the edges can also occur multiple times,
while animals are sets of edges without any order or
repetition. A word v is called a subsequence of w ∈ E� if
v can be obtained from w by omitting letters, i.e., if there
is an increasing sequence j1 < j2 < � � � < jjvj such that
vi ¼ wji . This will be denoted by v ⊂ w. A connected
subsequence c ⊂ w is called a maximal cluster of w if c is
not a subsequence of any other connected subsequence of w.
Importantly, for any word w ∈ E�, one can permute its
letters to a new wordw0 such that hðw0Þ ¼ hðwÞ, irrespective
of the choice of the local terms hλ and such that
w0 ¼ c1 ∘ c2 ∘ � � � ∘ ck is a concatenation of maximal clus-
ters cj ⊂ w of w. Note that this decomposition is unique up
to the order of the cj.
In the following, we will consider systems that are either

n ¼ 2 or n ¼ 4 copies of the original system with Hilbert
space H. For any operator A on H, we denote by AðjÞ the
operator onH⊗n that acts as A on the jth copy, e.g., Að2Þ ≔
1 ⊗ A for n ¼ 2. By Sði;jÞ, we denote the swap operator on
H⊗n that swaps the ith and jth tensor factors, e.g.,
S1;2jk1; k2; k3; k4i ¼ jk2; k1; k3; k4i for n ¼ 4. For n ¼ 2,
we write S instead of S1;2.
We can now state the subsequent lemma, which is a

bound on a truncated cluster expansion that is based on a
more general, but for our purposes not tight enough bound,
used previously in Ref. [40]. (See Lemma 2 in the
Appendix.) The lemma will play an important role in
the subsequent proof of Theorem 2.
Lemma 1 (Truncated cluster expansion).—Let τ ∈ ½0; 1�

and H ¼Pλ∈Ehλ be a local Hamiltonian on H with finite
interaction graph ðV; EÞ having growth constant α and local
interaction strength J ¼ maxλ∈Ekhλk∞. We denote by ~H
the Hamiltonian of two weighted copies with local terms
~hλ ≔ τhð1Þλ þ ð1 − τÞhð2Þλ . Consider two operators A and B
on H, define bðxÞ ≔ αejxjðejxj − 1Þ, and let jβj be small
enough such that bðβJÞ < 1. For some set of edges F ⊂ E,
let C≥LðFÞ ⊂ E� be the set of words containing at least
one cluster c that contains at least one letter of F and has
size jcj ≥ L (see Fig. 5) and let us denote the corresponding
truncated cluster expansion of e−β ~H by

Ω½ ~H�ðβÞ ≔
X

w∈C≥LðFÞ

ð−βÞjwj
jwj!

~hðwÞ; ð37Þ

with ~hðωÞ∶ ¼ ~hω1 ~hω2… ~hωjωj. Then, for all τ ∈ ½0; 1�,

jTr½SAð1ÞBð2ÞΩ½ ~H�ðβÞ�j
kAk∞kBk∞ZðβÞ

≤ exp

�
jFj bðβJÞL

1 − bðβJÞ
�
− 1: ð38Þ

We provide a detailed proof of this lemma in the
Appendix. The terms resulting from the expansion of the
exponential series of e−βH are classified according to
whether they contain a cluster of size at least L that
contains a letter from F. One can then show that there is
a percolation transition at β� ¼ b−1ð1Þ=ð2JÞ such that for
jβj < β�, the contribution of long clusters is exponentially
suppressed.
In the following proof of the exponential clustering, we

will use the so-called swap trick: For any two operators A
and B, it holds that

TrðABÞ ¼ Tr½SðA ⊗ BÞ�; ð39Þ

which can be checked by a straightforward calculation.
Proof of Theorem 2.—Fix some τ ∈ ½0; 1�. For any

operator A∶ H → H, we define Að�Þ≔A⊗1�1⊗A
and ~AðþÞ ≔ τðAð1Þ þ Að2ÞÞ þ ð1 − τÞðAð3Þ þ Að4ÞÞ.
As the first step, we write the covariance as

covτρðA;BÞ ¼
1

2
2Tr½Að−Þðρτ ⊗ ρτÞBð−Þðρ1−τ ⊗ ρ1−τÞ�:

Using the swap trick (39) yields (see Fig. 6)

covτρðA;BÞ ¼
1

2
2Tr½S1;3S2;4ðAð−Þ ⊗ Bð−ÞÞρ4�; ð40Þ

where ρ4 ≔ ρτ ⊗ ρτ ⊗ ρ1−τ ⊗ ρ1−τ. For the case ρ ¼ gðβÞ,
the operator ρ4 turns out to be

FIG. 5. A 2D square lattice. Three different subalphabets are
indicated: Words that contain all letters in those alphabets are
members of different sets C≥LðFÞ.
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ρ4 ¼
e−β ~HðþÞ

ZðβÞ2 : ð41Þ

Writing out ρ4 as a power series yields

covτgðβÞðA; BÞ ¼
1

2ZðβÞ2
X
w∈E�

ð−βÞjwj
jwj! tðwÞ ð42Þ

with

tðwÞ ≔ Tr½S1;3S2;4ðAð−Þ ⊗ Bð−ÞÞ ~hðþÞðwÞ� ð43Þ

and ~hðþÞðwÞ ≔ ~hðþÞ
w1

~hðþÞ
w2

… ~hðþÞ
wjwj . Next, we argue that tðwÞ

vanishes whenever w does not contain a cluster connecting
the supports of A and B. Without loss of generality, we
assume that j∂Aj ≤ j∂Bj and consider C≥Lð∂AÞc ¼
E� ⃥ C≥Lð∂AÞ, the set of words that do not contain a cluster
containing an edge in ∂A of size L ≔ dðA;BÞ or larger.
The set C≥Lð∂AÞc hence contains no words with clusters
that connect suppðAÞ and suppðBÞ. Any word w ∈
C≥Lð∂AÞc can be replaced by a concatenation of two words
wA and wB such that ~hðþÞðwÞ ¼ ~hðþÞðwAÞ ~hðþÞðwBÞ, where
wA contains all maximal clusters of w that overlap with
suppðAÞ and wB all other maximal clusters of w. The
operators ~hðþÞðwAÞ and 1 ⊗ 1 ⊗ Bð−Þ≕B̂, and ~hðþÞðwBÞ
and Að−Þ ⊗ 1 ⊗ 1≕Â, then have disjoint supports,
respectively, and the trace in Eq. (43) factorizes into a
product of two traces, one over the subsystem X ≔
suppðÂÞ∪supp½ ~hðþÞðwAÞ� and the other over the
rest of the system. It turns out that both vanish: By
using the symmetries Â ¼ −S1;2ÂS1;2, ~hðþÞðwAÞ ¼
S1;2S3;4 ~hðþÞðwAÞS3;4S1;2, ÂS3;4 ¼ S3;4Â, and that
ðSi;jÞ2 ¼ 1, one can show, e.g., that

Tr½S1;3S2;4Â ~hðþÞðwAÞ� ¼ −Tr½S1;3S2;4Â ~hðþÞðwAÞ�: ð44Þ

This equation implies that for every w ∈ C≥Lð∂AÞc,

tðwÞ ∝ Tr½S1;3S2;4Â ~hðþÞðwAÞ� ¼ 0: ð45Þ

Together with Eq. (42), realizing that ZðβÞ2 ¼ Z½HðþÞ�ðβÞ,
and using the notation from Eq. (37) with F ¼ ∂A and
L ¼ dðA;BÞ, it follows that

covτgðβÞðA;BÞ ¼ Tr

�
S1;3S2;4Â B̂
2ZðβÞ2 Ω½ ~HðþÞ�ðβÞ

�
: ð46Þ

After applying Lemma 1 and using that kÂk∞ ≤ 2kAk∞,
and similarly for B, we obtain

j covτgðβÞðA;BÞj
kAk∞kBk∞

≤ 2ðej∂Ajbð2βJÞL=½1−bð2βJÞ� − 1Þ: ð47Þ

The fact that the condition β < β� is equivalent to
bð2βJÞ < 1 implies that bð2βJÞL decays exponentially
with L. In order to obtain the desired exponential bound
(11), we apply the bound ∀ x ∈ ½0; x0�∶ expðxÞ − 1 ≤
xðex0 − 1Þ=x0 with the choice x0 ¼ lnð3Þ. In order to have

j∂Aj bð2βJÞL
1−bð2βJÞ ≤ lnð3Þ, we impose

L ≥
���� ln
� j∂Aj
lnð3Þ½1 − bð2βJÞ�

�
= lnð2βJÞ

���� ð48Þ

¼ ξðβÞj ln½lnð3Þð1 − e−1=ξðβÞÞ=j∂Aj�j ð49Þ

≕ L0ðβ; j∂AjÞ: ð50Þ

This inequality guarantees the exponential bound (11) and
finishes the proof. ▪

C. Proofs of the fermionic versions
of the main results

In order to also establish our main results for fermionic
systems, we go through the proofs for spin systems and
discuss the necessary modifications.
Proof of Corollary 4.—In Theorem 1, we choose H0 ¼

H −H∂B. As the local terms are all in G, we have that the
thermal state of H0 factorizes, i.e., g0 ¼ g½H↾B�g½H↾Bc �.
After tracing over Bc, the statement follows. ▪
Proof of Theorem 4.—We use the same tensor copy trick

as in the proof of Theorem 2. Equation (40) still holds in the
fermionic setting. Note that the Hilbert space over which
the trace is performed in Eq. (40) is not the Fock space of a
system of 4 times the number of modes but the tensor
product of four identical fermionic Fock spaces with the
canonical inner product. This Hilbert space can be inter-
preted as that of a system of four types of fermionic
particles that are each mutually indistinguishable and
subject to (up to τ-dependent prefactors) identical
Hamiltonians but do not interact with each other and
can be distinguished from each other. It is spanned by
tensor products of Fock states. The state g½ ~HðþÞ�ðβÞ is the
thermal state of this system. Equation (42) with tðwÞ as
defined as in Eq. (43) still holds. Note that the swap
operators swap tensor factors, not fermionic modes.
Thus, they still satisfy the symmetry relations that are

FIG. 6. The “multiple swap trick”: Eq. (40) as a tensor network.
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used to prove that only terms corresponding to the words
w ∈ C≥Lð∂AÞ can contribute to the covariance.
It remains to show that Lemma1 still holds in the fermionic

setting. Lemmas 3 and 8 are purely combinatorial.
Lemmas 4–7, 9, and 10 only use the local boundedness of
the Hamiltonian and that Hamiltonian terms with disjoint
support commute. The same holds in the fermionic setting
because the Hamiltonian terms must be physical operators,
i.e., even polynomials in the fermionic operators. Hence,
all lemmas used in the proof of Lemma 1 carry over to the
fermionic setting. It is then straightforward to see that the
proof itself also goes through without any modifications.▪
Proof of Corollary 5.—Tracing out Bc in the second

trace in Eq. (32) and bounding the integral yields

jTr½AgðβÞ� − TrfAg½H↾B�ðβÞgj
≤ jβj sup

s∈½0;1�
sup
τ∈½0;1�

j covτgsðβÞðA;H∂BÞj: ð51Þ

Taking the supremum over all A with kAk∞ ¼ 1 and
suppðAÞ ⊆ S and using Theorem 4 finish the proof. ▪

VI. CONCLUSIONS

In this work, we clarify the limitations of a universal
concept of scale-independent temperature by showing that
temperature is intensive on a given length scale if and only
if correlations are negligible. The corresponding correlation
measure turns out to also quantitatively capture the stability
of thermal states against perturbations of the Hamiltonian.
Moreover, we find a universal critical temperature above
which correlations always decay exponentially with the
distance. We compare our results to known results on phase
transitions, comment on recent advances concerning ther-
malization in closed quantum systems (e.g., concerning
the eigenstate-thermalization hypothesis), and discuss
known matrix product operator approximations of thermal
states. More concretely, our results imply that at high
enough temperatures, the error made when truncating a
Hamiltonian at some distance away from the system of
interest is exponentially suppressed with the distance. As a
computational consequence, expectation values of local
observables can be approximated efficiently.
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APPENDIX: CLUSTER EXPANSIONS
AND PROOF OF LEMMA 1

The following discussion of cluster expansions is
expected to be interesting in its own right, as it contains

a rigorous formulation of the ideas outlined in Ref. [40].
We will provide a proof of the original statement used to
establish Theorem 3 as well as of the tailored statement
in Lemma 1, which is used to prove Theorem 2 on the
clustering of correlations.

1. The original cluster expansion from Ref. [40]

The original cluster expansion is similar to Lemma 1
with just one copy of the system instead of two
weighted ones.
Lemma 2 (Truncated cluster expansion [40]).—Let

H ¼Pλ∈Ehλ be a local Hamiltonian with finite interaction
graph ðV; EÞ having growth constant α and local interac-
tion strength J ¼ maxλ∈Ekhλk∞, and define bðxÞ ≔
αejxjðejxj − 1Þ. Moreover, let β be small enough such
that bðβJÞ < 1. For some subset of edges F ⊂ E, let
C≥LðFÞ ⊂ E� be the set of words containing at least one
cluster c that contains at least one letter of F and has size
jcj ≥ L and denote the corresponding truncated cluster
expansion by

Ω½H�ðβÞ ≔
X

w∈C≥LðFÞ

ð−βÞjwj
jwj! hðwÞ: ðA1Þ

Then,

kΩ½H�ðβÞk1
ZðβÞ ≤ exp

�
jFj bðβJÞL

1 − bðβJÞ
�
− 1: ðA2Þ

If one applies this lemma to the setting of Lemma 1, one
obtains a bound similar as the one in Eq. (38) but with
Z½ ~H�ðβÞ instead of ZðβÞ, where the ratio Z½ ~H�ðβÞ=Z½H�ðβÞ
can be exponentially large in the system size for τ ∈�0; 1½.
Lemma 2 was used in Ref. [40] to establish a math-

ematically (not algorithmically) constructive version of
Theorem 3, on MPO approximations, where the MPO in
Eq. (17) is given by

ρðβ; LÞ ¼ 1

ZðβÞ
X

w∈E� ⃥ C≥LðEÞ

ð−βÞjwj
jwj! hðwÞ: ðA3Þ

2. Proofs of Lemmas 1 and 2

The purpose of this section is to prove Lemma 1. But,
along the way, we also prove Lemma 2. In order to do so,
we start with the introduction of some more notation,
mainly concerning clusters and lattice animals. For w ∈ E�
and any subalphabet G ⊂ E, we write G ⊂ w if every letter
in G also occurs in w. By Gc ≔ E⃥ G, we denote the
complement of G ⊂ E. The extension of G is defined to
be Ḡ ≔ fλ ∈ E∣ ∃ λ0 ∈ G∶λ0∩λ ≠ ∅g and, similarly as for
subsystems, its boundary is ∂G ≔ Ḡ⃥ G. Throughout the
proof, we fix some subset of edges F ⊂ E. We denote by
C≥LðFÞ ⊂ E� the set of words that contain at least one

KLIESCH et al. PHYS. REV. X 4, 031019 (2014)

031019-12
58



cluster c with c∩F ≠ ∅ and jcj ≥ L, and we denote by
Ck≥LðFÞ the set of words that contain exactly k such clusters.
Note that for an animal G ⊂ E, there exists a cluster c ∈ E�
such that G ¼ fλ ∈ cg, and if one imposes some order on
G, one obtains a cluster. We denote byA¼lðFÞ andA≥LðFÞ
the sets of animals that contain at least one edge of F and
are of size exactly l or at least L, respectively. Moreover,
we denote by Ak

≥LðFÞ the corresponding sets of k-fold
animals, i.e.,

Ak
≥L ≔ f⨄k

j¼1Gj∶Gj ∈ A≥LðFÞ nonoverlappingg:

For a more compact notation, we write the terms in the
exponential series as

fðwÞ ≔ ð−βÞjwj
jwj! hðwÞ: ðA4Þ

We will frequently use the following fact: For any
Hamiltonian with a finite interaction graph ðV; EÞ, the
partial series over any set of words W ⊆ E� converges
absolutely, i.e.,

���X
w∈W

fðwÞ
���
∞

≤
X
w∈W

ðjβjJÞjwj
jwj! ðA5Þ

≤
X
w∈E�

ðjβjJÞjwj
jwj! ðA6Þ

¼ expðjβjJjEjÞ: ðA7Þ

In particular, this bound implies that the order of the terms
in the series over any subset of words W does not matter.
In the following proofs of Lemmas 1 and 2, we use

several technical auxiliary lemmas, which we will only
state and prove subsequently.
Proof of Lemma 1.—During this proof, we indicate

quantities corresponding to ~H by a tilde accent, e.g.,
~fðwÞ is defined as in Eq. (A4) but with respect to the
local terms ~hλ of ~H while fðwÞ is defined with respect to the
local terms hλ of H.
We start the proof by rearranging the terms in the series

over C≥LðFÞ in Eq. (37) according to the number of relevant
clusters they contain and use Lemma 3 with bk being the
series over Ck≥LðFÞ to obtain

Ω½ ~H�ðβÞ ¼
X∞
k¼1

X
w∈Ck≥LðFÞ

~fðwÞ

¼ −
X∞
m¼1

ð−1Þm
X∞
k¼m

�
k

m

� X
w∈Ck≥LðFÞ

~fðwÞ: ðA8Þ

Lemmas 5, 6, and 9 are the core of the proof. They define a
series of operators ð~ρmÞ∞m¼1 that have a particularly useful

form given in Lemma 10. This form exactly matches the
series over k in Eq. (A8), which leads to the following
identity:

Ω½ ~H�ðβÞ ¼ −
X∞
m¼1

ð−1Þm ~ρm: ðA9Þ

The operators ~ρm are defined in Eq. (A57) as series over
m-fold lattice animals G of operators ρðGÞ [defined in
Eq. (A31)]. This definition implies

TrðSAB~ρmÞ ¼
X

G∈Am
≥LðFÞ

Tr½SAB~ρðGÞ�: ðA10Þ

In the previous steps, the series over words has been
rewritten as a series over m-fold animals. Lemma 7
provides a bound on ~ρðGÞ that, together with Eqs. (A9)
and (A10), yields

jTrfSABΩ½ ~H�ðβÞgj
kAk∞kBk∞ZðβÞ

≤
X∞
m¼1

X
G∈Am

≥LðFÞ
yðβJÞjGj: ðA11Þ

Now, a counting argument for lattice animals from
Lemma 8 allows us to bound the series overm-fold animals
G in terms of a series of animals

jTrfSABΩ½ ~H�ðβÞgj
kAk∞kBk∞ZðβÞ

≤
X∞
m¼1

1

m!

� X
G∈A≥LðFÞ

yðβJÞjGj
�

m
:

Using that the number al [see Eq. (7)] of lattice animals G
with G∩F ≠ ∅ and of size jGj ¼ l is bounded by jFjal and
that al ≤ αl [see Eq. (8)], we obtain

jTrfSABΩ½ ~H�ðβÞgj ≤ ZðβÞ
X∞
m¼1

1

m!

�
jFj
X∞
l¼L

bðβJÞl
�m

with bðxÞ ≔ αyðxÞ. Performing the partial geometric series
over l with argument bðβJÞ < 1 and the exponential series
over m yields Eq. (A2) and completes the proof. ▪
Similarly, we prove Lemma 2.
Proof of Lemma 2.—By the same argument that led us to

Eq. (A9) in the proof of Lemma 1, we obtain

Ω½H�ðβÞ ¼ −
X∞
m¼1

ð−1Þmρm: ðA12Þ

Applying the triangle inequality and using the bound on ρm
from Lemma 9 yields

kΩ½H�ðβÞk1 ≤ ZðβÞ
X∞
m¼1

1

m!

�
jFj
X∞
l¼L

bðβJÞl
�m

: ðA13Þ
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Performing the partial geometric series over l with argu-
ment bðβJÞ < 1 and the exponential series over m yields
Eq. (A2) and completes the proof. ▪
We now prove various lemmas that are used in the

previous proofs of Lemmas 1 and 2.
Lemma 3.—Let ðbkÞ∞k¼1 be a sequence of complex

matrices

AK ≔
XK
k¼1

bk ðA14Þ

and

BK ≔ −
XK
m¼1

ð−1Þm
XK
k¼m

�
k
m

�
bk: ðA15Þ

Then, AK ¼ BK for all K ∈ N. In particular, if both
sequences converge, then their limits are the same,
i.e., limK→∞AK ¼ limK→∞BK .
Proof.—Applying the binomial theorem to ð1 − 1Þk ¼ 0

yields

Xk
l¼0

ð−1Þl
�
k
l

�
¼ 0; ðA16Þ

which we will use. We prove the identity by induction.
A1 ¼ B1 is easy to see. Under the assumption that AK ¼ BK
for some K ∈ N, we obtain

BKþ1 ¼ BK − ð−1ÞKþ1

�
K þ 1

K þ 1

�
bKþ1 ðA17Þ

−
XK
m¼1

ð−1Þm
�
K þ 1

m

�
bKþ1 ðA18Þ

¼ AK þ
�
−ð−1ÞKþ1 −

XK
m¼1

ð−1Þm
�
K þ 1

m

��
bKþ1

¼ AKþ1; ðA19Þ

where we have used Eq. (A16) in the last step. ▪
The goal of the following lemmas is to show that ρm is

well-defined and to upper bound it in trace norm. The order
of the lemmas is chosen in a way that makes clear that the
two quantities ρm and ρðGÞ, which will be defined shortly,
are actually well-defined.
We start with a trace norm bound on the perturbed

exponential series.
Lemma 4 [Eq. (21) from Ref. [40]].—Let H be a

Hamiltonian with finite interaction graph ðV; EÞ. For any
sequence ðGjÞkj¼1 of subalphabets Gj ⊂ E,

���e−βðH−
P

k
j¼1

HGj
Þ
���
1
≤ ZðβÞ

Yk
j¼1

���ejβjHGj

���
∞
: ðA20Þ

Proof.—The lemma is essentially a consequence of the
Golden-Thompson inequality and the fact that the trace
norm of a positive operator coincides with its trace. Using
first the Golden-Thompson and then Hölder’s inequality,
we obtain

���e−βðH−
P

k
j¼1

HGj
Þ
���
1
≤ Tr½e−βðH−

P
k−1
j¼1

HGj
ÞeβHGk �

≤ Tr½e−βðH−
P

k−1
j¼1

HGj
Þ�
���ejβjHGk

���
∞
: ðA21Þ

Now, iteration completes the proof. ▪
We will use the following lemma to bound the operator

norm of certain subseries of fðwÞ.
Lemma 5.—Let ðV; EÞ be a finite graph and J ≥ 0. For

any G ⊂ E,

X
w∈G�∶G⊂w

jβJjjwj
jwj! ¼ ðejβJj − 1ÞjGj: ðA22Þ

Proof.—Ordering the words in the sum in Eq. (A22) with
respect to their length yields

X
w∈G�∶G⊂w

jβJjjwj
jwj! ¼

X∞
l¼jGj

X
w∈Gl∶G⊂w

jβJjjwj
jwj! ðA23Þ

¼
X∞
l¼jGj

jβJjl
l!

jfw ∈ Gl∶G ⊂ wgj: ðA24Þ

From basic combinatorial considerations, we obtain

jfw ∈ Gl∶G ⊂ wgj ¼
X

j1;j2;…;jn≥1;
j1þj2þ…þjn¼l

�
l
j

�
; ðA25Þ

where
� l
j

	
is a multinomial coefficient. Therefore, the

right-hand side of Eq. (A24) only depends on n ≔ jGj and
we denote it by

γðnÞ ≔
X∞
l¼n

γðn; lÞ ðA26Þ

with
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γðn; lÞ ≔ jβJjl
l!

X
j1;j2;…;jn≥1;

j1þj2þ…þjn¼l

�
l

j

�

¼
X

j1;j2;…;jn≥1;
j1þj2þ…þjn¼l

jβJjj1
j1!

jβJjj2
j2!

…
jβJjjn
jn!

: ðA27Þ

Then,

γðnÞ ¼
X∞
l¼n

X
j1;j2;…;jn≥1;

j1þj2þ…þjn¼l

jβJjj1
j1!

jβJjj2
j2!

…
jβJjjn
jn!

¼
X∞
l¼n

Xl−ðn−1Þ
j1¼1

jβJjj1
j1!

X
j2;…;jn≥1;

j2þ…þjn¼l−j1

jβJjj2
j2!

…
jβJjjn
jn!

¼
X∞
l¼1

Xl
j1¼1

jβJjj1
j1!

γðn − 1; lþ n − 1 − j1Þ ðA28Þ

and, after realizing that the last series is a Cauchy product,

γðnÞ ¼
X∞
j1¼1

jβJjj1
j1!

X∞
l¼n−1

γðn − 1; lÞ ðA29Þ

¼ ðejβJj − 1Þγðn − 1Þ: ðA30Þ

We note that γð1Þ ¼ ejβJj − 1, and iteration finishes
the proof. ▪
The following lemma provides a factorization of the

series ρðGÞ in Eq. (A33) over words that have no letters on
the boundary of an m-fold animal G ∈ Am

¼lðFÞ and contain
all letters in G, into expð−βHðḠÞcÞ, whose norm we have
bounded in Lemma 4, times a product of operators ηðGjÞ.
The ηðGjÞ are supported on the single animals Gj compos-
ing the m-fold animal G. As we will see, a norm bound for
ηðGjÞ follows immediately from the previous lemma,
which, in turn, also yields an upper bound on ρðGÞ. The
form of ρðGÞ given in Eq. (A33) together with this upper
bound plays an important role in the main cluster
expansion.
Lemma 6.—Let H be a Hamiltonian with finite inter-

action graph ðV; EÞ. For G ⊂ E, let G ¼ ⨄m
j¼1Gj be the

decomposition of G into nonoverlapping animals Gj ⊂ E
and define

ρðGÞ ≔ e−βHðḠÞc
Ym
j¼1

ηðGjÞ ðA31Þ

with

ηðGÞ ≔
X

w∈G�∶G⊂w
fðwÞ: ðA32Þ

Then,

ρðGÞ ¼
X

w∈½ð∂GÞc��∶G⊂w
fðwÞ: ðA33Þ

Proof.—To simplify the notation, we denote the relevant
set of words that contain no letters in ∂G and each letter in
G at least once by

W⊃G ≔ fw ∈ ½ð∂GÞc��∶G ⊂ wg: ðA34Þ

The idea is to group these words into subsets ½w� ⊂ W⊃G

that coincide on the connected components of G and on
ðḠÞc and correspondingly split up the series (A33). We
formalize this idea by introducing an equivalence relation
on W⊃G. For v; w ∈ W, we define

v ∼ w∶⇔


v↾Gc ¼ w↾Gc

v↾Gj ¼ w↾Gj ∀j ¼ 1; 2;…; k;

where, for any subalphabet G0 ⊂ E, the restriction w↾G0 of
a word w ∈ E� is obtained from w by omitting all letters
that are not in G0. Then, the size of each equivalence class
½w� ∈ W⊃G=∼ is given by the multinomial coefficient

j½w�j ¼
� jwj
ðjw↾Gcj; jw↾G1j;…; jw↾GkjÞ

�
: ðA35Þ

Note also that hð½w�Þ ≔ hðw↾GcÞQk
j¼1 hðw↾GjÞ ¼ hðwÞ is

well-defined as a function on the classes. Let us denote the
set of words over the alphabet Gj that contain all letters at
least once by

W¼Gj ≔ fw ∈ ðGjÞ�∶Gj ⊂ wg: ðA36Þ

Then, the quotient set can be identified with a Cartesian
product of these sets

W⊃G=∼ ≅ ½ðḠÞc�� × ×
k

j¼1
W¼Gj: ðA37Þ

For each equivalence class K ∈ W⊃G=∼, we pick an
arbitrary representative wK ∈ W⊃G, use the definition of
f in Eq. (A4), and determine that k is the number of
connected components of G to obtain
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X
w∈½ð∂GÞc��∶G⊂w

fðwÞ ¼
X

K∈W⊃G=∼

jKj ð−βÞ
jwK j

jwKj!
hðwKÞ ðA38Þ

¼
X

v∈½ðḠÞc��

X
w1∈W¼G1

X
w2∈W¼G2

…
X

wk∈W¼Gk

� jvj þPk
j¼1 jwjj

ðjvj; jw1j;…; jwkjÞ
� ð−βÞjvjþ

P
k
j¼1

jwjj

ðjvj þPk
j¼1 jwjjÞ!

hðvÞ
Yk
j¼1

hðwjÞ

¼
X

v∈½ðḠÞc��
fðvÞ

� X
w1∈W¼G1

fðw1Þ
�� X

w2∈W¼G2

fðw2Þ
�
…

� X
wk∈W¼Gk

fðwkÞ
�
: ðA39Þ

Using the definition of η from Eq. (A32) on the last factors
yields

X
w∈½ð∂GÞc��∶G⊂w

fðwÞ ¼ e−βHðḠÞc
Yk
j¼1

ηðGjÞ ¼ ρðGÞ: ðA40Þ

▪
The following lemma is a tighter variant of some of the

original arguments leading to Lemma 2 for Hamiltonians
consisting of two weighted copies of a local Hamiltonian.
Its purpose is to provide a specialized tighter bound on
ρðGÞ, which turns out to be sufficient for our purposes. The
central idea of the lemma is to expand ρðGÞ in the left-hand
side of Eq. (A41) in order to be able to bound the trace
using the generalized Hölder’s inequality.
Lemma 7.—Let τ, H, ~H, A, and B be as in Lemma 1

and let G ∈ A¼m
≥L ðFÞ be an m-fold lattice animal with

G ¼ ⋃m
j¼1Gj and Gj ∈ A≥LðFÞ. Moreover, let ~ρðGÞ be

defined as ρðGÞ in Eq. (A31) but with respect to ~H. Then,

jTr½SAð1ÞBð2Þe−β ~HḠc ~ρðGÞ�j
kAk∞kBk∞ZðβÞ

≤ yðβJÞjGj; ðA41Þ

where yðxÞ ≔ ejxjðejxj − 1Þ.
Proof.—Let us denote kð1Þλ ≔ τhð1Þλ and kð2Þλ ≔ ð1−τÞhð2Þλ .

For w ∈ E� and v ∈ f1; 2gjwj, we define ~hðw; vÞ ≔
kv1w1

kv2w2
� � � kvjwjwjwj . Then, by expanding the product ~hðwÞ, it

can be written as

~hðwÞ ¼
X

v∈f1;2gjwj
~hðw; vÞ: ðA42Þ

Importantly, we can reorder the terms in ~hðw; vÞ so that

~hðw; vÞ ¼ ~hð1Þðw; vÞ ~hð2Þðw; vÞ; ðA43Þ

where ~hð1Þðw; vÞ ¼ hðiÞðw; vÞ ⊗ 1 and ~hð2Þðw; vÞ ¼ 1 ⊗
hðiiÞðw; vÞ. Factorizing the operators and using the swap
trick (39), we obtain

Tr½SAð1ÞBð2Þe−β ~HḠc ~hðw; vÞ� ¼ TrfS½Ae−βτHḠc hðiÞðw; vÞ� ⊗ ½Be−βð1−τÞHḠc hðiiÞðw; vÞ�g ðA44Þ

¼ Trf½Ae−βτHḠc hðiÞðw; vÞ�½Be−βð1−τÞHḠc hðiiÞðw; vÞ�g: ðA45Þ

Bounding the trace by the trace norm and applying Hölder’s inequality generalized to several operators yields

jTr½SAð1ÞBð2Þe−β ~HḠc ~hðw; vÞ�j ≤ kAk∞kBk∞ke−βτHḠck1=τke−βð1−τÞHḠck1=ð1−τÞkhðiÞðw; vÞk∞khðiiÞðw; vÞk∞
≤ kAk∞kBk∞ke−βHḠck1Jjwjτnð1ÞðvÞð1 − τÞnð2ÞðvÞ; ðA46Þ

where in the second step, we have used that kXkp ¼ kjXjpk1=p1 and that with nðjÞðvÞ ≔ jfvk∶vk ¼ jgj for j ∈ f1; 2g,
the bounds khðiÞðw; vÞk∞ ≤ ðτJÞnð1ÞðvÞ and khðiiÞðw; vÞk∞ ≤ ½ð1 − τÞJ�nð2ÞðvÞ hold. Now, we apply Lemma 4 and use that

kejβjHGjk∞ ≤ ejβjJjGjj to arrive at

jTr½SAð1ÞBð2Þe−β ~HḠc ~hðw; vÞ�j ≤ kAk∞kBk∞ZðβÞejβjJjGjJjwjτnð1ÞðvÞð1 − τÞnð2ÞðvÞ: ðA47Þ

From the definition of η in Eq. (A32), it follows that
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Ym
j¼1

~ηðGjÞ ¼
X

n
wðjÞ∈G�

j∶
Gj⊂wðjÞ

o
m

j¼1

Ym
i¼1

ð−βÞjwðiÞj

jwðiÞj!
~hðwðiÞÞ ðA48Þ

¼
X

n
wðjÞ∈G�

j∶
Gj⊂wðjÞ

o
m

j¼1

ð−βÞjwjQ
m
i¼1 jwðiÞj!

X
v∈f1;2gjwj

~hðw; vÞ;

ðA49Þ

where w ≔ wð1Þ ∘wð2Þ ∘… ∘wðmÞ and hence ~hðwÞ ¼Q
m
i¼1 hðwðiÞÞ. Together with the bound (A47) we obtain

jTr½SAð1ÞBð2Þe−β ~HḠc
Q

m
j¼1 ~ηðGjÞ�j

kAk∞kBk∞ZðβÞ

≤ ejβjJjGj
X

n
wðjÞ∈G�

j∶
Gj⊂wðjÞ

o
m

j¼1

jβjjwjQ
m
i¼1 jwðiÞj! J

jwj

×
X

v∈f1;2gjwj
τn

ð1ÞðvÞð1 − τÞnð2ÞðvÞ: ðA50Þ

Using the definition (A31) of ρðGÞ and the multinomial
formula yields

jTr½SAð1ÞBð2Þe−β ~HḠc ~ρðGÞ�j
kAk∞kBk∞ZðβÞ

ðA51Þ

¼ ejβjJjGj
X

n
wðjÞ∈G�

j∶
Gj⊂wðjÞ

o
m

j¼1

Ym
i¼1

ðjβjJÞjwðiÞj

jwðiÞj! ðA52Þ

¼ ejβjJjGj
Ym
i¼1

 X
wðiÞ∈G�

i ∶
Gi⊂wðiÞ

ðjβjJÞjwðiÞj

jwðiÞj!

!
ðA53Þ

≤ ejβjJjGj
Ym
i¼1

ðejβjJ − 1ÞjGij; ðA54Þ

where in the second-to-last step, we have factorized the
series and in the last step, we have used Lemma 5. ▪
We will need the following combinatorial lemma.
Lemma 8.—Let ðV; EÞ be a finite (hyper)graph and

y ∈ ½0; 1½. Then, for any F ⊂ E,

X
G∈Am

≥LðFÞ
yjGj ≤

1

m!

� X
G∈A≥LðFÞ

yjGj
�

m
: ðA55Þ

Proof.—Remember that Am
≥LðFÞ is the set of m-fold

(edge) animals of size at least L that contain a letter from F.

For every G ∈ Am
≥LðFÞ, one finds m pairs ðG1; G2Þ with

G1 ∈ Am−1
≥L ðFÞ and G2 ∈ Am

≥LðFÞ such that G ¼ G1⊎G2;
hence,

m
X

G∈Am
≥LðFÞ

yjGj ≤
X

G1∈Am−1
≥L ðFÞ

X
G2∈A≥LðFÞ

yjG1jþjG2j

¼
 X

G∈Am−1
≥L ðFÞ

yjGj
! X

G∈A≥LðFÞ
yjGj
!
:

By iterating this inequality, we obtain

X
G∈Am

≥LðFÞ
yjGj ≤

1

m!

� X
G∈A≥LðFÞ

yjGj
�

m
: ðA56Þ

▪
In the following lemma, we define a family of operators

ρm and bound their trace norms. The bounds, in particular,
guarantee that the ρm are well-defined. In addition, they
are useful for the proof of Lemma 2, albeit they are not
explicitly needed for the proof of Lemma 1.
Lemma 9.—Let ρðGÞ be defined as in Lemma 6 with

respect to a Hamiltonian H having a finite interaction
(hyper)graph ðV; EÞ with growth constant α and let

ρm ≔
X

G∈Am
≥LðFÞ

ρðGÞ ðA57Þ

for some F ⊂ E. Then,

kρmk1 ≤
ZðβÞ
m!

�
jFj
X∞
l¼L

bðβJÞl
�m

; ðA58Þ

where bðxÞ ≔ αejxjðejxj − 1Þ.
Proof.—Consider a k-fold animal G ∈ Am

≥LðFÞ and
decompose it into its k nonoverlapping animals Gj∈
A≥LðFÞ as G ¼ ⨄k

j¼1Gj ⊂ E. Then, Eq. (A31) and
Hölder’s inequality imply

kρðGÞk1 ≤ ke−βHðḠÞck1
Yk
j¼1

kηðGjÞk∞; ðA59Þ

and it follows from Lemmas 4 and 5 in conjunction with
the definition of η in Eq. (A32) that

kρðGÞk1 ≤ ZðβÞyðβJÞjGj: ðA60Þ

Hence, by the definition from Eq. (A57) and Lemma 8, we
obtain
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kρmk1 ≤ ZðβÞ
X

G∈Am
≥LðFÞ

yðβJÞjGj ðA61Þ

≤
ZðβÞ
m!

� X
G∈A≥LðFÞ

yðβJÞjGj
�

m
: ðA62Þ

By decomposing the set of animals of size at least L
into a union of sets of animals of fixed size l, i.e.,
A≥LðFÞ ¼ ⨄∞

l¼LA¼lðFÞ, we can write

kρmk1 ≤
ZðβÞ
m!

�X∞
l¼L

jA¼lðFÞjyðβJÞl
�m

: ðA63Þ

The bound (8) on the number of lattice animals, the fact
that the number jFj of edges in F upper bounds the
number of possibilities of translating an animal G such
that G ⊂ F, and b ¼ αy finish the proof. ▪
While the last lemma provides a bound on ρm and, in

particular, implies that ρm is well-defined, the next lemma
provides a useful form of ρm.
Lemma 10.—Let ρm be defined as in Eq. (A57). Then,

ρm ¼
X∞
k¼m

�
k
m

� X
w∈Ck≥LðFÞ

fðwÞ: ðA64Þ

Proof.—For G ∈ Am
≥LðFÞ, let

WðGÞ ≔ fw ∈ ½ð∂GÞc��∶G ⊂ wg: ðA65Þ

According to Eqs. (A33) and (A57),

ρm ¼
X

G∈Am
≥LðFÞ

X
w∈½ð∂GÞc��∶G⊂w

fðwÞ: ðA66Þ

As

⋃
G∈Am

≥LðFÞ
WðGÞ ¼ ⨄∞

k¼mC
k
≥LðFÞ; ðA67Þ

the sums in Eqs. (A57) and (A64) contain the same terms.
It remains to show that the multiplicities are correct, i.e.,
are given by the binomial factor. Every word in WðGÞ
contains at least m maximal clusters of size at least L, each
of which contains a letter in F. The key is to decompose
this set as

WðGÞ ¼ ⨄∞
k¼mW

kðGÞ ðA68Þ

with

WkðGÞ ≔ fw ∈ WðGÞ∶ ∃ exactly k maximal clusters

c ⊂ w∶c ∈ C≥LðFÞg;

i.e., into sets of words having exactly k ≥ m such clusters.
Then, the observation that for every w ∈ WkðGÞ there

are exactly
�
k
m

	
many m-fold animals G0 ∈ Am

≥LðFÞ with
w ⊂ G0 completes the proof. ▪
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2 Locality and complexity in lattice systems

2.4 On state space structures

We have seen (in Section 2.2.1 on pages 40f) that the set of states that can be effectively reached
with local dynamics in polynomial time is exponentially small compared to the full set of states.
This means that natural dynamics only exploits a tiny subset of state space. For ground states
(see pages 22f) and thermal states [WVHC08] of local Hamiltonians, similar statements can
be made in the form of so-called area laws [ECP10]. In the last section, we saw that at high
temperatures correlations in thermal states cluster exponentially and that thermal states can be
approximated by matrix product operators (see Theorems 2 and 3 on pages 50 and 52). This
all justifies the picture that most of many-body physics takes place in a small subset of state
space. Hence, if one wants to numerically simulate a system with restricted resources avail-
able, it seems to be a very good idea to also restrict the simulation to a small subset of state
space, which contains the interesting physics. This is the basic idea of so-called tensor network
methods. As the development and investigation of such methods have grown into a large field,
there are several review articles available [ECP10, Eis13, Oru13, PGVWC07, Sch11, Sch13,
VMC08] (see also pages 22ff). A tensor network is a partially contracted family of tensors
(see, e.g., Figure 1 in the following Publication on page 101), where the dimensions of the
single contracted indices are the bond dimensions. It can indeed be understood as a network,
where the tensors correspond to the vertices, the indices to lines on the vertices, and contrac-
tions to connections of the corresponding lines (see pages 101f for figures and a more detail
explanation). The basic idea of tensor network methods is to represent states and operators in
terms of such networks, and to keep the tensors as low-dimensional as possible. This leads
to several ansatz classes of states that serve as variational sets in the numerical simulations.
As correlations are captured by the contraction lines, the topology of the network determines
what kind of correlations it can capture. Hence, it is crucial to find the right network to solve a
particular problem.

As an example, we introduce and compare two important classes of tensor network states
in the following section. Then, in Section 2.4.2, we identify and discuss a fundamental prob-
lem arising when generalizing tensor network based methods from pure states to mixed state
scenarios.

2.4.1 Real-space renormalization yields finite correlations

The most widely investigated example for tensor network states is given by matrix product
states (MPS) that are one-dimensional tensor networks parameterizing state vectors of spin
chains. In a way, they are pure state with only local correlations. Similarly, ground states of
gapped local Hamiltonians have local corrections. More precisely, they obey an area law of
the entanglement Rényi entropies [ECP10]. Hence, such ground states can be approximated by
MPS faithfully [VC06]. If a Hamiltonian is not gapped, integer-spin chains can feature power
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2.4 On state space structures

law violations of the area law [MS14]. However, in many situations its ground state still satisfies
an area law only with logarithmic correlations [ECP10], meaning that it can have entanglement
scaling logarithmically in the length of the chain. Being important in the study of critical phe-
nomena [FIK08, Kor04, LRV04, VLRK03], this insight has lead to the idea of approximating
ground states with hierarchical tensor network states, which are called multiscale entanglement
renormalization ansatz (MERA) states [Vid07, Vid08] and which also feature a logarithmic
scaling of entanglement. Correspondingly, MERA states have unbounded correlations and can
be used as a variational class to simulate critical ground states efficiently [Vid07]. This method
can even be used to study fermions [PBE10], which seems to be intractable using quantum
Monte Carlo simulations due to the sign problem [TW05].

Of course, one would also like to simulate systems of dimensions larger than one. The two-
dimensional analogue of MPS, called projected entangled pair states (PEPS), are not efficiently
contractible [SWVC07] and one needs to resolve to approximation schemes [LCB14]. MERA
states, in contrast, are efficiently contractible in any dimension: In order to compute an ex-
pectation value of a local observable only tensors inside the causal cone need to be taken into
account and the cone has a system size independent width [Vid07].

Quite surprising, the following holds (see Publication [BKE10] in Appendix B): In dimen-
sions larger than one, MERA states are just PEPS with system-size independent tensor sizes.
This indeed means that the hierarchical tensor network, such as generated in real-space renor-
malization schemes, can be mapped to a planer tensor network with bounded local dimensions.
Hence, MERA states are an effectively contractible subclass of PEPS. As a corollary, we obtain
that higher dimensional MERA states also satisfy the area law for the entanglement entropy (for
an alternative argument leading to this statement, see the Preprint [Vid06] of Ref. [Vid08]).

2.4.2 A hard and an undecidable problem for translation invariant 1D
systems

In any simulation one only needs to keep track of the relevant degrees of freedom. Conse-
quently, numerical algorithms include a truncation step, where in the case of tensor network
based algorithms, the bond dimensions are reduced. For the case of unitary dynamics in real and
imaginary time, this truncation works particularly well in one dimension, making DMRG tech-
niques [Whi92] a great success [ECP10, Eis13, Oru13, PGVWC07, Sch11, Sch13, VMC08].
In the case of Liouvillian dynamics (see Section 2.2), however, numerical simulations seem to
be significantly less successful, even though some progress has been made [CB13, VGRC04,
ZV04]. Similarly, as the simulation of imaginary time unitary dynamics can be used to approx-
imate the ground state of a system by an MPS, one would like to approximate stationary states
of local Liouvillians by MPOs via simulating the time evolution. One obstacle seems to be that
known truncation schemes do not preserve positivity in that case and generate negative eigen-
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values in the state approximation. The situation seems to be even more serious: Given an MPO
approximation of a state it is not known how one can check whether or not the MPO is a state
itself.

In the following Publication [KGE14a] we show that this is no coincidence by pointing out
a fundamental obstacle: Testing whether or not an MPO is a positive semi-definite operator is
NP-hard in the system size and even undecidable if no bound on the system size is assumed.
This means that positivity is a genuinely global property without any local witness. Our results
also hold if one allows for some fixed violation of the positivity by some threshold and we
also formulate them in terms of a weak membership formulation of the problem (see pages
71f). We also discuss connections between different notions of one-dimensional tensor network
states (see Table 1 on page 70 for an overview) and hidden Markov models (see Ref. [Vid11]
for a survey) from classical probability theory as well as different types of positive matrix
factorizations. Our undecidability result adds to a short list of undecidable problems in quantum
mechanics [CPGW14, EMG12, WCPG11].
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Tensor network states constitute an important variational set of quantum states for numerical studies
of strongly correlated systems in condensed-matter physics, as well as in mathematical physics. This is
specifically true for finitely correlated states or matrix-product operators, designed to capture mixed states
of one-dimensional quantum systems. It is a well-known open problem to find an efficient algorithm
that decides whether a given matrix-product operator actually represents a physical state that in particular
has no negative eigenvalues. We address and answer this question by showing that the problem is provably
undecidable in the thermodynamic limit and that the bounded version of the problem is NP-hard
(nondeterministic-polynomial-time hard) in the system size. Furthermore, we discuss numerous connections
between tensor network methods and (seemingly) different concepts treated before in the literature, such
as hidden Markov models and tensor trains.

DOI: 10.1103/PhysRevLett.113.160503 PACS numbers: 03.67.−a, 02.60.Pn, 03.65.Ud, 89.70.Eg

Computational quantum many-body physics is marred
by the fact that standard computational descriptions of
states require exponentially many parameters. Fortunately,
for many physically relevant problems, one does not need to
consider all those parameters to capture natural properties
extremely accurately. One of the pillars on which computa-
tional many-body approaches rest is the framework of tensor
network methods. Here, the relevant degrees of freedom
are parametrized by very few numbers, which are organized
in terms of tensor networks that are contracted in order to
compute expectation values [1–8]. Notably, the density-
matrix renormalization group approach, the most successful
method to numerically determine ground state properties
of strongly correlated one-dimensional models, can be cast
into such a form [1,2]. In this language, the problem of
minimizing the energy can be phrased as a variational
principle over matrix-product (or purely generated
C�-finitely correlated) states [9]. The natural analogue that
also encompasses mixed quantum states is matrix-product
operators. Again, they feature strongly in numerical algo-
rithms [10,11], for example when investigating stationary
states of local Liouvillians modeling open quantum systems
[12,13] or Gibbs states [14,15].
However, general matrix-product operators are not

guaranteed to represent physical states, which is the source
of considerable conceptual and computational difficulties.
It would thus be highly desirable to design an efficient
algorithm capable of checking whether a given matrix-
product representation defines a positive operator. To decide
if such an efficient “local test for positivity” exists is a
fundamental problem in the field, implicit already in its
early formulations (see the Appendix of Ref. [9]).
Here, we address and answer this question: determining

whether a matrix-product operator defines a physical state

in the thermodynamic limit is a provably undecidable
problem. We also show that the bounded version of the
problem is nondeterministic-polynomial-time (NP) hard in
the number of tensors, burying hopes that one could find
an efficient algorithm testing for positivity exactly. This is
proven for quantum spin chains with local dimension d ¼ 2
by a polynomial reduction from the Post correspondence
problem and a bounded variant thereof.
To give a practical example, one can approximate sta-

tionary states of local Liouvillians by iteratively applying
the Liouvillian to a state described as a matrix-product
operator and subsequently truncating the tensors. To avoid
inconsistent results, one has to check whether the trunca-
tion step has caused the state to become “too unphysical” in
that it has created eigenvalues that are more negative than
some chosen tolerance threshold. We prove such a check to
be unfeasible. The practical implications of our work are
as follows. On the one hand, they motivate the quest for
finding specific feasible instances that might exist. This
quest is reminiscent of the task of finding, e.g., efficient
contractions of two-dimensional planar tensor networks,
even though this task has been identified to be #P-complete
[16]. On the other hand, it shows that one should direct
one’s efforts towards finding approximate solutions.
The insight presented here adds a natural many-body

problem to the list of quantum mechanical questions that
have recently been identified not only as computationally
hard, but as outright undecidable [17–20]. Along the way
of introducing these novel results, we discuss a number
of connections between concepts that have arisen in the
literature, but whose relation has received surprisingly
little attention (see Table I).
Tensor networks: In quantum many-body theory, ten-

sor network methods are widely used in order to avoid
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intractability problems. The idea is to resort to variational
classes of states, where the attention is restricted to low-
dimensional manifolds of states that seem to capture well
the relevant physics of the model under study. It is less
widely appreciated in the physics community that similar
structures are ubiquitous in classical probability theory:
the hidden Markov model (HMM) is a generalization of a
Markov chain, where the observable process ðYtÞt∈N does
not need to be Markovian but there is a stochastic process
ðXtÞt∈N carrying additional information that renders the
combined process (Xt, Yt) Markovian. We only consider
the case where Xt and Yt have finitely many outcomes and
call the number of outcomes of Xt the bond dimension D.

With transition probabilities MðαÞ
i;j ¼ Pr½ðXtþ1; Ytþ1Þ ¼

ðj; αÞ∣Xt ¼ i�, boundary condition pj ¼ Pr½X1 ¼ j�, and
1
¯
≔ ð1; 1;…; 1ÞT ∈ RD, the probabilities of outcome

sequences of the process Yt are given by the matrix product

Pr½Y1 ¼ α1;…; Yn ¼ αn� ¼ pMðα1Þ � � �MðαnÞ1
¯
: ð1Þ

In order for a HMM to describe a stationary process,
p is usually taken to be a stationary distribution, i.e.,P

d
α¼1M

ðαÞp ¼ p. The description complexity of the HMM
is independent of n, or, if we allow the Markov kernels M
to vary as a function of t, linear. Non-negativity of the
probabilities in Eq. (1) is guaranteed because they arise as
the contraction over elementwise non-negative tensors.
From Eq. (1), it follows that the matrices Fðk;nÞ defined

by

Fðk;nÞ
ðα1;…;αkÞ;ðαkþ1;…;αkþnÞ ≔ Pr½Y1 ¼ α1;…; Ykþn ¼ αkþn�

have rank at most D, which upper bounds the so-called
Hankel rank [21].
A natural question is whether the rank condition alone

characterizes those distributions that allow for a HMM
with bond dimensionD. It has been known since the 1960 s
that this is not the case: there are distributions where
rankðFðk;nÞÞ ≤ D for all k; n, yet no HMM with finite bond
dimension exists [22,23]. However, a relatively straight-
forward argument (based on sequential “rank-revealing
decompositions,” e.g., singular value decompositions)
shows that every distribution with rank bounded by D
allows for a representation as in Eq. (1) where the tensorsM

are not necessarily positive. This fact seems to have been
discovered independently in different contexts, e.g.,
Refs. [7,9,24–26]. The resulting form is known as a
quasirealization, offering the same concise description of
the distribution as a HMM. These are, however, more
difficult to work with computationally, as any variation of
the local tensors can destroy global positivity. An important
question thus is as follows: are the conditions on the tensor
M that guarantee global positivity computationally effi-
ciently verifiable? As we will see, the answer is no.
The above constructions generalize to the quantum

setting: a C�-finitely correlated state [9] (also known as
quantum Markov chain [27,28]) ρ is obtained by replacing
the elements of Eq. (1) by their quantum counterparts. We
substitute p by a D ×D density matrix σ, the stochastic
map M by a completely positive map Φ that maps states
on CD to those on CD ⊗ Cd, and 1

¯
by the partial trace

(cf. Fig. 1). This immediately yields a local purification
[29]: one can write Φ in Kraus representation by choosing
operators Ki∶CD → CD ⊗ Cd satisfying

P
E
i¼1KiK

†
i ¼ 1

and Φð·Þ ¼ P
E
i¼1K

†
i · Ki. Here, E can be assumed to be

smaller than or equal to dD. Then the n-fold application of
K to a purification j ffiffiffi

σ
p i of σ yields the state vector jψi ¼

K∘K∘…∘Kj ffiffiffi
σ

p i in CD ⊗ ðCd ⊗ CEÞ⊗n ⊗ CD that is a
local purification of ρ, see Fig. 1. For quantum states one
can, once more, define “quasirepresentations.” Here Φ can
be a general linear map and σ is some operator (no
positivity constraints). This results in what is known as a
matrix-product density operator (MPDO) or finitely corre-
lated state (FCS) (not C�-FCS). A discussion of different
notions of positivity is provided in the Supplemental
Material [30]. More concretely, with ½d� ≔ f1; 2;…; dg,

TABLE I. Concepts of tensor networks discussed here.

States Classical Quantum

Pure Deterministic finite [55] Matrix-product states [3], purely generated C�-finitely
correlated states [9], tensor trains [26]

Mixed, inherently positive Hidden Markov models [21],
probabilistic finite automaton [46]

C�-finitely correlated states [9], local purification [29],
quantum Markov chains [27]

Mixed, not inherently positive Quasirealizations [21] Finitely correlated states [9], matrix-product
density operators [10,11]

FIG. 1 (color online). A C�-FCS as a tensor network. The
channel Φ can be written in terms of Kraus operators,
ΦðρÞ ¼ P

iK
†
i ρKi. The vertically contracted indices between

K and K� correspond to the sum over i. The tensor network to
the right is referred to as a local purification.
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a MPDO is a density matrix written in the following
form.
Definition 1 [matrix-product operator (MPO)].—An

instance of MPO tensors is given by M ¼
ðMðα;βÞ

i;j Þα;β∈½d�;i;j∈½D� ∈ Cd×d×D×D and boundary vectors
jLi; jRi ∈ CD. The dimension d is called the physical
dimension and D the (MPO)-bond dimension. The gen-
erated translation invariant MPO for system size n is

ρðL;M;R; nÞ ≔
X

j∈½D�nþ1

Lj1Mj1;j2 ⊗ … ⊗ Mjn;jnþ1
Rjnþ1

:

Main results: In order to precisely define the problems
that are shown to be computationally unfeasible, we employ
the standard language of theoretical computer science: the
task of identifying objects with a certain property (e.g.,
those MPOs that are positive) is a decision problem.
A specific case (e.g., given by a concrete tensor and
boundary vectors) is an instance. A decision problem is
NP-hard if it is at least as hard (in a precise sense) as all other
problems from the complexity class NP. It is deemed highly
unlikely that any NP-hard problem can be solved efficiently
on either a classical or a quantum computer. A problem is
(Turing) undecidable if no computer, even if endowed with
unbounded resources, is capable of correctly solving all
instances. In the statements of the various problems below,
MPO tensors are specified by rational numbers. These have
finite descriptions and can thus serve as inputs to computer
programs. Allowing for more general numbers (e.g., com-
plex rationals) would make the problem only harder.
In the precise statement of the problem, we allow for

a threshold λ, which bounds the “degree of negativity” that
is deemed acceptable. Moreover, we call positive semi-
definite operators more concisely just positive.
Problem 2.—[bounded MPO threshold problem (BTP)]

Instance: MPO tensors M ∈ Qd×d×D×D, jLi; jRi ∈ QD,
threshold λ ∈ Q, and system size n. Question: is the
MPO ρðL;M;R; nÞ þ λ1 positive?
Problem 3.—[MPO threshold problem (TP)] The TP is

defined in the same way as the the BTP except that there
is no restriction on the system size and the question is as
follows: is there an n ∈ Zþ such that ρðL;M;R; nÞ þ λ1 is
not positive?
We obtain the following results, where the latter one

adapts ideas from Ref. [46] to the quantum setting.
Theorem 4.—(NP-hardness of the bounded MPO thresh-

old problem) For any λ ∈ Q and physical dimension d ≥ 2,
the BTP is NP-hard.
Theorem 5.—(undecidability of the MPO threshold

problem) For each threshold λ ∈ Q the TP is undecidable.
In particular, this holds for the case where the physical
dimension is d ¼ 2, the bond dimension is D ¼ 42, and
the matrices Mi;j are diagonal for all i; j ¼ 1;…; D.
Outlook: An important question is whether there are

physically relevant instances for which positivity is

efficiently decidable and how this can be exploited best
in numerical algorithms. Sometimes one can, e.g., effi-
ciently detect negativity locally by calculating expectation
values with respect to matrix-product states (MPS) of small
bond dimension, see Fig. 2.
In Ref. [29] local purifications of positive MPOs in terms

of matrix-product states are investigated and it is shown that
the arising MPS-bond dimension can in general not be
bounded independently of the system size. This already
suggests that such purifying MPS would require high bond
dimensions when used instead of MPOs in numerical
simulations. However, two constructive purification methods
are suggested that are efficient when the rank of the MPO is
polynomially bounded but in general necessarily inefficient
[29]. From our Theorem 4 it also follows that this is no
coincidence. To be more precise, a local purification method
is an algorithm that receives a MPO instanceM; jLi; jRi and
a system size n with ρðL;M;R; nÞ ≥ 0 as input and outputs
a local purification of ρðL;M;R; nÞ.
Corollary 6.—Local purification methods are inefficient

in the system size.
In the BTP one is asked to exactly delineate the MPOs

with smallest eigenvalues above −λ from those with
smallest eigenvalues below −λ. In practice, it would be
acceptable if an algorithm reliably recognizes whether a
state ρ is either sufficiently positive, i.e., ρ ≥ −λ, or violates
a threshold by at least ϵ ≥ 0, i.e., ρ≱ − ðλþ ϵÞ. Such an
approximate version is allowed to give unspecified results
on the narrow band between the two cases. In order to make
this precise, we state the BTP as a weak membership
problem: for ϵ > 0 one is only required to decide whether
a MPO instance (L, M, R) with Tr(ρðL;M;R; nÞ) ¼ 1
satisfies either ρðL;M;R; nÞ ≥ −λ or ρðL;M;R; nÞ≱
−ðλþ ϵÞ. The MPO provided in the proof of Theorem 4
has a trace that is exponentially bounded from above.
Hence, as a corollary, one obtains that the BTP remains
NP-hard as a weak membership problem if ϵ is exponen-
tially small in n. This statement remains true for algebraic
and not necessarily rational inputs. Weak membership
formulations seem to be natural for a variety of problems
in quantum information. For instance, NP-hardness of
testing separability of quantum states as a weak member-
ship problem was established first [47] for an exponentially
small “error” ϵ and, much later [48], for a polynomially

FIG. 2 (color online). Contracting MPOs with MPS can detect
negativity for some instances. Hence, this provides a hierarchy of
efficient tests labeled by the MPS-bond dimension, a strategy
practically accessible by density-matrix renormalization group
(DMRG) approaches.
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small ϵ, in fact, using key methods of the previous approach
[47]. Hence, our work is an invitation to explore whether
the BTP as a weak membership problem is also NP-hard
for only polynomially bounded ϵ or, instead, to actually
find an algorithm that efficiently solves that problem.
Details: For any finite set Σ (alphabet) we denote by

Σn the set of sequences w (words) of n ¼ jwj elements
(letters) from Σ and by Σ� ≔ ⋃n∈NΣn the set of words. For

w ∈ ½d�� we denote by jwi ¼⊗jwj
j¼1 jwji the tensor product

of the corresponding canonical basis states j1i;…; jdi.
Given two monoidsW andW0 we call a map U∶W → W0 a
morphism if U maps the identity element of W to the
identity element ofW0 andUðw1w2Þ ¼ Uðw1ÞUðw2Þ for all
w1; w2 ∈ W. The monoids we encounter here are either
given by words over an alphabet with concatenation or by
matrices with matrix multiplication. Next, we introduce the
famous Post correspondence problem [49] and a bounded
variant thereof.
Problem 7.—[bounded Post correspondence problem

(BPCP)] Instance: pairs of words ðuα; vαÞα∈½d� over a finite
alphabet Σ and length n in unary notation [50]. Question:
does there exist a nonempty word w ∈ ½d�n of length n such
that uw1

uw2
� � � uwn

¼ vw1
vw2

� � � vwn
?

Problem 8.—[Post correspondence problem (PCP)] The
PCP is defined in the same way as the BPCP except that
there is no restriction on the word length.
The two sets of words ðuα; vαÞα∈½d�, referred to as

dominos, define two morphisms U;V∶½d�� → Σ� given
by UðwÞ ¼ uw1

uw2
� � � uwjwj and similar for V.

Theorem 9.—(PCP is undecidable, see Ref. [51]) For
every d ≥ 7 the PCP with Σ ¼ f0; 1g is undecidable.
In fact, by noting a simpler proof [52] of a variant of

this theorem with larger d, one can make the following
computation theoretic statement.
Observation 10.—(BPCP is NP complete) There is a

polynomial p such that for any nondeterministic Turing
machine M and input x there is a reduction to an instance
U;V of the BPCP such thatM accepts x in n steps iff there
is a solution of U;V of length pðnÞ.
In the usual textbook proof of the undecidability of the

PCP (see, e.g., Ref. [52]) the halting problem is reduced to
the PCP. The idea of the proof is to encode the computation
history of a given Turing machine into the two morphisms
of the PCP in two different ways such that there is a
solution iff the Turing machine halts. Specifically, there is a
polynomial p such that exactly when a Turing machine
accepts an input after n steps then there is a solution of the
corresponding PCP instance of length pðnÞ. The encoding
works in the same way when the Turing machine is
replaced by a nondeterministic Turing machine because
having a transition relation instead of a transition function
allows us to define the PCP instances in the same way
(possibly with more “dominos” ðuα; vαÞ). This shows that if
one could solve the BPCP in polynomial time, then one
could also solve NP problems in polynomial time. As

solutions to the BPCP can be verified by a Turing machine
in polynomial time the BPCP is in NP.
For the proofs of Theorems 4 and 5 the two following

polynomial reductions are needed (see the Supplemental
Material [30] for proofs building on Refs. [46,53,54]).
Lemma 11.—Let ðuj; vjÞj∈½d� be any instance of the PCP

and λ ∈ Q be a threshold. Then there exist boundary
vectors jLi; jRi, and matrices Að1Þ;…; AðdÞ ∈ N6×6 that
define a morphism A∶½d�� → N6×6 such that for allw ∈ ½d��

hLjAðwÞjRi¼−ðλþ1Þ if UðwÞ¼VðwÞ;
hLjAðwÞjRi≥−λ if UðwÞ≠VðwÞ: ð2Þ

Lemma 12.—(see Ref. [54]) Let d;D ≥ 2,
Að1Þ;…; AðdÞ ∈ QD×D be matrices that define a morphism
A∶½d�� → QD×D, and jLi; jRi ∈ QD be boundary vectors.
Then there exist two matrices Bð1Þ and Bð2Þ that define a
morphism B∶½2�� → QDd×Dd together with an injective mor-
phism X∶½d�� → ½2�� satisfying jXðwÞj ¼ djwj such that
h ~LjBðXðwÞÞj ~Ri ¼ hLjAðwÞjRi for all w ∈ ½d��, where
j ~Xi ≔ ðjXi; 0;…; 0ÞT .
Proof of Theorems 4 and 5.—We prove the theorem

by using the encoding A∶½d�� → QD×D of the PCP with
d dominos into the matrices from Lemma 11. Using
Lemma 12 we reduce the physical dimension d to 2 at
the expense of having a larger bond dimension dD and an
increase of the system size n to dn. This results in an
encoding C∶½2�� → QdD×dD with boundary vectors j ~Li and
j ~Ri. Now we define a MPO tensor M by Mðα;βÞ ¼P

d
γ¼1 δα;γδβ;γC

γ. Then (jLi;M; jRi) is an encoding of the
PCP to the TP. All successively used encodings are
polynomial reductions. In particular, an instance of the
BPCP with word length n can be written as an instance of
the BTP with system size dn. Hence, Theorem 9 and
Observation 10 finish the proof.
Conclusions: In this work, we have shown that a

problem naturally occurring in the context of tensor net-
work states is NP-hard and in the thermodynamic limit even
undecidable. The findings point to the challenge for reliable
numerical methods for, e.g., finding Gibbs and stationary
states of quantum many-body systems: truncations in the
bond dimension—a common step in existing numerical
algorithms—can introduce inconsistencies that cannot be
found computationally. This insight provides an interesting
twist to numerical methods to capture mixed quantum
many-body systems as well as to notions of Hamiltonian
complexity [56,57]. Future research should follow a dual
aim: first, identify instances and approximations where
(near) positivity can be guaranteed; second, search for
further problems in the context of tensor network states that
are not decidable algorithmically.
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APPENDIX

In the first parte of this appendix we discuss different kinds
of postive matrix factorizations, positive ranks, and cones. In
the last part we prove Lemmas 10 and 11 using ideas from
Refs. [5, 7].

Matrix factorizations

In this section we first comment on the gap between the
usual rank and the non-negative rank of a matrix. Then we
briefly discuss another notion of positive rank, called semidef-
inite rank.

Non-negative rank. The problem of finding HMM real-
izations is closely connected with the theory of non-negative
matrix factorizations. Any entry-wise non-negative matrix F ,
e.g., given by Fα,β = Pr[Y1 = α, Y2 = β], can be written as

F =
D∑

j=1

|Li〉〈Ri| , (6)

i.e., as a sum of rank-1 matrices. This is a quasi-realization of
the process (Y1, Y2) with two time steps. The minimal D is
the usual rank of F . Similarly, the positive rank of F is the
minimum number of entry-wise non-negative rank-1 matrices
that sum up to F . Any such decomposition into rank-1 matri-
ces with the proper normalization is a HMM for (Y1, Y2).

We thus find that the auxiliary dimension D of a quasi-
realization of two discrete random variables is nothing but
the rank of the joint probability distribution seen as a matrix;
while the smallest D in a HMM is the non-negative rank. Old
results [2, 3] showing that minimal bond dimensions for re-
alizations and quasi-realizations are distinct can thus be re-
interpreted in terms of gaps between rank and non-negative
rank. Actually finding the non-negative rank is known to be
NP-hard [8].

Non-negative matrix factorizations have been studied ex-
tensively, just to name two famous examples, in Ref. [9] for
influential applications in machine learning theory, and in
Ref. [10] for algorithms.

Positive semidefinite rank. If Aα, Bβ are non-negative
matrices, then Tr(AαBβ) is clearly a non-negative number.
One defines a positive semidefinite (PSD) factorization of a
matrix F to be a choice of positive semidefinite matrices
Aα ≥ 0, Bβ ≥ 0 such that

Fα,β = Tr(AαBβ). (7)

The PSD rank of F is the smallest dimension D such that
there is a PSD factorization of F in terms of D×D-matrices.
These notions have recently attracted considerable attention
[11–13] as novel lower-bounds on the PSD rank (partly de-
rived in the study of quantum communication complexity
[14]) have been used to disprove the existence of efficient
semidefinite programs that would solve certain NP-hard com-
binatorial optimization problems [11]. The problem of iden-
tifying semidefinite factorizations for empirically observed
statistics of quantum experiments has been treated in Ref. [15]
and prior works by the same author referenced there.

Bond dimensions of MPOs and local purifications

As in the previous case, one can easily check that a PSD
factorization for F immediately gives a realization of the clas-
sical bivariate distribution defined by F in terms of a quantum
HMM, i.e., a local purification. Of course, classical distribu-
tions can be embedded into quantum states. This was used
in Ref. [4] to leverage the fact [11] that there are families of
F s whose rank is bounded, but whose PSD rank diverges to
show that there are bi-partite quantum states with bounded
bond dimensions as MPOs, but unbounded ones for any local
purification.

Cones and generalizations

One can abstract even further. Element-wise positivity and
semidefiniteness are two notions of positivity in vector spaces.
There is a systematic theory of general ordered vector spaces
[16]. Notions of order in real vector spaces stands in one-one
correspondence to (Archimedean) closed convex cones. The
cone represents those elements of the vector space that are
deemed “non-negative”. For two vectors v, w ∈ V , one says
v ≤ w iff v − w is an element of that cone. One can now
define generalized HMMs by the “physical” and the “aux-
iliary” vector spaces carrying various orders and by requir-
ing that the F s are positive maps in the sense that they pre-
serve these orders. We can then distinguish various cases. If
both physical and classical spaces carry the usual element-
wise order, we recover the traditional notion of HMM. If both
carry the semidefinite order, we obtain quantum Markov pro-
cesses. If the physical one is element-wise, but the auxiliary
one semidefinite, one arrives at the model treated in Ref. [4]
and also in this work.
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Such conal matrix factorizations have recently been dis-
cussed in the optimization literature [11, 13, 17]. Notably,
researchers working on stochastic process both in a classi-
cal [18] and quantum [1, Appendix] setting have appreciated
these ideas already quite early. They are also inherent to the
generalized probabilistic theories approach to quantum foun-
dations [19–22].

Proof of Lemmas 10 and 11

Proof of Lemma 10. For an alphabet Σ of size b = |Σ| the
numeric representation of Σ∗ is the map σ : Σ∗ → N given
by

σ(w) :=

|w|∑

j=1

σ(wj)b
|w|−j (8)

where σ(∅) = 0 and σ�Σ: Σ→ [b] is a bijection (enumeration
of Σ). Note that for any two words u, v ∈ Σ∗

σ(uv) = b|v|σ(u) + σ(v) (9)

and σ(u) = σ(v) iff u = v. Note that for all w

b|w|−1 ≤ σ(w) ≤ b|w| − 1. (10)

Next, we define A : Σ∗ × Σ∗ → N6×6 as in Refs. [5, 6] by

A(u, v) =




b2|u| 0 0 0 0 0
0 b|u|+|v| 0 0 0 0
0 0 b2|v| 0 0 0

σ(u)b|u| σ(v)b|u| 0 b|u| 0 0
0 σ(u)b|v| σ(v)b|v| 0 b|v| 0

σ(u)2 2σ(u)σ(v) σ(v)2 2σ(u) 2σ(v) 1



.

Using the property (9) of the numeric representation of Σ∗ it
follows that

A(u1, v1)A(u2, v2) = A(u1u2, v1v2) (11)

for all words u1, u2, v2, v2 ∈ Σ∗. Now let U, V : [d] → Σ be
an instance of the PCP and define A(α) := A(U(α), V (α))
for all α ∈ [d]∗ and the boundary vectors as |L〉 = |6〉 and
|R〉 = |1〉 − |2〉 + |3〉 − (λ + 1) |6〉. Thanks to Eq. (11),
A viewed as a map on [d] extends to a morphism on [d]∗, as
required. For anyw ∈ [d]∗ we haveU(w) = V (w) iffA(w)

6,4 =

A
(w)
6,5 . Moreover,

〈L|A(w) |R〉 =
(
σ(U(w))− σ(V (w))

)2 − (λ+ 1) , (12)

and Eq. (4) follows.

Proof of Lemma 11. We using a technique from Ref. [7]. De-
fine B(1) := diag

(
A(α)

)
α∈[d]

to be the block diagonal matrix

having A(α) in increasing order as the diagonal blocks and

B(2) :=

(
0 1D(d−1)

1D 0

)
. (13)

Now we construct a bijective morphism X : [d]∗ → [2]∗ sat-
isfying

〈
L̃
∣∣B(X(w))

∣∣R̃
〉

= 〈L|A(w) |R〉 . (14)

First, note that B(2) = S ⊗ 1D, where S is the permutation
matrix representing the cyclic permutation (1, 2, . . . , d) 7→
(2, 3, . . . , d, 1). This means that B(2) acts as the cyclic left
shift on the d blocks of D neighbouring components of col-
umn vectors. Hence

C(α) := B(2)α−1
B(1)B(2)d−(α−1)

(15)

= diag(A(α), . . . , A(d), A(1), . . . , A(α−1)) (16)

for all α ∈ [d]. Eq. (16) implies that for any w ∈ [d]∗

the upper left D × D block of C(w) is A(w). Next, define∣∣L̃
〉
,
∣∣R̃
〉
∈ ZdD to be the vectors that have |L〉 and |R〉 as

their first D components respectively and all other compo-
nents equal to zero. Then we obtain

〈
L̃
∣∣C(w)

∣∣R̃
〉

= 〈L|A(w) |R〉 (17)

for all w ∈ [d]∗.
For s ∈ N and α ∈ [d] we denote by αs the word that

consists of s times the letter α. Now we define a morphism
X : [d]∗ → [2]∗ by

X(α) := 2α−11 2d−α (18)

for α ∈ [d]. Note that for any w ∈ [d]∗ we have |X(w)| =
d|w| and that one can reconstruct w from just knowing X(w),
i.e., X is injective. Using Eq. (16) we obtain

C(w) = B(X(w)). (19)

Together with Eq. (17) this finishes the proof.
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3 Quantum simulations and the
verification problem

In the last chapter, we discussed several results relevant in the broader context of simulations
of complex quantum systems. More precisely, we have discussed simulations on both, on
classical computers and on quantum computers. But in fact, there is also a notion of so-called
quantum simulations that is weaker than a scalable universal quantum computer but can solve
at least some task more efficiently than classical computers. Since such simulations started
recently to receive a lot of attention, I would like to start the conclusion of this thesis with the
discussion of a fundamental problem that arises once one starts solving problems other than
those in NP, i.e., problems other than those solutions of which can be verified efficiently on
a classical computer. In order to explain this, it is worth having a look at the intractability of
decision problems in NP first. For instance, deciding whether or not a natural number can be
non-trivially factorized is believed to be intractable on classical computers. If someone had
a machine factoring numbers efficiently, he clearly could solve this decision problem. But
even more, he could easily convince everybody of his machine’s power, since using a classical
computer one can efficiently check whether or not the factorizations are indeed correct. Coming
back to quantum simulations, in general there is no such efficient check that decides whether a
quantum simulation actually does what it is intended to do. This means that someone operating
a quantum simulation with supra-classical powers can not automatically convince a sceptic
second party that he actually does have those powers. We call this the verification problem.
A detailed discussion of this problem has strangely been absent in the quantum simulations
literature so far.

While building a fully fledged universal quantum computer is the ultimate goal, realizing
some sort of computation that is intractable on classical computers would constitute a great
breakthrough [CZ12, Pre12]. The hope is to achieve this breakthrough using quantum re-
sources, i.e., in a quantum simulation. In fact, there are already a number of works tackling
this more modest problem with photonic quantum systems [AGW12], ultracold gases in opti-
cal lattices [BDN12], trapped ions [BR12], superconducting circuits [HTK12]. Also annealing
processes with quantum signatures for finding certain ground states have been realized experi-
mentally [Boi+13, Boi+14]. As their functioning cannot be verified easily, they were criticized
for apparent “classical signatures” [SS13, Wan+13]. Another famous example for quantum
simulations is given by the Boson-Sampling problem [AA11], which was suggested solely to
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show that quantum systems can outperform classical ones in performing some particular task.
Therefore, Boson-Sampling is ideal for discussing the verification problem.

3.1 Indication that classical efficient Boson-Sampling
verification is impossible

The Boson-Sampling problem is to approximately sample from the output distribution of a
linear optical network with n bosons in m modes. A single sample is the vector of photon
numbers obtained when the output state of the network is measured in the Fock basis (see
Figure 1 in Publication [GKAE13] in Appendix B). If the passive Gaussian unitary describing
the network is drawn uniformly at random then this problem is proven [AA11] to be hard with
high probability for m scaling at least as n5 and under reasonable conjectures. Such Boson-
Sampling simulations have even been implemented experimentally with up to three bosons
in six optical modes [Bro+13, Spr+13, Til+13, Cre+13] and the theoretical predictions of the
theory of passive linear optics have been confirmed. Of course, one would like to conclude that
quantum systems provably outperform classical computers (in performing some task). For this
conclusion, it remains to show that Boson-Sampling simulations can be scaled efficiently in the
number of bosons and the inverse error [AA11].

But more fundamentally, the verification problem needs to be resolved, at least in some
way. Of course, one can always gain some evidence that a quantum simulation works correctly
by testing it in a classically tractable regime [Bra+14, Tro+12]. Then it is a matter of taste
whether one trusts the simulation also in the classically intractable regime. However, it remains
open if and how this problem can be overcome in a more satisfactory manner. For Boson-
Sampling, the situation is particularly dramatic as its sole purpose is to provide an example for
a classical intractable quantum simulation. Hence, it is desirable that it performs particularly
well in this task, i.e., that one can convince even a sceptic person of its power. In this sense,
for Boson-Sampling a solution of the verification problem is particularly important. A good
intuition and also rigorous evidence that Boson-Sampling cannot be verified effectively with
only classical resources is given in Publication [GKAE13], which we will discuss in the next
section. As we will discuss in Section 3.2, first steps were already made towards verification of
Boson-Sampling using very restricted quantum resources. Whether or not full verification of
Boson-Sampling in an efficient manner is possible remains, however, an open problem.

For verification one ideally would like to test whether a potential Boson-Sampling device
either samples from a distribution that is ε-close to the ideal Boson-Sampling distribution or
not. But since boundary cases can always be arbitrary hard to distinguish, the best one can
hope for is to verify that the distributions have a distance either less than ε or larger than
ε + ∆, where ∆ > 0 can be reduced efficiently. But actually a test that verifies the device if
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it samples from the ideal Boson-Sampling distribution and rejects if the device samples from
a distribution that is more than ε far away from it could be sufficient for verification (see also
Publication [AGKE14] for detailed discussion of notions of verification). At this point it is
worth noting that the sample space is larger than exponentially large in the number of bosons n
and with similar discretization arguments as in Publication [Kli+11b] on pages 40f, it follows
that the space of distributions is larger than double exponentially large in n.

However, as a first step, we will discuss Boson-Sampling in a restricted setting, where sam-
ple complexity results [Bat+13] can be applied. More specifically, we ask the following: How
many samples are needed to distinguish the Boson-Sampling distribution from the uniform
one? One important ingredient to the hardness of Boson-Sampling is that not any probability of
a single outcome can be calculated efficiently (by a conjecture the hardness of Boson-Sampling
relies on) from the Gaussian unitary describing the linear optical network. Hence, it is reason-
able to first find an answer to that problem, where one is not allowed to use the unitary. This
essentially restricts the verification algorithm to be a so-called symmetric algorithm [Bat+13]
and one can show that exponentially many samples are needed in that case (see Publication
[GKAE13] in Appendix B). The intuitive argument is that the Boson-Sampling distribution is
typically very flat and, therefore, the size of the sample space makes it hard to detect its struc-
ture from few samples. Importantly, the structure is encoded in polynomially many samples
which is implied by Theorem 3 on page 124 of Appendix B. The main technical contribution
of this theorem is to show that the Boson-Sampling distribution is flat, i.e., to lower bound the
min-entropy of typical Boson-Sampling distributions.

Inspired by this work [GKAE13], algorithms were found that distinguish Boson-Sampling
from uniform sampling using only polynomially many samples, where the key is to actually
use the information about the Gaussian unitary in a smart way [AA11]. On the other hand, an
observation from F. G. S. L. Brandão is the following [AA11]: For every instance of Boson-
Sampling with high min-entropy and every circuit length T ∈ O(poly(n)) there is a classically
efficiently samplable distribution indistinguishable from the distribution of the Boson-Sampling
instance by all circuits of length T . Hence, efficient classical Boson-Sampling verification, in
the sense explained above, is not possible.

3.2 Reliable quantum verification for photonic quantum
technologies

The discussion from the last section shows that the lack of practical verification tools is a sig-
nificant roadblock for the development of reliable quantum simulations. In particular, there
seem to be fundamental obstacles for purely classical verification of photonic quantum simula-
tions. But actually, there is no need to restrict to classical verification techniques. Very simple
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quantum operations can be performed reliably, such as single mode measurements. These op-
erations can be used to verify that the right quantum state is prepared in a photonic preparation
scheme. In Publication [AGKE14] (see Appendix B) different notions of verification are dis-
cussed and a verification protocol using single mode measurements is provided. The protocol
verifies m-mode Gaussian states and a class of linear optical states, which are given by a pas-
sive Gaussian unitary acting on an m-mode Fock basis state with n photons. In both cases, one
can even allow for post-selected target states. The protocol is efficient in m and the inverse
post-selection success probability but inefficient in n. The only restriction is that quadrature
measurements of the prepared state have bounded variances.

The verification protocol rests on Gaussian extremality based fidelity estimation and can
replace non-efficient tomography and compressed sensing techniques [Gro+10] for the im-
portant case where the target state is known. The protocol can verify states with negative
Wigner functions, which are not covered by the known classical simulation schemes [ME12b,
VWFE13]. With this verification, Boson-Sampling experiments with a constant number of pho-
tons [Bro+13, Spr+13, Til+13, Cre+13], all the states preparable with Knill-Laflamme-Milburn-
like schemes [KLM01, Kok+07] with inverse polynomially bounded post-selection probability,
state preparations for measurement based quantum computing with photonic states [Men+06,
Yok+13], and realization of multipartite entanglement [CMP14, Hua+11, Yao+12] can be veri-
fied efficiently. This suggests that, using simple quantum operations, one can indeed efficiently
verify quantum simulations that are not tractable classically efficiently.
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In this thesis, we have established various results on reliable classical as well as quantum simu-
lations of complex quantum systems, in particular, of local Liouvillian time evolution, systems
in thermal equilibrium, and photonic simulations. For each of these systems, we now briefly
summarize the results subsequently outline a few open problems.

We have seen that time evolution of open quantum lattice systems can be simulated effi-
ciently on quantum computers under reasonable assumptions. This result can be interpreted as
a Church-Turing type statement and also reveals limits of efficient state generation. Moreover,
such time evolution can be locally simulated efficiently in the system size even on classical
computers. Together this also provides a mathematical toolbox for classical simulations of
Markovian systems in, e.g., tensor network based methods. We also have identified an obstacle
for numerical truncations of mixed states that prevents the reliable simulation of such systems
on a larger scale: For the numerically convenient parametrization of operators in matrix prod-
uct form deciding positivity is NP-hard in the system size. If no bound on the system size is
imposed this even becomes an undecidable problem in the translation invariant setting. In order
to better understand and overcome this positivity problem, we suggest the following:

• Strengthen the hardness result on the bounded threshold problem as a weak membership
problem to positivity checks with polynomial accuracy (see pages 71f), if possible.

• Find optimal tests checking positivity of MPOs.

• Identify tractable and physically relevant instances.

• Finally, find algorithms that efficiently and reliably simulate open quantum systems (for
physically relevant instances).

• If a system is subjected to local noise, is it still hard to classically simulate its continuous
time evolution? What are conditions for hardness and/or classical tractability? Here a
first analysis suggests that the time scale on which the noise is correlated plays a crucial
role.

Thermal states are ubiquitous in nature and appear as stationary states in many situations.
Here, we have extended the concept of intensive temperature to interacting quantum systems.
This is done by relating the length scale on which temperature can be defined (in a canonical
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way) to a length scale on which correlations, with respect to a certain correlation measure,
are negligible. For temperatures above a universal threshold, we show that these correlations
decay exponentially. As a consequence, thermal states are stable against distant Hamiltonian
perturbations in this regime of high temperature. Moreover, above the temperature threshold,
local expectation values can be approximated efficiently in the system size. The temperature
threshold also upper bounds physical critical temperatures of phase transitions involving long-
range order. These results are very general but only provide coarse bounds for specific models.
Here, one should be able to use more specific properties of a model to improve the results.
Moreover, connecting our methods with the recent results [RGE12] on thermalization in closed
quantum systems could lead to great progress towards a general microscopic understanding of
thermalization. More specifically, we leave open the following problems:

• Understand better the generalized covariance (for specific models). Is its magnitude
convex in τ? How does the averaged generalized covariance scale in the limit of large
β? One would expect that, in many situations, the averaged generalized covariance also
decays exponentially below the critical temperature. Can this intuition be made rigorous?
This would automatically extent our results on universal locality.

• Finding smaller values for the critical temperature 1/β∗ (see page 50) would, e.g., con-
stitute tighter bounds on phase transitions temperatures.

• What Hamiltonians have long-range order at the highest possible temperature?

• It is rigorously known that thermal states can arise dynamically in systems, where the
coupling to the environment is bounded by a small, system size independent constant
[RGE12]. Can our methods to exploit the locality structure be used to improve upon
this? With that, one might be able to prove stronger and more general version of ther-
malization.

The τ -averaged generalized covariance (called “Matsubara time-ordered average” in its
“truncated version” by Kitaev) is closely related to local currents [Kit06]; and physical
intuition tells us that systems dynamically thermalize due to transport [CE10, Gog14].
Searching for local transport conditions, maybe in terms of Kitaev’s local currents from
Ref. [Kit06], and rigorously relating them to thermalization and also to the stability of
thermal states seems to be an interesting research program on its own.

Inspired by these results about simulations of complex quantum systems, we have asked the
question of what a reliable simulation actually is in the first place and encounter the verifica-
tion problem of quantum simulations: Once a quantum simulation of some system outperforms
classical computers, it becomes unclear how one can verify that the simulation indeed simu-
lates the system. For the case of Boson-Sampling, sampling complexity lower bounds on the
verification in a restricted setting are discussed. These bounds suggest that Boson-Sampling
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cannot be verified efficiently with classical resources only. Driven by this insight, a reliable
verification scheme for photonic state preparations was developed, which uses single-mode
measurements. This scheme is efficient in the number of modes and allows for efficient ver-
ification of, e.g., Boson-Sampling experiments with a constant number of photons and state
preparations necessary for measurement based quantum computing. The verification scheme
turns out be be compatible with post-selection on measurements of ancillary modes and turns
out to be efficient in the post selection success probability. Nevertheless, in the big goal of
achieving reliable quantum simulations, this work constitutes only a first step. There are vari-
ous problems to be overcome and here we only mention the most fundamental ones:

• What is a reasonable notion of “quantum simulations”? In the literature, this term refers
to a lot of different ideas.

• Are there interesting, classically intractable problems, other than decision problems, so-
lutions of which can be verified efficiently classically? For instance, is there a version of
Boson-Sampling that can be verified classically efficiently?

In this thesis, we have presented various rigorous results on simulations of quantum sys-
tems, where locality and complexity play an intertwined role and by this contribute to a better
understanding of complex quantum systems.
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A Appendix: Terminology

In this appendix we briefly explain some basics concepts from computer science and quantum
information theory.

A.1 Concepts from computational complexity theory

We will use several terms from computational complexity theory, which is a branch of the
theory of computation. The main task is, for a given model of computation, to classify compu-
tational problems according to their difficulty. We need the following models of computation:

• A Turing machine is the theoretic model of a classical computer without randomness.

• A probabilistic Turing machine is equivalent to a Turing machine that can use random
numbers as an additional resource.

• The unitary or quantum circuit model is the standard model of a quantum computation.
The inputs are qubits, the actual computation is a sequence of unitaries, called quantum
gates, each of which acts on at most two qubits, and the output is measured in a canonical
basis called computational basis.

A computational problem has a natural problem size, e.g., for the problem of factoring an
integer the problem size is the number of digits. Decision problems are problems with finite
input and binary solutions, i.e., yes/no answers. By restricting the resources in terms of the
problem size one obtains a large number of complexity classes [Com]. For instance:

• P denotes that class of decision problems that can be solved by a Turing machine in
polynomial time, i.e., in a time scaling at most polynomially in the problem size.

• NP denotes that class of decision problems where solutions can be verified by a Turing
machine in polynomial time. Equivalently, on can define NP as the class of problems
that can be solved in polynomial time in another theoretical model of computation called
non-deterministic Turing machine. Hence, the name, NP stands for non-deterministic
polynomial time.
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• BPP, standing for bounded-error probabilistic polynomial time, is the class of decision
problems that can be solved by a probabilistic Turing machine in polynomial time with
error probability upper bounded by 1/3.

• BQP, standing for bounded error quantum polynomial time, is the class of decision prob-
lems that can be solve by a quantum computer in polynomial time, with error probability
upper bounded by 1/3.

• QMA, standing for Quantum Merlin Arthur, is a class of decision problems that can be
verified by a quantum computer in polynomial time with probability at least 2/3. Note
that QMA is related to BQP in a similar way as NP is related to P. Therefore, it is often
called the quantum analogue of NP.

It is not hard to show that P ⊂ BPP ⊂ BQP ⊂ QMA and P ⊂ NP ⊂ QMA and it is believed
that the inclusions, except maybe the first one, are strict. P

?
= NP is called the P versus NP

problem and is one of the seven Millennium Prize Problems of the Clay Mathematics Institute.

We call a decision problem undecidable if there cannot exist an algorithm that decides every
instance of the problem correctly. For a given model of computation we say that a problem
can be solved efficiently or is tractable if it can be solved in polynomial time. We say that it
is not tractable if this is not the case and intractable if it can be solved but not in polynomial
time, so that intractable problems are always decidable but not tractable problems might also be
undecidable. Moreover, a problem L is called hard for NP (QMA), or NP-hard (QMA-hard), if
any other problem in NP (QMA) can be reduced to L with overhead bounded polynomially. A
hard problem that is itself in NP (QMA) is called complete for NP (QMA) or just NP-complete
(QMA-complete). Finally, we briefly name a few famous examples:

• The so-called local Hamiltonian problem, which is the decision version of finding the
ground state energy of a 2-local Hamiltonian, is QMA-complete. More precisely, the
local Hamiltonian problem is to decide, whether the ground state energy of a Hamiltonian
with two-body interactions is either below a value a or above another value b > a, for
1/(b− a) scaling at most polynomially in the number of subsystems.

• The decision version of integer factoring is clearly in NP, believed to not be in P, and
also believed not to be NP-complete.

• An NP-complete problem is the famous travelling salesman problem, which is the deci-
sion version of finding a shortest route, starting from one city, passing any city of a list
of cities exactly once, and returning to the origin city in the end.
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A.2 Concepts from quantum (information) theory

A.2 Concepts from quantum (information) theory

The following mathematical definition is important to classify valid quantum operations, both
in the Schrödinger and the Heisenberg picture. A linear map T between operator spaces is
called completely positive if for all auxiliary spaces X with identity map idX , the map T ⊗ idX

takes positive semi-definite operators to positive semi-definite ones (see, e.g., Ref. [Lin76] for
details).

A spin system is a quantum mechanical system described by a finite dimensional Hilbert
space. In the special case where the dimension is two one also calls it a spin-12 system or a
qubit.

A quantum lattice system is a multipartite quantum system with an associated graph, where
the the subsystems are associated with the vertices and the interactions with the edges. The
graph is also called interaction graph. In the case where the single subsystems are spins/
fermions/ bosons the system is also called a spin/ fermionic/ bosonic lattice system. See, e.g.,
Sec. 2.3 and Sec. 5 of Publication [KGE14b] on pages 17f and 26 for more details on spin and
fermionic lattice systems, respectively.

If one draws a pure state of a spin lattice system uniformly at random, then the state reduced
to a subsystem has an entropy scaling as the number of sites in that subsystem and one says that
the entanglement scales as the volume in that case. In many physical situations, however, one
encounters pure states where the entropy only scales at most as the boundary of the considered
subsystem. One then says that the state fulfills an area law for the entanglement entropy. This
can be generalized to mixed states and/or different correlation measures such as the Rényi
entropy or mutual information. See Publication [KGE14b] on pages 23f for more details.

A class of pure states for one-dimensional spin systems that fulfills such an area-law for all
entanglement Rényi entropies are matrix product states (MPS). Here the expansion coefficient
in the product basis are given in terms of matrices (see page 101 for a precise definition).
They are convenient for numerical simulations as they approximate well important classes of
physically relevant states. See Publication [KGE14b] pages 22ff for more details.

Similarly, matrix product operators (MPOs) parametrize operators and are used in numerical
simulations to describe local observables, update steps in (imaginary) time evolutions, and
density matrices. See Publication [KGE14a] pages 71f for more details.
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B Appendix: Other publications
generated during this thesis

While firs-author publications are presented in the main text, the author’s other publications
[AGKE14, BK12, BKE10, GKAE13] are included in this appendix for the sake of complete-
ness.
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Real-space renormalization approaches for quantum lattice systems generate certain hierarchical

classes of states that are subsumed by the multiscale entanglement renormalization Ansatz (MERA). It

is shown that, with the exception of one spatial dimension, MERA states are actually states with finite

correlations, i.e., projected entangled pair states (PEPS) with a bond dimension independent of the system

size. Hence, real-space renormalization generates states which can be encoded with local effective degrees

of freedom, and MERA states form an efficiently contractible class of PEPS that obey the area law for the

entanglement entropy. It is further pointed out that there exist other efficiently contractible schemes

violating the area law.

DOI: 10.1103/PhysRevLett.105.010502 PACS numbers: 03.67.Mn, 02.70.�c, 03.65.Ud, 64.60.ae

Renormalization group (RG) methods aim at solving
many-body problems by treating energy scales in an iter-
ative fashion, progressing from high to low energies [1].
One of its earliest formulations is the real-space RG which
works by repeated steps of thinning out local degrees of
freedom and rescaling of the system as in Kadanoff’s block
spin transformation [2]. In real-space RG approaches to
quantum lattice models [3], in each RG step �, the system
is partitioned into small blocks. From those blocks high-

energy states are eliminated and the Hamiltonian Ĥ�þ1

for the renormalized system is obtained by applying the

corresponding projection operators, exactly Ĥ�þ1 ¼
P̂�þ1Ĥ�P̂

y
�þ1 or in some appropriate approximation, fol-

lowed by a coarse graining of the lattice. This is iterated,
e.g., until a step � ¼ T is reached where the renormalized
system consists of a single small block for which the
ground state jgsTi can be obtained exactly. Applying the
RG transformations in reverse order yields an approxima-

tion P̂y
1 P̂

y
2 . . . P̂

y
TjgsTi to the ground state of the original

model. Those states, generated by the real-space RG, fall
into the class of so-called tree tensor networks (TTN) [4].
A recent more elaborate real-space RG scheme, the multi-
scale entanglement renormalization Ansatz (MERA) [5,6],
a genuine simulation technique for strongly correlated
systems, allows in each RG step for local unitary opera-
tions to be applied before the elimination of block basis
states. The technique generates hence a more general class
of states, referred to as MERA states; see Fig. 1.

Whereas the degrees of freedom of MERA and TTN
states are organized in a hierarchical structure encoding
correlations on different length scales, there exists a differ-
ent class of so-called finitely correlated states where the
degrees of freedom are organized in a strictly local manner.
For D ¼ 1 dimensional systems they are often referred to
as matrix product states [7], and for D � 1 as tensor
product Ansätze or projected entangled pair states
(PEPS) [8]; Fig. 2. PEPS are the basis of powerful numeri-

cal techniques, such as the very successful density-matrix
renormalization group [9].
In this Letter, we establish the surprising fact that, for

D> 1, real-space RG, despite of the inherently hierarch-
ical nature of the procedure, generates states that capture
correlations by local degrees of freedom.More specifically,
it is shown that MERA states form a subclass of PEPS,
unifying both approaches. This also explains the failure of
real-space RG for some situations for which merely anec-
dotal evidence had previously accumulated.
PEPS, TTN, and MERA are all tensor network states

(TNS). In terms of an orthonormal product basis j�i ¼N
N
i¼1 j�ii for a lattice of N sites, TNS are of the formP
�c � j�i where the expansion coefficients c � are en-

coded as a partially contracted set of tensors; Fig. 2.
Recently, this notion has been generalized to the fermionic
case [10]. For a PEPS, to each site i, a tensor Ai is assigned
which has one physical index �i and further auxiliary
indices—one for each nearest neighbor—which need to
be contracted to obtain c � ; Fig. 2. For TTN and MERA,

FIG. 1 (color online). A 1D MERAwith linear branching ratio
b ¼ 2. Circles, squares, and the triangle denote tensors, the lines
denote contractions of those tensors. The squares are isometries
that map two local subsystemsH �

i andH
�
iþ1 into oneH

�þ1
i=2 as

in Kadanoff’s block spin transformation. The circles denote
unitary operators, disentanglers, reducing the entanglement be-
tween H �

i �H �
iþ1 and the rest of the system before the action

of the isometry. Tensor positions are chosen according to Eq. (6)
such that stacking of tensors is avoided.
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the tensors are arranged in a hierarchical pattern with the
physical indices in the lowest layer; Fig. 1. The number of
degrees of freedom of a TNS can be tuned by changing the
number � of values each auxiliary index runs over.
Increasing � for a fixed structure of the TNS enlarges the
variational space, allowing for a more precise approxima-
tion to the exact ground state in a variational method, but
increases computation costs. Hence, � is called the refine-
ment parameter of the TNS. The computational costs for
efficient simulation techniques scale polynomially in �.

ForD ¼ 1, TTN and MERA states can in general not be
encoded efficiently as PEPS. There are MERA states with
an entanglement entropy that scales logarithmically in the
subsystem size [11], as occurring in critical models [12],
whereas the entanglement entropy of 1D PEPS saturates
for large subsystem sizes. In this respect, MERA states are
more useful than PEPS for this case. For D> 1, however,
our aforementioned result on real-space RG means in the
tensor network language that MERA states with a refine-
ment parameter � can be mapped efficiently to PEPS such
that the resulting PEPS refinement parameter �PEPS is
some system-size independent function of �. This also
implies that D> 1 MERA states always obey the entan-
glement area law just as PEPS [12,13]. This behavior is
shared by ground states of noncritical systems and critical
bosons. Ground states of critical fermions, however, can
violate the area law [12,14]. Consequently � needs to be
scaled polynomially in the system size in order to describe
such critical fermionic systems accurately. Otherwise, the
real-space RG schemes addressed here [3,5] are neces-
sarily imprecise in that case. The remaining advantage of
D> 1 MERA is that local observables and correlation
functions can be evaluated efficiently, whereas, for PEPS,
approximations are necessary. In this sense, MERA states
simply form an efficiently contractible subclass of PEPS.
This raises the question of whether any efficiently con-

tractible tensor network automatically yields an area law
which is, however, not the case. To show this, we construct
an example of efficiently contractible TNS based on uni-
tary quantum cellular automata (QCA). For a specific
choice of the tensors, one obtains instances that violate
the area law for generic bipartitions of the system.
General procedure for mapping TNS to PEPS.—All

TNS can be mapped to PEPS, although not necessarily in
an efficient manner. To map a TNS to a PEPS one can
(a) assign each tensor of the TNS to a specific site of the
physical lattice [15]

V phys :¼ f0; . . . ; L� 1gD � ZD; (1)

and (b) for each contraction line that connects the tensors,
decide on a specific path for that line on the edges Ephys of

the physical lattice,

E phys :¼ fðr; r0Þ 2 V phys �V physjjr� r0j1 ¼ 1g; (2)

see Fig. 2. The tensors composing the PEPS are then
obtained by introducing for each edge of the lattice an
auxiliary vector space that is the tensor product of the
vector spaces of all TNS contraction lines that traverse
that edge. The elements of the PEPS tensor for site i are
determined by the elements of all the TNS tensors that
were assigned to site i. See Fig. 2(b).
Given a family of TNS for different linear system sizes

L, a mapping of the TNS to PEPS is called efficient if there
exists an upper bound �PEPS on the resulting PEPS refine-
ment parameter that is independent of L. Applying the
described mapping procedure for a 1D MERA state inevi-
tably results in an inefficient mapping, i.e., in a PEPS
refinement parameter �PEPS that diverges with the system
size. This is not just a feature of the specific procedure. In
[11], a family of 1D TTN states is constructed for which
any mapping to PEPS necessarily requires �PEPS to diverge
with the system size.
Qualitative argument.—The following argument moti-

vates why an efficient mapping of MERA to PEPS should
be possible for D> 1. Let us assign to each contraction
line of the MERA state a finite cross section, e.g., equal to
aD�1 with the lattice spacing a. Then one can ask what
D-dimensional volume Vð�Þ the contraction lines of a
certain layer � connecting to layers with �0 � � cover.
Those contraction lines of layer � have length ‘ð�Þ /
ab�, where b is the linear branching ratio of the MERA.

The number of lattice cells in layer � is bðT��ÞD; Fig. 1.
Hence, the volume covered by the contraction lines of layer

� is Vð�Þ / aD�1‘ð�ÞbðT��ÞD / bDT�ðD�1Þ�. The density of
the MERA contraction lines, or more precisely, a resulting
estimate for the average number of contraction line paths
traversing a unit cell of the physical lattice (� ¼ 0) is hence

log �ð�PEPSÞ / b�TD
XT
�¼0

Vð�Þ / XT
�¼0

b�ðD�1Þ�

) log�ð�PEPSÞ /
�
T for D ¼ 1

1
1�b�ðD�1Þ for D> 1; T ! 1:

(3)

(a)

(b)

FIG. 2 (color online). (a) Procedure for mapping a TNS (left)
to a 2D PEPS (right), by assigning tensors to lattice sites and
contraction lines to paths on the lattice. (b) The elements of the
PEPS tensors are determined by the elements of the tensors
composing the TNS.
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Note that for an edge traversed by n paths, one obtains an
upper bound �PEPS ¼ �n to the PEPS refinement parame-
ter, i.e., n ¼ log�ð�PEPSÞ. As T ¼ logbL, 1D MERAwith a

fixed refinement parameter � have according to Eq. (3) the
potential to encode states with a logarithmic scaling of the
entanglement entropy [11], as occurring in critical 1D
systems. For D> 1, however, Eq. (3) suggests that there
is enough space on the physical lattice to assign the MERA
contraction lines to paths on the lattice such that the map-
ping to PEPS is efficient. That this is indeed possible is
proven constructively in the following.

Preconditions for MERA states.—In order to show that
the mapping presented in the following is efficient, it is
necessary to exploit the defining properties of MERA
states that correspond directly to features of the real-space
RG and can be summarized as follows. (i) The MERA state
is a TNS for a D-dimensional square lattice (V phys, Ephys)

consisting of LD unit cells with

L ¼ bT: (4)

(ii) The MERA consists of T layers of tensors labeled by
� ¼ 1; . . . ; T. (iii) There is an upper bound � on the
dimension of the vector spaces associated to the tensor
indices, and an upper bound Co on the order of each tensor.
(iv) With each layer, we associate a coarse-grained square
lattice L� of ðL=b�ÞD cells of the physical lattice

L � :¼ f0; . . . ; L=b� � 1gD � ZD; (5)

and L0 :¼ V phys. Every cell of lattice L� contains corre-

sponding bD cells of lattice L��1. (v) There exists an
assignment of the tensors of layer � to cells of the lattice
L� such that the number of tensors inside a single cell is
bounded from above by a constant Ct, and the distance of
contracted tensors is bounded from above by Cr, where the
distance of a tensor of layer � to a tensor of layer �0 � � is
defined as the L1 distance of their corresponding cells in
L� [16]. (vi) For j�� �0j>CT , there are no contractions
between tensors of layer � with tensors of layer �0.

The upper bounds �, Co, Ct, Cr, and CT are required to
be independent of the system size L. [17] The stated
conditions guarantee that the MERA features a so-called
causal cone [6]. Hence, local observables can be evaluated
efficiently if all tensors are chosen isometric. As we require
only upper bounds on the MERA refinement parameter, the
apparent restriction to square lattices is not essential. The
conditions stated above are met for all typical MERA
structures considered in the literature so far. See Fig. 3(a)
for a 2D MERAwith b ¼ 2, Co ¼ 8, Ct ¼ 2, and CT ¼ 1,
for which one can reach Cr ¼ 2.

Efficiently mapping MERA to PEPS for D> 1.—Let us
explain a general scheme for mapping MERA states for
D> 1 dimensional systems efficiently to PEPS. The pre-
conditions listed above are assumed to be given. A simple
procedure to assign the MERA tensors to certain lattice
sites is to put the tensors of cell n 2 L� of layer � to the
site r�ðnÞ ¼ b�n 2 V phys. The problem with this ap-

proach is that one generates stacks of tensors at certain
lattice sites, i.e., there exist positions r 2 V phys to which a

number of tensors is assigned that is not independent of the
lattice size. For example, at site r ¼ ð0; . . . ; 0Þ a number of
/ T ¼ logbL tensors accumulate. Further stacks of tensors
with height / T0 accumulate at lattice sites with coordi-

nates bT
0 ð1; . . . ; 1Þ. It is necessary to avoid such stacks of

tensors, because they imply in general that �PEPS diverges
with the system-size. Stacks can be avoided by shifting the
allowed tensor positions for different layers relative to each
other. One possible such choice for r�ðnÞ is

r �ðnÞ ¼ b�nþ b��1e 2 V phys with n 2 L� (6)

and e :¼ ð1; . . . ; 1Þ 2 ZD as demonstrated in Fig. 1. With
this choice, two tensors can end up at the same site only if
they belong to the same layerL� and the same lattice cell n
within that layer. The possible tensor positions of layers �
form disjoint sublattices V � of the physical lattice.

V � :¼ fr�ðnÞjn 2 L�g � V phys;V � \V �0�� ¼ ;:
All coordinates ri of r 2 V � have a b-adic valuation of
�� 1, where the b-adic valuation vbðnÞ of an integer n is
defined such that vbðnÞ ¼ � iff � is the largest integer such
that n mod b� ¼ 0, for example, v2ð12Þ ¼ 2. Avoiding
stacks of tensors is not sufficient for an efficient PEPS
encoding. In D ¼ 1, all contraction lines are assigned to
paths that necessarily stack up on the x axis, Fig. 1. This
stacking of the paths can be avoided in D> 1 by assigning
contraction lines between tensors of layers � and �0 to paths
that are restricted to edges from subgrids E� and E�0 and
that are shortest paths with respect to the L1 distance on
V � [V �0 . Here, a grid E� is defined as the subset of
physical edges connecting nearest neighbors of the lattice
V � on straight lines; see Fig. 4.

E � :¼ fðr; rþ eiÞ 2 EPhysjvbðrjÞ ¼ �� 1 8 j � ig

(a) (b)

FIG. 3 (color online). (a) Unit cell of a specific 2D MERA
state. With each layer, corresponding to a single RG step, unitary
disentanglers are applied that reduce the entanglement between
blocks of 2� 2 sites with the rest of the system. Then, an
isometry maps from those 2� 2 sites (dots) into one (crosses).
(b) Mapping of this MERA state to a PEPS. The diagram shows
the assignment of two layers of the MERA, composed of disen-
tanglers û and isometries ŵ, to the physical lattice.
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with ½ei�j ¼ �i;j. Hence E� \ E�0 ¼ ; 8���0 . For this

choice of tensor positions and paths of MERA contraction
lines an upper bound for the resulting PEPS refinement
parameter �PEPS follows: Contraction lines assigned to an
edge e ¼ ðr; r0Þ 2 E� contract tensors of layer � with
tensors of layers �0 where j�0 � �j � CT . For a layer �0
with �0 > �, tensors from at most ð2CrÞD cells of L�0

around the cell corresponding to site r can have contraction
line paths traversing edge e. From the layers �0 with �0 �
�, tensors of at most ð2CrÞD PCT

t¼0 b
Dt cells can contribute.

Thus, the number of contraction line paths traversing edge
e and hence log�ð�PEPSÞ are bounded from above by

log �ð�PEPSÞ � ð2CrÞDðCT þ bDðCTþ1ÞÞCtCo: (7)

As this upper bound is independent of the system size, the
presented mapping of MERA to PEPS is efficient.

The scheme displayed in Fig. 3(b) for mapping the 2D
MERA defined in Fig. 3(a) to a PEPS results in the PEPS
refinement parameter �PEPS ¼ �6. In the supplement [11],
the notion of a refined PEPS is introduced which allows for
a favorable scaling, �refined

PEPS ¼ �2 in this case.

QCA violating the area law.—Let us point out that, also
for D> 1, there exist efficiently contractible TNS that
violate the entanglement area law; more details in [11].
Consider a QCA consisting of 2T layers, where in every
layer, ðL=2ÞD local unitary gates are applied to plaquettes

of 2� . . .� 2 sites each. For T ¼ ðlogLÞ1=D, the compu-
tation cost for the evaluation of local observables with
respect to such QCA is polynomial in L, namely

OðL2ðlogLÞ1=DÞ. At the same time, one finds for a suitable
choice of the unitary gates and generic choices for sub-
systems AL with VolAL / LD an entanglement entropy

of SAL
¼ �ðLD�1ðlogLÞ1=DÞ which violates the area law.

Conclusion.—In this Letter, we have shown that MERA
states for D> 1 can be efficiently encoded as PEPS. From
a physical perspective, the result implies that real-space

RG techniques, despite the scale-invariant features of the
TNS they generate, give rise to states that can be encoded
with local degrees of freedom. As a corollary, it follows
that D> 1 MERA states obey the area law for the entan-
glement entropy [12,13]. Consequently, the refinement
parameter � needs to be scaled polynomially in the system
size in order to describe D> 1 critical fermionic systems
accurately. Otherwise, the real-space RG schemes ad-
dressed here [3,5] are imprecise for such systems.
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In this supplementary information, for the mapping of multi-scale entanglement renormalization ansatz
(MERA) states for D > 1 spatial dimensions to projected entangled pair states (PEPS), it is explained how
the resulting PEPS bond dimension can be reduced considerably by the use of refined PEPS. Furthermore, to
show explicitly that 1D MERA states can in general not be mapped efficiently to 1D PEPS, a family of MERA
states is constructed for which the entanglement entropy grows logarithmically in the linear system size for a
suitable bipartition of the system. To show that, for D > 1, there exist other efficiently contractible schemes
violating the area law, unlike MERA, we construct a family of efficiently contractible tensor network states
(TNS) based on a unitary quantum cellular automata. For a specific choice of the composing tensors, one
obtains instances that violate the area law.

I. LOWER BOND DIMENSIONS BY PEPS REFINEMENT

In the mapping of D > 1 MERA to PEPS, as described
in the Letter, all tensors of a given lattice cell n ∈ Lτ of
layer τ of the MERA are assigned to the same physical lat-
tice site rτ (n) ∈ Vphys.Therefore, a considerable number of
contraction lines that start at the tensors of a given cell n may
traverse the same edges around rτ (n) and cause hence a rela-
tively high χPEPS. While this is unproblematic for the purpose
of proving the existence of an efficient mapping, the situation
can be improved for numerical purposes, e.g., by introduc-
ing for each site of the physical layer bδτD − 1 auxiliary sites
with δτ > 0, resulting in refined lattices V ′phys and V ′τ . The
corresponding refined PEPS has tensors for the physical sites
and tensors for the auxiliary sites, where the latter ones carry
no physical indices. The sites from V ′τ allowed for tensors of
layer τ of the MERA are then defined as

rτ (n,m) := bτ+δτn + bτm + bτ−1e ∈ V ′phys (1)

with n ∈ Lτ and mi ∈ {0, . . . , bδτ − 1}D.

Lattice cells in layer τ are again labeled by n ∈ Lτ and m
labels now the possible positions for tensors inside that cell.
Due to the refinement of the physical lattice, the resulting
PEPS consists of |V ′phys| = bδτD|Vphys| instead of |Vphys| ten-
sors. A refined PEPS is transformed to a “normal” PEPS by
contracting the PEPS tensors for the bδτD − 1 auxiliary sites
with the tensor for the corresponding physical site, resulting
in χPEPS = (χrefined

PEPS )b
δτ(D−1)

.

The scheme for mapping the 2D MERA defined in Fig. 1a
to a PEPS results in the PEPS refinement parameter χrefined

PEPS =
χ2 if one uses a refined PEPS with δτ = 1 where isometries
are located at m = (1, 1) and disentanglers at m = (0, 0),
according to Eq. (1). Each edge of the grid is traversed by at
most two contraction line paths in this case. Using, instead,
the tensor coordinates according to the most simple scheme,
described in the Letter, yields the χPEPS = χ6.

×

×

×

×

ûτ−1,i

ŵτ−1,i

ûτ,i

ŵτ,i

(a) (b)

Figure 1: (a) Unit cell of a specific 2D MERA state with linear
branching ration b = 2. With each layer, corresponding to a single
renormalization step, unitary disentanglers are applied that reduce
the entanglement between blocks of 2 × 2 sites with the rest of the
system. Then, an isometry maps from those 2 × 2 sites (dots) into
one (crosses). (b) Mapping of this MERA state to a refined PEPS
with δτ = 1. The diagram shows the assignment of two layers of
the MERA, composed of disentanglers û and isometries ŵ, to the
physical lattice. Each edge of the lattice is traversed by at most two
contraction line paths. The resulting PEPS has χPEPS = χ2.

II. 1D TTN AND MERA STATES CANNOT BE MAPPED
EFFICIENTLY TO 1D PEPS

To show that a 1D MERA can in general not be mapped
to a 1D PEPS with a bond dimension χPEPS that is indepen-
dent of the system size L, we construct a family of graph tree
tensor network states [1, 2] for which the entanglement en-
tropy grows logarithmically with L for a suitable bipartition
of the system; see, e.g., Refs. [3–5] for a numerical analysis.
We choose a tree tensor network (TTN) state, so a MERA
state without disentanglers, with (partial) isometries mapping
from two qubits to one, i.e., χ = 2 and b = 2. Each repre-
sentative of the family of states is defined on L = 2T sites
{0, . . . , L − 1} with a positive odd integer T . For simplicity,
the TTN is embedded into the entire lattice ofL sites, and each
isometry is considered as a unitary having one input from the
previous layer and one input |0〉; see Fig. 2. The state of the
the top layer τ = T and the two-site gates û are defined as

|ψT 〉 := |0〉⊗L and û := e−iπX̂⊗X̂/4, (2)
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Figure 2: The 1D TTN state discussed in Sec. II for T = logL = 5.
For the chosen subsystemsAT , the entanglement entropy is logarith-
mic in the system size, SAT = (T + 1)/2.

X̂ and Ẑ denoting Pauli matrices, and |0〉 being an eigenstate
of Ẑ. For layers τ = 1, . . . , T the state |ψτ−1〉 is generated
from |ψτ 〉 by applying gates û to sites 2τ (k − 1/2) − 1 and
2τk − 1 for k = 1, . . . , 2T−τ . The entanglement is computed
for the subsystem AT consisting of the last pT sites, where
p1 := 1 and pT+2 := 4pT −1. Since all the gates, specified in
Eq. (2), are mutually commuting, all gates that are supported
entirely on AT or entirely on its complement A⊥T can be dis-
regarded for the computation of the entanglement entropy

SAT = −Tr ρ̂AT log ρ̂AT with ρ̂AT = TrA⊥T |ψT 〉〈ψT |.

The locations pT of the bipartitions are chosen such that, for
odd T , exactly (T + 1)/2 gates act across the cut. Since each
such gate generates one pair of maximally entangled qubits,
one obtains SAT = (T + 1)/2 which is logarithmically diver-
gent in the system size L and implies that any 1D PEPS en-
coding of the given graph state requires a χPEPS that diverges
with L.

III. EFFICIENTLY CONTRACTIBLE TNS THAT
VIOLATE THE AREA LAW

As shown in the Letter, unlike for D = 1 spatial dimen-
sions, MERA states for D > 1 obey the entanglement area
law and not a log-area law, SAL = Ω(LD−1 logL), as it oc-
curs for critical fermionic models [6–12]. This raises the ques-
tion of whether any efficiently contractible tensor network au-
tomatically yields an area law. This is however not the case.
In order to show this, we construct, for a D-dimensional cu-
bic lattice of LD sites, a family of efficiently contractible TNS
based on a unitary quantum cellular automata (QCA). For
a specific choice of the constituting tensors, one obtains in-
stances that violate the area law for generic bipartitions of the
system.

Let us consider a QCA consisting of T layers τ = 1, . . . , T ,
where each layer consists of two sublayers. With the first
sublayer, K̂1 is applied which consists of (L/2)D local uni-
tary gates ŝ supported on plaquettes of 2 × · · · × 2 sites
each. The operator K̂2 for the second sublayer is identical
to K̂1 except for a relative shifting of the gate positions by

|φ〉 |φ〉 |φ〉 |φ〉

ŝ ŝ ŝ ŝ ŝ

ŝ ŝ ŝ ŝ

|ψ
1
〉

=
K̂

2
·K̂

1
·|
ψ

0
〉

=

=

=

=

K̂2K̂1|φ〉 =

SWAP

K̂1

. . .

SWAP

K̂2

D = 1

D = 2

Figure 3: The graph state QCA discussed in Sec. III for D = 1
and D = 2. Each layer of the QCA moves the maximally entan-
gled qubits that initially are located on next nearest neighbor sites
two steps further apart from each other. This increases the entangle-
ment entropy for a given bipartition of the system in every step. For
an appropriate choice of the number of layers, the states violate the
entanglement area law while still being efficiently contractible.

(1, . . . , 1). Therefore, periodic boundary conditions are im-
posed, and L is required to be even. The initial state |ψ0〉 is
a product state of (L/2)D plaquette states |φ〉 for 2× · · · × 2
sites each, where the plaquette positions coincide with those
of the gates in K̂2. The plaquette states are product states
of 2D−1 maximally entangled pairs of qubits sitting each at
the ends of the plaquette diagonals, e.g., |φ〉 = û0,1|0〉⊗2 for
D = 1, where û is chosen according to Eq. (2) and the in-
dices label the sites the gate acts on. For D = 2, the pla-
quette state is |φ〉 = û(0,0),(1,1)û(1,0),(0,1)|0〉⊗4. The plaque-
tte operators ŝ, composing the K̂i, are chosen as products of
swap operators Ŝi,j |σiσj〉 = |σjσi〉 that act similarly on the
qubits at the ends of the plaquette diagonals. For example,
ŝ = Ŝ(0,0),(1,1)Ŝ(1,0),(0,1) for D = 2.

The QCA layers and the initial state are invariant under
translations by two sites and rotations by π/4 and so are all
states |ψτ 〉 := (K̂2K̂1)τ |ψ0〉. Like |ψ0〉, every state |ψτ 〉 is
a product state of 2D−1(L/2)D maximally entangled qubit
pairs. If two entangled qubits have positions r ±∆r in |ψτ 〉
there is exactly one corresponding entangled qubit pair at po-
sitions r±(1+ 2

√
D

|∆r| )∆r in |ψτ+1〉. Applying one QCA layer

after another, distances of entangled qubits increase by 4
√
D

in each step, e.g., K̂1K̂2û(2,2),(3,3) = û(0,0),(5,5), see Fig. 3.

For generic choices for bipartitions of the system into two
parts,AL ⊂ Vphys and its complement, whereAL is connected
and has a volume ∝ LD, the corresponding entanglement en-
tropy will violate the area law if the number of layers, T , is
chosen appropriately. Consider as an example the bipartition
with AL = {0, . . . , L/2 − 1} × {0, . . . , L − 1}D−1. The
subsystem boundary is formed by the planes {r|r1 = 0} and
{r|r1 = L/2}. Each plane is crossed by a number of different
pairs of entangled qubits that is proportional to its area and to
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T , as long as L/2 > 2T . Consequently,

SAL(T ) = Ω(LD−1T ). (3)

For a choice T ∝ logL, this yields a log-area law SAL =
Ω(LD−1 logL). But an upper bound on the computation
cost for the evaluation of local observables with respect to
QCA states of the given class (with arbitrary û) is of order
O(22TDT ), i.e., O(L2(logL)D−1

logL) for T ∝ logL. This
cost is not polynomial in L and the QCA are for this T hence
not efficiently contractible in an obvious fashion. However,

the computation cost is, of order O(L2(logL)1/D) for the
choice T = (logL)1/D, i.e., polynomial in L. The resulting
entanglement entropy is SAL = Ω(LD−1(logL)1/D) which
violates the area law by the sublogarithmic factor (logL)1/D.
Note also that even a QCA consisting of a single layer of
k × · · · × k plaquettes, where k is allowed to grow as k ∝
(logL)1/D, can also violate the entanglement area law, albeit
only for specific bipartitions of the system, while being effi-
ciently contractible.
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022329 (2006).
[9] W. Li, L. Ding, R. Yu, T. Roscilde, and S. Haas, Phys. Rev. B

74, 073103 (2006).
[10] M. Cramer, J. Eisert, and M. B. Plenio, Phys. Rev. Lett. 98,

220603 (2007).
[11] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod.

Phys. 80, 517 (2008).
[12] J. Eisert, M. Cramer, and M. B. Plenio, Rev. Mod. Phys. 82,

277 (2010).

107



Quasilocality and Efficient Simulation of Markovian Quantum Dynamics

Thomas Barthel and Martin Kliesch

Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany
Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany

(Received 21 November 2011; published 5 June 2012)

We consider open many-body systems governed by a time-dependent quantum master equation with

short-range interactions. With a generalized Lieb-Robinson bound, we show that the evolution in this very

generic framework is quasilocal; i.e., the evolution of observables can be approximated by implementing

the dynamics only in a vicinity of the observables’ support. The precision increases exponentially with the

diameter of the considered subsystem. Hence, time evolution can be simulated on classical computers

with a cost that is independent of the system size. Providing error bounds for Trotter decompositions, we

conclude that the simulation on a quantum computer is additionally efficient in time. For experiments and

simulations in the Schrödinger picture, our result can be used to rigorously bound finite-size effects.
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In Lorentz-invariant theories, a maximum speed for the
propagation of information is, by construction, the speed of
light. In nonrelativistic quantum theory, the existence of a
maximum propagation speed results more indirectly and
for different reasons. For nonpathological models, this
maximum speed is much smaller than the speed of light.
The seminal paper by Lieb and Robinson [1] and further
contributions like [2–13] cover isolated systems.

Here, we consider the evolution of a more general and,
experimentally, extremely relevant class of systems—open
quantum many-body systems governed by a quantum mas-
ter equation [14,15] with short-range Liouvillians that are
allowed to be time dependent. Prominent experimental
examples are presented in Refs. [16–20], and recent theo-
retical advances on quantum computation, nonequilibrium
steady states, and phase transitions in open systems can, for
example, be found in Refs. [21–24]. Going beyond the
existence of a finite maximum propagation speed and the
existence of a well-defined thermodynamic limit [1,25], we
show that the time evolution of such systems is quasilocal.
This means that, up to an exponentially small error, the
diameter of the support of any evolved local observable
grows at most linearly in time, or, put differently, that the
evolution of the local observable can be approximated to
arbitrary precision by applying the propagator of a spa-
tially truncated version of the Liouvillian, as seen in
Fig. 1(b). For the special case of isolated systems, where
the evolution is given by a unitary transformation, the
corresponding question has been addressed in Ref. [9].
As a tool for the proof of quasilocality, we derive and
employ a Lieb-Robinson-type bound very similar to the
recent results of Poulin [26] and Nachtergaele et al. [25].
All constants in the bounds are given explicitly in terms of
the system parameters.

The quasilocality of Markovian quantum dynamics has
several crucial consequences. It implies that the evolution
of observables with a finite spatial support can be

simulated efficiently on classical computers, in the sense
that the computation cost is independent of the system size,
irrespective of the desired accuracy. This can, for example,
be exploited in an exact diagonalization approach for a
sufficiently large vicinity of the support of the considered
observable, as illustrated in Fig. 1(b). For more sophisti-
cated simulation techniques, we provide, in extension
of Ref. [27], error bounds for Trotter decompositions
[28] of the subsystem propagator into a circuit of local
channels, as shown in Fig. 1(c). The Trotter error is
polynomial in the time, at most linear in the size of the
time step, and can hence be made arbitrarily small.
Importantly, the subsystem Trotter decompositions allow
for the efficient simulation of the time evolution on a
quantum computer as envisaged by Feynman. For any
required accuracy, the simulation can be implemented
with a cost that is independent of the system size and
polynomial in the time.
Experimental and numerical physicists who study non-

equilibrium systems in the Schrödinger picture can use our
result on quasilocality to rigorously bound finite-size
effects. This is, for example, relevant for experiments
with ultracold atoms in optical lattices [29] and numerical
investigations employing time-dependent density-matrix
renormalization group methods [30–33].
Setting.—Let us consider lattice systems, where each

site z 2 � is associated with a local Hilbert space
H z. Subsystem Hilbert spaces are denoted by
H V :¼ N

z2VH z8V�� andH :¼ H �. Let �ðtÞ denote
the system state at time t. Markovian dynamics of an open
quantum system, i.e., the evolution under a linear differ-
ential equation that generates a completely positive and
trace-preserving map for �, can always be written in the
form of a Lindblad equation [34–36]:

@t� ¼ �i½H;�� þX
�

�
L��L

y
� � 1

2
ðLy

�L��þ �Ly
�L�Þ

�
;
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where the arbitrary Lindblad operators L� and the
Hermitian Hamiltonian H may depend on time. This equa-
tion captures, for example, in the framework of the Born-
Markov approximation, the evolution of a system that
interacts with an environment [14,15] and isolated systems
as a special case. Let us switch from the Schrödinger
picture, where expectation values are evaluated according
to hOis!t ¼ Tr½�ðtÞO� with �ðsÞ ¼ � to the Heisenberg
picture, where hOis!t ¼ Tr½�OðsÞ� with OðtÞ ¼ O. The
corresponding time-dependence of an observable OðsÞ 2
BðH Þ is then given by the quantum master equation
@sOðsÞ ¼ �LðsÞOðsÞ, where LðtÞ 2 BðBðH ÞÞ is a
superoperator, the so-called Liouvillian, with the
Lindblad representation

LO ¼ i½H;O� þX
�

�
Ly
�OL� � 1

2
ðLy

�L�OþOLy
�L�Þ

�
:

The set of Liouvillians with spatial support V � � will be
denoted by LV � BðBðH VÞÞ.

In order to be able to use Lieb-Robinson bound tech-
niques, we need to restrict ourselves to Liouvillians with
norm-bounded short-range interaction terms. Let us hence
assume that L is a sum of local Liouville terms ‘Z with
norm bound j‘j, maximum range a, and a maximum
number Z of nearest neighbors [37]. Specifically,

L ðtÞ ¼ X
Z��

‘ZðtÞ; ‘ZðtÞ 2 LZ; (1)

j‘j :¼ sup
t;Z��

k‘ZðtÞk; (2)

a :¼ sup
Z:‘Z�0

diamðZÞ; (3)

Z :¼ max
Z:‘Z�0

jfZ0 � �j‘Z0 � 0; Z0 \ Z � ;gj; (4)

where diamðZÞ :¼ maxx;y2Zdðx; yÞ is the diameter of Z

and d is a metric on the lattice �. In Eq. (2), we have
used the superoperator norm [38,39] defined by kTk :¼
supO2BðH ÞkTOk=kOk. In the Heisenberg picture, this is

the physically relevant norm as induced by the operator
norm kOk. For notational convenience, we define for every
subsystem V � � the corresponding extension �V, volume
VolðVÞ, and truncated Liouvillian LV ,

�V :¼ [
Z:‘Z�0
Z\V�;

Z; (5)

Vol ðVÞ :¼ jfZ � Vj‘Z � 0gj; (6)

L VðtÞ :¼
X
Z�V

‘ZðtÞ: (7)

Propagators �Vðs; tÞ are superoperators that map observ-
ables to time-evolved observables. They are defined as the
unique solutions of

@s�Vðs; tÞ ¼ �LVðsÞ�Vðs; tÞ; �Vðt; tÞ ¼ id 8s�t: (8)

With �ðs; tÞ :¼ ��ðs; tÞ, one has indeedOðsÞ ¼ �ðs; tÞOðtÞ.
Propagators obey the composition rule �ðr; sÞ�ðs; tÞ ¼
�ðr; tÞ 8r�s�t. Furthermore [38], the derivative with re-
spect to the second time argument is given by

@t�Vðs; tÞ ¼ �Vðs; tÞLVðtÞ; (9)

and the propagators are norm-decreasing,

k�ðs; tÞOk � kOk 8 L 2 L�; s � t; O 2 BðH Þ:
(10)

Quasilocality of the evolution.—Given an operator
OY 2 BðH YÞ with support Y � �, we would like to
show that the exactly time-evolved operator �ðr; tÞOY

with r � t can be approximated by the evolution with
respect to a spatially truncated Liouvillian, i.e., by
� �Vðr; tÞOY with Y � V � �. Indeed, our main result,
Theorem 2, states that the approximation error is exponen-
tially small, in the distance of� n V to the time-r slice of a
space-time cone originating from the operator’s support Y
at time t, as depicted in Fig. 1(b). More precisely, the error
decays exponentially in dðY;� n VÞ=a� vðt� rÞ, where
dðX; YÞ :¼ infx2X;y2Ydðx; yÞ is the distance of two subsys-

tems X, Y � �, and v ¼ eZj‘j is the so-called Lieb-
Robinson velocity.

FIG. 1 (color online). (a) An evolved local operator �ðs; tÞOY behaves almost like the identity outside its associated space-time cone.
(b) Approximating �ðs; tÞOY by application of subsystem propagators to OY . The errors decrease exponentially with the subsystem
sizes. (c) For one-dimensional systems, approximating �ðs; tÞOY by a Trotter decomposition yields an error scaling as ðt� sÞ2�t. Note
that the Trotter circuit can be trimmed off at the boundary of the Lieb-Robinson space-time cone.
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To prove this, we can write the difference of the evolved
operators in the form

�ðr; tÞOY � � �Vðr; tÞOY

¼ �
Z t

r
ds@s½� �Vðr; sÞ�ðs; tÞ�OY

¼
Z t

r
ds� �Vðr; sÞ½LðsÞ �L �VðsÞ�|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

¼L�nV ðsÞ

�ðs; tÞOY

due to the fundamental theorem of calculus and
Eqs. (8) and (9). Using the triangle inequality and the
fact that the propagators are norm-decreasing, it follows
that

k�ðr; tÞOY � � �Vðr; tÞOYk � X
X��nV

Z t

r
dsk‘XðsÞ�ðs; tÞOYk:

(11)

In the case of unitary dynamics (‘XðsÞO ¼ i½hX;O�), the
integrand would be of the form k½hX; �ðs; tÞOY�k, and the
standard Lieb-Robinson bound [1–5] would be applicable.
To proceed in our more general case, however, we use a
Lieb-Robinson bound for Markovian quantum dynamics,
similar to recent results in Refs. [25,26].

Theorem 1 (Lieb-Robinson bound for Markovian quan-
tum dynamics).—Let the Liouvillian LðtÞ ¼ P

Z��‘ZðtÞ
for the lattice� be of finite range a, with a finite maximum
number Z of nearest neighbors, and j‘j as defined in
Eqs. (1)–(4). Also, let KX 2 LX, OY 2 BðH YÞ, and
r � t 2 R. Then

kKX�ðr; tÞOYk � V X;YkKXkkOYkevðt�rÞ�dðX;YÞ=a;
(12)

where v :¼ expð1ÞZj‘j and V X;Y :¼ minfVolð �XÞZ ; Volð �YÞZ g.
The proof is given in the Supplemental Material [38].

With the Lindblad representation KXO ¼ i½k;O� þP
�½Ky

�OK� � 1
2 ðKy

�K�OþOKy
�K�Þ� of the Liouvillian

KX, one has in Eq. (12) that kKXk=2 � kkk þP
�kK�k2. The theorem tells us that an evolved observable

�ðr; tÞOY remains basically unchanged when we evolve it
with respect to a Liouvillian that is supported at a distance
R � vðt� rÞ away from Y, i.e., that �ðr; tÞOY behaves like
the identity outside the corresponding space-time cone. In
the special case KXO ¼ i½OX;O�, Eq. (12) yields a Lieb-
Robinson bound for k½OX; �ðr; tÞOY�k as in Ref. [26].

This theorem can now be employed to proceed from
Eq. (11) in our proof of quasilocality. Let us restrict
ourselves to the typical case of LiouvilliansLðtÞ for which
the number of terms ‘XðtÞ with distance dðy; XÞ=a 2
½n; nþ 1Þ from any site y 2 � is bounded by a power law,

jRn;yj � Mn� 8y2�;n2Nþ ;

Rn;y :¼
�
X � �j‘X � 0;

dðy; XÞ
a

2 ½n; nþ 1Þ
�
; (13)

for some constants M, � > 0. Now, choose a point y0 2 Y
that is closest to � n V, i.e., dðy0;� n VÞ ¼ dðY;� n VÞ.
WithD :¼ ddðY;� n VÞ=ae, we can exploit that the support
of every term in L�nV is an element of exactly one of the

sets Rn;y0 with n � D to obtain

k�ðr; tÞOY � � �Vðr; tÞOYk

� X1
n¼D

X
X2Rn;y0

Z t

r
dsk‘XðsÞ�ðs; tÞOYk

� X1
n¼D

Mn�j‘jkOYk
Z t

r
dsevðt�rÞ�n

� Mj‘jkOYk e
vðt�rÞ

v

X1
n¼D

n�e�n:

In the second step, Theorem 1 andV XY � Volð �XÞ=Z � 1
have been used. With the bound

P1
n¼D n�e�n �

2eD�e�D 8D>2�þ1, we arrive at the central result of this
work.
Theorem 2 (Quasilocality of Markovian quantum dy-

namics).—Let the Liouvillian LðtÞ ¼ P
Z��‘ZðtÞ for the

lattice � be of finite range a, with a finite maximum
number Z of nearest neighbors, and j‘j as defined in
Eqs. (1)–(4). Further, let constraint Eq. (13) be fulfilled
for some constantsM, � > 0. Also, let Y � V � �, OY 2
BðH YÞ, and r � t 2 R. Then one has with D :¼
ddðY;� n VÞ=ae

k�ðr;tÞOY�� �Vðr;tÞOYk
�2M

Z
kOYkD�ev�ðt�rÞ�D 8D>2�þ1; (14)

where v is the Lieb-Robinson speed from Eq. (12).
The full dynamics can be approximated with exponen-

tial accuracy by subsystem dynamics. In a sense, the con-
straint Eq. (13) requires the lattice to have a finite spatial
dimension. A D-dimensional hypercubic lattice with
finite-range interactions fulfills Eq. (13) with � ¼
D� 1. An interesting observation is that short-range mod-
els on a Bethe lattice [40] have a finite Lieb-Robinson
speed according to Theorem 1 but do not fulfill Eq. (13)
and are thus not covered by Theorem 2. Hence, for such
systems, it is conceivable that a quench of the Liouvillian
starting at time t ¼ 0 with a distance of at least aD from
some point y causes a perceptible effect at y for a time
t� 	 D=v.
Trotter decomposition of the evolution.—The quasilo-

cality of the dynamics, Theorem 2, implies that the evolu-
tion of observables with a finite spatial support can be
simulated efficiently on classical computers, in the sense
that the computation cost is independent of the system
size, irrespective of the desired accuracy. However, ex-
ploiting this, in an exact diagonalization approach that
stores the approximated time-evolved observable
� �Vðr; tÞOY in a full basis ofH �V exactly, requires resources
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that are exponential in the size j �Vj of the considered
subsystem. There are more sophisticated numerical tech-
niques; e.g., one can use matrix-product operators [41–43]
for the representation of (an approximation to) � �Vðr; tÞOY

or sampling algorithms. In such schemes, it is typically not
possible to address the differential equation for � �Vðr; tÞOY

directly, but one can use Trotter decompositions [28] in-
stead, where propagators � �Vðr; tÞ are decomposed into a
circuit of local (diameter-a) channels.

Using the quasilocality, Theorem 2, and techniques as in
Ref. [27], we can derive a Trotter decomposition with an
error that is polynomial in time, at most linear in the time
step, and, in extension of Ref. [27], system-size indepen-
dent. Furthermore, implementing such a Trotter circuit on a
quantum computer [27] yields a simulation that, addition-
ally to being independent of the system size, is efficient in
time. In this case, the physically relevant norm for super-
operators T is the subsystem-seminorm

kTkY :¼ sup
OY2BðH Y Þ

kTOYk=kOYk: (15)

Theorem 3 (Efficient Trotter decomposition of time-
evolved observables).—With the preconditions of
Theorem 2, a sequence of times t0 � t1 � . . . � tN and a
sequence of subsystems Y � V1 � V2 � . . . � VN � �
such that Dn :¼ ddðY;� n VnÞ=ae> 2�þ 18n, the
Trotter decomposition

~� :¼ YN
n¼1

Y
Z� �Vn:‘Z�0

�Zðtn�1; tnÞ (16)

into propagators �Z for local Liouville terms ‘Z approx-
imates the full system propagator �ðt0; tNÞ up to an error

k�ðt0; tNÞ � ~�kY � XN
n¼1

�
2M

Z
D�

ne
vðtn�t0Þ�Dn þ "n

�
;

"n :¼ ðtn � tn�1Þ2Z Volð �VnÞj‘j2eðtn�tn�1Þj‘j (17)

with the Lieb-Robinson speed v from Eq. (12).
In the Trotter decomposition ~�, we used the conventionQ
N
n¼1 Tn ¼ T1T2 . . .TN, and the ordering of the channels

�Z in the second product of Eq. (16) can be chosen
arbitrarily. As in Ref. [27], one can use averaged

Liouvillians, i.e., �Zðr; tÞ � e
R

t

r
ds‘ZðsÞ, without changing

the scaling of the error bound. Choosing a constant time
step, tn ¼ n�t, and subsystems Vn such that Dn ¼ D0 þ
vn�t, for sufficiently large D0, the bound (17) is domi-
nated by the Trotter errors "n. The subsystems can be
chosen such that diamVn � diamðYÞ þ aDn, as shown in
Fig. 1(c). For this case, the total error is in
Oð�tðdiamðYÞ=aþD0 þ vtÞ�þ2Þ. Higher-order Trotter-
Suzuki decompositions [44] can be used to further improve
the scaling in �t.

To prove Theorem 3, one can first apply Theorem 2,
the inequality kT1T2� ~T1

~T2k�kT1kkT2� ~T2kþkT1� ~T1k
k ~T2k, and Eq. (10) iteratively N times, to obtain

k�ðt0; tNÞ � �VkY � 2M

Z

XN
n¼1

D�
ne

vðtn�t0Þ�Dn (18)

with �V :¼ Q
N
n¼1 � �Vn

ðtn�1; tnÞ. For every time-step propa-

gator � �Vn
ðtn�1; tnÞ, we can then employ a Trotter decom-

position similar to Ref. [27], yielding

k� �Vðr;tÞ�
Y

Z� �V;‘Z�0

�Zðr;tÞkY �ðt�rÞ2ZVolð �VÞj‘j2eðt�rÞj‘j:

(19)

See the Supplemental Material [38] for details. Combining
Eqs. (18) and (19) with the triangle inequality proves
Theorem 3.
Conclusion.—We have shown that the evolution of an

observable with support Y under a quantum master equa-
tion with a short-range Liouvillian can be approximated by
the evolution with respect to the truncation of the
Liouvillian to a subsystem V 
 Y. The error decreases
exponentially in the distance of Y from the complement
of V. With this tool, we derived an error bound for Trotter
decompositions of the propagator. Those results corre-
spond to efficient simulation techniques for open-system
dynamics on classical and quantum computers and provide
rigorous bounds to finite-size effects.
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[33] U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
[34] G. Lindblad, Commun. Math. Phys. 48, 119 (1976).
[35] V. Gorini, A. Kossakowski, and E. C.G. Sudarshan, J.

Math. Phys. (N.Y.) 17, 821 (1976).
[36] M. Wolf and J. I. Cirac, Commun. Math. Phys. 279, 147

(2008).
[37] The results of this Letter follow similarly for systems with

long-range interactions of sufficiently fast decay. For the
sake of readability we refrain from presenting this more
general scenario.

[38] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.108.230504 for a brief
discussion of the employed superoperator norms and
properties of the propagators, a proof of the dissipative
Lieb-Robinson bound (Theorem 1), the employed bounds
on some elementary series, and the Trotter decomposition
for a single time step.

[39] J. Watrous, Quantum Inf. Comput. 5, 58 (2005).
[40] H. A. Bethe, Proc. R. Soc. A 150, 552 (1935).
[41] M. Zwolak and G. Vidal, Phys. Rev. Lett. 93, 207205

(2004).
[42] I. P. McCulloch, J. Stat. Mech. (2007) P10014.
[43] M. J. Hartmann, J. Prior, S. R. Clark, and M. B. Plenio,

Phys. Rev. Lett. 102, 057202 (2009).
[44] M. Suzuki, J. Math. Phys. (N.Y.) 26, 601 (1985).

PRL 108, 230504 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
8 JUNE 2012

230504-5112



Supplementary Material
(Quasi-locality and efficient simulation of Markovian quantum dynamics).

Thomas Barthel and Martin Kliesch
Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany and

Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
(Dated: February 12, 2012)

In the following appendices we give a brief account
of the operator and super-operator norms used in the
main text, explain some properties of the propagators,
prove the generalized Lieb-Robinson bound for Marko-
vian quantum dynamics (Theorem 1), give the deriva-
tions for the employed bounds on two elementary series,
and present the Trotter decomposition of the propagator
for a single time step along the lines of Ref. [1].

A. Operator and super-operator norms

In this work, two of the Schatten p-norms [2] are em-
ployed. The∞-norm of an operator O ∈ B(H) is defined
as its largest singular value and is equal to the operator
norm,

‖O‖∞ = ‖O‖ := sup
|ψ〉∈H

‖O|ψ〉‖
‖|ψ〉‖ , (1)

where ‖|ψ〉‖ =
√
〈ψ|ψ〉 denotes the vector 2-norm. The

∞-norm is the physically relevant norm for observables.
The 1-norm, of an operator O ∈ B(H) is defined as the
sum of its singular values and is equal to the trace norm,

‖O‖1 = ‖O‖tr := Tr
√
O†O. (2)

It is the physically relevant norm for states, i.e., density
matrices [3]. Those operator norms induce corresponding
norms for super-operators T ∈ B(B(H)). The (∞→∞)-
norm is defined as

‖T‖ := ‖T‖∞→∞ := sup
O∈B(H)

‖TO‖∞
‖O‖∞

(3)

and the (1→1)-norm is

‖T‖1→1 := sup
O∈B(H)

‖TO‖1
‖O‖1

. (4)

In order to switch between the Schrödinger and the
Heisenberg picture, one needs to consider the adjoint T †

of a super-operator T , defined by

〈A, TB〉HS = 〈T †A,B〉HS ∀A,B∈B(H), (5)

where 〈·, ·〉HS denotes the Hilbert-Schmidt inner product
〈A,B〉HS := Tr(A†B). The (1→ 1)-norm is dual to the

(∞→∞)-norm in the sense that

‖T‖∞→∞ = sup
‖O‖∞=1

‖TO‖∞

= sup
‖O‖∞=1

sup
‖X‖1=1

|〈X,TO〉HS|

= sup
‖X‖1=1

sup
‖O‖∞=1

|〈T †X,O〉HS|

= sup
‖X‖1=1

∥∥T †X
∥∥

1
=
∥∥T †

∥∥
1→1

. (6)

This allows us to relate the appropriate norm of a prop-
agator T in the Heisenberg picture to the norm of the
corresponding propagator T † in the Schrödinger picture.
For more on properties of the norms, see, for example,
Refs. [2, 4].

B. Properties of the propagators

The derivative of a propagator with respect to its sec-
ond time argument is given by

∂tτV (s, t) = τV (s, t)LV (t). (7)

Using the defining properties ∂sτV (s, t) =
−LV (s)τV (s, t) and τV (t, t) = id, Eq. (7) follows
from the equation

0 = ∂t id = ∂t[τV (t, s)τV (s, t)]

= [∂tτV (t, s)]τV (s, t) + τV (t, s)[∂tτV (s, t)]

after applying τV (s, t) to it.
Let us explain why the propagators are norm-

decreasing, i.e.,

‖τ(s, t)O‖ ≤ ‖O‖ ∀L ∈ LΛ, s ≤ t, O ∈ B(H). (8)

The adjoint propagator τ †(s, t) (see Sect. A), describes
the time-evolution in the Schrödinger picture, ρ(t) =
τ †(s, t)ρ(s), where ρ(t) denotes the system state at time
t. First of all, we note that τ †(s, t) is a completely posi-
tive, trace-preserving (CPT) map since it can be written
as a product integral [5],

τ †(s, t) = lim
∆tj→0

∏

j

eL
†(tj)∆tj .

Every factor eL
†(tj)∆tj is an exponential of a constant

Liouvillian and is hence CPT. Thus, the finite products
are CPT maps and, since the set of CPT maps is closed,
also the limit τ †(s, t) is a CPT map. Then Eq. (8) fol-
lows from the norm duality ‖T‖ ≡ ‖T‖∞→∞ = ‖T †‖1→1

[Eq. (6)] and ‖T †‖1→1 = 1 for all CPT maps T †. The
latter has, for example, been shown in Ref. [1].
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C. Proof of Theorem 1

With an argument similar to those in Refs. [6–12], we
want to bound the norm of the operator

G(r) := KXτ(r, t)OY (9)

under the preconditions of Theorem 1. G is the solution
to the final value problem G(t) = KXOY ,

∂rG(r) = −KXL(r)τ(r, t)OY

= −LΛ\X(r)G(r)−KXLX̄(r)τ(r, t)OY ,

due to ∂sτ(s, t) = −L(s)τ(s, t), L = LX̄ + LΛ\X , and
KXLΛ\X = LΛ\XKX for all Liouvillians KX ∈ LX . As
can be checked by differentiation, a corresponding inte-
gral equation for G(r) is

G(r) = τΛ\X(r, t)G(t)

+

∫ t

r

ds τΛ\X(r, s)KXLX̄(s)τ(s, t)OY .

Using the triangle inequality, the norm-submultiplica-
tivity, and the fact that the propagators are norm-
decreasing, this yields the bound

‖G(r)‖ ≤ ‖G(t)‖+ ‖KX‖
∫ t

r

ds ‖LX̄(s)τ(s, t)OY ‖

≤ ‖G(t)‖+ ‖KX‖
∑

Z⊂X̄

∫ t

r

ds ‖`Z(s)τ(s, t)OY ‖ .

(10)

Now a Picard iteration for the related quantity

CX(r) := sup
K∈LX

‖Kτ(r, t)OY ‖
‖K‖ (11)

can be used to obtain a bound for ‖G(r)‖. Inserting
Eq. (10) in Eq. (11) gives

CX(r) ≤ CX(t) +
∑

Z⊂X̄
sup
s∈[r,t]

‖`Z(s)‖
∫ t

r

dsCZ(s),

CX(t) ≤ δ(X,Y ) ‖OY ‖ , (12)

where δ(X,Y ) = 1 for X ∩ Y 6= ∅ and δ(X,Y ) = 0,
otherwise. The second line follows from KXOY = 0 for
Liouvillians KX ∈ LX with X ∩ Y = ∅, and ‖KOY ‖ ≤
‖K‖ ‖OY ‖ in general. Starting the Picard iteration for
CX(r) with Eq. (12) and Z0 := X leads to

CX(r) ≤ ‖OY ‖
∞∑

n=0

(t− r)n
n!

cn with (13)

cn =
∑

Z1⊂Z̄0

∑

Z2⊂Z̄1

. . .
∑

Zn⊂Z̄n−1

δ(Zn, Y )
n∏

i=1

sup
s∈[r,t]

‖`Zi
(s)‖ .

Now we can exploit that the Liouville terms are of finite
range a and that they induce a finite maximum number

Figure 1: In the proof of Theorem 1, we need to bound a
sum over all paths of length n starting in X, the support
of KX , and ending in Y , the support of OY ; see Eq. (13).
A path corresponds to a sequence of local Liouville terms
(`Zi) with overlapping supports. In the depicted situation of
a two-dimensional lattice with nearest-neighbor interaction,
path C1 would contribute to the sum for n = 10 and C2 for
n = 5. To simplify the calculation for upper bounds, the sums
are extended to contain all paths starting in Y (if Vol(Ȳ ) <
Vol(X̄); all paths starting from X, otherwise). Hence, in the
bound for n = 5, also paths like C3 are taken into account.

Z = maxZ:`Z 6=0 Vol(Z̄) of nearest neighbors. The sum in
Eq. (13) runs over all paths from X to Y . Depending on
whether Vol(X̄) or Vol(Ȳ ) is larger, the number of such
paths with length n can be bounded by the number of
all length-n paths starting in X or Y , respectively. See
Fig. 1. This gives the simple bound

cn ≤ VX,Y (Z|`|)n, and thus,

CX(t) ≤ VX,Y ‖OY ‖
∞∑

n=D

θn

n!
, (14)

where θ := (t − r)Z|`|, D = dd(X,Y )/ae, and ZVX,Y
is the minimum of the numbers of Liouville terms `Zi

supported in X and Y , VX,Y = min{Vol(X̄),Vol(Ȳ )}/Z.
We have also used that cn = 0 for all n < D, as one
needs at least D Liouville terms of overlapping support
to pass from the subsystem X to subsystem Y , such that
δ(Zn, Y ) 6= 0. Using induction, the sum in Eq. (14) can

be bounded by
∑∞
n=D

θn

n! ≤ eθe−D; see Sect. D. Hence,
Theorem 1 follows,

‖G(t)‖ ≤ VX,Y ‖KX‖ ‖OY ‖ e(t−r)Z|`|e−D.

D. Bound on the partial exponential sum

In the following, we prove that
∑∞
n=N

xn

n!︸ ︷︷ ︸
=:fN (x)

≤ exe−N︸ ︷︷ ︸
=:gN (x)

∀x ≥ 0, N ∈ N0. (15)

Note first that, for N = 0,

f0(x) = ex ≤ exe = g0(x) ∀x≥0.
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The functions fN and gN obey the differential equations

∂xfN+1(x) = fN (x), ∂xgN+1(x) = gN (x) ∀x,N .

For all N > 0, the initial values fN (0) = 0 and gN (0) =
e−N obviously obey fN (0) ≤ gN (0) ∀N>0. Consequently,
fN (x) ≤ gN (x) ∀x≥0 implies fN+1(x) ≤ gN+1(x) ∀x≥0.
This proves Eq. (15) inductively.

E. Bound on a sum of exponentials

In the following, it is shown that

∞∑

n=D

nκe−n ≤ 2eDκe−D ∀κ > 0, D > 2κ+ 1 ∈ N. (16)

Due to the definition Γ(a, x) :=
∫∞
x

dt ta−1e−t of the in-
complete Gamma function, one has

∞∑

n=D

nκe−n ≤ Γ(κ+ 1, D − 1). (17)

The bound

Γ(a, x) ≤ Bxa−1e−x ∀a > 1, B > 1, x > B(a−1)
B−1

of Natalini and Palumbo [13], reads for the choice B = 2

Γ(a, x) ≤ 2xa−1e−x ∀a > 1, x > 2(a− 1).

Together with Eq. (17) one obtains

∞∑

n=D

nκe−n ≤ 2(D − 1)κe−D+1 ∀κ>0, D>2κ+1

and hence the acclaimed Eq. (16).

F. Trotter expansion of a propagator

For two times q ≤ t, we derive the Trotter error bound

‖τV (q, t)−
∏

Z⊂V
τZ(q, t)‖Y

≤ (t− q)2ZVol(V )|`|2e(t−q)|`| (18)

that is employed in the proof of Theorem 3. To this
purpose, let us determine an upper bound for the right-
hand side of

∥∥T q,tL+` − T
q,t
L T q,t`

∥∥
Y
≤
∥∥T q,tL+` − T

q,t
L T q,t`

∥∥ ,

where T q,tK denotes the propagator for a Liouvillian
K(t) ∈ L, L(t) ∈ L obeys the preconditions of Theo-
rem 3, and `(t) ∈ LZ is a local Liouvillian term with

support Z. We denote the inverse of a propagator T q,tK
by T t,qK . Using ∂qT

q,t
K = −K(q)T q,tK , ∂tT

q,t
K = T q,tK K(t),

T r,sK T s,tK = T r,tK , T t,tK = id, and applying the fundamental
theorem of calculus twice, one finds

T q,tL+` − T
q,t
L T q,t` = (T q,tL+`T

t,q
` T t,qL − id)T q,tL T q,t`

=

∫ t

q

ds ∂s
(
T q,sL+`T

s,q
` T s,qL

)
T q,tL T q,t`

=

∫ t

q

ds T q,sL+`

(
L(s)− T s,q` L(s)T q,s`

)
T s,q` T s,tL T q,t`

=

∫ t

q

ds

∫ s

q

dr T q,sL+`∂r
(
T s,r` L(s)T r,s`

)
T s,q` T s,tL T q,t`

=

∫ t

q

ds

∫ s

q

dr T q,sL+`T
s,r
` [`(r),L(s)]T r,q` T s,tL T q,t` .

The time arguments occurring in the integrand are or-
dered according to q ≤ r ≤ s ≤ t. The norm of the
propagators is

∥∥T s,tK
∥∥ = 1 ∀s≤t. A bound for the norm of

the inverse propagators can be obtained from their rep-
resentations as time-ordered exponentials [1, 5], yielding∥∥T t,sK

∥∥ ≤ exp(
∫ t
s

dr ‖K(t)‖) ∀s≤t. With those properties,
the triangle inequality, and the norm submultiplicativity,

∥∥T q,tL+` − T
q,t
L T q,t`

∥∥ ≤
∫ t

q

ds

∫ s

q

dr ‖[`(r),L(s)]‖ e(s−q)|`|

≤ (t− q)2Z|`|2e(t−q)|`|.

This bound and the inequality ‖T1T2 − T̃1T̃2‖ ≤
‖T1‖ ‖T2 − T̃2‖ + ‖T1 − T̃1‖‖T̃2‖ can now be used itera-

tively, separating one local propagator T q,t`Z after another.

As LV is a sum of Vol(V ) terms `Z , Eq. (18) follows.
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Boson-Sampling is a classically computationally hard problem that can — in principle — be effi-
ciently solved with quantum linear optical networks. Very recently, a rush of experimental activity has
ignited with the aim of developing such devices as feasible instances of quantum simulators. Even ap-
proximate Boson-Sampling is believed to be hard with high probability if the unitary describing the
optical network is drawn from the Haar measure. In this work we show that in this setup, with proba-
bility exponentially close to one in the number of bosons, nosymmetric algorithm can distinguish the
Boson-Sampling distribution from the uniform one from fewer than exponentially many samples. This
means that the two distributions are operationally indistinguishable without detailed a priori knowledge.
We carefully discuss the prospects of efficiently using knowledge about the implemented unitary for de-
vising non-symmetric algorithms that could potentially improve upon this. We conclude that due to the
very fact that Boson-Sampling is believed to be hard, efficient classical certification of Boson-Sampling
devices seems to be out of reach.

1 Introduction

Quantum information theory suggests that it should be possible to design physical devices
performing information processing tasks that cannot be classically efficiently simulated. The
most spectacular example of this type known to date is a fully-fletched Shor-class quantum
computer, able to factorize numbers efficiently, hence solving a practically relevant problem
for which no classical efficient algorithm is known [1]. Needless to say, the actual physical
realisation of such a device is extraordinarily difficult for a number of reasons, the difficulty
of protecting quantum systems from the unwanted effects of decoherence being only one of
them. In the light of this observation, it has become a very important milestone to identify
devices that can solve some problem that seems impossible tobe realised classically, or —
in the wording of a blog entry [2] — to achieve “quantum supremacy”. This is a challenge
equally interesting for experimentalists as well as for theorists: On one hand, it surely is still
very difficult to achieve the necessary degree of control, onthe other hand, it is a challenge
for complexity theorists and theoretical computer scientists to show that a task at hand is
computationally hard.

A seminal theoretical step in this direction has recently been achieved with the introduction
of theBoson-Sampling problem[3]. In this problem, the task is the following: Given as input
the unitaryU , the number of modesm, and the number of photonsn, together describing a
quantum linear optical device (see Fig. 1), sample from the output distribution of this device.
Ref. [3] establishes strong reasons to believe that classically sampling from this distribution
up to a small error in 1-norm is computationally hard with high probability if the unitary
U is chosen from the Haar measure andm is scaled suitably withn. The hardness proof
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Figure 1: The Boson-Sampling quantum device receives as input a unitaryU , applies it tom
bosonic modes initialized with exactly one boson in each of the firstn modes and
the vacuum in the remainingm − n modes and outputs the results(s1, . . . , sm) of
local boson number measurements. The Boson-Sampling problem is to sample from
the output distribution of this device whereU is fixed and chosen in the beginning
from the Haar measure onU(m).

rests on the fact that approximating the probabilities of individual outcomes of such a device
basically amounts to approximating the permanent of a submatrix of U [10], which, by a
plausible complexity theoretic conjecture, is believed tobe #P hard. The main result of
Ref. [3] suggests that a 1-norm approximate efficient classical simulation of Boson-Sampling
would imply a collapse of the polynomial hierarchy to the third level (compare also Ref. [4]).
This has triggered a rush of exciting experimental activity[5–8], aiming at realizing instances
of Boson-Sampling, accompanied by theoretical discussions about what errors one should
expect in such quantum linear optical experiments [9].

In view of all this, a crucial question that arises is how to certify that a given experiment does
actually solve the desired sampling problem, and how many repetitions of the experiment, i.e.,
samples from its output distribution, are needed for the certification. In contrast to a machine
that is efficiently factoring large numbers and hence solvesa problem in NP, i.e., produces an
output that can be checked efficiently on a classical computer, no efficient certification scheme
for Boson-Sampling is known and it is not clear whether such ascheme can exist.

As a first step towards a better understanding of the difficulty of certifying sampling devices
we consider the task of deciding whether a device outputs samples from some given interesting
probability distribution, for example the Boson-Samplingdistribution, or the uniform one. We
approach this decision problem in two complementary settings that differ in the amount of
information the certifier is allowed to use besides the samples output by the device.

State discrimination (known probability distributions): The certifier works under the as-
sumption that the sampling device outputs independent identically distributed samples and
that the output distribution is either of two completely known distributions (for example one
of them being the uniform one), i.e., he has access to all the probabilities.

Black box setting (unknown probability distribution): The certifier works under the as-
sumption that the sampling device outputs independent identically distributed samples, but
has no a priori knowledge about the output distribution apart from the sample space.

We show that known bounds on the sample complexity imply thatin the first setting a
number of samples scaling polynomially with the number of bosons is sufficient to guarantee
distinguishability of the Boson-Sampling distribution from the uniform one. Notably, this

2
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1 Introduction

does not imply that polynomially many samples are sufficientto certify that a given device
samples from the correct distribution, even if unlimited computational power and full a priori
knowledge aboutm, n, andU implemented by the supposed device are assumed. The reason
for this is simply that being able to decide which of two givendistributions a device samples
from under the promise that it does indeed sample from eitherof the two, does not necessarily
imply that one is also able to exclude that the device samplesfrom any distribution outside of
a small region around the target distribution from the same number of samples.

The complexity theoretic conjecture under which Boson-Sampling is a hard sampling prob-
lem, namely that it is expected to be#P hard to approximate the permanent, implies that
approximating the probabilities of the individual outputsof a Boson-Sampling device is also
computationally hard. A classical certifier with limited computational power will hence have
only very limited knowledge about the ideal output distribution of a supposed Boson-Sampling
device. The state discrimination scenario is thus far from realistically capturing the challenge
of classically efficiently certifying a real Boson-Sampling device in the laboratory.

The realistic situation much more closely resembles the black box setting (we will discuss
this in more detail in Section 3). In this setting the certifier has no a priori knowledge about
the output distribution. It is hence reasonable to demand that its decision should only depend
on how frequent the outcomes appear. That is to say, knowing nothing about the probability
distribution, the labels of the collected samples don’t mean anything to the certifier, hence they
should not influence his decision.

We formalize this in the notion ofsymmetric probabilistic decision algorithmsand show that
such algorithms can give meaningful outputs only if they receive sufficiently many samples.
This is true not only for the task of distinguishing some distribution from the uniform one, but
also in more general settings involving multiple sampling devices. The number of samples
necessarily depends on howflat the distribution(s) are. We call a probability distribution over
a finite samples spaceǫ-flat if the probability of the most likely outcome is upper bounded by
ǫ or, equivalently, if its min entropy is larger thanlog2 1/ǫ. More precisely, we show that the
output distribution of any symmetric probabilistic algorithm receiving at mostO((1/ǫ)1/4)
samples from each ofN sampling devices is with probability1 − O(N2√ǫ) independent of
the distributions of the sampling devices if the distributions areǫ-flat (Theorem 8).

We then show that the Boson-Sampling distribution is, for the interesting parameter regions
and if U is chosen from the Haar measure, with overwhelmingly high probability exponen-
tially flat (Theorem 12). Together, our findings imply that inthe black box setting distin-
guishing the Boson-Sampling distribution from the uniformone requires exponentially many
samples.

We emphasize that our analysis applies to the ideal situation without any experimental im-
perfections. It is important to mention that our results concerning the flatness, just like the
hardness proof of Ref. [3], is probabilistic, in the sense ofholding with an extremely high
probability if the unitary describing the optical circuit is randomly chosen from the Haar mea-
sure and ifn andm are sufficiently large. To end up with, we identify a class of imperfect
linear optical experimental situations for which one can classically efficiently sample from the
output distribution even up to a constant small error in 1-norm.

The rest of this work is organized as follows. First, in Section 2 we introduce the notation
and recapitulate the setting considered in the Boson-Sampling problem. Next, in Section 3 we
connect the problem of certifying a sampling devices with the decision problem of distinguish-
ing its output distribution from the uniform distribution,explain the state discrimination and
the black box setting in more detail, give upper and lower bounds on the sample complexity of
this task and discuss what they mean for the original question of certifying Boson-Sampling.
Section 4 and 5 contain our technical results concerning thesample complexity in the state
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discrimination and black box setting respectively. In Section 6 we show that, with very high
probability, the Boson-Sampling distribution is exponentially flat (Theorem 12). Finally, in
Section 7 we identify a class of sampling experiments that, due to experimental imperfections,
are classically efficiently simulatable in 1-norm.

2 Setting and notation

We use the Landau symbolsO andΩ for asymptotic upper and lower bounds. Moreover, we
employ the short hand notation[j] := {1, . . . , j} for j ∈ Z+. The 1-norm and∞-norm on
(probability) vectors are denoted by‖ · ‖1 and‖ · ‖∞.

We consider the output probability distributionDU of theBoson-Sampling devicewith n ≥
1 bosons inm ∈ poly(n) modes, given by [3, 10]

Pr
DU

[S] := | 〈1n|ϕ(U) |S〉 |2 =
|Perm(US)|2∏m

j=1(sj !)
, (1)

with S ∈ Φm,n being the output sequence of the Boson-Sampling device where

Φm,n :=
{
(s1, . . . , sm) :

m∑

j=1

sj = n
}

(2)

is the sample space. The state vector|S〉 is the Fock space vector corresponding toS, |1n〉
the initial state vector of the Boson-Sampling device with1n := (1, . . . , 1, 0, . . . , 0), ϕ(U)
the Fock space (metaplectic) representation of the implemented unitary. The unitary matrix
U ∈ U(m) is the corresponding unitary in mode space, transforming vectors of bosonic
operators. In turn,US ∈ Cn×n is the matrix constructed fromU by discarding all but the
first n columns ofU and then, for allj ∈ [m], takingsj copies of thej th row of that matrix
(deviating from the notation of Ref. [3]). The permanentPerm is defined similarly to how the
determinant can be defined via the Leibniz formula, but without the alternating sign.

We refer toDU as theBoson-Sampling distribution. TheBoson-Sampling problemis: given
as input to the algorithmn, m, andU , sample exactly or approximately fromDU . We will
also consider thepost-selected Boson-Sampling distributionD∗

U which is obtained fromDU

by discarding all output sequencesS with more than one boson per mode, i.e., allS which are
not in the set ofcollision-freesequences

Φ∗
m,n :=

{
S ∈ Φm,n : ∀s ∈ S : s ∈ {0, 1}

}
. (3)

For the relevant scalings ofm with n the post-selection can be done efficiently in the sense
that on average at least a constant fraction of the outcome sequences is collision-free (Theo-
rem 13.4 in Ref. [3]).

The main result of Ref. [3] is that under reasonable complexity theoretic conjectures, 1-
norm approximate Boson-Sampling, i.e., sampling from a distribution that is close to the
Boson-Sampling distributionDU in 1-norm, is computationally hard, with high probabil-
ity if the unitaryU is chosen from the Haar measureµH , which we denote byU ∼ µH ,
andm increases sufficiently fast withn. In fact, the hardness result of approximate Boson-
Sampling requires thatm ∈ Ω(n5), but it is conjectured thatm growing faster thann2 is
sufficient. Importantly, the proof of this result considersonly collision-free output sequences,
so in fact approximately sampling fromD∗

U is already hard and the hardness argument for
Boson-Sampling only uses the structure of the distributionDU onΦ∗

m,n.
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We will repeatedly use that the size

|Φm,n| =
(
m+ n− 1

n

)
(4)

of the sample space of Boson-Sampling, which grows faster than exponentially withn, fulfills
the following bound: Letm ≤ c nν for someν ≥ 1 andc ≥ 0, then

|Φm,n| ≤
(m+ n− 1)n

n!
≤
(
(m+ n− 1) e

n

)n

(5)

≤ en (c nν−1 + 1− 1/n)n ≤ (2 (c+ 1) e)n n(ν−1)n. (6)

3 Boson-Sampling in the context of sample complexity

Our aim is to understand if and how an experimental implementation of Boson-Sampling can
be certified to sample from the correct distribution. In particular, we address the question of
whether a certification can be achieved from the samples output by the device only. This is
natural because Boson-Sampling is an abstract sampling problem with a classical input (the
number of bosonsn, the number of modesm the unitary matrixU ) and a classical output
(samples fromΦm,n). The sampling problem as such is independent of the particular physical
implementation. We call all information about a claimed Boson-Sampling device that is in
principle available to the certifier in addition to the samplesa priori knowledge.

The problem of certifying a device can be formalized as a decision problem. Whether a
decision can be reached can be expressed as a statement aboutthe existence or non existence
of an algorithm which, possibly using parts or all of the a priori knowledge, and given a set of
samples, accepts (device certified) in the “good” situationwith probability at least2/3 and in
the bad instances rejects (device not certified) with probability at least2/3. The probabilities
to erroneously reject in a “good” instance (accept in a “bad”instance) are called errors of
the first (second) kind. If such an algorithm exists we say it decides the problem, if no such
algorithm exists we say that the problem can not be decided. If a sampling problem has a
natural problem size, like the number of bosonsn in the case of Boson-Sampling, it is natural
to consider the scaling of the number of samples needed such that a deciding algorithm exists
as a function of this problem size. The order of the number of samples needed by an algorithm
is called itssample complexity. The sample complexity of a decision problem in turn is the
minimal sample complexity of any algorithm that decides theproblem. The choice of the
value2/3 for the accept/reject probabilities is purely conventional. Any other constant finite
bias in the accept/reject probabilities can be amplified to values arbitrarily close to one without
changing the sample complexity.

The main hardness result of Ref. [3] covers all distributions that are 1-norm close to the
ideal Boson-Sampling distribution. Hence, an algorithm that certifies a Boson-Sampling de-
vice must necessarily reject with probability at least2/3 whenever the device samples from a
distribution further away than some small constant distance in 1-norm and it is desirable that
it accepts with probability at least2/3 if the device samples from the ideal Boson-Sampling
distribution. Such an algorithm must hence at least be able to decide whether a given device
samples from the ideal Boson-Sampling distribution or the uniform distribution over the same
sample space.

In the state discrimination setting, the sample complexityof this task is of orderO(n3)
(Theorem 3), but it is certainly not realistic to assume thatthe certifier asked to decide this
question has full knowledge of the ideal Boson-Sampling distribution. After all, it is the
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3 Boson-Sampling in the context of sample complexity

very point of Boson-Sampling that approximating the probabilities of individual outcomes is
a computationally hard problem. It is therefore important to investigate the sample complexity
of this task under more reasonable restrictions on the a priori knowledge and computational
power of the certifier.

Colloquially speaking, our results on this problem, which are formally stated below, give
rise to a rather ironic situation: Instead of building a device that implements Boson-Sampling,
for example by means of a quantum optical experiment, one could instead simply program a
classical computer to efficiently sample from the uniform distribution overΦ∗

m,n and claim
that the device samples from the post-selected Boson-Sampling distributionD∗

U for some
U . If one choosesU from the Haar measure the chances of being caught cheating becomes
significantly large only after one was asked for exponentially many samples. This implies that
the findings of any experimental realisation of Boson-Sampling have to be interpreted with
great care, as far as the notion “quantum supremacy” is concerned.

To be precise, our main result is a lower bound on the sample complexity of distinguishing
the post selected Boson-Sampling distribution from the uniform one for symmetric proba-
bilistic algorithms. We will give a precise definition of symmetric probabilistic algorithms in
Section 5 (Definition 5), but essentially a probabilistic decision algorithm is called symmetric
if its output distribution is invariant under relabeling the elements of the sample space.

Theorem 1 (Distinguishing the post selected Boson-Sampling distribution from the uniform
one). If U ∼ µH , i.e.,U is drawn from the Haar measure, andm ∈ Ω(nν) with ν > 2,
then with probability supra-exponentially small inn no symmetric probabilistic algorithm can
distinguish the post-selected Boson-Sampling distribution D∗

U from the uniform distribution
onΦ∗

m,n from fewer thanΩ(en/2) many samples.

Proof. The theorem is an immediate corollary of our Theorems 8 and 13.

Notice that the hardness results of Ref. [3] requires thatν > 5, andν > 2 is known to be
necessary for the proof strategy used there to work, so our theorem fully covers the interesting
parameter range.

Without any a priori knowledge about the distribution the labels of the elements of the sam-
ple space have no meaning to the certifier. Thus, in the black box setting any decision reached
following a non-symmetric algorithm seems arbitrary and cannot qualify as a conclusion, but
at the same time, as Theorem 1 shows, symmetric algorithms are essentially useless to distin-
guish the post selected Boson-Sampling distribution from the uniform one.

We now argue that the above theorem is relevant for the problem of certifying a real Boson-
sampling device. Importantly, in a realistic situation thecertifier knows the specific unitaryU
implemented by the supposed Boson-Sampling device. In someparticular cases, for example,
whenU is such that it has some special structure, e.g., such that some outcomes are particu-
larly likely to occur or some have probability zero [11, 12],this knowledge could be used to
construct a non-symmetric decision algorithm, thus opening up the possibility to drastically
reduce the sample complexity. However, this seems very implausible in the interesting in-
stances, i.e., the ones that are covered by the hardness proof, precisely due to the fact that it is
believed to be#P hard to approximate the probabilities of individual outcomes forU ∼ µH .

We can make a similar statement about the full Boson-Sampling distribution:

Theorem 2 (Distinguishing the Boson-Sampling distribution from theuniform one). If U ∼
µH andm ∈ Ω(nν) with ν > 3, then with probability supra-exponentially small inn no
symmetric probabilistic algorithm can distinguish the Boson-Sampling distributionDU from
the uniform distribution overΦm,n from fewer thanΩ(en/2) many samples.

Proof. The theorem is an immediate corollary of Theorem 8 and 12.
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4 Upper bounds on the sample complexity in the state discrimination setting

As said earlier, Ref. [3] requires thatν > 5, however, it is believed thatm growing faster
than quadratically withn is sufficient for hardness, which leaves open a parameter range not
covered by Theorem 2. At the same time we have good reasons to believe that this is merely
a technicality and thatν > 2 is already sufficient for the statements of Theorem 2 to be valid
(see the discussion in Section 6 and Theorem 13).

In the latter case of the full Boson-Sampling distributionDU the restriction to symmetric
algorithms is arguably less natural, mainly because it is known that bosons tend tobunchor
cluster [11–13]. That is, output sequences(s1, . . . , sm) ∈ Φm,n with “collisions”, i.e., ones
in which at least onesj is larger than one are, on average overU ∼ µH , more likely than in
the uniform distribution overΦm,n (although not dramatically more likely, see Theorem 13.4
in Ref. [3]). This could potentially be used to distinguish the Boson-sampling distribution
from the uniform one by a non-symmetric algorithm. We argue that this does not qualify as
a certification of a provably hard task. This is because the proof of Ref. [3] only considers
the distribution on the Boson-Sampling distribution on thecollision-free sectorΦ∗

m,n. Hence,
checking that the output distribution shows the correct bunching cannot help to corroborate
that the output distribution is covered by the hardness proof of Ref. [3].

This is related to another subtlety that is important to correctly understand the meaning of
our results. The hardness result of Ref. [3] covers all distributions that are at most a small
distance away in 1-norm from the ideal Boson-Sampling distribution. Hence, a device that
certifies that a black box samples from a distribution that iscovered by the hardness results of
Ref. [3] does not necessarily need to accept with probability at least2/3 on the ideal Boson-
Sampling distribution, it is in principle sufficient if it does so on some distribution inside this
1-norm ball. The 1-norm ball includes distributions that are not exponentially flat and which
can be distinguished from the uniform distribution from polynomially large number of samples
using a symmetric algorithm [14]. Symmetric certification algorithms with polynomial sample
complexity for these distributions thus cannot be excludedby our results.

There is a further subtlety: Consider a device that with probability 1 − ǫ outputs a sample
from an ideal Boson-Sampling device and with probabilityǫ outputs a specific sample that
encodes the solution to an NP-complete problem. The output distribution of this device would
beǫ close to the Boson-Sampling distribution in 1-norm. At the same time, it can be certified
from O(1/ǫ) many samples, using a simple but non-symmetric algorithm, that the device is
implementing a hard sampling problem by simply identifyingthe special outcome and check-
ing that it is indeed a solution to the NP-complete problem. Even though this distribution is
covered by the hardness results of Ref. [3], one would hardlysay that its (certifiable) hardness
is a consequence of the hardness of Boson-Sampling.

One might also consider the following alternative certification scenario. Assume one al-
ready has a certified Boson-Sampling device, then one could try to certify another device by
comparing the samples they output. Again, our technical results, Theorem 8 and 12, imply
that with high probability this cannot be done using a symmetric algorithm and less than ex-
ponentially many samples.

Finally, it is important to note that our findings do not contradict the results of Ref. [3].

4 Upper bounds on the sample complexity in the state discrimi nation setting

In the state discrimination setting the certifier has the promise that the given sampling device
samples from one of two known distributionsP or Q. In particular he has knowledge of the
sample space and all the probabilities that each of the two candidate distributions assign to
the elements of this space. The certifier’s aim is to minimizethe probability of wrongfully
answeringQ if the true distribution isP (error of the first kind) and that of wrongfully an-
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4 Upper bounds on the sample complexity in the state discrimination setting

sweringP if the true distribution isQ (error of the second kind). This minimization can be
done in various different ways. For example one can minimizethe (weighted) sum of the two
probabilities, or minimize one while the other is kept constant or suppressed exponentially
in the number of samples with a predefined rate. The asymptotic behavior of the number of
samples needed in these situations has been extensively studied in both the classical [15, 16]
and quantum setting [17–20], in which the probability distributions are replaced by quantum
states. See also the introduction of Ref. [21] for a short review and [22] for further references.

Only recently, in Ref. [21], bounds on the error probabilities for finite sample sizes were
derived. They hold in both the classical and the quantum setting, but here we will only need
the classical versions. They imply that in the state discrimination setting the Boson-Sampling
distribution can be distinguished from the uniform distribution from a polynomial number of
samples:

Theorem 3 (Lower bound on the sample complexity of distinguishing theBoson-Sampling
distribution from the uniform one in the state discrimination setting). Letǫ > 0 andm ≤ c nν

for somec ≥ 0, ν ≥ 1. Then for anyγ > 0 there exists a constantC > 0, such that for and
any instance of Boson-Sampling withn bosons inm modes, whose distribution is at leastǫ far
from the uniform distribution in 1-norm, there is an algorithm that distinguishes the former
from the latter fromC n2+γ many samples.

Note that the above theorem covers all instances of Boson-Sampling that can potentially be
hard to sample from approximately in 1-norm.

Proof. For0 ≤ t 6= 1 and two probability distributions over a finite sample spaceΦ we define
thet-Rényi relative entropyof P givenQ

St(P‖Q) :=





1

t− 1
ln

∑

S∈supp(P)∩supp(Q)

Pr
P
[S]t Pr

Q
[S]1−t if supp(P) ⊆ supp(Q)

∞ otherwise

, (7)

wheresupp(P) = {S ∈ Φ : PrP [S] 6= 0} and we setln 0 = −∞. As P is normalized the
limit t → 1 exists [21] andS(P‖Q) := limt→1 St(P‖Q) is calledrelative entropyof P given
Q.

Letβl,α be the optimal achievable error of the second kind in the state discrimination setting
after receivingl samples when the error of the first kind is upper bounded byα. Theorem 3.3
in Ref. [21] implies that for alll, α > 0

1

l
lnβl,α ≤ −S(P‖Q) +

1√
l
4
√
2 ln(α−1) ln η − 2 ln 2

l
, (8)

where
η = 1 + eS3/2(P‖Q)/2 + e−S1/2(P‖Q)/2. (9)

Since

η ≤ 2 + eS3/2(P‖Q)/2 ≤ eS3/2(P‖Q)/2+ln 3 (10)

this implies

1

l
lnβl,α ≤ −S(P‖Q) +

1√
l
4
√
2 ln(α−1) (S3/2(P‖Q)/2 + ln 3). (11)
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5 Sample complexity in the black box setting

Theorem 1.15 in Ref. [23] implies the first of the following inequalities

S(P‖Q) ≥ 1

2
‖P −Q‖21 ≥ 1

2
ǫ2, (12)

the second is implied by the assumptions of the Theorem. Moreover, if Q is the uniform
distribution overΦ, then

S3/2(P‖Q) ≤ S2(P‖Q) = ln(|Φ|
∑

S∈Φ

Pr
P
[S]2) ≤ ln |Φ|. (13)

Hence, forΦ = Φm,n and ifm ≤ c nν we have by Eq. (6)

S3/2(P‖Q) ≤ n ln(2 (c+ 1) e) + n (ν − 1) ln(n). (14)

This implies that forα = 1/3, P the Boson-Sampling distribution withm ≤ c nν, andQ
the uniform distribution overΦm,n, a number of samplesl scaling likel ∈ Ω(n2+γ), for any
γ > 0, is sufficient to make the right hand side of Eq. (11) negative, and therebyβl,1/3 ≤ 1/3
for sufficiently largen.

5 Sample complexity in the black box setting

In this section we give lower bounds on the sample complexityof decision problems in the
black box setting. Apart from the scenario relevant for the certification of Boson-Sampling,
in which the certifier is given a black box and is asked to distinguish the two cases where it
samples from the Boson-Sampling distribution or the uniform one, we will also cover scenar-
ios where the certifier is given two or more black boxes and is asked to decide whether they
sample from the same or form different probability distributions (see also Ref. [14]).

The lower bounds are ultimately a consequence of a variant ofthe birthday paradox forǫ-flat
probability distributions. We call a probability distributionP over a finite sample spaceǫ-flat
if ‖P‖∞ ≤ ǫ, i.e., all probabilities are smaller thanǫ, or equivalently ifP has min entropy
H∞ ≥ − log2 ǫ.

Lemma 4(Non-uniform non-identically distributed birthday paradox). The probabilitȳp(l, |Φ|, ǫ)
that l samples drawn independently from not necessarily identical ǫ-flat distributions over a
finite sample spaceΦ are all different fulfills

∀l ≤ 1 + 1/(2ǫ) : p̄(l, |Φ|, ǫ) ≥ 2−l2ǫ. (15)

Proof. The probabilityp̄(l, |Φ|, ǫ) that all samples are different is bounded by

p̄(l, |Φ|, ǫ) ≥
l−1∏

j=1

(1− jǫ). (16)

If 1/2 ≤ 1− ǫ (l − 1) ≤ 1, we have

∀j ∈ [l − 1] : 1− j ǫ ≥ 2−2 j ǫ. (17)
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5 Sample complexity in the black box setting

This implies that for sufficiently largel

p̄(l, |Φ|, ǫ) ≥
l−1∏

j=1

(1− j ǫ) ≥
l−1∏

j=1

2−2 j ǫ (18)

= 2−2
∑l−1

j=1 j ǫ = 2−l (l−1)ǫ ≥ 2−l2ǫ. (19)

Now, we consider the situation ofN black boxes that sample each from one ofN probability
distributions(P(j))Nj=1 over the same finite sample spaceΦ. For j ∈ [N ] and l ∈ Z+,

let S(j) := (S
(j)
1 , . . . , S

(j)
l ) ∈ Φl be sequences of samples of lengthl from each of the

distributions respectively. We will keep the discussion inthis chapter general but will later
mostly be interested in the caseN = 1.

The certifier works under the assumption that the sampling device outputs independent
identically distributed samples. Hence, the order of the samples in each sequence should not
influence the certifier’s decision. Moreover, in the black box setting the certifier is assumed
to have no a priori knowledge about the distribution. If in addition the decision problem of
the certifier is invariant under a relabeling of the sample space, its decision should be inde-
pendent of which element of the sample space is assigned which label. If this is not the case
it cannot qualify as a conclusion reached based on the samples. Therefore, for tasks such as
deciding whether a given black box is sampling from the uniform distribution or not, or de-
ciding whether a number of black boxes sample from the same orfrom different distributions
the certifier should follow asymmetric probabilistic algorithm.

Definition 5 (Symmetric probabilistic algorithm). An algorithm that takes as input for each
j ∈ [N ] a sequence of samplesS(j) ⊂ Φl and probabilistically outputs either “accept” or
“reject” is called a symmetric probabilistic algorithmif its output distribution is invariant
under permuting the samples in each sequences

∀j ∈ [N ] : (S
(j)
1 , . . . , S

(j)
l ) 7→ (S

(j)
τj(1)

, . . . , S
(j)
τj(l)

), τj ∈ Sym([l]), (20)

and relabeling of the sample spaceΦ, i.e., the action ofSym(Φ) on all S(j) simultaneously

∀j ∈ [N ] : (S
(j)
1 , . . . , S

(j)
l ) 7→ (κ(S

(j)
1 ), . . . , κ(S

(j)
l )), κ ∈ Sym(Φ). (21)

Following Ref. [14] we define thefingerprint tensorC((S(j))Nj=1) ∈ N(l+1)×···×(l+1) of the
sequences of samples, such that for allk1, . . . , kN ∈ {0, 1, . . . , l}, Ck1,...,kN is the number
of elements inΦ that for allj ∈ [N ] appear exactlykj times in thej-th sequence of samples
S(j). Obviously

∑l
k1,...,kN=0 Ck1,...,kN = |Φ|. ForN = 1 this construction results in the

fingerprint vector

Ck1
:= |{S′ ∈ Φ : |{S ∈ S(1) : S = S′}| = k1}| (22)

and forN = 2 the result is the fingerprint matrix

Ck1,k2
:= |{S′ ∈ Φ :|{S(1) ∈ S(1) : S(1) = S′}| = k1

and|{S(2) ∈ S(2) : S(2) = S′}| = k2}|.
(23)

For example, ifΦ = [6], S(1) = (1, 5, 1, 1, 2) andS(2) = (2, 6, 1, 4, 6), then the fingerprint
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matrix is given by

C =




1 1 1 0 0 0
1 1 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




. (24)

The fingerprint tensor encodes all the information contained in the samples that is invariant
under permuting the labels of the sample space or reorderingthe samples in each sequence.
That is, the sequences of samples can be reconstructed exactly from the fingerprint up to a
permutation of the samples in each sequence and a global relabeling of the sample space [14].
This proves:

Lemma 6 (Symmetric algorithms and the fingerprint (see also Ref. [14])). For every sym-
metric probabilistic algorithmA there is exists an algorithmA′ which has the same output
distribution asA, but takes as input the fingerprint of the sequences of samples.

Denote byDC((P(j))Nj=1, l) the probability distribution on fingerprint tensors induced by
drawingl samples from eachP(j), and then constructing the corresponding fingerprint tensor,
and when we writeC ∼ DC((P(j))Nj=1, l) we meanC drawn fromDC((P(j))Nj=1, l). For

each|Φ|, N , andl there is a uniquetrivial fingerprint tensorC̃ that characterizes the situation
where no sample appears more than once. ForN = 1 this is the vector

C̃ = (|Φ| − l, l, 0, . . . , 0) ∈ Nl+1, (25)

and forN = 2 it is the matrix

C̃ :=




|Φ| − 2 l l 0 · · · 0
l 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 . . . 0




∈ N(l+1)×(l+1). (26)

Due to the birthday paradox, fingerprint tensors constructed from few samples are trivial
with high probability.

Lemma 7 (Fingerprint tensors from few samples). Let N ∈ Z+ and (P (j))Nj=1 be ǫ-flat

probability distributions over a finite sample spaceΦ. If l ∈ O((1/ǫ)1/4) many samples are
drawn from eachP(j) then

Pr
C∼DC((P(j))Nj=1,l)

[C 6= C̃] ∈ O(N2
√
ǫ). (27)

Proof. Let a > 0 andl ≤ a (1/ǫ)1/4 and denote for eachj ∈ [N ] by S(j) the sequence of
l samples drawn fromP(j). Since all theP(j) areǫ-flat probability distributions overΦ we
have

Pr
C∼DC((P)Nj=1,l)


∃S′ ∈ Φ :

N∑

j=1

|{S ∈ S(j) : S = S′}| > 1


 = p̄(N l, |Φ|, ǫ), (28)
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6 The Boson-Sampling distribution is flat

with p̄ as in Lemma 4. For sufficiently smallǫ Lemma 4 yields

p̄(N l, |Φ|, ǫ) ≤ 2−(N a)2
√
ǫ (29)

and
Pr

C∼DC((P)Nj=1,l)
[C 6= C̃] ≤ 1− 2−(N a)2

√
ǫ ≤ (N a)2

√
ǫ. (30)

Similar results can be obtained for all scalingsl ∈ O((1/ǫ)α) with α < 1/2, butα = 1/4
is good enough for our purposes and yields the particularly simple result stated above.

Theorem 8 (Symmetric algorithms andǫ-flat distributions). For every symmetric probabilis-
tic algorithm there exists a trivial output distribution such that the output distribution of the
algorithm after receiving at mostO((1/ǫ)1/4) many samples from each ofN black boxes
sampling fromǫ-flat distributions is with probability1−O(N2

√
ǫ) equal to the trivial output

distribution and hence, in particular, does not depend on which ǫ-flat distributions were used
to generate the samples.

Proof. By Lemma 6 any symmetric probabilistic algorithm is equivalent to an algorithm that
only receives the fingerprint of the samples as input. If all input distributions areǫ-flat, then
by Lemma 7, if at mostO((1/ǫ)1/4) samples are drawn from each distribution, the proba-
bility that their fingerprint is non-trivial is of orderO(N2

√
ǫ). The result follows and the

trivial output distribution is the output distribution corresponding to samples with the trivial
fingerprint.

By strengthening Lemma 7, as pointed out after its proof, a result similar to Theorem 8 can
be obtained for the number of samples scaling likeO((1/ǫ)α) for all α < 1/2.

6 The Boson-Sampling distribution is flat

In this section we show that the Boson-Sampling distribution is extremely flat with high prob-
ability. The strategy is as follows: First we relate the probability measure induced on the
matricesUS described in Section 2 to a Gaussian measureµGS(σ). Then we use measure
concentration forµGS(σ) to proveǫ-flatness.

A crucial step in the proof of the main result of Ref. [3] is to show that ifm is sufficiently
large compared ton andU ∼ µH , i.e.,U is chosen from the Haar measureµH on U(m),
then, for any fixedS ∈ Φ∗

m,n, the measure onCn×n induced by the mapgS = (U 7→ US) is
close toµG(1/

√
m), whereµG(σ) is the measure obtained by choosing the real and imaginary

part of every entry of ann× n matrix independently from a Gaussian distribution with mean
zero and standard deviationσ.

Lemma 9 (Theorem 5.2 in Ref. [3]). Let f : Cn×n → [0, 1] be measurable andδ > 0 with
the property thatm ≥ (n5/δ) ln2(n/δ). Then

∀S ∈ Φ∗
m,n : E

U∼µH

f(US) ≤ (1 + O(δ)) E
X∼µG(1/

√
m)

f(X). (31)

It is known thatm ≥ c nν with ν > 2 and0 < c ∈ O(1) is necessary for closeness of
µH ◦ g−1

S andµG(1/
√
m). As this is a crucial ingredient to the proof of hardness of Ref. [3],

we will from now on assume thatm ≥ c nν with ν > 2 and0 < c ∈ O(1).
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6 The Boson-Sampling distribution is flat

Lemma 9 is not strong enough for our purpose, as we must be ableto control all ofΦm,n

and not only the collision-free subspace. Fortunately, theabove lemma extends naturally to
all S ∈ Φm,n, but first we need some notation: For every sequenceS, let S̃ be the sequence
obtained fromS by removing all the zeros, i.e,

S̃ = (s̃1, . . . , s̃|S̃|) := (s ∈ S : s > 0). (32)

Let µGS(σ) be the probability measure onCn×n obtained by drawing the real and imaginary
part of every entry of a|S̃| × n matrix independently from a Gaussian distribution with mean
zero and standard deviationσ and then for allj ∈ [|S̃|] taking s̃j copies of thej th row of this
matrix.

Lemma 10 (Multiplicative error bound). Let f : Cn×n → [0, 1] be measurable andδ > 0
with the property thatm ≥ (n5/δ) ln2(n/δ). Then for allS ∈ Φm,n

E
U∼µH

f(US) ≤ (1 + O(δ)) E
X∼µGS (1/

√
m)

f(X). (33)

Proof. LetS ∈ Φm,n, S̃ as in Eq. (32) andm′ := |S̃|. Definev to be the sequence containing
s̃j times the integerj for everyj ∈ [m′] in increasing order andw the sequence containing
the positions of each of the first of the repeated rows inUS , i.e.,

v := (1, . . . , 1︸ ︷︷ ︸
s̃1

, 2, . . . , 2︸ ︷︷ ︸
s̃2

, . . . ,m′, . . . ,m′
︸ ︷︷ ︸

s̃′m

) ∈ (Z+)n, (34)

w := (1, 1 + s̃1, 1 + s̃1 + s̃2, . . . , 1 +
m′−1∑

j=1

s̃j) ∈ (Z+)m
′
. (35)

The sequencev defines a linear embeddingη : Cm′×n → Cn×n component wise by

η(Y )i,j := Yvi,j ∀i, j ∈ [n], (36)

i.e., η(Y ) hassj copies of thej-th row of Y . The sequencew defines a linear projection
π : Cn×n → Cm′×n by

π(X)i,j := Xwi,j ∀i ∈ [m′], j ∈ [n], (37)

in particular,π(US) contains only the first out of each series of the repeated rowsin US . Note
thatη ◦ π : Cn×n → Cn×n is a projection onto the subspace of matrices that have the same
repetition structure asUS . Let

fS := f ◦ η ◦ π, (38)

thenfS(US) = f(US) only depends on the first of the repeated rows inUS and is independent
of all the other rows. Since the Haar measure is permutation-invariant,

E
U∼µH

fS(US) = E
U∼µH

fS(U1n). (39)
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6 The Boson-Sampling distribution is flat

Hence, Lemma 9 yields the inequality in the calculation

E
U∼µH

f(US) = E
U∼µH

fS(U1n) (40)

≤ (1 + O(δ)) E
X∼µG(1/

√
m)

fS(X) (41)

= (1 + O(δ)) E
X∼µGS (1/

√
m)

f(X), (42)

which finishes the proof.

In addition to the multiplicative error bound we need a concentration result for the Gaussian
measureµGS(σ).

Lemma 11 (Concentration of the Gaussian measureµGS(σ)). For all n,m ∈ Z+, all S ∈
Φm,n and allξ > 0

Pr
X∼µGS (σ)

[
max
j,k∈[n]

|xj,k| ≥ ξ

]
≤ 1−

(
1− Erfc

(
ξ√
2σ

))n2

. (43)

Proof. For Gaussian random variables we have

∀ξ > 0, j, k ∈ [n] : Pr
X∼µG(σ)

[|xj,k| ≥ ξ] = Erfc

(
ξ√
2 σ

)
(44)

where

Erfc

(
ξ√
2 σ

)
:= 2

∫ ∞

ξ

e−
x2

2 σ2

√
2 π σ2

dx (45)

is the complementary error function. This implies that

∀ξ > 0 : Pr
X∼µG(σ)

[∀j, k ∈ [n] : |xj,k| ≤ ξ] =

(
1− Erfc

(
ξ√
2 σ

))n2

. (46)

It is also true that

∀S ∈ Φm,n, ξ > 0 : Pr
X∼µGS (σ)

[∀j, k ∈ [n] : |xj,k| ≤ ξ]

≥ Pr
X∼µG(σ)

[∀j, k ∈ [n] : |xj,k| ≤ ξ] ,
(47)

because the additional dependency of the entries ofX ∼ µGS(σ) only decreases the chance of
having an exceptionally large entry.

Theorem 12(Flatness of the Boson-Sampling distribution). Let ν > 3. Then for everym ∈
Ω(nν)

− ln

(
Pr

U∼µH

[
∃S ∈ Φm,n : Pr

DU

[S] ≥ e−2n

])
∈ O

(
nν−2−1/n

)
. (48)

Proof. Using the union bound (also known as Boole’s inequality) we obtain that for every
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6 The Boson-Sampling distribution is flat

ǫ > 0

Pr
U∼µH

[
∃S ∈ Φm,n : Pr

DU

[S] ≥ ǫ

]
(49)

≤
∑

S∈Φm,n

Pr
U∼µH

[
Pr
DU

[S] ≥ ǫ

]
(50)

≤ |Φm,n| max
S∈Φm,n

Pr
U∼µH

[
Pr
DU

[S] ≥ ǫ

]
(51)

= |Φm,n| max
S∈Φm,n

Pr
U∼µH

[
|Perm(US)|2∏m

j=1(sj !)
≥ ǫ

]
. (52)

Applying Lemma 10 for theS that yields the maximum withδ = n and the indicator function

f(US) =

{
1 if |Perm(US)|2∏

m
j=1(sj !)

≥ ǫ

0 otherwise
(53)

yields

Pr
U∼µH

[
∃S ∈ Φm,n : Pr

DU

[S] ≥ ǫ

]

≤ (1 + O(n)) |Φm,n| max
S∈Φm,n

Pr
X∼µGS (1/

√
m)

[
|Perm(X)|2∏m

j=1(sj !)
≥ ǫ

]
.

(54)

Recall that the permanentPerm(X) of a matrixX = (xj,k) ∈ Cn×n is defined as

Perm(X) :=
∑

τ∈Sym([n])

n∏

j=1

xj,τ(j), (55)

whereSym([n]) is the symmetric group acting on[n]. This implies that

|Perm(X)|2∏m
j=1(sj !)

≤ |Perm(X)|2 ≤ (n!)2
(

max
j,k∈[n]

|xj,k|
)2n

. (56)

Hence, for everyS ∈ Φm,n and everyǫ > 0

Pr
X∼µGS(1/

√
m)

[
|Perm(X)|2∏m

j=1(sj !)
≥ ǫ

]
≤ Pr

X∼µGS(1/
√

m)

[
max
j,k∈[n]

|xj,k| ≥
(√

ǫ

n!

)1/n
]
. (57)

Now we use Lemma 11 with

ξ =

(√
ǫ

n!

)1/n

, (58)

15

131



6 The Boson-Sampling distribution is flat

and Eq. (6) to arrive at

Pr
U∼µH

[
∃S ∈ Φm,n : Pr

DU

[S] ≥ ǫ

]

≤ (1 + O(n)) (2 (c+ 1) e)n n(ν−1)n


1−

(
1− Erfc

√
c

2

ǫ1/n nν

(n!)2/n

)n2

 .

(59)

Bounding the complementary error function by [24]

Erfc (x) ≤ e−x2

, (60)

we obtain

1− (1− Erfc(x))
n2

≤ 1−
(
1− e−x2

)n2

= 1−
n2∑

k=0

(
n2

k

)
(−e−x2

)k (61)

=

n2∑

k=1

(
n2

k

)
e−x2k (−1)k−1 ≤

n2∑

k=1

(n2e/k)k e−x2k (62)

=
n2∑

k=1

(n2 e−x2+1)k. (63)

If x is sufficiently large such that

n2 e−x2+1 ≤ 1

2
< 1, (64)

the geometric series converges and

n2∑

k=1

(n2e−x2+1)k ≤ n2e−x2+1

1− n2e−x2+1
(65)

≤ 2n2 e−x2+1. (66)

Hence, for the bound (59) to become meaningful it is sufficient that the argument of the square
root in the error function grows slightly faster than linearwith n. Because of the bound
n! ≤ e1−n nn+1/2 (a variant of Stirling’s approximation) we have for the argument of the
square root in Eq. (59)

c

2

ǫ1/nnν

(n!)2/n
≥ c

2

ǫ1/nnν

e2/n−2n2+1/n
=

c

2

ǫ1/n

e2/n−2
nν−2−1/n, (67)

and with the convenient choiceǫ = e−2n it follows that for allν > 3

Pr
U∼µH

[
∃S ∈ Φm,n : Pr

DU

[S] ≥ e−2n

]

∈ O
(
n3 (2 (c+ 1) e)n n(ν−1)n exp(−c e−2/n nν−2−1/n/2)

)
.

(68)
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6 The Boson-Sampling distribution is flat

The above proof of Theorem 12 yields the result only forν > 3. This is a consequence of
then! prefactor introduced in the extremely crude bound on the permanent used in Eq. (56).
In fact, it is known that [3]

E
X∼µG(1/

√
m)

[|Perm(X)|2] = 2n n!m−n, (69)

so it seems likely that, the inequality in Eq. (56) can be replaced by an inequality that is
fulfilled with high probability and has a

√
n! prefactor instead of then!.

For allS in the collision-free subspaceΦ∗
m,n we can show the improved bound:

Theorem 13(Flatness of the Boson-Sampling distribution on the collision-free subspace). Let
ν > 1. Then for every1 > ǫ > 0 andm ∈ Ω(nν)

− ln

(
Pr

U∼µH

[
∃S ∈ Φ∗

m,n : Pr
DU

[S] ≥ ǫ

])
∈ O((ν − 1)n lnn)− 2 ln(1/ǫ), (70)

and in particular

− ln

(
Pr

U∼µH

[
∃S ∈ Φ∗

m,n : Pr
DU

[S] ≥ n−n/2

])
∈ O((ν − 2)n lnn) . (71)

Proof. It is known that [3, 25]

E
X∼µG(1/

√
m)

[|Perm(X)|4] = 22n(n!)2 (n+ 1)m−2n. (72)

Hence, by using Markov’s inequality for the positive randomvariable|Perm(X)|4 with m =
cnν we find that for everyǫ > 0

Pr
X∼µG(1/

√
m)

[|Perm(X)|2 ≥ ǫ] ≤ 22n (n!)2 (n+ 1) c−2n n−2 ν nǫ−2. (73)

Using again the boundn! ≤ e1−n nn+1/2 this implies

Pr
X∼µG(1/

√
m)

[|Perm(X)|2 ≥ ǫ] ≤ n(n+ 1)22n e2−2n c−2n n2 (1−ν)n ǫ−2. (74)

Hence, by Eq. (6)

|Φm,n| max
S∈Φ∗

m,n

Pr
X∼µGS (1/

√
m)

[
|Perm(X)|2∏m

j=1(sj !)
≥ ǫ

]

≤ (2 (c+ 1) e)n n (n+ 1) 22n e2−2n c−2n n(1−ν)n ǫ−2.

(75)

Inserting this into Eq. (54) and taking the logarithm yieldsthe first bound, the choiceǫ =
n−n/2 the second bound.

A derivation of a similar bound for allS ∈ Φm,n would prove the statement of Theorem 12
under a weaker condition onν. We conjecture that the statement of Theorem 12 is true for all
ν > 2.
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7 Efficiently simulatable instances in 1-norm

In this section we finally ask the question in what settings one can expect an efficient classical
simulation to be feasible even up to a small error in 1-norm. After all, any experiment will
not realise the precise ideal Boson-Sampling setting, but instead an imperfect approximation
thereof. This may provide room for the efficient classical simulation of the output distribution
actually obtained. Subsequently, we will identify a setting of this kind, which resembles those
implementable with present-day linear optical circuits. It is not claimed that the discussed sce-
nario exactly matches realistic experiments, but it does share many features. We will show that
efficient classical 1-norm approximate sampling is possible under the following conditions:

Condition 1: The input state|1n〉 is replaced by a Gaussian product stateρ [26, 27].
Sources that produce such states are common in quantum optical implementations. In prac-
tice, many single photon sources provide approximately coherent states or mixed Gaussian
states instead of states for which the probability of havingmore than a single photon is zero.
If single photon sources are being generated by heralding [28] a source of (Gaussian) two-
mode squeezed states, the argument presented here is still valid: After all, the entire statistics,
including the heralding events, is then classically simulatable.

Condition 2: The unitaryϕ(U) with U ∈ U(m), specifying the optical network, is re-
placed by a Gaussian completely positive mapT : B(H) → B(H), a Gaussian channel [29].
Such operations cover the ideal unitary caseρ 7→ ϕ(U) ρϕ(U)† as well as situations involving
losses in the linear optical network and aberrations due to mode matching issues. Gaussian
completely positive maps are a very accurate modelling of present linear optical experiments.

Condition 3: Projection onto Fock states is replaced by measurements described by di-
chotomic POVMs{Π0,Π1} with Π0+Π1 = I (“bucket detector”), where the Wigner function
corresponding to the no click eventΠ0 for some fixedR > 0 is given by

WΠ0(r) =

{
1/(2 π) if |r| < R

0 otherwise
. (76)

This is an idealised model for imperfect photon detectors used in experiments that distin-
guishes the presence and the absence of photons, taking intoaccount losses and dark counts.
In the latter aspect the model considered here departs the furthest from actual experiments:
While Condition 1 and 2 are usually satisfied to an extraordinarily large extent in quantum
optical experiments, Condition 3 constitutes a rather crude approximation of an imperfect
detector such as a realistic avalanche photodiode. Still, it is noteworthy that these conditions
are sufficient to arrive at an efficient classical simulation. Needless to say, other detector
models with positive Wigner functions for the POVM elementswork equally well.

For a trace class operatorA acting on a system withm modes, its Wigner functionWA :
R2m → R is defined as

WA(r) :=
1

πm
Tr[w(r)Π⊗mw(r)†A]. (77)

Here,Π is the single mode parity operator,{w(r)} the family of Weyl operators, andr ∈ R2m

a vector collecting the2m phase space variables. A state is Gaussian if and only if its Wigner
function is Gaussian [26, 27]. Gaussian channels transformstates with a Gaussian Wigner
function into states with a Gaussian Wigner function. The Jamiolkowski isomorphs of such
maps are Gaussian states.
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Expressing Hilbert-Schmidt scalar products as integrals over Wigner functions, one finds
for the dark count rate

〈0|Π1|0〉 = 1− 〈0|Π0|0〉 = 1− 2

∫ R

0

r e−r2 dr = e−R2

. (78)

The Wigner function of the coherent state|1〉c that contains1 photon on average is given by

W|1〉c〈1|c(r) =
1

π
e−(r1−1)2−r22 . (79)

With this one finds for the effective detector efficiency

1− 〈1|cΠ0|1〉c =

1− 1

2
√
π

∫ R

−R

dp e−p2
(
Erf(1 + (R2 − p2)1/2)− Erf(1− (R2 − p2)1/2)

)
.

(80)

ForR = 1.6, say, one gets a reasonable dark count rate of〈0|Π1|0〉 = 0.0773and〈1|cΠ0|1〉c =
0.7104 , so an effective detector efficiency of0.2896. These values are not that far off from
those achieved in current experiments (see, e.g., Ref. [30,34]).

In the setting considered here, the Wigner functionsW|0〉〈0| andWω of the two single mode
input states from which the initial state is constructed, that of the partial transposed of the
Jamiolkowski isomorphs of all gatesWfΓ

j
, j ∈ [m2], as well as that of the POVM elements

WΠ0 andWΠ1 are non negative. Therefore, the algorithms of Refs. [31, 32] can be applied.
The detailed error analysis of Refs. [32, 33] implies the following.

Observation 14(Efficient sampling in 1-norm for imperfect detectors). For any number of
modesm, anyR > 0, any Gaussian product input stateρ, in which each mode is prepared in
either the vacuum|0〉〈0| or an arbitrary Gaussian stateω, any linear optical network, and any
dichotomic detector with POVM elementsΠ0 andΠ1 as defined in Eq.(76), one can sample
from the output distribution overS ∈ Φm,n, to an errorǫ in 1-norm with effortO(poly(m/ǫ)).

That is to say, one can efficiently simulate the output distribution of imperfect linear optical
networks and imperfect detectors of the above type even up toa small error in 1-norm. We
suggest that it should be an important and constructive enterprise to exactly flesh out how
far one can go with approximating realistic experimental devices, while still being able to
provably efficiently simulate the output distribution.

8 Conclusion and outlook

In this work, we have revisited the Boson-Sampling problem from the perspective of sample
complexity. We have arrived at the ironic conclusion that nosymmetric probabilistic algo-
rithm can distinguish the Boson-Sampling distribution from the mere uniform distribution on
the collision-free subspace, unless exponentially many samples are available. The specifics
of the problem if a priori knowledge is available have been discussed carefully. We have
also addressed the question to what extend imperfect, approximate physical realisations of
the Boson-Sampling problem can be classically efficiently simulated up to a constant error
in 1-norm. As such, our work emphasizes the challenge of identifying ways to certify the
correct working of such quantum simulators. Our results indicate that even though, unques-
tionably, the Boson-Sampling distribution has an intricate structure that makes sampling from
it a classically hard problem, this structure seems inaccessible by classical means. To develop
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a portfolio of methods forcertifying the correct functioning of quantum simulatorsseems
timelier than ever. Probably, quantum methods are indispensable to achieve that goal.

The question of the precise boundary of classically simulatable quantum processes remains
wide open and interesting, and is also enjoying an increasing amount of attention [35, 36],
not least because of the rather loud claims made in the context of the discussion on the func-
tioning of the D-Wave processor and their careful assessment [37–39]. It is the hope that the
present work can contribute to a thoughtful scientific reasoning on identifying the boundary
of classically simulatable processes in general, and at thesame time contribute to clarifying in
what precise sense quantum devices such as Boson-Samplers are indeed more powerful than
classical devices.

Obviously, technically, our argument leaves significant room for improvement. It would be
interesting to see, for example, whether, or to what extent,a priori knowledge on the distribu-
tion can be used or what other important features of the Boson-Sampling distribution may be
identified. It would also be important to see how the hardnessargument can be partiallyde-
randomised, and the Haar-measure random unitaries replaced by appropriateunitary designs
or related concepts derived fromquantum expanders.

We also hope that our work can be read as yet another invitation to the enterprise of looking
at the sample complexity of tasks in quantum theory. Quite generally, all information that is
ever available in any quantum mechanical experiment is obtained from samples from a certain
distribution. These samples may be used to infer about important features or properties of the
underlying quantum state — or even about the very identity ofthe state in the first place. The
quantum state tomography problem — the inference about an unknown quantum state from
measurement data alone — should be phrased as a sampling problem. Indeed, thetomography
problemhas already been faithfully viewed as a sampling problem andthe sample complexity
lower bounded, both in the context ofquantum compressed sensing[40] and in notions of
reliable quantum state tomography[41]. A similar mindset has been taken in foundational
arguments explaining the apparent emergence of ensembles of quantum statistical mechanics
based on microscopic unitary evolution [42]: Indeed, one may argue that if by sampling alone,
one cannot operationally distinguish a situation from the one predicted by a statistical ensem-
ble, then the apparent emergence may be considered explained. It is the hope that the methods
discussed in this work suggest further applications along these lines.
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A major roadblock for large-scale photonic quantum technologies is the lack of practical reliable certifica-
tion tools. We introduce an experimentally friendly — yet mathematically rigorous — certification test for
experimental preparations of arbitrary m-mode pure Gaussian states, pure non-Gaussian states generated
by linear-optical circuits with n-boson Fock-basis states as inputs, and states of these two classes subse-
quently post-selected with local measurements on ancillary modes. The protocol is efficient in m and the
inverse post-selection success probability for all Gaussian states and all mentioned non-Gaussian states
with constant n. We follow the mindset of an untrusted prover, who prepares the state, and a skeptic certi-
fier, with classical computing and single-mode homodyne-detection capabilities only. No assumptions are
made on the type of noise or capabilities of the prover. Our technique exploits an extremality-based fi-
delity bound whose estimation relies on non-Gaussian state nullifiers, which we introduce on the way as a
byproduct result. The certification of many-mode photonic networks, as those used for photonic quantum
simulations, boson samplers, and quantum metrology, is now within reach.

Many-body quantum devices promise exciting applications
in ultra-precise quantum metrology1, quantum computing2–4,
and quantum simulators5–9. In the quest for their large-scale
realisation, impressive progress on a variety of quantum tech-
nologies has recently been made6–9. Among them, optical
implementations play a key role. For example, sophisti-
cated manipulations of multi-qubit entangled states of up to
eight parametrically down-converted photons10,11 have been
demonstrated and continuous-variable entanglement among
60 stable12 and up to 10000 flying13 modes has been veri-
fied in optical set-ups. In addition, small-sized simulations
of BosonSampling14–17 and Anderson localisation in quantum
walks18,19 have been performed with on-chip integrated linear-
optical networks.

This fast pace of advance, however, makes the problem of
reliable certification an increasingly pressing issue20–24. From
a practical viewpoint, further experimental progress on many-
body quantum technologies is nowadays hindered by the lack
of practical certification tools. At a fundamental level, certi-
fying many-body quantum devices is ultimately about testing
quantum mechanics in regimes where it has never been tested
before.

Tomographic characterisation of quantum states re-
quires the measurement of exponentially many observables.
Compressed-sensing techniques25 reduce, for states approx-
imated by low-rank density matrices, the requirements sig-
nificantly, but still demand exponentially many measure-
ments. Efficient certification techniques, requiring only
polynomially many measurements, for universal quantum
computation26,27 and a restricted model of computation with
one pure qubit28 exist in the form of quantum interactive
proofs. However, these require either a fully fledged fault-
tolerant universal quantum computer26,27 or an experimen-
tally non-trivial measurement-based quantum device28. In ad-

dition, these methods involve sequential interaction rounds
with the device26–28. In contrast, permutationally invari-
ant tomography29, Monte-Carlo fidelity estimation30–32, and
Clifford-circuit benchmarking techniques40 provide experi-
mentally friendly alternatives for the efficient certification of
preparations of permutationally invariant29 and qubit stabiliser
or W states30–32,40, respectively. Nevertheless, none of these
methods addresses continuous-variable systems, not even in
Gaussian states.

Here, we introduce an experimentally friendly technique
for the direct certification of continuous-variable state prepa-
rations without estimating the prepared state itself. First,
we discuss intuitively and define rigorously reliable quantum-
state certification tests. We do this for two notions of certifica-
tion, differing in that in one of them robustness against prepa-
ration errors is mandatory. Then, we present a certification
test, based on single-mode homodyne detection, for arbitrary
m-mode pure Gaussian states, non-Gaussian states resulting
from Gaussian unitary operators acting on Fock-basis states
with n photons, and states prepared by post-selecting states in
either of the two classes with measurements on a < m ancil-
lary modes in arbitrary local bases. This covers, for instance,
Gaussian quantum simulations such as those of refs. 12 and
13 as well as the non-Gaussian ones of refs. 6, 10, 11, 14–
19. Furthermore, so-called de-Gaussified (photon-subtracted)
Gaussian states41–44 as well as all non-Gaussian states ac-
cessible to qumode-encoded qubit45,46 or finite-squeezing
qumode47,48 quantum computers also lie within the range of
applicability of our method. The protocol is efficient in m
and, for the cases with post-selection, in the inverse polyno-
mial post-selection success probability, for all Gaussian states
and all mentioned non-Gaussian states with constant n.

With a high probability, our test rejects all experimental
preparations with a fidelity with respect to the chosen target
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Figure 1. Different certification paradigms. (a) Naive approach: To certify an untrusted experimental preparation %p of the target state %t, a
certifier Arthur would like to run a statistical test that, for all %p, decides whether the fidelity F between %p and %t is greater or equal than a
pre-specified threshold FT < 1 (green region, accept), or smaller than it (red region, reject). However, due to the preparations at the boundary
of the two regions and experimental uncertainties, a test able to make such a decision does not exist. (b) The ideal scenario: A more realistic
certification notion is to ask that the test rejects every %p for which F < FT (red region) and accepts every %p for which F ≥ FT + ∆ (green
region), for some given ∆ < 1 − FT. Here, a buffer region of width ∆ (in grey) is introduced within which the behaviour of the test can be
arbitrary, but, in return, the certification is now feasible. This type of certification is thus robust against experimental infidelities as large as
1− FT −∆. (c) The practical scenario: Finally, the least one can demand is that the test rejects every %p for which F < FT (red region) and
accepts at least %t (green point). The former condition is sometimes called soundness and the latter one completeness. Here, no acceptance
is guaranteed for any %p with F ≥ FT (grey region) other than %t itself, but any %p accepted by the test necessarily features F ≥ FT. This
certification notion is not robust against state deviations, but it can be more practical. In addition, in practice, the resulting tests succeed also
in accepting many %p 6= %t for which F ≥ FT.

state lower than a desired threshold and accepts if the prepa-
ration is sufficiently close to the target. That is, the protocol
is robust against small preparation errors. We upper-bound
the failure probability in terms of the number of experimental
runs and calculate the necessary number of measurement set-
tings. Our method is built upon a fidelity lower bound, based
on a natural extremality property, that is interesting in its own
right. Finally, the experimental estimation of this bound relies
on non-Gaussian state nullifiers, which we introduce on the
way.

Results

We present our results in terms of photons propagating
through optical networks, but our methods apply to any
bosonic platform with equivalent dynamics. We consider a
sceptic certifier, Arthur, with limited quantum capabilities,
who wishes to ascertain whether an untrusted quantum prover,
Merlin, presumably with more quantum capabilities, can in-
deed prepare certain quantum states that Arthur cannot. This
mindset is reminiscent to that of quantum interactive-proof
systems26–28 of computer science, but our method has the ad-
vantage that no interaction apart from the measurements of the
certifier on the single-run experimental preparations from the
prover is required.

In particular, we consider the situation where Merlin pos-
sesses at least a network of active single-mode squeezers
and displacers as well as passive beam-splitters and phase-
shifters, sufficient to efficiently implement anym-mode Gaus-
sian unitary33–36, plus single-photon sources. Arthur’s re-
sources, in contrast, are restricted to classical computational
power augmented with single-mode measurements. With that,
he can characterise each of his single-mode measurement
channels up to any desired constant precision. The task is for
Merlin to provide him with copies of an m-mode pure target
state %t of Arthur’s choice. We assume that Merlin follows in-

dependent and identical state-preparation procedures on each
experimental run, described by the density matrix %p. We re-
fer to %p as a preparation of the target state %t. His prepa-
ration is unavoidably subject to imperfections and he might
even be dishonest and try to trick Arthur. Thus, Arthur would
like to run a test, with his own measurement devices, to certify
whether %p is indeed a bona fide preparation of %t.

To measure how good a preparation %p of %t is, we use the
fidelity between %p and %t, defined as

F := F (%t, %p) := Tr
[
(
√
%t%
†
p

√
%t)

1/2
]2

= Tr
[
%t%p

]
, (1)

where the last equality holds because %t is assumed to be pure.
As we see below, our measurement schemes directly estimate
fidelities. However, all our results can also be adapted to the
trace distanceD := D(%t, %p), which can be defined via the 1-
norm distance in state space as D(%t, %p) := Tr[|%t − %p|]/2.
This is due to the fact that D can be bounded from both sides
in terms of F through the well-known inequalities 1 − F 2 ≤
D ≤

√
1− F 2, where the first inequality holds because %t is

pure.
Let us first discuss what properties an experimental test

must fulfil to qualify as a state certification protocol. Differ-
ent certification paradigms are schematically represented in
Fig. 1. We start with the formal definition of certification in
the sense of Fig. 1 (c).

Definition 1 (Quantum state certification). Let FT < 1 be a
threshold fidelity and α > 0 a maximal failure probability.
A test, which takes as input a classical description of %t and
copies of a preparation %p and outputs “accept” or “reject”
is a certification test for %t if, with probability at least 1−α, it
both rejects every %p for which F (%t, %p) < FT and accepts
%p = %t. We say that any %p accepted by such a test is a
certified preparation of %t.

To specify the target states we need to introduce some no-
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Figure 2. Classes of target states. (a) CG is the class composed of all m-mode pure Gaussian states. These can be prepared by applying
an arbitrary Gaussian unitary Û (possibly involving multi-mode squeezing) to the m-mode vacuum state |0〉. (b) The class CLO includes all
m-mode pure non-Gaussian states produced at the output of an arbitrary linear-optical network, which implements a passive Gaussian unitary
Û (without squeezing), with the Fock-basis state |1n〉 containing one photon in each of the first nmodes and zero in the remainingm−n ones
as input. As the order of the modes is arbitrary, choosing the first n modes as the populated ones does not constitute a restriction. (c) The third
class, CLPSG, encompasses all (m−a)-mode pure non-Gaussian states obtained by projecting a subsetA of a < mmodes of anm-mode pure
Gaussian state %t ∈ CG onto an arbitrary pure tensor-product state |φ〉A. In practice, this is done probabilistically by measuring A in a local
basis that contains |φ〉A and post-selecting only the events in which |φ〉A is measured. Thus, the a modes in A are used as ancilas, whereas
the effective system is given by the subset S containing the other m − a modes, which carries the final target state. For concreteness, but
without any loss of generality, in the plot, the ancillary modes are chosen to be the last a ones. (d) Analogously, the class CLPSLO is that of all
(m− a)-mode pure non-Gaussian states obtained by projecting the ancillary modes of an m-mode pure linear-optical network state %t ∈ CLO

onto an arbitrary pure tensor-product state |φ〉A. These four classes cover the target states considered in the vast majority of quantum photonic
experiments.

tation. We denote m-mode Fock basis states by |n〉, with
n := (n1, n2, . . . , nm) being the sequence of photon numbers
nj ≥ 0 in each mode j ∈ [m], where the short-hand notation
[m] := {1, 2, . . . ,m} is introduced, and call n :=

∑m
j=1 nj

the total input photon number. In particular, we will pay spe-
cial attention to Fock basis states |1n〉with exactly one photon
in each of the first n modes and the vacuum in the remaining
m− n ones, i.e., those for which n = 1n, with

1n := (1, . . . , 1︸ ︷︷ ︸
n times

, 0, . . . , 0︸ ︷︷ ︸
m−n times

). (2)

Note that |10〉 is the Gaussian vacuum state |0〉. We denote
the photon number operator corresponding to mode j by n̂j
and the total photon number operator by n̂ :=

∑m
j=1 n̂j .

In addition, for post-selected target states, we denote by
A := {Aj}j∈[a], where each element Aj ∈ [m] labels a dif-
ferent mode, the subset of a := |A| < m modes on which the
post-selection measurements are made. We then identify the
remaining m−a modes as the system subset S, which carries
the post-selected target state %S t. The subindex S empha-
sises that %S t represents an (m − a)-mode post-selected tar-
get state and distinguishes it from m mode target states with-
out post-selection, which we denote simply as %t. We denote
by |φ〉A := |φ1〉A1

|φ2〉A2
. . . |φa〉Aa

, with {|φj〉Aj
}j∈a an

arbitrary pure normalised state of mode Aj , an a-mode prod-
uct state on the modes A. We use the short-hand notations
〈φ|A %t |φ〉A := TrA [%t(1S ⊗ |φ〉A 〈φ|A)], where TrA in-
dicates partial trace over the Fock space of A, 1S denotes the
identity on S, and P(φA|%t) := Tr [〈φ|A %t |φ〉A] is the post-
selection success probability, i.e., the probability of measur-

ing |φ〉A in a projective measurement on A. Without loss of
generality, we consider throughout only the non-trivial case
P(φA|%t) 6= 0. Thus, we consider exclusively post-selected
target states of the form

%S t :=
〈φ|A %t |φ〉A

P(φA|%t)
. (3)

With the notation introduced, we derive our results for:
1) Arbitrarym-mode pure Gaussian states, given by the class

CG := {%t = Û |0〉〈0| Û† : Û Gaussian unitary}, (4)

2) m-mode pure linear-optical network states from the class

CLO := {%t = Û |1n〉〈1n| Û† : Û passive unitary}, (5)

3) arbitrary (m − a)-mode pure locally post-selected Gaus-
sian states, given by the class

CLPSG := {%S t : %t ∈ CG} , (6)

4) and (m−a)-mode pure locally post-selected linear-optical
network states from the class

CLPSLO := {%S t : %t ∈ CLO} . (7)

The class CG is crucial within the realm of “continuous-
variable” quantum optics and quantum information process-
ing. It encompasses, for instance, “twin-beam" (two-mode
squeezed vacuum) states under passive networks, which are
used to simulate, upon coincidence detection, multi-qubit
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states6. The class CLO includes all the settings sometimes re-
ferred to as “discrete variable” linear-optical networks. This
class covers, among others, the targets of several recent ex-
perimental simulations with on-chip integrated linear-optical
networks14–19. The third class, CLPSG, is the one of locally
post-selected Gaussian states. This class includes crucial non-
Gaussian resources for quantum information and quantum op-
tics. For instance, when the post-selection is in the Fock ba-
sis, it encompasses de-Gaussified photon-subtracted squeezed
Gaussian states41–44. Furthermore, if apart from Fock-basis
measurements, the post-selection uses also quadrature homo-
dyne measurements, CLPSG contains all the states accessi-
ble to finite-squeezing cluster-state qumode quantum com-
puters47,48. The last class, CLPSLO, of locally post-selected
linear-optical network states, covers, for the case where the
post-selection is in the Fock basis and n is proportional to m,
all the states prepared by probabilistic schemes of the type of
refs. 45 and 46 for universal qumode-encoded qubit quantum
computation. Naturally, CLPSLO also includes both photon -
added or -subtracted linear-optical network states.

The basis of the our certification scheme is a technique for
the estimation of the quantity

F (n) := 1−
〈

(n̂− n)

n∏

j=1

n̂j

〉

Û†%pÛ

, (8)

with n the total input photon number. As shown in the Meth-
ods section, for all target states %t ∈ CG ∪ CLO, F (n) is a
lower bound on the fidelity F and, moreover, F (n) = F = 1
if %p = %t (see also Methods and Section S2.A of the SI for
analogous bounds for the post-selected target states). This
bound is a consequence of a natural extremality notion: the
smaller the expectation value

〈
(n̂ − n)

∏n
j=1 n̂j

〉
Û†%pÛ

is,

the closer are |1n〉 〈1n| and Û†%pÛ and, therefore, the closer
are the preparation %p and the target state %t. Our test T ,
summarised in Box 1, yields an estimate F (n)∗ of F (n). If
F (n)∗ is sufficiently above the threshold FT, the preparation
%p is accepted. Otherwise it is rejected. The estimate F (n)∗

is obtained via a measurement scheme that depends on the
specific target state. In the Gaussian case n = 0 the mea-
surement scheme MG can be used, while linear-optical net-
work states with n > 0 require the schemeMLO. MG and
MLO are both summarised in the Methods section and de-
scribed in detail in Boxes S1 and S2, respectively, in Sec-
tion S2 in the Supplementary Information (SI). In addition,
in Section S2.B of the SI we adapt T to post-selected target
states %S t ∈ CLPSG ∪CLPSLO, and provide the corresponding
adapted measurement schemes in Section S2.C of the SI.

Our theorems guarantee that the test from Box 1 is indeed a
certification test and give a bound on the scaling of the num-
ber of samples that are needed for the test. In order to state
them we introduce some notation related to mode space de-
scriptions of linear-optical networks first. Any Gaussian uni-
tary transformation Û on Hilbert space can be represented by
an affine symplectic transformation in mode space, i.e., by
a symplectic matrix S ∈ Sp(2m,R) followed by a phase-
space displacement x ∈ R2m (see equation (26) in the Meth-

Box 1 (Certification test T ).
1) Arthur chooses a threshold fidelity FT < 1, a maximal

failure probability α > 0, and an estimation error 0 <
ε ≤ (1− FT)/2.

2) Arthur provides Merlin with the classical specification n,
S, and x of the target state %t and requests a sufficient
number of copies of it.

3) If n = 0, Arthur measures 2mκ two-mode correla-
tions and 2m single-mode expectation values specified by
the measurement schemeMG (see the Methods section),
which can be done with m + 3 single-mode homodyne
settings.
If n > 0, he measures O

(
m(4d2 + 1)n

)
multi-body

correlators, each one involving between 1 and 2n + 1
modes, specified by the measurement scheme MLO (see
the Methods section), which can be done with at most(
m
n

)
2n+1 single-mode homodyne settings.

4) By classical post-processing (see the Methods section),
he obtains a fidelity estimate F (n)∗ such that F (n)∗ ∈
[F (n)−ε, F (n) +ε] with probability at least 1−α, where
F (n) is the lower bound to F given by expression (8).

5) If F (n)∗ < FT + ε, he rejects. Otherwise, he accepts.

ods section), where the real symplectic group Sp(2m,R) con-
tains all real 2m × 2m matrices that preserve the canonical
phase-space commutation relations33,34. By virtue of the Euler
decomposition33,35, S can be implemented with single-mode
squeezing operations and passive mode transformations. We
denote the maximum single-mode squeezing of S by smax and
define the mode range d ≤ m to be the maximal number of
input modes to which each output mode is coupled (for details
see Section S1 of the SI). Also, it will be useful to define

κ := 2 min{d2,m}. (9)

The displacement x can be implemented by a single-mode dis-
placer at each mode j ∈ [m], with amplitude (x2j−1, x2j),
where xk, for k ∈ [2m], is the k-th component of x. The vec-
tor 2-norm is denoted by ‖ · ‖2, i.e., ‖x‖2 :=

(∑2m
k=1 x

2
k

)1/2
.

We take σi to be a uniform upper bound on the variances
of any product of i phase space quadratures in the state
%p. If %p is Gaussian, σ1 and σ2 are functions of the sin-
gle mode squeezing parameters of %p. In addition, we call
σ≤i := maxk≤i{σk} the maximal i-th variance of %p. Fi-
nally, we use the Landau symbol O to denote asymptotic up-
per bounds.

Theorem 2 (Quantum certification of Gaussian states). Let
FT < 1 be a threshold fidelity, α > 0 a maximal failure
probability, and 0 < ε ≤ (1 − FT)/2 an estimation error.
Let %t ∈ CG have maximum single-mode squeezing smax ≥ 1,
mode range d ≤ m, and displacement x. Test T from Box 1
is a certification test for %t and requires at most

O

(
s4max

(
2σ2

1‖x‖22m3 + σ2
2κ

3m4
)

ε2 ln(1/(1− α))

)
(10)
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copies of a preparation %p with first and second variance
bounds σ1 > 0 and σ2 > 0, respectively.

Theorem 3 (Quantum certification of linear-optical network
states). Let FT < 1 be a threshold fidelity, α > 0 a maximal
failure probability, and 0 < ε ≤ (1 − FT)/2 an estimation
error. Let %t ∈ CLO have mode range d ≤ m. Test T from
Box 1 is a certification test for %t and requires at most

O

(
σ2
≤2(n+1)m

4(λ d6 nm)n

ε2 ln(1/(1− α))

)
(11)

copies of a preparation %p with maximal 2(n+ 1)-th variance
σ≤2(n+1), where λ > 0 is an absolute constant.

The proofs of all our theorems are provided in the SI. The
treatments of the classes CLPSG or CLPSLO follow as corollar-
ies of Theorems 2 and 3, respectively, and are also provided in
the SI (see Section S2.D there). Expressions (10) and (11) are
highly simplified upper bounds on the total number of copies
of %p that T requires. For more precise expressions see equa-
tions (S55) and (S77) of the SI. Note that neither of the two
theorems requires any energy cut-off or phase-space trunca-
tion. While our bound in equation (11) is inefficient in n,
both for the Gaussian and linear-optical cases, the number of
copies of %p scales polynomially with all other parameters, in
particular with m. Thus, arbitrary m-mode target states from
the classes CG and CLO with constant n, are certified by T
efficiently.

Interestingly, since states in CLO in general display negative
Wigner functions, sampling from their measurement proba-
bility distributions cannot be efficiently done by the available
classical sampling methods37,38. Furthermore, for Fock-state
measurements, these distributions define BosonSampling, for
which hardness results exist39 for m asymptotically lower-
bounded by n5.

Also, note that there are no restrictions on %p except that, in
practice, to apply the theorems, one needs bounds on σ1, σ2,
and σ≤2(n+1). These variances are properties of %p and are
therefore a priori unknown to Arthur. However, he can rea-
sonably estimate them from his measurements. Note that, for
random variables that can take any real value, assuming that
the variances are bounded is a fundamental and unavoidable
assumption to make estimations from samples; and it is one
that can be contrasted with the measurement results.

To end up with, we consider certification in the robust sense
of Fig. 1 (b):

Definition 4 (Robust quantum state certification). Let FT < 1
be a threshold fidelity, α > 0 a maximal failure probability,
and ∆ < 1 − FT a fidelity gap. A test, which takes as input
a classical description of the target state %t and copies of a
preparation %p and outputs “accept” or “reject” is a robust
certification test for %t if, with probability at least 1 − α, it
both rejects every %p for which F (%t, %p) < FT and accepts
every %p for which F (%t, %p) ≥ FT + ∆. We say that any %p
accepted by such a test is a certified preparation of %t.

This definition is more stringent than Definition 1 in that it
guarantees that preparations sufficiently close to %t are neces-

sarily accepted, rendering the certification robust against state
deviations with infidelities as large as 1−(FT +∆). We show
below that our test T from Box 1 is actually a robust certifi-
cation test.

To this end, we first write %p as

%p = F%t + (1− F )%⊥t , (12)

where %⊥t is an operator orthogonal to %t with respect to the
Hilbert-Schmidt inner product, i.e., such that Tr[%t %

⊥
t ] = 0.

As %t is assumed to be pure, it follows immediately that %⊥t
is actually a state. In fact, multiplying by %t and taking the
trace on both sides of equation (12), one readily sees that the
decomposition (12) is just another way to express the fidelity
(1). We define the photon mismatch ñ⊥ between %t and %p as

ñ⊥ := 〈(n̂− n)
n∏

j=1

n̂j
〉
Û†%⊥t Û

. (13)

The photon mismatch gives the expectation value that Arthur
would obtain if he had access to %⊥t , applied the inverse of
Merlin’s network to it, and then measured (n̂ − n)

∏n
j=1 n̂j .

For the ideal case %p = %t, it clearly holds that ñ⊥ = 0.

Theorem 5 (Robust quantum certification). Under the same
conditions as in Theorems 2 and 3, test T from Box 1 is a
robust certification test with fidelity gap

∆ := max

{
2ε+ (1− FT)(ñ⊥ − 1)

ñ⊥
, 2ε

}
, (14)

where ñ⊥ is the photon mismatch.

As expected, the gap cannot be smaller than twice the esti-
mation error for any photon mismatch. Notice also that in
the limit ñ⊥ → ∞ it holds that ∆ → 1 − FT, so that the
certification becomes less robust with increasing ñ⊥. As ñ⊥

decreases from infinity to one, the gap decreases to its min-
imal value ∆ = 2ε, where it remains for all 0 ≤ ñ⊥ ≤ 1.
We emphasise that ñ⊥ depends on %⊥t . Thus it cannot be di-
rectly estimated from measurements on %p alone. However,
for any ñ⊥ < ∞, Theorem 5 guarantees the existence of an
entire region of states around %t that are rightfully accepted.
Furthermore, in the experimentally relevant situations, ñ⊥ is
expected to be small. In this case, Theorem 5 provides a lower
bound on the size of the region of accepted states.

Finally, a statement equivalent to Theorem 5 for target
states %S t ∈ CLPSG ∪ CLPSLO follows as an immediate corol-
lary of it and is presented in Section S2.E in the SI.

Discussion

Large-scale photonic quantum technologies promise impor-
tant scientific advances and technological applications. So
far, considerably more effort has been put into their realisa-
tion than into the verification of their correct functioning and
reliability. This imposes a serious obstacle for further experi-
mental advance, specifically in the light of the speed at which
progress towards many-mode architectures takes place. Here,
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we have presented a practical reliable certification tool for a
broad family of multi-mode bosonic quantum technologies.

We have proven theorems that upper-bound the number of
experimental runs sufficient for our protocol to be a certifica-
tion test. Our theorems provide large-deviation bounds from
a simple extremality-based fidelity lower-bound that is inter-
esting in its own right. Importantly, our theorems hold only
for statistical errors, but the stability analyses on which they
rely (see Lemmas S6 and S9 in the SI) holds regardless of the
nature of the errors. As a matter of fact, in Section S5 in the
SI, we show that our fidelity estimates are robust also against
systematic errors.

From a more practical viewpoint, our test allows one to cer-
tify the state preparations of most current optical experiments,
in both the “continuous-variable” and the “discrete-variable”
setting. This is achieved under the minimal possible assump-
tions: namely, only that the variances of the measurement out-
comes are finite. Thus, the certification is as unconditional as
the fundamental laws of statistics allow. In particular, no as-
sumption on the type of quantum noise is made. Despite the
rigorous bounds on the estimation errors and failure proba-
bilities, our methods are both experimentally friendly and re-
source efficient.

Notably, our test can for instance be applied to the cer-
tification of optical circuits of the type used in BosonSam-
pling: There, m-mode Fock-basis states of n photons are sub-
jected to a linear-optical network described by a random uni-
tary Û drawn from the Haar measure39 and, subsequently,
each output mode is measured in the Fock basis. While
the question of the certification of the classical outcomes
of such samplers without assumptions on the device is still
largely open20,21, with the methods described here the pre-
measurement non-Gaussian quantum outputs of BosonSam-
pling devices14–17 can be certified reliably and, for constant
n, even efficiently. In this sense, this work goes signifi-
cantly beyond previously proposed schemes to rule out par-
ticular cheating strategies by the prover21–24. Furthermore, a
variety of non-Gaussian states paradigmatic in quantum op-
tics and quantum information are also covered by our proto-
col (see Section S2 in the SI for details). These include, for
instance, de-Gaussified photon-subtracted multi-mode Gaus-
sian states41–44, multi-mode squeezed Gaussian states post-
selected through photon-number or quadrature measurements,
as in finite-squeezing cluster-state qumode quantum com-
puters47,48, and linear-optical network outputs post-selected
though photon-number measurements, ranging from pho-
ton -added or -subtracted linear-optical network states to
all the states preparable with Knill-Laflamme-Milburn-like
schemes45,46. For all such states, our test is efficient in the
inverse post-selection success probability 1/P(φA|%t).

The present method constitutes a step forward in
the field of photonic quantum certification, with poten-
tial implications on the certification of other many-body
quantum-information technologies. Apart from that of
BosonSamplers and optical schemes with post-selection,
the efficient and reliable certification of large-scale pho-
tonic networks as those used, for instance, for multi-
mode Gaussian quantum-information processing12,13, non-

Gaussian Anderson-localisation simulations18,19, and quan-
tum metrology1, with a constant number of input photons, is
now within reach.

Methods

Fidelity lower bound. In this section, we formalise the
extremality notion and derive a lower bound on the fidelity F .
All target states are of the form

%t = Û |n〉〈n| Û†, (15)

where Û is an arbitrary Gaussian unitary and |n〉 an arbitrary
Fock-basis state. First, we derive a general fidelity lower
bound and then consider the linear-optical %t ∈ CLO and
Gaussian %t ∈ CG cases separately. Analogous bounds for
the post-selected target states are provided further below in
the Measurement Scheme and Section S2.A of the SI.

We start recalling that

|n〉 =

m∏

j=1

1√
nj !

(â†j)
nj |0〉 , (16)

where a†j is the creation operator of the j-th mode. Its Hermi-
tian conjugated âj is the corresponding annihilation operator.
These operators satisfy [âj , â

†
j′ ] = δj,j′ , where δj,j′ denotes

the Kronecker delta of j and j′, and n̂j = â†j âj , for all j, j′ ∈
[m]. The fidelity (1) can be written as F = F (|n〉 〈n| , %̃p),
where %̃p := Û†%pÛ is the Heisenberg representation of %p
with respect to Û†. With this, equation (16), and the cyclical-
ity property of the trace, we obtain that

F = Tr [|0〉〈0| %̃p,n] = F (|0〉〈0| , %̃p,n), (17)

where

%̃p,n :=

m∏

j′=1

1√
nj′ !

(âj′)
nj′ %̃p

m∏

j=1

1√
nj !

(â†j)
nj . (18)

To lower-bound F (|0〉〈0| , %̃p,n), we consider the average
total photon-number 〈n̂〉%̃p,n

:= Tr[n̂%̃p,n] of %̃p,n. We write
1 for the identity operator. From the facts 1− |0〉〈0| ≤ n̂ and
%̃p,n ≥ 0, it follows that

〈n̂〉%̃p,n = Tr

[∑

n

n |n〉〈n| %̃p,n
]

≥ Tr [(1− |0〉〈0|)%̃p,n]

= 1− F (19)

and hence,

F ≥ F (n) := 1− 〈n̂〉%̃p,n . (20)

This bound justifies the natural extremality intuition men-
tioned: The lower the average number of photons of %̃p,n is,
the closer to the vacuum it must be and, therefore, the closer
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%p to %t. Notice that, for %p = %t, the inequality in equa-
tion (19) becomes an equality and therefore bound (20) is sat-
urated, as announced earlier.

Next, we define the operator valued Pochhammer-Symbol

pt(n̂j) := n̂j(n̂j − 1)(n̂j − 2) · · · (n̂j − t), (21)

for any integer t ≥ 0, and p−1(x) := 1. In Section S6.A in
the SI we show that

(â†j)
nj n̂j(âj)

nj = pnj
(n̂j), (22a)

and

(â†j)
nj (âj)

nj = pnj−1(n̂j). (22b)

Inserting equation (18) into equation (20), using the cyclicity
property of the trace, grouping the operators of each mode to-
gether, using equations (22) and that pt(n̂j) = pt−1(n̂j) (n̂j−
t), we obtain the general fidelity lower bound

F ≥ F (n) = 1− 1

n!

〈
(n̂− n)

m∏

j=1

pnj−1(n̂j)

〉

%̃p

, (23)

where n! := n1!n2! . . . nm!. In order to specialise to the
linear-optical case %t ∈ CLO, we simply take n = 1n, i.e.,
nj = 1 for all j ∈ [n] and nj = 0 otherwise. With this,
F (n) in equation (23) simplifies to precisely the bound F (n)

in equation (8). Finally, to restrict it to the Gaussian case
%t ∈ CG, we take nj = 0 for all j ∈ [m]. This yields the
particularly simple expression

F ≥ F (0) := 1− 〈n̂〉%̃p . (24)

Arthur does not have enough quantum capabilities to di-
rectly estimate 〈n̂〉%̃p by undoing the operation Û on Merlin’s
outputs and then measuring n̂ in the Fock state basis. How-
ever, we show in the next section that he can efficiently obtain
〈n̂〉%̃p , as well as the expectation values in equations (23) and
(8), from the results of single-mode homodyne measurements.

Measurement scheme. First, we introduce some notation.
By q̂j and p̂j we denote, respectively, the conjugated position
and momentum phase-space quadrature operators of the j-th
mode in the canonical convention33,34, i.e., with the commu-
tation relations [q̂j , p̂j′ ] = i δj,j′ . The particle number oper-
ator of the j-th mode can be written in terms of the phase-
space quadratures as n̂j = q̂2j + p̂2j − 1/2. In addition, it will
be convenient to group all quadrature operators into a 2m-
component column vector r̂, with elements

r̂2j−1 := q̂j and r̂2j := p̂j . (25)

As already mentioned, the action of Û on mode space is given
by a symplectic matrix S ∈ Sp(2m,R) and a displacement
vector x ∈ R2m. More precisely, under a Gaussian unitary Û ,
r̂ transforms according to the affine linear map33

r̂ 7→ Û†r̂Û = Sr̂ + x. (26)

Equivalently, the right-hand side of this equation defines the
Heisenberg representation of r̂ with respect to Û . In addition,
it will be useful to denote the Heisenberg representation of r̂
with respect to Û† by ˆ̃r := Û r̂Û†. Thanks to equation (26),
we can write ˆ̃r in terms of the symplectic matrix S and dis-
placement vector x that define Û , as

ˆ̃r = S−1(r̂− x). (27)

The symbols r̂2 := r̂T r̂ and ˆ̃r2 := ˆ̃rT ˆ̃r will represent, respec-
tively, the scalar products of r̂ and ˆ̃r with themselves. Also,
we will use the same notation for the Heisenberg represen-
tations of each quadrature operator with respect to Û†, i.e.,
ˆ̃qj := Û†q̂jÛ and ˆ̃pj := Û†p̂jÛ .

Next, for β ∈ {0, n,n}, we express our fidelity bounds in
the general form

F (β) = 1−
〈
N̂ (β)

〉
%p
, (28)

where N̂ (β) is an observable decomposed explicitly in terms
of the local observables to which Arthur has access. We start
with the Gaussian case %t ∈ CG. To express the bound (24) as
in equation (28), we first write the total photon-number oper-
ator as

n̂ =

m∑

j=1

n̂j =

m∑

j=1

(q̂2j + p̂2j −
1

2
) = r̂2 − m

2
. (29)

This, in combination with equation (24), yields

N̂ (0) := ˆ̃r2 − m

2
. (30)

Note that, due to equation (27), each component of ˆ̃r is a lin-
ear combination of at most 2m components of r̂. This implies
that Arthur can obtain 〈ˆ̃r2〉%p by measuring at most 2m single-
quadrature expectation values of the form 〈r̂k〉%p and 4m2

second moments of the form Γ
(1)
k,k′ := 〈 12 (r̂kr̂k′ + r̂k′ r̂k)〉%p .

He can then classically efficiently combine them as dictated
by S and x in equation (27). In Section S1.A of the SI, we
give the details of this measurement procedure, which we call
MG, and show that measuring mκ second moments, instead
of 4m2, is actually enough. Furthermore, in Section S4.A of
the SI, we show that only m+ 3 experimental settings suffice.

Now, proceeding in a similar fashion with the generic
bound (23), we obtain

N̂ (n) :=
1

n!

(
ˆ̃r2 − m+ 2n

2

) m∏

j=1

pnj−1
(

ˆ̃q2j + ˆ̃p2j −
1

2

)
.

(31)

Note that the observable in equation (30) is contained as the
special case n = 0. For target states in the class CLO, Û
is assumed to be a passive Gaussian unitary. Such unitaries
preserve the area in phase space, i.e., if %t ∈ CLO it holds
that ˆ̃r2 = r̂2 (for details, see Section S1.B in the SI). Hence,
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using this and specialising to the case n = 1n, equation (31)
simplifies to

N̂ (n) :=
(
r̂2 − m+ 2n

2

) n∏

j=1

(
ˆ̃q2j + ˆ̃p2j −

1

2

)
. (32)

Again by virtue of equation (27), Arthur can now obtain
the expectation values of the observables in equations (31) and
(32) by measuring 2j-th moments of the form Γ

(j)
k1,l1,...,kj ,lj

:=

〈 1
2j (r̂k1 r̂l1 + r̂l1 r̂k1) · · · (r̂kj r̂lj + r̂lj r̂kj )〉%p and then classi-

cally recombining them, which — for constant n— he can do
efficiently. In Section S1.B of the SI, we give the details of the
measurement procedure to obtain F (n), which we callMLO.
In particular, we show that, to obtain 〈N̂ (n)〉%p , estimating a
total of O

(
m(4d2 + 1)n

)
2j-th moments, with j ∈ [n + 1],

is enough. Also, we list which moments are the relevant ones
in terms of %t ∈ CLO. Furthermore, in Section S4.B of the SI,
we show that only

(
m
n

)
2n+1 experimental settings suffice.

Finally, in the SI, we derive a bound analogous to that of
equations (28) with (31) for post-selected target states %S t.
More precisely, we show that the fidelity FS := F (%S t, %Sp)
between %S t and an arbitrary, unknown (m−a)-mode system
preparation %Sp is lower bounded as

FS ≥ F (n)
S = 1−

〈
N̂

(n)
S

〉
%Sp

, (33)

with

N̂
(n)
S :=

P(φA|%t)− 1 + 1
n! 〈φ|A N̂ (n) |φ〉A

P(φA|%t)
. (34)

From this, the corresponding expressions for the classes
CLPSG an CLPSLO follow, in turn, as the two particular cases
n = 0 and n = 1n with Û passive, respectively. See Sec-
tion S2.A of the SI for details.

Non-Gaussian state nullifiers. It is instructive to mention
that the operators

N̂
(0)
j := ˆ̃q2j + ˆ̃p2j − 1/2, (35)

for j ∈ [m], correspond to the so-called nullifiers of the Gaus-
sian states in CG. The nullifiers are commuting operators
that, despite originally introduced48 as a tool to define Gaus-
sian graph states, can be tailored to define any pure Gaus-
sian state49,50: If a state is the simultaneous null-eigenvalue
eigenstate of all m nullifiers of a given pure Gaussian state,
then the former is necessarily equal to the latter. The bound
F (0), given by equations (28) and (30), exploits the fact that
if a preparation gives a sufficiently low expectation value for
the sum N̂ (0) =

∑m
j=1 N̂

(0)
j of all m nullifiers then its fi-

delity with the target state must be high. A similar intuition
has been previously exploited12,13 to experimentally check
for multimode entanglement of ultra-large Gaussian cluster
states. Here, we can not only certify entanglement but the
quantum state itself.

Analogously, in the non-Gaussian case, from the derivation
of equation (31), we can identify the operator

N̂
(n)
j :=

(
ˆ̃q2j + ˆ̃p2j −

1 + 2nj
2

) m∏

k=1

pnk−1
(

ˆ̃q2k + ˆ̃p2k − 1/2
)

(36)
as the j-th nullifier of the m-mode non-Gaussian state %t
of equation (15). Indeed, all m observables given by equa-
tion (36) for all j ∈ [m] commute and have %t as their unique,
simultaneous null-eigenvalue eigenstate. To end up with, due
to the projection onto |φ〉A, the equivalent observables for
post-selected target states do not in general commute. Nev-
ertheless, their sum, given by N̂ (n)

S , still defines an observ-
able with %S t as its unique null-eigenvalue eigenstate. These
observables constitute, to our knowledge33,49,50, the first ex-
amples of nullifiers for non-Gaussian states.
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2

S1 The measurement scheme

In this section we elaborate on the fidelity bounds F (0) and F (n) of the fidelity bounds for the Gaussian and linear-optical
case, respectively. To this end, it will be convenient to first specify some details of the symplectic matrix S, which describes the
optical network.

By virtue of the Euler decomposition6,7, S can be decomposed as

S = O D O′, (S1)

where D ∈ R2m×2m is positive-definite and diagonal, with elements D2j−1,2j−1 := sj ≥ 1 and D2j,2j := s−1
j , for j ∈ [m], and

O ∈ R2m×2m and O′ ∈ R2m×2m are orthogonal matrices. D describes m active single-mode squeezers in parallel, each one
with squeezing parameter sj along the position quadrature. The maximum single-mode squeezing is smax := max1≤j≤m{sj}.
O and O′, in turn, describe passive mode transformations that can be implemented by linear-optical networks of at most m(m−
1)/2 beam-splitters and single-mode phase shifters8. In the two settings considered here, i.e., for any %t ∈ CG∪CLO, the unitary
Û in equations (4) and (5) is such that O′ can be taken as the identity matrix. In the first setting, i.e., for %t ∈ CG, this holds
because Û acts on the vacuum state vector |0〉 and any passive mode transformation maps the vacuum into itself. For the second
setting, i.e., for %t ∈ CLO, this holds simply because there we assume that the total transformation itself is passive, i.e., in that
case it holds also that D = 1, so that S = O.

In both cases, coupling between different modes only takes place through the linear-optical network described by O. A
general circuit can couple all m modes with each other, meaning that the quadrature operators of each output mode are linear
combinations of those of all m input modes. However, often, each mode is only coupled to at most d ≤ m other modes. In
these situations, O is a sparse matrix with at most 4md non-zero elements. More precisely, the columns of O are given by 2m
orthonormal vectors (o(k))k∈[2m] each having at most 2d non-zero entries. Furthermore, since the position and momentum of
each mode is coupled to at most the 2d quadratures of the same d modes, each pair o(2j−1) and o(2j) shares the same sparsity
property, i.e., o(2j−1) and o(2j) have at least 2(m− d) zero entries in common, for all j ∈ [m].

S1.A Gaussian case

Using that in the Gaussian case S = O D and squaring equation (27) yields

ˆ̃r2 = r̂TOD−2O−1r̂− 2xTOD−2O−1r̂ + xTOD−2O−1x

= Tr
[
OD−2OT [r̂r̂T − (2r̂− x)xT ]

]
, (S2)

where O−1 = OT has been used and the trace is taken not over the Hilbert space but over the 2m × 2m matrix with operators
as entries. Combining equations (S2), (28), and (30) yields

F (0) = 1− Tr
[
OD−2OT [〈r̂r̂T 〉%p − (2〈r̂〉%p − x)xT ]

]
+
m

2
. (S3)

Now we introduce the first moment vector γ ∈ R2m and the symmetric second moment matrix Γ(1) ∈ R2m×2m of %p, with
components

γl := 〈r̂l〉%p and Γ
(1)
l,l′ :=

〈
r̂lr̂l′ + r̂l′ r̂l

2

〉

%p

, (S4)

respectively. Since the matrix OD−2OT is symmetric, it holds that

Tr
[
OD−2OT [〈r̂r̂T 〉%p

]
= Tr

[
OD−2OT [〈r̂r̂T 〉T%p

]
, (S5)

so that we can rewrite equation (S3) in terms of the observables which Arthur has access to as

F (0) = 1− Tr
[
OD−2O−1[Γ(1) − (2γ − x)xT ]

]
+
m

2
. (S6)

We will show later (see Lemma S5 in Section S3.C and the discussion immediately after its proof) that the bound (S6) actually
depends on at most 2mκ out of the 4m2 entries of Γ(1), with κ = 2 min{d2,m}, as defined in equation (9). Thus, only the
2mκ corresponding observables, and the 2m observables necessary for γ, as indicated in Box S1, need to be measured. All
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Box S1 (Measurement schemeMG).
1) For each 1 ≤ l ≤ 2m Arthur uses C1 copies of %p, with C1 given by equation (S56a), to measure the observable r̂l,

obtaining an estimate γ∗l of the expectation value γl = 〈r̂l〉%p .
2) For each 1 ≤ l ≤ l′ ≤ 2m for which (OD−2O−1)l,l′ =

∑2m
k=1 o

(k)
l D−2

k,ko
(k)
l′ 6= 0, Arthur uses C2 copies of %p, with C2

given by equation (S56b), to measure the observable 1
2 (r̂lr̂l′ + r̂l′ r̂l), obtaining an estimate Γ

(1)∗
l,l′ of the expectation values

Γ
(1)
l,l′ = Γ

(1)
l′,l in equation (S4).

3) He obtains the estimate F (0)∗ of F (0) by replacing in equation (S6) the actual expectation values Γ(1) and γ by the
estimates Γ(1)∗ and γ∗, respectively.

these observables can be measured by homodyne detection6. Furthermore, in Section S4.A we show that only m + 3 different
measurement settings are required. Finally, by classical post-processing, Arthur recombines his estimates according to the third
step of Box S1 and obtains the fidelity estimate F (0)∗. This last step is also efficient in m.

S1.B Linear-optical case

For %t ∈ CLO the unitary Û is assumed to be passive. Hence, one has x = 0 and S = O, and it follows that

ˆ̃r2 = r̂2 . (S7)

The components of r̃ are

ˆ̃qj = o(2j−1)T r̂ and ˆ̃pj = o(2j)T r̂, (S8)

where o(k) denotes the k-th column of O. Defining

P(j) := o(2j−1)o(2j−1)T + o(2j)o(2j)T (S9)

as the projector onto the subspace spanned by the two vectors o(2j−1) and o(2j) and using equations (S8), (28), and (32), we
obtain

F (n) = 1−
〈(

r̂2 − m+ 2n

2

) n∏

j=1

(
r̂TP(j)r̂− 1

2

)〉

%p

. (S10)

Next, we consider the
(
n
j

)
subsets of {1, 2, . . . , n} of length j and define Ω

(j)
µ as the µ-th of these subsets for some arbitrary

ordering. With this, we expand the product inside (S10) as

n∏

j=1

(
r̂TP(j)r̂− 1

2

)
=

n∑

j=0

(−1/2)n−j
(nj)∑

µ=1

⊗

i∈Ω
(j)
µ

r̂TP(i)r̂. (S11)

Using that a product of traces can be written as a trace over tensor products, equation (S10) can be written as

F (n) = 1−
〈(
r̂2 − m+ 2n

2

) n∑

j=0

(−1/2)n−j
(nj)∑

µ=1

Tr
[
(
⊗

i∈Ω
(j)
µ

P(i))(r̂r̂T )⊗j
]〉

%p

, (S12)

where
⊗

i∈Ω
(0)
µ =∅P(i) := 1 and the traces are again taken not over the Hilbert space but over tensors that have operators as

components. For each j ∈ [n+ 1], we introduce the 2j-th moment tensors Γ(j) ∈ (R2m×2m)⊗j with components

Γ
(j)
k1,l1,...,kj ,lj

:=

〈
r̂k1 r̂l1 + r̂l1 r̂k1

2
· · · r̂kj r̂lj + r̂lj r̂kj

2

〉

%p

(S13)

and define Γ(0) := 1. Clearly, these tensors are invariant under the partial transposition with respect to any j′-th pair of subindices
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Box S2 (Measurement schemeMLO).
1) For each 1 ≤ j ≤ n, each 1 ≤ µ ≤

(
n
j

)
, and each 1 ≤ k1, l1, k2, l2, . . . , kj , lj ≤ 2m, for which

( ⊗

i∈Ω
(j)
µ

P(i)
)
k1,l1,k2,l2,...,kj ,lj

6= 0, (S16)

2) Arthur uses C≤2(n+1) copies of %p, with C≤2(n+1) given by equation (S78), to measure the observ-
able (r̂k1 r̂l1 + r̂l1 r̂k1)/2 · · · (r̂kj r̂lj + r̂lj r̂kj )/2, obtaining an estimate Γ(j)∗

k1,l1,k2,l2,...,kj ,lj of the 2j-th moment
Γ

(j)
k1,l1,k2,l2,...,kj ,lj

. For each 1 ≤ kj+1 ≤ 2m, he uses C≤2(n+1) copies of %p to measure the observable
((r̂k1 r̂l1 + r̂l1 r̂k1)/2) · · · ((r̂kj r̂lj + r̂lj r̂kj )/2)r̂2

kj+1
, obtaining an estimate Γ(j+1)∗

k1,l1,k2,l2,...,kj ,lj ,kj+1,kj+1
of the 2(j +

1)-th moment Γ
(j+1)
k1,l1,k2,l2,...,kj ,lj ,kj+1,kj+1

.
3) He obtains the estimate F (n)∗ of F (n) by replacing in equation (S15) for all 1 ≤ j ≤ n+ 1 the actual expectation values

Γ(j) by the estimates Γ(j)∗.

kj′ and lj′ ,

Γ
(j)
k1,l1,...,kj′ ,lj′ ,...,kj ,lj

= Γ
(j)
k1,l1,...,lj′ ,kj′ ,...,kj ,lj

. (S14)

With the definition (S13) and the fact that each projector P(i) is a symmetric matrix, equation (S12) finally becomes

F (n) = 1−
n∑

j=0

(−1/2)n−j
(nj)∑

µ=1

{
Tr

[(
1⊗

⊗

i∈Ω
(j)
µ

P(i)
)
Γ(j+1)

]
− m+ 2n

2
Tr

[( ⊗

i∈Ω
(j)
µ

P(i)
)
Γ(j)〉%p

]}
. (S15)

Note that this is an explicit expression for F (n) in terms of the correlators (S13) that Arthur can measure. Due to the sparsity
of O, each matrix P(i) has at most (2d)2 non-zero entries. Then, it follows (see Lemma S8 in Section S3.D for details) that
the measurement of O

(
m
(
4d2 + 1

)n)
observables, those listed in Box S2, suffices for the estimation of (S15). As in the

Gaussian case, all these observables can be measured by homodyne detection6. Furthermore, in Section S4.B we show that at
most

(
m
n

)
2n+1 ≤ (2m)n/n! measurement settings are sufficient. Once again, by classical post-processing, Arthur recombines

his estimates according to the third step of Box S2 and obtains the fidelity estimate F (n)∗. Provided that n is constant, this last
step is also efficient in m.

S2 Quantum certification of locally post-selected target states

In this section, we extend our results to locally post-selected (m− a)-mode target states %S t in CLPSG or CLPSLO. The entire
treatment of the classes CLPSG or CLPSLO is similar to, and follows directly from, that already seen for the classes CG or CLO.
Therefore, instead of repeating all the details, we simply explain the specific differences.

S2.A The fidelity bound

The first step is to derive the fidelity bound F (n)
S given by equation (33). We proceed in a similar fashion to the Methods

Section in the main text. Due to equations (1) and (3), the facts that %S t and %t are pure, and the properties of the trace, it holds
that

FS = F (%S t, %Sp) = TrS

[
TrA

[
%t(1S ⊗ |φ〉A 〈φ|A)

P(φA|%t)

]
%Sp

]
=

Tr
[
%t(%Sp ⊗ |φ〉A 〈φ|A)

]

P(φA|%t)
=
F
(
%t, %Sp ⊗ |φ〉A 〈φ|A

)

P(φA|%t)
,

(S17)
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Box S3 (Certification test TLPS).
1) Idem as in T from Box 1.
2) Arthur provides Merlin with the classical specification n, S, x, a, and |φ〉A of the target state %S t and requests a sufficient

number of copies of it.
3) If n = 0, Arthur measures 2mκ two-mode correlations and 2(m − a) single-mode expectation values specified by the

measurement schemeMLPSG (see Section S2.C), which can be done with m− a+ 3 single-mode homodyne settings.
If n > 0, he measures O

(
m(4d2 + 1)n

)
multi-body correlators, each one involving between 1 and 2n+ 1 modes, specified

by the measurement schemeMLPSLO (see Section S2.C), which can be done with at most
(
m
n

)
2n+1 single-mode homodyne

settings.
4) By classical post-processing, he obtains a fidelity estimate F (n)∗

S such that F (n)∗
S ∈ [F

(n)
S − ε, F (n)

S + ε] with probability
at least 1− α, where F (n)

S is the lower bound to FS given by equation (S20).
5) If F (n)∗

S < FT + ε, he rejects. Otherwise, he accepts.

where TrS indicates partial trace over the Fock space of the m − a modes in S. Now, due to equations (28) and (31), it holds
that

F
(
%t, %Sp ⊗ |φ〉A 〈φ|A

)
≥ 1− Tr

[
N̂ (n)(%Sp ⊗ |φ〉A 〈φ|A)

]
= 1− TrS

[
〈φ|A N̂ (n) |φ〉A %Sp

]
, (S18)

with N̂ (n) the observable of equation (31). Using equations (S17) and (S18), we obtain the general fidelity bound F (n)
S of

equation (33), with N̂ (n)
S given by (34).

In particular, setting n = 0 in equations (33) and (34) yields the specialized fidelity bound F (0)
S ≥ 1 −

〈
N̂

(0)
S

〉
%Sp

for the

case %S t ∈ CLPSG, with

N̂
(0)
S :=

P(φA|%t)− 1 + 〈φ|A N̂ (0) |φ〉A
P(φA|%t)

, (S19)

where N̂ (0) is the observable of equation (30) and %t is the m-mode state in CG associated with %S t through equation (3).
Analogously, taking n = 1n and Û passive yields the corresponding fidelity bound F (n)

S ≥ 1−
〈
N̂

(n)
S

〉
%Sp

for %S t ∈ CLPSLO,

with

N̂
(n)
S :=

P(φA|%t)− 1 + 〈φ|A N̂ (n) |φ〉A
P(φA|%t)

, (S20)

where N̂ (n) is the observable from equation (31) and %t is the m-mode state in CLO associated to %S t through equation (3).

S2.B The certification test

Next, in Box S3, we present a test TLPS that works for post-selected target states in CLPSG or CLPSLO and which is a slightly
modified version of the test T from Box 1. It is, of course, possible to unify both tests so as to account for all four classes of
target states in one single test. We have however opted for splitting the tests into the two cases with and without post-selection
to avoid an excessive notational overhead in Box 1 of the main text.

S2.C The measurement scheme

The measurement schemes MLPSG and MLPSLO to estimate F (0)
S and F (n)

S , respectively, are essentially replicas of the
schemesMG andMLO to estimate F (0) and F (n), already described in detail in boxes S1 and S2. Thus, instead of repeating
all the details of boxes S1 and S2, we simply outline the concrete differences betweenMLPSG andMG, as well as between
MLO andMLPSLO. There are only three specific differences.

1. The moment vector and tensors are now defined with respect to %Sp ⊗ |φ〉A 〈φ|A instead of %p. More precisely, we now
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need to estimate the vector γS ∈ R2m and tensors Γ
(j)
S ∈

(
R2m×2m

)⊗j
, with elements

γS l := 〈r̂l〉%Sp⊗|φ〉A〈φ|A = 〈〈φ|A r̂l |φ〉A〉%Sp
=

{ 〈φl|Al r̂l |φl〉Al , if l ∈ A,
〈r̂l〉%Sp

, if l /∈ A, (S21)

and

Γ
(j)
S k1,l1,...,kj ,lj

:=

〈
r̂k1 r̂l1 + r̂l1 r̂k1

2
· · · r̂kj r̂lj + r̂lj r̂kj

2

〉

%Sp⊗|φ〉A〈φ|A

=

〈
〈φ|A

r̂k1 r̂l1 + r̂l1 r̂k1
2

· · · r̂kj r̂lj + r̂lj r̂kj
2

|φ〉A
〉

%Sp

, (S22)

respectively.

2. F (0)
S and F (n)

S are obtained dividing the expressions on the right-hand sides of equations (S6) and (S15) by P(φA|%t), and
with γ and Γ(j) replaced by γS and Γ

(j)
S , respectively.

3. The presence of the divisor P(φA|%t) in F (0)
S and F (n)

S is the reason for the third difference. As discussed in Lemmas
S12 and S15 in Sections S3.E and S3.F, respectively, this divisor makes F (0)

S and F (n)
S 1/P(φA|%t) times more unstable

than F (0) and F (n). As a consequence, the number of copies of %Sp required to estimate each relevant moment of F (0)
S

are C1

P(φA|%t) and C2

P(φA|%t) , instead of C1 and C2. This is summarized in Lemma S13. Analogously, the number required

for each relevant moment of F (n)
S is C≤2(n+1)

P(φA|%t) , instead of C≤2(n+1). This is summarized in Lemma S16.

As is clear from equations (S21) and (S22), the estimation of γS and Γ
(j)
S requires only the measurement of multi-body

correlators among the (m − a) system modes in S. This is due to the facts that after post selection the system is in a product
state with respect to the bipartition in S and A and that the quadrature operators in equation (S22) can also be correspondingly
grouped into two factors, one containing exclusively operators of modes in S and the other in A. Furthermore, since |φ〉A is
a tensor-product state known to Arthur, he can efficiently calculate the expectation vale of any product of quadrature operators
of modes in A with respect to |φ〉A. For instance, suppose that k1, l1, k2 ∈ A and that l2, k3, l3 . . . , kj , lj /∈ A. Then, the
corresponding 2j-th moment decomposes as

Γ
(j)
S k1,l1,...,kj ,lj

= 〈φ|A
r̂k1 r̂l1 + r̂l1 r̂k1

2
r̂k2 |φ〉A

〈
r̂l2
r̂k3 r̂l3 + r̂l3 r̂k3

2
· · · r̂kj r̂lj + r̂lj r̂kj

2

〉

%Sp

, (S23)

and only the measurement of the (2j − 3)-th moment given by the second factor of equation (S23) is required. As another
example, consider the case where a given |φj〉Aj is a Fock-basis state. Then, all the moments containing an odd number of
quadrature operators of the Aj-th mode automatically vanish and need therefore not be measured at all.

In general, Arthur can always efficiently obtain γS and the Γ
(j)
S ’s as a product of an (a priori known) expectation value with

respect to |φ〉A of a multi-body product of quadrature operators of modes in A and a (measured) expectation value with respect
to %Sp of a multi-body product of quadrature operators of modes in S, in a way analogous to the example of equation (S23).

S2.D Corollaries of Theorems 2 and 3

Since the moments to be estimated are now given, in equations (S21) and (S22), by expectation values with respect to %Sp ⊗
|φ〉A 〈φ|A, instead of %p, a simple way to extend Theorems 2 and 3 to target states in CLPSG or CLPSLO is by redefining
the variance upper bounds σi. More precisely, taking σi as an upper bound on the variances of any product of i phase space
quadratures now in the state %Sp, we introduce the quantities

ςi := max
j∈[a]∧k1,k2,...kj∈A

{
〈φ|A r̂k1 r̂k2 . . . r̂kj |φ〉A σi−j

}
, (S24)

for i ∈ [2(n+ 1)]. In addition, we call ς≤i := maxk≤i{ςk} the maximal i-th generalised variance of %Sp.
The parameters ςi quantify the maximal variances of random variables defined by products of i− j quadrature-measurement

outcomes on %Sp renormalised by the expectation value of products of j quadrature operators with respect to |φ〉A, therefore
automatically accounting for factorisations of the type of equation (S23). They constitute very non-tight upper bounds to the
real variances. In particular experimental situations, tighter bounds can be found. Here, we are simply interested in taking
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advantage of the proofs of Theorems 2 and 3 without introducing too much extra notational overhead, for which the definition
of equation (S24) is enough. Indeed, with these redefinitions, the following corollaries follow straightforwardly from Theorems
2 and 3.

Corollary S1 (Quantum certification of locally post-selected Gaussian states). Under the same conditions and for the same %t

as in Theorem 2, test TLPS from Box S3 is a certification test for %S t ∈ CLPSG and requires at most

O

(
s4

max

(
2ς21‖x‖22m3 + ς22κ

3m4
)

[P(φA|%t) ε]
2

ln(1/(1− α))

)
(S25)

copies of a preparation %Sp with first and second generalized variance bounds ς1 > 0 and ς2 > 0, respectively.

Corollary S2 (Quantum certification of locally post-selected linear-optical network states). Under the same conditions and for
the same %t as in Theorem 3, test TLPS from Box S3 is a certification test for %S t ∈ CLPSLO and requires at most

O

(
ς2≤2(n+1)m

4(λ d6 nm)n

[P(φA|%t) ε]
2

ln(1/(1− α))

)
(S26)

copies of a preparation %Sp with maximal 2(n+1)-th generalised variance ς≤2(n+1), where λ > 0 is the same absolute constant
as in Theorem 3.

Corollary S1 is proven in Section S3.E and Corollary S2 in Section S3.F. Equations (S25) and (S26) correspond to exactly the
same expressions as in equations (10) and (11), respectively, with the replacements σ → ς and ε → P(φA|%t) ε. The rescaling
of ε with the factor P(φA|%t) originates directly from the new expression for the fidelity given in equation (S17). As mentioned
in Section S2.C, this makes the fidelity bounds F (0)

S and F (n)
S more unstable than F (0) and F (n), leading to the error rescaling

discussed earlier. In most interesting cases, the post-selection success probability P(φA|%t) turns out to be exponentially small in
a. Moreover, one can always come up with families of target states and post selection procedures for which P(φA|%t) decreases
arbitrarily fast in m. In such cases, the scalings in equations (S25) and (S26) are not efficient in m, inheriting the inefficiency
of the state preparation by local measurements and post selection. However, both bounds are efficient in 1/P(φA|%t). That
is, in every practical situation where state preparation via post selection is feasible, so is state certification. Interestingly, even
for families of target states and post selection procedures for which P(φA|%t) decays exponentially in a, the overall scaling
(of both bounds) with a is better than the scalings (of the bounds in equations (11) and (S26)) with n. Indeed, the bound in
equation (S26) grows, just like the bound in equation (11), faster than exponentially in n. Finally, both bounds (S25) and (S26)
scale polynomially with all the other relevant parameters, including 1/ε. Thus, arbitrary m-mode target states from the classes
CLPSG and CLPSLO, with constant n, are certified by TLPS efficiently in m, 1/P(φA|%t), and all the other relevant parameters.

S2.E Corollary of Theorem 5

Finally, it is possible to show that our certification test is robust also for the locally post-selected target states of the classes
CLPSG or CLPSLO. Writing %Sp as

%Sp = FS%S t + (1− FS)%S
⊥
t , (S27)

where %S⊥t is such that Tr[%S t %S
⊥
t ] = 0, and introducing the generalised photon mismatch ñ⊥S between %S t and %Sp as

ñ⊥S :=

〈
P(φA|%t)− 1 + (n̂− n)

∏n
j=1 n̂j

P(φA|%t)

〉

Û†%S⊥t ⊗|φ〉A〈φ|AÛ
=
〈
N̂

(n)
S

〉
%S⊥t

, (S28)

where N̂ (n)
S is the same observable as in (S20), the following holds true.

Corollary S3 (Robust quantum certification of locally post-selected states). Under the same conditions as in Corollaries S1 and
S2, test T from Box 1 is a robust certification test for %S t ∈ CLPSG ∪ CLPSLO with fidelity gap

∆S := max

{
2ε+ (1− FT)(ñ⊥S − 1)

ñ⊥S
, 2ε

}
, (S29)

where ñ⊥S is the generalised photon mismatch.
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The proof is identical to the proof of Theorem 5 presented in Section S3.G but with the replacements F → FS , F (n) → F
(n)
S ,

F (n)∗ → F
(n)∗
S , ∆→ ∆S , and ñ⊥ → ñ⊥S .

S3 Proofs of the theorems and corollaries

Before going to the proofs, we devote two sections to establish necessary notation, review some known facts, and prove a
general lemma.

S3.A Norms

Here, we introduce some helpful notation used in the proofs and review a few facts about norms on finite dimensional vector
spaces. The max norm ‖ · ‖max of a tensor is the largest of the absolute values of its entries. For a matrix A, for example,
‖A‖max := maxk,l |Ak,l|. For p ∈ [1,∞], we denote the vector p-norm of a vector a by ‖a‖p and the Schatten p-norm of a
matrix A by ‖A‖p, which is defined to be the vector p-norm of the vector of its singular values. For any matrix A, we define
vec(A) to be a vector containing all the entries of A (in some order). Then one can see that

‖A‖2 = ‖ vec(A)‖2 (S30)

and

‖A‖max = ‖ vec(A)‖∞. (S31)

For the vector and Schatten p-norm of vectors with N elements and N × N matrices, respectively, the following inequalities
hold

‖·‖1 ≤
√
N‖·‖2 ≤ N‖·‖∞. (S32)

Because the Schatten∞-norm is induced by the vector 2-norm, i.e.,

‖A‖∞ = sup
y

‖Ay‖2
‖y‖2

, (S33)

it follows that for any two vectors ε and x

‖εxT ‖∞ ≤ ‖ε‖2‖x‖2. (S34)

S3.B Reliable estimation of expectation values from samples

We continue by proving a general large-deviation bound for estimates of expectation values from a finite number of measure-
ments on independent copies, which we need for the proofs of Theorems 2 and 3.

Lemma S4 (Reliable estimation of multiple expectation values from samples). Let σ > 0, ρ be a state, and let Â1, . . . , ÂN be
observables with expectation values Ai := Tr[ρÂi] and variances bounded as Tr[ρÂ2

i ] − A2
i ≤ σ2. For each i ∈ [N ] and χ,

let X(χ)
i be the random variable given by the measurement statistics of Âi on state ρ; such that, in particular, the (X

(χ)
i )i,χ are

independent random variables and the finite sample average over c measurements of Âi is the random variable

A∗i :=
1

c

c∑

χ=1

X
(χ)
i . (S35)

Then, the {A∗i }i are independent and, for every ε > 0 and α ∈ [1/2, 1), it holds that

P
[
∀i : |A∗i −Ai| ≤ ε

]
≥ α (S36)

whenever

c ≥ σ2(N + 1)

ε2 ln(1/α)
. (S37)
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Proof. The sample averages {A∗i }i are independent by definition. By Chebyshev’s inequality it holds that

∀i ∈ [c] : P
[
|A∗i −Ai| > ε

]
<

σ2

cε2
. (S38)

Since the {A∗i }i are independent random variables, this yields

P
[
∀i : |A∗i −Ai| ≤ ε

]
≥
(

1− σ2

cε2

)N
. (S39)

Finally,

(
1− σ2

cε2

)N
≥ α (S40)

is satisfied if

c ≥ copt :=

⌈
σ2/ε2

1− α1/N

⌉
. (S41)

To finish the proof we upper bound

copt =

⌈
σ2/ε2

1− e−
ln(1/α)
N

⌉
. (S42)

Using that (see Section S6.B) for all x ≥ 0

1

1− e−1/x
≤ x+

1

2 + 2x
+

1

2
, (S43)

it follows that

copt ≤
σ2

ε2

(
N

ln(1/α)
+

1

2 + 2N
ln(1/α)

+
1

2

)
. (S44)

To simplify the right-hand side of this inequality, we use that, since α ≥ 1
2 ≥ e−1, it holds that ln(1/α) ≤ 1 and, therefore,

2 + 2N
ln(1/α) ≥ 4. So, using again that ln(1/α) ≤ 1, we finally arrive at

copt ≤
σ2

ε2

(
N

ln(1/α)
+

3

4

)
≤ σ2(N + 1)

ε2 ln(1/α)
. (S45)

S3.C Proof of Theorem 2

Before the proof of Theorem 2, we present three auxiliary lemmas specific to the fidelity bound F (0) for the Gaussian case.

The first lemma upper-bounds the number of elements of Γ(1) which the fidelity bound F (0) depends on.

Lemma S5 (Sparsity of the Gaussian fidelity bound). F (0) depends on at most 2mκ elements of Γ(1). We call these the relevant
elements of Γ(1).

Proof. Equation (S6) can be written as

F (0) = 1 +
m

2
+ xTOD−2OT (2γ − x)− Tr

[
OD−2OTΓ

]
. (S46)
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The last term can, in turn, be expressed as

Tr
[
OD−2OTΓ(1)

]
=

2m∑

k=1

D−2
k,k(o(k))TΓ(1)o(k)

= Tr

[ m∑

j=1

{
s−2
j o(2j−1)(o(2j−1))T + s2

jo
(2j)(o(2j))T

}
Γ(1)

]
. (S47)

Due to the sparsity of O, as described in Section S1, each matrix s−2
j o(2j−1)(o(2j−1))T + s2

jo
(2j)(o(2j))T has at most 4d2

non-zero elements. Hence, summing over j, we see that F (0) depends on at most 4mmin{d2,m} = 2κm elements of Γ(1).

Note that the counting argument following equation (S47) does not take into account the fact that Γ(1) is symmetric. Taking
this fact into account, we see that, from the 4d2 relevant elements of Γ(1) that appear in each term of the trace (S47), only
d(2d+ 1) are independent. Thus, even though 2mκ entries of Γ(1) contribute to F (0), only mmin{d(2d+ 1), 4m} ≤ 2mκ of
them must actually be measured.

The second auxiliary lemma bounds the deviation of F (0)∗ from F (0) in terms of the errors made in the estimation of the
individual expectation values entering F (0).

Lemma S6 (Stability of the Gaussian fidelity bound). Let F (0)∗ be defined like F (0) in equation (S6) but with γ and Γ(1)

replaced by γ∗ and Γ(1)∗ and let εmax := ‖γ − γ∗‖max and ε(1)
max := ‖Γ(1) − Γ(1)∗‖max . Then

|F (0) − F (0)∗| ≤ 2s2
max

(
ε(1)

max

√
κm+ εmax‖x‖2

√
2m
)
. (S48)

Proof. For convenience, we define the error vector

ε := γ − γ∗ ∈ R2m (S49)

and the error matrix

E(1) := Γ(1) − Γ(1)∗. (S50)

The fidelity estimation error can then be written as

F (0) − F (0)∗ = Tr
[
OD−2OT (E(1) + 2εxT )

]
. (S51)

Due to Hölder’s inequality,

|F (0) − F (0)∗| ≤ ‖OD−2OT ‖∞‖E(1) + 2εxT ‖1
≤ ‖D−2‖∞

(
‖E(1)‖1 + 2‖ε‖2‖x‖2

)
, (S52)

where in the last step we have used the bound (S34). The second inequality in equation (S32) implies that ‖ε‖2 ≤
√

2m‖ε‖∞.
It remains to bound ‖E‖1. To this end, we use the first inequality in equation (S32) and equation (S30) to arrive at

‖E(1)‖1 ≤
√

2m‖ vec(E(1))‖2. (S53)

According to Lemma S5, F (0) depends on at most 2κm entries of E(1). Without loss of generality we can hence omit all other
elements of E(1) and thus take vec(E(1)) as a vector with at most 2κm elements. Using this fact and the second inequality in
equation (S32) we obtain

‖E(1)‖1 ≤
√

2m
√

2mκ‖ vec(E(1))‖∞
= 2m

√
κ‖E(1)‖max , (S54)

where we have used equation (S31) in the last equality. Finally, putting everything together and using that, by definition,
‖D−2‖∞ = s2

max, we arrive at the inequality (S48).

The third auxiliary Lemma shows that the estimate of the fidelity lower-bound for target states %t ∈ CG obtained with the
measurement schemeMG in Box S1 is reliable. This Lemma is potentially interesting in its own right in scenarios other than
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certification.

Lemma S7 (Reliable estimation of the Gaussian fidelity bound). Let α ∈ (0, 1/2] and ε > 0. Let F (0)∗ be defined like F (0) in
equation (S6) but with γ and Γ(1) replaced by γ∗ and Γ(1)∗, where γ∗ and Γ(1)∗ are obtained as described byMG from

C = 2mC1 + 2κmC2 (S55)

copies of %p , with C1 and C2 integers such that

C1 ≥ 26σ
2
1(2m+ 1)ms4

max ‖x‖22
ε2 ln

(
1

1−α

) (S56a)

and

C2 ≥ 25σ
2
2(2κm+ 1)m2 s4

max κ

ε2 ln
(

1
1−α

) . (S56b)

Then,

P
[
|F (0) − F (0)∗| ≤ ε

]
≥ 1− α. (S57)

Proof. Our proof strategy is to show that, with probability at least 1 − α, the 2m elements of γ and the 2mκ relevant elements
of Γ(1) are estimated within additive errors bounded as

εmax ≤ ε∗max :=
ε

4s2
max‖x‖2

√
2m

(S58a)

and

ε(1)
max ≤ ε∗(1)

max :=
ε

4s2
max

√
κm

. (S58b)

If the inequalities (S58) are fulfiled, then, due to Lemma S6, it holds that |F (0) − F (0)∗| ≤ ε.

Since all 2m estimates {γ∗l }l are sample averages over independent copies of %p, the measurement outcomes to obtain the
{γ∗l }l are all independent random variables, for each l described by the same probability distribution. Furthermore, by assump-
tion, the variances of these variables are all upper-bounded by σ1. Analogously, the measurement outcomes to obtain all 2mκ

relevant estimates {Γ(1)∗
l,l′ }l,l′ are independent random variables with variances upper-bounded by σ2 and described, for each l

and l′, by the same probability distribution. Hence, according to Lemma S4, with the choice α =
√

1− α, taking

C1 ≥ 2
σ2

1(2m+ 1)

ε∗max
2 ln

(
1

1−α

) (S59a)

and

C2 ≥ 2
σ2

2(2κm+ 1)

ε
∗(1)
max

2
ln
(

1
1−α

) , (S59b)

is sufficient for both

P
[
∀l : |γ∗l − γl| ≤ ε∗max

]
≥
√

1− α (S60a)

and

P
[
∀ Γ

(1)
l,l′ relevant : |Γ(1)∗

l,l′ − Γ
(1)
l,l′ | ≤ ε∗(1)

max

]
≥
√

1− α. (S60b)
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Since the {γ∗l }l and the {Γ(1)∗
l,l′ }l,l′ are independent random variables, equations (S60) imply that

P

[ ∀l : |γ∗l − γl| ≤ ε∗max

and ∀ Γ
(1)
l,l′ relevant : |Γ(1)∗

l,l′ − Γ
(1)
l,l′ | ≤ ε

∗(1)
max

]
≥ 1− α. (S61)

Finally, inserting the definitions (S58) of ε∗max and ε∗(1)
max into equations (S59), we see that equations (S56) are equivalent to

equations (S59).

Now, we prove the theorem on quantum certification of Gaussian states.

Proof of Theorem 2. That the total number of copies of %p (see equation (S55)) needed for the certification test is asymptotically
upper-bounded by equation (10) can be verified by straightforward calculation using equations (S56). It remains to show that (i)
if %p = %t, then T accepts with probability at least 1− α, i.e.,

P
[
F (0)∗ ≥ FT + ε

]
≥ 1− α, (S62)

and (ii) if %p is such that F < FT , then T rejects with probability at least 1− α, i.e.,

P
[
F (0)∗ < FT + ε

]
≥ 1− α. (S63)

To show (i), we first recall that, if %p = %t, F (0) = 1. With this, equation (S57) in Lemma S7 implies that

P
[
F (0)∗ ≥ 1− ε

]
≥ 1− α. (S64)

Since, by assumption of the theorem, the total estimation error is such that ε ≤ 1−FT

2 , it holds that 1− ε ≥ FT + ε. Substituting
the latter inequality into equation (S64) yields equation (S62).

To show (ii), we first note that, since F (0) ≤ F for all %p, if F < FT , then

F (0) < FT. (S65)

On the other hand, equation (S57) implies also that

P
[
F (0)∗ ≤ F (0) + ε

]
≥ 1− α. (S66)

Inserting equation (S65) into equation (S66) yields equation (S63).

S3.D Proof of Theorem 3

We proceed analogously to the last section and present three auxiliary lemmas specific to the fidelity bound F (n) for the
linear-optical case before proving Theorem 3.

To state the first lemma in a compact form we introduce the shorthand Γ :=
(
Γ(i)

)
i=1,...,n+1

for the collection of all the

moment tensors Γ(i). Analogously, the collection of all the estimates Γ(i)∗ of the moment tensors, defined in Box S2, is denoted
by Γ∗ :=

(
Γ(i)∗)

i=1,...,n+1
.

Lemma S8 (Sparsity of the linear-optical fidelity bound). The fidelity bound F (n) defined in equation (S15) can be written as

F (n) = 1−
n∑

j=0

(−1/2)n−jfj
(
Γ(j),Γ(j+1)

)
, (S67)

where, for each j ∈ {0, . . . , n}, fj is a linear functional given by

fj

(
Γ(j),Γ(j+1)

)
:=

(nj)∑

µ=1

{
Tr

[(
1⊗

⊗

i∈Ω
(j)
µ

P(i)
)
Γ(j+1)

]
+
m+ 2n

2
Tr

[( ⊗

i∈Ω
(j)
µ

P(i)
)
Γ(j)

]}
. (S68)
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For each j, the functional fj depends on at most
(
n
j

)
(2d)2j elements of Γ(j) and on at most

(
n
j

)
2m(2d)2j elements of Γ(j+1).

We call these the relevant elements for fj . Moreover, F (n) depends on at most

N≤2(n+1) := (1 + 2m)(4d2 + 1)n ∈ O
(
m
(
4d2 + 1

)n)
(S69)

elements of Γ. We call these the relevant elements of Γ.

The subindex “≤ 2(n + 1)” in N≤2(n+1) makes reference to the fact that 2j-th moments with j ∈ [n + 1] are taken into
account.

Proof. Equations (S67) and (S68) can be checked by a straightforward calculation. We use again the sparsity of O, i.e., the
property that its columns o(2j−1) and o(2j) have at least 2(m − d) zero element in common. Hence, each of the symmetric
matrices P(j), defined in equation (S9), has at most (2d)2 non-zero elements. Consequently, the projectors

⊗
i∈Ω

(j)
µ

P(i) and

1⊗⊗
i∈Ω

(j)
µ

P(i) in equation (S68) have at most (2d)2j and 2m(2d)2j non-zero elements. This implies that the first trace inside

the sum in equation (S68) depends on at most 2m(2d)2j elements of Γ(j+1) and the second trace inside the sum on at most
(2d)2j elements of Γ(j). Hence, each fj depends on at most

(
n
j

)
(2d)2j elements of Γ(j) and on at most

(
n
j

)
2m(2d)2j elements

of Γ(j+1). This proves the statements on the sparsity of the functionals fi. From this, it follows that F (n) depends on at most

n∑

i=0

((
n

i

)
(2d)2i +

(
n

i

)
2m(2d)2i

)
= (1 + 2m)(4d2 + 1)n (S70)

elements of Γ in total, where in the last step we have used the binomial theorem.

It is important to mention that, as in Lemma S5 for the Gaussian case, the symmetry (S14) of each Γ(j) was not taken into
account. Thus, even though the lemma gives the maximal total number of relevant elements that contribute to F (n), many of
them are not independent and must therefore not be measured.

The second auxiliary lemma upper-bounds the deviation of F (n)∗ from F (n) in terms of the errors made in the estimation of
the expectation values entering F (n).

Lemma S9 (Stability of the linear-optical fidelity bound). Let F (n)∗ be defined like F (n) in equation (S15) but with Γ replaced
by Γ∗ and let εmax := ‖Γ− Γ∗‖max . Then

|F (n) − F (n)∗| ≤ εmax (n+ 5m/2)
(

1/2 + 2d
√

2nm
)n

. (S71)

Proof. For convenience, we define, for each j ∈ [n], the error tensor

E(j) := Γ(j) − Γ(j)∗ ∈
(
R2m×2m

)⊗j
. (S72)

Using equation (S67) and the fact that fj is linear, we write the fidelity estimation error as

F (n) − F (n)∗ =
n∑

j=0

(−1/2)n−jfj
(
E(j), E(j+1)

)
, (S73)

Applying Hölder’s inequality and using that the Schatten∞-norm of a tensor product of projectors is bounded by 1 yields

|fj
(
E(j), E(j+1)

)
| ≤

(
n

j

)(∥∥Ẽ(j+1)
∥∥

1
+
m+ 2n

2

∥∥Ẽ(j)
∥∥

1

)
,

where the matrix Ẽ(j) is defined element-wise by Ẽ(j)

k(j),l(j)
:= E(j)

k1,l1,...,kj ,lj
, where k(j) := (k1, . . . , kj) and l(j) := (l1, . . . , lj).

Thanks to the first bound in equation (S32) and equation (S30), we arrive at

|fj
(
E(j), E(j+1)

)
| ≤

(
n

j

)
(2m)j/2

(√
2m
∥∥vec(Ẽ(j+1))

∥∥
2

+
m+ 2n

2

∥∥vec(Ẽ(j))
∥∥

2

)
. (S74)

According to Lemma S8, fj depends on at most
(
n
j

)
2m(2d)2j elements of Ẽ(j+1) and on at most

(
n
j

)
(2d)2j of Ẽ(j). Without loss

of generality we can hence omit, in equation (S74), all other elements in Ẽ(j) and Ẽ(j+1) and thus take vec(Ẽ(j)) and vec(Ẽ(j+1))
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as vectors with at most
(
n
j

)
(2d)2j and

(
n
j

)
2m(2d)2j elements, respectively. Then the second bound in equation (S32) yields

|fj
(
E(j), E(j+1)

)
| ≤

(
n

j

)3/2

(2m)j/2(2d)j
[
2m
∥∥Ẽ(j+1)

∥∥
max

+
m+ 2n

2

∥∥Ẽ(j)
∥∥

max

]
. (S75)

Next, from equation (S73), it follows that

|F (n) − F (n)∗| ≤ εmax

[ n∑

j=0

(
n

j

)3/2

(1/2)
n−j

(√
2m2d

)j
× (5m/2 + n)

]
. (S76)

Finally, using
(
n
j

)1/2 ≤ nj/2 and the binomial formula, we obtain the inequality (S71).

The third auxiliary Lemma shows that the estimate of the fidelity lower-bound for target states %t ∈ CLO obtained with the
measurement schemeMLO in Box S2 is reliable. This Lemma is potentially interesting in its own right in scenarios other than
certification.

Lemma S10 (Reliable estimation of the linear-optical fidelity bound). Let α ∈ (0, 1/2] and ε > 0. Let F (n)∗ be defined like
F (n) in equation (S15) but with Γ replaced by Γ∗, where Γ∗ is obtained as described byMLO from

C = N≤2(n+1)C≤2(n+1) (S77)

copies of %p, with N≤2(n+1) an integer given by equation (S69) and C≤2(n+1) an integer given by

C≤2(n+1) ≥
σ2
≤2(n+1)(N≤2(n+1) + 1)

ε2 ln(1/(1− α))
(n+ 5m/2)

2
(

1/2 + 2d
√

2nm
)2n

. (S78)

Then,

P
[
|F (n) − F (n)∗| ≤ ε

]
≥ 1− α. (S79)

Proof. Our proof strategy is similar to that of Lemma S7. That is, we show that, with probability at least 1 − α, the N≤2(n+1)

relevant elements of Γ are estimated within additive errors bounded as

εmax ≤ ε∗max :=
ε

(n+ 5m/2)
(
1/2 + 2d

√
2nm

)n . (S80)

If this inequality is fulfiled, then, due to Lemma S9, it holds that |F (n) − F (n)∗| ≤ ε.
According to Lemma S4, with the choice α = 1− α, taking

C≤2(n+1) ≥
σ2
≤2(n+1)(N≤2(n+1) + 1)

ε∗max
2 ln(1/(1− α))

. (S81)

is sufficient to get

P
[
∀ Γ

(i)
k1,l1,...,ki,li

relevant : |Γ(i)∗
k1,l1,...,ki,li

− Γ
(i)
k1,l1,...,ki,li

| ≤ ε∗max

]
≥ 1− α (S82)

Finally, inserting the definition (S80) of ε∗max into equation (S81), we see that equation (S79) is equivalent to equation (S81).

Now, we prove the theorem on quantum certification of linear-optical network states.

Proof of Theorem 3. The proof is analogous to the proof of Theorem 2, but with equation (S77), equation (11), F (n), F (n)∗,
Lemma S10, and equation (S79) playing respectively the roles of equation (S55), equation (10) , F (0), F (0)∗, Lemma S7 and
equation (S57).

S3.E Proof of Corollary S1

The proof relies on three auxiliary lemmas equivalent to Lemmas S5, S6, and S7.
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Lemma S11 (Sparsity of the locally post-selected Gaussian fidelity bound). F (0)
S depends on at most 2mκ elements of Γ

(1)
S . We

call these the relevant elements of Γ
(1)
S .

Proof. The proof of the lemma is analogous to that of Lemma S5.

Lemma S12 (Stability of the locally post-selected Gaussian fidelity bound). Let F (0)∗
S be defined by the same expression to F (0)

in equation (S6) but divided by P(φA|%t) and with γ and Γ(1) replaced by γ∗S and Γ
(1)∗
S , and let εmax := ‖γS − γ∗S‖max and

ε
(1)
max := ‖Γ(1)

S − Γ
(1)∗
S ‖max . Then

|F (0)
S − F

(0)∗
S | ≤ 2s2

max

P(φA|%t)

(
ε(1)

max

√
κm+ εmax‖x‖2

√
2m
)
. (S83)

Proof. The proof of the lemma is similar to that of Lemma S6, with the differences already explained in Section S2.C.

Lemma S13 (Reliable estimation of the locally post-selected Gaussian fidelity bound). Let α ∈ (0, 1/2] and ε > 0. Let F (0)∗
S

be defined by the same expression to F (0)
S in equation (S6) but divided by P(φA|%t) and with γ and Γ(1) replaced by γ∗S and

Γ
(1)∗
S , where γ∗S and Γ

(1)∗
S are obtained as described in Section S2.C from

C = 2mC1 + 2κmC2 (S84)

copies of %Sp , with C1 and C2 integers such that

C1 ≥ 26 ς
2
1 (2m+ 1)ms4

max ‖x‖22
[P(φA|%t)ε]

2
ln
(

1
1−α

) (S85a)

and

C2 ≥ 25 ς
2
2 (2κm+ 1)m2 s4

max κ

[P(φA|%t)ε]
2

ln
(

1
1−α

) . (S85b)

Then,

P
[
|F (0)
S − F

(0)∗
S | ≤ ε

]
≥ 1− α. (S86)

Proof. The proof of the lemma is analogous to that of Lemma S7.

Proof of Corollary S1. The proof is analogous to the proof of Theorem 2 but with Lemmas S11, S12, and S13 playing respec-
tively the roles of Lemmas S5, S6, and S7.

S3.F Proof of Corollary S2

As in the previous subsection, the proof relies on three auxiliaryary lemmas equivalent to Lemmas S8, S9, and S10. The
proofs of the lemmas are analogous to, and follow immediately from, those of the latter.

Lemma S14 (Sparsity of the locally post-selected linear-optical fidelity bound). The fidelity bound F (n)
S , defined by the same

expression as F (n) in equation (S15) but divided by P(φA|%t) and with Γ replaced by ΓS , can be written as

F
(n)
S =

1

P(φA|%t)


1−

n∑

j=0

(−1/2)n−jfj
(
Γ

(j)
S ,Γ

(j+1)
S

)

 , (S87)

where, for each j ∈ {0, . . . , n}, fj is the same linear functional as in Lemma S8, defined by equation (S68). Moreover, F (n)
S

depends on at most N≤2(n+1) elements of ΓS , with N≤2(n+1) the same as in Lemma S8 and given by equation (S69).

Proof. The proof of the lemma is analogous to that of Lemma S8.
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Lemma S15 (Stability of the locally post-selected linear-optical fidelity bound). Let F (n)∗
S be defined by the same expression as

F (n) in equation (S15) but divided by P(φA|%t) and with Γ replaced by Γ∗S , and let εmax := ‖ΓS − Γ∗S‖max . Then

|F (n)
S − F (n)∗

S | ≤ εmax

P(φA|%t)
(n+ 5m/2)

(
1/2 + 2d

√
2nm

)n
. (S88)

Proof. The proof of the lemma is similar to that of Lemma S9, with the differences already explained in Section S2.C.

Lemma S16 (Reliable estimation of the locally post-selected linear-optical fidelity bound). Let α ∈ (0, 1/2] and ε > 0. Let
F

(n)∗
S be defined like F (n) in equation (S15) but with Γ replaced by Γ∗S , where Γ∗S is obtained as described in Section S2.C from

C = N≤2(n+1)C≤2(n+1) (S89)

copies of %Sp, with N≤2(n+1) an integer given by equation (S69) and C≤2(n+1) an integer given by

C≤2(n+1) ≥
ς2≤2(n+1)(N≤2(n+1) + 1)

[P(φA|%t) ε]
2

ln(1/(1− α))
(n+ 5m/2)

2
(

1/2 + 2d
√

2nm
)2n

. (S90)

Then,

P
[
|F (n)
S − F (n)∗

S | ≤ ε
]
≥ 1− α. (S91)

Proof. The proof of the lemma is analogous to that of Lemma S10.

Proof of Corollary S2. The proof is analogous to the proof of Theorem 3 but with Lemmas S14, S15, and S16 playing respec-
tively the roles of Lemmas S8, S9, and S10.

S3.G Proof of Theorem 5

Crucial for the proof of this theorem is the expansion (12) of %p in terms of %t and %⊥t , which leads to the definition (13) of
the photon mismatch ñ⊥. Also, before the proof, we note that the fidelity gap cannot be smaller than ∆ ≥ 2ε: The condition for
acceptance of the test is F (n)∗ ≥ FT + ∆ − ε, whereas that for rejection is F (n)∗ < FT + ε. So, the threshold of acceptance,
F = FT + ∆− ε, is not smaller than that of rejection, F = FT + ε, iff ∆ ≥ 2ε.

Proof of Theorem 5. Theorems 2 and 3 imply that %p is rejected with probability at least 1 − α whenever F < FT. Thus, it
remains to show that if %p is such that F ≥ FT + ∆, with ∆ given by equation (14), then %p is accepted with probability at least
1− α, i.e., that

P
[
F (n)∗ ≥ FT + ε

]
≥ 1− α. (S92)

So, let F ≥ FT + ∆, with ∆ given by (14). Using equations (8), (12), and (13), we write F (n) as

F (n) = 1− (1− F )ñ⊥ ≥ 1− (1− (FT + ∆))ñ⊥. (S93)

Using that

∆ ≥ 2ε+ (1− FT)(ñ⊥ − 1)

ñ⊥
(S94)

and inserting it into the inequality (S93), we obtain

F (n) ≥ FT + 2ε. (S95)

Finally, using equations (S95) and (S79), we obtain equation (S92).
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S4 Number of measurement settings

In this section, we upper-bound the number of local measurement settings required for the estimation of our fidelity lower
bounds. We do this explicitly only for the Gaussian and linear-optical network target states, the cases of the post-selected target
states following immediately from them.

S4.A Gaussian case

Here, we show that the 2md single-quadrature and the mκ two-quadrature observables listed in Box S1, required for the
measurement scheme MG, can all be measured using m + 3 different experimental arrangements. We do this by explicitly
describing a measurement strategy that features such a scaling.

The two-body observables q̂j q̂k, q̂j p̂k, and p̂j p̂k, for j 6= k, can be measured by simultaneously homodyning modes j and k.
For all possible pairs of modes, this consumes m + 2 different homodyne settings: A single setting (q̂1, q̂2, . . . , q̂m) for all the
second moments of the form 〈q̂j q̂k〉%p ; another single setting (p̂1, p̂2, . . . , p̂m) for those of the form 〈p̂j p̂k〉%p ; and the m settings
(p̂1, q̂2, . . . , q̂m), (q̂1, p̂2, q̂3, . . . , q̂m), . . ., and (q̂1, . . . , q̂m−1, p̂m) for those of the form 〈q̂j p̂k〉%p and 〈p̂j q̂k〉%p with j 6= k. In
addition, all the single-body observables q̂j , p̂j , q̂2

j , and p̂2
j , are measured also with these same settings. With this, we have

accounted, so far, for all the first moments γl and all the second moments Γ
(1)
l,l′ with (l, l′) 6= (2j − 1, 2j) for all j ∈ [m].

The remaining second moments, Γ
(1)
2j−1,2j with j ∈ [m], correspond to the single-mode observables (q̂j p̂j + p̂j q̂j)/2. To

measure these, Arthur can homodyne each mode j independently in the rotated quadrature (q̂j + p̂j)/
√

2. This requires a
single setting:

[
(q̂1 + p̂1)/

√
2, (q̂2 + p̂2)/

√
2, . . . , (q̂1 + p̂1)/

√
2
]
. In this setting, he can estimate all the moments of the form

〈(q̂j + p̂j)
2/2〉%p . The latter estimates, upon subtraction of 〈q̂2

j 〉%p/2 and 〈p̂2
j 〉%p/2, whose settings have already been accounted

for, finally make it possible to calculate an estimate of 〈(q̂j p̂j + p̂j q̂j)/2〉%p , using the equation

1

2
(q̂j p̂j + p̂j q̂j) =

(
q̂j + p̂j√

2

)2

−
q̂2
j

2
−
p̂2
j

2
. (S96)

The last setting, plus the m+ 2 ones already accounted for in the previous paragraph, yields a total of m+ 3 different homodyne
settings, as promised.

Finally, a comment on the error estimation is in order. In any measurement strategy where moments are estimated indirectly,
their errors must be obtained from those of the directly measured quantities via error propagation. For instance, in the strategy
just described, the error of each Γ

(1)
2j−1,2j needs to be calculated from those of 〈(q̂j + p̂j)

2/2〉%p , 〈q̂2
j 〉%p , and 〈p̂2

j 〉%p . This leads,
for each indirectly estimated moment, to an increase in the number of copies of %p required to attain a given error. Nevertheless,
this usually has no impact on the leading terms of the total resource scaling of the protocol. For example, in the described
strategy the global scaling given in equation (10) remains unaltered.

S4.B Linear-optical case

Here, we show that the N≤2(n+1) ∈ O
(
m
(
4d2 + 1

)n)
observables listed in Box S2, required for the measurement scheme

MLO, can all be measured using at most
(
m
n

)
2n+1 different experimental arrangements. As in the previous section, we do this

by explicitly describing a measurement strategy that features the promised scaling.
The schemeMLO requires the measurement of products of an even number between 2 and 2(n + 1) quadrature operators.

We describe the measurement strategy as follows. First, we upper-bound the number of homodyne settings required for the mea-
surement of all possible products of 2n quadrature operators, necessary for estimating all n-th moments Γ(n). The measurement
of products of fewer quadrature operators can clearly be carried out with the same settings. Then, we show that the particular
products of 2(n+ 1) quadrature operators that appear inMLO, corresponding to the relevant elements of Γ(n+1), do not require
extra settings either.

Consider all products of 2n quadrature operators. Among these, we focus first on those containing exclusively either q̂j or p̂j
(or powers thereof) for each j-th mode but exclude observables such as (q̂j p̂j+ p̂j q̂j)/2, which we address in the next paragraph.
Let us divide this family into two subfamilies: (i) those for which the number of operators q̂j is smaller or equal than that of
the operators p̂j and (ii) those for which the number of operators q̂j is greater than that of the operators p̂j . All correlators in
the subfamily (i) can be measured with homodyne settings where n modes are detected in the position quadrature q̂j and the
remaining m−n ones in the momentum quadrature p̂j . All those in the subfamily (ii) can be measured with homodyne settings
where n modes are detected in momentum and the remaining m− n ones in position. Taking the two subfamilies into account,
there are at most 2

(
m
n

)
different such settings.
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Let us now focus on the products of 2n quadrature operators that include different quadrature operators on a same mode, such
as (q̂j p̂j + p̂j q̂j)/2 (or powers thereof). At most, n factors as (q̂j p̂j + p̂j q̂j)/2 can appear in each product of 2n quadrature
operators. From equation (S96), we know that by replacing in each of the settings for the subfamily (i) above a quadrature q̂j
with the rotated quadrature (q̂j+ p̂j)/

√
2, Arthur can indirectly estimate the expectation values of all the 2n-quadrature products

of the form:

1

2
(q̂j p̂j + p̂j q̂j)

× up to n− 1 position operators
× at least n momentum operators. (S97)

In turn, by replacing, in each of the resulting settings, a further quadrature q̂j′ with (q̂j′ + p̂j′)/
√

2, he can measure all the
observables of the form

1

2
(q̂j p̂j + p̂j q̂j)×

1

2
(q̂j′ p̂j′ + p̂j′ q̂j′)

× up to n− 2 position operators
× at least n momentum operators. (S98)

Concatenating this procedure, he can measure all the 2n-quadrature products where each mode contributes with either q̂j p̂j +
p̂j q̂j , q̂j , or p̂j , and the number of operators q̂j is smaller or equal than that of the operators p̂j . Equivalently, by proceeding
analogously with the subfamily (ii) and the quadratures p̂j , he can measure all 2n-quadrature products where each mode con-
tributes with either q̂j p̂j + p̂j q̂j , q̂j , or p̂j , and the number of operators q̂j is greater than that of the operators p̂j . This is enough
to indirectly estimate the expectation values of all 2n-quadrature products. For each setting of the two subfamilies, n modes can
be rotated, giving rise to 2n setting ramifications. Hence, taking into account all the settings of the two subfamilies and their
ramifications, we count a total of at most 2

(
m
n

)
2n =

(
m
n

)
2n+1 different settings. This counting clearly over-counts the necessary

settings but is enough for our purposes.
Finally, we consider the products of 2(n+1) quadrature operators appearing in the relevant elements of Γ(n+1). The (n+1)-th

moment tensor Γ(n+1) is special in that, in contrast to the lower-moment tensors, it appears in just the first of the two traces in
equations (S15) and (S68). In particular, according to Box S2, Γ

(n+1)
k1,l1,...,kn,ln,kn+1,ln+1

is a relevant element of Γ(n+1) if, and
only if, kn+1 = ln+1. This implies that the observables containing the factor (q̂n+1p̂n+1 + p̂n+1q̂n+1) do not contribute to the
relevant elements of Γ(n+1), only those containing either q̂2

n+1 or p̂2
n+1 are relevant. Hence, the relevant 2(n + 1) quadrature

products are those composed of the 2n quadrature products relevant for Γ(n) times either q̂2
n+1 or p̂2

n+1. Now, in each setting of
the two subfamilies of the previous paragraph, 2n modes are used to measure a 2n-quadrature observable relevant for Γ(n) and
the otherm−nmodes, which are all set either to position or momentum, are ignored. Thus, each relevant element of Γ(n+1) can
be estimated by not ignoring one out of the latter m − n modes. That is, the settings to estimate the 2n-moments Γ(n) already
cover also the estimation of 2(n+ 1)-moments Γ(n+1). So, the total number of settings used throughout is at most

(
m
n

)
2n+1.

As in the end of the previous section, we make a final remark on the error estimation. Also here, the errors of the indirectly
estimated moments must be obtained via error propagation, which leads again to an increase in the total number of copies of %p.
Nevertheless, their global scaling with n remains of the same order as that given in equation (11) .

S5 Stability against systematic errors

Apart from statistical errors, Arthur’s measurement procedure could also have systematic errors. That is, if the characterisation
of his single-mode measurement channels is erroneous, he could actually be measuring different observables from the ones he
thinks he does. Theorems 2 and 3, as well as their Corollaries S1 and S2, consider only statistical errors, i.e., those that can
be decreased by increasing the number of measurement repetitions (and, hence, the number of copies of %p). Since systematic
errors cannot be decreased by accumulating statistics, no certification method based exclusively on the measurement statistics
can rule them out. However, the stability analyses of Lemmas S6, S9, S12 and S15 hold regardless of the nature of errors. Thus,
the experimental estimates F (0)∗, F (n)∗, F (0)∗

S , and F (n)∗
S (and, therefore, also the certification tests) turn out to be robust also

against small systematic errors: The total fidelity deviations due to systematic errors scales linearly with the magnitude of the
largest systematic error and polynomially in all the other relevant parameters as given in equations (S48), (S71), (S83), and
(S88).

Still, it is illustrative to consider a physically relevant example. A typical systematic error is non-unit quantum efficiency of
the detectors used for homodyning. In that case, the probability density function P̃ of measurement outcomes r of a quadrature
r̂ equals the ideal one P convolutioned with the normal distribution N of mean zero and squared variance (1− η)/4η, where η
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is the quantum efficiency of the detectors9. That is, P̃(r) = (P ∗N )(r) :=
∫
dr′P(r′)N (r− r′). Using that the first and second

non-central moments of N satisfy

〈r〉N :=

∫
drrN (r − r′) = r′ (S99a)

and

〈r2〉N :=

∫
drr2N (r − r′) = r′2 +

1− η
4η

, (S99b)

respectively, one obtains that

〈r〉P̃ = 〈r〉P (S100a)

and

〈r2〉P̃ = 〈r2〉P +
1− η

4η
. (S100b)

That is, the expectation value of r̂ is not affected by this type of systematic errors and that of r̂2 deviates from the ideal one by
(1 − η)/(4η). Furthermore, the expectation values of products of quadrature operators acting on different modes are also not
affected, as this type of systematic error acts independently on different modes.

In the absence of statistical errors, this leads to an error vector ε = 0 and an error matrix E(1) that is diagonal and such that
‖E(1)‖max ≤ (1− η)/(4η), so that ‖E(1)‖1 ≤ m(1− η)/(2η). Inserting this into equation (S52), we see for instance that, for
Gaussian targets, the contribution to the deviation of the fidelity estimate due to non-ideal detector efficiency in the homodyne
detectors is smaller than s2

maxm
1−η
2η . This, in turn, is smaller or equal than a desired constant maximal error ε if

η ≥ s2
maxm

2ε+ s2
maxm

≈ 1− 2ε

s2
maxm

, (S101)

where the approximation holds whenever s2
maxm� 2ε. The scaling given by the bound (S101) is experimentally convenient in

that, in particular, it implies that the detector inefficiency 1 − η needs to decrease only inversely proportional with the number
of modes m.

Another typical systematic error is the limited power of the local oscillator field used for the homodyne detection: The homo-
dyne (photocurrent difference) statistics, i.e., the distribution of homodyne measurement outcomes, match exactly the statistics
of the corresponding quadrature only in the limit of an intense local-oscillator beam10. The most obvious difference is that the
homodyne statistics is discrete whereas the quadrature statistics is continuous, with the former approximating the latter increas-
ingly better as the local-oscillator power increases. However, we emphasise that our method relies on the estimation of only the
expectation values of quadratures and not their full statistics. It can be seen that, provided that the local oscillator is in a coherent
state, the effect of limited power is just to increase the variance of the effective quadrature without changing its expectation value
with respect to the ideal case. Furthermore, in the multi-mode scenario, if the different modes are homodyned with independent
local oscillators, the latter is also true for products of quadratures, as the ones considered in this work. Therefore, the effect of
systematic errors due to limited homodyne local-oscillator power in our fidelity estimates is expected not to be critical either.

S6 Auxiliary mathematical relations

S6.A Derivation of the properties of the operator valued Pochhammer-Symbol

We begin with equation (21a). The general relationship

(a†j)
tn̂j(aj)

t = pt(n̂j), (S102)
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for t ∈ N, can be shown by induction starting from p0(n̂j) = n̂j and noting that, for all t ≥ −1,

a†jpt(n̂)aj = a†j n̂j(n̂j − 1)(n̂j − 2) · · · (n̂j − t)aj
= a†j n̂j(n̂j − 1)(n̂j − 2) · · · (n̂j − (t− 1))aj(n̂j − (t+ 1))

= pt(n̂j)(n̂j − (t+ 1))

= pt+1(n̂j), (S103)

as can be verified using the commutation relations between aj and a†j . Setting t = nj gives equation (21a) .
In turn, equation (21b) can be shown by noting that

(a†j)
nj (aj)

nj = (a†j)
nj−1n̂j(aj)

nj−1 (S104)

and applying equation (S102), for t = nj − 1, to the right-hand side of (S104).

S6.B Proof of the bound (S43)

Note that for x = 0 both sides of equation (S43) yield 1 and hence the bound holds in that case. We make the substitution
y = 1/x and show that the bound (S43) holds for all x > 0 by proving the following:

1

1− e−y
≤ 1

y
+

1

2(1 + 1/y)
+

1

2
∀y ≥ 0. (S105)

But this is equivalent to

2y2 + 3y + 2 ≤ ey(2 + y). (S106)

A straight forward calculation shows that both sides and also the first derivatives of both sides coincide at y = 0, while the second
derivative of the right hand side is always larger than the second derivative of the left hand side. This proves equation (S105)
and hence finishes the proof of the bound (S43).
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C.2 Abstract

Simulations play a crucial role in the investigation of complex quantum systems. In this thesis,
locality structures of quantum systems are exploited to obtain complexity theoretic results with
various physical implications. More specifically, rigorous mathematical tools are used and de-
veloped further, to investigate open quantum systems and thermal states. Moreover, important
advances in photonic quantum simulations are discussed.

For open quantum spin lattice systems new simulation schemes are provided. It is shown
that Markovian dynamics can be simulated efficiently in the unitary circuit model, which can
be seen as a dissipative Church-Turing type theorem. Moreover, Markovian dynamics is quasi-
local and can locally be simulated on classical computers with a cost scaling polynomially in
the system size. These results generalize standard tools from the investigation of Hamilto-
nian systems to open quantum systems. In particular, they provide a rigorous basis for their
numerical simulation. However, also a major roadblock for making such simulations reliable
is identified: Testing positivity of certain common approximations to mixed quantum states,
called matrix product operators, is shown to be NP-hard in the system size and undecidable in
the thermodynamic limit. Also more state space structures, originating from the spatial locality
structure are discussed: Most states in state space cannot be generated efficiently with local
Liouvillian dynamics and pure states generated in real-space renormalization schemes turn out
to have local corrections in spatial dimensions larger than one.

For thermal states on spin and fermionic lattice systems, a perturbation formula is provided
and exponential clustering of correlations at high enough temperature is proven. This has vari-
ous consequences: It leads to the extension of the concept of intensive temperature to interact-
ing quantum systems, allows for efficient classical local simulations at high enough tempera-
ture, provides an upper bound on phase transition temperatures, and implies stability of thermal
states against Hamiltonian perturbations.

For photonic quantum simulations, sample complexity lower bounds for the verification of
Boson-Sampling simulations are explained, which are applicable to a restricted setting. These
bounds rely on a lower bound on the min-entropy of the output distribution of Boson-Sampling.
This indicates that Boson-Sampling cannot be verified efficiently classically. Complementary
to that, a reliable verification scheme for photonic state preparations is discussed, which uses
single mode measurements as a simple quantum resource. The verification scheme is effi-
cient for a large class of photonic simulations, including Boson-Sampling experiments with
constantly many photons and state preparations necessary for measurement based quantum
computing.
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C.3 Zusammenfassung

Simulationen spielen eine wichtige Rolle in der Untersuchung von komplexen Quantensyste-
men. In dieser Arbeit werden unter Ausnutzung von Lokalitätsstrukturen koplexitätstheoreti-
sche Ergebnisse erzielt, die vielseitige Implikationen haben. Aufbauend auf rigorosen mathe-
matischen Methoden und deren Weiterentwicklung werden offene Quantensysteme, thermische
Zustände und photonische Quantensimulationen untersucht.

Es werden neue Simulationsmethoden für offene Spingittersysteme eingeführt. Für Mar-
kovsche Zeitentwicklung von Spingittersystemen wird gezeigt, dass sie effizient im unitären
Quantengattermodell simuliert werden können, was als eine Church-Turing-Aussage inter-
pretiert werden kann. Außerdem ist Markovsche Dynamik quasilokal und mit klassischen
Computern lokal simulierbar, wobei der Simulationsaufwand polynomiell in der Systemgröße
beschränkt ist. Diese Ergebnisse bilden eine rigorose Grundlage für die Simulation von offe-
nen Quantensystemen. Allerdings wird auch ein großes Hindernis für die Verbesserung der
Zuverlässigkeit solcher Simulationen identifiziert: Das Testen von Positivität von bestimm-
ten üblichen Approximationen an gemischte Quantenzustände, die Matrixproduktoperatoren
genannt werden, ist NP-hart in der Systemgröße und im thermodynamischen Limes unent-
scheidbar. Zusätzlich werden auch weitere Zustandsraumstrukturen, welche durch räumliche
Lokalität bedingt sind, diskutiert: Die allermeisten Quantenzustände können nicht effizient
mittels lokaler Liouvillscher Dynamik generiert werden.

Für thermische Zustände auf Spin- und Fermionischen Gittersystemen wird eine Störungs-
formel eingeführt und exponentielles Clustering von Korrelationen bei ausreichend hohen
Temperaturen bewiesen. Dies hat eine Reihe von Konsequenzen: Es führt zu einer Erwei-
terung des Konzepts der Intensivität von Temperatur auf wechselwirkende Quantensysteme,
zu effizienteren klassischen Simulationen von Systemen bei ausreichend hoher Temperatur,
es bietet eine obere Schranke an Phasenübergangstemperaturen und impliziert Stabilität von
thermischen Zuständen gegenüber Störungen des Hamiltonoperators.

Für photonische Quantensimulationen werden untere Schranken an die Sample-Komplexität
der Verifizierung von Boson-Sampling-Simulationen in einem eingeschränkten Rahmen er-
klärt. Eine untere Schranke an die min-Entropie der Ausgabeverteilung von Boson-Sampling
stellt das technische Hauptresultat dieser Untersuchung dar. Diese deutet darauf hin, dass
Boson-Sampling klassisch nicht effizient verifiziert werden kann. Ergänzend zu diesem Re-
sultat wird ein zuverlässiges Verifizierungsschema für photonische Zustandspräparationen
vorgestellt, in welchem Einzelmodenmessungen als Quantenressource verwendet werden. Die-
ses Verifizierungsschema ist für eine große Klasse von photonischen Simulationen effizient,
die Boson-Sampling-Simulationen mit konstanter Photonenzahl und bestimmten Zustandsprä-
paration, die für messbasiertes Quantenrechnen notwendig sind, mit einschließt.
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