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Abstract

In the present work algorithms are introduced to classify the ability of peptides to bind or not to
bind. We classify ligand peptides of human leukocyte antigen (HLA) -A0201 by a least square
optimization method (LSM), which is based on Fisher's linear discriminant. The LSM is capable
using either sequence based features or feature vectors of physico-chemical derived quantities
or other numerical descriptors like pharmacophore �ngerprints [1]. In this work sequence based
features and physico-chemical derived features are applied. For the evaluation of HLA-A0201
binding peptides known binding peptides are extracted from public ligand databases [2, 3]. Non-
binding peptides are generated of protein sequences with a randomized approach and a counter
check with known binding peptides. For learning and prediction of HLA-A0201 binding peptides
sequence based feature vectors are used. The LSM performs well for recognition and prediction
of A0201 binding peptides compared to well established methods like support vector machine
(SVM) [4]. Due to regularization terms the LSM performs good even in situations where learning
data sets are small compared to the size of the available parameters or very asymmetric learning
sets regarding the composition between binding and non-binding peptides. In the case of asym-
metric learning sets it even can outperform the SVM.
For a in depth understanding of the binding of peptides to HLA-A0201 several crystal structures
of this allele together with di�erent ligand peptides bound have been examined in this work.
Furthermore the results have been compared to crystal structures containing besides the HLA-
A0201 and the ligand peptide a T-Cell receptor (TCR) attached. For allele A0201 it could be
found that N- and C- terminal residues of the bound peptide are closely attached to the HLA
protein, while the central part is more �exibel to move in the HLA binding groove. The central
part of the ligand peptide interacts predominantly with an attached TCR.
The Comparative Evaluation of Prediction Algorithms 2006 (CoEPrA) [5] is a competition for
classi�cation in machine learning. In four classi�cation tasks learning and prediction sets of pep-
tides were provided, which can be used for a binding prediction. Each data set provides sequence
and physico-chemical features such that both type of descriptors could be used for the LSM. With
sequence based features and a feature reduction based on principle component analysis (PCA)
rankings in the top or middle �eld of the competition have been reached using the LSM. The
application of the physico-chemical features required a strategy of feature reduction or selection
since 643 physico-chemical features are provided per residue position. For feature reduction a
lambda regularization term or the PCA was used. Results for the four di�erent CoEPrA tasks
achieved by the application of feature reduction and physico-chemical features are similar to the
results obtained from the usage of sequence based features.
In the last part of this work a genetic algorithm (GA) is used for feature selection on the example
of the four CoEPrA tasks. Small sets of features are selected to perform learning and prediction
based on the LSM approach. The GA is generating a number of these feature sets called indi-
viduals. At the end of a GA run an enrichment of good performing feature sets can be observed.
The di�culty to discriminate between good performing individuals and individuals, which show
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learning by heart could not be solved reliably with di�erent approaches tested in this work. Best
performing individuals, which are generated for all four CoEPrA tasks are capable to reach a top
ranking in the competition but it was not possible to identify those individuals with a satisfying
accuracy.

Zusammenfassung

In der vorliegenden Arbeit werden Algorithmen vorgestellt, die zur Bindungsklassi�zierung von
Peptiden als mögliche Liganden benutzt werden. Die Di�erenzierung zwischen bindenden und
nichtbindenden Peptiden ist in der Biochemie und der medizinischen Chemie von besonderer Be-
deutung. In dieser Arbeit werden immun aktive Peptide (Antigene) untersucht, die an das Human
Leukocyte Antigen (HLA) des Typs A-0201 binden. Dieser Komplex ist Teil des menschlichen
Immunsystems und dient zur Erkennung und Abwehr von fremden Proteinen in körpereigenen
Zellen. Die Klassi�zierung der Peptide erfolgt durch die Methode der kleinsten Quadrate (LSM),
die auf dem Verfahren der linearen Discrimianzanalyse nach Fisher basiert. Die Methode trainiert
bekannte bindende und nichtbindende Peptide, um charakteristische Muster zu lernen und zu ve-
rallgemeinern. Die Peptide werden durch Merkmale, sogenannte Feature zu Deskriptoren zusam-
mengefasst, welche mit den Vorhersageklassen (hier bindend und nichtbindend) korreliert werden
sollen. Als Feature können sequenzbasierte Feature, physiko-chemische Feature oder andere nu-
merische Feature wie "pharmacophore Fingerprints" benutzt werden. Im ersten Teil der Arbeit
werden Sequenzen bekannter HLA-A0201 bindender Peptide aus ö�entlich zugänglichen Daten-
banken extrahiert. Nichtbindende Sequenzen werden zufällig aus der Sequenz von Proteinen
generiert und um bekannte bindende Sequenzen bereinigt. Die erreichte Vorhersagegenauigkeit
wird mit der alternativen Methode "Support Vector Machine" (SVM) verglichen. Im direkten
Vergleich erreicht die LSM Methode eine ähnlich gute Wiedererkennungs- und Vorhersagege-
nauigkeit wie die SVM. Der Regularisierungsparameter λw verhindert das Auswendiglernen von
kleinen Lerndatensätzen, wenn die Zahl der verwendeten featurebasierten Parameter hoch ist.
Bei asymmetrischen Lerndatensätzen, wo sehr viel mehr Daten einer Klasse vorhanden sind,
kann die LSM dank des Gewichtungsfaktors w+ die SVM ausspielen. Vorhersage- und Wieder-
erkennungsrate sind in diesem Fall bei der LSM besser, können bei der SVM jedoch durch eine
manuelle Korrektur ausgeglichen werden.
Im zweiten Teil der Arbeit werden Kristallstrukturen von HLA-A0201 mit gebundenen Peptiden
unterschiedlicher Sequenz untersucht und verglichen mit Kristallstrukturen von HLA-A0201 die
neben dem Peptidliganden einen gebundenen T-Zellrezeptor (TCR) enthalten. Für die Bindung
des Peptids an das HLA-A0201 spielen Wechselwirkungen mit den N- und C- terminalen Pep-
tidresiduen eine groÿe Rolle. Die zentralen Residuen des Peptids weisen eine erhöhte Flexibilität
in der Bindungstasche des A0201 Proteins auf. Dieser zentrale Bereich um die Positionen 4,
5 und 6 wechselwirkt mit einem vorhandenen TCR. Dabei werden Wechselwirkungen zwischen
TCR und den Seitenkettenatomen des Peptids eingegangen.
Im letzten Teil der Arbeit werden Datensätze aus dem Bindungsvorhersagewettbewerb CoEPrA
2006 mit der LSM Methode untersucht. CoEPrA 2006 stellt in vier Klassi�kationsaufgaben Lern-



III

und Vorhersagedatensätze von Peptiden mit Sequenzdaten und jeweils 643 physiko-chemische
Feature pro Sequenzposition zur Verfügung. Anhand von sequenzbasierten Features und einer
Featurereduktion mittels λw-Regularisierung oder Principle Component Analysis (PCA) wer-
den Vorhersageergebnisse erzielt, die für eine Platzierung im Mittelfeld bis oberen Drittel des
Teilnehmerfeldes von CoEPrA2006 reichen. Ähnliche Ergebnisse lassen sich mit den physiko-
chemischen Features und einer Featurereduktion erreichen. Mithilfe eines genetischen Algorith-
mus (GA) wird Featureselektion anhand der physiko- chemischen Feature der CoEPrA Daten-
sätze betrieben, um eine gezielte Reduktion des Parameterraumes zu erreichen. Dabei werden
kleine Sätze von Features ausgewählt, die für die LSM zum Lernen und zur Vorhersage verwen-
det werden. Der GA erzeugt eine Reihe solcher Featuresätze, die Individuen genannt werden.
Am Ende des GA wird eine Anreicherung von Individuen mit hoher bis guter Vorhersagege-
nauigkeit erzielt. Als Schwierigkeit stellt sich jedoch die Unterscheidung von Individuen mit
guter Vorhersagegenauigkeit und solchen Individuen, die auswendig lernen heraus, da Letztere
in der Wiedererkennung und damit in der Testvorhersage gute bis sehr gute Ergebnisse erzielen.
Die besten Individuen, die in den vier CoEPrA Aufgaben mit dem GA erzeugt werden sind gut
genug, um ein Topplatzierung in der Bestenliste der Teilnehmer zu erreichen. Jedoch erlaubt
keines der getesteten Verfahren in allen vier Aufgaben eine eindeutige Identi�zierung der guten
bis sehr guten Individuen aus der letzten Generation des GA.



IV



Contents

List of tables IX

List of �gures XI

List of abbreviations XIII

1 Introduction 1
1.1 Protein Ligand binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 In silico search for ligands . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Immune response in mammals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Major Histocompatibility Complex . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Machine learning and classi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Binding prediction of MHC antigens . . . . . . . . . . . . . . . . . . . . . 4

2 Material and Methods 7
2.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Protein-Peptide interactions . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Analysis of the MHC-peptide-TCR complex . . . . . . . . . . . . . . . . . 8

2.2 Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Acquiring Antigen peptides for HLA-A0201 . . . . . . . . . . . . . . . . . 9
2.2.2 Crystal structures used for structure comparison . . . . . . . . . . . . . . 11
2.2.3 CoEPrA data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Structural analysis of HLA-A*0201 . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Choice of the scoring function . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2a Data representation . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2b The linear scoring function . . . . . . . . . . . . . . . . . . . . . 13
2.3.2c Least square optimization . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2d Weighting and regularization . . . . . . . . . . . . . . . . . . . . 14

2.3.3 Quadratic scoring function . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.4 Cholesky versus LU decomposition . . . . . . . . . . . . . . . . . . . . . . 15
2.3.5 Protocol describing the prediction strategy . . . . . . . . . . . . . . . . . . 16
2.3.6 Support Vector Machine (SVM) . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.7 Matthews Correlation Coe�cient (MCC) . . . . . . . . . . . . . . . . . . 18
2.3.8 Feature Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.9 Feature Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.9a Principle Component Analysis (PCA) . . . . . . . . . . . . . . . 21
2.3.9b Single Feature Performance . . . . . . . . . . . . . . . . . . . . . 22

V



VI CONTENTS

2.3.9c Introducing feature groups . . . . . . . . . . . . . . . . . . . . . 23
2.3.10 Antipode Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.11 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.11a Preventing learning by heart during GA . . . . . . . . . . . . . . 25
2.3.11b Genetic operations . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.11c Random selection of features in the GA uses weight bias . . . . . 27
2.3.11d Removing identical feature sets . . . . . . . . . . . . . . . . . . . 27
2.3.11e Scoring of individuals . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.11f Parameters to tune the GA . . . . . . . . . . . . . . . . . . . . . 30

2.3.12 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.13 Similarity of learning and prediction data sets . . . . . . . . . . . . . . . . 32

2.4 Alternative methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.1 Hidden Markov Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.2 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Results 35
3.1 Structure analysis of peptide bound HLA-A0201 complexes . . . . . . . . . . . . 35

3.1.1 Superposition of A0201 binding pockets of di�erent crystal structures . . . 35
3.1.1a Structures without TCR . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.1b Structures cocrystallized with TCR . . . . . . . . . . . . . . . . 38
3.1.1c How do deca-peptides align ? . . . . . . . . . . . . . . . . . . . . 39

3.1.2 Intermolecular contact distances . . . . . . . . . . . . . . . . . . . . . . . 41
3.1.2a Crystal structures without TCR . . . . . . . . . . . . . . . . . . 41
3.1.2b Crystal structures with TCR present . . . . . . . . . . . . . . . . 44

3.1.3 Comparison of peptide binding in HLA-A0201 structures with and without
TCR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.4 Conserved contact residues of the HLA-A0201 α-chain . . . . . . . . . . . 49
3.1.5 Discussion and summary of section 3.1 . . . . . . . . . . . . . . . . . . . . 50

3.2 Linear Scoring function and Support vector machines . . . . . . . . . . . . . . . . 52
3.2.1 An example for deriving parameters of LSM and SVM . . . . . . . . . . . 52
3.2.2 Recognition and prediction on a prototypical example . . . . . . . . . . . 52
3.2.3 In�uence of the weighting parameter w+ and the regularization parameter

λw for the LSM results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.4 Behavior of the scoring functions in recognition and prediction . . . . . . 57
3.2.5 Reassessment of the composition of the learning data sets . . . . . . . . . 59
3.2.6 Quality control via Receiver Operating Characteristics Curve . . . . . . . 60
3.2.7 Quality control by statistical survey . . . . . . . . . . . . . . . . . . . . . 61
3.2.8 Discussion and summary of section 3.2 . . . . . . . . . . . . . . . . . . . . 62

3.3 CoEPrA 2006 competition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3.1 Ranking of the competitors for CoEPrA 2006 tasks 1-4 . . . . . . . . . . . 64
3.3.2 Submitted individual results . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3.2a Classi�cation task 1 . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.3.2b Classi�cation task 2 . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.3.2c Classi�cation task 3 . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.3.2d Classi�cation task 4 . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.3.2e Summary of submitted results . . . . . . . . . . . . . . . . . . . 67

3.3.3 Optimized predictions for CoEPrA classi�cation tasks . . . . . . . . . . . 68
3.3.3a Magnitude of eigenvalues for task CoEPrA task 3 . . . . . . . . 71



CONTENTS VII

3.3.3b Hand optimized results for CoEPrA classi�cation 1-4 . . . . . . . 73
3.3.3c Feature selection for the task of CoEPrA-1 . . . . . . . . . . . . 73

3.3.4 Discussion and summary of section 3.3 . . . . . . . . . . . . . . . . . . . . 75
3.4 Feature selection on the example of the CoEPrA tasks . . . . . . . . . . . . . . . 77

3.4.1 Single feature performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.4.2 Feature preselection by the antipode algorithm . . . . . . . . . . . . . . . 79
3.4.3 Feature selection by the Genetic algorithm (GA) . . . . . . . . . . . . . . 82

3.4.3a Evaluation of the GA results . . . . . . . . . . . . . . . . . . . . 84
3.4.4 Discussion and summary of section 3.4 . . . . . . . . . . . . . . . . . . . . 86

3.5 Post-processing of the GA optimized �nal generation . . . . . . . . . . . . . . . . 88
3.5.1 Selection of successful individuals . . . . . . . . . . . . . . . . . . . . . . . 88
3.5.2 Molecular data set similarities to guide the selection of individuals . . . . 89
3.5.3 PCA applied to selected individuals to improve the prediction . . . . . . . 92
3.5.4 Discussion and summary of section 3.5 . . . . . . . . . . . . . . . . . . . . 96

4 Summary and Outlook 99
4.1 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

A Material 101
A.0.1 Position dependent amino acid distribution in the set of binding HLA-

A0201 peptides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
A.1 Features used for CoEPrA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
A.2 CoEPrA classi�cation datasets without featurevectors . . . . . . . . . . . . . . . 104

Bibliography 111

Publications 117



VIII CONTENTS



List of Tables

2.1 Amino acid probability distributions . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 A0201 crystal structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 CoEPrA 2006 data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Quality indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 Deviations of arranged pMHC structures . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Deviations of arranged pMHC/TCR complexes . . . . . . . . . . . . . . . . . . . 36
3.3 Residue speci�c RMSD of overlayed pMHC structures . . . . . . . . . . . . . . . 36
3.4 Residue speci�c RMSD of overlayed pMHC/TCR complexes . . . . . . . . . . . . 38
3.5 Deviations of arranged pMHC complexes with deca-peptides . . . . . . . . . . . . 40
3.6 Atom-atom contacts of 1AKJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.7 Atom-atom contacts of 1QEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.8 Atom-atom contacts of 1HHI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.9 Atom-atom contacts of 1HHJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.10 Atom-atom contacts of 1HHG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.11 Atom-atom contacts of 1DUZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.12 Atom-atom contacts of average pMHC pattern . . . . . . . . . . . . . . . . . . . 44
3.13 Atom-atom contacts of 1AO7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.14 Atom-atom contacts of 1BD2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.15 Atom-atom contacts of 1QSF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.16 Atom-atom contacts of 1QSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.17 Atom-atom contacts of 1LP9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.18 Atom-atom contacts of average pMHC/TCR pattern . . . . . . . . . . . . . . . . 47
3.19 A0201 residues from pMHC to form hydrophilic contacts with peptides . . . . . . 50
3.20 A0201 residues from pMHC/TCR to form hydrophilic contacts with peptides . . 50
3.21 Optimized parameters ~w of the LSM and linear parameters for SVM . . . . . . . 53
3.22 Missclassi�ed peptides for di�erent weights w+ of the scoring function . . . . . . 55
3.23 Statistical recognition and prediction results for LSM and QSM . . . . . . . . . . 61
3.24 Results for CoEPrA 2006 classi�cation task 1 . . . . . . . . . . . . . . . . . . . . 64
3.25 Results for CoEPrA 2006 classi�cation task 2 . . . . . . . . . . . . . . . . . . . . 65
3.26 Results for CoEPrA 2006 classi�cation task 3 . . . . . . . . . . . . . . . . . . . . 65
3.27 Results for CoEPrA 2006 classi�cation task 4 . . . . . . . . . . . . . . . . . . . . 66
3.28 Hand optimized CoEPrA results . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.29 Results from GA run for optimized parameters of CoEPrA tasks 1-4 . . . . . . . 83
3.30 Example of best ranked �nal generation individuals with indicator values . . . . . 89
3.31 Average similarity between CoEPrA data sets . . . . . . . . . . . . . . . . . . . . 90
3.32 Individuals ranked for PCA on the example of CoEPrA-1 . . . . . . . . . . . . . 94
3.33 PCA for selected individuals of all 4 CoEPrA classi�cation contests . . . . . . . . 95

IX



X LIST OF TABLES

A.1 A0201 binding sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
A.2 proteins used to generate A0201 nonbinders . . . . . . . . . . . . . . . . . . . . . 102
A.3 Amino acid distribution of HLA-A0201 binding set . . . . . . . . . . . . . . . . . 103
A.4 Coepra data sets problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
A.5 Coepra data sets problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
A.6 Coepra data sets problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
A.7 Coepra data sets problem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110



List of Figures

1.1 MHC-peptide-TCR crystal structure from 1AO7 . . . . . . . . . . . . . . . . . . 3
1.2 Suggested anchor positions in the HLA-A0201 binding pocket . . . . . . . . . . . 5

2.1 Amino acid properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Key residues of A0201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Section MHC showing the binding pocket . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Prediction procedure using �xed features. . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Separating Hyperplane H0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Feature vector types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.7 Genetic operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.8 Random weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.9 Genetic cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.10 Overview of feature treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.11 HMM model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Overlayed peptides of superimposed pMHC structures . . . . . . . . . . . . . . . 37
3.2 Overlayed peptides of superimposed pMHC structures with TCR present . . . . . 38
3.3 Overlayed peptides of 1AO7 and 1BD2 structures with TCR present . . . . . . . 39
3.4 Deca-peptide from 2CLR after superposition of HLA chains with nonapeptide

from 1AKJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 Deca-peptide from 1HHH after superposition of HLA chains with nonapeptide

from 1AKJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.6 Deca-peptide from 1I4F after superposition of HLA chains with nonapeptide from

1AKJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.9 Di�erent weights w+ e�ect the scoring function . . . . . . . . . . . . . . . . . . . 55
3.10 Prediction performance depending on λw and learning set size . . . . . . . . . . . 56
3.11 Comparison of di�erent scoring functions . . . . . . . . . . . . . . . . . . . . . . . 58
3.12 ROC plots for LSM and SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.13 CoEPrA 1 e�ective parameters for sequence vectors . . . . . . . . . . . . . . . . . 68
3.14 CoEPrA 1 e�ective parameters for physico-chemical features . . . . . . . . . . . . 69
3.15 CoEPrA 1 lambda dependence of sequence vectors and physico-chemical features 70
3.16 CoEPrA 3 PCA analysis and eigenvalue magnitude using sequence features . . . 71
3.17 CoEPrA 3 PCA analysis and eigenvalue magnitude using physico-chemical features 72
3.18 Feature selection on base of 7 feature set for CoEPrA 1 . . . . . . . . . . . . . . . 74
3.19 Single feature recognition performance for CoEPrA-1 . . . . . . . . . . . . . . . . 77
3.20 Coverage of learning peptides by the feature set of Wuju for CoEPrA-1 . . . . . . 79
3.21 Quadratic and linear features in three feature groups ordered by recognition per-

formance for CoEPrA-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

XI



XII LIST OF FIGURES

3.22 Quadratic and linear features after antipode �ltering in three feature groups or-
dered by recognition performance for CoEPrA-1 . . . . . . . . . . . . . . . . . . . 81

3.23 Antipode grouped features recognize peptide classes di�erently for CoEPrA-1 . . 82
3.24 Correlations of MCC(tL) and MCC(tP) versus <MCC(aT)> for CoEPrA-1 . . . 84
3.25 Correlations of MCC(tL) and MCC(tP) to minimum MCC(aT) for CoEPrA-1 . . 85
3.26 Time evolution of recognition and prediction performance in the GA . . . . . . . 85
3.27 CoEPrA similarity distributions for di�erent feature sets . . . . . . . . . . . . . . 91
3.28 CoEPrA-2 similarity for individuals between data sets . . . . . . . . . . . . . . . 93



Abbreviations

.

aa amino acid

aL (average) test Learning set

aT (average) Test prediction set

AUROC Area Under ROC Curve

CoEPrA Comparative Evaluation of Prediction Algorithms

ERAP I Endoplasmatic Reticulum AminoPeptidase I

F 0 neutral group of features (balanced recognition)

F + positive group of features (pref. binders recognition)

F − negative group of features (pref. non-binders recognition)

FN False Negatives

FP False Positives

GA Genetic Algorithm

HMM Hidden Markov Models

HLA Human Leukocyte Antigen (human type of MHC)

IBS Independent Binding of Side-chains

L+ binding peptides from the learning set

L- non-binding peptides from the learning set

LSM Least Square (optimization) Method

LMCC MCC value obtained for the learning set

MCC Matthews Correlation Coe�cient

MHC Major Histocompatibility Complex

min minimum value

P+ binding peptides from the prediction set

P- non-binding peptides from the prediction set

XIII



XIV List of abbreviations

.

P* all peptides from the prediction set

PCA Principle Component Analysis

PDB Protein DataBase

pMHC Major Histocompatibility Complex with ligand peptide bound

QSM least Square Method with (additional) Quadratic terms

RMS Root Mean Square

RMSD Root Mean Square Deviation

ROC Receiver Operating Characteristic

SVD Singular Value Decomposition

SVM Support Vector Machine

TCR T-Cell Receptor

tL true Learning set

TN True Negatives

TP True Positives

tP true Prediction set

var variance of values



Chapter 1

Introduction

1.1 Protein Ligand binding

One major challenge in modern life sciences is to understand how protein complexes interact
with ligands that trigger di�erent kinds of responses on the molecular level inside of living cells.
The main focus of interest is the receptor ligand binding, which is part of numerous molecular
mechanisms i.e. the opening of ion channels, the initialization of the biosynthesis of transmitter
molecules or the triggering of the immune response in mammals. Common to all those mech-
anisms is the docking of the ligand molecule into the binding pocket of the target compound,
the receptor. On the atomic level the binding of two molecules is based on formation of numer-
ous hydrogen bonds, electrostatic interactions and van der Waals interactions of hydrophobic
regions. It is known that in some cases after the binding event the receptor molecule undergoes
conformational changes which �nally allow the actual mechanism to proceed. This process is
called induced �t.
Modern medicine tries to mimic known ligands to receptors to induce certain physiological ef-
fects. Some drugs bind for instance to neuronal receptors in the brain and stimulate the emission
of neurotransmitters. The demand of intermolecular interactions can go into both directions, to
stimulate the physiological response by drug analoga (agonists) or to inhibit the stimulation
by blocking the receptor and prevent the binding of cellular agonists (antagonist). Thus the
understanding and design of binding ligands to a speci�c receptor protein is important for the
development of new drugs. As there are usually millions or more possible candidates of ligands
to �nd ligands that bind e�ciently is evidently a di�cult task.

1.1.1 In silico search for ligands

Since many years scientists use a computational approach to search for e�ective ligands in order
to minimize time and costs of drug screening in the laboratory. Several methods were developed
using di�erent strategies.

Docking simulations use physical descriptions on the molecular level trying to �t a com-
pound into the (supposed) active region of the receptor protein. A score based on the energy of
the system, mainly Gibbs free energy ∆G, is calculated and has to be minimized. If available
crystal structures of the ligand bound receptor molecules are used as starting conformation for
the model of the active site of the receptor. The conformations of ligand and receptor molecule
play an important role in �nding optimal �ts. New ligands can be derived from partially modi�ed
known binders. Besides the di�culty of identifying the binding pocket of the receptor and the
optimal orientation of the ligand within this pocket, the �exibility of ligand and receptor raises

1
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the need to investigate hundreds to thousands of di�erent conformations of the molecules.

Indirect drug design is a similar approach to the direct drug design method of docking
simulations, but without the explicit and implicit use of information of the receptor molecule.
The idea is to use a number of known agonists and/or antagonists to �nd structural similarity of
those molecules. Any potential ligand will be compared in terms of structural similarity to known
ligands and scored. This method therefore requires knowledge about the 3D structure of a num-
ber of ligands known to interact with the receptor. If several binding modes of the ligand to the
receptor are possible, a clustering of di�erent ligands with respect to their favored binding modes
has to be performed. As indirect drug design is not taking the binding pocket of the receptor
into consideration, but just compares ligands, no information about the docking geometry is used.

For classi�cation of molecules into binding or non binding classes knowledge based meth-
ods use descriptors of the ligands such as sequence information (if the ligands are peptides),
physicochemical properties or pharmacophore �ngerprints. It is essential for this methods to
have a large number of known binding and non-binding ligands. In general this set of known
ligands is partially used to train (learn) the method, while the other part is used to control the
learning progress. Many di�erent approaches are used for learning such as neuronal nets, hidden
markov models, support vector machines, decision trees and other scoring functions.

1.2 Immune response in mammals

The main task of the immune system is to recognize infected or pathological modi�ed cells and
to destroy them. The adaptive immune system in mammals use the detection of foreign peptide
pattern recognized by lymphocytes.

1.2.1 Immune response:
Major Histocompatibility Complex

The Major Histocompatibility Complex (MHC) is a class of membrane proteins of the immune
system in mammals. They play an important role in the detection of alien proteins inside of cells.
Two classes of MHC have to be di�erentiated. MHC class I is present in almost every type of cell
of the organism while class II is expressed on antigen presenting cells only. Class-I type MHCs
are highly diverse and can be divided into several types and subtypes. In contrast to MHC class
II proteins, MHC class I types are binding shorter peptide fragments of a more conserved length.
One well known MHC class-I representative is the Human Leukocyte Antigen (HLA) subtype
A0201 which is part of the HLA*02 main type. Every human individual has three di�erent gene
loci from each parent to express di�erent MHC class I proteins. With respect to the gene loci,
the MHC class I proteins are called HLA -A,-B or -C. As the loci are very polymorphic, for every
loci a number of allels are known. Allels are referred in the following as types or subtypes. Every
subtype has a di�erent speci�city against antigens, which are ligand peptides from the host cell.

The antigens are proteolytic degraded endogenous protein fragments, which characterize the
protein pool present in the host cell like a �ngerprint. Proteosomes cleave tagged proteins to
form precursor peptides in the cytosol. Those 9-15 residue long peptides will be transported
into the endoplasmatic reticulum via TAP transporter where the enzyme endoplasmatic reticu-
lum aminopeptidase I (ERAP I) trims single residues from the N-terminal end of the precursor
peptides [6]. If a peptide length of 8-9 residues is reached those peptides can be �loaded� into the
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Figure 1.1: MHC-peptide-TCR crystal structure from 1AO7. Red and blue chains belong to
HLA-0201 α and β chain, yellow and orange chains are part of the TCR. The bound peptide is
colored in green.

MHC molecule. Finally the MHC-peptide complex is moving to the outer cell surface where it
presents the ligand to T-cell receptor proteins (TCR), part of cytotoxic T-cells, which are screen-
ing the cell surface for those complexes. Each cell presents thousands of MHC-peptide complexes,
which interact with the TCR. During this interaction the peptide ligand is temporary buried by
both proteins (as shown in �gure 1.1). Speci�c antigens presented to the TCR are stimulating
the secretion of cytokins [7][8][9]. Since each T-cell screens many MHC-peptide complexes at the
same time a multiple positive stimulation can trigger the immune response and lead to cytolysis
of infected cells. Similar to the diversity of the MHC types in the human organism, the TCR
is highly diverse as it is randomly recombined of TCR-αβ genetic segments [10]. Ripening and
selection of the TCR types occurs in the thymus [11].

1.3 Machine learning and classi�cation

The terminology of machine learning covers many di�erent methods such as neuronal networks,
hidden Markov models (stochastic models), support vector machines, linear scoring functions and
many more. All those methods have in common that description values have to be correlated
with expectation / observation values. A learning data set is used to train the algorithm before
it will be able to generalize correlation rules and to predict untrained data. To predict untrained
data the trained system has to be provided with the description data of the prediction set.
A typical learning task is the classi�cation of data. Other than the regression of data where i.e.
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a binding constant is correlated to description values, the classi�cation associates the description
values to a limited number of observation states called classes. One example for a classi�cation
is the prediction of secondary structures in proteins. Typical structure motifs to discriminate
are helix-, strand- and coil structures. The di�culty to compute multi-class predictions can
be solved by de�ning three classes - helix, strand and coil - and treat the problem as three
2-class predictions. An example of a two-class classi�cation problem is the binding prediction
between ligands and receptor molecules. With a regression approach the prediction results can be
understood as binding constants or binding probabilities of the ligand-receptor complex, while
the classi�cation approach discriminates between binding class (+1) or non-binding class (-1)
ligands only.
For knowledge based classi�cation it is important that the results to be expected can essentially
depend on the quality and the completeness of the input training data [12]. The same is true
for the features used to describe the data. When the features are compared to the vocabulary
of a language, one would fail to gather information, which is necessary for classi�cation, if the
language used is not expressive enough. This is crucial, when it comes to feature selection
with the genetic algorithm (see section 2.3.11), but it is also valid for any kind of classi�cation
algorithm.

1.3.1 Binding prediction of MHC antigens

This Ph.D. thesis focus on the binding prediction of ligands to MHC class I complex and in
particular using subtype HLA-A0201 peptides. The method for prediction, which is presented in
this work, was expanded to a more general level such that it is easily possible to apply it for any
kind of drug/ligand-receptor binding classi�cation. Although the main focus here are peptide
ligands, any other synthetic ligands can be used as long as describing features can be derived for
each ligand.
In the beginning of the studies for this Ph. D. work neuronal networks were used to classify
binding ligands. The training mode of this method is time consuming and this heuristic approach
is not computing exact solutions. Thus another approach using a linear scoring function based
on Fisher's linear discriminant [13] was favored. The scoring function is derived by solving an
optimized linear equation system de�ned by a symmetric "m by m" weight matrix. Each weight
represents the occurrence of a certain feature pairing in the learning set. The expectation value
de�ning the class of the molecule is correlated to this feature pattern. Historically simple hand
optimized coe�cient weight matrices have been introduced after performing binding studies on
MHC-peptide complexes [14] [15] [2] trying to assign certain weights for a given amino acid
type on a speci�c residue position of the bound peptide. This proceedure was supported by
the commonly accepted IBS (Independent Binding of Side-chains) hypothesis [15][16], which
assumes that neighboring residues have mainly no in�uence on the amount of binding strength
accommodated by a single residue. IBS postulates that each residue position can be considered
independent from neighboring residues, since almost no sidechain - sidechain interactions of
ligand peptide residues occur.
To collect binding antigen peptides of HLA subtypes, publicly available MHC ligand (epitope)
databases like SYFPEITHI [2] and MHCPEP [3] were used for this work. For non-binding
peptides random sequences were generated implicitly �ltering out those sequences listed in one
of the speci�ed databases of binders. The right distribution between binding and non-binding
learning data is determining the quality of the �nal prediction since imbalanced learning sets
can cause problems [17] in generalization. Therefore a weighting factor was introduced (see sec.
2.3.2d).



1.3. MACHINE LEARNING AND CLASSIFICATION 5

Alternatively binding constants determined by experimental binding studies can be used to
separate ligands into classes of binding or non-binding peptides. For classifying peptides in this
way, one has to de�ne a threshold binding constant separating good from bad binders. This
classi�cation approach was used for the CoEPrA competition [5].

Figure 1.2: Anchor positions for ligand peptides in the HLA-A0201 binding pocket as suggested
by Saper et. al. [18]. See also section 2.1.2 on page 8
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Chapter 2

Material and Methods

2.1 Basics

2.1.1 Protein-Peptide interactions

Figure 2.1: Characteristic properties of amino acids

Proteins and peptides are assembled out of smaller building blocks, the amino acids (aa). The
amino acids are linked through amide bonds, which are formed in between the α- carboxyl and
α-amino moiety of two amino acids. The amide bonds, also known as peptide bonds, in nature
never occur between side chain and backbone atoms. Thus, the order of amino acids linked in a
protein or peptide chain is always sequential and not branched. The basis set of nature contains
20 di�erent amino acids, all of them di�ering in their side chains providing them with di�erent

7
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physico-chemical properties. Large hydrophobic side chains of amino acids are more likely buried
in a protein than exposed to an aqueous surface while hydrophilic side chains favor the contact
with water or other polar environments. Atoms of side chains of amino acids interact with each
other as described by the Lennard Jones potential where uncharged atoms interact via long
range attractive and short range repulsive forces. Charged or partially charged atoms interact
via electrostatic interactions described by Coulomb's law. Polar atoms can i.e. form hydrogen
bonds if a donor atom with covalently bounded hydrogen interacts with a hydrogen acceptor
group. Hydrogen bond donors are amid-, hydroxy- or sulfuryl-groups at a certain distance to
an acceptor nitrogen or oxygen atom. Salt bridges are formed by residues with opposite charges
(acidic and base residues), which are in close contact. All those atom interactions contribute
to the folding of di�erent structural motifs of neighboring residues. Common structural motifs
are α-helix, β-strand or coil structures. These motifs are called secondary structure elements
and usually occur various times in each protein. Proteins can consist of several peptide chains
possibly linked by hydrogen bonds or sulfur bridges between cysteine residues.

2.1.2 Analysis of the MHC-peptide-TCR complex

To evaluate the characteristics of the MHC-peptide the crystal structures with or without bound
ligand peptide can be examined. Furthermore, there are crystal structures available with TCR
attached to the MHC-peptide complex [19]. Residue speci�c interactions between MHC binding
pocket and antigen ligand can be compared if several crystal structures with the same type of
MHC are cocrystallized with di�erent ligand peptides. This is the case for the A*0201 subtype of
HLA. To deal with di�erent types of atom-atom interactions, atom pair distances are measured
within a speci�c cuto� threshold and it is discriminated between partially charged polar atoms
and uncharged atoms. These atom-atom contacts are classi�ed depending on whether they
involve side chain or backbone of an amino acid. Side chain atom contacts are residue type
speci�c whereas backbone atom contacts are more unspeci�c to the type of amino acid.
The MHC class I of type HLA-A2 has a binding groove in the α-chain of the protein, designed
to bind a polypeptide chain of eight to ten residues length. For HLA-A2 it is believed that the
common binding mode allows nine residues to be bound in the binding groove, while central
residues of longer chains might loop out of the pocket such that terminal residues are covered
completely in the binding groove of HLA-A2. The binding groove is �anked by two α-helices,
one on each side, while the bottom of the groove is limited by a β-sheet structure composed of
antiparallel beta strands (as shown in �g. 2.3). It is known that the binding groove of MHC
type HLA-A0201 contains six anchors positions labeled A to F [18] (see �g. 1.2 on p.5). All
anchors are located at the junction of the β-sheet and an α helix (B through E) or between the
two α-helices (A and F). Anchor postions B and F are responsible of binding HLA-A0201 key
residues 2 and 9 [20]. Key residues are those sequence positions where the amino acid type is
highly conserved, such that it can be assumed that these residue types are important for the

Figure 2.2: Highly conserved key positions for HLA-A*0201 are position 2 and 9.
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binding of the peptides to the MHC. Accordingly at position 2 and 9 HLA-A*0201 antigens
contain preferably hydrophobic residues like Leucin and Valine.

Figure 2.3: Section of the α-chain of MHC HLA-A*0201 showing the binding pocket with bound
peptide (ball-and-stick model) (from 1AO7)

2.2 Material

2.2.1 Acquiring Antigen peptides for HLA-A0201

Knowledge based classi�cation methods require a number of positive and negative examples
to train the system. For binding predictions this means it is required to have data of ligands
known to bind and data of poor binders. For the present work two available databases of MHC
ligands (epitopes) for di�erent MHC/HLA receptors were used: SYFPEITHI [2] and MHCPEP
[3]. For HLA-A0201 those antigen peptides were selected consisting of exactly nine residues to
be comparable. All unique sequences of those two databases were combined to one �le of HLA-
A0201 binders. Unfortunately I was initially not able to �nd any data of ligands with a weak
binding a�nity. In the meantime, those databases are available [12]. Two di�erent strategies
were used to derive sets of non-binding peptides. From the sequence pool of known proteins of
all di�erent kinds, random sequence fragments of nona-peptides were generated. Out of those
peptide sequences known ligands with a�nity to A0201 are discarded. The remaining random
sequences may contain a certain percentage of binding antigens, but their number is negligible
compared to the total number of sequences. In principle, this method can generate a very large
number of pseudo non-binders. The second strategy was to use HIV-protein sequences, which
have been used for screening experiments to understand which sequence fragments bind to which
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type of HLA molecules. If all sequence fragments found to bind HLA-A0201 are removed from
the sequences of the proteins, the remaining sequences can be used to deduce true non-binding
nona-peptides as described above. Using this approach, the total number of possible non-binding
sequences is low compared to the �rst method of arti�cial generation of non-binders and the
sequence space considered is more incomplete but all resulting sequences are true non-binders.
In September 2003 268 antigen peptides for A0201 were listed in SYFPEITHI where 204 of those
sequences possessed the canonical length of 9 residues. All SYFPEITHI peptides were aligned
in the way they bind to the MHC binding site. All remaining 64 antigen peptides of a length
longer than 9 residues were chopped to the appropriate length of nine residues such that their
alignment matched with those regular nona-peptides for the MHC binding site. The MHCPEP
database contained 506 antigen peptides to bind A0201. In di�erence to SYFPEITHI, those
peptides were not aligned such that only nona-peptides were considered. Merging the two sets of
antigen peptides and removing identical peptides from the set the total binding set S+ yielded
538 peptides (listed in Appendix table A.1).
Since no database lists explicit non-binding peptides for MHC subtypes, randomly chosen nona-
peptides were used assuming that they are unlikely to bind A0201. For the non-binding set S−
10,000 di�erent nona-peptides were randomly chosen from concatenated sequences of 202 proteins
selected from the protein database (see Appendix table A.2). All known binding sequences for
A0201 were removed. The occurrence probability for all 20 amino acid types in the sequence
data of all designated 10,000 non-binding peptides is similar to the distribution of other sequence
databases containing protein sequences of vertebrates [21], but di�ers in some amino acid types
(Ala, Arg, Asp, Glu, Leu, Lys, Val) (see table 2.1).

amino in non-
acid modern binding binding
type vertebrates 1 peptides 2 peptides 3

Ala 0.078 0.074 0.110
Arg 0.063 0.047 0.027
Asn 0.034 0.048 0.027
Asp 0.054 0.056 0.027
Cys 0.008 0.018 0.013
Gln 0.032 0.039 0.027
Glu 0.086 0.064 0.039
Gly 0.073 0.076 0.063
His 0.019 0.024 0.019
Ile 0.067 0.055 0.067

amino in non-
acid modern binding binding
type vertebrates peptides peptides

Leu 0.089 0.086 0.180
Lys 0.078 0.060 0.038
Met 0.024 0.020 0.024
Phe 0.036 0.042 0.046
Pro 0.044 0.048 0.046
Ser 0.047 0.066 0.054
Thr 0.049 0.058 0.048
Trp 0.010 0.017 0.013
Tyr 0.030 0.037 0.025
Val 0.082 0.066 0.110

Table 2.1: Amino acid probability distributions for di�erent sets

One limitation of these data presented by the databases SYFPEITHI and MHCPEP is a very
coarse separation of binders to nonbinders. There are no binding constants listed for the antigen
peptides, but yet they are classi�ed as binding peptides. It is known that entries added to the
database are taken from literature, mostly results from experimental research of binding studies.
This o�ers another possibility of acquiring data for binding and non-binding peptides for A0201.
Some groups have published results of binding studies providing binding constants [16][22].

1Probability of occurrence of amino acid types in modern vertebrates according to Ref. (25).
2Probability of occurrence of amino acid types in the 10,000 non-binding nona-peptides of set S−
3Probability of occurrence of amino acid types in the 538 binding nona-peptides of set S+
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2.2.2 Crystal structures used for structure comparison

To analyze and compare structures of the HLA-A*0201 complex, 14 crystal structures from the
pdb database [23] were used. Five of the 14 structures were cocrystallized with bound TCR
molecule and antigen nona-peptides [24, 25, 26, 19]. The remaining nine structures contain
solely antigen peptides bound to the MHC binding pocket (pMHC) [27, 28, 29, 30, 31]. In three
of these 9 structures antigen deca-peptides were bound, while for all other cases nona-peptides
were bound. The following table 2.2 provides an overview of the employed crystal structures.
The binding pockets of the A0201 complexes with di�erent ligand peptides were analyzed with
respect to contact distances to nearby residues. The presence of hydrogen bridges, salt bridges or
hydrophobic interactions were examined. To compare conformational changes of di�erent ligands
in the A0201 binding pocket, A0201 structures were superimposed such that the binding pockets
overlap. Results are shown in section 3.1.

source of antigen peptide
pdb ID TCR type antigen peptide length sequence

1AO7 A6 human from TAX 9 LLFGYPVYV
1BD2 B7 human from TAX 9 LLFGYPVYV
1QSF A6 human from TAX Y8A 9 LLFGYPVAV
1QSE A6 human from TAX Y8A 9 LLFGYPRYV
1LP9 AHII 12.2 mouse P1049 9 ALWGFFPVL
1DUZ none from TAX 9 LLFGYPVYV
1AKJ none HIV-1 peptide 9 ILKEPVHGV
1QEW none P01884 9 FLWGPRALV
1HHG none HIV-1 peptide 9 TLTSCNTSV
1HHI none in�uenza pro. pep. 9 GILGFVFTL
1HHJ none HIV-1 peptide 9 ILKEPVHGV
2CLR none pep. Calreticulin 10 MLLSVPLLLG
1I4F none melanoma antig.4 10 GVYDGREHYV
1HHH none hepatitis B pep. 10 FLPSDFFPSV

Table 2.2: Crystal structures used from pdb with HLA-A*0201 and antigen ligand bound

2.2.3 CoEPrA data

The Comparative Evaluation of Prediction Algorithms 2006 (CoEPrA) [5] provides data sets for
classi�cation (and regression) of di�erent ligand peptides. The CoEPrA competition is divided
into four classi�cation tasks. For each task one learning and one prediction data set is given. Each
data set contains a binding and non-binding set, providing peptide sequence, feature vectors as
molecular descriptor and class expectation value for each entry. The prediction data sets contain
only sequence and feature vectors, while the class expectation values are not provided. Each
residue position is described with 643 physico-chemical features, the entire peptide of n residues
length therefore results in n · 643 features. Most of the features are extracted from the AAindex
database [32] (see Appendix A.1 for more information). Table 2.3 lists di�erent classi�cation
tasks from CoEPrA 2006 together with the distribution of the data sets. All tasks except of
number 4 show a symmetrical distribution between binding and non-binding data.
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no. of type of length of no. of no. of peptides in sets
task class sequence features learning predictiona

problem 1 + 9 5787 44 44
- 9 5787 45 44

problem 2 + 8 5144 37 38
- 8 5144 39 38

problem 3 + 9 5787 67 67
- 9 5787 66 66

problem 4 + 9 5787 19 19
- 9 5787 92 92

adivision into classes was not known in advance for the prediction set

Table 2.3: CoEPrA 2006 data sets, classi�cation tasks 1 - 4

2.3 Methods

2.3.1 Structural analysis of HLA-A*0201 binding pocket and bound peptides

To understand the binding mode for peptide ligands in the binding pocket of A0201 all complexes
with and without cocrystallized TCR are separately superimposed using the Kabsch algorithm
[33][34] such that the α chains of the di�erent structures are overlaid. Removing the HLA-A*0201
molecules leaves the bound ligands superimposed in the binding pockets of A0201. Conforma-
tional variations in the bound ligands caused by di�erent sequences are easy to recognize. The
Root Mean Square Deviation (RMSD) is a measure of conformational deviation calculated over

all equivalent atoms from two given conformers RMSD =
√

1
N

∑N
i=0 (xa,i − xb,i)

2.
Analyzing the type of atom-atom interactions between ligand and protein helps to understand
sequence position speci�cities of certain ligand residues. Further examination can reveal how
well amino acid types of a certain residue position of the ligand �t into the binding groove. A
atom-atom contact is counted if any atom of a residue on the ligand is below a contact distance
threshold to any other atom of a residue from the α chain. No hydrogen atoms are considered
for this procedure. Depending on the type of atoms and the functional groups that form these
interactions, the contact is called hydrophilic in case of a salt bridge (charge-charge interaction)
or hydrogen bridge (hydrogen donor to hydrogen acceptor groups) or it is considered hydropho-
bic in all other cases. For hydrophilic and hydrophobic contacts a contact distance threshold of
d ≤ 3.5Å was set.

2.3.2 Choice of the scoring function

The basic idea is to choose a function describing the correlation between molecular descriptors
(features) ~x and target values y indicating the class to which the molecule belong to (in this case
for binding and non-binding molecules). It is assumed that

y = f(~x) where ~x ∈ Rn and y ∈ R (2.1)

for a number of couples of ~x and y. The goal is to approximate this relation in order to predict
target values y for any given feature vector ~x.
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2.3.2a Data representation

For the classi�cation approach it can be assumed to have two classes of molecules, those which
are binding (positive class/+) and those which are non-binding (negative class/-). Four sets of
molecules are used, one learning and one test prediction set for each class. After the training of
the method is complete the learning set will be reused for a pseudo prediction, the recall. The
test set will be used for a test prediction to control the progress after learning and the capability
to generalize learned patterns.
Let's assume we have two learning sets of molecules, the set of binding molecules S+ = {~x+

n , n =
1, . . . N+} and the set of non-binding molecules S− = {~x−n , n = 1, . . . N−}. All molecules ~xn in
those sets are represented by feature vectors composed of K features

~xn = (x1,n, x2,n, . . . , xK,n) , where xk,n ∈ R (2.2)

In the special case where sequence information of peptides is used as features, one binary subvec-
tor is used for each residue position coding the amino acid on that position. K is the sequence
length, yielding

~xt
n =

(
~xt

1,n, ~x
t
2,n, . . . ~x

t
K,n

)
(2.3)

where each subvector in eqn. 2.3 posses 20 components

~xt
k,n =

(
xk,n

1 , xk,n
2 , . . . xk,n

20

)
(2.4)

which refer to the 20 di�erent native amino acid types. The amino acid type at a particular
sequence position is coded by setting the corresponding component of the subvector to unity,
while all other 19 components of this subvector contain zeros. The advantage of this representa-
tion comes to mind when interpreting each subvector as a probability distribution to �nd speci�c
amino acid types at the corresponding sequence position.

2.3.2b The linear scoring function

The scoring function f(~x) de�nes whether a molecule represented by its feature vector ~x is
classi�ed as binder or non-binder. The bare scoring function is linear in feature space (respectively
sequence space) S. This linear form of the scoring function can be written as

f (~x) = ~wt • ~x+ b (2.5)

where ~x is a K component feature vector describing the particular molecule, ~wt is a row vector of
the same dimension as ~x and b is a scalar. There areK+1 free parameters in this scoring function
given by ~wt and b, which have to be determined for the set of molecules used for learning Slearn

such that f(~x) adopts a value close to the assigned target value of +1 for binding molecules and
close to -1 for the non-binding molecules. Hence, setting f(~x) = 0 de�nes a hyperplane in the
K-dimensional feature space S with plane normal vector ~w, which separates binding molecules
~x+ with f (~x+) > 0 from non-binding sequences ~x− with f (~x−) < 0. These criteria can be used
to predict the binding ability of molecules.
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2.3.2c Least square optimization

One of the most elementary strategies to determine the K + 1 free parameters of the scoring
function f(~x) of eqn. 2.5 is to minimize the scoring function with respect to the sum of the least
square deviations called least square method (LSM).

L (~w, b) =
1

2N

N∑
n=1

(f (~xn)− yn)2 (2.6)

The sum in eqn. 2.6 runs over all molecules of the learning set Slearn = S+ ∪ S−, where the
target values yn = +1 for binding molecules and yn = −1 for non-binding molecules are used.
Taking the derivatives of L (~w, b) with respect to ~w and b result in the following set of K linear
equations

〈(~x− 〈~x〉)
(
~xt − 〈~xt〉

)
〉 • ~w = 〈(y − 〈y〉) (~x− 〈~x〉)〉 (2.7)

and

b = 〈y〉 − 〈~xt〉 • ~w . (2.8)

The angular brackets in these equations denote averages over all molecules of the learning set
Slearn as for instance

〈~x〉 =
1
N

N∑
n=1

~xn . (2.9)

2.3.2d Weighting and regularization

To obtain higher �exibility it is possible to split the terms for binding and non-binding molecules
and weight them di�erently. Using equation 2.9 this would lead to

〈~x〉 =
w+

N+

N+∑
n=1

~x+
n +

w−
N−

N−∑
n=1

~x−n , (2.10)

where w+ + w− = 1 and N+ +N− = N . This description allows a weighting of molecules from
the learning set Slearn, which is independent from the actual number of binding and non-binding
molecules in this set. For most cases best results arise for weighting factors w+ close to 0.50.
It is known that large number of free parameters along with a small number of molecules in the
training set will lead to over�tting, which is causing the learning by heart phenomenon. This
leads to bad generalization capabilities and a collapse in prediction quality, while the recognition
rate of learned data becomes even higher. One solution of this problem is called ridge regression
[35] and is often used if two highly self correlated predictor variables are used for least square
optimization because the derived coe�cients may be imprecise. The ridge regression method
adds up small �xed values to the diagonal elements of the coe�cient matrix. This is introducing
a certain bias, but suppresses numerical instability. Here it can be understood as introduction
of an additional regularization term:

L̃ (~w, b) = L (~w, b) + λ ~wt • ~w , (2.11)

where λ is an empirical parameter to be chosen. Due to the normalization of the optimization
function L (~w, b) in eqn. 2.6 by the number of molecules in the learning set N , the value of λ is
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independent of the learning set size. The regularization term avoids the occurrence of singular
behavior and contributes to a minimization of the length of the normal vector ~w of the separating
hyperplane that is de�ned by f (~x) = ~wt · ~x + b = 0. As a consequence, the sensitivity of this
separating hyperplane may increase for moderate values of λ. This is the case in particular if
the set of linear equations 2.7 is ill-conditioned due to the smallness of the learning set Slearn.
Applied to the set of linear equations the expression in eqn. 2.7 becomes

〈(~x− 〈~x〉)
(
~xt − 〈~xt〉

)
〉 • ~w + λ~w = 〈(y − 〈y〉) (~x− 〈~x〉)〉 . (2.12)

In most examined cases a value for λ of 10−10 is large enough to suppress singular behavior, but
may still be too small to cause a negative bias for prediction quality.

2.3.3 Quadratic scoring function

With minor modi�cations the scoring function can be applied also with quadratic feature terms
derived as products of linear features. Since the scoring function calculates the covariance be-
tween features for linear feature terms, second order feature correlations are already used in case
of a linear scoring function. Thus the use of quadratic feature terms leads to the use of fourth
order feature correlation terms. One can rewrite the scoring function from eqn. 2.5 such that
the quadratic terms �t into the linear equation scheme.

y = f (~x) = F
(
~X
)

= ~V · ~X + b (2.13)

where

linear quadratic
~X = { x0, x1, . . . , xK , x̃0 x̃0, x̃0 x̃1, . . . , x̃K x̃K }
~V = { w0, w1, . . . , wK , W00, 2W01, . . . ,WKK }

Alternatively one can manually derive quadratic feature terms by calculating the product of two
given linear feature terms and treat them as new linear feature. This approach is most �exible
to derive only those single quadratic features that correspond to selected pairs of linear feature
terms.

2.3.4 Cholesky versus LU decomposition

To solve the linear equation systems de�ned by the coe�cient matrix A of the type

A · ~x = ~y (2.14)

the LU decomposition, a modi�ed form of the gaussian elimination, is used. The matrix A shall
be decomposed to an upper and a lower triangular matrix

A = LU (2.15)

which contain zeros below or above the matrix diagonal respectively.
In case where the matrix A is positive de�nite one can use the Cholesky decomposition instead,
named after André-Louis Cholesky. The de�nition is

A = LLT , (2.16)

where LT is the transpose of the lower triangular matrix L. The Cholesky decomposition is
faster, because the number of required operations is by a factor of 2 lower compared to LU
decomposition. The Cholesky method is numerically more stable and doesn't require pivoting
at all in contrast to LU decomposition. In this case the Cholesky decomposition was applicable
and used, because A is positive de�nite and symmetric.
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2.3.5 Protocol describing the prediction strategy

Figure 2.4: Prediction procedure using �xed features.

For true predictions the target values of the prediction data set are unknown. Therefore
optimizing classi�cation depends on the learning set, where target values are available. To tune
the parameters of the objective and scoring function knowledge on how the method is able to
generalize learned feature characteristics to untrained data is needed. Therefore, it is required to
divide the set of learning data into two subsets, a true training data set and a test prediction data
set. Only the training data set is used for learning, while the test prediction data set is used for
pseudo prediction. Pseudo prediction means that the target values of the molecules are actually
known, but the feature vectors have not been used to correlate with the target values in the
learning process. This quality control helps to detect cases of learning by heart and therefore the
feedback can be used to optimize free parameters (λw, w

+, . . .) of the objective and the scoring
function. Another optimization possibility is given by the number of features used to describe
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molecules from the di�erent data sets. Their number should be correlated to the number of
molecules in the learning data set. If the number of features is large compared to the number of
given molecules in the learning data set, over�tting will occur leading to learning by heart. The
opposite case is under�tting caused by using not enough features in the molecule descriptor. In
this case neither the learning nor the test prediction data are classi�ed reliably. Figure 2.4 shows
the protocol for prediction strategy using a �xed set of features.
The procedure for dealing with variable feature sets is explained in subsection 2.3.11 describing
the genetic algorithm.

2.3.6 Support Vector Machine (SVM)

Figure 2.5: Two groups of data points (red or blue) in multidimensional feature space are sep-
arated by hyperplane H0. Support vectors are taken from those data points lying between the
parallels H+ and H− and the hyperplane.

For comparison another well established optimization method, the support vector machine,
was used to confront it with the least square optimization used in the present work.
The support vector machine is a classi�cation approach using a hyperplane to separate data
points ~xi in a n-dimensional feature space. Every object (molecules in our case) is de�ned by a
vector and assigned to a class yi, which is basically +1 or -1. The method employs only those
objects, which are located close to the separating hyperplane. Their vectors will be accounted
as support vectors, giving them a direct in�uence to the parameters de�ning the location of the
hyperplane.
Given is a leaning data set Φ:

Φ = {(~xi, yi) |xi ∈ Rn, yi ∈ {±1} , i = 1, . . . , L} (2.17)

The function y = f (~x) as linear approach is approximated by

f (~x) = ~wt · ~x+ b (2.18)

such that

f (~x) = sign
(
~wt · ~x+ b

)
, (2.19)
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yielding the values f (~x) = ±1. Those vectors ~x ∈ Rn that full�ll eqn. 2.18 de�ne the hyperplane
H0 of the dimension n − 1 in Rn. The normal vector of the hyperplane is ~w and its' distance
from the origin is −b/ |~w|.
It is possible to extend the linear form of the support vector machine such that it uses non-linear
kernels replacing the expression ~wt · ~x by a polynomial, gaussian or radial basis function.
The program SVM-light 5.0 [36, 37, 38, 39] from Thorsten Joachims was used to evaluate the
method of support vector machines.

2.3.7 Quality measure: Matthews Correlation Coe�cient (MCC)

The di�culty to express prediction quality with a single value is related to the problem to describe
four di�erent criteria by a single valued quantity. For a two class classi�cation problem the
numbers of true positives (TP), true negatives (TN), false positives (FP) and false negative (FN)
characterize the performance of a prediction. If only percentages of correct recognized/predicted
items are provided, the number of misclassi�ed items actually belonging to the opposite class
is neglected. Thus one needs in a two-class problem to provide both, the percentage of correct
classi�ed items of class 1 and 2. Usually the average of both percentages is calculated to provide
some measure of prediction quality. The 2x2 contingency matrix faces predicted to observed
results as shown in the following table:

prediction
class + class -

observation
class + TP FN
class - FP TN

A general method of estimating the quality of prediction results was introduced by B.W.
Matthews in 1975 [40] providing an index to correlate prediction and observation. The corre-
lation coe�cient varies from -1 to +1. The value of +1 means a perfect match while -1 is a
complete opposite match. A value of zero corresponds to completely uncorrelated, random re-
sults. In the common case of secondary structure prediction Pn represents the prediction for a
given residue n of a polypeptide chain. It could be 1 for the secondary structure, if residue is
related to helix or 0 otherwise. Alternatively Pn could also represent a probability distribution.
The symbol Sn represents therefore the observed state of the given residue n. The correlation is
given by the following formula:

C =
∑

n

(
Sn − S

) (
Pn − P

)√∑
n

(
Sn − S

)2 ∑
n

(
Pn − P

)2 (2.20)

S and P are mean values over all N residues. The denominator holds the product of the standard
deviations of the observed and the predicted assignments. For special case that values of P and
S can only become zero or unity and behave like a step function the formula becomes:

C =
p/N − P S√

P S
(
1− S

) (
1− P

) (2.21)

Here S = (p+ u) /N and P = (p+ v) /N . The quantities p, q, u and v are the number of
true positive, true negative, false negative and false positive assignments, which are directly
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correlating prediction results with observation (expected) results.

C =
p−N2P S

N
√
P S

(
1− S

) (
1− P

) (2.22)

=
N p− (p+ u) (p+ v)√

(p+ u) (p+ v) (q + u) (q + v)
(2.23)

which �nally leads us to the commonly used form of the MCC:

C = MCC =
(p q)− (u v)√

(p+ u) (p+ v) (q + u) (q + v)
(2.24)

The MCC coe�cient uses all four criteria (p,q,u,v) and may provide a more balanced quality
measure for predictions as simple percentages can. Nevertheless, there are situations, where the
MCC provides unfair judgment. This is for instance the case, if the number of false positives is
very low or zero and at the same time the number of true positives is low.

2.3.8 Feature Normalization

Feature vectors derived from peptide sequences, which are described as binary position vectors
are normalized by division with their sequence length. Contrary to that feature vectors assembled
out of physico-chemical properties require a normalization, because the single feature values can
di�er in magnitude and sign as usually �oating point values are used. Two di�erent kinds of
feature vectors have to be distinguished.Those vectors, which are given for each molecule in the
data set running over all feature terms of the molecule ( the row vectors in our representation)
and those feature vectors, which are given for each property of a molecular descriptor and running
over all molecules of the learning (or prediction) set (the column vectors).
To regularize features fn

k for all given NLearn molecules each of the K individual features of the
molecular descriptor should be considered separately, independent whether they are derived as
product of two features or not. For regularization the mean values

〈fk〉N =
1

Nlearn

Nlearn∑
n=1

f
(n)
k k = 1, 2, . . .K (2.25)

are subtracted to obtain the regularized features f̃k
n

f̃k
(n)

= f
(n)
k − 〈fk〉N (2.26)

During this procedure all those features with vanishing mean values for all molecules N are
eliminated since they are not useful for the classi�cation. For simplicity the tilde for normalized
features is omitted in the following. Averages for molecules of the binding or non-binding class
are discriminated:

〈fk〉N+ =
1
N+

N+
learn∑

n+=1

fn+
k n+ ∈ S+ (2.27)

〈fk〉N− =
1
N−

N−learn∑
n−=1

fn−
k n− ∈ S−
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Figure 2.6: Di�erent types of feature vectors: a) binary sequence vectors coding amino acid
types in position dependent vectors b) molecular feature vectors running over all features
of a molecular descriptor of single molecules c) feature type feature vectors running over all
molecules of the data set for just the same feature type

where n+ runs over all molecules of the binding set and n− over all molecules of the non-binding
set. This leads to a regularization of fk

f̂k
n

= fn
k − 〈fk〉N+ − 〈fk〉N− n ∈ S = S+ ∪ S− (2.28)

This type of regularization is used when performance of single features is considered as explained
in section 2.3.9b. Other regularization methods, as for instance dividing the features by the
variance seemed not to have any impact on results.
The feature vectors running over all features of a molecular descriptor for each molecule n = 1, . . . , N
should be normalized to become vectors of unity length

〈fn
0 〉K =

fn
k∣∣fn
k

∣∣ . (2.29)

The sequence feature vectors can be normalized by division with sequence length K.



2.3. METHODS 21

2.3.9 Feature Reduction

With quadratic features correlations of promissing linear features can be introduced to advance
prediction capability. Beside of increasing the number of qualitative good feature candidates, the
total number of features and thus the number of free parameters is increased by the power of two,
while the number of classi�cation data for training remain the same. Another problem caused by
increasing the number of features is the performance of the classifying algorithm and the demand
of resources to handle these features. With respect to the learning by heart problem, one can
use the λw parameter introduced in equation 2.11 to suppress the number of free parameters
unspeci�cally. This can be useful, if all features used are of similar quality to stabilize the linear
equation system numerically. A more speci�c way to remove useless or bad behaving features is
crucial.
Feature reduction shall reduce the number of features to a number of core features, which con-
tribute to a high prediction performance. The optimal solution is to select just those few features,
which add up to a high prediction performance, but it is di�cult to �nd out how many features
are needed. Another approach is to start with a larger number of features as required and to
analyze the eigenvalues and eigenvectors of the coe�cient matrix of the linear equation system.
This approach is realized by the Principle Component Analysis (or Singular Value Decompo-
sition). Depending on the size of the eigenvalues it can be decided to remove or weaken the
in�uence of the appropriate eigenvector components before solving the linear equation system.

2.3.9a Principle Component Analysis (PCA)

PCA transforms multidimensional, correlated data provided by the coe�cient matrix to a new
coordinate system by applying orthogonal linear transformations. It uses eigenvectors obtained
from the covariance matrix to identify the independent axis of the data. The deviations from the
mean values are calculated to derive the covariance matrix and �nally to compute the eigenvalue
and eigenvectors out of it. The eigenvalues and the corresponding eigenvectors are sorted in
ascending order. The largest eigenvalues correspond to eigenvectors that de�ne the directions of
the largest variance of the data. The goal is to suppress the contribution of those components
giving small eigenvalues, while accounting for those with large eigenvalues, which are supposed
to be signi�cant for the classi�cation approach.
The linear equation system looks like A · ~x = ~y. To solve for

~x = A−1 · ~y (2.30)

by diagonalizing

AD = DT ·A ·D (2.31)

the resulting eigenvalues are ordered by size

(AD)i,j = δi,jai with i, j = 1, . . . N a1 ≤ a2 . . . aN−1 ≤ aN (2.32)

with the eigenvectors ~di

D =
(
~d1, . . . ~dN

)
(2.33)

leading to

(~xm) =
K<N∑
k=1

(
~dk

)
m

(
1
ak

) (
~dk · ~y

)
. (2.34)
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The sum over n starts from the largest eigenvalue a1.
To compute the diagonal matrix D the Eispack routines [41] tred2 and tql2 were used. Tred2
is tridiagonalizing the real symmetric matrix A to compute an orthonormal and a triangular
matrix using householder reductions. The tql2 subroutine is diagonalizing the given triangular
matrix of tred2.
To suppress components with a small eigenvalue the term of

(
1
ak

)
from equation 2.34 will be

used to weaken the in�uence the appropriate eigenvectors. One has several choices to weaken
the in�uence of unwanted components:

1. step function behavior: all components from a given threshold t are set to 0.

2. linear decay: the components between t1 and t2 are faded using a linear decay down to 0.

3. nonlinear functions: fade the components between t1 and t2 using a function that decays
non-linearly to 0.

2.3.9b Single Feature Performance

For classi�cation it is possible to use just one single feature fk, although this is not very e�ective.
Depending on the ability to recognize molecules from the training set, single features can be
ranked by their recognition quality. It is crucial to normalize features before analyzing them.
After applying regularization to a given feature fk according to eqn. 2.28 a molecule n from the
learning set is recognized correct if

fn+
k > 0 n+ ∈ S+ (2.35a)

fn−
k < 0 n− ∈ S− (2.35b)

is true. The scoring function is establishing pair correlations between di�erent linear features.
Thus one should consider feature products (quadratic features) also for single feature performance
analysis. The numbers of correctly recognized molecules from either set S+ and S− are counted
with n+

correct or n
−
correct respectively. The total number of correct classi�ed molecules from the

learning set is given by ncorrect = n+
correct +n−correct. In the following the lower index "correct" is

abbreviated by "cor.". A reliable feature k should recognize signi�cantly more than 50% of the
molecules, because a 50% recognition rate can be statistically expected from a random guess. A
feature below an recognition rate of 50% can be inverted such that the rate becomes 100%−x%.
A quality cut-o� value is de�ning which features are discarded from the feature set. Features of
which the recognition rates are above the quality cut-o� are assigned to the new feature set.
One could argue that by simply combining best ranked single features to a new feature set
recognition and prediction performance would be improved, but it is not that simple. If two
states of recognition are allowed for each feature per molecule, say -1 for wrong classi�ed and
1 for correct classi�ed, an N -dimensional decision space has to be considered, where N is the
number of molecules in the learning set. In combination with each other, features can agree for
the classi�cation of some molecules, but they also can contradict each other. In the real feature
space of the objective function, features can adopt di�erent values besides from 0 and 1 such
that results from feature combinations are even harder to predict. Since optimal combinations of
features cannot easily be calculated, an heuristic algorithms could be used to enrich the quality of
feature sets step-by-step. Therefore, a genetic algorithm is introduced to �nd optimized feature
sets (see section 2.3.11).
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2.3.9c Introducing feature groups

For the following analysis it turned out to be helpful to group the examined single features with
respect to their recognition performance into three subset categories. Depending on their ability
to recognize molecules of the binding or non-binding set better they are assigned to the feature
groups F+, F− or F 0. A feature belongs to:

• F 0 group, if the number of correct recognized binders and nonbinders is almost in the same
range, de�ned by an upper and lower threshold, allowing the number of correct binders or
nonbinders to deviate from equilibrium.

• F+ group, if the number of correct recognized binders is larger than the number of correct
recognized nonbinders (and if not assigned to F 0).

• F− group, if the number of correct recognized nonbinders is larger than the number of
correct recognized binders (and if not assigned to F 0).

Mathematically it can be de�ned:

F+ : n+
cor. > n−cor. + α+

(
n+

cor. + n−cor.

)
(2.36a)

F− : n−cor. > n+
cor. + α−

(
n+

cor. + n−cor.

)
(2.36b)

where n+
cor. is the number of correct binders and n−cor. is the number of correct nonbinders.

The parameters α+ and α− are upper and lower threshold values to shift the equilibrium for
the remaining F 0 group, which holds the remaining features. Instead of absolute numbers like
n+

cor. and n
−
cor. percentages can be used. The α-thresholds should be used to adapt the size of

the feature groups such that all three groups have roughly the same size. Features in all three
feature groups are sorted by the total amount of correct recognized molecules ncor..

2.3.10 Antipode Algorithm

The number of linear features can easily reach an order of magnitude of 103 to 104 like for
the CoEPrA tasks. Using quadratic features expand the number of features to 107 or more.
For any heuristic algorithm used to create suitable feature sets this number is much too large.
Feature reduction without loosing much information and predictive power is crucial. The so
called antipode algorithm can reduce the number of features by eliminating features from the
set, which are too similar to other features, regarding their recognition pattern. The term
"antipode" characterizes objects, which are as dissimilar to each other as possible like two points
being diametrically opposed to each other. The similarity between features is determined on
the basis of their recognition vectors ~bi. This is a binary vector of each feature running over
all molecules of the learning set, containing "1" for each correct recognized molecule (no matter
if from the S+ or S− set) and "-1" for each wrong classi�ed molecule (see eqn. 2.35a and eqn.
2.35b).

~bk =
(
b
(1)
k , b

(2)
k , . . . , b

(N)
k

)
with b(n)

k ∈ {−1, 1} (2.37)

Due to this kind of representation di�erent features may possess the same recognition pattern
and thereby the same recognition vector.
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The similarity of two features i and j is given by the scalar product of the two corresponding
recognition vectors

Si,j =
~bi ·~bj
N

. (2.38a)

Di,j = 1− Si,j (2.38b)

The scalar product Si,j varies between +1 and -1, where +1 means identity and -1 complemen-
tary of the compared recognition vectors. Analog to the similarity distance S we can de�ne
the dissimilarity measure D. The following steps of the antipode algorithm are applied for all
three feature groups F+, F−, F 0 separately. The symbol F# denotes a universal feature group
placeholder.

1. (a) First a similarity threshold value for the given feature group F# of τ# has to be
de�ned.

(b) Features in feature group F# are ordered by decreasing recognition performance as
described in section 2.3.9c. The �rst feature from F# is picked to become the �rst
member of the initially empty antipode feature groups F#

AP . Usually this is the �rst
ranked (and best) feature of F#.

2. For the next feature to become a member of the new reduced set of F#
AP a new feature

j from the original list of F# is compared with those features of the new target feature
group F#

AP using eqn. 2.38a. If the relation

Di,j > τ# i ∈ F#
AP and j ∈ F# (2.39)

is true for all features i of the antipode set F#
AP , the new feature j from F# will be added

to the antipode set. The feature examination for a given feature j can be interrupted, if
any feature i of the new feature group F#

AP is too similar to the new feature j from the
reference set F#. In that case feature j is dismissed.

3. Step 2 is repeated until all features from the reference group F# have been examined.

It is obvious that by choosing the size of the threshold τ# the size of the new created feature
group F#

AP is in�uenced. The algorithm uses three di�erent thresholds for the feature groups
F+, F− and F 0 named τ+, τ− and τ0, such that the size of all resulting antipode feature groups
can be in�uenced separately. At the end of the antipode algorithm all three created antipode
feature groups F+

AP , F
−
AP and F 0

AP will become the new feature groups F+, F− and F 0.

2.3.11 Genetic Algorithm

For the CoEPrA competition it has been demonstrated by the participating group of Wuju Li4

for classi�cation problem 1 that the right choice of a few feature can be su�cient for a high
ranked prediction performance. With only seven features from the CoEPrA feature set the pre-
diction results ranked �rst for problem 1 with an average prediction performance of 86% correct
identi�ed molecules.
The genetic algorithm (GA) is used to generate optimized subsets of features for classi�cation.

4Wuju Li, Center of Computational Biology, Beijing Institute of Basic Medical Sciences



2.3. METHODS 25

For this kind of optimization problems, where there is no designated way to calculate exact solu-
tions in reasonable time, heuristic algorithms based on randomization like GA are the methods
of choice to �nd near-optimal solutions [42].
Basic principle is that a large number of initial random feature subsets is generated in the be-
ginning. Every subset of features called an individual is a complete set of features used for the
scoring function with a distinct solution allowing an entire classi�cation prediction. To rank the
results of all individuals, the learning set is splitted into test learning set and test prediction set.
The test learning set is used to train the di�erent feature sets provided by the individuals, while
the test prediction set is used to score the performance of the trained individual. The entity of
individuals achieved in each cycle of the GA is called a generation of individuals. In each cycle of
the GA the precursor generation is modi�ed by genetic operations. These operations change or
interchange single or several features contained in the feature subset (also named chromosome)
of a given individual by chance. While a certain percentage of top ranked individuals of the an-
cestor generation will be conserved for the next generation, the remaining individuals in the next
generation are randomly selected or mutated individuals from the ancestor generation. With ev-
ery new generation a scoring and ranking of all contained individuals will be performed. In every
new cycle the overall performance of the GA should improve until it converges because no further
optimization can be achieved. The scoring function used in the GA to rank the individuals is
the linear scoring function introduced in section 2.3.2b. The GA is using those grouped features
obtained from the antipode algorithm. Currently the total number of features per individual
and the contingent of features from the di�erent feature groups are constant parameters during
the program run. Constant parameters means that their values cannot be modi�ed during the
runtime of the program and they are �xed for all individuals of all generations. One has to adopt
the values of these parameters before initiating the GA.

2.3.11a Preventing learning by heart during GA

To control problems of over�tting during the optimization cycles of the GA, a switch is imple-
mented to avoid learning by heart. If it is switched on via a given parameter, this mechanism
eliminates the n best individuals of the parent generation to avoid that such individuals will
dominate the following generations by its' performance caused by distinct learning by heart. In
such a case the test prediction set is not diverse enough from the test learning set, since these
individuals memorize patterns from test learning and test prediction set. Discarding top ranked
individuals in every cycle of the GA might cause slower convergence but can in some cases help
to improve the �tness of the last generation of the GA. By default this parameter, called "leave
best out", is switched o�.
Another mechanism which should help to prevent learning by heart is related to the distribution
of molecules to test learning and test prediction set. As described in section 2.3.11e, the com-
plete learning set is divided into quarters, where one quarter is used for test prediction, while
the rest is used as test learning set. Four di�erent scores are computed each time for the four
di�erent test prediction sets, but the molecule distribution within the quarters remains the same
during the entire cycle of the current generation. This is required for comparability within one
generation. After each cycle of the GA, the distribution of molecules to the quarters is changed
randomly. This feature will prevent that well trained individuals get used to the distribution of
the sets and therefore could memorize distribution patterns to learn by heart.
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2.3.11b Genetic operations

Reproduction.

(a)

(b)

Figure 2.7: a. example of point mutations to the
chromosome of a selected individual b. re-
combination of two chromosomes from selected
individuals

Individuals from the parent generation, which
are top ranked by their scores, are preserved
for the next generation to be utilized in
the following cycle of the GA. The �ttest
individuals survive the selection process of
the GA to become part of the next genera-
tion.

Remodelation. A number of individ-
uals are generated from scratch with every
new cycle of the GA. These individuals are
built of randomly picked features from the
feature groups. The composition of features
from the di�erent feature groups remain un-
changed.

Point mutation. Individuals of the par-
ent generation are selected by chance to be
mutated in one or more feature positions of
its chromosome. By random choice a feature
position within the chromosome of such an in-
dividual is selected. The feature on this posi-
tion of the chromosome is replaced by another
feature randomly selected from the same fea-
ture group. The current number of mutations
within one chromosome of the considered in-
dividual is a random choice between one and
the maximum number of allowed mutations
per chromosome, de�ned by a parameter to
choose.

Recombination. Pairs of two individu-
als are selected by chance to perform a re-
combination of their randomly cut chromo-
somes. Both chromosomes are cut at equiv-
alent feature position and the chromosome
parts of both individuals are exchanged such
that two new individuals with interchanged
chromosomes are created. Both new individu-
als contain the same conserved composition of
features from the feature groups, because the
cutting position in both chromosomes is iden-
tical. This operation is also known as crossing
over.
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The number of individuals being treated with the di�erent genetic operations described above
is given by rate-parameters to choose and the parameter de�ning the number of individuals per
generation. First the number of individuals undergoing reproduction is set by multiplying the
rate constant for recombination with the total number of individuals per generation.

Nreproduce = preproduce ·Ngeneration

Only the reproduction rate re�ects the percentage of individuals to be copied to the next gener-
ation. For all other genetic operations twice as much individuals are generated in the beginning
to �nally cutdown the size of the desired generation size after scoring and ranking all newly gen-
erated individuals. Therefore the exact number of individuals generated by any of the genetic
operations other than reproduction may vary from generation to generation and depend �nally
on their scoring performance.

N̂pmutate = 2 ppmutate ·Ngeneration

N̂recombine = 2 precombine ·Ngeneration

N̂remodulate = 2 premodulate ·Ngeneration

N̂others = N̂pmutate + N̂recombine + N̂remodulate

Nall = Nreproduce + best of
(
N̂others

)
1...(Ngeneration−Nreproduce)

2.3.11c Random selection of features in the GA uses weight bias

Several operations in the GA require random feature selection from the feature groups. Instead
of providing equal chances to all features during feature selection, a weighting is introduced to
favor those features with a high single feature performance. This leads to a higher chance for
good performing features to be selected compared to features with a weaker performance. This
should improve the overall performance of the GA by reaching good results in fewer cycles.
The applied method is not directly assigning better features larger weights, but indirectly. It
assumes that the number of good performing features is smaller than the number of moderate
performing features. First all features of a feature group F+

AP , F
−
AP and F 0

AP are considered
separately. All features within a feature group are ranked by their recognition performance
ncorrect (see 2.3.9b). Those features which have the same performance are put into the same
partition. For each value of ncor. exists a separate partition. The random function �rst selects
the partition by chance. All partitions have the same chance to be selected. In the second
step one feature of the appropriate partition is selected by chance. Any feature in the selected
partition has the same chance to be selected. Because more features are grouped in one partition
assigned to a lower feature performance compared to feature entries in a high ranked partition,
the chances to select a high ranked feature is increased with respect to the number of occurrence
of all type of features.

2.3.11d Removing identical feature sets

There are thousands of features in each feature group and the number of feature combinations
possible using just a hand full features per subset can reach a magnitude of 1015. Nevertheless it is
possible that individuals with identical features are created within one generation of individuals.
The probability for occurrence of such doublets is increased due to the unequal weighted random
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Figure 2.8: Typical example of feature performance in a feature group. Each partition, repre-
sented by a step, has the same chance to be selected.

feature selection within the GA. The optimization itself might cause the use of predominant
features as a part of a repeatedly appearing pattern in a number of individuals.
The algorithm takes care of doublets before merging newly created or mutated individuals to the
current generation. All newly created individuals which have clones within the current generation
are eliminated such that the remaining individuals show diversity within their generation.

2.3.11e Scoring of individuals

One of the most important parts of the GA is a quality feed back realized by the implementation
of the scoring function. For each individual in each cycle of the GA the scoring function has to
solve the complete equation system with all free parameters. For comparison it is required that
all tested individuals experience the same distribution of molecules between test learning and
test prediction set.

• Di�culties to derive meaningful distributions to learn and prediction sets

One common problem is to �nd an optimal partitioning of the learning data set into test learning
and test prediction set, because the dimensions of both sets will play an important role for the
quality of the learning process. If the used test learning set becomes to small, the quality of
learning is a�ected and important patterns may not be trained. On the other hand, if the test
learning set is very large and the remaining part for test prediction is very small (the extreme
case is jack knife or leave-one-out cross validation where only one single molecule is predicted
at a time), the risk is high that learning by heart is favored. In this case the test prediction set
is very similar to the larger fraction used for test learning. It turned out that a distribution of
3
4 to 1

4 between test learning and test prediction data set is delivering good results for complete
learning data sets of a size between 50 to 150 molecules. It is important that the real prediction
data set will not be used to tune the parameters. Only in this case the information obtained
from a post GA analysis of the real prediction set can be used to evaluate optimization quality
of the GA procedure. In a real prediction scenario the target values for the real prediction set
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Figure 2.9: Schematic view to the genetic algorithm with its genetic operations.
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are not known anyway.
The variance in learning progress can be large just by altered distribution of molecules to test
learning and test prediction set. It can make a di�erence to shift speci�c molecules from test
learning to test prediction set or vice versa. This is also depending on the homogeneity of the
complete learning set. To minimize e�ects of di�erent molecule distributions several di�erent
molecule distributions to the sets are used. For the GA the learning set is split into quarters
and the scoring function is executed four times. Each quarter is becoming the test prediction set
once, while the remaining three quarters are used for test learning. Averages on all scores, recall
and prediction rates are calculated.

• Obtaining the score

The MCC is used to quantify the performance for recall (test learning) and for test prediction.
The MCC values are calculated four times for each individual with di�erent molecule distributions
between the sets for the test learning set, called MCC (L) and for the test prediction set called
MCC (T ). The average values are obtained as

〈MCC(aL)〉 =
1
4

4∑
n=1

MCC (L)n (2.40)

〈MCC(aT )〉 =
1
4

4∑
n=1

MCC (T )n (2.41)

where the 4 re�ects the four di�erent distribution of quarter set assigned for test prediction or
test learning. The aL stands for average Learning while aT means average Test prediction. The
score Q used to rank individuals performance is calculated exclusively from the MCC of the test
predictions

Q = 〈MCC(aT )〉+Wmin.MCC(T )min.. (2.42)

The formula contains a term, which is the product of a weighting factor times the minimum MCC
value of all four di�erent test prediction. This term is summed to the average MCC value of all
four test predictions. The default minimum weight used to obtain the results isWmin. = 0.1. The
reason why the minimum MCC value is introduced is that the minimum re�ects the reliability of
the calculated average. A low minimum with respect to the average could indicate untrustworthy
performance or at least show �uctuations in the performance when molecule sets are altered.
The individual score value Q is multiplied with a factor of 1000 to proceed with the bucket sort
procedure [43, 44], a fast integer sortation to rank the individuals by their performance.

2.3.11f Parameters to tune the GA

There are a number of parameters of the GA, which require manual tuning to deliver satisfying
results regarding di�erent demands in classi�cation. In this Ph.D. study the di�erent tasks of
the CoEPrA classi�cation problems were evaluated using the GA. The table 3.29 on page 83 in
the chapter "Results" gives an overview of the di�erent parameter values applied for the di�erent
problems.

2.3.12 Post-processing

The genetic algorithm is deriving a number of individuals in the �nal generation, which should
be enriched with good performing candidates. Nevertheless it turned out that with varying per-
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Figure 2.10: Overview of the complete procedure to extract, evaluate, pre�lter and recombine features to
generate good feature subsets. Features are evaluated using the learning set. Quadratic features are generated
from the initial feature set and added to the entire set of available features. Features are regularized and evaluated
with respect to each single features recognition quality. Features are divided into 3 feature subsets F+,F− and
F 0. Features which are too similar to each other are discarded using a threshold τ . The GA uses the reduced
feature sets to evaluate good feature combination called individuals.
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centages, also bad behaving feature sets are proposed. It is not always obvious to see, which
individuals are �nally performing well in the true prediction. To evaluate a general strategy
�ltering out bad from good individuals, true prediction data can be used. Normally this infor-
mation is inaccessible. Thus, it cannot be used to judge about the individual, but to understand
what �lter criterion can be used.
The �nal generation undergoes a special treatment, which should simplify the judgment over the
quality of di�erent individuals. Each individual is scored with 20 di�erent molecule distributions
of four quarters. Each quarter can become test prediction set while the remaining 3 quarters
become test learning set. This will lead to 20 · 4 separate test predictions and recalls scored with
the scoring function. The resulting MCC values of average test prediction MCC, variance and
minimum MCC are computed. Furthermore the average MCC of test learning sets is calculated.
As novelty for each individual, the MCC value for the recall of the complete learning set, is
computed. These values can be used as indicator for the quality of individuals.

quantity description

MCC(aL) mean value of all test learning MCCs

MCC(aT) mean value of all test prediction MCCs

var(MCC(aT)) variance of all test prediction MCCs

min(MCC(aT)) minimum of all test prediction MCCs

MCC(tL) MCC of complete learning set (recall)

MCC(tP) MCC of true prediction 5

Table 2.4: Quality indicators derived from MCC values

The individuals of the �nal generation are ranked in a table listing all MCC indicators shown
in table 2.4. The individuals are ranked according to the MCC(aT) or min(MCC(aT)) values
by default. Together with the relation of some other indicators, the minimum MCC of the test
prediction is a good measure for the quality of the individuals.

2.3.13 Similarity of learning and prediction data sets

How similar are the learning data sets to the data sets for prediction in the eyes of the features
used? The answer to this question can reveal correlations between the di�erent data sets with
respect to the features selected for their classi�cation. Furthermore it can indicate how appro-
priate the selected feature are to classify these data. To calculate the similarity between two
molecules i and j of the two data sets x and y, the scalar product is calculated

S = ~f
set(x)
i · ~f set(y)

j .

To obtain the similarity between two complete sets the normalized sum of scalar products is
used:

Sset(x),set(y) =
1

NxNy

∑
i,j

~f
set(x)
i · ~f set(y)

j , (2.43)

5This information cannot be used in realistic prediction scenarios
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where Nx, Ny are the numbers of molecules in the appropriate data sets. To discriminate further,
the learning set is divided into a subset of binding and a subset of non-binding molecules. In a
real prediction scenario the classes of the molecules in the prediction set are not known. For a
broader understanding of the CoEPrA data, assignments of the prediction classes can be used
in similarity calculations. This information should not be used to tune the classi�cation. For
similarity calculations sequence vectors or feature vectors can be used (see eqn. 2.3, p. 13).

2.4 Alternative methods

In this section some alternative methods to classify molecules shall be brie�y summarized. These
methods can be used instead of the least square optimization used in the present work.

2.4.1 Hidden Markov Model

Figure 2.11: Hidden Markov model as a statistical process with a number of di�erent states
S. Transition probabilities between state i and j are given by ai,j . All transitions of a given
state i sum up to a probability of 1. Output probabilities for a given set of symbols (i.e. aa
representations) are given by bj,m. Output probabilities for all M symbols of each state j sum
up to 1. The HMM model H is yielding for di�erent possible output sequences Ok di�erent
probabilities P

(
Ok|H

)
Hidden Markov Models (HMM) are statistical models described by a markov process, where

the states of the system are unobservable (hidden). The HMM is described by a number of states
S1, . . . , SN . The �rst state S1 is the initial state of the system, while the last state SN is the
terminal state of the model. Each other state generates one output symbol yk = m each time
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it is selected. The timestep t is indicating the current position in the sequence of states of a
described path through the model. The states are connected with each other. The transition
probability ai,j de�nes the probability to get from a state i to another state j leading to a N×N
matrix A = {ai,j} of transition probabilities. Each state j has a de�ned probability bj(c) for
generating a certain output symbol {cm} = {c1, . . . , cM} out of m = 1, . . . ,M possible symbols.
These symbols can encode amino acids in case of peptide sequence predictions. The output
probabilities are stored in a N ×M matrix of B = {bj,m}.
Di�erent output sequences O = O1, O2, . . . , OT , which correspond to peptide sequences in the
present classi�cation problem, are generated for the model H = (A,B) with the probability
P (O|H). The output sequence O is generated in the model by following a certain path Q of
states qt = Si for the di�erent time steps t yielding Q = q1, q2, . . . , qT . The probability P (O|H)
that a given sequence O is generated is computed in the forward and backward algorithm [45].
The transition probabilities aij and the output probabilities bj,m are parameters of the system,
which are optimized during the training of the model. For optimization an iterative steepest
descent algorithm is used to maximize the probability to generate an output sequence of the
binding set [45].
A well trained HMM can be used to generate strong binding peptides with a high probability
P . Furthermore the HMM is �exible to classify binding peptides of di�erent sequence lengths.
Even if anchor positions of binding peptides of a multiple length vary, the HMM can be used
for an alignment of the peptides. In the studies of the present work a version of HMM was
tested, which has been optimized with respect to the peptide classi�cation problem [46, 47]. The
modeled HMM system did not converge well for learning, such that no reasonable result could
be computed. Therefore, no results for the HMM are presented in this work.

2.4.2 Random Forest

The random forest approach [48, 49] uses a number of uncorrelated decision trees also referred
as classi�cation trees. Each decision tree can independently classify entries from the prediction
set and allow therefore the parallelization of the prediction process. A decision tree is a graph
model of decisions containing a number of nodes, which are connected by branches. In decision
trees each node splits a branch into new branches. The nodes of the tree evaluate certain features
m as part of the total number of available features M and decide in dependence of the value
of m, which branch to choose to proceed. The terminal state of each path through the tree is
represented by a leaf. In case of a classi�cation, each leaf contains just a single class value y,
which is the target value connected to the feature values used on the path through the tree.
During the learning process the learning set is split in a recursive manner into smaller subsets
depending on single feature values. There are di�erent algorithms known to build a decision
tree. The Classi�cation and regression trees (CART) method splits o� single groups, which are
chosen to be as large as possible. Recursion stops when no further gain is made. Another choice
for building the trees is the entropy or information gain algorithm. For both algorithms the sum
of probabilities of all possible (feature) values j at a given node i has to be calculated.
Each tree is trained N times by a di�erent training set obtained from the random choice of items
out of the entire learning set. Remaining items from the learning set are used for test prediction,
each time. The test prediction results are used to estimate the error of the tree (bootstrapping
procedure).
The advantages of the random forest method are the fast training and the degree of paral-
lelization. It can also handle unbalanced data sets and can be used for both, classi�cation and
regression. Dissadvantage is the tendency to over�tting.
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Results

3.1 Structural analysis of peptide bound HLA-A0201 complexes

with and without TCR

3.1.1 Superposition of A0201 binding pockets of di�erent crystal structures

If the available crystal structures are divided (see table 2.2 in section 2.2.2 on p.11) into structures
cocrystallized with or without TCR, the resulting pattern of superimposed peptides deviates
signi�cantly with respect to the di�erent residue positions. The presence of the TCR seems to
in�uence the alignment of the peptide in the MHC binding groove.
To obtain the overlap of the HLA-A0201 binding pockets, the HLA α-heavy chain residues from
0 to 274 are superimposed with the Kabsch algorithm [33][34]. Only protein backbone atoms are
considered for the structure alignment. For both groups of MHC crystal structures, with and
without cocrystallized TCR, a reference structure is selected to which all remaining structures
are aligned to. Thus all RMSD values are 0 for the reference structure. The following tables show
the atom-atom RMS deviations with respect to the superimposed α chain of HLA considering
only protein backbone atoms. Ideally deviations to the reference structure should be zero, but
in reality deviations from the reference positions of the atoms occur . The resolutions of the
crystallographic settings and the average B-factors of the HLA α-chains (all atoms of residues
0 - 254) for the di�erent crystal structures are shown in the tables 3.1 and 3.2. The B-factors
are temperature factors, which describe possible �uctuations of the atom positions given in the
crystal structures.

overview of structures without TCR

pdb ID peptide sequence comment RMSD [Å] of B-factor resolution
HLA α to α avg. of α [Å]

1AKJ ILKEPVHGV reference structure 0.00 23.02 2.6
1HHG TLTSCNTSV 1.11 25.50 2.6
1HHI GILGFVFTL 1.10 22.02 2.5
1HHJ ILKEPVHGV 1.21 16.19 2.5
1QEW FLWGPRALV 0.90 17.53 2.2
1DUZ LLFGYPVYV 1.24 23.76 1.8

Table 3.1: Deviations in HLA α-chains of arranged pMHC structures with bound nona-peptides

35
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overview of structures including TCR

pdb ID peptide sequence comment RMSD [Å] of B-factor resolution
HLA α to α avg.of α [Å]

1AO7 LLFGYPVYV reference structure 0.00 42.13 2.6
1LP9 ALWGFFPVL 0.92 15.63 2.0
1QSE LLFGYPRYV 0.54 60.23 2.8
1QSF LLFGYPVAV 0.51 56.55 2.8
1BD2 LLFGYPVYV di�erent TCR 0.95 38.06 2.5

Table 3.2: Deviations in HLA α-chains of arranged pMHC/TCR complexes with bound nona-
peptides

3.1.1a Structures without TCR

In the following structural deviations of the ligand peptides in the binding pocket are considered.
For each residue position of the ligand the RMSD is calculated for backbone atoms with respect
to the selected reference structure.

residue deviations in [Å] ∆

position 1AKJ1 1HHG 1HHI 1HHJ 1QEW 1DUZ avg.

1 0.00 0.72 0.55 0.16 0.57 0.32 0.46

[2] 0.00 0.85 0.48 0.34 0.20 0.41 0.46

3 0.00 1.23 1.13 0.49 0.29 0.67 0.76

4 0.00 2.06 2.82 0.85 2.51 2.63 2.17

5 0.00 2.43 1.31 0.69 0.78 1.24 1.29

6 0.00 2.22 1.42 0.48 1.66 2.17 1.59

7 0.00 1.37 1.37 0.81 0.67 1.38 1.12

8 0.00 1.14 1.28 1.10 1.25 1.29 1.21

[9] 0.00 1.20 1.49 1.10 0.84 1.30 1.19

∆1-9 0.00 1.47 1.32 0.67 0.97 1.27 1.14

Table 3.3: Peptide residue speci�c RMSD of superimposed HLA from pMHC structures. The two
HLA-A0201 key residue positions are highlighted with rectangular brackets around the residue
position number 2 and 9.

It is easy to recognize that the the N-terminal position of the peptides matches best, since
deviations between the structures are low. In most cases the central region, especially the residue
position number 4, shows strong deviations for the structures. Towards the C-terminal positions

1reference structure
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the deviations between the structures are decreasing again. One exception from this rule is
structure 1HHJ, which has its' highest deviations for the C-terminal residues. Interestingly, for
this structure the ligand peptide is identical to the peptide of the reference structure 1AKJ.
Both structures, 1AKJ [28] and 1HHJ [30], contain identical molecules crystallized by di�erent
research groups. The deviations in the N-terminal region and the central region of 1HHJ to
1AKJ are the lowest of all compared structures.

(a) all peptides

(b) equal peptides

Figure 3.1: Peptide backbones of superimposed pMHC structures. The N-terminal position of
peptides is located left. a) all peptides in relation to reference 1AKJ (magenta) b) equal
ligand peptides between 1HHJ and reference 1AKJ (magenta)

Figure 3.1 is visualizes the stacked peptide backbones of the di�erent superimposed MHC
structures. The central region can be identi�ed by the stronger deviation between the peptides.
Due to di�erent bond- and torsion angles the structures of the two peptides with the same
sequences (1HHJ and reference 1AKJ), deviate more at the C-terminal end. Residues located
close to the N-terminal position of the peptides show the best agreement in their backbone
positions.
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3.1.1b Structures cocrystallized with TCR

A bound T cell receptor is in�uencing the structure of the ligand peptide in the MHC binding
pocket directly. Most peptide residues are exposed to the surface of the pMHC complex, which
then can be accessed easily by the adjacent TCR molecule. Interaction between ligand and TCR
chains must have an impact to the petides' position in the MHC binding groove. The residue
speci�c position deviations between the aligned peptides are shown in the following table 3.4,
which lists only those crystal structures possessing a cocrystallized TCR.

residue deviations in [Å] ∆

position 1AO72 1LP9 1QSE 1QSF 1BD2 avg.

1 0.00 0.27 0.57 0.25 0.23 0.33

[2] 0.00 0.24 0.39 0.24 0.30 0.29

3 0.00 0.34 0.32 0.20 0.40 0.32

4 0.00 0.63 0.50 0.36 0.78 0.57

5 0.00 1.51 0.53 0.48 0.54 0.77

6 0.00 1.09 0.47 0.27 0.49 0.58

7 0.00 1.27 0.45 0.46 0.34 0.63

8 0.00 1.54 0.60 0.66 0.35 0.79

[9] 0.00 1.49 0.22 0.70 0.30 0.68

∆1-9 0.00 0.93 0.45 0.40 0.41 0.55

Table 3.4: Peptide residue speci�c RMSD of superimposed HLA from pMHC/TCR complexes.
The two HLA-A0201 key residue positions are highlighted with rectangular brackets around the
residue position number 2 and 9.

Figure 3.2: Peptide backbones of superimposed pMHC structures with TCR present. The N-
terminal position of peptides is located left. All peptides shown in relation to reference 1AO7
(magenta)

2reference structure
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In this group of MHC structures exists again one structure (1BD2) whose ligand is identical
to the ligand of the selected reference structure 1AO7. Here the cocrystallized TCR types are
di�ering. The RMSD values obtained for peptide-peptide deviations are lower than the values
obtained from the MHC structures without TCR. This may be explained by the higher peptide
ligand homology of these structures containing the TCR. This idea is supported by the fact,
that the ligand structure much di�erent from the other ligands of the set, 1LP9, deviates much
stronger from the reference structure.
The deviations in the central region of the peptides from the pMHC/TCR structures are marginally
di�erent to deviations at the N- or C-terminal ends. The in�uence of the TCR molecule sitting
on top of the binding groove, is decreasing the degrees of freedom that the peptide usually
possesses, if no TCR is present. One exception from this observation is again structure 1LP9
containing the highly di�ering ligand peptide. Here, the RMS deviations from the central part to
the C-terminal end are signi�cantly higher than deviations at the N-terminal end of the peptide.

Figure 3.3: Peptide backbones of superimposed structures 1AO7 and 1BD2 with TCR present.
The N-terminal position of peptides is located left. The ligand peptides of 1BD2 and reference
1AO7 (magenta) possess the same sequence.

Although the similarity of the backbone structures is higher for peptides cocrystallized with
TCR, it is not right to conclude that this e�ect is caused by the presence of the TCR. Rather
the high sequence homology of peptides in the structures with TCR present is responsible for the
strong overall agreement of the peptide backbone structures. Nevertheless, sequence homology
alone cannot explain the similarity in the peptide structures. In both groups of MHC structures,
(with and without TCR), MHC structures with identical peptide sequence show some dissimi-
larity, which is of the same magnitude as those for structures with di�erent peptide sequences.
In case of bare MHC/peptide structures, the peptide structure with the same sequence as the
reference structure shows signi�cant deviations in the backbone, which increases towards the
C-terminal end of the peptide.

3.1.1c How do deca-peptides align ?

Three HLA-A0201 crystal structures without TCR contain peptides of 10 residues length. It is
interesting to see, how they align in the binding pocket of the MHC with their additional residue
position. Several possibilities are imaginable:

• The residue number ten sticks out of the C-terminal end of the MHC binding pocket. This
can be observed for the structure of 2CLR, where the Glycin is bent out of the pocket of
the MHC.
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The case, where the �rst residue at the N-position sticks out of the binding pocket was not
observed. This seems to be unlikely, because the atom-atom interactions at the amide end
of the peptide chain seems to be very conserved for all binding ligands.

• Central residues of the peptide loop out of the MHC binding pocket or the central residues
bend within the binding pocket, compared to the more stretched conformation of binding
nona-peptides. This can be observed for the structures 1HHH and 1I4F.

Because there is no unique way how deca-peptides align in the HLA binding pocket, it is not useful
to calculate residue position speci�c RMSD values like it was done in the previous examples.
The �gures 3.4, 3.5 and 3.6 illustrate the three di�erent peptide structures of deca-peptide ligands
obtained by superimposing HLA α-chains to 1AKJ as reference structure. Again with the Kabsch
algorithm all residues of the α-chain between residue number 0 to 254 are aligned. Table 3.5
shows average deviations of the backbone atoms of the speci�ed residues from HLA α-chains.

overview of structures without TCR

pdb ID peptide sequence comment RMSD [Å] of B-factor resolution
HLA α to α avg.of α [Å]

1AKJ nonapeptide reference structure
ILKEPVHGV from table 3.2 0.00 23.02 2.6

2CLR MLLSVPLLLG 0.92 26.62 2.0
1HHH FLPSDFFPSV 0.54 6.45 3.0
1I4F GVYDGREHYV 0.51 17.57 1.4

Table 3.5: Deviations in HLA α-chains of arranged pMHC complexes with bound deca-peptides

Figure 3.4: Deca-peptide from 2CLR (in silver gray) after superposition of HLA chains with
nonapeptide from 1AKJ

As illustrated in �gure 3.4, the last residue, a Glycin, sticks out from the superimposed ref-
erence nona-peptide. The other two structures, as shown in �gures 3.5 and 3.6 have �exible
loops in the central region of the peptide with respect to the reference peptide structure. The
N-terminal residues are very conserved in all structures and show low variance.
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Figure 3.5: Deca-peptide from 1HHH (in silver gray) after superposition of HLA chains with
nonapeptide from 1AKJ

Figure 3.6: Deca-peptide from 1I4F (in silver gray) after superposition of HLA chains with
nonapeptide from 1AKJ

3.1.2 Intermolecular contact distances

In the following sections atom-atom contact distances between the peptide ligand and one of the
chains from either MHC protein HLA-A0201 or TCR protein are examined. A contact is de�ned
by those atom pairs whose distances are less or equal than a de�ned threshold distance. For
hydrophilic and hydrophobic interactions the contact distance threshold is chosen as 3.5 Å. The
ligand residue positions for the atom pair contacts are again analyzed separately.

3.1.2a Crystal structures without TCR

The structures 1AKJ, 1HHG, 1HHI, 1HHJ, 1QEW and 1DUZ contain just the ligand peptide
bound to HLA-A0201. The tables 3.6 - 3.11 list contacts counted for each residue position of the
ligand peptide to the HLA α-chain. Backbone and side chain atoms are counted separately and
the table discriminates between hydrophilic and hydrophobic atom-atom contacts. The table
3.12 gives the average contacts calculated over all 6 structures.

While hydrophobic atom-atom interactions are mainly a consequence of a cluster of bulky
uncharged groups, hydrophilic atom-atom interactions result in formation of hydrogen bonds or
salt bridges between side chains, which are speci�c interactions for a selected number of func-
tional groups. Nevertheless, these interactions can be residue type unspeci�c if they occur with
peptide backbone atoms.
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1AKJ ILE LEU LYS GLU PRO VAL HIS GLY VAL

peptide protein type 1 2 3 4 5 6 7 8 9

HLA-A0201
backbone backbone hydrophilic - - - - - - - - -

hydrophobic - - - - - - - - -
backbone side chain hydrophilic 3 2 2 - - - - 1 3

hydrophobic 6 - - - - - - 2 2

side chain backbone hydrophilic - - - - - - - - -
hydrophobic - - - - - - - - -

side chain side chain hydrophilic - - - 1 - - 1 - -
hydrophobic 3 2 1 2 - 3 - - 3

Table 3.6: Atom-atom contacts between peptide ligand and HLA-A0201 molecule for 1AKJ

1QEW PHE LEU TRP GLY PRO ARG ALA LEU VAL

peptide protein type 1 2 3 4 5 6 7 8 9

HLA-A0201
backbone backbone hydrophilic - - - - - - - - -

hydrophobic - - - - - - - - -
backbone side chain hydrophilic 3 2 2 - - - - 1 4

hydrophobic - - - - - - - - 2

side chain backbone hydrophilic - - - - - - - - -
hydrophobic - 1 - - - - - - -

side chain side chain hydrophilic - - - - - - - - -
hydrophobic 7 4 - - 1 1 - - 5

Table 3.7: Atom-atom contacts between peptide ligand and HLA-A0201 molecule for 1QEW

1HHI GLY ILE LEU GLY PHE VAL PHE THR LEU

peptide protein type 1 2 3 4 5 6 7 8 9

HLA-A0201
backbone backbone hydrophilic - - - - - - - - -

hydrophobic - - - - - - - - -
backbone side chain hydrophilic 3 2 - - - - - 1 2

hydrophobic 8 1 1 - - - 1 1 -

side chain backbone hydrophilic - - - - - - - - -
hydrophobic - 1 - - - - - - -

side chain side chain hydrophilic - - - - - - - 1 -
hydrophobic - 6 1 - 1 2 3 1 3

Table 3.8: Atom-atom contacts between peptide ligand and HLA-A0201 molecule for 1HHI
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1HHJ ILE LEU LYS GLU PRO VAL HIS GLY VAL

peptide protein type 1 2 3 4 5 6 7 8 9

HLA-A0201
backbone backbone hydrophilic - - - - - - - - -

hydrophobic - - - - - - - - -
backbone side chain hydrophilic 3 2 1 - - - - 1 5

hydrophobic 4 - 1 - - - - 1 4

side chain backbone hydrophilic - - 1 - - - - - -
hydrophobic - 1 - - - - - - -

side chain side chain hydrophilic - - - - - - 1 - -
hydrophobic 4 4 1 3 2 2 - - 1

Table 3.9: Atom-atom contacts between peptide ligand and HLA-A0201 molecule for 1HHJ

1HHG THR LEU THR SER CYS ASN THR SER VAL

peptide protein type 1 2 3 4 5 6 7 8 9

HLA-A0201
backbone backbone hydrophilic - - - - - - - - -

hydrophobic - - - - - - - - -
backbone side chain hydrophilic 3 2 1 - - - - 1 5

hydrophobic 6 3 1 - - - 1 2 4

side chain backbone hydrophilic - - - - - - - - -
hydrophobic - 2 - - - - - - -

side chain side chain hydrophilic - - - - - - - 1 -
hydrophobic 1 3 1 - - - - 2 -

Table 3.10: Atom-atom contacts between peptide ligand and HLA-A0201 molecule for 1HHG

1DUZ LEU LEU PHE GLY TYR PRO VAL TYR VAL

peptide protein type 1 2 3 4 5 6 7 8 9

HLA-A0201
backbone backbone hydrophilic - - - - - - - - -

hydrophobic - - - - - - - - -
backbone side chain hydrophilic 3 2 1 - - - - 1 5

hydrophobic 3 - 2 - - - 1 - 3

side chain backbone hydrophilic - - - - - - - - -
hydrophobic - - - - - - - - -

side chain side chain hydrophilic - - - - - - - - -
hydrophobic 3 3 1 - - - - - -

Table 3.11: Atom-atom contacts between peptide ligand and HLA-A0201 molecule for 1DUZ
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average pMHC pattern for A0201

peptide protein type 1 2 3 4 5 6 7 8 9

HLA-A0201
backbone backbone hydrophilic - - - - - - - - -

hydrophobic - - - - - - - - -
backbone side chain hydrophilic 3 2 1 - - - - 1 4

hydrophobic 4 1 1 - - - - 1 2

side chain backbone hydrophilic - - - - - - - - -
hydrophobic - 1 - - - - - - -

side chain side chain hydrophilic - - - - - - - - -
hydrophobic 3 4 1 1 1 1 - - 2

Table 3.12: Atom-atom contacts between peptide ligand and HLA-A0201 molecule average pat-
tern

Very conserved atom-atom interactions occur at the N- and C- terminal positions of the pep-
tide backbone. Namely the amide- and carboxy-group of the peptide endgroups interact with
residues of the HLA-A0201 protein very intensively. Side chain - side chain interactions between
peptide and HLA-A0201 are depending signi�cantly of the peptide sequence and therefor varying
for the examined examples. Around residue position 2 of the peptide, side chain - side chain
interactions to are mostly conserved. This is re�ecting the key residue position 2, where Leucin
is the preferred amino acid. With the exception of side chain - side chain interactions, central
residue positions barely have atom-atom contacts with HLA-A0201 residues.

3.1.2b Crystal structures with TCR present

Here, atom-atom interactions of structures containing TCR together with the HLA-A0201 molecule
and the bound ligand peptide are analyzed. Those structures are 1AO7, 1BD2, 1QSF, 1QSE and
1LP9. Most structures are crystallized with human A6 type TCR, while two structures (1BD2
with A7 and 1LP9 with AHIII 12.2) contain a di�erent TCR type. The tables 3.13 - 3.17 list
interactions between peptides and MHC HLA-A0201 molecules as well as between peptides and
TCR molecules. In the table 3.18 average contacts of all �ve crystal structures containing TCR
are shown.

Almost all considered structures with TCR, contain a ligand peptide, whose sequence dif-
fers just in one residue position. Only structure 1LP9, which possesses a di�erent TCR type
than the four other structures, contains a ligand peptide with a signi�cant di�erent sequence.
The atom-atom interaction pattern is therefore similar for all considered structures with TCR
present. Most of the atom-atom interactions between peptide and HLA-A0201 residues, are
found in residues 1-3 and 7-9. Like for peptide structures without TCR, peptide backbone atoms
have conserved interactions with HLA-A0201 residues especially for N- and C- terminal residue
positions. Central residues are not a�ected, regarding the interactions between the peptide and
the HLA-A0201 protein.
In contrast to the HLA-A0201 protein, central peptide residues are in contact to TCR residues,
especially for the side chain to side chain interactions of residue 5. There are backbone-backbone
contacts between peptide chain and the TCR protein for peptide residue position 4[50]. Di�er-
ences in the interaction pattern can be found for di�erent TCR types and di�erences arise also
from variation in the peptide sequence.
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1AO7 TCR type: A6 human LEU LEU PHE GLY TYR PRO VAL TYR VAL

peptide protein type 1 2 3 4 5 6 7 8 9

HLA-A0201
backbone backbone hydrophilic - - - - - - - - -

hydrophobic - - - - - - - - -
backbone side chain hydrophilic 3 2 1 - - - - 1 3

hydrophobic 2 - 1 - - - - 1 1

side chain backbone hydrophilic - - - - - - - - -
hydrophobic - - - - - - - - -

side chain side chain hydrophilic - - - - - - - - -
hydrophobic 3 3 1 - - - - - -

TCR
backbone backbone hydrophilic - - - 1 - - - 1 -

hydrophobic - - - 1 - - 1 - -
backbone side chain hydrophilic - 1 - 1 - - - - -

hydrophobic - - - - - - - - -

side chain backbone hydrophilic - - - - - - - - -
hydrophobic - - - - - - - - -

side chain side chain hydrophilic - - - - 2 - - - -
hydrophobic - - - - 2 - - 1 -

Table 3.13: Atom-atom contacts between peptide ligand and HLA-A0201 molecule as well as
between peptide ligand and TCR for 1AO7

1BD2 TCR type: A7 human LEU LEU PHE GLY TYR PRO VAL TYR VAL

peptide protein type 1 2 3 4 5 6 7 8 9

HLA-A0201
backbone backbone hydrophilic - - - - - - - - -

hydrophobic - - - - - - - - -
backbone side chain hydrophilic 4 3 1 - - - - 1 4

hydrophobic 5 - 1 - - - 1 1 2

side chain backbone hydrophilic - - - - - - - - -
hydrophobic - - - - - - - 1 -

side chain side chain hydrophilic - - - - - - - - -
hydrophobic 3 2 2 - - - - 4 4

TCR
backbone backbone hydrophilic - - - 1 - - - 1 -

hydrophobic - - - - - - - - -
backbone side chain hydrophilic - - - - - - - - -

hydrophobic - - - - - - - - -

side chain backbone hydrophilic - - - - - - - - -
hydrophobic - - - - - - 1 3 -

side chain side chain hydrophilic - - - - 1 - - - -
hydrophobic 1 - - - 4 - - - -

Table 3.14: Atom-atom contacts between peptide ligand and HLA-A0201 molecule as well as
between peptide ligand and TCR for 1BD2
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1QSF TCR type: A6 human LEU LEU PHE GLY TYR PRO VAL ALA VAL

peptide protein type 1 2 3 4 5 6 7 8 9

HLA-A0201
backbone backbone hydrophilic - - - - - - - - -

hydrophobic - - - - - - - - -
backbone side chain hydrophilic 3 2 1 - - - - 1 3

hydrophobic 3 3 2 - - - 1 4 2

side chain backbone hydrophilic - - - - - - - - -
hydrophobic - - - - - - - - -

side chain side chain hydrophilic - - - - - - - - -
hydrophobic 7 3 4 - - - - 1 3

TCR
backbone backbone hydrophilic - - - 1 - - - - -

hydrophobic - - - 1 - - - - -
backbone side chain hydrophilic - 1 - - - - - - -

hydrophobic - - - 1 - - - - -

side chain backbone hydrophilic - - - - - - - - -
hydrophobic - - - - - - - - -

side chain side chain hydrophilic - - - - 1 - - - -
hydrophobic - - - - 3 - - - -

Table 3.15: Atom-atom contacts between peptide ligand and HLA-A0201 molecule as well as
between peptide ligand and TCR for 1QSF

1QSE TCR type: A6 human LEU LEU PHE GLY TYR PRO ARG TYR VAL

peptide protein type 1 2 3 4 5 6 7 8 9

HLA-A0201
backbone backbone hydrophilic - - - - - - - - -

hydrophobic - - - - - - - - -
backbone side chain hydrophilic 3 2 1 - - - - 1 4

hydrophobic 6 5 2 - - - 1 3 5

side chain backbone hydrophilic - - - - - - - - -
hydrophobic - 2 - - - - - 1 -

side chain side chain hydrophilic - - - - - - - - -
hydrophobic 8 3 6 - - 3 - - 2

TCR
backbone backbone hydrophilic - - - 1 - - - - -

hydrophobic - - - 2 - - - - -
backbone side chain hydrophilic - - - - - - - - -

hydrophobic - - - - - - - - -

side chain backbone hydrophilic - - - - - - 3 - -
hydrophobic - - - - - - 2 1 -

side chain side chain hydrophilic - - - - 2 - - - -
hydrophobic - - - - 5 - - 3 -

Table 3.16: Atom-atom contacts between peptide ligand and HLA-A0201 molecule as well as
between peptide ligand and TCR for 1QSE
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1LP9 TCR type: AHIII 12.2 ALA LEU TRP GLY PHE PHE PRO VAL LEU

peptide protein type 1 2 3 4 5 6 7 8 9

HLA-A0201
backbone backbone hydrophilic - - - - - - - - -

hydrophobic - - - - - - - - 1
backbone side chain hydrophilic 3 2 2 - - - - 1 4

hydrophobic 5 - 1 - - - 1 - 4

side chain backbone hydrophilic - - - - - - - - -
hydrophobic - - - - - - - - -

side chain side chain hydrophilic - - - - - - - - -
hydrophobic 1 3 1 - - - - - -

TCR
backbone backbone hydrophilic - - - 2 1 - - - -

hydrophobic - - - 3 - - - - -
backbone side chain hydrophilic - - - 1 - - - - -

hydrophobic - - - - - 1 1 - -

side chain backbone hydrophilic - - - - - - - - -
hydrophobic - - 1 - 1 - - - -

side chain side chain hydrophilic - - - - - - - - -
hydrophobic - - - - - - - 1 -

Table 3.17: Atom-atom contacts between peptide ligand and HLA-A0201 molecule as well as
between peptide ligand and TCR for 1LP9

average pMHC/TCR pattern for A0201

peptide protein type 1 2 3 4 5 6 7 8 9

HLA-A0201
backbone backbone hydrophilic - - - - - - - - -

hydrophobic - - - - - - - - -
backbone side chain hydrophilic 3 2 1 - - - - 1 4

hydrophobic 4 2 1 - - - 1 2 3

side chain backbone hydrophilic - - - - - - - - -
hydrophobic - - - - - - - - -

side chain side chain hydrophilic - - - - - - - - -
hydrophobic 4 3 3 - - 1 - 1 2

TCR
backbone backbone hydrophilic - - - 1 - - - - -

hydrophobic - - - 1 - - - - -
backbone side chain hydrophilic - - - - - - - - -

hydrophobic - - - - - - - - -

side chain backbone hydrophilic - - - - - - 1 - -
hydrophobic - - - - - - 1 1 -

side chain side chain hydrophilic - - - - 1 - - - -
hydrophobic - - - - 3 - - 1 -

Table 3.18: Atom-atom contacts between peptide ligand and HLA-A0201 molecule as well as
between peptide ligand and TCR for average pMHC/TCR pattern
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It is hard to predict how larger di�erences in the ligand peptide sequence will alter the interac-
tion pattern to the TCR chains, since all the examined peptide structures barely di�er in their
sequence. This might also be a�ected by the increased selectivity of the complex, if a speci�c
TCR is present[51][10].

3.1.3 Comparison of peptide binding in HLA-A0201 structures with and
without TCR

(a) pMHC structures (b) pMHC+TCR structures

Figure 3.7: Summary of hydrophilic contacts formed by salt bridges and hydrogen bonds be-
tween peptide and protein atoms averaged for a.) structures without TCR b.) structures
including TCR

(a) pMHC structures (b) pMHC+TCR structures

Figure 3.8: Summary of hydrophobic contacts between peptide and protein atoms averaged
for a.) structures without TCR b.) structures including TCR
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The most remarkable conclusion from the analysis of the HLA crystal structures is that the
central region of the bound peptide is not speci�cally recognized by the HLA-A0201 molecule.
In contrast, the TCR interacts especially with the side chains of the central residues. A very
tight interaction between N- and C- terminal peptide residues and the HLA-A0201 protein is
conserved through all examined structures. The graphs in �gure 3.7 highlight these observations.
Hydrophilic interactions between HLA-A0201 and ligand peptide are predominantly formed be-
tween HLA protein and peptide backbone atoms. These interactions are residue type unspeci�c
compared to hydrophilic interactions with peptide side chain atoms. This goes along with the ob-
servation for the examined HLA-A0201 that at several peptide residue positions (pos. 1,2,6,7 and
9, see table A.3 in the appendix section A.0.1) unpolar, hydrophobic amino acids are preferred.
More residue type speci�c are the key positions 2 and 9 (see �g. 3.8), where the hydrophobic
amino acids leucine or valine respectively are located with a higher probability (see table A.3).
The graphs in �gure 3.8 show that hydrophobic interactions occurr between the HLA-A0201
protein and the peptide for all residue positions 1 to 9. Speci�c for large, bulky, unpolar amino
acids are those hydrophobic interactions, caused by peptide side chain contacts. Thus for HLA-
A0201 the key positions 2 and 9 of the binding peptide are known to cover bulky, unpolar amino
acids, which cause hydrophobic interactions of the peptides' side chain atoms and the protein,
as shown in �gure 3.8 in the graph (a) for pMHC structures as well as in graph (b) for pMHC
+ TCR structures. The side chain interactions with HLA are marked by the red open circles in
�gures 3.7a/b and 3.8a/b. For position 2 in particular, this number is higher than the appropri-
ate number of hydrophobic interactions to peptide backbone atoms marked by the red triangles
(see �g. 3.8a/b). In presence of the TCR, hydrophobic interactions with the central residues
are formed almost exclusively with the TCR protein. The HLA-A0201 protein is almost not
interacting with peptide residues 4,5 and 6 when the TCR is present. For structures with TCR
absent, some hydrophobic interactions of HLA-A0201 protein and peptide side chain atoms on
position 4,5 and 6 can be observed. Possibly the presence of TCR is supressing those HLA-A0201
- peptide interactions by pulling the peptide chain out of the MHC binding groove. However this
observation may also be an artefact due to the small sequence variations of the examined crystal
structures including the TCR.

3.1.4 Conserved contact residues of the HLA-A0201 α-chain

The tables 3.19 and 3.20 highlight those residues of the α-chain of A0201, which form hydrophilic
interactions with the ligand peptide for structures without and with TCR present. Table 3.19
lists only the pMHC structures, where the interactions of 8 residues are conserved and found
in all 6 examined structures. HLA-A0201 residues, which interact with side chain atoms of the
peptide, are marked in the table by the ⊕symbol. In the case of glutamine residue 155, interac-
tions are only found to peptide side chains. In both cases of occurrences the peptide interaction
partner was a histidine on residue position 7 of the ligand peptide.

The table 3.20 lists hydrophilic interacting residues from HLA-A0201 with peptide atoms of
crystal structures with TCR present. Due to the restricted variability of the peptide ligands'
sequence, only minor di�erences can be observed. There are in no case hydrophilic interactions
of HLA with peptide side chains occurring. Thus, all the hydrophilic interactions observed here
are targeting the peptide backbone atoms.
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amino acid Tyr Glu Arg Lys His Asp Tyr Tyr Thr Lys Trp Gln Tyr Tyr

res. no. 7 63 65 66 70 77 84 99 143 146 147 155 159 171

atom label OH OE1 NH2 NZ NE2 OD1 OH OH OG1 NZ NE1 OE1 OH OH

structures

1AKJ + + ⊕ + + + + + + + ⊕ + +

1QEW + + + + + + + + + + + +

1HHG + + + +⊕ + + + + + + +

1HHI + + + + + + + + +

1HHJ + + + + + + + + + ⊕ + +

1DUZ + + + + + + + + + + +

Σ 6 6 1 6 2 6 5 5 6 5 6 2 6 6

Table 3.19: Hydrophilic interactions between peptide and HLA-A0201 atoms in 6 pMHC struc-
tures formed by conserved A0201 residues. Interactions with peptide residue side chains are
marked by ⊕.

amino acid Tyr Glu Lys His Asp Tyr Tyr Thr Lys Trp Tyr Tyr

res. no. 7 63 66 70 77 84 99 143 146 147 159 171

atom label OH OE1 NZ NE2 OD1 OH OH OG1 NZ NE1 OH OH

structures

1AO7 + + + + + + + + + +

1BD2 + + + + + + + + + + +

1QSE + + + + + + + + + + +

1QSF + + + + + + + + + +

1LP9 + + + + + + + + + + + +

Σ 5 5 5 1 5 5 5 5 3 5 5 5

Table 3.20: Hydrophilic interactions between peptide and HLA-A0201 atoms in 5 pMHC/TCR
structures formed by conserved A0201 residues

3.1.5 Discussion and summary of section 3.1

• TCR limits ligand peptide �exibility: The peptide bound to HLA-A0201 has more
freedom to align in the MHC binding pocket in absence of TCR.

• Hydrophilic HLA-A0201-peptide interactions: Hydrophilic interactions between
HLA-A0201 and peptide atoms are mainly formed with peptide backbone amide nitrogen
or carbonyl oxygen atoms, which are residue type unspeci�c interactions.

• Hydrophobic HLA-A0201-peptide interactions: Mostly hydrophobic interactions
are formed between predominantly hydrophobic residues of the peptide at positions 2,9
and the residues of the HLA-A0201 protein.

• Interactions of HLA-A0201 to di�erent peptide parts: Interactions between the
HLA-A0201 protein atoms and peptide atoms mainly occur to the N- and C- terminal
residues of the peptide. The side chains of the central residues 4,5 and 6 are rarely inter-
acting with the A0201 protein.
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• TCR-peptide interactions: TCR protein atoms interact with central residues of the
peptide. Although there are few interactions with terminal peptide residues, most interac-
tions are found with the residues 4 and 5 of the peptide.

• Deca-peptides as ligands: Ligand peptides with a residue length of ten can bind to
HLA-A0201 if their central residues loop out of the binding groove. Alternatively, in case
of a C-terminal Glycine at residue position 10, this residue is hanging out of the binding
groove.

• HLA-A0201 residues: Hydrophilic interactions between the HLA-A0201 protein and
the peptide backbone are caused by the 8 conserved residues Tyr7, Glu63, Lys66, Asp77,
Thr143, Trp147, Tyr159 and Tyr171 from the A0201 α-protein chain.

The results obtained in the analysis of the crystal structures suggest that C- and N- terminus
play an important role for the ligand peptide binding to HLA-A0201. This �nding is supported
by the fact that key residues for HLA-A0201 peptides are located at residue positions 2 and 9.
On the other hand, the central residues 4,5 and 6 contribute little to the speci�c recognition of
an A0201 binding peptide. Important is the �nding that the examined types of TCR A6 and
A7 interact especially with the central peptide residues 4,5 and 6. The present key positions
2 and 9 for the HLA-A0201 - peptide binding are suggesting a tight binding of these peptide
positions to the MHC binding groove, such that there is little space for interactions of these
peptide positions with the TCR. Hence, to �nd immuno-active binding peptides to HLA-A0201
it is crucial to consider all peptide positions, since those parts of the peptide, which are not so
important for binding to the HLA-A0201 have a high importance for the TCR.
The accuracy of the obtained results is based on this small set of available crystal structures.
Especially for the complexes, which contain TCR, the peptide sequence variance is small. Some
�ndings could be an artefact of this limitation.
How general are these �ndings? In this work crystal structures of HLA-A0201 have been exam-
ined. For this allele most crystal structures are publicly available. It was also important that a
number of crystal structures exist, which contain an attached TCR. It is di�cult to expand the
�nding made in this section to other HLA types especially, since other types vary in their key
positions. For subtypes of the same super family HLA-A02*, which are containing the same key
positions, one can assume a similar HLA - peptide interaction pattern. For the di�erent types
of TCR this �nding is even more di�cult. The peptide-MHC speci�c recognition sequence of
di�erent TCR types is highly variant and di�erent TCR types are only recognizing speci�c HLA
types. The small pool of available crystal structures prohibits a broader analysis of di�erent
TCR types with respect to the various types of HLA.
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3.2 Linear Scoring function and Support vector machines

In this section, results for the scoring function (least square method LSM) using sequence infor-
mation as descriptors are compared to results from the support vector machine (SVM) provided
with the same descriptor input.

3.2.1 An example for deriving parameters of LSM and SVM

Di�erent methods provide di�erent results, if the learning set used to train the algorithms is
modi�ed. A typical example is discussed by using half of the binding sequences from S+ as
input. These 269 binding sequences and the same number of non-binding sequences from S− are
used for learning. For simplicity, every binding sequence of table A.1, which possesses an even
index number was selected for the learning set. The 269 non-binding sequences were selected
randomly from the 10,000 total available non-binding sequences. The remaining 269 sequences
from binding set and another randomly chosen 269 non-binding sequences from the non-binding
set S− are used for prediction.
The parameters ~w and b are obtained for the scoring function by applying the method of the
least square optimization (LSM) as described in section 2.3.2c, eqn.2.6. With knowledge of these
parameters the linear equation f (~x) = ~w t · ~x + b can be solved. To solve eqn. 2.18 in section
2.3.6 for the support vector machine the parameters ~w and b also need to be calculated. To
obtain the parameters, listed in table 3.21, the weighting factor w+ for the scoring function -
according to eqn. 2.10 - was set to w+ = 0.45 and therefore w− = 1− w+ = 0.55. The lambda
regularization term for the scoring function was set to λw = 10−6.

3.2.2 Recognition and prediction on a prototypical example

After training with the learning data set, the quality of the methods is evaluated for recognition
and prediction. For recognition the same learning set is presented to the trained scoring function,
while for prediction the prediction data set with unknown target values is examined.
The following results were obtained for recognition and prediction of 538 leaning sequences and
538 prediction sequences:

recognition results prediction results
accuracy missclassi�ed accuracy missclassi�ed

non- non- non- non-
method binding binding binding binding binding binding binding binding

LSM 93.3% 95.9% 18 11 92.9% 86.2% 19 37
SVM 93.3% 94.4% 18 15 92.2% 89.2% 21 29

The support vector machine was selecting 238 support vectors for this classi�cation task,
where 115 were derived from binding and 123 from non-binding sequences of the learning set. In
recognition both methods missclassify 18 peptides as "False negatives" (FN), which have to be
binding peptides. 14 of those 18 false negative classi�ed peptides are identical for both methods.
There are 11 missclassi�ed binding peptides ("False positives" (FP)) for the scoring function and
15 FP peptides for the support vector machine. From those false positives 10 are identical for
both methods.
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Recognition performance for both methods is almost the same with a slight advantage for the
LSM. In Prediction both methods di�er slightly. Especially the non-binding peptides are clas-
si�ed better with the SVM, although there is a small advantage in prediction of the binding
peptides for the LSM. The di�erence in prediction of non-binding peptides could indicate some
learning by heart in case of LSM, since recognition and prediction rate for non-binding peptides
is for this method more apart.

3.2.3 In�uence of the weighting parameter w+ and the regularization para-
meter λw for the LSM results

As described in section 2.3.2d by eqn. 2.10 and 2.11 the two parameters for weighting and
regularization in�uence the behavior of the least square optimization of the scoring function.
In this section the in�uence of these parameters to the recognition or prediction results will be
demonstrated.
The weighting factors w+ and w− discriminate binding from non-binding data of the learning set
during the training of the method (least square optimization method). The weighting parameter
w+ has always to be seen in relation with w−, which is de�ned by 1−w+ = w−. Both parameters
determine the weight given to all molecules of either the binding or the non-binding class during
the LSM. If the parameters are chosen to be 0.5 each, both classes are treated with the same
weight. The in�uence of di�erent weights is shown for the recognition of the scoring function for
a learning data set composed of an equal number of binding and non-binding peptides. For the
following case 200 binding and 200 non-binding peptides were selected for the learning set Slearn.
The peptides from the learning set are ordered ascending by their target values f (~xn) < f (~xn+1).
Target values are assigned by the scoring function during the recognition after the learning. Thus
all values increase monotonously with the sequence number n. In the �g. 3.9 the scoring functions
f (~xn) are plotted as a function of the index n for di�erent weights of w+. Peptides with wrong
recognized classes are marked by crosses. For comparison a scoring function, which uses linear
and quadratic terms (QSM) (see section 2.3.3) is added. To limit the number of free parameters
for the QSM, quadratic terms are using amino acid categories. For this example nine categories
are used as follows:

1. hydrophobic containing AVM

2. histidine with only H

3. positive charged with KR

4. negative charged with ED

5. polar with QNSTY

6. large with LIFW

7. glycine with only G

8. proline with only P

9. cysteine with only C.

The number of free parameters is given by N + (M · (M + 1))/2 where N is the number of free
parameters of the linear terms and M is the number of amino acid types contributed by the
quadratic term. With N = 180 and M = 81 this leads to 3501 free parameters for the QSM. It
is obvious that the QSM scoring function is learning by heart for the recognition of the learning
data set.
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Figure 3.9: Di�erent weights w+ of binding peptides e�ect the scoring function f (~x). Recognition
of the learning set, containing 200 binding and 200 non-binding peptides, is shown. From the
top to the bottom the scoring functions refer to weights w+ of (green) 0.8, (magenta) 0.6, (black)
0.4, (blue) 0.2 and (red) 0.1. Wrong classi�ed peptides are marked by crosses. The orange line
marks the desired step function shape. Here the orange curve is obtained by a scoring function
using all linear terms plus quadratic terms of nine categories. The orange QSM plot using a
weight w+ = 0.5 shows perfect learning by heart behavior.

weights w+ No. Incorrect No. Incorrect
binding non binding

0.8 0 17
0.6 1 7
0.4 7 2
0.2 21 1
0.1 37 0

Table 3.22: Number of missclassi�ed peptides of the scoring function for di�erent weights w+ as
shown in �gure 3.9.

A scoring function with optimal behavior should have the shape of a step function, where
the �rst 200 non-binding peptides are classi�ed with a target value of -1 and the 200 binding
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peptides on the other side are classi�ed with a target value of +1. The quadratic scoring function
in �gure 3.9 possesses this behavior. All other curves correspond to results obtained with linear
scoring functions using di�erent weights and show a monotonically increasing slope. Here the
positive or negative part of the step like functions is shifted, depending on the applied weight
w+. For large weights of w+ the positive step of the scoring function is very pronounced, while
the negative step is less distinct. The opposite is the case for small weights of w+.
The regularization parameter λw can be used to suppress learning by heart. How is this para-
meter in�uencing the prediction capability of the scoring function? In the following analysis
di�erent learning sets are generated out of the entire set of available binding and non-binding
peptides. The weighting factor is always kept constant with w+ = 0.35 and the size of the pre-
diction set is also constant with 150 binding and 150 non-binding peptides. For training three
di�erent learning sets are generated, one small set with 50 binding and 50 non-binding peptides,
one medium size set of each 100 binding and non-binding peptides and one large set of 350 bind-
ing peptides and 1,000 non-binding peptides. The peptides in each learning set are selected by
chance from the complete pools of binding and non-binding peptides S+ and S−. The peptides
for the prediction set are randomly chosen from the remaining peptides. The learning sets of

Figure 3.10: Prediction performance for the linear scoring function for di�erent λw and sizes of
the learning sets. Data are averages of 100 di�erent partitions between learning and prediction
set peptides. Dashed lines represent results for non-binding prediction sets, solid lines represent
results for binding prediction sets.
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di�erent size should mimic di�erent situations of true prediction. The small set is representing
the situation, where few data are available to train the system. The large set is re�ecting a situa-
tion, where a large number of data are available for training. To remove statistical errors, which
go along with limited set size and possible unfavorable peptide distributions, average scores over
100 di�erent peptide distributions for the learning and prediction sets are calculated. For each
distribution the LSM and scoring function is computed. The results approve that for smaller
learning sets the risk of learning by heart is higher, so that a larger value of λw can suppress
this behavior. This is improving the prediction results. Due to the chosen value of w+, the
curves for binding prediction and non-binding prediction diverge. With increased values of λw

the non-binding prediction quality is improving further, while at some value of λw the slope
of the curve for binding prediction becomes negative. Interestingly a negative value of lambda
has a positive e�ect for the case, where the large learning set was used. A negative lambda is
increasing the in�uence of the larger, more pronounced parameters, which are more successful in
the learning and prediction procedure.
Usually the parameter λw is used to suppress numerical instabilities, when the linear equation
system is about to get singular. Practically it helps to improve prediction results by supressing
smaller, less meaningful parameters to a higher extent. If the number of parameters is large
compared to the number of learning data, a large λw value is improving prediction quality. If
the value of this parameter becomes too large, prediction results worsen.

3.2.4 Behavior of the scoring functions in recognition and prediction

In the following three di�erent types of classi�cation for di�erent scoring functions are performed.

1. A recognition of 538 binding and 538 non-binding peptides is derived for LSM, SVM and
QSM.

2. For LSM, a leave-one-out crossvalidation (also called jackknife) is predicting a single peptide
out of 538 binding and 538 non-binding peptides, while all remaining peptides are used for
learning. This procedure was applied for all 538 binding and non-binding peptides.

3. Finally, a prediction of 538 binding and 538 non-binding peptides is performed for the
LSM. A small learning set of 50 binding and 50 non-binding peptides was used. The 50
binding peptides used for learning are part of the 538 binding peptides of the prediction
set, which means that for those 50 peptides a pseudo prediction is performed.

The set of 538 non-binding peptides are selected by chance from 10,000 available non-binders.
The binding set contains the entire set of 538 available binding peptides. To perform the anal-
ysis the peptides are sorted by their target values, assigned by the scoring function. Di�erent
to �gure 3.9, this time the binding and non-binding sets are regarded separately, yielding two
branches f+ (~x) and f− (~x) of the scoring function. Missclassi�ed peptides of the respective set
can be identi�ed easy, where the curves cross the threshold line of zero. Binding peptides with
a scoring function below zero and non-binding peptides with a scoring function above zero are
missclassi�ed.
For this analysis the SVM (green curve) and QSM (orange line) methods are applied for the
538/538-recognition, where all peptides are used for learning and recognition. The LSM method
is applied for all cases described above (all blue curves). The weighting for LSM is set to
w+ = 0.36, while for QSM it is set to w+ = 0.50. For LSM and QSM a lambda value of
λw = 10−6 was used to avoid singularities.
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Figure 3.11: Comparison of di�erent scoring functions separating binding and non-binding pep-
tides in recognition or prediction sets. Solid lines represent complete recognition of 538 peptides
in the learning sets. Upper curves belong to binding sets, lower curves to non-binding sets. Green
curve represent SVM, orange lines represent QSM, blue lines belong to LSM. Dashed curves rep-
resents results of leave one out cross validation, dotted curves represent prediction of 538/538
petides prediction sets after training with 50/50 random chosen petides for the learning set.

As a result of the comparison between the two optimization methods, least square optimization
or support vector machines are shown in �gure 3.11. Both methods yield a very similar recog-
nition quality. The SVM has a small advantage in recognizing binding peptides, while the LSM
is better in recognizing non-binding peptides. For the LSM, the weighting factor w+ can shift
this relation. The quadratic scoring function (QSM) uses all linear terms plus nine amino acid
categories as described in section 3.2.3. The recognition of all 538 peptides in each learning set,
binding and non-binding, was performed by the QSM without any error. The scoring function of
the QSM assigns for all peptides of the appropriate learning set target values, which are exactly
matching the expectation values +1 for binding or -1 for non-binding peptides. This is a typical
indication of learning by heart. The results for the LSM prediction jackknife or 50/50 learning
show similar behavior as the recognition. It is obvious that the error rate is increased due to
the fact that peptides unknown to the scoring function have to be classi�ed. For the 50/50 set
only 50 peptides of each class have been learned, but the generalization capability is still good
enough to classify most of the 538 peptides of each class correctly.
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3.2.5 Reassessment of the composition of the learning data sets

The support vector machine has the ability to select a subset of data in feature space to opti-
mize the performance. Although the least square optimization does not directly o�er such an
option, the LSM optimization can be used to identify incorrectly recognized peptides and those
peptides located in the twilight zone of vanishing scoring values. The assumed binding ability
might have been assigned wrongly especially for those peptides sequences randomly generated
and assumed to belong to the non-binding class. These malicious peptides may be identi�ed by
a preliminary LSM run and can be identi�ed and eliminated before starting the actual classi�-
cation approach. To investigate this, an LSM optimization with random selected 300 binding
and 5,000 non-binding peptides in the learning set is initiated. The w+ parameter is set to 0.36.
All remaining 238 binding and 5,000 non-binding peptides are used for the prediction set. In the
�rst run, 92.0% binding and 92.8% non-binding peptides from the learning set are recognized
correctly. In the prediction set 90.3% of the binding and 92.5% of the non-binding peptides
are classi�ed correctly. Based on these results, 31 non-binding peptides from the learning set
are removed, because their target values f (~x−) were larger than 0.7. With this modi�cation a
second run of the LSM was performed. For the learning set of the binding peptides no changes
in recognition rate was observed, but the recognition rate for non-binding peptides was slightly
reduced to 92.5%. In the prediction mode the fraction of binding peptides increases to 91.6%,
while the rate for the non-binding peptides is now 92.2%. Hence, the overall performance for the
prediction is increased compared to the �rst run of the LSM where all peptides of the learning
set are used un�ltered.

learning prediction
S+ S− S+ S−

1st LSM prerun 92.0 92.8 90.3 92.5
2nd LSM run 92.0 92.5 91.6 92.2

If the same sets of 300 binding and 5,000 non-binding peptides for learning and the remaining
238 binding and 5,000 non-binding peptides for prediction are provided to the support vector
machine, a break down in recognition and prediction rate for binding peptides can be observed
with a recognition rate of 50.6% and a prediction rate of 48.7% for binding peptides. At the
same time the number for correct recognized and predicted non-binding peptides is very high
with 99.5% for both recognition and prediction of the non-binding sets. This is a known problem
to SVM if the used learning data sets are unbalanced, like in this case with only 300 binding
but 5,000 non-binding peptides [52][17]. This problem can be overcome by simply providing
several copies of the smaller data set to the learning algorithm. In this case 16 identical copies
of the set of 300 binding peptides are used as new binding set to balance the data of binding and
non-binding learning set. With this modi�cation the SVM recognizes 96.0% of the binding and
92.0% of the non-binding peptides correctly. In the prediction 93.0% of the binding and 91.0%
of the non-binding peptides are classi�ed correct. In the case of the LSM the weighting factors
w+ and w− are balancing the data sets during the learning procedure.
In conclusion it can be summarized that a well tuned least square optimization can achieve the
same prediction quality as the SVM optimization.
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3.2.6 Quality control via Receiver Operating Characteristics Curve

The Receiver Operating Characteristics (ROC) Curve is a sensitivity versus 1-speci�city plot,
which can be used as quality control for recognition and prediction results [53]. The two functions
speci�city and sensitivity, both depending on the threshold t, are introduced.

sens(t) =
correct+(t)

N+
and spec(t) =

correct−(t)
N−

(3.1)

The variables N+ and N− are the total number of binding or non-binding data in the learning
set. The functional dependence sens(spec) can be obtained by varying the threshold t used to
classify a peptide given by ~x as binding for f (~x) > t or as non-binding for f (~x) < t. The area
under the curve for a ROC plot is an overall measure of quality.
For this examination the same 269 binding and 269 non-binding peptides were used for the
learning set as described in section 3.2.1 to determine the parameters of table 3.21. For the
prediction set the remaining 269 binding and 269 non-binding peptides were chosen. Just for
comparison the least square optimization with quadratic terms has been added. In this case all
linear terms plus two quadratic categories, hydrophilic and hydrophobic amino acids, have been
chosen, while the w+ was set to 0.50 and a high value for the λw term of 10−2 was selected.

Figure 3.12: ROC plots for LSM and QSM. Solid lines are referring to prediction results, dashed lines to
recognition results. The blue lines represent results for LSM optimization, the green curve is related to the
SVM optimization, the orange curve is related to the QSM optimization with 20 linear plus 2 quadratic
terms and a λw = 10−2. Weighting factor w+ is 0.45 for LSM and 0.50 for QSM. Area under the curve
(AUC) is in LSM recognition 0.9926. For LSM prediction the AUC is 0.9559, for SVM prediction the
value is 0.9613 and for QSM prediction the value is 0.9592. Positions t = 0 are marked by crosses.
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Actually the quadratic scoring function makes no sense for this application using a small learning
set of 269 binding and 269 non-binding peptides.
The results demonstrate a small advantage of the SVM optimization in its ability to discriminate
between binding and non-binding peptides. With the regularization and weighting parameters
it is possible to tune the LSM to match the prediction quality between LSM and SVM.

3.2.7 Quality control by statistical survey

Another way to judge the quality of the LSM optimization is a statistical breakdown of recogni-
tion and prediction results by analysis of i.e. 400 di�erent distribution patterns of the peptides
divided into learning and prediction set. For this purpose the learning and prediction peptides
are randomly chosen from the appropriate complete sets of peptides. Therefore 400 di�erent
sets are generated by selecting out of the total 538 binding and 10,000 non-binding peptides the
desired number of peptides for learning or prediction. For this analysis two di�erent sizes of
learning sets are chosen. First 50 binding and 50 non-binding peptides are selected for the entire
learning set. Second the learning set is composed out of 300 binding and 5,000 non-binding
peptides. For comparison the size of the prediction sets remains in both cases the same. By
chance 238 binding and 5,000 non-binding peptides are selected for the prediction sets.

learning set 50/50 learning set 300/5,000

method binding non-binding binding non-binding

peptides [%] peptides [%] peptides [%] peptides [%]

LSM - recognition 100.0 ± 0.0 100.0 ± 0.0 94.8 ± 0.8 91.3 ± 0.1

linear prediction 78.8 ± 21.3 73.0 ± 19.5 90.0 ± 2.9 90.8 ± 0.2

QSM - recognition 95.1 ± 0.7 91.9 ± 0.1

quadratic 3 prediction 89.0 ± 3.9 91.3 ± 0.3

Table 3.23: Recognition and prediction statistics of 400 di�erent runs for di�erent size of learning
sets. LSM and QSM optimization run with w+ = 0.45 and λw = 10−5. For QSM 20 linear terms
plus quadratic 2 categories are used yielding 351 free parameters.

The table 3.23 displays the result for the di�erent statistical evaluations. For comparison
results of QSM with 20 linear terms plus 2 quadratic amino acid categories for hydrophobic and
hydrophilic amino acids were added. Since the training with a learning set of 50 binding and
50 non-binding peptides for the linear LSM already yields learning by heart, an examination
of this small learning set using QSM was skipped. It can be observed that the LSM optimiza-
tion improves in prediction, if it is trained with a larger learning set of 300 binding and 5,000
non-binding peptides. The prediction and recognition rate converges, if the learning by heart
phenomenon is suppressed, because the provided learning data and the number of parameters
of the system reach an optimal relation. Another indicator that the obtained results for the
small learning set 50/50 are suboptimal, is the high variance assigned for the prediction rates,
while at the same time for the learning rates the variance is zero. Thus increasing the number

3using 20 linear terms plus 2 quadratic categories (hydrophob/hydrophil)
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of parameters by introducing the QSM demonstrates that even for the large learning set of 300
binding and 5,000 non-binding peptides, the overall prediction rates slightly degrade, while the
variance is increased slightly. It can be assumed that for the LSM with its 20 · 9 parameters an
optimum is already reached.

3.2.8 Discussion and summary of section 3.2

• The self-developed least square optimized scoring function is a general approach to derive
classi�cation shown on the example of binding prediction of peptides to HLA-A0201

• The achieved prediction quality is surpassing results obtained from similar methods [54,
55, 56, 57, 58] and coming close to results of powerful, well established methods like SVM
optimization or Hidden Markov Models [46, 47, 59].

• Carefully tuned training of the LSM optimization allows to achieve equivalent results in
prediction compared to SVM optimization

• The LSM optimization can be manually adapted and optimized for the di�erent prediction
challenges by regularization parameters like λw and w+

The weighting factor w+ allows evaluation of unbalanced learning data sets without a
decline in prediction quality

• By using a prerun analysis, questionable peptides can be eliminated from the learning data
set and therefore possibly increase the overall prediction quality. In the current analysis this
makes sense since the non-binding peptides were derived by chance from protein sequences,
involving the risk of potentially missclassi�ed entries.

• For large to very large learning sets the linear LSM can be expanded by introduction of
quadratic terms (QSM) - here shown on the example of amino acid categories. This allows
the adaptation of the number of parameters to more complex learning patterns.

• However, the QSM quadratic terms may not always have enough �exibility. In the case
of the genetic algorithm a �exible generation of quadratic features out of selected linear
features is used

The presented LSM method shows a high performance for classi�cation of HLA-A0201 bind-
ing peptides. With the two regularization parameters w+ and λw the method can be tuned for
di�erent prediction challenges. It can handle classi�cations for small as well as large learning
data sets without a signi�cant breakdown in prediction performance. The comparison to alterna-
tive classi�cation approaches like SVM underline that the prediction performance of the LSM is
competitive to well established methods. For asymmetric learning data sets, where the number
of binding peptides di�er much to the number of non-binding peptides, the weighting term w+

allows the LSM to outperform the compared SVM method. However, this handicap of the SVM
can easily be �xed. For symmetric learning data sets the prediction quality of LSM comes very
close to the SVM results.
One common measurement for the overall quality of prediction algorithms is the ROC curve and
the related AUROC value obtained from the area under the ROC curve. The ROC allows a
judgement over the classi�cation ability when the classi�cation threshold t is changed. Never-
theless, the discrimination between binding and non-binding peptides is mainly interesting for
the threshold of t = 0, where the classi�cation occurs in the normal application. Therefore,
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the signi�cance of the AUROC measure is doubtfull. Another quality measure, the Matthews
Correlation Coe�cient (MCC) is used in the next section, where the results for the CoEPrA
2006 competition are discussed. The MCC is correlating missclassi�ed binders and non-binders
to the number of correct classi�ed binders and non-binders as described in section 2.3.7.
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3.3 CoEPrA 2006 competition

The data provided by CoEPrA 2006 have the advantage to contain both, peptide sequences and
physico-chemical derived features for all four classi�cation tasks. The LSM scoring function can
make use of both types of features. A strategy is needed to reduce the number of parameters and
to prevent learning by heart if physico-chemical features shall be used. There are 643 physico-
chemical features for each residue position, which yields 5787 features for a nonapeptide.

3.3.1 Ranking of the competitors for CoEPrA 2006 tasks 1-4

The following tables 3.24 - 3.27 list the ranked results of the competitors for the di�erent classi-
�cation tasks of CoEPrA 2006, which is information presented by the organizers of the CoEPrA
competition. The data shown are only related to the prediction results and do not refer to recog-
nition. The following abbreviations are used: TP,TN,FP,FN - true positive, true negative, false
positive and false negative classi�ed peptides. "Sens." and "Spec." are sensitivity and speci�city
as described in section 3.2.6. "Accu." is accuracy, the average rate of positive and negative
correct classi�ed peptides. "Auroc" is the area under the ROC curve and "MCC" the Matthews
Correlation Coe�cient.

results for classi�cation - 1

Rank Group TP TN FP FN Sens. Spec. Accu. MCC AUROC

1 Wuju Li 40 36 8 4 0.9091 0.8182 0.8636 0.7303 0.8636

2 Gavin Cawley 38 38 6 6 0.8636 0.8636 0.8636 0.7273 0.8636

3 Mehdi Jalali Heravi 36 39 5 8 0.8182 0.8864 0.8523 0.7062 0.8523

4 Matt Segall 39 35 9 5 0.8864 0.7955 0.8409 0.6847 0.8409

5 Reiji Teramoto 40 33 11 4 0.9091 0.7500 0.8295 0.6676 0.8296

6 Joao Aires-de-Sousa 38 35 9 6 0.8636 0.7955 0.8295 0.6606 0.8296

7 Fatih Amasyali 32 40 4 12 0.7273 0.9091 0.8182 0.6472 0.8182

8 Hendrik Blockeel 32 39 5 12 0.7273 0.8864 0.8068 0.6216 0.8068

9 Levon Budagyan 38 33 11 6 0.8636 0.7500 0.8068 0.6176 0.8068

10 David Farrelly 34 37 7 10 0.7727 0.8409 0.8068 0.6151 0.8068

11 Wit Jakuczun 37 34 10 7 0.8409 0.7727 0.8068 0.6151 0.8068

12 Scott Olo� 36 35 9 8 0.8182 0.7955 0.8068 0.6138 0.8068

13 Robert Kirk DeLisle 35 35 9 9 0.7955 0.7955 0.7955 0.5909 0.7954

14 Shikha Varma-O'Brien 35 33 11 9 0.7955 0.7500 0.7727 0.5460 0.7727

15 Bart De Moor 30 37 7 14 0.6818 0.8409 0.7614 0.5295 0.7614

16 Bhaskar Kulkarni 36 31 13 8 0.8182 0.7045 0.7614 0.5261 0.7614

17 Curt Breneman 37 26 18 7 0.8409 0.5909 0.7159 0.4460 0.7159

18 Elizabeth Jacob 29 33 11 15 0.6591 0.7500 0.7045 0.4108 0.7046

19 Marco Gori 36 21 23 8 0.8182 0.4773 0.6477 0.3143 0.6477

20 E�endi Widjaja 28 28 16 16 0.6364 0.6364 0.6364 0.2727 0.6364

21 Alexander Zelikovsky 31 20 24 13 0.7045 0.4545 0.5795 0.1643 0.5796

22 Walter Knapp 21 28 16 23 0.4773 0.6364 0.5568 0.1151 0.5568

23 Artem Cherkasov 25 24 20 19 0.5682 0.5455 0.5568 0.1137 0.5568

Table 3.24

Di�culties arise due to the small size of the learning data sets of binding and non-binding
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results for classi�cation - 2

Rank Group TP TN FP FN Sens. Spec. Accu. MCC

1 Levon Budagyan 33 32 6 5 0.8684 0.8421 0.8553 0.7108

2 Scott Olo� 33 32 6 5 0.8684 0.8421 0.8553 0.7108

3 Reiji Teramoto 33 32 6 5 0.8684 0.8421 0.8553 0.7108

4 Hendrik Blockeel 33 31 7 5 0.8684 0.8158 0.8421 0.6852

5 David Farrelly 36 26 12 2 0.9474 0.6842 0.8158 0.6547

6 Gavin Cawley 34 28 10 4 0.8947 0.7368 0.8158 0.6396

7 Robert Kirk DeLisle 27 34 4 11 0.7105 0.8947 0.8026 0.6158

8 Fatih Amasyali 32 27 11 6 0.8421 0.7105 0.7763 0.5575

9 B.D. Kulkarni 30 29 9 8 0.7895 0.7632 0.7763 0.5528

10 Shikha Varma-O'Brien 34 21 17 4 0.8947 0.5526 0.7237 0.4761

11 Wuju Li 29 26 12 9 0.7632 0.6842 0.7237 0.4488

12 Marco Gori 28 26 12 10 0.7368 0.6842 0.7105 0.4216

13 Matt Segall 26 26 12 12 0.6842 0.6842 0.6842 0.3684

14 Alexander Zelikovsky 38 8 30 0 1.0000 0.2105 0.6053 0.3430

15 Mehdi Jalali Heravi 22 26 12 16 0.5789 0.6842 0.6316 0.2646

16 Artem Cherkasov 16 26 12 22 0.4211 0.6842 0.5526 0.1091

17 Alexander Tropsha 25 14 24 13 0.6579 0.3684 0.5132 0.0275

18 Curt Breneman 18 18 20 20 0.4737 0.4737 0.4737 -0.0526

19 Walter Knapp 11 21 17 27 0.2895 0.5526 0.4211 -0.1637

Table 3.25

results for classi�cation - 3

Rank Group TP TN FP FN Sens. Spec. Accu. MCC

1 Wit Jakuczun 50 40 26 17 0.7463 0.6061 0.6767 0.3560

2 Gavin Cawley 36 51 15 31 0.5373 0.7727 0.6541 0.3188

3 E. Walter Knapp 43 44 22 24 0.6418 0.6667 0.6541 0.3085

4 Matt Segall 40 46 20 27 0.5970 0.6970 0.6466 0.2954

5 David Farrelly 32 52 14 35 0.4776 0.7879 0.6316 0.2791

6 B.D. Kulkarni 43 42 24 24 0.6418 0.6364 0.6391 0.2782

7 Fatih Amasyali 43 42 24 24 0.6418 0.6364 0.6391 0.2782

8 Alexander Zelikovsky 41 42 24 26 0.6119 0.6364 0.6241 0.2484

9 Robert Kirk DeLisle 38 44 22 29 0.5672 0.6667 0.6165 0.2349

10 Reiji Teramoto 41 40 26 26 0.6119 0.6061 0.6090 0.2180

11 Levon Budagyan 40 39 27 27 0.5970 0.5909 0.5940 0.1879

12 Hendrik Blockeel 34 43 23 33 0.5075 0.6515 0.5789 0.1606

13 Wuju Li 43 32 34 24 0.6418 0.4848 0.5639 0.1282

14 Mehdi Jalali Heravi 32 42 24 35 0.4776 0.6364 0.5564 0.1154

15 Artem Cherkasov 38 36 30 29 0.5672 0.5455 0.5564 0.1126

16 Francisco Melo 27 41 25 40 0.4030 0.6212 0.5113 0.0248

Table 3.26
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results for classi�cation - 4

Rank Group TP TN FP FN Sens. Spec. Accu. MCC AUROC

1 Gavin Cawley 13 73 19 6 0.6842 0.7935 0.7748 0.3972 0.7388

2 Walter Knapp 10 77 15 9 0.5263 0.8370 0.7838 0.3276 0.6816

3 Levon Budagyan 8 75 17 11 0.4211 0.8152 0.7477 0.2130 0.6181

4 Scott Olo� 5 83 9 14 0.2632 0.9022 0.7928 0.1876 0.5827

5 Hendrik Blockeel 3 87 5 16 0.1579 0.9457 0.8108 0.1508 0.5518

6 Venkat Mathura 5 80 12 14 0.2632 0.8696 0.7658 0.1388 0.5664

7 Artem Cherkasov 6 76 16 13 0.3158 0.8261 0.7387 0.1341 0.5709

8 Tom Kiehl 5 78 14 14 0.2632 0.8478 0.7477 0.1110 0.5555

9 David Farrelly 9 61 31 10 0.4737 0.6630 0.6306 0.1073 0.5684

10 Matt Segall 4 81 11 15 0.2105 0.8804 0.7658 0.1002 0.5455

11 Reiji Teramoto 5 77 15 14 0.2632 0.8370 0.7387 0.0981 0.5501

12 Wit Jakuczun 5 77 15 14 0.2632 0.8370 0.7387 0.0981 0.5501

13 Mehdi Jalali Heravi 5 73 19 14 0.2632 0.7935 0.7027 0.0518 0.5283

14 Alexander Zelikovsky 0 92 0 19 0.0000 1.0000 0.8288 0.0000 0.5000

15 Fatih Amasyali 1 85 7 18 0.0526 0.9239 0.7748 -0.0342 0.4883

16 Wuju Li 16 7 85 3 0.8421 0.0761 0.2072 -0.1076 0.4591

Table 3.27

peptides. The prediction data set cannot be used as feedback control and therefore, it was neces-
sary to split the small learning data set into a true learning and a test prediction data set. This
is limiting the number of data to train the scoring function even more.
For all classi�cation tasks of CoEPrA 2006 physico-chemical or sequence based feature vectors
can be used. For all four classi�cation tasks the results I have submitted are based on sequence
feature vectors. The w+ weighting was optimized for each task. The LSM was either tuned by
the λw regularization or a PCA was used to suppress selected eigenvector components and to
reduce the number of parameter e�ectively. After the contest, in the frame of this doctoral work
physico-chemical features were used for the LSM. PCA and the λw regularization were applied
to reduce the e�ective number of parameters. Individual feature selection will be discussed later
for the GA.
Unfortunately a program error was responsible for submitting recognition instead of prediction
results for the �rst two classi�cation tasks. I have �xed the error, such that the last two classi-
�cation tasks were not e�ected.

3.3.2 Submitted individual results

3.3.2a Classi�cation task 1

For the �rst classi�cation task bare sequence based methods were used. The method is using 20
linear sequence features and no quadratic terms. For parameter control, PCA was used. Only
components with the largest eigenvalues were selected. The components with the 14 largest
eigenvalues were fully taken into account. The following 12 components have been faded from
100% to 0% with a linear decay. The weighting was w+ = 0.40 and no λw was used.
Since the result published in the competition was corrupted, the true result from these settings
is given here:
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TP TN FP FN Sens. Spec. Accu. MCC

34 35 9 10 0.7727 0.7954 0.7841 0.5683

It is possible to improve this result with better optimized settings for the LSM. In section
3.3.3 di�erent achievable results using sequence versus physico-chemical feature vectors together
with PCA based component selection are compared.

3.3.2b Classi�cation task 2

Also for the second task of CoEPrA a sequence vector based classi�cation was used. Again 20
linear amino acid type sequence features and no quadratic terms have been used. Di�erent to the
approach in the �rst task, this time no PCA was performed. Instead the regularization parameter
λw was used to prevent learning by heart. Further settings are: w+ = 0.50 and λw = 10−2.
Again the result submitted for the competition was corrupted by the same error. The true results
for the explained settings are given here:

TP TN FP FN Sens. Spec. Accu. MCC

33 30 8 5 0.8684 0.7895 0.8289 0.6600

3.3.2c Classi�cation task 3

For the 3rd classi�cation task, sequence vectors were used as descriptors. A PCA was applied to
restrict the number of parameters. From the resulting 180 parameters, using only linear terms,
those 5 components exhibiting the largest eigenvalues in PCA are fully taken into account, while
those components related to the following eigenvalues from rank 6 to 100 are faded with a linear
decay from 100% to 0%. The parameter w+ was set to 0.53. No lambda regularization was used.
Results are shown in table 3.26 entry Knapp.

3.3.2d Classi�cation task 4

The last classi�cation task number 4 is di�cult to learn and predict because of the high asymme-
try between binding and non-binding data in the learning set. The unbalanced learning data are
not the only problem. The small number of binding data makes it harder to learn and generalize
the information contained in the learned. Once again sequence vectors were used for learning
and the PCA was applied to analyze the eigenvalues. Only those components were selected,
which correspond to the largest eigenvalues. Intermediate eigenvectors were faded. The largest
14 eigenvalues were fully selected. The following eigenvalues from rank 15 to 64 were faded from
100% to 0% with a linear decay. The weighting factor w+ was set to 0.65 due to the small size
of binding peptides in the learning set. Again only 180 components of the linear sequence vector
were used and λw = 0. Results are shown in table 3.27.

3.3.2e Summary of submitted results

For all four CoEPrA classi�cation tasks no physico-chemical features, but sequence based features
were used, because at the time of the competition little was known of the provided physico-
chemical features. In three of four cases PCA was used to identify those components, which
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might have an important contribution to the learning procedure. Just in one case the classical
lambda term was employed to reduce the number of free parameters. The obtained results are
good enough to be ranked at least in a central position, in several cases even in the top part of
the overall standings for the di�erent classi�cation tasks. After intense studies of the methods
an improvement in prediction quality with di�erent parameterizations can be achieved as shown
in the following section.

3.3.3 Optimized predictions for CoEPrA classi�cation tasks

Optimized parameters can improve results obtained for classi�cation tasks 1-4. To understand
how parameters are optimized, an analysis of di�erent eigenvalue selections and lambda value
regularizations has to be performed. This section is just considering the conventional established
methods to improve prediction results using both sequence features and physico-chemical fea-
tures. Feature selection and the results of the GA are discussed in section 3.4.
In the following the term "features" is used for physico-chemical derived features provided by Co-
EPrA 2006. For sequence derived features the term "sequence vector" is used. First, recognition
and prediction results for classi�cation task 1 in dependence of the number of used eigenvalues is
discussed. The eigenvalues are derived by PCA and are ordered by size. Only a given number

Figure 3.13: Sequence vectors: CoEPrA 1 classi�cation task recognition (solid lines) and
prediction (dashed lines) results for increasing number of eigenvalues used after PCA of sequence
vectors yielding up to 180 parameters. A weighting of w+ = 0.45, λw = 0 was used. Red lines
refer to binding, blue lines refer to non-binding peptides.
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Figure 3.14: Physico-chemical features: CoEPrA 1 classi�cation task recognition (solid
lines) and prediction (dashed lines) results for increasing number of eigenvalues used after PCA
of 5787 physico-chemical features. A weighting of w+ = 0.45, λw = 0 was used. Red lines refer
to binding, blue lines refer to non-binding peptides.

of largest eigenvalues are taken into account, removing all other values. For sequence vectors
results using up to 180 eigenvalues and for physico-chemical features results using up to the �rst
100 eigenvalues are plotted in the two �gures 3.13 and 3.14.
It is obvious that in both cases the increase in the e�ective number of parameters is going along
with an increase in learning by heart. Nevertheless, in the case of physico-chemical features, the
prediction results remain on a high level, even if a large number of eigenvalues is selected. At
the same time both graphs show an increase in recognition performance of up to 100% for large
numbers of eigenvalues.
Di�erent to the submitted prediction results, here the eigenvalues are faded out by a hard cuto�.
In contrast to this hard cuto�, the soft cuto� considers also components of the ordered eigenval-
ues from a given starting position towards a de�ned end position with a linear decay from 100%
down to 0% of its' magnitude. Other decay functions were tested to weaken eigenvalue compo-
nents, like quadratic or gaussian functions, but none of them improved the results signi�cantly.
As mentioned before, another way to suppress unnecessary parameters is the λw regularization
term. In �gure 3.15 results for sequence vectors and for the physico-chemical features in depen-
dence of the lambda parameter are shown. All 5787 physico-chemical features are used for the
analysis in graph 3.15b.
The lambda regularization term below an value of 10−2 has for both cases, feature and sequence
feature LSM, a stabilizing role. This means that numerically the resulting equation system is
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(a) sequence vectors

(b) physico-chemical features

Figure 3.15: CoEPrA 1 classi�cation recognition (solid lines) and prediction (dashed lines) results
for di�erent values of regularization parameter λw. A weighting of w+ = 0.45 was used. Red
lines refer to binding, blue lines refer to non-binding peptides. Using for descriptors a) sequence
vectors b) 5787 physico-chemical features provided by CoEPrA
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not becoming singular and at the same time learning by heart is barely suppressed. High recog-
nition rates for binding and non-binding peptides are around 100% and indicate over�tting. If
the lambda value increases above 10−2 recognition rates are going down and at the same time
prediction rates are in�uenced. For sequence vector LSM the prediction rates of the two classes
show a directly opposed trend with increasing lambda. Although the trend is changed for lambda
values above 0.03, there is no big overall improvement to the mean prediction rate. Finally the
prediction rates of binding and non-binding diverge completely above a value of 1. Interestingly
for lambda value of above 1 the trends for recognition rates of binding or non-binding are coupled
to the trends of the appropriate prediction rates.
In case of the CoEPrA physico-chemical feature derived LSM, e�ects of supressing learning by
heart can be observed earlier. For a lambda value above 10−3 recognition rates are dropping
below 100%. Prediction rates improve a little between lambda of 10−4 and 10−3. Finally the
binding prediction rate collapses followed by the recognition rate of binding peptides. Later, at
a lambda value of 0.2 the rates for non-binding recognition and prediction are breaking down.
Best prediction rates are achieved between lambda values of 0.001 and 0.008.

3.3.3a Magnitude of eigenvalues for task CoEPrA task 3

The dataset provided with CoEPrA task 3 is one of the most di�cult to predict, since the se-
quence homology of the contained peptides between learning and prediction data set is high.
In this example, results obtained with PCA using a strict eigenvalue cuto� are shown together
with the magnitude of eigenvalues ordered by size. Once again sequence and physico-chemical

Figure 3.16: CoEPrA 3 classi�cation by PCA and eigenvalue analysis for sequence vectors.
A weighting of w+ = 0.53 was used. Red lines refer to binding, blue lines refer to non-binding
peptides. Solid lines represent recognition results, dashed lines represent prediction results. The
black dotted line displays the size of the smallest considered eigenvalue referring to the right
y-axis scale.
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Figure 3.17: CoEPrA 3 classi�cation by PCA and eigenvalue analysis for physico-chemical
features showing size of assigned eigenvalues. A weighting of w+ = 0.55 was used. Red lines
refer to binding, blue lines refer to non-binding peptides. Solid lines represent recognition results,
dashed lines represent prediction results. The black dotted line display the size of the smallest
considered eigenvalue referring to the right y-axis scale.

feature vectors are selected for the LSM, using weighting factors of w+ = 0.53 for the case of the
sequence vectors and w+ = 0.55 for the physico-chemical feature vectors.
The black curves in �gures 3.16 and 3.17 display the magnitude of the eigenvalue at the current
position in the stack of eigenvalues ordered by size. This corresponds to the smallest eigenvalue
used to obtain the recall and prediction results. The solid colored lines are representing the
recall results. The strong decay of the size of eigenvalues in both graphs 3.16 and 3.17 goes
along with a recall approaching a recognition rate of almost 100%, which indicates learning by
heart. This drastic change in the size of the eigenvalues indicates the threshold, where to apply
the cuto� for the set of eigenvalues of the classi�cation approach. For the sequence vector ap-
proach of CoEPrA-3 this choice seems to have little in�uence on the prediction quality. From the
very beginning prediction rates �uctuate to a certain degree but the mean rate of binding and
non-binding prediction is almost constant. Just opposite is the behavior of the physico-chemical
feature vectors, where the black curve shows two slumps. Already at the �rst slump the eigen-
value cuto� clearly marks the highest average prediction rate of binding and non-binding sets.
In this case the change in order of magnitude for the eigenvalues is correlated also to the overall
prediction quality one can expect. This is also true for the second slump in the black curve
corresponding to nearly 3,000 parameters. The overall prediction performance for CoEPrA-3 is
with 68% - 65% lower than the one for CoEPrA-1.
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3.3.3b Hand optimized results for CoEPrA classi�cation 1-4

Table 3.28 shows results, which are obtained for di�erent descriptors and optimization methods
for all CoEPrA classi�cation tasks. The parameters of the respective methods are manually
optimized and may contain a certain bias by a feedback to the prediction results. Therefore,
these results may not re�ect a realistic prediction scenario in terms of an authentic prediction.
Nevertheless, they are suitable to demonstrate the possibilities of the individual methods.

sequence sequence phys. chem. phys. chem.

CoEPrA task type cholesky PCA cholesky PCA

classi�cation 1 L+ 100.0 100.0 97.7 95.5

L- 100.0 100.0 84.4 82.2

P+ 84.1 84.1 88.6 84.1

P- 75.0 77.3 81.8 81.8

classi�cation 2 L+ 100.0 100.0 100.0 100.0

L- 100.0 100.0 100.0 94.9

P+ 86.8 86.8 92.1 84.2

P- 84.2 84.2 76.3 73.7

classi�cation 3 L+ 95.5 100.0 67.2 97.0

L- 95.5 100.0 74.2 100.0

P+ 65.7 64.2 67.2 62.7

P- 60.6 65.2 62.1 63.6

classi�cation 4 L+ 100.0 78.9 84.2 100.0

L- 83.7 75.0 69.6 63.2

P+ 63.2 52.6 63.2 68.4

P- 72.8 72.8 75.0 67.4

Table 3.28: Optimal tuned prediction results for all four CoEPrA tasks with di�erent methods.
All values given are percentages of correct classi�cation. "L" denotes recall, "P" prediction, +
and - denotes the classes of binding or non-binding peptides. Sequence vector descriptors are
marked by "sequence" otherwise "phys. chem." marks physico-chemical features from CoEPrA.
"PCA" relates to the method based on PCA and eigenvalue selection, while "cholesky" relates
to the default LSM based method with lambda regularization.

3.3.3c Feature selection for the task of CoEPrA-1

Inspired by the results obtained for CoEPrA-1 classi�cation of the �rst ranked Chinese group of
Wuju Li, feature selection came to mind as a powerful way to optimize classi�cation performance.
In the CoEPrA classi�cation problem 1, the Wuju group selected just 7 features from the 5787
provided CoEPrA feature set to apply for recognition and prediction. The current set of 7
features they selected was derived out of three preselected 7-features sets, which were evaluated
by leave-one-out cross validation [60]. Those 7 selected features can be used for further studies
on this data set. Using these features by the LSM with a weight of w+ = 0.40 for the CoEPrA-1
data a prediction rate of 90.9% for binding and 84.1% for non-binding peptides can be achieved,
yielding an MCC value of 0.75. The group of Wuju Li was achieving an MCC of 0.73 with these
features in CoEPrA task 1.
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An optimal feature set should contain condensed information to discriminate binding from non-
binding classes but skip any redundant or contradicting information of the learning data. These
7 features, which had been selected by Wuju et al. are representing the CoEPrA-1 data on a
very optimal level. Still those selected features are general enough to predict the unknown data
from the prediction data set with high performance. The �gure 3.18 is demonstrating this fact
by adding random features to the set of the seven preselected features.

Figure 3.18: Feature selection made on base of the 7 features of Wuju et al. for CoEPrA-1. The
exact Wuju feature set is marked by the green bar. For less features in the set single features
have been removed from the Wuju original set. For more than 7 features random features have
been added to the original set. Solid lines mark recall, dashed lines mark prediction. Red lines
represent binding and blue lines represent non-binding classes. Weighting is set to w+ = 0.40
and lambda is set to λw = 10−9.

Adding random features to the selected feature set of Wuju et al. is step by step decreasing
prediction performance. There are �uctuations and in some cases adding a single feature is tem-
porarily improving the prediction performance. After adding a number of features to the set,
recognition quality is approaching values close to 100% and is indicating over�tting. Although
the weighting factor w+ has been hand optimized for this problem, it is easy to see that between
binding and non-binding classes is a gap in recognition and prediction quality. This is increasing
with the number of added features, since for a total feature number smaller than 10 the di�erence
between binding to non-binding peptides is vanishing.
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3.3.4 Discussion and summary of section 3.3

• The LSM is suitable to deal with sequence derived and physico-chemical derived features.
Since the latter one allows peptide independent description of any kind of drug molecules,
physico-chemical derived features are more general.

• To handle the features used in the descriptors and to avoid over�tting, two approaches
have been studied in this section: the lambda regularization term to reduce the number
of e�ective features, and the PCA based eigenvalue analysis with the selection of most
signi�cant eigenvalue components to solve the linear equation system.
The eigenvalue analysis seems to be more analytical, while the tuning of the lambda para-
meter is mainly empirical. Anyhow, the eigenvalue analysis is not always the method of
choice. The way how to fade out eigenvalues was empirically explored. The linear decay
fade out turned out to work best for the given CoEPrA examples.

• Knowing the prediction results it is obviously easy to optimize parameters of di�erent
approaches yielding good results. The demanding task is to optimize the results without
touching or analyzing the results of the prediction set.

• Each CoEPrA classi�cation task has di�erent demands. While task 1 o�ers the easiest
to predict data set, the sets 2 and 3 show higher homology in peptide sequences between
binding and non-binding set and �nally the set no. 4 is highly asymmetric between binding
and non-binding peptides in the learning set. All CoEPrA tasks possess small training data
sets.

• The remarkable results of the participating group of Wuju et al. for the classi�cation task
1 was demonstrating the power of feature selection. This idea is the basis for the study
done in the following sections.

In this section the power of the LSM method was demonstrated for the classi�cation tasks
of the competition CoEPrA 2006. The obtained results can be compared with results from
other participants. Results of the LSM based approach are ranked in the upper third to the
mid�eld of participants. The di�erent classi�cation tasks of CoEPrA address di�erent situations
of prediction scenarios: The �rst classi�cation task is an easy to predict data set of peptides,
where the trained patterns of the learning data set are easily applied to the prediction data set.
Most peptides of this set can easily be separated by classes. In the second CoEPrA task sequence
homology between the classes of binding and non-binding peptides is high. Therefore the peptides
are more di�cult to classify and the learning data set is small. The third classi�cation task is also
di�cult to predict and the range of results obtained from di�erent competitors in this competition
suggest that the best achievable prediction performance is much below the performance for
classi�cation task 1. The fourth task has the highest demands for an classi�cation algorithm.
The learning data set is very asymmetric, where the number of binding peptides is very low and
therefore hard to learn. This is re�ected in the low performance achieved by all competitors for
this task.
The LSM method can achieve average to good results for all four classi�cation tasks, if sequence
based features are used. The usage of the 5,787 physico-chemical features makes the reduction
of the number of parameters crucial. PCA eigenvector selection or lambda regularization were
used to control the number of e�ective parameters. With appropriate tuning of the LSM using
weighting factor w+ and regularization parameter λw or an e�ective cuto� of selected eigenvalue
components as well as the right choice of sequence vector or physico-chemical features, good
prediction results can be achieved for all four CoEPrA tasks. Nevertheless, no single approach
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alone based on the LSM generates good results for all four tasks. Feature selection by an
heuristic algorithm, like GA, is expected to further optimize the prediction performance for all
four classi�cation tasks.
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3.4 Feature selection on the example of the CoEPrA tasks

As illustrated in the last section, feature selection is a powerful tool for classi�cation tasks.
One competitor demonstrated for the CoEPrA classi�cation task 1 that a handful of features
can be used to achieve top results. Therefore, task 1 seems to be a good starting point for
the application of feature selection. Before applying feature selection the performance of each
single feature in the provided set should be examined. Fortunately, a feature combination of
seven features provided by the competitors Wuju et al. is known to work very well. Thus these
features can be compared to the rest of the 5787 features from the CoEPrA set.

3.4.1 Single feature performance

As given by the formulas in equation 2.35a and 2.35b the performance for single features can be
derived. To use this kind of formalism implies the use of the feature normalization as described
in section 2.3.8. This will provide information about each features' total recognition performance
as well as the number of correct recognized binding and non-binding molecules from the learning
set. Figure 3.19 shows the performance of all given 5787 single features for CoEPrA-1,

Figure 3.19: Single feature recognition performance for CoEPrA-1. All 5787 features are sorted
by their individual recognition performance. Green and red curves mark the number of correct
classi�ed peptides of the non-binding or binding class, while the black curve gives the overall
recognition performance for each feature. The maximum achievable performance is 89 correct
recognized binding plus non-binding peptides (44+/45-). The highest actually observed number
of correct recognized peptides for a single feature is 70 (41+/29-). Features whose overall per-
formance is at or below the gray line can be inverted to gain a minimum recognition quality of
50%. Features marked by blue crosses are members of the Wuju feature set of seven features.
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highlighting those 7 features of the Wuju feature set.
One single feature in CoEPrA-1 (the one on the very left side of the graph 3.19) can recognize
70 peptides from the learning set. The features in the graph are ordered by their recognition
quality (overall recognition �rst, followed by recognition of binding peptides) such that features
on the left hand side are above average. Features whose overall recognition performance is at or
below the gray line are below an average recognition of 50% of all peptides from the learning set.
Therefore, features at or below that line can be inverted, to obtain a minimum recognition rate of
50%. It can be recognized that almost all features are able to classify at least some peptides from
both classes, binding and non-binding correctly. The ratio of correct classi�ed peptides between
the classes is varying. Binding peptides are slightly better recognized by features possesing a
high overall recognition rate.
The features of the feature set of Wuju et al. are distributed over the complete width of the
graph yielding 4 features which are above the 50% recognition rate. The three remaining features
can be inverted in their performance. Just focussing on the four best performing features from
the Wuju feature set is not improving the overall prediction rate, if the LSM is used for classi�-
cation. The combination of all features from the Wuju feature set is contributing to the achieved
prediction performance and it seems that weak performing single features are contributing in
a speci�c way to optimize the classi�cation task. It can be imagined that there are some pep-
tides, which are hardly classi�ed correctly by good performing features alone. The right choice
of weaker performing features might add just the classi�cation ability to recognize such prob-
lematic peptides. Combining features regarding their individual recognition performance alone
seems not a su�cient criterion to obtain a well performing set of features. The idea would be
just to combine excellent performing single features to create a feature set but the information
which peptides are classi�ed correctly by which feature using several features simultaneously is
hidden and may vary. Combining features, which contradict in recognition can have contrary
e�ects. Good performing features might recognize always the same type of peptides correctly,
but fail for a number of peptides, which are recognized only by those features possessing a weak
overall performance. The determination of the single performance of features alone is not enough
to create good feature sets.
Another option is to see how often each peptide from the learning data set is correctly identi�ed
by the features of the given feature set of Wuju et al. How good is the set of features covering
the complete learning set and which of those peptides from the learning set are not classi�ed
correctly? These questions are considered in the following graph 3.20.
Those peptides from the learning set, which are missclassi�ed if one uses the Wuju feature set
for LSM classi�cation are marked by a red frame in the graph. There are 3 wrong classi�ed
binding and 4 wrong classi�ed non-binding peptides. The binding peptides are on average more
often correctly recognized by the 7 features from Wuju et.al. This corresponds to the obser-
vations from �gure 3.19. In the worst case non-binding peptides are correctly identi�ed by 2
di�erent single features, while the binding peptides are correctly identi�ed by at least 4 di�erent
single features. The optimal recognition rate of all 7 features is achieved for 2 peptides from the
binding set, while the best result obtained for the non-binding peptides is 6 correct classifying
single features in the case of 2 peptides.
Although it is hard to transform these observations into a �xed rule, one can conclude that it is
helpful that each peptide in the set should be identi�ed correctly by several features at the same
time. Possibly it is an indicator of learning by heart if all the peptides from the learning set are
recognized by many features from a given feature set.
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Figure 3.20: Number of single features from the feature set of Wuju et al., which correctly identify
di�erent peptides from the learning set of CoEPrA-1. Seven features are included in that feature
set. The learning set contains 44 binding and 45 non-binding peptides. Binding peptides are
shown on the left side, non-binding on the right side of the graph. Those peptides which are
missclassi�ed by the entire feature set using the LSM method are marked with a red dot.

3.4.2 Feature preselection by the antipode algorithm

From the data shown in the last section it can be concluded that for feature selection not only
the single feature performance is an important point, but also the variety of di�erent recognized
peptides between di�erent features plays a role. The antipode algorithm introduced in section
2.3.10 is performing a preselection of features based on recognition quality and recognition diver-
sity. Before applying the antipode algorithm the feature set is extended by adding all quadratic
features to the linear features. This will increase the size of the entire feature set enormously
from round about 5,787 features to more than 16 million features.
While the individual features from the extended feature pool are normalized and evaluated
regarding their recognition performance, features without a contribution (those which have a
constant value for all peptides of the learning set) are discarded. Features with a recognition
rate below 50% are inverted and all features below the given quality threshold parameter are
removed. This cuto� threshold is one parameter for preselection and has to be above or equal 0.5
since all features with a recognition rate below 0.5 are inverted such that the rate will become
1.0 − x. In the classi�cation task of CoEPrA-1 a threshold value of 0.6 was used. The last
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step before applying the antipode algorithm is to group the features into groups F+, F− and
F 0 containing features of di�erent recognition performance discriminating between recognized
binding and non-binding peptides. With respect to the equations 2.36, the values for α+ and α−

are chosen to be α+ = 0.14 and α− = 0.01 to in�uence the size of the three feature groups in
CoEPrA-1. The features within each feature group are sorted by their recognition performance
using the bucket sort algorithm. In the following the di�erent individual features in the feature
sets F 0, F+, F− are shown before and after applying the antipode �ltering for the combined
set of all linear and all quadratic features. All features must full�ll the quality criterion of a
minimum recognition rate of 0.6 (= 60% of 89 peptides from the learning set). In �g. 3.21 the
feature distribution before applying the antipode �ltering is shown.

Figure 3.21: Performance of features of three feature groups F+ (red), F− (blue) and F 0 (green)
for CoEPrA-1 for all linear and quadratic features with a minimum recognition rate of 0.6. All
features are ordered by their recognition performance. Feature group boundaries are shifted by
α+ = 0.14 and α− = 0.01 to achieve a balanced size of all three set F 0, F+, F−. Details of the
features with highest performance are enlarged in the upper right corner.

The initial size of the three feature groups can be controlled by three parameters. The
quality threshold is de�ning how many features are overall selected, the two α-parameter de�ne
how many feature from the initial F+ and F− group are shifted to the neutral feature group
F 0. One strategy for the CoEPrA datasets was, to take care that all three feature groups do not
become to di�erent in size. Nevertheless, it can be recognized from �g. 3.21 that the three initial
feature groups are di�erent in size. Without the control by these three parameters, di�erences
in the size of the feature groups would be magni�ed.
The feature group F+ is by far the largest group, containing 2,776,971 features, while F− contains
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733,519 features and F 0 �nally possesses 865,195 features. Thus the overall number of features
containing all linear and quadratic features is 4,375,685. It is interesting to see that the groups
F 0 contains the largest number of very good performing features, followed by group F+. The
feature group F− contains fewer excellent performing features.
Using the antipode �ltering, one can equalize size and performance of the three feature groups
by choosing the parameters for the antipode algorithm for each feature group separately. The
similarity thresholds τ+, τ− and τ0 in�uence the resulting size of the appropriate feature groups
after the antipode �ltering. In the example of CoEPrA-1 the values for the similarity threshold
are chosen to be τ+ = 0.1, τ0 = 0.2 and τ− = 0.3. All those features, which possess a too
large similarity to already selected features of the new reduced sets are excluded from these new
reduced sets with respect to the τ thresholds. The new reduced feature sets become the new
antipode �ltered feature groups F+

AP , F
−
AP and F 0

AP which will be from here on simply referred
to as F+, F− and F 0. Figure 3.22 shows the resulting feature groups after antipode �ltering.

Figure 3.22: Feature performance after antipode pre�ltering of features of three feature groups
F+ (red), F− (blue) and F 0 (green) for CoEPrA-1 for all linear and quadratic features. Similarity
thresholds are τ+ = 0.1, τ− = 0.3 and τ0 = 0.2. All features are ordered by their recognition
performance.

It is easy to see that the total number of features per feature group is drastically reduced. All
feature groups are closer together with respect to the recognition performance of their features.
The group of binders preferring features F+ is now on the top, followed by the feature groups F 0

and F−. There are now 2295 features contained in F+, 3057 features in F− and 4321 features
in F 0.
It is interesting to study the composition of elements from the di�erent feature groups. It can be
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Figure 3.23: Features of di�erent antipode pre�ltered feature groups recognize peptides of binding
and non-binding classes di�erently (CoEPrA-1). Average recognition by di�erent features is
calculated for each feature group by dividing the total number of correct hits by the number of
features in the appropriate feature group. Feature groups F+ (red), F− (blue) and F 0 (green)
show di�erent recognition strength for binding or non-binding peptides as to be expected.

expected that features of F+ recognize peptides from the binding set better than features from
the other two groups. The non-binding peptides should be recognized best by features from the
group F−. The feature group F 0 �nally should be universally good recognizing both classes of
peptides. To get a comparable plot, the number of features of a given feature group identifying
a molecule correctly has to be normalized by dividing them by the total number of features per
group. This is shown in graph 3.23. The relation of the three curves to each other are basically as
to be expected from the postulated behavior of the feature groups speci�c features. The majority
of binding peptides are best recognized by features from the F+ group, while the majority of
non-binding features are best recognized by features from the F− group. The features from the
F 0 group are recognizing binding and non-binding peptides equally well.

3.4.3 Feature selection by the Genetic algorithm (GA)

Table 3.29 gives an overview of reasonable parameters for the GA and antipode algorithm and the
results obtained with these settings for all 4 CoEPrA classi�cation tasks. In the following MCC
refers to the MCC value of the prediction set and LMCC refers to the MCC of the learning set.
As displayed in table 3.29 one major problem is the large variation within the results of the 200
individuals in the �nal generation re�ected by the di�erence in MCC of prediction between best
and worst individual. The best results presented here are good enough to achieve a top position
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CoEPrA classi�cation tasks

1 2 3 4

parameters of antipode

feature preselection

group threshold α+ 0.14 0.30 0.10 0.05
group threshold α− 0.01 0.50 0.10 0.50
similarity thres. F+ 0.10 0.10 0.20 0.20
similarity thres. F− 0.30 0.20 0.20 0.50
similarity thres. F 0 0.20 0.15 0.20 0.60
feature quality threshold 0.60 0.58 0.60 0.60

parameters of GA

no. of GA cycles 200 200 200 200
no. of F+ features 2 2 2 1
no. of F− features 2 2 2 1
no. of F 0 features 3 2 3 1
Generation size

in individuals 200 200 200 200
seed of random numbers 24 4 7 7
mutation rate 0.40 0.40 0.40 0.40
reproduction rate 0.20 0.20 0.20 0.20
remodulation rate 0.20 0.20 0.20 0.20
crossing over rate 0.20 0.20 0.20 0.20
no. of dropped best

individuals/gen. 1 1 1 1

parameters scoring function

lambda λw 1E-06 1E-06 1E-06 1E-06
weighting w+ 0.50 0.50 0.50 0.45
learning set splitting 4 4 4 4

prediction results

best individual (MCC) 0.750 0.709 0.353 0.307
best individual (LMCC) 0.710 0.744 0.444 0.327
worst individual (MCC) 0.435 0.053 0.023 -0.171
worst individual (LMCC) 0.697 0.556 0.479 0.317

best ranked Competitors

1st ranked (MCC) 0.730 0.711 0.356 0.397
2nd ranked (MCC) 0.727 0.711 0.319 0.328

Table 3.29: Parameters which have been optimized for CoEPrA tasks 1-4 yielding the shown
results for best and worst performing individual of the �nal 200. generation from a GA run.
The random seed for the GA has been chosen such that a typical performance out of 30 runs
was obtained. The last two rows list the best results obtained from all participants during the
CoEPrA competition 2006.

for the di�erent tasks of the competition, but the worst performing individual(s) of the same
generation would lead to the last rank. In all runs to optimize the parameters yielding competitive
results, it was not possible to obtain in the �nal generation mostly top performing individual
feature sets. Furthermore it turned out to be a real challenge to select those individuals, which
are performing very well, or to exclude those which are, very weak performing individuals, due
to learning by heart.
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3.4.3a Evaluation of the GA results

In case of the �rst CoEPrA classi�cation example the correlation between di�erent measures
shall be compared. Therefore, the 200 individuals of the �nal 200th generation are examined.
The achieved average MCC value for the test prediction sets <MCC(aT)> is compared to the
MCC value of the complete learning set MCC(tL) or to the MCC value of the true prediction
set MCC(tP), respectively. Average value means that the test prediction set for all four fractions
of the entire learning set was used. Furthermore, the peptide distribution for the four fractions
was altered 20 times resulting in 20x4 di�erent test learning and test prediction sets (see section
2.3.11). During this procedure the information of the true prediction was not used at any time.
Only at the stage of the postanalysis the true prediction data set was used to analyze the results.

Figure 3.24: Correlations of the MCC value for the complete learning set/ true prediction set
versus the average MCC value for the test prediction sets of CoEPrA-1. a) MCC of complete
learning MCC(tL) correlated to MCC for the average test prediction <MCC(aT)> b) MCC
of true prediction MCC(tP) correlated to MCC average of the test prediction <MCC(aT)>

During runtime of the GA a scoreQ is evaluated in every cycle by adding a weighted minimum
value of the MCC for the test predictions to the average MCC value of the test predictions as
shown in eqn. 2.42 in section 2.3.11e. To justify this reweighting the correlation between the
minimum MCC value of the test predictions compared to the value of the MCC for the complete
learning set or true prediction set have to be considered. The graph b in �gure 3.25 yields a
typical examples of the correlation of CoEPrA-1 for the �nal 200th generation after completing
the GA. Although the result in that graph refer to the �nal generation of individuals, this
correlation behavior already exists for individuals during the optimization procedure of the GA
cycles. The minimum MCC value of the test prediction is a reasonable candidate to be used
for �ltering out good from bad individuals during the post processing. For this classi�cation a
possible cuto� threshold of the minimum MCC values is indicated in the graphs a,b by the blue
lines.

In �gure 3.26a,b the performance increase during the evolution of generations is shown. The
evolution of the performance of the di�erent generations is converging for recall and prediction
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Figure 3.25: Correlations of the MCC value for the complete learning set/ true prediction set
to the minimum MCC value for the test prediction sets of CoEPrA-1. The blue lines indicate
a possible cuto� threshold to exclude bad performing individuals from the �nal selection of
CoEPrA-1 during post processing. a) MCC of the complete learning MCC(tL) correlated to
minimum MCC for the test prediction min(MCC(aT)) b) MCC of true prediction MCC(tP)

correlated to minimum MCC of the test prediction min(MCC(aT))

Figure 3.26: Time evolution of recognition and prediction performance in the GA on the example
of CoEPrA task 1. Enrichment of good performing individuals is occurring after 100-200 cycles
of the algorithm for both cases. Fluctuations in the content of generations after convergence
is caused by the settings for the genetic operations. Measures for quality categories in recall
and prediction are slightly di�erent since a certain high MCC value for an individual in recall is
easier to achieve compared to the same MCC value in prediction. a. time evolution for recall
(learning) b. time evolution for prediction.

within 100 to 200 generations. There are �uctuations in the composition of the generations, due
to the random nature of the process to obtain a new generation that vary these results only to
a negligible extent. The main conclusion from this is the observable enrichment of successful
individuals achieved by the GA.
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3.4.4 Discussion and summary of section 3.4

• Before feature selection is used a quadratic feature expansion is performed to generate
the products of all linear features. Meaningless features are removed and each feature is
evaluated regarding its' recognition ability. Features with recognition rates below 50% are
inverted. Grouping the features into feature groups F+, F− and F 0 is based on recognition
rates of the learning classes + and -. Features are sorted by their performance and features
below a quality threshold given for each feature group are discarded.
The antipode algorithm removes all features from a feature group, which are too similar
to the growing group of dissimilar features. The starting point are good performing single
features and the comparison proceeds to features with decreasing recognition performance.

• The assembly of the 3 feature groups can be controlled by speci�c parameters. It is possible
to counterbalance the 3 feature groups to each other to prevent strong asymmetries in size.
Feature reduction as done by the antipode algorithm is crucial for performance and quality
reasons before entering the genetic algorithm (GA)

• Feature selection from these three feature groups is performed by the GA. At the end of
the GA a number of feature sets called individuals will be returned. Correlation between
test prediction performance and complete learning performance of the entire learning set
is strong. There is still a good agreement between the test prediction performance and the
performance of the true prediction. The test prediction set is part of the complete learning
set and a stronger correlation to the learning set has to be expected.

• The GA evolution plots show an enrichment of good and excellent performing individuals
over the number of genetic cycles. This is one key demand for the GA.

• CoEPrA classi�cation tasks show a diverse behavior regarding the GA. In most cases
the GA produce individuals, which are performing well compared to the results of the
competitors. Nevertheless, each generation contains a number of individuals, which are
intensively learning by heart. They are showing good performance only with respect to
the learning set. Without knowledge of the prediction set it is hardly possible to �lter out
learning by heart individuals reliably. In some cases a generation does not contain good
performing individuals.

• Feature selection is working well for CoEPrA classi�cation task 1. All other tasks are
causing more or less problems. Final generations can be very heterogeneous regarding the
true prediction performance of the individuals.

The GA is supposed to provide a generation of individuals, which is enriched by good per-
forming individuals. This can be observed for the di�erent CoEPrA task 1-4. The features
available to the GA are preselected by the antipode algorithm to improve the convergence of
the GA. It can be observed in the GA evolution plots that the GA is converging within 100 to
200 iteration cycles. The resulting best and worst individuals for the four tasks of CoEPrA are
shown in this section. Parameters of table 3.29 have been individually optimized. For CoEPrA
task 1 and 3 the �rst or second rank respectively could have been reached in the competition,
if the best performing individual had been selected. For the CoEPrA tasks 2 and 4 the 4th
or 3rd rank respectively could have been reached by choosing the best performing individual.
Nevertheless, the weakness of this process is the variance in performance for the individuals from
each generation and the need to �nd out, which individual performs well. The lower end of per-
formance achieved for CoEPrA tasks 1-4 by the results of the GA is given as worst performing
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individuals in table 3.29. A post-analysis of the individuals of a generation is crucial to separate
good from bad individuals. Especially the CoEPrA task 2-4 require a post-processing, since
more weak performing individuals are generated per generation compared to task 1. Di�erent
indicator values like the minimum MCC value of the test prediction show a good correlation to
the MCC of the true prediction and can be used for the selection of good individuals.
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3.5 Post-processing of GA optimized individuals of the �nal gen-

eration

Figure 3.26 in the previous section demonstrates that each generation, even the �nal generation
after 200 applied genetic cycles, is contaminated by a number of individuals, which possess a
poor performance in prediction. Since there is no unique correlation between the performance
in recall and prediction for the same individual, it is hard to detect those individuals, which
should be discarded. In fact learning by heart can emphasize individuals, which are excellent
performing in recall but have a weak performance in prediction. The main reason to apply a
post-processing or post-analysis after the GA is to �lter out those individuals, which are good
performing in prediction even without any knowledge of the true prediction results. In other
words an automatism has to be found to select good behaving individuals in all or at least most
test cases such that in a real prediction scenario individuals with good performance are found.

3.5.1 Selection of successful individuals

For each individual a number of quantities based on the MCC values and statistical derived
quantities from the MCC values can be used as indicator values as described in section 2.3.12.
Most important is that the MCC of the true prediction set cannot be used for the decision process
but only for the control of the �nal success of the applied selection. The idea behind this is that
those individuals, which are learning by heart to some extend can be detected after analysis of
the given indicator quantities. In the following table 3.30 an excerpt of a typical �nal generation
from CoEPrA task 1 after 200 GA cycles is given. The individuals of the last generation are
ranked by the average MCC value of the test prediction set. Only highest ranked individuals are
shown. Individuals with a certain behavior regarding the indicator values are highlighted in the
table.
Indicator values are average MCC values of test learning sets (aL) and test prediction sets (aT).
Those sets are altered 20x4 times due to 20 di�erent peptide distributions to the learning sets
of four blocks. For each distribution in 4 blocks one block can become test prediction set, while
the remaining 3 blocks are used for test learning. The mean values are calculated out of all 80
MCC values for test learning and test prediction sets. Furthermore, a minimum MCC value of
the test predictions min(< aT >) and the MCC variance var(< aT >) of the test prediction
can be calculated. The MCC of the complete learning set (tL) and true prediction set (tP) are
given on the right hand side of the table. The tP-value cannot be used for the procedure to
select successful individuals.
Those individuals which are suspected to do learning by heart should be excluded from the list.
In the table entries are highlighted in red, which possess values possibly indicating learning by
heart. This is the case if the average test prediction value (aT ) is above the average value of
test learning (aL). Another indicator is the MCC for the complete learning set (tL). If the
performance of an individual to recognize the complete learning set is much higher than the
performance of other individuals from the same generation this could be a sign of learning by
heart. Furthermore should the MCC performance for the complete learning set be lower as the
average MCC of the test learning sets from the same individual. Not shown in this table is the
in�uence of the minimum value min(< aT >), which always should be high with respect to
other individuals. Also the distance of the minimum value min(< aT >) to the test prediction
average aT can be helpful to characterize the individuals reliability. It can happen that individ-
uals are eliminated from the list (as in row 2 of table 3.30 for individual #46), which actually
are performing well in prediction but full�ll the criteria of a suspect to learning by heart. This
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MCC statistics over 20x4 subsets complete sets
3
4 sets

1
4 sets missclassi�ed

indiv. aL aT min<aT> tL tP learn pred.

2 0.84 0.82 0.64 0.845 0.683 7 14
46 0.81 0.82 0.64 0.798 0.705 9 13
1 0.81 0.81 0.64 0.798 0.705 9 13
5 0.81 0.81 0.64 0.798 0.705 9 13
37 0.81 0.81 0.64 0.798 0.728 9 12
0 0.84 0.80 0.55 0.845 0.683 7 14
8 0.81 0.80 0.48 0.798 0.728 9 12

Table 3.30: Excerpt of best ranked individuals of the �nal generation for the example of CoEPrA
task 1 using feature sets composed of 2 F+, 2 F− and 3 F 0 features with λw = 10−10. The
ranking order is given by the average MCC of the test prediction sets (aT). Individuals with
conspicuous indicator values are highlighted in red. Those values could indicate learning by
heart behavior. This is the case if the average MCC of the test learning sets (aL) is smaller
compared to the average MCC of test prediction sets (aT). Furthermore are comparable high
MCC values of the complete learning set (tL) suspicious. The column (tP) yields the MCC value
for the true prediction.

is acceptable as long as bad individuals are eliminated for sure.
This procedure works �ne for the classi�cation task 1 of CoEPrA 2006, but often fails for classi�-
cation tasks as for instance CoEPrA 3 or 4. Task 3 and 4 are in general more di�cult to predict.
As demonstrated by the results of all competitors in the contest, the achievable MCC values for
the prediction sets of those tasks are very low (between 0.3 and 0.4 compared to MCC values
above 0.7 for task 1 and 2). This is also re�ected by the results obtained from the learning data
set. Learning, test learning and test prediction performances are very low for these tasks, which
requires completely di�erent criteria to handle the detection of outliers.

3.5.2 Molecular data set similarities to guide the selection of individuals

In a more recent approach the compositions of learning and prediction data sets are compared
with respect to the selected features of each individual. How similar are the di�erent sets of data
used to train the algorithm compared to the sets of data for prediction through the eyes of the
features included in the current feature selection? Here it is possible to di�erentiate between
each class (binding = + and non-binding = - ) and the type (learning or prediction) such that
four subsets of data can be compared. In the following, learning sets are marked by the letter
"L" and prediction sets are marked by an "P", while a following plus or minus characterizes
the class to which the set belongs to. Data similarity is derived by the following procedure as
described in detail in section 2.3.13.
The table 3.31 refers the results for learning and prediction data sets using the complete number
of physico-chemical features or the entire number of sequence derived features. Large values
indicate high similarity of the compared data. All values have been normalized according to
equation 2.43.
The �rst lines listed in the table refer to the (normalized) self-similarity of the learning sets

and the prediction sets, respectively. One trend which can be observed from the given similarity
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physico-chemical features sequence based features

task 1 task 2 task 3 task 4 task 1 task 2 task 3 task 4

learning set
+ + 0.804 0.778 0.745 0.736 0.302 0.161 0.181 0.168
+ - 0.736 0.779 0.725 0.706 0.168 0.125 0.132 0.117
- - 0.713 0.815 0.726 0.707 0.137 0.141 0.133 0.133

prediction set
+ + 0.788 0.753 0.742 0.739 0.249 0.131 0.170 0.157
+ - 0.695 0.714 0.717 0.708 0.124 0.102 0.122 0.110
- - 0.668 0.706 0.709 0.705 0.111 0.125 0.123 0.125

learning - prediction
+ + 0.793 0.758 0.740 0.722 0.261 0.123 0.162 0.122
+ - 0.699 0.725 0.717 0.704 0.134 0.117 0.124 0.113
- + 0.731 0.766 0.726 0.711 0.152 0.111 0.131 0.119
- - 0.682 0.749 0.713 0.702 0.102 0.108 0.113 0.117

Table 3.31: Average similarity of feature vectors from data sets of the four CoEPrA tasks dif-
ferentiating between physico-chemical and peptide sequence derived feature vectors. Similarity
values are mean values of all set to set pairings. A value of +1 means identity. Random matches
correspond to a value close to zero. All data containing information of the prediction set can-
not be used for an in-depth analysis, since class association is not available in true prediction
scenarios. This information is just to get an impression how the prediction sets compare to the
learning sets.

values, is that for almost every case the self-similarity of binding peptides from learning and pre-
diction sets are higher than the comparable values of the corresponding non-binding sets. This
is the case for both types of features used, physico-chemical and sequence based features. This is
easy to understand if one argues that the variation can be higher for unspeci�c petides as it is for
binding petides. Only in the case of CoEPrA task 2 the values between binding and non-binding
data set show the opposite behavior - and this is valid only for the sets using physico-chemical
derived features. Another striking characteristics of the present values is the signi�cant higher
similarity of physico-chemical derived feature sets compared to the sequence based feature sets.
physico-chemical features re�ect the similarity of di�erent amino acids with comparable charac-
teristic better than sequence coded features, which depict a change in the sequence with always
the same distance in feature space between any pair of amino acids Hence, similarity measures
in terms of sequence encoded features are not directly comparable to physico-chemical derived
features.
For the self-similarity values of the prediction set the same trend for binding to non-binding sets
can be observed. This is consistent with the previous conclusion. If results of the di�erent Co-
EPrA tasks are compared to each other, task 1 shows the highest self-similarity for the binding
set of physico-chemical features and sequence based features. Even for the prediction set the
self-similarity of the binding peptides is the highest in CoEPrA task 1. This classi�cation task
1 is indeed the one, which works best for most classi�ers. There is only little deviation between
the data of the other CoEPrA tasks. Even for the prediction set self-similarity comparison is not
providing new understanding.
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Figure 3.27: Histograms of the similarity distribution between pairs of peptide sets using di�erent
feature sets: a-d: for physico-chemical -, e-h: for sequence based - features each on the CoEPrA
tasks 1-4. Color code used: L+L+ black solid, L-L- red solid, L+L- blue solid, P+P+ black
dashed, P-P- red dashed, P+P- blue dashed.
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The similarity between learning and prediction data sets show no signi�cant di�erence to the
self-similarity values discussed before. Basically these values lie between the appropriate values
of the self-similarity for learning and those of the self-similarity for prediction.
The graphs in �gure 3.27 show similarity distributions for all pairs of peptide sets for a given
feature set. Solid lines correspond to self-similarity between peptides of the learning set, while
dashed lines represent self-similarity between peptides of the prediction set. From these his-
tograms the consistency and characteristics of the data sets from di�erent CoEPrA tasks can
be discussed. Most signi�cant patterns are shown for the graphs representing task CoEPrA 1
and 2. Here the curves of the di�erent pairs of peptide sets, binding or non-binding are easy
to discriminate. This supports the clues that for these tasks binding data should be easier to
separate from non-binding data, which should support the prediction. For both other tasks of
CoEPrA 3 and 4 little di�erentiation between binding and non-binding data is visible.

Is it possible to use similarity data to discriminate good from bad feature sets obtained from the
GA? In the following �gure 3.28 similarity between peptide sets is displayed for di�erent typical
individuals of the CoEPrA-2 task. To judge between good and bad individuals only curves from
those data are shown, which do not require knowledge of prediction class association. Thus, the
prediction data set is not divided into classes, but considered as a whole. Similarity is calculated
between L+P*, L- P* and L+L-. Other combinations of intrasimilarity of the peptides from the
learning data sets are not shown for improved clarity.

Though it was expected that these curves show clear pattern to discriminate the prediction
quality of individuals, it turned out that for every assumed characteristic a counter part was found
possesing the opposite prediction quality. If it is assumed i.e. that a peak in the histograms is
characteristic for a good predicting individual other individuals can be found, showing the same
characteristic peak, while possessing a weak prediction performance. It is even more di�cult to
�nd characteristics, which apply for all di�erent CoEPrA tasks. The overall assumption is that
the similarity measure is not a su�cient criterion to �lter out good from bad individuals.

3.5.3 PCA applied to selected individuals to improve the prediction

In the previous section 3.5.1 di�erent indicator quantities were used to rank individuals and
exclude malicious individuals from the ranking. Here a method is described, which �rst ranks
individuals to �lter out one single individual from the entire �nal generation. Finally a principle
component analysis is applied to improve the prediction rate. The following protocol was used
to achieve the most promissing individual for PCA:

1. Sort all 200 individuals according to the value of min[MCC(aT)], the minimum value from
all 4*20 test predictions, in a descending manner

2. Select only the 20 best individuals according to the previous ranking. Calculate for all 20
individuals the di�erence of MCC(aL) - min[MCC(aT)].

3. The individual with the smallest di�erence value is selected for PCA. In case that several in-
dividuals share the smallest di�erence value the one with the lowest variance var[MCC(aT)]
is selected.

4. Apply the PCA to the selected individual

The minimum MCC of the test prediction seems to be a good measure for the preselection
of individuals, because in many cases of learning by heart �uctuations in the test predictions
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Figure 3.28: Similarity of pairs of peptide sets of di�erent individuals considering the CoEPrA
task 2. To discriminate individuals with good prediction performance (MCC P) from other
individuals the pattern of curves should show typical characteristics. Color code used: black
curves: L+L-, blue curves: L+P* and red curves: L-P*. P* marks the use of the complete
prediction set. Other combinations are not shown. First row: individuals with good prediction
performance and little learning by heart. Second row: individuals showing average prediction
performance with more signi�cant learning by heart. Third row: individuals with signi�cant
learning by heart and poor prediction performance.
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performance occur. This is due to the variation of peptides in test prediction and test learning
set. Another indicator of learning by heart is a high di�erence value between the average MCC
of the test learning MCC(aL) and the minimum value of the test prediction. The PCA should
�nally overcome arti�cial constraints de�ned by the manual choice of the number of features
per feature set in the genetic algorithm. In the case of the CoEPrA competition the complete
number of features per feature set range between 6 to 9. Higher and lower number of features
have been tested, but best results are achieved within this margin. The obtained eigenvalues are
analyzed and those components assigned to the lowest eigenvalues are removed before solving
the equation system. The following table 3.32 displays the �rst individuals of CoEPrA task 1
ranked according to the protocol described above.

# 3
4 sets

1
4 sets

indiv. aL aT var<aT> min<aT> aL - min<aT> tL tP

4 0.90 0.87 0.084 0.730 0.17 0.890 0.614
31 0.90 0.85 0.085 0.730 0.17 0.911 0.659
91 0.81 0.77 0.097 0.636 0.17 0.789 0.730
13 0.91 0.87 0.077 0.730 0.18 0.911 0.659
67 0.82 0.79 0.086 0.636 0.18 0.843 0.683

Table 3.32: Five ranked individuals from the last generation of the GA to select individual
suitable for PCA considering CoEPrA task 1. Individuals consist of seven features: 2 F+, 2 F−

and 3 F 0.Top ranked individual no. 4 (red) is selected for PCA. Eigenvalues for this individual
are given in the text below. Test learning (aL) and test prediction (aT) are the average MCCs
over 4*20 set variations. Random seed of 72, λw = 10−10 and w+ = 0.50 were used as parameters

According to the protocol individual no. 4 is ranked best in CoEPrA task 1 using 2F+/2F+/3F 0 =
7 features. The PCA yields 7 eigenvalues and appropriate eigenvectors. The eigenvalues are
sorted in ascending order. Smallest eigenvalues are associated with components, which are rather
unspeci�c in their correlation such that these eigenvalues and their components are removed. For
individual 4 the assigned eigenvalues are:

Ev =

0.00033
0.00558
0.01914
0.06356
0.17677
5.15066
13.3934

remove smallest eigenvalues→

0.00033
0.00558
0.01914
0.06356
0.17677
5.15066
13.3934

As to be expected from this parameter reduction the MCC value for recognition of the complete
learning set is decreasing from 0.890 to 0.798. At the same time the MCC of the true prediction
is increasing from 0.614 to 0.774. This is a dramatic performance increase yielding a better pre-
diction result compared to the �rst ranked CoEPrA competitor in classi�cation task 1 of 0.730.
Based on this protocol the procedure was applied to all 4 CoEPrA tasks. The outcome is shown
in the following table 3.33. Parameters used for the di�erent CoEPrA tasks are as follows: For
all tasks a weighting of w+ as 0.50 was used. For the task 1 and 2 the lambda term was set to
10−10, for CoEPrA 3 and 4 lambda was set to 10−9. Feature sets for task 1 and 3 are composed
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CoEPrA eigen removed before PCA after PCA MCC(aT) best
task values EVs MCC(tL) MCC(tP) MCC(tL) MCC(tP) competitor

1

0.00033
0.00558
0.01914
0.06356
0.17677
5.15066
13.3934

2 0.890 0.614 0.798 0.774 0.730

2

0.0000004
0.0000431
0.0069881

17.0306320
37.7404300
66.7015540

3 0.818 0.611 0.712 0.212 0.711

3

0.01557
0.04990
0.08816
1.09861
2.21814
3.77236
73.4830

1 0.686 0.250 0.490 0.310 0.356

4

0.00023
0.00039
0.00074
0.02262
0.06831

2 0.709 0.063 0.528 0.220 0.397

Table 3.33: PCA for selected individuals of all 4 CoEPrA classi�cation contests. Change in
learning and prediction results is shown with MCC values and compared to the �rst ranked
competitors of the appropriate classi�cation contest. The total number of features used per
individual during the GA is equivalent to the number of eigenvalues listed. The selected indi-
vidual is not in every classi�cation task the one showing the best MCC in prediction. The MCC
prediction value can improve after PCA steps but don't necessarily have to improve. For task 2
results after PCA are worsen, in task 4 the results improve after PCA, but nevertheless do not
reach the quality of the best individual available in the present generation.

of 2 F+, 2 F− and 3 F 0 features, for task 2 2 F+, 2 F− and 2 F 0 features were used and for
task 4 1 F+, 2 F− and 2 F 0 features were used. Random seeds for the di�erent tasks are 72 for
task 1, 48 for task 2, 7 for task 3 and 27 for task 4.

The results obtained after using the PCA based parameter reduction shows in 3 of 4 cases im-
provements in prediction performance. The protocol was applied strictly to obtain the individual
of choice from each �nal GA generation. The selection of the omitted eigenvalues is based on
the magnitude of the di�erent eigenvalues obtained. There is some arbitrariness in deciding how
many eigenvalues should be dismissed, but this has no in�uence of the general trend of the results.
For CoEPrA task 2 the PCA method fails, delivering a result worse than the one before. In cases
like CoEPrA 4 the result obtained after PCA is improving but still much worse compared to the
best individual of the �nal GA generation selected. This demonstrates that until now, no reliable
method was established to select best performing individuals from the appropriate generation.
The selection scheme sometimes even favors individuals, which are quite apart from the quality
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obtained from top performing individuals. The learning by heart, which is usually preventing
the selection scheme to rank top individuals �rst can be handled with the PCA approach. With
this approach chances raise to achieve good prediction performance at the end. In some cases
the approach fails and prediction results are decreasing.

3.5.4 Discussion and summary of section 3.5

• Post-processing of the output from the GA is crucial to distinguish between good perform-
ing feature sets and those feature sets, which do extensively learning by heart.

• Filter approaches based on indicator values derived from test learning and test prediction
performance often fail.

• Similarity measures between data sets used for learning and prediction are supposed to
describe problems leading to learning by heart. Peptide set similarity was estimated to
be a good indicator to detect individuals performing of strong learning by heart. In this
study no good agreement between the similarity measure of individuals and their learning
by heart behavior could be found.

• PCA derived parameter reduction after selecting one speci�c individual of the GA is in
some cases improving the prediction performance. In some cases single individuals from
the GA are performing better than the improved PCA treated individuals of the speci�c
selection. One reason is that the individual selection protocol often selects individuals with
an average prediction performance.

• A reliable way to select good individuals of the last GA generation for all di�erent CoEPrA
classi�cation tasks is missing.

A number of techniques to separate good from bad performing individuals were analyzed. It
was expected to �nd an approach, which works reliable for all four CoEPrA classi�cation tasks.
Instead it turned out that all studied methods could not ensure that bad performing individuals
are eliminated in every case. Analyzing peptide similarity of learning and prediction sets for the
four CoEPrA tasks can yield some understanding for the characteristics of the separate tasks
but did not provide information on how to �lter out bad performing individuals. Peptide self-
similarity pattern for given feature sets for learning and prediction sets were searched to �nd
repeating patterns. No pattern found was exclusively correlated to the prediction performance
of individuals. The approach of �rst applying de�ned �lter rules and �nally using PCA to
select eigenvalues, delivered promissing results for three out of the four CoEPrA tasks. For
CoEPrA task 1,3 and 4 the prediction performance for the selected individual increased after
the eigenvalue selection. Unfortunately the individuals selected for the PCA approach did not
always belong to the top performing individuals of the appropriate �nal generation of the GA.
In the case of CoEPrA task 4, the selected individual is a poor performing individual, which
improves its' performance after applying the PCA in order to reach a prediction performance,
which is already established by better performing individuals of the same �nal generation.
The conclusion of this section is that it was not possible to improve the selection of individuals
with the studied methods. The GA provides generations of individuals, which are enriched by
good, sometimes by excellent performing individuals. Nevertheless, learning by heart is di�cult
to detect and can lead to the selection of individuals, which have a high recognition performance
but a weak prediction performance. The small peptide learning sets as they are provided by
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CoEPrA can be one reason, why the feature selection of the GA is sometimes not performing
well. Simple but more robust methods like a λw regularization optimization can be more e�ective
in such cases.
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Chapter 4

Summary and Outlook

In this work algorithms are presented, which can be used for knowledge based classi�cation of
data. Correlations of descriptors to target values are automatically derived by calculating a
coe�cient weighting matrix. The basic idea was to �nd an e�ective method designed for peptide
binding prediction of speci�c MHC allels. The developed scoring function is able to handle any
type of molecules, which can be characterized by feature based descriptors.
Application of the bare scoring function to evaluate HLA-A0201 binding peptides demonstrate
how powerful this method is. ROC plots of recognition and prediction data demonstrate a robust
method, which compares favorably with other well established classi�cation approaches like sup-
port vector machine. Examination of MHC and MHC/TCR crystal structures give further inside
about the binding of the antigen peptide with respect to MHC and TCR. Steric interactions and
the peptide backbone play an essential role in binding to MHC in case of HLA A0201. The TCR
interactions focus on the central residues of the peptide, which are not as tightly bound in the
binding groove of the A*0201 α chain. Both ends of the peptide are important for interacting
with the MHC. In position 2 and 9 anchor residues of the nonapeptide are present, which contain
the fairly conserved residues leucine or valine. This study suggest that N- and C- terminal near
residues are most important for binding of the peptide. Indeed recognition and prediction for
peptides from the A0201 data set works �ne if the central residue positions 4,5,6 are missing.
The λw term is an e�ective but simple way to avoid learning by heart. In an unspeci�c way
parameters are suppressed, which allow the usage of large feature vectors even for small data
sets. The weighting parameter w+ is in�uencing the contribution of the positive (+) class with
respect to the negative (-) class and may be helpful to handle appropriatly asymmetric data sets.
The CoEPrA competition allows direct comparison of the own results for di�erent classi�cation
tasks with state-of-the-art research operating with a spectrum of di�erent classi�cation tech-
niques. Without further optimization the achieved results rank in the top middle �eld of all
competitors, sometimes even above. First results were obtained from sequence derived features
and the use of di�erent methods to prevent over�tting. The PCA to suppress less meaningful
parameters or the lambda regularization are methods of choice.
Due to the success of feature selection in parameter regularization used by competitors in the
CoEPrA contest, a framework for feature selection based on the scoring function was developed.
The number of features to be selected is prede�ned. The genetic algorithm performs a heuris-
tic search in the feature space to combine good performing features yielding optimal behaving
feature sets. For the example of CoEPrA classi�cation task 1 it was shown that the GA is con-
verging towards an high level of true prediction performance regarding the average individuals of
each generation. After 100 to 200 GA cycles the average individuals prediction performance has
reached a plateau value. It could be shown that the GA is able to generate individuals, which
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perform as good as the best competitors in the appropriate CoEPrA classi�cation task. Unfor-
tunately, almost every generation of individuals contains a number of bad or average performing
individuals. Elimination of individuals, which are subject to learning by heart is di�cult.
Similarities between learning and prediction data sets based on the selected features of each
individual could not give a reliable hint, which individuals of the �nal generation are learning by
heart. To avoid any bias in the selection of good individuals a protocol should be established,
which allows to select successful individuals in all di�erent CoEPrA tasks. The lack in a reliable
individual selection method should be overcome by the approach of the PCA based parameter
reduction. Small eigenvalues give a hint of unimportant parameters to be discarded. In three
of four cases an improvement in the prediction rate could be detected. Nevertheless, it is not
replacing the need of a more reliable individual �ltering. Some individuals of the �nal generation
are performing better than the individuals selected by the protocol even after the PCA treat-
ment.
In conclusion it must be deduced that for some problems - like CoEPrA task 1 - feature selection
works �ne, but in other cases di�erent approaches deliver better results. In these cases a simpler
but more robust method is more reliable. This is the case for the lambda regularization, which
can be optimized via boot strapping (currently evaluated by group member O. Demir).
One di�culty of the CoEPrA classi�cation tasks are the small data sets available for learning.
This has an impact on feature selection implemented via GA. For quality control the splitting of
the learning set into test learning and test prediction set is required. This is limiting the number
of data points available for learning even further.

4.1 Outlook

There are a number of possibilities to improve the scoring function approach. A soft-step function
can be introduced using logarithmic or exponential based functions to evaluate, if a data point is
assigned to one class type. Another idea is to use regression data to train the LSM, but to use the
scoring function for a classi�cation in recall and in prediction. This procedure is weighting data
points with respect to their distance to the threshold used for the scoring function to separate
classes.
Even without modi�cations of the scoring function one can improve prediction performance by
using a bootstrapping method to optimize lambda regularization. This has been successfully
implemented by a member of the Knapp work group, Oezguer Demir.
The scoring function can be applied for larger data sets derived from experimental binding
studies, which are currently available. Meanwhile much more detailed information on binding
and weak binding peptides for MHC allels is known. Based on measured IC50 or pIC50 values,
classi�cation of peptides can be established by introducing a threshold value, separating strong
from weak binding peptides. This can be used to create new training data sets. The established
method is capable of classifying large data sets with high accuracy. New data sets can improve
prediction performance, if large training data sets are provided. Furthermore, drug molecules
can be classi�ed if pharmacophore �ngerprints are used as descriptors.



Appendix A

Material

0 AAAKAAAAV AAGIGIIQI AAGIGILTV AAPTPAAPA ACDPHSGHF ACRTVALTA AFHHVAREL AIAKAAAAV AIMDKNIIL AIVDKVPSV
10 ALAAVVTEV ALACAAAAV ALADAAAAV ALADGVQKV ALAKAAAAA ALAKAAAAI ALAKAAAAL ALAKAAAAM ALAKAAAAN ALAKAAAAR
20 ALAKAAAAT ALAKAAAAV ALAKAAAEV ALAKAAAFV ALAKAAAGV ALAKAAALV ALAKAAAPV ALAKAAEAV ALAKAALAV ALAKAANAV
30 ALAKAAPAV ALAKAAYAV ALAKAGAAV ALAKAIAAV ALAKAPAAV ALAKARAAV ALAKAYAAV ALAKEAAAV ALAKGAAAV ALAKLAAAV
40 ALAKNAAAV ALAKYAAAV ALANGIEEV ALAPAAAAV ALASHLIEA ALATAAAAV ALAVAAAAV ALCRWGLLL ALEKAAAAV ALFDGDPHL
50 ALFGALFLA ALFKAAAAV ALFPQLVIL ALGLGLLPV ALGRNSFEV ALIHHNTHL ALKKAAAAV ALLNIKVKL ALLPPINIL ALMDKSLHV
60 ALMKAAAAV ALMPLYACI ALNELLQHV ALNKMFCQL ALNKMFYKL ALNKMLCQL ALQDSGLEV ALQPGTALL ALSDHHIYL ALSDLEITL
70 ALSKAAAAV ALSNLEVKL ALSRKVAEL ALSTGLIHL ALWDIETGQ ALWGFFPVL ALWNLHGQA ALYVDSLFF AMAIHKQSQ AMAKAAAAV
80 AMFQDPQER ATAKAAAAV AVAKAAAAV AVFDRKSDA AVGIGIAVV AVVPFIVSV AVVPFLVSV CINGVCWTV CLGGLITMV CLGGLLTMV
90 CLTKWMILA CLTSTVQLV DLERKVESL DLFGIWSKV DLMGYIPLV DLMLSPDDI DLVHFASPL DPKVKQWPL DVASVIVTK EAAGIGILT
100 ELIRVEGNL ELTLGEFLK ELVSEFSRM ELVSEVSKV EMFRELNEA EVAPPLLFV FAFRDLCIV FIAGNSAYE FIASNGVKL FIDSYICQV
110 FIYAGSLSA FKNIVTPRT FLAKAAAAV FLCKQYLNL FLDEFMEGV FLDGNELTL FLDGNEMTL FLDQVPFSV FLEPGPVTA FLFDGSPTY
120 FLGAAGSTM FLGENISNF FLGGTPVCL FLGGTTVCL FLKEPVHGV FLLDKKIGV FLLLADARV FLLPSFAPD FLLSLGIHL FLLTRILTI
130 FLLWATAEA FLPSDFFPS FLQSRPEPT FLTPKKLQC FLWAIMHTE FLWEFPHDL FLWGPRALV FLWGPRAYA FLWTLEGDV FLYCYFALV
140 FLYEAVPQL FLYERVPQL FLYGALLLA FMFDLAAEL FMFESPWNV FMLDWFPTI FTDQVPFSV GAGIGVAVL GAGIGVLTA GELGFVFTL
150 GIAGGLALL GIGIGVLAA GIGILTVIL GILGFVFTL GILGFVFTM GILGFVFTV GILTVILGV GIVPFIVSV GIVPFLVSV GLAPPQHEI
160 GLAPPQHLI GLCTLVAML GLDVLTAKV GLHCYEQLV GLIEKNIEL GLIMVLSFL GLLGFVFTL GLLGNVSTV GLLGTLVQL GLLGWSPQA
170 GLPVEYLQV GLQDCTMLV GLRDLAVAV GLSEFTEYL GLSPTVWLS GLSRYVARL GLVPFIVSV GLVPFLVSV GLYDGMEHL GLYPGLIWL
180 GLYSSTVPV GMLGFVFTL GMNCRPILT GMNERPILT GMNKRPILT GMNRHPILT GMNRRPILT GQLGFVFTL GTLGFVFTL GTLGIVCPI
190 GTLSKIFKL GVALQTMKQ GVLGFVFTL GVLVGVALI HEIRVEGNL HLEGKVILV HLESLFTAV HLGNVKYLV HLIDYLVTS HLIKVEGNL
200 HLIRVEGNL HLLVGSSGL HLSLRGLPV HLSTAFARV HLYQGCQVV HLYSHPIIL HMTEVVRHC HMTEVVRRC IAGIGILAI IIDQVPFSV
210 IISAVVGIL IISCTCPTV IISLWDQSL ILAGYGAGV ILAKFLHWL ILAPPVVKL ILAQVPFSV ILDQKINEV ILDQVPFSV ILDTGTIQL
220 ILFEPVHGV ILFGHENRV ILGFVFTLT ILHNGAYSL ILKEPVHGV ILKEYVHGV ILKSPVHGV ILLLCLIFL ILMEHIHKL ILMQVPFSV
230 ILSPFMPLL ILSPLTKGI ILSQVPFSV ILTVILGVL ILWEPVHGV ILYEPVHGV IMDKNIILK IMDQVPFSV IMIGVLVGV ITAQVPFSV
240 ITDQVPFSV ITFQVPFSV ITMQVPFSV ITSQVPFSV ITWQVPFSV ITYQVPFSV IVGAETFYV KACDPHSGH KARDPHSGH KASEKIFYV
250 KIFGSLAFL KILSVFFLA KINEPVIII KINEPVIIL KINEPVILI KINEPVILL KINEPVLII KINEPVLIL KINEPVLLI KINEPVLLL
260 KKREEAPSL KLAEYVAKV KLAKAAAAV KLFCQLAKT KLGEFYNQM KLHLYSHPI KLIANNTRV KLLEPVLLL KLLPENNVL KLNEILWSI
270 KLNEPVIII KLNEPVIIL KLNEPVILI KLNEPVILL KLNEPVLII KLNEPVLIL KLNEPVLLI KLNEPVLLL KLPAQFYIL KLPQLCTEL
280 KLTPLCVTL KLTSLCNTV KLVALGINA KLVANNTRL KMFCQLAKT KMFYQLAKT KMVELVHFL KTWGQYWQV KVAELVHFL KVLEYVIKV
290 KYLATASTM LAGIGLIAA LERPGGNEI LIVIGILIL LLAQFTSAI LLARNSFEV LLCLIFLLV LLDFVRFMG LLDGTATLR LLDVPTAAV
300 LLFAGVQCQ LLFDRPMHV LLFGYPVYV LLGANSFEV LLGATCMFV LLGRASFEV LLGRDSFEV LLGRNAFEV LLGRNSAEV LLGRNSEEM
310 LLGRNSFAV LLGRNSFEM LLGRNSFEV LLGRRSFEV LLIENVASL LLLCLIFLL LLLLTVLTV LLMDCSGSI LLMGTLGIV LLNATAIAV
320 LLNATDIAV LLPENNVLS LLQYWSQEL LLSSNLSWL LLSVPLLLG LLTEVETYV LLWAARPRL LLWFHISCL LLWKGEGAV LLWTLVVLL
330 LLYDWDFGL LMAQEALAF LMIIPLINV LMWAKIGPV LQTTIHDII LTVILGVLL LVVLGLLAV MDHARHGFL MIMVKCWMI MLDLQPETT
340 MLGTHTMEV MLLALLYCL MLLAVLYCL MLLSVPLLL MLMAQEALA MLWEGFTYI MMQDIDFYL MMRKLAILS MMWYWGPSL MVDGTLLLL
350 MVDGTTLLL NLGPWIQQV NLLPKLHIV NLQSLTNLL NLSWLSLDV NLTISDVSV NLVPMVATV NMFCQLAKT NMFTPYIGV PILTIITLE
360 PLDGEYFTL PLKQHFQIV PLLPIFFCL PLQPEQLQV PLSSSVPSQ PLTFGWCYK PLTSIISAV QAGIGILLA QIRGRERFE QLAKTCPVQ
370 QLFHLCLII QLIDKVWQL QLQARILAV QLSLLMWIT QMFCQLAKT QMVTTTNPL QVCERIPTI RGPGRAFVT RIIPRHLQL RILGAVAKV
380 RLCVQSTHV RLDSYVRSL RLGFLHSGT RLGRNSFEV RLIRVEGNL RLLDYVVNI RLLQETELV RLMKQDFSV RLNMFTPYI RLPKDFRIL
390 RLPRIFCSC RLSSNSRIL RLTRFLSRV RLVTLKDIV RMFPNAPYL RMGAVTTEV RMPEAAPPV RMYSPISIL RTLDKVLEV RTQDENPVV
400 RVIEVLQRA SAHKGFKGV SIIVRALEV SILVRALEV SIPSGGIGV SIPSGGLGV SLADTNSLA SLAGGIIGV SLDDYNHLV SLDQSVVEL
410 SLFEGIDFY SLFNTVATL SLFPGKLEV SLGGLLTMV SLHVGTQCA SLIGHLQTL SLINVGLIS SLIVRALEV SLKKNSRSL SLLAPGAKQ
420 SLLGGDVVS SLLGLLVEV SLLLELEEV SLLMWITQC SLLPAIVEL SLLPPDALV SLLPPTALV SLLQHLIGL SLLVRALEV SLMAFTAAV
430 SLPDFGISY SLPSGGIGV SLPSGGLGV SLRELGSGL SLSEKTVLL SLSRFSWGA SLVIVTTFV SLWGQPAEA SLYADSPSV SLYAVSPSV
440 SLYGGTTTI SLYNTIAVL SLYNTVATL SLYSFPEPE SMVGNWAKV STAPPAHGV STAPPHVNV STNRQSGRQ STPPPGTRV SVASTITGV
450 SVFAGVVGV SVRDRLARL SVYDFFVWL TGAPVTYST TITDQVPFS TIWVDPYEV TLDDLIAAV TLDSQVMSL TLEEITGYL TLFIGSHVV
460 TLGIVCPIC TLHEYMLDL TLIEDILGV TLIKIQHTL TLNAWVKVV TLSKIFKLG TLSPGKNGV TLWVDPYEV TMDHARHGF TTAEEAAGI
470 TVILGVLLL VDGIGILTI VILGVLLLI VISNDVCAQ VIYQYMDDL VKTDGNPPE VLAGLLGNV VLAKAAAAV VLATLVLLL VLDGLDVLL
480 VLEETSVML VLEWRFDSR VLFRGGPRG VLFSSDFRI VLHDDLLEA VLLCESTAV VLLDYQGML VLPDVFIRC VLQAGFFLL VLQWASLAV
490 VLSPLPSQA VLVKSPNHV VLYRYGSFS VMAGVGSPY VMAPRTLVL VMNILLQYV VVHFFKNIV VVLGVVFGI VYDGREHTV WILRGTSFV
500 WLDQVPFSV WLEPGPVTA WLNEILWSI WLSLLVPFV WLWYIKIFI WTDQVPFSV YIGEVLVSV YLATASTMD YLDNGVVFV YLDPAQQNL
510 YLDQVPFSV YLEPGPVTA YLEPGPVTI YLEPGPVTL YLEPGPVTV YLGEVIVSV YLGEVLVSV YLKEPVHGV YLKKIKNSL YLKKIQNSL
520 YLKTIQNSL YLLEMLWRL YLLPAIVEL YLLPAIVHI YLLPRRGPR YLNKIQNSL YLQLVFGIE YLSGANLNL YLVAYQATV YLVSFGVWI
530 YLVTRHADV YMDDVVLGA YMDGTMSQV YMLDLQPET YMNGTMSQV YTAFTIPSI YTDQVPFSV YVDPVITSI

Table A.1: All 538 binding sequences for HLA-A*0201 used for the set S+
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0 7ZNF 1AGQ 1BRX 1C51 1BCC 1EPW 1A75 1E4T 1AQU 1O23
10 6RLX 1AIR 8TIM 1BQP 1P3H 1E1H 1LF4 1E3E 1ALB 1NMM
20 6Q21 1AFO 1A0R 1EIS 1UJL 1DXR 1E0C 1DX1 1AI1 1NCI
30 1HNE 3MRA 1A12 1C01 1GWY 1GWC 1HRK 1DSV 1AFV 1NAS
40 1EAD 1AUN 3ZNC 1C4R 1RK4 1G6R 1RIE 1DJ2 1A2Y 1N9P
50 1VMO 1AUV 1A38 1GGX 1QKK 1FYT 1UOY 1DF3 1A1H 1MNU
60 821P 1A04 2SQC 1FHF 1B9C 1L0X 1H1V 1DD7 1914 1MBY
70 1BOM 1AF6 1BUG 1H4Y 1BFA 1ITZ 1GL5 1CQZ 1R2A 1MBE
80 1AHL 1A06 1BYO 1BPO 1BD2 1IR1 1GL2 1CL7 1QLX 1M4M
90 1SRA 1AXM 7PCK 1AB1 1AO7 1LFJ 1G74 1CE6 1PA2 1M3V

100 1DOX 1AZD 1BYY 1H8P 1A2X 1OM0 1FWU 1CDK 1P8J 1LB1
110 1MSP 1AIW 2VSG 1GRW 1A2C 1OED 1FRB 1C2B 1ORS 1KCM
120 1FAT 1A0D 1B10 1JV1 1D9K 1TCR 1FKW 1BLN 1OMX 1KBQ
130 1BGK 1BB9 1C3A 1O7N 1CNE 1QF3 1F93 1BKX 1OKQ 1K2F
140 7UPJ 1A05 1EG5 1H0H 1CJK 1PJU 1F81 1BGX 1OGP 1JJO
150 6UPJ 1BA1 1EHD 1B8M 1FV3 1WGT 1EDH 1BBS 1OCP 1JI9
160 5UPJ 1BKD 1BQF 1GDJ 1EZF 1BR1 1E4W 1AX8 1OAA 1IWE
170 1ISN 1IQ1 1IKN 1IG3 1IFQ 1IFA 1IAL 1I7W 1I7E 1I6Z
180 1I07 1HQV 1HQ8 1HN3 1H96 2ZNC 2MSS 2IAD 2DLF 1SUH
190 1HA7 1GK8 1BX7 1BWK 1BK6 1BJT 1ASZ 1AI9 1A6R 1A4H
200 1A48 1A2V

Table A.2: Pdb code of proteins' whose sequences were concatenated to generate 10,000 random
nonapeptides used as A0201 nonbinders for the set S−
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A.0.1 Position dependent amino acid distribution in the set of binding HLA-
A0201 peptides

aa Pos.1 Pos.2 Pos.3 Pos.4 Pos.5 Pos.6 Pos.7 Pos.8 Pos.9

A 16.17 2.79 14.68 5.95 11.15 11.90 16.54 11.34 5.95
C 0.93 0.37 1.30 2.04 0.56 2.04 1.49 1.67 1.30
D 1.30 0.37 7.25 7.81 2.23 2.23 1.12 1.49 0.37
E 1.30 0.56 2.42 12.08 2.97 3.53 2.23 8.74 1.30
F 7.62 0.19 6.32 1.30 6.13 4.83 10.59 3.53 0.93
G 8.74 0.37 8.18 11.52 11.34 4.83 3.90 7.43 0.74
H 2.60 0.00 1.86 0.93 2.60 1.86 4.46 2.42 0.37
I 7.25 8.92 4.28 3.90 4.46 8.74 8.36 5.76 8.36
K 8.18 0.56 2.23 11.71 3.53 2.23 0.74 4.09 0.74
L 8.55 67.47 12.08 3.35 8.36 10.59 12.08 12.08 27.70
M 2.60 8.18 2.79 0.56 0.93 1.86 1.30 1.67 1.49
N 1.49 0.00 6.88 2.23 5.02 2.23 3.35 2.79 0.19
P 1.49 0.19 3.16 10.04 8.36 8.92 5.95 3.53 0.00
Q 1.86 0.37 2.42 5.58 3.35 2.23 3.16 4.09 1.67
R 4.46 0.00 1.67 5.76 5.02 1.30 1.49 3.53 0.93
S 9.67 0.00 6.13 6.32 2.04 6.69 5.20 10.78 1.67
T 3.35 4.46 3.16 3.90 4.83 5.95 4.65 8.74 3.90
V 5.20 4.83 4.65 3.53 11.15 15.99 9.29 2.60 41.64
W 1.30 0.00 4.09 0.74 2.04 0.56 2.23 0.93 0.00
Y 5.95 0.37 4.46 0.74 3.90 1.49 1.86 2.79 0.74

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Table A.3: Position dependent amino acid distribution of the HLA-A0201 binding set S+. All
numbers are percentage of occurence.
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A.1 Features used for CoEPrA

In the CoEPrA 2006 [5] contest each residue position of the sequences is described by 643
features for classi�cation tasks 1-4. These 643 features, which are derived from physicochemical
properties, are unique descriptors for the type of amino acid, but are independent of the position
where they occur. Most of the features of CoEPrA 2006 were taken from the public accessable
AAindex database [32], which provides a number of amino acid type speci�c indices published
in literatur. The database currently (Sept. 2008) contains 544 type speci�c indices in the
AAindex1 listing. Due to the organizers of CoEPrA 2006 no global descriptors are used as
features. Furthermore the last 20 features of each residue type speci�c descriptor are represented
by Miyazawa-Jernigan indices [61].
Unfortunately the organizers of CoEPrA 2006 did not provide more detailed information about
the origin or characteristics of the features on request. Thus there are 79 of those 643 involved
features of unknown derivation.

A.2 CoEPrA classi�cation datasets without featurevectors

The classes assigned to the peptides are marked by -1 or +1 for non-binding or binding peptides
for the learning set. In the prediction set the 1 is replaced by an "x", yielding a -x for non-binding
and +x for binding peptides of the prediction set.
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learning set prediction set
binding set nonbinding set binding set nonbinding set

molecules class molecules class molecules class molecules class

IYDPFPVTV 1 ILDPFPVTD -1 FLDDHFCTV +x ALCRWGLLL -x
YLSPGPVTA 1 ILDPFPVTY -1 FLFPGPVTA +x ALMPLYACI -x
LLFGYPVYV 1 ILDPFPVTH -1 FLFPLPPEV +x ALPYWNFAT -x
YLFDGPVTA 1 SLHVGTQCA -1 FLKPFYHNV +x FLLSLGIHL -x
ILDPFPVTT 1 HLLVGSSGL -1 FLWPIYHDV +x FLLTRILTI -x
RLWPLYPNV 1 NLQSLTNLL -1 HLYSHPIIL +x FVTWHRYHL -x
YLFPGPVWA 1 SLNFMGYVI -1 ICDPFPVTV +x GILTVILGV -x
YAIDLPVSV 1 ITSQVPFSV -1 ILDDFPVTV +x GLGQVPLIV -x
YLFNGPVTV 1 VCMTVDSLV -1 ILDDLPPTV +x GLSRYVARL -x
ILDPFPVTF 1 LLMGTLGIV -1 ILDPFPPEV +x HLESLFTAV -x
YLWPGPVTV 1 ALIHHNTHL -1 ILDPFPPTV +x IDDPFPVTV -x
RLWPFYHNV 1 MLDLQPETT -1 ILDPFPVTC +x IGDPFPVTV -x
YLAPGPVTA 1 YVITTQHWL -1 ILDPFPVTI +x ILDPFPVTE -x
IADPFPVTV 1 ITFQVPFSV -1 ILDPFPVTL +x ILDPFPVTN -x
YLYPGPVTA 1 KTWGQYWQV -1 ILDPFPVTM +x ILDPFPVTQ -x
YLFPGPETA 1 ITDQVPFSV -1 ILDPIPPTV +x ILKPLYHNV -x
ILDPFPVTP 1 LLAQFTSAI -1 ILKEPVHGV +x INDPFPVTV -x
FLWPFYPNV 1 VLHSFTDAI -1 ILNPFYHNV +x ITAQVPFSV -x
FLDQVPFSV 1 ILDPFPVTK -1 ILWPIYHNV +x ITWQVPFSV -x
FLWPFYHNV 1 YMNGTMSQV -1 ILWQVPFSV +x IWDPFPVTV -x
ILWPLFHEV 1 ILDPFPVTW -1 IMDQVPFSV +x KIFGSLAFL -x
ILWPLYPNV 1 FTDQVPFSV -1 IQDPFPVTV +x KLPQLCTEL -x
ILDQVPFSV 1 KLHLYSHPI -1 ISDPFPVTV +x LLWFHISCL -x
ILNPFYPDV 1 ILDPFPVTS -1 ITDPFPVTV +x LMAVVLASL -x
FLWPLYPNV 1 YTDQVPFSV -1 IVDPFPVTV +x LQTTIHDII -x
FLNPFYPNV 1 IFDPFPVTV -1 NMVPFFPPV +x MLGTHTMEV -x
FLNPIYHDV 1 CLTSTVQLV -1 RLWPIYHDV +x NLSWLSLDV -x
YLFPGTVTA 1 YLWQYIFSV -1 RLWPIYHNV +x RLLQETELV -x
YLCPGPVTA 1 IHDPFPVTV -1 YLAPGPVTV +x RLNPFYHDV -x
YLFPPPVTV 1 RLMKQDFSV -1 YLEPGPVTL +x SIISAVVGI -x
ILFPGPVTA 1 VMGTLVALV -1 YLFNGPVTA +x SLDDYNHLV -x
IIDPFPVTV 1 ILYQVPFSV -1 YLFPCPVTA +x SLYADSPSV -x
ILDPFPVTA 1 IPDPFPVTV -1 YLFPDPVTA +x SVYDFFVWL -x
FLWPIYHNV 1 GLLGWSPQA -1 YLFPGPFTA +x TLGIVCPIC -x
ILFPFVHSV 1 GLYSSTVPV -1 YLFPGPFTV +x TLHEYMLDL -x
ILDPFPVTG 1 IISCTCPTV -1 YLFPGPMTA +x TTAEEAAGI -x
YLFPFPITV 1 FLCKQYLNL -1 YLFPGPMTV +x VLIQRNPQL -x
ILFPFPVEV 1 YLFPGPVTG -1 YLFPGPSTA +x VLLDYQGML -x
ILDDFPPTV 1 GTLGIVCPI -1 YLFPGPVQA +x VTWHRYHLL -x
ILDPLPPTV 1 RLWPFYPNV -1 YLFPGPVTA +x WILRGTSFV -x
IMDPFPVTV 1 YLKPGPVTA -1 YLFPGVVTA +x WLDQVPFSV -x
ILDPFPPPV 1 YLMPGPVTA -1 YLFPPPVTA +x YLFDGPVTV -x
ILDPFPITV 1 YMLDLQPET -1 YLNPGPVTA +x YLFQGPVTA -x
ILDPFPVTV 1 PLLPIFFCL -1 YLWDHFIEV +x YLWQYIPSV -x

RLNPLYPNV -1

Table A.4: Coepra 2006 classi�cation data of the learning and prediction set for problem 1
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learning set prediction set
binding set nonbinding set binding set nonbinding set

molecules class molecules class molecules class molecules class

FDSTGNLI 1 FESTGNLD -1 FEETGNLN +x AESKSVII -x
FESTSNLI 1 FKSTGNLI -1 FEITGNLN +x DESTGNLI -x
FESTWNLI 1 FESTGNLR -1 FEKTGNLN +x EESTGNLI -x
FGSTGNLI 1 FFSTGNLI -1 FEMTGNLN +x FAFPGELL -x
FESTGWLI 1 FESTGNLQ -1 FEPTGNLN +x FAFWAFVV -x
FESTINLI 1 FESTGNLH -1 FESGGNLI +x FASTGNLI -x
FESDGNLI 1 FESTGNLG -1 FESHGNLI +x FESTDNLI -x
FESTLNLI 1 FISTGNLI -1 FESLGNLI +x FESTENLI -x
FESTVNLI 1 QTFVVGCI -1 FESMGNLI +x FESTGNAI -x
LEILNGEI 1 NEKSFKDI -1 FESNGNLI +x FESTGNGI -x
FESTGKLI 1 FQSTGNLI -1 FESQGNLI +x FESTGNLK -x
DGLGGKLV 1 FLSTGNLI -1 FESSGNLI +x FESTGNLL -x
FESEGNLI 1 FESTGNKI -1 FESTFNLI +x FESTGNLN -x
FESKGNLI 1 FESTGNLM -1 FESTGALI +x FESTGNLP -x
FEHTGNLN 1 FESTGNDI -1 FESTGFLI +x FESTGNLT -x
FESWGNLI 1 FESTGNLW -1 FESTGGLI +x FESTGNLV -x
FESTANLI 1 KESTGNLI -1 FESTGHLI +x FESTGNLY -x
FEFTGNLN 1 FESTGNPI -1 FESTGILI +x FESTGNMI -x
FESTGVLI 1 PESTGNLI -1 FESTGLLI +x FESTGNSI -x
FESAGNLI 1 FESTGNLA -1 FESTGMLI +x FESTGNTI -x
FESPGNLI 1 FESTGNNI -1 FESTGNLF +x FESTGNVI -x
FESTGNFI 1 FESTGNLS -1 FESTGNRI +x FESTKNLI -x
FESTGNLI 1 FESTGNEI -1 FESTGNWI +x FESTRNLI -x
FESFGNLI 1 VESTGNLI -1 FESTGNYI +x FESTYNLI -x
FESRGNLI 1 FESTGNII -1 FESTGPLI +x FHSTGNLI -x
FESYGNLI 1 FESTGELI -1 FESTGQLI +x FLHPSMPV -x
FESTPNLI 1 HESTGNLI -1 FESTGSLI +x FMSTGNLI -x
FEATGNLN 1 FESTGNQI -1 FESTGTLI +x FNSTGNLI -x
FEDTGNLN 1 AESTGNLI -1 FESTGYLI +x FSSTGNLI -x
FEQTGNLN 1 SESTGNLI -1 FESTHNLI +x FTSTGNLI -x
FESTGRLI 1 GESTGNLI -1 FESTMNLI +x FVSTGNLI -x
FENTGNLN 1 FESTGDLI -1 FESTQNLI +x FWSTGNLI -x
FESVGNLI 1 IESTGNLI -1 FESTTNLI +x FYSTGNLI -x
FESIGNLI 1 MESTGNLI -1 FETTGNLN +x HAIHGLLV -x
FEGTGNLN 1 QESTGNLI -1 FEVTGNLN +x LESTGNLI -x
FERTGNLN 1 NESTGNLI -1 FEWTGNLN +x RESTGNLI -x
FELTGNLN 1 WESTGNLI -1 FEYTGNLN +x TESTGNLI -x

FESTGNHI -1 FPSTGNLI +x YESTGNLI -x
FESTNNLI -1

Table A.5: Coepra 2006 classi�cation data of the learning and prediction set for problem 2
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learning set prediction set
binding set nonbinding set binding set nonbinding set

molecules class molecules class molecules class molecules class

SVMDPLIYA 1 VVHFFKNIV -1 ALAKAAAAM +x AAAKAAAAV -x
VLLDYQGML 1 VCMTVDSLV -1 ALLAGLVSL +x ALAKAAAAV -x
LMIGTAAAV 1 LLGCAANWI -1 ALMPLYACI +x ALCRWGLLL -x
TVLRFVPPL 1 SAANDPIFV -1 ALVLLMLPV +x ALIHHNTHL -x
NLGNLNVSI 1 TTAEEAAGI -1 ALYGALLLA +x ALLSDWLPA -x
ILHNGAYSL 1 LTVILGVLL -1 AMVGAVLTA +x ALSTGLIHL -x
SIISAVVGI 1 LVSLLTFMI -1 AVIGALLAV +x AMFQDPQER -x
VLAKDGTEV 1 QMTFHLFIA -1 DLMGYIPLV +x AMKADIQHV -x
YLEPGPVTI 1 ALPYWNFAT -1 FLLTRILTI +x AMLQDMAIL -x
FLYNRPLSV 1 FVTWHRYHL -1 FLYGALLAA +x AVAKAAAAV -x
FLWGPRALV 1 SLNFMGYVI -1 FLYGALLLA +x DPKVKQWPL -x
ILDQVPFSV 1 GIGILTVIL -1 FLYGALVLA +x FAFRDLCIV -x
ILSSLGLPV 1 IVMGNGTLV -1 FLYGGLLLA +x FLAGALLLA -x
LLFLGVVFL 1 SLSRFSWGA -1 FTDQVPFSV +x FLEPGPVTA -x
YLVAYQATV 1 TVILGVLLL -1 FVWLHYYSV +x FMGAGSKAV -x
YLEPGPVTV 1 WTDQVPFSV -1 GLLGNVSTV +x FVDYNFTIV -x
ILSPFMPLL 1 AIAKAAAAV -1 GLLGWSPQA +x FVNHDFTVV -x
YLSPGPVTA 1 ITSQVPFSV -1 GLQDCTMLV +x GLACHQLCA -x
IIDQVPFSV 1 ALAKAAAAI -1 GLSRYVARL +x GLCFFGVAL -x
YMNGTMSQV 1 GLGQVPLIV -1 GLYSSTVPV +x GLVDFVKHI -x
FLCWGPFFL 1 LLSSNLSWL -1 GLYYLTTEV +x GLYLSQIAV -x
LLFRFMRPL 1 SIIDPLIYA -1 HLYSHPIIL +x HLAVIGALL -x
ITWQVPFSV 1 YLVTRHADV -1 ILAQVPFSV +x HLESLFTAV -x
LLAVLYCLL 1 LIGNESFAL -1 ILMQVPFSV +x HLLVGSSGL -x
GIRPYEILA 1 FLLPDAQSI -1 ILSQVPFSV +x HLYQGCQVV -x
GLFLTTEAV 1 CLALSDLLV -1 ILYQVPFSV +x IISCTCPTV -x
YTYKWETFL 1 LLGRNSFEV -1 IMPGQEAGL +x ILAGYGAGV -x
ALVGLFVLL 1 LLAVGATKV -1 ITFQVPFSV +x ILDEAYVMA -x
SLDDYNHLV 1 MLLAVLYCL -1 ITMQVPFSV +x ILLSIARVV -x
FLLRWEQEI 1 AIYHPQQFV -1 ITYQVPFSV +x ILTVILGVL -x
SLLPAIVEL 1 ALAKAAAAL -1 IVGAETFYV +x ITAQVPFSV -x
YLSPGPVTV 1 FVNHRFTVV -1 KIFGSLAFL +x ITDQVPFSV -x
GLIMVLSFL 1 WILRGTSFV -1 KILSVFFLA +x KLAGGVAVI -x
SLYADSPSV 1 TLDSQVMSL -1 KTWGQYWQV +x LLACAVIHA -x
RLLQETELV 1 GLYGAQYDV -1 LLAQFTSAI +x LLPLGYPFV -x
IMDQVPFSV 1 MLASTLTDA -1 LLDVPTAAV +x LLSCLGCKI -x
YLLPAIVHI 1 AIIDPLIYA -1 LLFGYPVYV +x LLVFACSAV -x
FLLLADARV 1 FLGGTPVCL -1 LLLCLIFLL +x LLVVMGTLV -x
ALMDKSLHV 1 LMLPGMNGI -1 LLLLGLWGL +x LLWFHISCL -x
YLYPGPVTA 1 RLMIGTAAA -1 LLWQDPVPA +x LMAVVLASL -x
HMWNFISGI 1 LLFLLLADA -1 LLWSFQTSA +x LQTTIHDII -x
YLAPGPVTV 1 GTLGIVCPI -1 MALLRLPLV +x MLGNAPSVV -x
MLGTHTMEV 1 KLFPEVIDL -1 MMWYWGPSL +x NLQSLTNLL -x
MTYAAPLFV 1 IAGGVMAVV -1 NLYVSLLLL +x QLFHLCLII -x
YLSQIAVLL 1 GLYRQWALA -1 QLFEDNYAL +x QVMSLHNLV -x
YLMPGPVTV 1 MLQDMAILT -1 RLMKQDFSV +x RLLGSLNST -x
WLDQVPFSV 1 VILGVLLLI -1 RMFAANLGV +x RLTEELNTI -x
SLYFGGICV 1 CLTSTVQLV -1 RMYGVLPWI +x RLVSGLVGA -x
YLLALRYLA 1 ILLLCLIFL -1 SVYDFFVWL +x RMPAVTDLV -x
SLLTFMIAA 1 DMWEHAFYL -1 VLAGLLGNV +x SLADTNSLA -x

table continued on the following page. . .
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. . .table continued from previous page.

learning set prediction set
binding set nonbinding set binding set nonbinding set

molecules class molecules class molecules class molecules class

GLMTAVYLV 1 ALTVVWLLV -1 VLIQRNPQL +x SLHVGTQCA -x
FLLSLGIHL 1 LLPSLFLLL -1 VLLLDVTPL +x SVYVDAKLV -x
FVVALIPLV 1 WMNRLIAFA -1 VLLPSLFLL +x TLLVVMGTL -x
YLWPGPVTV 1 PLLPIFFCL -1 VLTALLAGL +x VALVGLFVL -x
FLYGALRLA 1 ALAKAAAAA -1 VMGTLVALV +x VIHAFQYVI -x
LLLEAGALV 1 FLPWHRLFL -1 VVLGVVFGI +x VLHSFTDAI -x
YLFPGPVTV 1 SLAGFVRML -1 WLSLLVPFV +x VLVGGVLAA -x
ILFTFLHLA 1 TLGIVCPIC -1 YAIDLPVSV +x VVMGTLVAL -x
RLPLVLPAV 1 KLTPLCVTL -1 YLAPGPVTA +x WLEPGPVTA -x
YMDDVVLGV 1 LLCLIFLLV -1 YLDLALMSV +x WLLIDTSNA -x
GILTVILGV 1 RIWSWLLGA -1 YLDQVPFSV +x YALTVVWLL -x
NMVPFFPPV 1 SLLEIGEGV -1 YLFPGPVTA +x YLEPGPVTL -x
FLYGAALLA 1 RLLDDTPEV -1 YLMPGPVTA +x YLSEGDMAA -x
YLWPGPVTA 1 LLAGLVSLL -1 YLVSFGVWI +x YMDDVVLGA -x
FLYGALALA 1 IAATYNFAV -1 YLYPGPVTV +x YMIMVKCWM -x
FLDQVPFSV 1 YTDQVPFSV -1 YLYVHSPAL +x YVITTQHWL -x
ILWQVPFSV 1 YMLDLQPET +x

Table A.6: Coepra 2006 classi�cation data of the learning and prediction set for problem 3
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learning set prediction set
binding set nonbinding set binding set nonbinding set

molecules class molecules class molecules class molecules class

AIFQCSMTK 1 ILAVERYLK -1 ALNFPGSQK +x IASTPKKHR -x
PLTFGWCYK 1 PTVRERMRR -1 DLSHFLKEK +x IIATDIQTK -x
QIYPGIKVR 1 MSKDGKKKK -1 HLFGYSWYK +x ILKALGPAA -x
AVDLSHFLK 1 TGFEAHVDK -1 ILGLNKIVR +x KEEIRRIWR -x
LLGPGRPYR 1 SITKGEKLR -1 KIFSEVTLK +x KGERVDGNR -x
GIPHPAGLK 1 RLLINKEKA -1 KLIETYFSK +x KGQSASRLK -x
GPISGHVLK 1 VIQDNSDIK -1 KQSSKALQR +x KLVPVEPDK -x
AIFQSSMTK 1 SVMEVYDGR -1 LIYRRRLMK +x KMFPEVKEK -x
RFKMFPEVK 1 SVNEPMSIY -1 MTKILEPFR +x KMQVIGDQY -x
ILRGSVAHK 1 TIGKIGNMR -1 MVHQAISPR +x KNMIIKPGK -x
MAVFIHNFK 1 TITLPCRIK -1 NTPVFAIKK +x KQLTEAVQK -x
HMYVSGKAR 1 TLTLLSVTR -1 QIIEQLIKK +x KTGGPIYRR -x
KLTEDRWNK 1 MELVRMIKR -1 RILGTYLGR +x KTGKYARMR -x
IVTDFSVIK 1 IGWPTVRER -1 RLEDVFAGK +x KYLEEHPSA -x
KIRLRPGGK 1 VQNANPDCK -1 RLRPGGKKK +x LAELLGWKK -x
TIKIGGQLK 1 TSAFVFPTK -1 SLFRAVITK +x LAENREILK -x
ATIGTAMYK 1 AAARKAACA -1 TLFCASDAK +x LARSALILR -x
ELNEALELK 1 AGASTSAGR -1 VVGACGVGK +x LIRTVRLIK -x
ATVQGQNLK 1 VMTRGRLKA -1 YLAWVPAHK +x LLEYVTLKK -x

GGQKGRGSR -1 LLQTGIHVR -x
PTVLESGTK -1 LMHCQTTLK -x
INVHHYPSA -1 LSTRGVQIA -x
STSAGRKRK -1 LTQDLVQEK -x
LGDNQIMPK -1 LVREIRKHK -x
TLSITKGEK -1 LVRTGMDPR -x
KQWPLTEEK -1 LVWMACHSA -x
STPRLLINK -1 MGLLECCAR -x
RTEEKNFQK -1 MGVQMQRFK -x
AIKKKDSTK -1 MGYELHPDK -x
LMSRKHKWK -1 MIKRGINDR -x
RMRRAEPAA -1 NLNDATYQR -x
RTLEDNEER -1 PAAQPKRRR -x
GTATLRLVK -1 PIYRRVNGK -x
AADWLTSTA -1 QARRNRRRR -x
PIVGAETFY -1 QGVSIEWRK -x
VASGYDFER -1 QLVFGIDVK -x
VSYQPLGDK -1 QVIGDQYVK -x
YVTNRGRQK -1 QVPDSDPAR -x
LVDFRELNK -1 RDYVDRFYK -x
QTTLKYAIK -1 RIQGKLEYR -x
GAITSSNTA -1 RIVELLGRR -x
ITPVNSLEK -1 RLQLSNDNR -x
DIQTKELQK -1 RVTGGGAMA -x
ILDIRQGPK -1 RYMQSERCR -x
TLPRRSGAA -1 SAFDERRNK -x
LAALITPKK -1 SEAARWNSK -x
ASIDAQSGA -1 SGKARGWFY -x
SGHSRTTVK -1 SIIPSGPLK -x
MMDQVRESR -1 SMENTRATK -x
VARELHPEY -1 SSNTAATNA -x
VTTERKTPR -1 SSTLELRSR -x
QTLSLGSQK -1 SSVPSYKTY -x
TVQGQNLKY -1 STLPRRSGA -x

table continued on the following page. . .
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. . .table continued from previous page.

learning set prediction set
binding set nonbinding set binding set nonbinding set

molecules class molecules class molecules class molecules class

RLAFHHVAR -1 AIFEISYFK -x
FVNTPPLVK -1 AISPRTLNA -x
SWYHGPVSR -1 AITSSNTAA -x
KLVSAGIRK -1 ALAELLGWK -x
HQAAMQMLK -1 ALAETSYVK -x
VADICKKYK -1 ALILRGSVA -x
RAWCQVAQK -1 ASTSAGRKR -x
RIRQRGPGR -1 ASYLFQQDK -x
PIPVGEIYK -1 ATGFKQSSK -x
KVAPVIKAR -1 DIKVVPRRK -x
ALITPKKIK -1 DLRVLSFIK -x
CFSDSAIRK -1 EIYKRWIIL -x
AIRETVELR -1 ESPSAPPHR -x
TLTLFNVTR -1 FLNVIVHSA -x
MVLSAFDER -1 GASTSAGRK -x
AVKLYRKLK -1 GGMDFDSKK -x
VTTTNPLIR -1 GGSQPPRAA -x
LLGHIVSPR -1 GIKVRQLCK -x
NTSSSPQPK -1 GINDRNFWR -x
MIMEKGEIK -1 GLNKIVRMY -x
GEWFEAQTK -1 GLVSAGIRK -x
ELTLEGVAR -1 GSNLLSICK -x
RLQLSNGNR -1 GSQPPRAAA -x
NILLQYVVK -1 GSYFFGDNA -x
VALRHVVCA -1 GTKVLPRGK -x
GTDSVILIK -1 GTMVMELVR -x
IVHSATGFK -1 GTRQARRNR -x
TILKALGPA -1 GVFELSDEK -x
ASQIYPGIK -1 GVMTRGRLK -x
TVSGLAWTR -1 GYSWYKGER -x
KITTESIVI -1 HIVSPRCEY -x
ALAALITPK -1 HSSYLKSKK -x
ISPLNTSYR -1 TLTDTTNQK -x
PSAGKDPKK -1 TSAGIPDFR -x
AMAGASTSA -1 TSQYRIQGK -x
GYVIGTQQA -1 VARYMQSER -x
GAASRDLEK -1 VGFLLLKYR -x
SAGRKRKSA -1 VLSAFDERR -x
RYEFLWGPR -1 VLSFIKGTK -x

Table A.7: Coepra 2006 classi�cation data of the learning and prediction set for problem 4
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